1 // SPDX-License-Identifier: GPL-2.0-only
3 * DB8500 PRCM Unit driver
5 * Copyright (C) STMicroelectronics 2009
6 * Copyright (C) ST-Ericsson SA 2010
8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
12 * U8500 PRCM Unit interface driver
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/err.h>
20 #include <linux/spinlock.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/completion.h>
25 #include <linux/irq.h>
26 #include <linux/jiffies.h>
27 #include <linux/bitops.h>
30 #include <linux/of_irq.h>
31 #include <linux/platform_device.h>
32 #include <linux/uaccess.h>
33 #include <linux/mfd/core.h>
34 #include <linux/mfd/dbx500-prcmu.h>
35 #include <linux/mfd/abx500/ab8500.h>
36 #include <linux/regulator/db8500-prcmu.h>
37 #include <linux/regulator/machine.h>
38 #include <linux/platform_data/ux500_wdt.h>
39 #include "dbx500-prcmu-regs.h"
41 /* Index of different voltages to be used when accessing AVSData */
42 #define PRCM_AVS_BASE 0x2FC
43 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
44 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
45 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
46 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
47 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
48 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
49 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
50 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
51 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
52 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
53 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
54 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
55 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
57 #define PRCM_AVS_VOLTAGE 0
58 #define PRCM_AVS_VOLTAGE_MASK 0x3f
59 #define PRCM_AVS_ISSLOWSTARTUP 6
60 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
61 #define PRCM_AVS_ISMODEENABLE 7
62 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
64 #define PRCM_BOOT_STATUS 0xFFF
65 #define PRCM_ROMCODE_A2P 0xFFE
66 #define PRCM_ROMCODE_P2A 0xFFD
67 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
69 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
71 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
72 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
73 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
74 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
75 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
76 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
77 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
78 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
81 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
82 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
83 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
84 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
85 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
86 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
89 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
90 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
96 /* Mailbox 0 headers */
97 #define MB0H_POWER_STATE_TRANS 0
98 #define MB0H_CONFIG_WAKEUPS_EXE 1
99 #define MB0H_READ_WAKEUP_ACK 3
100 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
102 #define MB0H_WAKEUP_EXE 2
103 #define MB0H_WAKEUP_SLEEP 5
106 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
107 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
109 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
110 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
111 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
115 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
116 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
117 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
118 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
119 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
122 /* Mailbox 1 headers */
123 #define MB1H_ARM_APE_OPP 0x0
124 #define MB1H_RESET_MODEM 0x2
125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127 #define MB1H_RELEASE_USB_WAKEUP 0x5
128 #define MB1H_PLL_ON_OFF 0x6
130 /* Mailbox 1 Requests */
131 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
132 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
133 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
134 #define PLL_SOC0_OFF 0x1
135 #define PLL_SOC0_ON 0x2
136 #define PLL_SOC1_OFF 0x4
137 #define PLL_SOC1_ON 0x8
140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
141 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
143 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
145 /* Mailbox 2 headers */
147 #define MB2H_AUTO_PWR 0x1
150 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
151 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
152 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
153 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
154 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
155 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
156 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
157 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
159 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163 #define HWACC_PWR_ST_OK 0xFE
165 /* Mailbox 3 headers */
167 #define MB3H_SIDETONE 0x1
168 #define MB3H_SYSCLK 0xE
170 /* Mailbox 3 Requests */
171 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
172 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
173 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
174 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
177 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
179 /* Mailbox 4 headers */
180 #define MB4H_DDR_INIT 0x0
181 #define MB4H_MEM_ST 0x1
182 #define MB4H_HOTDOG 0x12
183 #define MB4H_HOTMON 0x13
184 #define MB4H_HOT_PERIOD 0x14
185 #define MB4H_A9WDOG_CONF 0x16
186 #define MB4H_A9WDOG_EN 0x17
187 #define MB4H_A9WDOG_DIS 0x18
188 #define MB4H_A9WDOG_LOAD 0x19
189 #define MB4H_A9WDOG_KICK 0x20
191 /* Mailbox 4 Requests */
192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
194 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
199 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
200 #define HOTMON_CONFIG_LOW BIT(0)
201 #define HOTMON_CONFIG_HIGH BIT(1)
202 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
203 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
204 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
205 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
206 #define A9WDOG_AUTO_OFF_EN BIT(7)
207 #define A9WDOG_AUTO_OFF_DIS 0
208 #define A9WDOG_ID_MASK 0xf
210 /* Mailbox 5 Requests */
211 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
212 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
213 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
214 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217 #define PRCMU_I2C_STOP_EN BIT(3)
220 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
221 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
222 #define I2C_WR_OK 0x1
223 #define I2C_RD_OK 0x2
227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
233 #define WAKEUP_BIT_RTC BIT(0)
234 #define WAKEUP_BIT_RTT0 BIT(1)
235 #define WAKEUP_BIT_RTT1 BIT(2)
236 #define WAKEUP_BIT_HSI0 BIT(3)
237 #define WAKEUP_BIT_HSI1 BIT(4)
238 #define WAKEUP_BIT_CA_WAKE BIT(5)
239 #define WAKEUP_BIT_USB BIT(6)
240 #define WAKEUP_BIT_ABB BIT(7)
241 #define WAKEUP_BIT_ABB_FIFO BIT(8)
242 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
243 #define WAKEUP_BIT_CA_SLEEP BIT(10)
244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246 #define WAKEUP_BIT_ANC_OK BIT(13)
247 #define WAKEUP_BIT_SW_ERROR BIT(14)
248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249 #define WAKEUP_BIT_ARM BIT(17)
250 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253 #define WAKEUP_BIT_GPIO0 BIT(23)
254 #define WAKEUP_BIT_GPIO1 BIT(24)
255 #define WAKEUP_BIT_GPIO2 BIT(25)
256 #define WAKEUP_BIT_GPIO3 BIT(26)
257 #define WAKEUP_BIT_GPIO4 BIT(27)
258 #define WAKEUP_BIT_GPIO5 BIT(28)
259 #define WAKEUP_BIT_GPIO6 BIT(29)
260 #define WAKEUP_BIT_GPIO7 BIT(30)
261 #define WAKEUP_BIT_GPIO8 BIT(31)
265 struct prcmu_fw_version version
;
268 static struct irq_domain
*db8500_irq_domain
;
271 * This vector maps irq numbers to the bits in the bit field used in
272 * communication with the PRCMU firmware.
274 * The reason for having this is to keep the irq numbers contiguous even though
275 * the bits in the bit field are not. (The bits also have a tendency to move
276 * around, to further complicate matters.)
278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
281 #define IRQ_PRCMU_RTC 0
282 #define IRQ_PRCMU_RTT0 1
283 #define IRQ_PRCMU_RTT1 2
284 #define IRQ_PRCMU_HSI0 3
285 #define IRQ_PRCMU_HSI1 4
286 #define IRQ_PRCMU_CA_WAKE 5
287 #define IRQ_PRCMU_USB 6
288 #define IRQ_PRCMU_ABB 7
289 #define IRQ_PRCMU_ABB_FIFO 8
290 #define IRQ_PRCMU_ARM 9
291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292 #define IRQ_PRCMU_GPIO0 11
293 #define IRQ_PRCMU_GPIO1 12
294 #define IRQ_PRCMU_GPIO2 13
295 #define IRQ_PRCMU_GPIO3 14
296 #define IRQ_PRCMU_GPIO4 15
297 #define IRQ_PRCMU_GPIO5 16
298 #define IRQ_PRCMU_GPIO6 17
299 #define IRQ_PRCMU_GPIO7 18
300 #define IRQ_PRCMU_GPIO8 19
301 #define IRQ_PRCMU_CA_SLEEP 20
302 #define IRQ_PRCMU_HOTMON_LOW 21
303 #define IRQ_PRCMU_HOTMON_HIGH 22
304 #define NUM_PRCMU_WAKEUPS 23
306 static u32 prcmu_irq_bit
[NUM_PRCMU_WAKEUPS
] = {
318 IRQ_ENTRY(HOTMON_LOW
),
319 IRQ_ENTRY(HOTMON_HIGH
),
320 IRQ_ENTRY(MODEM_SW_RESET_REQ
),
332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334 static u32 prcmu_wakeup_bit
[NUM_PRCMU_WAKEUP_INDICES
] = {
342 WAKEUP_ENTRY(ABB_FIFO
),
347 * mb0_transfer - state needed for mailbox 0 communication.
348 * @lock: The transaction lock.
349 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
351 * @mask_work: Work structure used for (un)masking wakeup interrupts.
352 * @req: Request data that need to persist between requests.
356 spinlock_t dbb_irqs_lock
;
357 struct work_struct mask_work
;
358 struct mutex ac_wake_lock
;
359 struct completion ac_wake_work
;
368 * mb1_transfer - state needed for mailbox 1 communication.
369 * @lock: The transaction lock.
370 * @work: The transaction completion structure.
371 * @ape_opp: The current APE OPP.
372 * @ack: Reply ("acknowledge") data.
376 struct completion work
;
382 u8 ape_voltage_status
;
387 * mb2_transfer - state needed for mailbox 2 communication.
388 * @lock: The transaction lock.
389 * @work: The transaction completion structure.
390 * @auto_pm_lock: The autonomous power management configuration lock.
391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392 * @req: Request data that need to persist between requests.
393 * @ack: Reply ("acknowledge") data.
397 struct completion work
;
398 spinlock_t auto_pm_lock
;
399 bool auto_pm_enabled
;
406 * mb3_transfer - state needed for mailbox 3 communication.
407 * @lock: The request lock.
408 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
409 * @sysclk_work: Work structure used for sysclk requests.
413 struct mutex sysclk_lock
;
414 struct completion sysclk_work
;
418 * mb4_transfer - state needed for mailbox 4 communication.
419 * @lock: The transaction lock.
420 * @work: The transaction completion structure.
424 struct completion work
;
428 * mb5_transfer - state needed for mailbox 5 communication.
429 * @lock: The transaction lock.
430 * @work: The transaction completion structure.
431 * @ack: Reply ("acknowledge") data.
