net: DCB: Validate DCB_ATTR_DCB_BUFFER argument
[linux/fpc-iii.git] / drivers / iommu / dma-iommu.c
blob76bd2309e023451f07aa4e02665fd12e302fbdf9
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
5 * Copyright (C) 2014-2015 ARM Ltd.
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
9 */
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-contiguous.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/dma-noncoherent.h>
16 #include <linux/gfp.h>
17 #include <linux/huge_mm.h>
18 #include <linux/iommu.h>
19 #include <linux/iova.h>
20 #include <linux/irq.h>
21 #include <linux/mm.h>
22 #include <linux/mutex.h>
23 #include <linux/pci.h>
24 #include <linux/scatterlist.h>
25 #include <linux/vmalloc.h>
27 struct iommu_dma_msi_page {
28 struct list_head list;
29 dma_addr_t iova;
30 phys_addr_t phys;
33 enum iommu_dma_cookie_type {
34 IOMMU_DMA_IOVA_COOKIE,
35 IOMMU_DMA_MSI_COOKIE,
38 struct iommu_dma_cookie {
39 enum iommu_dma_cookie_type type;
40 union {
41 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
42 struct iova_domain iovad;
43 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
44 dma_addr_t msi_iova;
46 struct list_head msi_page_list;
48 /* Domain for flush queue callback; NULL if flush queue not in use */
49 struct iommu_domain *fq_domain;
52 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
54 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
55 return cookie->iovad.granule;
56 return PAGE_SIZE;
59 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
61 struct iommu_dma_cookie *cookie;
63 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
64 if (cookie) {
65 INIT_LIST_HEAD(&cookie->msi_page_list);
66 cookie->type = type;
68 return cookie;
71 /**
72 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
73 * @domain: IOMMU domain to prepare for DMA-API usage
75 * IOMMU drivers should normally call this from their domain_alloc
76 * callback when domain->type == IOMMU_DOMAIN_DMA.
78 int iommu_get_dma_cookie(struct iommu_domain *domain)
80 if (domain->iova_cookie)
81 return -EEXIST;
83 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
84 if (!domain->iova_cookie)
85 return -ENOMEM;
87 return 0;
89 EXPORT_SYMBOL(iommu_get_dma_cookie);
91 /**
92 * iommu_get_msi_cookie - Acquire just MSI remapping resources
93 * @domain: IOMMU domain to prepare
94 * @base: Start address of IOVA region for MSI mappings
96 * Users who manage their own IOVA allocation and do not want DMA API support,
97 * but would still like to take advantage of automatic MSI remapping, can use
98 * this to initialise their own domain appropriately. Users should reserve a
99 * contiguous IOVA region, starting at @base, large enough to accommodate the
100 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
101 * used by the devices attached to @domain.
103 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
105 struct iommu_dma_cookie *cookie;
107 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
108 return -EINVAL;
110 if (domain->iova_cookie)
111 return -EEXIST;
113 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
114 if (!cookie)
115 return -ENOMEM;
117 cookie->msi_iova = base;
118 domain->iova_cookie = cookie;
119 return 0;
121 EXPORT_SYMBOL(iommu_get_msi_cookie);
124 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
125 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
126 * iommu_get_msi_cookie()
128 * IOMMU drivers should normally call this from their domain_free callback.
130 void iommu_put_dma_cookie(struct iommu_domain *domain)
132 struct iommu_dma_cookie *cookie = domain->iova_cookie;
133 struct iommu_dma_msi_page *msi, *tmp;
135 if (!cookie)
136 return;
138 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
139 put_iova_domain(&cookie->iovad);
141 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
142 list_del(&msi->list);
143 kfree(msi);
145 kfree(cookie);
146 domain->iova_cookie = NULL;
148 EXPORT_SYMBOL(iommu_put_dma_cookie);
151 * iommu_dma_get_resv_regions - Reserved region driver helper
152 * @dev: Device from iommu_get_resv_regions()
153 * @list: Reserved region list from iommu_get_resv_regions()
155 * IOMMU drivers can use this to implement their .get_resv_regions callback
156 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
157 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
158 * reservation.