435 struct completion work
;
442 static atomic_t ac_wake_req_state
= ATOMIC_INIT(0);
445 static DEFINE_SPINLOCK(prcmu_lock
);
446 static DEFINE_SPINLOCK(clkout_lock
);
448 /* Global var to runtime determine TCDM base for v2 or v1 */
449 static __iomem
void *tcdm_base
;
450 static __iomem
void *prcmu_base
;
465 static DEFINE_SPINLOCK(clk_mgt_lock
);
467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469 static struct clk_mgt clk_mgt
[PRCMU_NUM_REG_CLOCKS
] = {
470 CLK_MGT_ENTRY(SGACLK
, PLL_DIV
, false),
471 CLK_MGT_ENTRY(UARTCLK
, PLL_FIX
, true),
472 CLK_MGT_ENTRY(MSP02CLK
, PLL_FIX
, true),
473 CLK_MGT_ENTRY(MSP1CLK
, PLL_FIX
, true),
474 CLK_MGT_ENTRY(I2CCLK
, PLL_FIX
, true),
475 CLK_MGT_ENTRY(SDMMCCLK
, PLL_DIV
, true),
476 CLK_MGT_ENTRY(SLIMCLK
, PLL_FIX
, true),
477 CLK_MGT_ENTRY(PER1CLK
, PLL_DIV
, true),
478 CLK_MGT_ENTRY(PER2CLK
, PLL_DIV
, true),
479 CLK_MGT_ENTRY(PER3CLK
, PLL_DIV
, true),
480 CLK_MGT_ENTRY(PER5CLK
, PLL_DIV
, true),
481 CLK_MGT_ENTRY(PER6CLK
, PLL_DIV
, true),
482 CLK_MGT_ENTRY(PER7CLK
, PLL_DIV
, true),
483 CLK_MGT_ENTRY(LCDCLK
, PLL_FIX
, true),
484 CLK_MGT_ENTRY(BMLCLK
, PLL_DIV
, true),
485 CLK_MGT_ENTRY(HSITXCLK
, PLL_DIV
, true),
486 CLK_MGT_ENTRY(HSIRXCLK
, PLL_DIV
, true),
487 CLK_MGT_ENTRY(HDMICLK
, PLL_FIX
, false),
488 CLK_MGT_ENTRY(APEATCLK
, PLL_DIV
, true),
489 CLK_MGT_ENTRY(APETRACECLK
, PLL_DIV
, true),
490 CLK_MGT_ENTRY(MCDECLK
, PLL_DIV
, true),
491 CLK_MGT_ENTRY(IPI2CCLK
, PLL_FIX
, true),
492 CLK_MGT_ENTRY(DSIALTCLK
, PLL_FIX
, false),
493 CLK_MGT_ENTRY(DMACLK
, PLL_DIV
, true),
494 CLK_MGT_ENTRY(B2R2CLK
, PLL_DIV
, true),
495 CLK_MGT_ENTRY(TVCLK
, PLL_FIX
, true),
496 CLK_MGT_ENTRY(SSPCLK
, PLL_FIX
, true),
497 CLK_MGT_ENTRY(RNGCLK
, PLL_FIX
, true),
498 CLK_MGT_ENTRY(UICCCLK
, PLL_FIX
, false),
507 static struct dsiclk dsiclk
[2] = {
509 .divsel_mask
= PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK
,
510 .divsel_shift
= PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT
,
511 .divsel
= PRCM_DSI_PLLOUT_SEL_PHI
,
514 .divsel_mask
= PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK
,
515 .divsel_shift
= PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT
,
516 .divsel
= PRCM_DSI_PLLOUT_SEL_PHI
,
526 static struct dsiescclk dsiescclk
[3] = {
528 .en
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN
,
529 .div_mask
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK
,
530 .div_shift
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT
,
533 .en
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN
,
534 .div_mask
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK
,
535 .div_shift
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT
,
538 .en
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN
,
539 .div_mask
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK
,
540 .div_shift
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT
,
546 * Used by MCDE to setup all necessary PRCMU registers
548 #define PRCMU_RESET_DSIPLL 0x00004000
549 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
551 #define PRCMU_CLK_PLL_DIV_SHIFT 0
552 #define PRCMU_CLK_PLL_SW_SHIFT 5
553 #define PRCMU_CLK_38 (1 << 9)
554 #define PRCMU_CLK_38_SRC (1 << 10)
555 #define PRCMU_CLK_38_DIV (1 << 11)
557 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
558 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
560 /* DPI 50000000 Hz */
561 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
562 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
563 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
565 /* D=101, N=1, R=4, SELDIV2=0 */
566 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
568 #define PRCMU_ENABLE_PLLDSI 0x00000001
569 #define PRCMU_DISABLE_PLLDSI 0x00000000
570 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
571 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
572 /* ESC clk, div0=1, div1=1, div2=3 */
573 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
574 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
575 #define PRCMU_DSI_RESET_SW 0x00000007
577 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
579 int db8500_prcmu_enable_dsipll(void)
583 /* Clear DSIPLL_RESETN */
584 writel(PRCMU_RESET_DSIPLL
, PRCM_APE_RESETN_CLR
);
585 /* Unclamp DSIPLL in/out */
586 writel(PRCMU_UNCLAMP_DSIPLL
, PRCM_MMIP_LS_CLAMP_CLR
);
588 /* Set DSI PLL FREQ */
589 writel(PRCMU_PLLDSI_FREQ_SETTING
, PRCM_PLLDSI_FREQ
);
590 writel(PRCMU_DSI_PLLOUT_SEL_SETTING
, PRCM_DSI_PLLOUT_SEL
);
591 /* Enable Escape clocks */
592 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV
, PRCM_DSITVCLK_DIV
);
595 writel(PRCMU_ENABLE_PLLDSI
, PRCM_PLLDSI_ENABLE
);
597 writel(PRCMU_DSI_RESET_SW
, PRCM_DSI_SW_RESET
);
598 for (i
= 0; i
< 10; i
++) {
599 if ((readl(PRCM_PLLDSI_LOCKP
) & PRCMU_PLLDSI_LOCKP_LOCKED
)
600 == PRCMU_PLLDSI_LOCKP_LOCKED
)
604 /* Set DSIPLL_RESETN */
605 writel(PRCMU_RESET_DSIPLL
, PRCM_APE_RESETN_SET
);
609 int db8500_prcmu_disable_dsipll(void)
611 /* Disable dsi pll */
612 writel(PRCMU_DISABLE_PLLDSI
, PRCM_PLLDSI_ENABLE
);
613 /* Disable escapeclock */
614 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV
, PRCM_DSITVCLK_DIV
);
618 int db8500_prcmu_set_display_clocks(void)
622 spin_lock_irqsave(&clk_mgt_lock
, flags
);
624 /* Grab the HW semaphore. */
625 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
628 writel(PRCMU_DSI_CLOCK_SETTING
, prcmu_base
+ PRCM_HDMICLK_MGT
);
629 writel(PRCMU_DSI_LP_CLOCK_SETTING
, prcmu_base
+ PRCM_TVCLK_MGT
);
630 writel(PRCMU_DPI_CLOCK_SETTING
, prcmu_base
+ PRCM_LCDCLK_MGT
);
632 /* Release the HW semaphore. */
635 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
640 u32
db8500_prcmu_read(unsigned int reg
)
642 return readl(prcmu_base
+ reg
);
645 void db8500_prcmu_write(unsigned int reg
, u32 value
)
649 spin_lock_irqsave(&prcmu_lock
, flags
);
650 writel(value
, (prcmu_base
+ reg
));
651 spin_unlock_irqrestore(&prcmu_lock
, flags
);
654 void db8500_prcmu_write_masked(unsigned int reg
, u32 mask
, u32 value
)
659 spin_lock_irqsave(&prcmu_lock
, flags
);
660 val
= readl(prcmu_base
+ reg
);
661 val
= ((val
& ~mask
) | (value
& mask
));
662 writel(val
, (prcmu_base
+ reg
));
663 spin_unlock_irqrestore(&prcmu_lock
, flags
);
666 struct prcmu_fw_version
*prcmu_get_fw_version(void)
668 return fw_info
.valid
? &fw_info
.version
: NULL
;
671 bool prcmu_has_arm_maxopp(void)
673 return (readb(tcdm_base
+ PRCM_AVS_VARM_MAX_OPP
) &
674 PRCM_AVS_ISMODEENABLE_MASK
) == PRCM_AVS_ISMODEENABLE_MASK
;
678 * prcmu_set_rc_a2p - This function is used to run few power state sequences
679 * @val: Value to be set, i.e. transition requested
680 * Returns: 0 on success, -EINVAL on invalid argument
682 * This function is used to run the following power state sequences -
683 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
685 int prcmu_set_rc_a2p(enum romcode_write val
)
687 if (val
< RDY_2_DS
|| val
> RDY_2_XP70_RST
)
689 writeb(val
, (tcdm_base
+ PRCM_ROMCODE_A2P
));
694 * prcmu_get_rc_p2a - This function is used to get power state sequences
695 * Returns: the power transition that has last happened
697 * This function can return the following transitions-
698 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
700 enum romcode_read
prcmu_get_rc_p2a(void)
702 return readb(tcdm_base
+ PRCM_ROMCODE_P2A
);
706 * prcmu_get_current_mode - Return the current XP70 power mode
707 * Returns: Returns the current AP(ARM) power mode: init,
708 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
710 enum ap_pwrst
prcmu_get_xp70_current_state(void)
712 return readb(tcdm_base
+ PRCM_XP70_CUR_PWR_STATE
);
716 * prcmu_config_clkout - Configure one of the programmable clock outputs.
717 * @clkout: The CLKOUT number (0 or 1).
718 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
719 * @div: The divider to be applied.
721 * Configures one of the programmable clock outputs (CLKOUTs).
722 * @div should be in the range [1,63] to request a configuration, or 0 to
723 * inform that the configuration is no longer requested.