160 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
163 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
164 iort_iommu_msi_get_resv_regions(dev, list);
167 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
169 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
170 phys_addr_t start, phys_addr_t end)
172 struct iova_domain *iovad = &cookie->iovad;
173 struct iommu_dma_msi_page *msi_page;
174 int i, num_pages;
176 start -= iova_offset(iovad, start);
177 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
179 for (i = 0; i < num_pages; i++) {
180 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
181 if (!msi_page)
182 return -ENOMEM;
184 msi_page->phys = start;
185 msi_page->iova = start;
186 INIT_LIST_HEAD(&msi_page->list);
187 list_add(&msi_page->list, &cookie->msi_page_list);
188 start += iovad->granule;
191 return 0;
194 static int iova_reserve_pci_windows(struct pci_dev *dev,
195 struct iova_domain *iovad)
197 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
198 struct resource_entry *window;
199 unsigned long lo, hi;
200 phys_addr_t start = 0, end;
202 resource_list_for_each_entry(window, &bridge->windows) {
203 if (resource_type(window->res) != IORESOURCE_MEM)
204 continue;
206 lo = iova_pfn(iovad, window->res->start - window->offset);
207 hi = iova_pfn(iovad, window->res->end - window->offset);
208 reserve_iova(iovad, lo, hi);
211 /* Get reserved DMA windows from host bridge */
212 resource_list_for_each_entry(window, &bridge->dma_ranges) {
213 end = window->res->start - window->offset;
214 resv_iova:
215 if (end > start) {
216 lo = iova_pfn(iovad, start);
217 hi = iova_pfn(iovad, end);
218 reserve_iova(iovad, lo, hi);
219 } else {
220 /* dma_ranges list should be sorted */
221 dev_err(&dev->dev, "Failed to reserve IOVA\n");
222 return -EINVAL;
225 start = window->res->end - window->offset + 1;
226 /* If window is last entry */
227 if (window->node.next == &bridge->dma_ranges &&
228 end != ~(phys_addr_t)0) {
229 end = ~(phys_addr_t)0;
230 goto resv_iova;
234 return 0;
237 static int iova_reserve_iommu_regions(struct device *dev,
238 struct iommu_domain *domain)
240 struct iommu_dma_cookie *cookie = domain->iova_cookie;
241 struct iova_domain *iovad = &cookie->iovad;
242 struct iommu_resv_region *region;
243 LIST_HEAD(resv_regions);
244 int ret = 0;
246 if (dev_is_pci(dev)) {
247 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
248 if (ret)
249 return ret;
252 iommu_get_resv_regions(dev, &resv_regions);
253 list_for_each_entry(region, &resv_regions, list) {
254 unsigned long lo, hi;
256 /* We ARE the software that manages these! */
257 if (region->type == IOMMU_RESV_SW_MSI)
258 continue;
260 lo = iova_pfn(iovad, region->start);
261 hi = iova_pfn(iovad, region->start + region->length - 1);
262 reserve_iova(iovad, lo, hi);
264 if (region->type == IOMMU_RESV_MSI)
265 ret = cookie_init_hw_msi_region(cookie, region->start,
266 region->start + region->length);
267 if (ret)
268 break;
270 iommu_put_resv_regions(dev, &resv_regions);
272 return ret;
275 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
277 struct iommu_dma_cookie *cookie;
278 struct iommu_domain *domain;
280 cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
281 domain = cookie->fq_domain;
283 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
284 * implies that ops->flush_iotlb_all must be non-NULL.
286 domain->ops->flush_iotlb_all(domain);
290 * iommu_dma_init_domain - Initialise a DMA mapping domain
291 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
292 * @base: IOVA at which the mappable address space starts
293 * @size: Size of IOVA space
294 * @dev: Device the domain is being initialised for
296 * @base and @size should be exact multiples of IOMMU page granularity to
297 * avoid rounding surprises. If necessary, we reserve the page at address 0
298 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
299 * any change which could make prior IOVAs invalid will fail.