725 int prcmu_config_clkout(u8 clkout
, u8 source
, u8 div
)
727 static int requests
[2];
737 BUG_ON((clkout
== 0) && (source
> PRCMU_CLKSRC_CLK009
));
739 if (!div
&& !requests
[clkout
])
743 div_mask
= PRCM_CLKOCR_CLKODIV0_MASK
;
744 mask
= (PRCM_CLKOCR_CLKODIV0_MASK
| PRCM_CLKOCR_CLKOSEL0_MASK
);
745 bits
= ((source
<< PRCM_CLKOCR_CLKOSEL0_SHIFT
) |
746 (div
<< PRCM_CLKOCR_CLKODIV0_SHIFT
));
748 div_mask
= PRCM_CLKOCR_CLKODIV1_MASK
;
749 mask
= (PRCM_CLKOCR_CLKODIV1_MASK
| PRCM_CLKOCR_CLKOSEL1_MASK
|
750 PRCM_CLKOCR_CLK1TYPE
);
751 bits
= ((source
<< PRCM_CLKOCR_CLKOSEL1_SHIFT
) |
752 (div
<< PRCM_CLKOCR_CLKODIV1_SHIFT
));
756 spin_lock_irqsave(&clkout_lock
, flags
);
758 val
= readl(PRCM_CLKOCR
);
759 if (val
& div_mask
) {
761 if ((val
& mask
) != bits
) {
763 goto unlock_and_return
;
766 if ((val
& mask
& ~div_mask
) != bits
) {
768 goto unlock_and_return
;
772 writel((bits
| (val
& ~mask
)), PRCM_CLKOCR
);
773 requests
[clkout
] += (div
? 1 : -1);
776 spin_unlock_irqrestore(&clkout_lock
, flags
);
781 int db8500_prcmu_set_power_state(u8 state
, bool keep_ulp_clk
, bool keep_ap_pll
)
785 BUG_ON((state
< PRCMU_AP_SLEEP
) || (PRCMU_AP_DEEP_IDLE
< state
));
787 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
789 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
792 writeb(MB0H_POWER_STATE_TRANS
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
793 writeb(state
, (tcdm_base
+ PRCM_REQ_MB0_AP_POWER_STATE
));
794 writeb((keep_ap_pll
? 1 : 0), (tcdm_base
+ PRCM_REQ_MB0_AP_PLL_STATE
));
795 writeb((keep_ulp_clk
? 1 : 0),
796 (tcdm_base
+ PRCM_REQ_MB0_ULP_CLOCK_STATE
));
797 writeb(0, (tcdm_base
+ PRCM_REQ_MB0_DO_NOT_WFI
));
798 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
800 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
805 u8
db8500_prcmu_get_power_state_result(void)
807 return readb(tcdm_base
+ PRCM_ACK_MB0_AP_PWRSTTR_STATUS
);
810 /* This function should only be called while mb0_transfer.lock is held. */
811 static void config_wakeups(void)
813 const u8 header
[2] = {
814 MB0H_CONFIG_WAKEUPS_EXE
,
815 MB0H_CONFIG_WAKEUPS_SLEEP
817 static u32 last_dbb_events
;
818 static u32 last_abb_events
;
823 dbb_events
= mb0_transfer
.req
.dbb_irqs
| mb0_transfer
.req
.dbb_wakeups
;
824 dbb_events
|= (WAKEUP_BIT_AC_WAKE_ACK
| WAKEUP_BIT_AC_SLEEP_ACK
);
826 abb_events
= mb0_transfer
.req
.abb_events
;
828 if ((dbb_events
== last_dbb_events
) && (abb_events
== last_abb_events
))
831 for (i
= 0; i
< 2; i
++) {
832 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
834 writel(dbb_events
, (tcdm_base
+ PRCM_REQ_MB0_WAKEUP_8500
));
835 writel(abb_events
, (tcdm_base
+ PRCM_REQ_MB0_WAKEUP_4500
));
836 writeb(header
[i
], (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
837 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
839 last_dbb_events
= dbb_events
;
840 last_abb_events
= abb_events
;
843 void db8500_prcmu_enable_wakeups(u32 wakeups
)
849 BUG_ON(wakeups
!= (wakeups
& VALID_WAKEUPS
));
851 for (i
= 0, bits
= 0; i
< NUM_PRCMU_WAKEUP_INDICES
; i
++) {
852 if (wakeups
& BIT(i
))
853 bits
|= prcmu_wakeup_bit
[i
];
856 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
858 mb0_transfer
.req
.dbb_wakeups
= bits
;
861 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
864 void db8500_prcmu_config_abb_event_readout(u32 abb_events
)
868 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
870 mb0_transfer
.req
.abb_events
= abb_events
;
873 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
876 void db8500_prcmu_get_abb_event_buffer(void __iomem
**buf
)
878 if (readb(tcdm_base
+ PRCM_ACK_MB0_READ_POINTER
) & 1)
879 *buf
= (tcdm_base
+ PRCM_ACK_MB0_WAKEUP_1_4500
);
881 *buf
= (tcdm_base
+ PRCM_ACK_MB0_WAKEUP_0_4500
);
885 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
886 * @opp: The new ARM operating point to which transition is to be made
887 * Returns: 0 on success, non-zero on failure
889 * This function sets the the operating point of the ARM.
891 int db8500_prcmu_set_arm_opp(u8 opp
)
895 if (opp
< ARM_NO_CHANGE
|| opp
> ARM_EXTCLK
)
900 mutex_lock(&mb1_transfer
.lock
);
902 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
905 writeb(MB1H_ARM_APE_OPP
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
906 writeb(opp
, (tcdm_base
+ PRCM_REQ_MB1_ARM_OPP
));
907 writeb(APE_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB1_APE_OPP
));
909 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
910 wait_for_completion(&mb1_transfer
.work
);
912 if ((mb1_transfer
.ack
.header
!= MB1H_ARM_APE_OPP
) ||
913 (mb1_transfer
.ack
.arm_opp
!= opp
))
916 mutex_unlock(&mb1_transfer
.lock
);
922 * db8500_prcmu_get_arm_opp - get the current ARM OPP
924 * Returns: the current ARM OPP
926 int db8500_prcmu_get_arm_opp(void)
928 return readb(tcdm_base
+ PRCM_ACK_MB1_CURRENT_ARM_OPP
);
932 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
934 * Returns: the current DDR OPP
936 int db8500_prcmu_get_ddr_opp(void)
938 return readb(PRCM_DDR_SUBSYS_APE_MINBW
);
941 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
942 static void request_even_slower_clocks(bool enable
)
951 spin_lock_irqsave(&clk_mgt_lock
, flags
);
953 /* Grab the HW semaphore. */
954 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
957 for (i
= 0; i
< ARRAY_SIZE(clock_reg
); i
++) {
961 val
= readl(prcmu_base
+ clock_reg
[i
]);
962 div
= (val
& PRCM_CLK_MGT_CLKPLLDIV_MASK
);
964 if ((div
<= 1) || (div
> 15)) {
965 pr_err("prcmu: Bad clock divider %d in %s\n",
967 goto unlock_and_return
;
972 goto unlock_and_return
;
975 val
= ((val
& ~PRCM_CLK_MGT_CLKPLLDIV_MASK
) |
976 (div
& PRCM_CLK_MGT_CLKPLLDIV_MASK
));
977 writel(val
, prcmu_base
+ clock_reg
[i
]);
981 /* Release the HW semaphore. */
984 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
988 * db8500_set_ape_opp - set the appropriate APE OPP
989 * @opp: The new APE operating point to which transition is to be made
990 * Returns: 0 on success, non-zero on failure
992 * This function sets the operating point of the APE.
994 int db8500_prcmu_set_ape_opp(u8 opp
)
998 if (opp
== mb1_transfer
.ape_opp
)
1001 mutex_lock(&mb1_transfer
.lock
);
1003 if (mb1_transfer
.ape_opp
== APE_50_PARTLY_25_OPP
)
1004 request_even_slower_clocks(false);
1006 if ((opp
!= APE_100_OPP
) && (mb1_transfer
.ape_opp
!= APE_100_OPP
))
1009 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1012 writeb(MB1H_ARM_APE_OPP
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1013 writeb(ARM_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB1_ARM_OPP
));
1014 writeb(((opp
== APE_50_PARTLY_25_OPP
) ? APE_50_OPP
: opp
),
1015 (tcdm_base
+ PRCM_REQ_MB1_APE_OPP
));
1017 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1018 wait_for_completion(&mb1_transfer
.work
);
1020 if ((mb1_transfer
.ack
.header
!= MB1H_ARM_APE_OPP
) ||
1021 (mb1_transfer
.ack
.ape_opp
!= opp
))
1025 if ((!r
&& (opp
== APE_50_PARTLY_25_OPP
)) ||
1026 (r
&& (mb1_transfer
.ape_opp
== APE_50_PARTLY_25_OPP
)))
1027 request_even_slower_clocks(true);
1029 mb1_transfer
.ape_opp
= opp
;
1031 mutex_unlock(&mb1_transfer
.lock
);
1037 * db8500_prcmu_get_ape_opp - get the current APE OPP
1039 * Returns: the current APE OPP
1041 int db8500_prcmu_get_ape_opp(void)
1043 return readb(tcdm_base
+ PRCM_ACK_MB1_CURRENT_APE_OPP
);
1047 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1048 * @enable: true to request the higher voltage, false to drop a request.
1050 * Calls to this function to enable and disable requests must be balanced.
1052 int db8500_prcmu_request_ape_opp_100_voltage(bool enable
)
1056 static unsigned int requests
;
1058 mutex_lock(&mb1_transfer
.lock
);
1061 if (0 != requests
++)
1062 goto unlock_and_return
;
1063 header
= MB1H_REQUEST_APE_OPP_100_VOLT
;
1065 if (requests
== 0) {
1067 goto unlock_and_return
;
1068 } else if (1 != requests
--) {
1069 goto unlock_and_return
;
1071 header
= MB1H_RELEASE_APE_OPP_100_VOLT
;
1074 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1077 writeb(header
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1079 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1080 wait_for_completion(&mb1_transfer
.work
);
1082 if ((mb1_transfer
.ack
.header
!= header
) ||
1083 ((mb1_transfer
.ack
.ape_voltage_status
& BIT(0)) != 0))
1087 mutex_unlock(&mb1_transfer
.lock
);
1093 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1095 * This function releases the power state requirements of a USB wakeup.
1097 int prcmu_release_usb_wakeup_state(void)
1101 mutex_lock(&mb1_transfer
.lock
);
1103 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1106 writeb(MB1H_RELEASE_USB_WAKEUP
,
1107 (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1109 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1110 wait_for_completion(&mb1_transfer
.work
);
1112 if ((mb1_transfer
.ack
.header
!= MB1H_RELEASE_USB_WAKEUP
) ||
1113 ((mb1_transfer
.ack
.ape_voltage_status
& BIT(0)) != 0))
1116 mutex_unlock(&mb1_transfer
.lock
);
1121 static int request_pll(u8 clock
, bool enable
)
1125 if (clock
== PRCMU_PLLSOC0
)
1126 clock
= (enable
? PLL_SOC0_ON
: PLL_SOC0_OFF
);
1127 else if (clock
== PRCMU_PLLSOC1
)
1128 clock
= (enable
? PLL_SOC1_ON
: PLL_SOC1_OFF
);
1132 mutex_lock(&mb1_transfer
.lock
);
1134 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1137 writeb(MB1H_PLL_ON_OFF
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1138 writeb(clock
, (tcdm_base
+ PRCM_REQ_MB1_PLL_ON_OFF
));
1140 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1141 wait_for_completion(&mb1_transfer
.work
);
1143 if (mb1_transfer
.ack
.header
!= MB1H_PLL_ON_OFF
)
1146 mutex_unlock(&mb1_transfer
.lock
);
1152 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1153 * @epod_id: The EPOD to set
1154 * @epod_state: The new EPOD state
1156 * This function sets the state of a EPOD (power domain). It may not be called
1157 * from interrupt context.
1159 int db8500_prcmu_set_epod(u16 epod_id
, u8 epod_state
)
1162 bool ram_retention
= false;
1165 /* check argument */
1166 BUG_ON(epod_id
>= NUM_EPOD_ID
);
1168 /* set flag if retention is possible */
1170 case EPOD_ID_SVAMMDSP
:
1171 case EPOD_ID_SIAMMDSP
:
1172 case EPOD_ID_ESRAM12
:
1173 case EPOD_ID_ESRAM34
:
1174 ram_retention
= true;
1178 /* check argument */
1179 BUG_ON(epod_state
> EPOD_STATE_ON
);
1180 BUG_ON(epod_state
== EPOD_STATE_RAMRET
&& !ram_retention
);
1183 mutex_lock(&mb2_transfer
.lock
);
1185 /* wait for mailbox */
1186 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(2))
1189 /* fill in mailbox */
1190 for (i
= 0; i
< NUM_EPOD_ID
; i
++)
1191 writeb(EPOD_STATE_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB2
+ i
));
1192 writeb(epod_state
, (tcdm_base
+ PRCM_REQ_MB2
+ epod_id
));
1194 writeb(MB2H_DPS
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB2
));
1196 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET
);
1199 * The current firmware version does not handle errors correctly,
1200 * and we cannot recover if there is an error.
1201 * This is expected to change when the firmware is updated.