301 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
302 u64 size, struct device *dev)
304 struct iommu_dma_cookie *cookie = domain->iova_cookie;
305 unsigned long order, base_pfn;
306 struct iova_domain *iovad;
307 int attr;
309 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
310 return -EINVAL;
312 iovad = &cookie->iovad;
314 /* Use the smallest supported page size for IOVA granularity */
315 order = __ffs(domain->pgsize_bitmap);
316 base_pfn = max_t(unsigned long, 1, base >> order);
318 /* Check the domain allows at least some access to the device... */
319 if (domain->geometry.force_aperture) {
320 if (base > domain->geometry.aperture_end ||
321 base + size <= domain->geometry.aperture_start) {
322 pr_warn("specified DMA range outside IOMMU capability\n");
323 return -EFAULT;
325 /* ...then finally give it a kicking to make sure it fits */
326 base_pfn = max_t(unsigned long, base_pfn,
327 domain->geometry.aperture_start >> order);
330 /* start_pfn is always nonzero for an already-initialised domain */
331 if (iovad->start_pfn) {
332 if (1UL << order != iovad->granule ||
333 base_pfn != iovad->start_pfn) {
334 pr_warn("Incompatible range for DMA domain\n");
335 return -EFAULT;
338 return 0;
341 init_iova_domain(iovad, 1UL << order, base_pfn);
343 if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
344 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
345 cookie->fq_domain = domain;
346 init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
349 if (!dev)
350 return 0;
352 return iova_reserve_iommu_regions(dev, domain);
356 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
357 * page flags.
358 * @dir: Direction of DMA transfer
359 * @coherent: Is the DMA master cache-coherent?
360 * @attrs: DMA attributes for the mapping
362 * Return: corresponding IOMMU API page protection flags
364 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
365 unsigned long attrs)
367 int prot = coherent ? IOMMU_CACHE : 0;
369 if (attrs & DMA_ATTR_PRIVILEGED)
370 prot |= IOMMU_PRIV;
372 switch (dir) {
373 case DMA_BIDIRECTIONAL:
374 return prot | IOMMU_READ | IOMMU_WRITE;
375 case DMA_TO_DEVICE:
376 return prot | IOMMU_READ;
377 case DMA_FROM_DEVICE:
378 return prot | IOMMU_WRITE;
379 default:
380 return 0;
384 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
385 size_t size, dma_addr_t dma_limit, struct device *dev)
387 struct iommu_dma_cookie *cookie = domain->iova_cookie;
388 struct iova_domain *iovad = &cookie->iovad;
389 unsigned long shift, iova_len, iova = 0;
391 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
392 cookie->msi_iova += size;
393 return cookie->msi_iova - size;
396 shift = iova_shift(iovad);
397 iova_len = size >> shift;
399 * Freeing non-power-of-two-sized allocations back into the IOVA caches
400 * will come back to bite us badly, so we have to waste a bit of space
401 * rounding up anything cacheable to make sure that can't happen. The
402 * order of the unadjusted size will still match upon freeing.
404 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
405 iova_len = roundup_pow_of_two(iova_len);
407 if (dev->bus_dma_mask)
408 dma_limit &= dev->bus_dma_mask;
410 if (domain->geometry.force_aperture)
411 dma_limit = min(dma_limit, domain->geometry.aperture_end);
413 /* Try to get PCI devices a SAC address */
414 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
415 iova = alloc_iova_fast(iovad, iova_len,
416 DMA_BIT_MASK(32) >> shift, false);
418 if (!iova)
419 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
420 true);
422 return (dma_addr_t)iova << shift;
425 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
426 dma_addr_t iova, size_t size)
428 struct iova_domain *iovad = &cookie->iovad;
430 /* The MSI case is only ever cleaning up its most recent allocation */
431 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
432 cookie->msi_iova -= size;
433 else if (cookie->fq_domain) /* non-strict mode */
434 queue_iova(iovad, iova_pfn(iovad, iova),
435 size >> iova_shift(iovad), 0);
436 else
437 free_iova_fast(iovad, iova_pfn(iovad, iova),
438 size >> iova_shift(iovad));
441 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
442 size_t size)
444 struct iommu_domain *domain = iommu_get_dma_domain(dev);
445 struct iommu_dma_cookie *cookie = domain->iova_cookie;
446 struct iova_domain *iovad = &cookie->iovad;
447 size_t iova_off = iova_offset(iovad, dma_addr);
448 struct iommu_iotlb_gather iotlb_gather;
449 size_t unmapped;
451 dma_addr -= iova_off;
452 size = iova_align(iovad, size + iova_off);
453 iommu_iotlb_gather_init(&iotlb_gather);
455 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
456 WARN_ON(unmapped != size);
458 if (!cookie->fq_domain)
459 iommu_tlb_sync(domain, &iotlb_gather);
460 iommu_dma_free_iova(cookie, dma_addr, size);
463 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
464 size_t size, int prot)
466 struct iommu_domain *domain = iommu_get_dma_domain(dev);
467 struct iommu_dma_cookie *cookie = domain->iova_cookie;
468 struct iova_domain *iovad = &cookie->iovad;
469 size_t iova_off = iova_offset(iovad, phys);
470 dma_addr_t iova;
472 size = iova_align(iovad, size + iova_off);
474 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
475 if (!iova)
476 return DMA_MAPPING_ERROR;
478 if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
479 iommu_dma_free_iova(cookie, iova, size);
480 return DMA_MAPPING_ERROR;
482 return iova + iova_off;
485 static void __iommu_dma_free_pages(struct page **pages, int count)
487 while (count--)
488 __free_page(pages[count]);
489 kvfree(pages);
492 static struct page **__iommu_dma_alloc_pages(struct device *dev,
493 unsigned int count, unsigned long order_mask, gfp_t gfp)
495 struct page **pages;
496 unsigned int i = 0, nid = dev_to_node(dev);
498 order_mask &= (2U << MAX_ORDER) - 1;
499 if (!order_mask)
500 return NULL;
502 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
503 if (!pages)
504 return NULL;
506 /* IOMMU can map any pages, so himem can also be used here */
507 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
509 while (count) {
510 struct page *page = NULL;
511 unsigned int order_size;
514 * Higher-order allocations are a convenience rather
515 * than a necessity, hence using __GFP_NORETRY until
516 * falling back to minimum-order allocations.
518 for (order_mask &= (2U << __fls(count)) - 1;
519 order_mask; order_mask &= ~order_size) {
520 unsigned int order = __fls(order_mask);
521 gfp_t alloc_flags = gfp;
523 order_size = 1U << order;
524 if (order_mask > order_size)
525 alloc_flags |= __GFP_NORETRY;
526 page = alloc_pages_node(nid, alloc_flags, order);
527 if (!page)
528 continue;
529 if (!order)
530 break;
531 if (!PageCompound(page)) {
532 split_page(page, order);
533 break;
534 } else if (!split_huge_page(page)) {
535 break;
537 __free_pages(page, order);
539 if (!page) {
540 __iommu_dma_free_pages(pages, i);
541 return NULL;
543 count -= order_size;
544 while (order_size--)
545 pages[i++] = page++;
547 return pages;
551 * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
552 * @dev: Device to allocate memory for. Must be a real device
553 * attached to an iommu_dma_domain
554 * @size: Size of buffer in bytes
555 * @dma_handle: Out argument for allocated DMA handle
556 * @gfp: Allocation flags
557 * @attrs: DMA attributes for this allocation
559 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
560 * but an IOMMU which supports smaller pages might not map the whole thing.
562 * Return: Mapped virtual address, or NULL on failure.
564 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
565 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
567 struct iommu_domain *domain = iommu_get_dma_domain(dev);
568 struct iommu_dma_cookie *cookie = domain->iova_cookie;
569 struct iova_domain *iovad = &cookie->iovad;
570 bool coherent = dev_is_dma_coherent(dev);
571 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
572 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
573 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
574 struct page **pages;
575 struct sg_table sgt;
576 dma_addr_t iova;
577 void *vaddr;
579 *dma_handle = DMA_MAPPING_ERROR;
581 min_size = alloc_sizes & -alloc_sizes;
582 if (min_size < PAGE_SIZE) {
583 min_size = PAGE_SIZE;
584 alloc_sizes |= PAGE_SIZE;
585 } else {
586 size = ALIGN(size, min_size);
588 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
589 alloc_sizes = min_size;
591 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
592 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
593 gfp);
594 if (!pages)
595 return NULL;
597 size = iova_align(iovad, size);
598 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
599 if (!iova)
600 goto out_free_pages;
602 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
603 goto out_free_iova;
605 if (!(ioprot & IOMMU_CACHE)) {
606 struct scatterlist *sg;
607 int i;
609 for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
610 arch_dma_prep_coherent(sg_page(sg), sg->length);
613 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
614 < size)
615 goto out_free_sg;
617 vaddr = dma_common_pages_remap(pages, size, prot,
618 __builtin_return_address(0));
619 if (!vaddr)
620 goto out_unmap;
622 *dma_handle = iova;
623 sg_free_table(&sgt);
624 return vaddr;
626 out_unmap:
627 __iommu_dma_unmap(dev, iova, size);
628 out_free_sg:
629 sg_free_table(&sgt);
630 out_free_iova:
631 iommu_dma_free_iova(cookie, iova, size);
632 out_free_pages:
633 __iommu_dma_free_pages(pages, count);
634 return NULL;
638 * __iommu_dma_mmap - Map a buffer into provided user VMA
639 * @pages: Array representing buffer from __iommu_dma_alloc()
640 * @size: Size of buffer in bytes
641 * @vma: VMA describing requested userspace mapping
643 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
644 * for verifying the correct size and protection of @vma beforehand.