1203 if (!wait_for_completion_timeout(&mb2_transfer
.work
,
1204 msecs_to_jiffies(20000))) {
1205 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1208 goto unlock_and_return
;
1211 if (mb2_transfer
.ack
.status
!= HWACC_PWR_ST_OK
)
1215 mutex_unlock(&mb2_transfer
.lock
);
1220 * prcmu_configure_auto_pm - Configure autonomous power management.
1221 * @sleep: Configuration for ApSleep.
1222 * @idle: Configuration for ApIdle.
1224 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config
*sleep
,
1225 struct prcmu_auto_pm_config
*idle
)
1229 unsigned long flags
;
1231 BUG_ON((sleep
== NULL
) || (idle
== NULL
));
1233 sleep_cfg
= (sleep
->sva_auto_pm_enable
& 0xF);
1234 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sia_auto_pm_enable
& 0xF));
1235 sleep_cfg
= ((sleep_cfg
<< 8) | (sleep
->sva_power_on
& 0xFF));
1236 sleep_cfg
= ((sleep_cfg
<< 8) | (sleep
->sia_power_on
& 0xFF));
1237 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sva_policy
& 0xF));
1238 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sia_policy
& 0xF));
1240 idle_cfg
= (idle
->sva_auto_pm_enable
& 0xF);
1241 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sia_auto_pm_enable
& 0xF));
1242 idle_cfg
= ((idle_cfg
<< 8) | (idle
->sva_power_on
& 0xFF));
1243 idle_cfg
= ((idle_cfg
<< 8) | (idle
->sia_power_on
& 0xFF));
1244 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sva_policy
& 0xF));
1245 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sia_policy
& 0xF));
1247 spin_lock_irqsave(&mb2_transfer
.auto_pm_lock
, flags
);
1250 * The autonomous power management configuration is done through
1251 * fields in mailbox 2, but these fields are only used as shared
1252 * variables - i.e. there is no need to send a message.
1254 writel(sleep_cfg
, (tcdm_base
+ PRCM_REQ_MB2_AUTO_PM_SLEEP
));
1255 writel(idle_cfg
, (tcdm_base
+ PRCM_REQ_MB2_AUTO_PM_IDLE
));
1257 mb2_transfer
.auto_pm_enabled
=
1258 ((sleep
->sva_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1259 (sleep
->sia_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1260 (idle
->sva_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1261 (idle
->sia_auto_pm_enable
== PRCMU_AUTO_PM_ON
));
1263 spin_unlock_irqrestore(&mb2_transfer
.auto_pm_lock
, flags
);
1265 EXPORT_SYMBOL(prcmu_configure_auto_pm
);
1267 bool prcmu_is_auto_pm_enabled(void)
1269 return mb2_transfer
.auto_pm_enabled
;
1272 static int request_sysclk(bool enable
)
1275 unsigned long flags
;
1279 mutex_lock(&mb3_transfer
.sysclk_lock
);
1281 spin_lock_irqsave(&mb3_transfer
.lock
, flags
);
1283 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(3))
1286 writeb((enable
? ON
: OFF
), (tcdm_base
+ PRCM_REQ_MB3_SYSCLK_MGT
));
1288 writeb(MB3H_SYSCLK
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB3
));
1289 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET
);
1291 spin_unlock_irqrestore(&mb3_transfer
.lock
, flags
);
1294 * The firmware only sends an ACK if we want to enable the
1295 * SysClk, and it succeeds.
1297 if (enable
&& !wait_for_completion_timeout(&mb3_transfer
.sysclk_work
,
1298 msecs_to_jiffies(20000))) {
1299 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1304 mutex_unlock(&mb3_transfer
.sysclk_lock
);
1309 static int request_timclk(bool enable
)
1311 u32 val
= (PRCM_TCR_DOZE_MODE
| PRCM_TCR_TENSEL_MASK
);
1314 val
|= PRCM_TCR_STOP_TIMERS
;
1315 writel(val
, PRCM_TCR
);
1320 static int request_clock(u8 clock
, bool enable
)
1323 unsigned long flags
;
1325 spin_lock_irqsave(&clk_mgt_lock
, flags
);
1327 /* Grab the HW semaphore. */
1328 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
1331 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1333 val
|= (PRCM_CLK_MGT_CLKEN
| clk_mgt
[clock
].pllsw
);
1335 clk_mgt
[clock
].pllsw
= (val
& PRCM_CLK_MGT_CLKPLLSW_MASK
);
1336 val
&= ~(PRCM_CLK_MGT_CLKEN
| PRCM_CLK_MGT_CLKPLLSW_MASK
);
1338 writel(val
, prcmu_base
+ clk_mgt
[clock
].offset
);
1340 /* Release the HW semaphore. */
1341 writel(0, PRCM_SEM
);
1343 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1348 static int request_sga_clock(u8 clock
, bool enable
)
1354 val
= readl(PRCM_CGATING_BYPASS
);
1355 writel(val
| PRCM_CGATING_BYPASS_ICN2
, PRCM_CGATING_BYPASS
);
1358 ret
= request_clock(clock
, enable
);
1360 if (!ret
&& !enable
) {
1361 val
= readl(PRCM_CGATING_BYPASS
);
1362 writel(val
& ~PRCM_CGATING_BYPASS_ICN2
, PRCM_CGATING_BYPASS
);
1368 static inline bool plldsi_locked(void)
1370 return (readl(PRCM_PLLDSI_LOCKP
) &
1371 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10
|
1372 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3
)) ==
1373 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10
|
1374 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3
);
1377 static int request_plldsi(bool enable
)
1382 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP
|
1383 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI
), (enable
?
1384 PRCM_MMIP_LS_CLAMP_CLR
: PRCM_MMIP_LS_CLAMP_SET
));
1386 val
= readl(PRCM_PLLDSI_ENABLE
);
1388 val
|= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1390 val
&= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1391 writel(val
, PRCM_PLLDSI_ENABLE
);
1395 bool locked
= plldsi_locked();
1397 for (i
= 10; !locked
&& (i
> 0); --i
) {
1399 locked
= plldsi_locked();
1402 writel(PRCM_APE_RESETN_DSIPLL_RESETN
,
1403 PRCM_APE_RESETN_SET
);
1405 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP
|
1406 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI
),
1407 PRCM_MMIP_LS_CLAMP_SET
);
1408 val
&= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1409 writel(val
, PRCM_PLLDSI_ENABLE
);
1413 writel(PRCM_APE_RESETN_DSIPLL_RESETN
, PRCM_APE_RESETN_CLR
);
1418 static int request_dsiclk(u8 n
, bool enable
)
1422 val
= readl(PRCM_DSI_PLLOUT_SEL
);
1423 val
&= ~dsiclk
[n
].divsel_mask
;
1424 val
|= ((enable
? dsiclk
[n
].divsel
: PRCM_DSI_PLLOUT_SEL_OFF
) <<
1425 dsiclk
[n
].divsel_shift
);
1426 writel(val
, PRCM_DSI_PLLOUT_SEL
);
1430 static int request_dsiescclk(u8 n
, bool enable
)
1434 val
= readl(PRCM_DSITVCLK_DIV
);
1435 enable
? (val
|= dsiescclk
[n
].en
) : (val
&= ~dsiescclk
[n
].en
);
1436 writel(val
, PRCM_DSITVCLK_DIV
);
1441 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1442 * @clock: The clock for which the request is made.
1443 * @enable: Whether the clock should be enabled (true) or disabled (false).
1445 * This function should only be used by the clock implementation.
1446 * Do not use it from any other place!
1448 int db8500_prcmu_request_clock(u8 clock
, bool enable
)
1450 if (clock
== PRCMU_SGACLK
)
1451 return request_sga_clock(clock
, enable
);
1452 else if (clock
< PRCMU_NUM_REG_CLOCKS
)
1453 return request_clock(clock
, enable
);
1454 else if (clock
== PRCMU_TIMCLK
)
1455 return request_timclk(enable
);
1456 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1457 return request_dsiclk((clock
- PRCMU_DSI0CLK
), enable
);
1458 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1459 return request_dsiescclk((clock
- PRCMU_DSI0ESCCLK
), enable
);
1460 else if (clock
== PRCMU_PLLDSI
)
1461 return request_plldsi(enable
);
1462 else if (clock
== PRCMU_SYSCLK
)
1463 return request_sysclk(enable
);
1464 else if ((clock
== PRCMU_PLLSOC0
) || (clock
== PRCMU_PLLSOC1
))
1465 return request_pll(clock
, enable
);
1470 static unsigned long pll_rate(void __iomem
*reg
, unsigned long src_rate
,
1481 rate
*= ((val
& PRCM_PLL_FREQ_D_MASK
) >> PRCM_PLL_FREQ_D_SHIFT
);
1483 d
= ((val
& PRCM_PLL_FREQ_N_MASK
) >> PRCM_PLL_FREQ_N_SHIFT
);
1487 d
= ((val
& PRCM_PLL_FREQ_R_MASK
) >> PRCM_PLL_FREQ_R_SHIFT
);
1491 if (val
& PRCM_PLL_FREQ_SELDIV2
)
1494 if ((branch
== PLL_FIX
) || ((branch
== PLL_DIV
) &&
1495 (val
& PRCM_PLL_FREQ_DIV2EN
) &&
1496 ((reg
== PRCM_PLLSOC0_FREQ
) ||
1497 (reg
== PRCM_PLLARM_FREQ
) ||
1498 (reg
== PRCM_PLLDDR_FREQ
))))
1501 (void)do_div(rate
, div
);
1503 return (unsigned long)rate
;
1506 #define ROOT_CLOCK_RATE 38400000
1508 static unsigned long clock_rate(u8 clock
)
1512 unsigned long rate
= ROOT_CLOCK_RATE
;
1514 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1516 if (val
& PRCM_CLK_MGT_CLK38
) {
1517 if (clk_mgt
[clock
].clk38div
&& (val
& PRCM_CLK_MGT_CLK38DIV
))
1522 val
|= clk_mgt
[clock
].pllsw
;
1523 pllsw
= (val
& PRCM_CLK_MGT_CLKPLLSW_MASK
);
1525 if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_SOC0
)
1526 rate
= pll_rate(PRCM_PLLSOC0_FREQ
, rate
, clk_mgt
[clock
].branch
);
1527 else if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_SOC1
)
1528 rate
= pll_rate(PRCM_PLLSOC1_FREQ
, rate
, clk_mgt
[clock
].branch
);
1529 else if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_DDR
)
1530 rate
= pll_rate(PRCM_PLLDDR_FREQ
, rate
, clk_mgt
[clock
].branch
);
1534 if ((clock
== PRCMU_SGACLK
) &&
1535 (val
& PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
)) {
1536 u64 r
= (rate
* 10);
1538 (void)do_div(r
, 25);
1539 return (unsigned long)r
;
1541 val
&= PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1548 static unsigned long armss_rate(void)
1553 r
= readl(PRCM_ARM_CHGCLKREQ
);
1555 if (r
& PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ
) {
1556 /* External ARMCLKFIX clock */
1558 rate
= pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, PLL_FIX
);
1560 /* Check PRCM_ARM_CHGCLKREQ divider */
1561 if (!(r
& PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL
))
1564 /* Check PRCM_ARMCLKFIX_MGT divider */
1565 r
= readl(PRCM_ARMCLKFIX_MGT
);
1566 r
&= PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1569 } else {/* ARM PLL */
1570 rate
= pll_rate(PRCM_PLLARM_FREQ
, ROOT_CLOCK_RATE
, PLL_DIV
);
1576 static unsigned long dsiclk_rate(u8 n
)
1581 divsel
= readl(PRCM_DSI_PLLOUT_SEL
);
1582 divsel
= ((divsel
& dsiclk
[n
].divsel_mask
) >> dsiclk
[n
].divsel_shift
);
1584 if (divsel
== PRCM_DSI_PLLOUT_SEL_OFF
)
1585 divsel
= dsiclk
[n
].divsel
;
1587 dsiclk
[n
].divsel
= divsel
;
1590 case PRCM_DSI_PLLOUT_SEL_PHI_4
:
1593 case PRCM_DSI_PLLOUT_SEL_PHI_2
:
1596 case PRCM_DSI_PLLOUT_SEL_PHI
:
1597 return pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1604 static unsigned long dsiescclk_rate(u8 n
)
1608 div
= readl(PRCM_DSITVCLK_DIV
);
1609 div
= ((div
& dsiescclk
[n
].div_mask
) >> (dsiescclk
[n
].div_shift
));
1610 return clock_rate(PRCMU_TVCLK
) / max((u32
)1, div
);
1613 unsigned long prcmu_clock_rate(u8 clock
)
1615 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1616 return clock_rate(clock
);
1617 else if (clock
== PRCMU_TIMCLK
)
1618 return ROOT_CLOCK_RATE
/ 16;
1619 else if (clock
== PRCMU_SYSCLK
)
1620 return ROOT_CLOCK_RATE
;
1621 else if (clock
== PRCMU_PLLSOC0
)
1622 return pll_rate(PRCM_PLLSOC0_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1623 else if (clock
== PRCMU_PLLSOC1
)
1624 return pll_rate(PRCM_PLLSOC1_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1625 else if (clock
== PRCMU_ARMSS
)
1626 return armss_rate();
1627 else if (clock
== PRCMU_PLLDDR
)
1628 return pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1629 else if (clock
== PRCMU_PLLDSI
)
1630 return pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1632 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1633 return dsiclk_rate(clock
- PRCMU_DSI0CLK
);
1634 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1635 return dsiescclk_rate(clock
- PRCMU_DSI0ESCCLK
);
1640 static unsigned long clock_source_rate(u32 clk_mgt_val
, int branch
)
1642 if (clk_mgt_val
& PRCM_CLK_MGT_CLK38
)
1643 return ROOT_CLOCK_RATE
;
1644 clk_mgt_val
&= PRCM_CLK_MGT_CLKPLLSW_MASK
;
1645 if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_SOC0
)
1646 return pll_rate(PRCM_PLLSOC0_FREQ
, ROOT_CLOCK_RATE
, branch
);
1647 else if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_SOC1
)
1648 return pll_rate(PRCM_PLLSOC1_FREQ
, ROOT_CLOCK_RATE
, branch
);
1649 else if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_DDR
)
1650 return pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, branch
);
1655 static u32
clock_divider(unsigned long src_rate
, unsigned long rate
)
1659 div
= (src_rate
/ rate
);
1662 if (rate
< (src_rate
/ div
))
1667 static long round_clock_rate(u8 clock
, unsigned long rate
)
1671 unsigned long src_rate
;
1674 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1675 src_rate
= clock_source_rate((val
| clk_mgt
[clock
].pllsw
),
1676 clk_mgt
[clock
].branch
);
1677 div
= clock_divider(src_rate
, rate
);
1678 if (val
& PRCM_CLK_MGT_CLK38
) {
1679 if (clk_mgt
[clock
].clk38div
) {
1685 } else if ((clock
== PRCMU_SGACLK
) && (div
== 3)) {
1686 u64 r
= (src_rate
* 10);
1688 (void)do_div(r
, 25);
1690 return (unsigned long)r
;
1692 rounded_rate
= (src_rate
/ min(div
, (u32
)31));
1694 return rounded_rate
;
1697 static const unsigned long db8500_armss_freqs
[] = {
1704 /* The DB8520 has slightly higher ARMSS max frequency */
1705 static const unsigned long db8520_armss_freqs
[] = {
1714 static long round_armss_rate(unsigned long rate
)
1716 unsigned long freq
= 0;
1717 const unsigned long *freqs
;
1721 if (fw_info
.version
.project
== PRCMU_FW_PROJECT_U8520
) {
1722 freqs
= db8520_armss_freqs
;
1723 nfreqs
= ARRAY_SIZE(db8520_armss_freqs
);
1725 freqs
= db8500_armss_freqs
;
1726 nfreqs
= ARRAY_SIZE(db8500_armss_freqs
);
1729 /* Find the corresponding arm opp from the cpufreq table. */
1730 for (i
= 0; i
< nfreqs
; i
++) {
1736 /* Return the last valid value, even if a match was not found. */
1740 #define MIN_PLL_VCO_RATE 600000000ULL
1741 #define MAX_PLL_VCO_RATE 1680640000ULL
1743 static long round_plldsi_rate(unsigned long rate
)
1745 long rounded_rate
= 0;
1746 unsigned long src_rate
;
1750 src_rate
= clock_rate(PRCMU_HDMICLK
);
1753 for (r
= 7; (rem
> 0) && (r
> 0); r
--) {
1757 (void)do_div(d
, src_rate
);
1763 if (((2 * d
) < (r
* MIN_PLL_VCO_RATE
)) ||
1764 ((r
* MAX_PLL_VCO_RATE
) < (2 * d
)))
1768 if (rounded_rate
== 0)
1769 rounded_rate
= (long)d
;
1772 if ((rate
- d
) < rem
) {
1774 rounded_rate
= (long)d
;
1777 return rounded_rate
;
1780 static long round_dsiclk_rate(unsigned long rate
)
1783 unsigned long src_rate
;
1786 src_rate
= pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1788 div
= clock_divider(src_rate
, rate
);
1789 rounded_rate
= (src_rate
/ ((div
> 2) ? 4 : div
));
1791 return rounded_rate
;
1794 static long round_dsiescclk_rate(unsigned long rate
)
1797 unsigned long src_rate
;
1800 src_rate
= clock_rate(PRCMU_TVCLK
);
1801 div
= clock_divider(src_rate
, rate
);
1802 rounded_rate
= (src_rate
/ min(div
, (u32
)255));
1804 return rounded_rate
;
1807 long prcmu_round_clock_rate(u8 clock
, unsigned long rate
)
1809 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1810 return round_clock_rate(clock
, rate
);
1811 else if (clock
== PRCMU_ARMSS
)
1812 return round_armss_rate(rate
);
1813 else if (clock
== PRCMU_PLLDSI
)
1814 return round_plldsi_rate(rate
);
1815 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1816 return round_dsiclk_rate(rate
);
1817 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1818 return round_dsiescclk_rate(rate
);
1820 return (long)prcmu_clock_rate(clock
);
1823 static void set_clock_rate(u8 clock
, unsigned long rate
)
1827 unsigned long src_rate
;
1828 unsigned long flags
;
1830 spin_lock_irqsave(&clk_mgt_lock
, flags
);
1832 /* Grab the HW semaphore. */
1833 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
1836 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1837 src_rate
= clock_source_rate((val
| clk_mgt
[clock
].pllsw
),
1838 clk_mgt
[clock
].branch
);
1839 div
= clock_divider(src_rate
, rate
);
1840 if (val
& PRCM_CLK_MGT_CLK38
) {
1841 if (clk_mgt
[clock
].clk38div
) {
1843 val
|= PRCM_CLK_MGT_CLK38DIV
;
1845 val
&= ~PRCM_CLK_MGT_CLK38DIV
;
1847 } else if (clock
== PRCMU_SGACLK
) {
1848 val
&= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK
|
1849 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
);
1851 u64 r
= (src_rate
* 10);
1853 (void)do_div(r
, 25);
1855 val
|= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
;
1859 val
|= min(div
, (u32
)31);
1861 val
&= ~PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1862 val
|= min(div
, (u32
)31);
1864 writel(val
, prcmu_base
+ clk_mgt
[clock
].offset
);
1866 /* Release the HW semaphore. */
1867 writel(0, PRCM_SEM
);
1869 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1872 static int set_armss_rate(unsigned long rate
)
1875 u8 opps
[] = { ARM_EXTCLK
, ARM_50_OPP
, ARM_100_OPP
, ARM_MAX_OPP
};
1876 const unsigned long *freqs
;
1880 if (fw_info
.version
.project
== PRCMU_FW_PROJECT_U8520
) {
1881 freqs
= db8520_armss_freqs
;
1882 nfreqs
= ARRAY_SIZE(db8520_armss_freqs
);
1884 freqs
= db8500_armss_freqs
;
1885 nfreqs
= ARRAY_SIZE(db8500_armss_freqs
);
1888 /* Find the corresponding arm opp from the cpufreq table. */
1889 for (i
= 0; i
< nfreqs
; i
++) {
1898 /* Set the new arm opp. */
1899 pr_debug("SET ARM OPP 0x%02x\n", opps
[i
]);
1900 return db8500_prcmu_set_arm_opp(opps
[i
]);
1903 static int set_plldsi_rate(unsigned long rate
)
1905 unsigned long src_rate
;
1910 src_rate
= clock_rate(PRCMU_HDMICLK
);
1913 for (r
= 7; (rem
> 0) && (r
> 0); r
--) {
1918 (void)do_div(d
, src_rate
);
1923 hwrate
= (d
* src_rate
);
1924 if (((2 * hwrate
) < (r
* MIN_PLL_VCO_RATE
)) ||
1925 ((r
* MAX_PLL_VCO_RATE
) < (2 * hwrate
)))
1927 (void)do_div(hwrate
, r
);
1928 if (rate
< hwrate
) {
1930 pll_freq
= (((u32
)d
<< PRCM_PLL_FREQ_D_SHIFT
) |
1931 (r
<< PRCM_PLL_FREQ_R_SHIFT
));
1934 if ((rate
- hwrate
) < rem
) {
1935 rem
= (rate
- hwrate
);
1936 pll_freq
= (((u32
)d
<< PRCM_PLL_FREQ_D_SHIFT
) |
1937 (r
<< PRCM_PLL_FREQ_R_SHIFT
));
1943 pll_freq
|= (1 << PRCM_PLL_FREQ_N_SHIFT
);
1944 writel(pll_freq
, PRCM_PLLDSI_FREQ
);
1949 static void set_dsiclk_rate(u8 n
, unsigned long rate
)
1954 div
= clock_divider(pll_rate(PRCM_PLLDSI_FREQ
,
1955 clock_rate(PRCMU_HDMICLK
), PLL_RAW
), rate
);
1957 dsiclk
[n
].divsel
= (div
== 1) ? PRCM_DSI_PLLOUT_SEL_PHI
:
1958 (div
== 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2
:
1959 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4
;
1961 val
= readl(PRCM_DSI_PLLOUT_SEL
);
1962 val
&= ~dsiclk
[n
].divsel_mask
;
1963 val
|= (dsiclk
[n
].divsel
<< dsiclk