646 static int __iommu_dma_mmap(struct page **pages, size_t size,
647 struct vm_area_struct *vma)
649 return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
652 static void iommu_dma_sync_single_for_cpu(struct device *dev,
653 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
655 phys_addr_t phys;
657 if (dev_is_dma_coherent(dev))
658 return;
660 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
661 arch_sync_dma_for_cpu(dev, phys, size, dir);
664 static void iommu_dma_sync_single_for_device(struct device *dev,
665 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
667 phys_addr_t phys;
669 if (dev_is_dma_coherent(dev))
670 return;
672 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
673 arch_sync_dma_for_device(dev, phys, size, dir);
676 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
677 struct scatterlist *sgl, int nelems,
678 enum dma_data_direction dir)
680 struct scatterlist *sg;
681 int i;
683 if (dev_is_dma_coherent(dev))
684 return;
686 for_each_sg(sgl, sg, nelems, i)
687 arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
690 static void iommu_dma_sync_sg_for_device(struct device *dev,
691 struct scatterlist *sgl, int nelems,
692 enum dma_data_direction dir)
694 struct scatterlist *sg;
695 int i;
697 if (dev_is_dma_coherent(dev))
698 return;
700 for_each_sg(sgl, sg, nelems, i)
701 arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
704 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
705 unsigned long offset, size_t size, enum dma_data_direction dir,
706 unsigned long attrs)
708 phys_addr_t phys = page_to_phys(page) + offset;
709 bool coherent = dev_is_dma_coherent(dev);
710 int prot = dma_info_to_prot(dir, coherent, attrs);
711 dma_addr_t dma_handle;
713 dma_handle =__iommu_dma_map(dev, phys, size, prot);
714 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
715 dma_handle != DMA_MAPPING_ERROR)
716 arch_sync_dma_for_device(dev, phys, size, dir);
717 return dma_handle;
720 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
721 size_t size, enum dma_data_direction dir, unsigned long attrs)
723 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
724 iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
725 __iommu_dma_unmap(dev, dma_handle, size);
729 * Prepare a successfully-mapped scatterlist to give back to the caller.
731 * At this point the segments are already laid out by iommu_dma_map_sg() to
732 * avoid individually crossing any boundaries, so we merely need to check a
733 * segment's start address to avoid concatenating across one.
735 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
736 dma_addr_t dma_addr)
738 struct scatterlist *s, *cur = sg;
739 unsigned long seg_mask = dma_get_seg_boundary(dev);
740 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
741 int i, count = 0;
743 for_each_sg(sg, s, nents, i) {
744 /* Restore this segment's original unaligned fields first */
745 unsigned int s_iova_off = sg_dma_address(s);
746 unsigned int s_length = sg_dma_len(s);
747 unsigned int s_iova_len = s->length;
749 s->offset += s_iova_off;
750 s->length = s_length;
751 sg_dma_address(s) = DMA_MAPPING_ERROR;
752 sg_dma_len(s) = 0;
755 * Now fill in the real DMA data. If...
756 * - there is a valid output segment to append to
757 * - and this segment starts on an IOVA page boundary
758 * - but doesn't fall at a segment boundary
759 * - and wouldn't make the resulting output segment too long
761 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
762 (max_len - cur_len >= s_length)) {
763 /* ...then concatenate it with the previous one */
764 cur_len += s_length;
765 } else {
766 /* Otherwise start the next output segment */
767 if (i > 0)
768 cur = sg_next(cur);
769 cur_len = s_length;
770 count++;
772 sg_dma_address(cur) = dma_addr + s_iova_off;
775 sg_dma_len(cur) = cur_len;
776 dma_addr += s_iova_len;
778 if (s_length + s_iova_off < s_iova_len)
779 cur_len = 0;
781 return count;
785 * If mapping failed, then just restore the original list,
786 * but making sure the DMA fields are invalidated.
788 static void __invalidate_sg(struct scatterlist *sg, int nents)
790 struct scatterlist *s;
791 int i;
793 for_each_sg(sg, s, nents, i) {
794 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
795 s->offset += sg_dma_address(s);
796 if (sg_dma_len(s))
797 s->length = sg_dma_len(s);
798 sg_dma_address(s) = DMA_MAPPING_ERROR;
799 sg_dma_len(s) = 0;
804 * The DMA API client is passing in a scatterlist which could describe
805 * any old buffer layout, but the IOMMU API requires everything to be
806 * aligned to IOMMU pages. Hence the need for this complicated bit of
807 * impedance-matching, to be able to hand off a suitably-aligned list,
808 * but still preserve the original offsets and sizes for the caller.
810 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
811 int nents, enum dma_data_direction dir, unsigned long attrs)
813 struct iommu_domain *domain = iommu_get_dma_domain(dev);
814 struct iommu_dma_cookie *cookie = domain->iova_cookie;
815 struct iova_domain *iovad = &cookie->iovad;
816 struct scatterlist *s, *prev = NULL;
817 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
818 dma_addr_t iova;
819 size_t iova_len = 0;
820 unsigned long mask = dma_get_seg_boundary(dev);
821 int i;
823 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
824 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
827 * Work out how much IOVA space we need, and align the segments to
828 * IOVA granules for the IOMMU driver to handle. With some clever
829 * trickery we can modify the list in-place, but reversibly, by
830 * stashing the unaligned parts in the as-yet-unused DMA fields.
832 for_each_sg(sg, s, nents, i) {
833 size_t s_iova_off = iova_offset(iovad, s->offset);
834 size_t s_length = s->length;
835 size_t pad_len = (mask - iova_len + 1) & mask;
837 sg_dma_address(s) = s_iova_off;
838 sg_dma_len(s) = s_length;
839 s->offset -= s_iova_off;
840 s_length = iova_align(iovad, s_length + s_iova_off);
841 s->length = s_length;
844 * Due to the alignment of our single IOVA allocation, we can
845 * depend on these assumptions about the segment boundary mask:
846 * - If mask size >= IOVA size, then the IOVA range cannot
847 * possibly fall across a boundary, so we don't care.
848 * - If mask size < IOVA size, then the IOVA range must start
849 * exactly on a boundary, therefore we can lay things out
850 * based purely on segment lengths without needing to know
851 * the actual addresses beforehand.
852 * - The mask must be a power of 2, so pad_len == 0 if
853 * iova_len == 0, thus we cannot dereference prev the first
854 * time through here (i.e. before it has a meaningful value).
856 if (pad_len && pad_len < s_length - 1) {
857 prev->length += pad_len;
858 iova_len += pad_len;
861 iova_len += s_length;
862 prev = s;
865 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
866 if (!iova)
867 goto out_restore_sg;
870 * We'll leave any physical concatenation to the IOMMU driver's
871 * implementation - it knows better than we do.
873 if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
874 goto out_free_iova;
876 return __finalise_sg(dev, sg, nents, iova);
878 out_free_iova:
879 iommu_dma_free_iova(cookie, iova, iova_len);
880 out_restore_sg:
881 __invalidate_sg(sg, nents);
882 return 0;
885 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
886 int nents, enum dma_data_direction dir, unsigned long attrs)
888 dma_addr_t start, end;
889 struct scatterlist *tmp;
890 int i;
892 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
893 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
896 * The scatterlist segments are mapped into a single
897 * contiguous IOVA allocation, so this is incredibly easy.