[n
].divsel_shift
);
1964 writel(val
, PRCM_DSI_PLLOUT_SEL
);
1967 static void set_dsiescclk_rate(u8 n
, unsigned long rate
)
1972 div
= clock_divider(clock_rate(PRCMU_TVCLK
), rate
);
1973 val
= readl(PRCM_DSITVCLK_DIV
);
1974 val
&= ~dsiescclk
[n
].div_mask
;
1975 val
|= (min(div
, (u32
)255) << dsiescclk
[n
].div_shift
);
1976 writel(val
, PRCM_DSITVCLK_DIV
);
1979 int prcmu_set_clock_rate(u8 clock
, unsigned long rate
)
1981 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1982 set_clock_rate(clock
, rate
);
1983 else if (clock
== PRCMU_ARMSS
)
1984 return set_armss_rate(rate
);
1985 else if (clock
== PRCMU_PLLDSI
)
1986 return set_plldsi_rate(rate
);
1987 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1988 set_dsiclk_rate((clock
- PRCMU_DSI0CLK
), rate
);
1989 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1990 set_dsiescclk_rate((clock
- PRCMU_DSI0ESCCLK
), rate
);
1994 int db8500_prcmu_config_esram0_deep_sleep(u8 state
)
1996 if ((state
> ESRAM0_DEEP_SLEEP_STATE_RET
) ||
1997 (state
< ESRAM0_DEEP_SLEEP_STATE_OFF
))
2000 mutex_lock(&mb4_transfer
.lock
);
2002 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2005 writeb(MB4H_MEM_ST
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2006 writeb(((DDR_PWR_STATE_OFFHIGHLAT
<< 4) | DDR_PWR_STATE_ON
),
2007 (tcdm_base
+ PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE
));
2008 writeb(DDR_PWR_STATE_ON
,
2009 (tcdm_base
+ PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE
));
2010 writeb(state
, (tcdm_base
+ PRCM_REQ_MB4_ESRAM0_ST
));
2012 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2013 wait_for_completion(&mb4_transfer
.work
);
2015 mutex_unlock(&mb4_transfer
.lock
);
2020 int db8500_prcmu_config_hotdog(u8 threshold
)
2022 mutex_lock(&mb4_transfer
.lock
);
2024 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2027 writeb(threshold
, (tcdm_base
+ PRCM_REQ_MB4_HOTDOG_THRESHOLD
));
2028 writeb(MB4H_HOTDOG
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2030 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2031 wait_for_completion(&mb4_transfer
.work
);
2033 mutex_unlock(&mb4_transfer
.lock
);
2038 int db8500_prcmu_config_hotmon(u8 low
, u8 high
)
2040 mutex_lock(&mb4_transfer
.lock
);
2042 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2045 writeb(low
, (tcdm_base
+ PRCM_REQ_MB4_HOTMON_LOW
));
2046 writeb(high
, (tcdm_base
+ PRCM_REQ_MB4_HOTMON_HIGH
));
2047 writeb((HOTMON_CONFIG_LOW
| HOTMON_CONFIG_HIGH
),
2048 (tcdm_base
+ PRCM_REQ_MB4_HOTMON_CONFIG
));
2049 writeb(MB4H_HOTMON
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2051 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2052 wait_for_completion(&mb4_transfer
.work
);
2054 mutex_unlock(&mb4_transfer
.lock
);
2058 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon
);
2060 static int config_hot_period(u16 val
)
2062 mutex_lock(&mb4_transfer
.lock
);
2064 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2067 writew(val
, (tcdm_base
+ PRCM_REQ_MB4_HOT_PERIOD
));
2068 writeb(MB4H_HOT_PERIOD
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2070 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2071 wait_for_completion(&mb4_transfer
.work
);
2073 mutex_unlock(&mb4_transfer
.lock
);
2078 int db8500_prcmu_start_temp_sense(u16 cycles32k
)
2080 if (cycles32k
== 0xFFFF)
2083 return config_hot_period(cycles32k
);
2085 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense
);
2087 int db8500_prcmu_stop_temp_sense(void)
2089 return config_hot_period(0xFFFF);
2091 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense
);
2093 static int prcmu_a9wdog(u8 cmd
, u8 d0
, u8 d1
, u8 d2
, u8 d3
)
2096 mutex_lock(&mb4_transfer
.lock
);
2098 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2101 writeb(d0
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_0
));
2102 writeb(d1
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_1
));
2103 writeb(d2
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_2
));
2104 writeb(d3
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_3
));
2106 writeb(cmd
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2108 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2109 wait_for_completion(&mb4_transfer
.work
);
2111 mutex_unlock(&mb4_transfer
.lock
);
2117 int db8500_prcmu_config_a9wdog(u8 num
, bool sleep_auto_off
)
2119 BUG_ON(num
== 0 || num
> 0xf);
2120 return prcmu_a9wdog(MB4H_A9WDOG_CONF
, num
, 0, 0,
2121 sleep_auto_off
? A9WDOG_AUTO_OFF_EN
:
2122 A9WDOG_AUTO_OFF_DIS
);
2124 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog
);
2126 int db8500_prcmu_enable_a9wdog(u8 id
)
2128 return prcmu_a9wdog(MB4H_A9WDOG_EN
, id
, 0, 0, 0);
2130 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog
);
2132 int db8500_prcmu_disable_a9wdog(u8 id
)
2134 return prcmu_a9wdog(MB4H_A9WDOG_DIS
, id
, 0, 0, 0);
2136 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog
);
2138 int db8500_prcmu_kick_a9wdog(u8 id
)
2140 return prcmu_a9wdog(MB4H_A9WDOG_KICK
, id
, 0, 0, 0);
2142 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog
);
2145 * timeout is 28 bit, in ms.
2147 int db8500_prcmu_load_a9wdog(u8 id
, u32 timeout
)
2149 return prcmu_a9wdog(MB4H_A9WDOG_LOAD
,
2150 (id
& A9WDOG_ID_MASK
) |
2152 * Put the lowest 28 bits of timeout at
2153 * offset 4. Four first bits are used for id.
2155 (u8
)((timeout
<< 4) & 0xf0),
2156 (u8
)((timeout
>> 4) & 0xff),
2157 (u8
)((timeout
>> 12) & 0xff),
2158 (u8
)((timeout
>> 20) & 0xff));
2160 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog
);
2163 * prcmu_abb_read() - Read register value(s) from the ABB.
2164 * @slave: The I2C slave address.
2165 * @reg: The (start) register address.
2166 * @value: The read out value(s).
2167 * @size: The number of registers to read.
2169 * Reads register value(s) from the ABB.
2170 * @size has to be 1 for the current firmware version.
2172 int prcmu_abb_read(u8 slave
, u8 reg
, u8
*value
, u8 size
)
2179 mutex_lock(&mb5_transfer
.lock
);
2181 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(5))
2184 writeb(0, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB5
));
2185 writeb(PRCMU_I2C_READ(slave
), (tcdm_base
+ PRCM_REQ_MB5_I2C_SLAVE_OP
));
2186 writeb(PRCMU_I2C_STOP_EN
, (tcdm_base
+ PRCM_REQ_MB5_I2C_HW_BITS
));
2187 writeb(reg
, (tcdm_base
+ PRCM_REQ_MB5_I2C_REG
));
2188 writeb(0, (tcdm_base
+ PRCM_REQ_MB5_I2C_VAL
));
2190 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET
);
2192 if (!wait_for_completion_timeout(&mb5_transfer
.work
,
2193 msecs_to_jiffies(20000))) {
2194 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2198 r
= ((mb5_transfer
.ack
.status
== I2C_RD_OK
) ? 0 : -EIO
);
2202 *value
= mb5_transfer
.ack
.value
;
2204 mutex_unlock(&mb5_transfer
.lock
);
2210 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2211 * @slave: The I2C slave address.
2212 * @reg: The (start) register address.
2213 * @value: The value(s) to write.
2214 * @mask: The mask(s) to use.
2215 * @size: The number of registers to write.
2217 * Writes masked register value(s) to the ABB.
2218 * For each @value, only the bits set to 1 in the corresponding @mask
2219 * will be written. The other bits are not changed.
2220 * @size has to be 1 for the current firmware version.
2222 int prcmu_abb_write_masked(u8 slave
, u8 reg
, u8
*value
, u8
*mask
, u8 size
)
2229 mutex_lock(&mb5_transfer
.lock
);
2231 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(5))
2234 writeb(~*mask
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB5
));
2235 writeb(PRCMU_I2C_WRITE(slave
), (tcdm_base
+ PRCM_REQ_MB5_I2C_SLAVE_OP
));
2236 writeb(PRCMU_I2C_STOP_EN
, (tcdm_base
+ PRCM_REQ_MB5_I2C_HW_BITS
));
2237 writeb(reg
, (tcdm_base
+ PRCM_REQ_MB5_I2C_REG
));
2238 writeb(*value
, (tcdm_base
+ PRCM_REQ_MB5_I2C_VAL
));
2240 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET
);
2242 if (!wait_for_completion_timeout(&mb5_transfer
.work
,
2243 msecs_to_jiffies(20000))) {
2244 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2248 r
= ((mb5_transfer
.ack
.status
== I2C_WR_OK
) ? 0 : -EIO
);
2251 mutex_unlock(&mb5_transfer
.lock
);
2257 * prcmu_abb_write() - Write register value(s) to the ABB.
2258 * @slave: The I2C slave address.
2259 * @reg: The (start) register address.
2260 * @value: The value(s) to write.
2261 * @size: The number of registers to write.
2263 * Writes register value(s) to the ABB.
2264 * @size has to be 1 for the current firmware version.
2266 int prcmu_abb_write(u8 slave
, u8 reg
, u8
*value
, u8 size
)
2270 return prcmu_abb_write_masked(slave
, reg
, value
, &mask
, size
);
2274 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2276 int prcmu_ac_wake_req(void)
2281 mutex_lock(&mb0_transfer
.ac_wake_lock
);
2283 val
= readl(PRCM_HOSTACCESS_REQ
);
2284 if (val
& PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
)
2285 goto unlock_and_return
;
2287 atomic_set(&ac_wake_req_state
, 1);
2290 * Force Modem Wake-up before hostaccess_req ping-pong.
2291 * It prevents Modem to enter in Sleep while acking the hostaccess
2292 * request. The 31us delay has been calculated by HWI.