899 start = sg_dma_address(sg);
900 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
901 if (sg_dma_len(tmp) == 0)
902 break;
903 sg = tmp;
905 end = sg_dma_address(sg) + sg_dma_len(sg);
906 __iommu_dma_unmap(dev, start, end - start);
909 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
910 size_t size, enum dma_data_direction dir, unsigned long attrs)
912 return __iommu_dma_map(dev, phys, size,
913 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
916 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
917 size_t size, enum dma_data_direction dir, unsigned long attrs)
919 __iommu_dma_unmap(dev, handle, size);
922 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
924 size_t alloc_size = PAGE_ALIGN(size);
925 int count = alloc_size >> PAGE_SHIFT;
926 struct page *page = NULL, **pages = NULL;
928 /* Non-coherent atomic allocation? Easy */
929 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
930 dma_free_from_pool(cpu_addr, alloc_size))
931 return;
933 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
935 * If it the address is remapped, then it's either non-coherent
936 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
938 pages = dma_common_find_pages(cpu_addr);
939 if (!pages)
940 page = vmalloc_to_page(cpu_addr);
941 dma_common_free_remap(cpu_addr, alloc_size);
942 } else {
943 /* Lowmem means a coherent atomic or CMA allocation */
944 page = virt_to_page(cpu_addr);
947 if (pages)
948 __iommu_dma_free_pages(pages, count);
949 if (page)
950 dma_free_contiguous(dev, page, alloc_size);
953 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
954 dma_addr_t handle, unsigned long attrs)
956 __iommu_dma_unmap(dev, handle, size);
957 __iommu_dma_free(dev, size, cpu_addr);
960 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
961 struct page **pagep, gfp_t gfp, unsigned long attrs)
963 bool coherent = dev_is_dma_coherent(dev);
964 size_t alloc_size = PAGE_ALIGN(size);
965 int node = dev_to_node(dev);
966 struct page *page = NULL;
967 void *cpu_addr;
969 page = dma_alloc_contiguous(dev, alloc_size, gfp);
970 if (!page)
971 page = alloc_pages_node(node, gfp, get_order(alloc_size));
972 if (!page)
973 return NULL;
975 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
976 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
978 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
979 prot, __builtin_return_address(0));
980 if (!cpu_addr)
981 goto out_free_pages;
983 if (!coherent)
984 arch_dma_prep_coherent(page, size);
985 } else {
986 cpu_addr = page_address(page);
989 *pagep = page;
990 memset(cpu_addr, 0, alloc_size);
991 return cpu_addr;
992 out_free_pages:
993 dma_free_contiguous(dev, page, alloc_size);
994 return NULL;
997 static void *iommu_dma_alloc(struct device *dev, size_t size,
998 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1000 bool coherent = dev_is_dma_coherent(dev);
1001 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1002 struct page *page = NULL;
1003 void *cpu_addr;
1005 gfp |= __GFP_ZERO;
1007 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1008 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS))
1009 return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
1011 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1012 !gfpflags_allow_blocking(gfp) && !coherent)
1013 cpu_addr = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
1014 else
1015 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1016 if (!cpu_addr)
1017 return NULL;
1019 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot);
1020 if (*handle == DMA_MAPPING_ERROR) {
1021 __iommu_dma_free(dev, size, cpu_addr);
1022 return NULL;
1025 return cpu_addr;
1028 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1029 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1030 unsigned long attrs)
1032 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1033 unsigned long pfn, off = vma->vm_pgoff;
1034 int ret;
1036 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1038 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1039 return ret;
1041 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1042 return -ENXIO;
1044 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1045 struct page **pages = dma_common_find_pages(cpu_addr);
1047 if (pages)
1048 return __iommu_dma_mmap(pages, size, vma);
1049 pfn = vmalloc_to_pfn(cpu_addr);
1050 } else {
1051 pfn = page_to_pfn(virt_to_page(cpu_addr));
1054 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1055 vma->vm_end - vma->vm_start,
1056 vma->vm_page_prot);
1059 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1060 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1061 unsigned long attrs)