2294 val
|= PRCM_HOSTACCESS_REQ_WAKE_REQ
;
2295 writel(val
, PRCM_HOSTACCESS_REQ
);
2299 val
|= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
;
2300 writel(val
, PRCM_HOSTACCESS_REQ
);
2302 if (!wait_for_completion_timeout(&mb0_transfer
.ac_wake_work
,
2303 msecs_to_jiffies(5000))) {
2304 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2310 mutex_unlock(&mb0_transfer
.ac_wake_lock
);
2315 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2317 void prcmu_ac_sleep_req(void)
2321 mutex_lock(&mb0_transfer
.ac_wake_lock
);
2323 val
= readl(PRCM_HOSTACCESS_REQ
);
2324 if (!(val
& PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
))
2325 goto unlock_and_return
;
2327 writel((val
& ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
),
2328 PRCM_HOSTACCESS_REQ
);
2330 if (!wait_for_completion_timeout(&mb0_transfer
.ac_wake_work
,
2331 msecs_to_jiffies(5000))) {
2332 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2336 atomic_set(&ac_wake_req_state
, 0);
2339 mutex_unlock(&mb0_transfer
.ac_wake_lock
);
2342 bool db8500_prcmu_is_ac_wake_requested(void)
2344 return (atomic_read(&ac_wake_req_state
) != 0);
2348 * db8500_prcmu_system_reset - System reset
2350 * Saves the reset reason code and then sets the APE_SOFTRST register which
2351 * fires interrupt to fw
2353 void db8500_prcmu_system_reset(u16 reset_code
)
2355 writew(reset_code
, (tcdm_base
+ PRCM_SW_RST_REASON
));
2356 writel(1, PRCM_APE_SOFTRST
);
2360 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2362 * Retrieves the reset reason code stored by prcmu_system_reset() before
2365 u16
db8500_prcmu_get_reset_code(void)
2367 return readw(tcdm_base
+ PRCM_SW_RST_REASON
);
2371 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2373 void db8500_prcmu_modem_reset(void)
2375 mutex_lock(&mb1_transfer
.lock
);
2377 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
2380 writeb(MB1H_RESET_MODEM
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
2381 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
2382 wait_for_completion(&mb1_transfer
.work
);
2385 * No need to check return from PRCMU as modem should go in reset state
2386 * This state is already managed by upper layer
2389 mutex_unlock(&mb1_transfer
.lock
);
2392 static void ack_dbb_wakeup(void)
2394 unsigned long flags
;
2396 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
2398 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
2401 writeb(MB0H_READ_WAKEUP_ACK
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
2402 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
2404 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
2407 static inline void print_unknown_header_warning(u8 n
, u8 header
)
2409 pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2413 static bool read_mailbox_0(void)
2420 header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_ACK_MB0
);
2422 case MB0H_WAKEUP_EXE
:
2423 case MB0H_WAKEUP_SLEEP
:
2424 if (readb(tcdm_base
+ PRCM_ACK_MB0_READ_POINTER
) & 1)
2425 ev
= readl(tcdm_base
+ PRCM_ACK_MB0_WAKEUP_1_8500
);
2427 ev
= readl(tcdm_base
+ PRCM_ACK_MB0_WAKEUP_0_8500
);
2429 if (ev
& (WAKEUP_BIT_AC_WAKE_ACK
| WAKEUP_BIT_AC_SLEEP_ACK
))
2430 complete(&mb0_transfer
.ac_wake_work
);
2431 if (ev
& WAKEUP_BIT_SYSCLK_OK
)
2432 complete(&mb3_transfer
.sysclk_work
);
2434 ev
&= mb0_transfer
.req
.dbb_irqs
;
2436 for (n
= 0; n
< NUM_PRCMU_WAKEUPS
; n
++) {
2437 if (ev
& prcmu_irq_bit
[n
])
2438 generic_handle_irq(irq_find_mapping(db8500_irq_domain
, n
));
2443 print_unknown_header_warning(0, header
);
2447 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR
);
2451 static bool read_mailbox_1(void)
2453 mb1_transfer
.ack
.header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
);
2454 mb1_transfer
.ack
.arm_opp
= readb(tcdm_base
+
2455 PRCM_ACK_MB1_CURRENT_ARM_OPP
);
2456 mb1_transfer
.ack
.ape_opp
= readb(tcdm_base
+
2457 PRCM_ACK_MB1_CURRENT_APE_OPP
);
2458 mb1_transfer
.ack
.ape_voltage_status
= readb(tcdm_base
+
2459 PRCM_ACK_MB1_APE_VOLTAGE_STATUS
);
2460 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR
);
2461 complete(&mb1_transfer
.work
);
2465 static bool read_mailbox_2(void)
2467 mb2_transfer
.ack
.status
= readb(tcdm_base
+ PRCM_ACK_MB2_DPS_STATUS
);
2468 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR
);
2469 complete(&mb2_transfer
.work
);
2473 static bool read_mailbox_3(void)
2475 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR
);
2479 static bool read_mailbox_4(void)
2482 bool do_complete
= true;
2484 header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
);
2489 case MB4H_HOT_PERIOD
:
2490 case MB4H_A9WDOG_CONF
:
2491 case MB4H_A9WDOG_EN
:
2492 case MB4H_A9WDOG_DIS
:
2493 case MB4H_A9WDOG_LOAD
:
2494 case MB4H_A9WDOG_KICK
:
2497 print_unknown_header_warning(4, header
);
2498 do_complete
= false;
2502 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR
);
2505 complete(&mb4_transfer
.work
);
2510 static bool read_mailbox_5(void)
2512 mb5_transfer
.ack
.status
= readb(tcdm_base
+ PRCM_ACK_MB5_I2C_STATUS
);
2513 mb5_transfer
.ack
.value
= readb(tcdm_base
+ PRCM_ACK_MB5_I2C_VAL
);
2514 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR
);
2515 complete(&mb5_transfer
.work
);
2519 static bool read_mailbox_6(void)
2521 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR
);
2525 static bool read_mailbox_7(void)
2527 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR
);
2531 static bool (* const read_mailbox
[NUM_MB
])(void) = {
2542 static irqreturn_t
prcmu_irq_handler(int irq
, void *data
)
2548 bits
= (readl(PRCM_ARM_IT1_VAL
) & ALL_MBOX_BITS
);
2549 if (unlikely(!bits
))
2553 for (n
= 0; bits
; n
++) {
2554 if (bits
& MBOX_BIT(n
)) {
2555 bits
-= MBOX_BIT(n
);
2556 if (read_mailbox
[n
]())
2557 r
= IRQ_WAKE_THREAD
;
2563 static irqreturn_t
prcmu_irq_thread_fn(int irq
, void *data
)
2569 static void prcmu_mask_work(struct work_struct
*work
)
2571 unsigned long flags
;
2573 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
2577 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
2580 static void prcmu_irq_mask(struct irq_data
*d
)
2582 unsigned long flags
;
2584 spin_lock_irqsave(&mb0_transfer
.dbb_irqs_lock
, flags
);
2586 mb0_transfer
.req
.dbb_irqs
&= ~prcmu_irq_bit
[d
->hwirq
];
2588 spin_unlock_irqrestore(&mb0_transfer
.dbb_irqs_lock
, flags
);
2590 if (d
->irq
!= IRQ_PRCMU_CA_SLEEP
)
2591 schedule_work(&mb0_transfer
.mask_work
);
2594 static void prcmu_irq_unmask(struct irq_data
*d
)
2596 unsigned long flags
;
2598 spin_lock_irqsave(&mb0_transfer
.dbb_irqs_lock
, flags
);
2600 mb0_transfer
.req
.dbb_irqs
|= prcmu_irq_bit
[d
->hwirq
];
2602 spin_unlock_irqrestore(&mb0_transfer
.dbb_irqs_lock
, flags
);
2604 if (d
->irq
!= IRQ_PRCMU_CA_SLEEP
)
2605 schedule_work(&mb0_transfer
.mask_work
);
2608 static void noop(struct irq_data
*d
)
2612 static struct irq_chip prcmu_irq_chip
= {
2614 .irq_disable
= prcmu_irq_mask
,
2616 .irq_mask
= prcmu_irq_mask
,
2617 .irq_unmask
= prcmu_irq_unmask
,
2620 static char *fw_project_name(u32 project
)
2623 case PRCMU_FW_PROJECT_U8500
:
2625 case PRCMU_FW_PROJECT_U8400
:
2627 case PRCMU_FW_PROJECT_U9500
:
2629 case PRCMU_FW_PROJECT_U8500_MBB
:
2631 case PRCMU_FW_PROJECT_U8500_C1
:
2633 case PRCMU_FW_PROJECT_U8500_C2
:
2635 case PRCMU_FW_PROJECT_U8500_C3
:
2637 case PRCMU_FW_PROJECT_U8500_C4
:
2639 case PRCMU_FW_PROJECT_U9500_MBL
:
2641 case PRCMU_FW_PROJECT_U8500_MBL
:
2643 case PRCMU_FW_PROJECT_U8500_MBL2
:
2644 return "U8500 MBL2";
2645 case PRCMU_FW_PROJECT_U8520
:
2647 case PRCMU_FW_PROJECT_U8420
:
2649 case PRCMU_FW_PROJECT_U9540
:
2651 case PRCMU_FW_PROJECT_A9420
:
2653 case PRCMU_FW_PROJECT_L8540
:
2655 case PRCMU_FW_PROJECT_L8580
:
2662 static int db8500_irq_map(struct irq_domain
*d
, unsigned int virq
,
2663 irq_hw_number_t hwirq
)
2665 irq_set_chip_and_handler(virq
, &prcmu_irq_chip
,
2671 static const struct irq_domain_ops db8500_irq_ops
= {
2672 .map
= db8500_irq_map
,
2673 .xlate
= irq_domain_xlate_twocell
,
2676 static int db8500_irq_init(struct device_node
*np
)
2680 db8500_irq_domain
= irq_domain_add_simple(
2681 np
, NUM_PRCMU_WAKEUPS
, 0,
2682 &db8500_irq_ops
, NULL
);
2684 if (!db8500_irq_domain
) {
2685 pr_err("Failed to create irqdomain\n");
2689 /* All wakeups will be used, so create mappings for all */
2690 for (i
= 0; i
< NUM_PRCMU_WAKEUPS
; i
++)
2691 irq_create_mapping(db8500_irq_domain
, i
);
2696 static void dbx500_fw_version_init(struct platform_device
*pdev
,
2699 struct resource
*res
;
2700 void __iomem
*tcpm_base
;
2703 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
2707 "Error: no prcmu tcpm memory region provided\n");
2710 tcpm_base
= ioremap(res
->start
, resource_size(res
));
2712 dev_err(&pdev
->dev
, "no prcmu tcpm mem region provided\n");
2716 version
= readl(tcpm_base
+ version_offset
);
2717 fw_info
.version
.project
= (version
& 0xFF);
2718 fw_info
.version
.api_version
= (version
>> 8) & 0xFF;
2719 fw_info
.version
.func_version
= (version
>> 16) & 0xFF;
2720 fw_info
.version
.errata
= (version
>> 24) & 0xFF;
2721 strncpy(fw_info
.version
.project_name
,
2722 fw_project_name(fw_info
.version
.project
),
2723 PRCMU_FW_PROJECT_NAME_LEN
);
2724 fw_info
.valid
= true;
2725 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2726 fw_info
.version
.project_name
,
2727 fw_info
.version
.project
,
2728 fw_info
.version
.api_version
,
2729 fw_info
.version
.func_version
,
2730 fw_info
.version
.errata
);
2734 void __init
db8500_prcmu_early_init(u32 phy_base
, u32 size
)
2737 * This is a temporary remap to bring up the clocks. It is
2738 * subsequently replaces with a real remap. After the merge of
2739 * the mailbox subsystem all of this early code goes away, and the
2740 * clock driver can probe independently. An early initcall will
2741 * still be needed, but it can be diverted into drivers/clk/ux500.