1063 struct page *page;
1064 int ret;
1066 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1067 struct page **pages = dma_common_find_pages(cpu_addr);
1069 if (pages) {
1070 return sg_alloc_table_from_pages(sgt, pages,
1071 PAGE_ALIGN(size) >> PAGE_SHIFT,
1072 0, size, GFP_KERNEL);
1075 page = vmalloc_to_page(cpu_addr);
1076 } else {
1077 page = virt_to_page(cpu_addr);
1080 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1081 if (!ret)
1082 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1083 return ret;
1086 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1088 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1090 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1093 static const struct dma_map_ops iommu_dma_ops = {
1094 .alloc = iommu_dma_alloc,
1095 .free = iommu_dma_free,
1096 .mmap = iommu_dma_mmap,
1097 .get_sgtable = iommu_dma_get_sgtable,
1098 .map_page = iommu_dma_map_page,
1099 .unmap_page = iommu_dma_unmap_page,
1100 .map_sg = iommu_dma_map_sg,
1101 .unmap_sg = iommu_dma_unmap_sg,
1102 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1103 .sync_single_for_device = iommu_dma_sync_single_for_device,
1104 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1105 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1106 .map_resource = iommu_dma_map_resource,
1107 .unmap_resource = iommu_dma_unmap_resource,
1108 .get_merge_boundary = iommu_dma_get_merge_boundary,
1112 * The IOMMU core code allocates the default DMA domain, which the underlying
1113 * IOMMU driver needs to support via the dma-iommu layer.
1115 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1117 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1119 if (!domain)
1120 goto out_err;
1123 * The IOMMU core code allocates the default DMA domain, which the
1124 * underlying IOMMU driver needs to support via the dma-iommu layer.
1126 if (domain->type == IOMMU_DOMAIN_DMA) {
1127 if (iommu_dma_init_domain(domain, dma_base, size, dev))
1128 goto out_err;
1129 dev->dma_ops = &iommu_dma_ops;
1132 return;
1133 out_err:
1134 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1135 dev_name(dev));
1138 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1139 phys_addr_t msi_addr, struct iommu_domain *domain)
1141 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1142 struct iommu_dma_msi_page *msi_page;
1143 dma_addr_t iova;
1144 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1145 size_t size = cookie_msi_granule(cookie);
1147 msi_addr &= ~(phys_addr_t)(size - 1);
1148 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1149 if (msi_page->phys == msi_addr)
1150 return msi_page;
1152 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1153 if (!msi_page)
1154 return NULL;
1156 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1157 if (!iova)
1158 goto out_free_page;
1160 if (iommu_map(domain, iova, msi_addr, size, prot))
1161 goto out_free_iova;
1163 INIT_LIST_HEAD(&msi_page->list);
1164 msi_page->phys = msi_addr;
1165 msi_page->iova = iova;
1166 list_add(&msi_page->list, &cookie->msi_page_list);
1167 return msi_page;
1169 out_free_iova:
1170 iommu_dma_free_iova(cookie, iova, size);
1171 out_free_page:
1172 kfree(msi_page);
1173 return NULL;
1176 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1178 struct device *dev = msi_desc_to_dev(desc);
1179 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1180 struct iommu_dma_msi_page *msi_page;
1181 static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1183 if (!domain || !domain->iova_cookie) {
1184 desc->iommu_cookie = NULL;
1185 return 0;
1189 * In fact the whole prepare operation should already be serialised by
1190 * irq_domain_mutex further up the callchain, but that's pretty subtle
1191 * on its own, so consider this locking as failsafe documentation...
1193 mutex_lock(&msi_prepare_lock);
1194 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1195 mutex_unlock(&msi_prepare_lock);
1197 msi_desc_set_iommu_cookie(desc, msi_page);
1199 if (!msi_page)
1200 return -ENOMEM;
1201 return 0;
1204 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1205 struct msi_msg *msg)
1207 struct device *dev = msi_desc_to_dev(desc);
1208 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1209 const struct iommu_dma_msi_page *msi_page;
1211 msi_page = msi_desc_get_iommu_cookie(desc);
1213 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1214 return;
1216 msg->address_hi = upper_32_bits(msi_page->iova);
1217 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1218 msg->address_lo += lower_32_bits(msi_page->iova);
1221 static int iommu_dma_init(void)
1223 return iova_cache_get();
1225 arch_initcall(iommu_dma_init);