2743 prcmu_base
= ioremap(phy_base
, size
);
2745 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__
);
2747 spin_lock_init(&mb0_transfer
.lock
);
2748 spin_lock_init(&mb0_transfer
.dbb_irqs_lock
);
2749 mutex_init(&mb0_transfer
.ac_wake_lock
);
2750 init_completion(&mb0_transfer
.ac_wake_work
);
2751 mutex_init(&mb1_transfer
.lock
);
2752 init_completion(&mb1_transfer
.work
);
2753 mb1_transfer
.ape_opp
= APE_NO_CHANGE
;
2754 mutex_init(&mb2_transfer
.lock
);
2755 init_completion(&mb2_transfer
.work
);
2756 spin_lock_init(&mb2_transfer
.auto_pm_lock
);
2757 spin_lock_init(&mb3_transfer
.lock
);
2758 mutex_init(&mb3_transfer
.sysclk_lock
);
2759 init_completion(&mb3_transfer
.sysclk_work
);
2760 mutex_init(&mb4_transfer
.lock
);
2761 init_completion(&mb4_transfer
.work
);
2762 mutex_init(&mb5_transfer
.lock
);
2763 init_completion(&mb5_transfer
.work
);
2765 INIT_WORK(&mb0_transfer
.mask_work
, prcmu_mask_work
);
2768 static void init_prcm_registers(void)
2772 val
= readl(PRCM_A9PL_FORCE_CLKEN
);
2773 val
&= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN
|
2774 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN
);
2775 writel(val
, (PRCM_A9PL_FORCE_CLKEN
));
2779 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2781 static struct regulator_consumer_supply db8500_vape_consumers
[] = {
2782 REGULATOR_SUPPLY("v-ape", NULL
),
2783 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2784 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2785 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2786 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2787 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2788 /* "v-mmc" changed to "vcore" in the mainline kernel */
2789 REGULATOR_SUPPLY("vcore", "sdi0"),
2790 REGULATOR_SUPPLY("vcore", "sdi1"),
2791 REGULATOR_SUPPLY("vcore", "sdi2"),
2792 REGULATOR_SUPPLY("vcore", "sdi3"),
2793 REGULATOR_SUPPLY("vcore", "sdi4"),
2794 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2795 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2796 /* "v-uart" changed to "vcore" in the mainline kernel */
2797 REGULATOR_SUPPLY("vcore", "uart0"),
2798 REGULATOR_SUPPLY("vcore", "uart1"),
2799 REGULATOR_SUPPLY("vcore", "uart2"),
2800 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2801 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2802 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2805 static struct regulator_consumer_supply db8500_vsmps2_consumers
[] = {
2806 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2807 /* AV8100 regulator */
2808 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2811 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers
[] = {
2812 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2813 REGULATOR_SUPPLY("vsupply", "mcde"),
2816 /* SVA MMDSP regulator switch */
2817 static struct regulator_consumer_supply db8500_svammdsp_consumers
[] = {
2818 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2821 /* SVA pipe regulator switch */
2822 static struct regulator_consumer_supply db8500_svapipe_consumers
[] = {
2823 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2826 /* SIA MMDSP regulator switch */
2827 static struct regulator_consumer_supply db8500_siammdsp_consumers
[] = {
2828 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2831 /* SIA pipe regulator switch */
2832 static struct regulator_consumer_supply db8500_siapipe_consumers
[] = {
2833 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2836 static struct regulator_consumer_supply db8500_sga_consumers
[] = {
2837 REGULATOR_SUPPLY("v-mali", NULL
),
2840 /* ESRAM1 and 2 regulator switch */
2841 static struct regulator_consumer_supply db8500_esram12_consumers
[] = {
2842 REGULATOR_SUPPLY("esram12", "cm_control"),
2845 /* ESRAM3 and 4 regulator switch */
2846 static struct regulator_consumer_supply db8500_esram34_consumers
[] = {
2847 REGULATOR_SUPPLY("v-esram34", "mcde"),
2848 REGULATOR_SUPPLY("esram34", "cm_control"),
2849 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2852 static struct regulator_init_data db8500_regulators
[DB8500_NUM_REGULATORS
] = {
2853 [DB8500_REGULATOR_VAPE
] = {
2855 .name
= "db8500-vape",
2856 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2859 .consumer_supplies
= db8500_vape_consumers
,
2860 .num_consumer_supplies
= ARRAY_SIZE(db8500_vape_consumers
),
2862 [DB8500_REGULATOR_VARM
] = {
2864 .name
= "db8500-varm",
2865 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2868 [DB8500_REGULATOR_VMODEM
] = {
2870 .name
= "db8500-vmodem",
2871 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2874 [DB8500_REGULATOR_VPLL
] = {
2876 .name
= "db8500-vpll",
2877 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2880 [DB8500_REGULATOR_VSMPS1
] = {
2882 .name
= "db8500-vsmps1",
2883 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2886 [DB8500_REGULATOR_VSMPS2
] = {
2888 .name
= "db8500-vsmps2",
2889 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2891 .consumer_supplies
= db8500_vsmps2_consumers
,
2892 .num_consumer_supplies
= ARRAY_SIZE(db8500_vsmps2_consumers
),
2894 [DB8500_REGULATOR_VSMPS3
] = {
2896 .name
= "db8500-vsmps3",
2897 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2900 [DB8500_REGULATOR_VRF1
] = {
2902 .name
= "db8500-vrf1",
2903 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2906 [DB8500_REGULATOR_SWITCH_SVAMMDSP
] = {
2907 /* dependency to u8500-vape is handled outside regulator framework */
2909 .name
= "db8500-sva-mmdsp",
2910 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2912 .consumer_supplies
= db8500_svammdsp_consumers
,
2913 .num_consumer_supplies
= ARRAY_SIZE(db8500_svammdsp_consumers
),
2915 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET
] = {
2917 /* "ret" means "retention" */
2918 .name
= "db8500-sva-mmdsp-ret",
2919 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2922 [DB8500_REGULATOR_SWITCH_SVAPIPE
] = {
2923 /* dependency to u8500-vape is handled outside regulator framework */
2925 .name
= "db8500-sva-pipe",
2926 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2928 .consumer_supplies
= db8500_svapipe_consumers
,
2929 .num_consumer_supplies
= ARRAY_SIZE(db8500_svapipe_consumers
),
2931 [DB8500_REGULATOR_SWITCH_SIAMMDSP
] = {
2932 /* dependency to u8500-vape is handled outside regulator framework */
2934 .name
= "db8500-sia-mmdsp",
2935 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2937 .consumer_supplies
= db8500_siammdsp_consumers
,
2938 .num_consumer_supplies
= ARRAY_SIZE(db8500_siammdsp_consumers
),
2940 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET
] = {
2942 .name
= "db8500-sia-mmdsp-ret",
2943 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2946 [DB8500_REGULATOR_SWITCH_SIAPIPE
] = {
2947 /* dependency to u8500-vape is handled outside regulator framework */
2949 .name
= "db8500-sia-pipe",
2950 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2952 .consumer_supplies
= db8500_siapipe_consumers
,
2953 .num_consumer_supplies
= ARRAY_SIZE(db8500_siapipe_consumers
),
2955 [DB8500_REGULATOR_SWITCH_SGA
] = {
2956 .supply_regulator
= "db8500-vape",
2958 .name
= "db8500-sga",
2959 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2961 .consumer_supplies
= db8500_sga_consumers
,
2962 .num_consumer_supplies
= ARRAY_SIZE(db8500_sga_consumers
),
2965 [DB8500_REGULATOR_SWITCH_B2R2_MCDE
] = {
2966 .supply_regulator
= "db8500-vape",
2968 .name
= "db8500-b2r2-mcde",
2969 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2971 .consumer_supplies
= db8500_b2r2_mcde_consumers
,
2972 .num_consumer_supplies
= ARRAY_SIZE(db8500_b2r2_mcde_consumers
),
2974 [DB8500_REGULATOR_SWITCH_ESRAM12
] = {
2976 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2977 * no need to hold Vape
2980 .name
= "db8500-esram12",
2981 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2983 .consumer_supplies
= db8500_esram12_consumers
,
2984 .num_consumer_supplies
= ARRAY_SIZE(db8500_esram12_consumers
),
2986 [DB8500_REGULATOR_SWITCH_ESRAM12RET
] = {
2988 .name
= "db8500-esram12-ret",
2989 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2992 [DB8500_REGULATOR_SWITCH_ESRAM34
] = {
2994 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2995 * no need to hold Vape
2998 .name
= "db8500-esram34",
2999 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
3001 .consumer_supplies
= db8500_esram34_consumers
,
3002 .num_consumer_supplies
= ARRAY_SIZE(db8500_esram34_consumers
),
3004 [DB8500_REGULATOR_SWITCH_ESRAM34RET
] = {
3006 .name
= "db8500-esram34-ret",
3007 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
3012 static struct ux500_wdt_data db8500_wdt_pdata
= {
3013 .timeout
= 600, /* 10 minutes */
3014 .has_28_bits_resolution
= true,
3017 static const struct mfd_cell common_prcmu_devs
[] = {
3019 .name
= "ux500_wdt",
3020 .platform_data
= &db8500_wdt_pdata
,
3021 .pdata_size
= sizeof(db8500_wdt_pdata
),
3026 static const struct mfd_cell db8500_prcmu_devs
[] = {
3028 .name
= "db8500-prcmu-regulators",
3029 .of_compatible
= "stericsson,db8500-prcmu-regulator",
3030 .platform_data
= &db8500_regulators
,
3031 .pdata_size
= sizeof(db8500_regulators
),
3034 .name
= "cpuidle-dbx500",
3035 .of_compatible
= "stericsson,cpuidle-dbx500",
3038 .name
= "db8500-thermal",
3039 .of_compatible
= "stericsson,db8500-thermal",
3043 static int db8500_prcmu_register_ab8500(struct device
*parent
)
3045 struct device_node
*np
;
3046 struct resource ab8500_resource
;
3047 const struct mfd_cell ab8500_cell
= {
3048 .name
= "ab8500-core",
3049 .of_compatible
= "stericsson,ab8500",
3050 .id
= AB8500_VERSION_AB8500
,
3051 .resources
= &ab8500_resource
,
3055 if (!parent
->of_node
)
3058 /* Look up the device node, sneak the IRQ out of it */
3059 for_each_child_of_node(parent
->of_node
, np
) {
3060 if (of_device_is_compatible(np
, ab8500_cell
.of_compatible
))
3064 dev_info(parent
, "could not find AB8500 node in the device tree\n");
3067 of_irq_to_resource_table(np
, &ab8500_resource
, 1);
3069 return mfd_add_devices(parent
, 0, &ab8500_cell
, 1, NULL
, 0, NULL
);
3073 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3076 static int db8500_prcmu_probe(struct platform_device
*pdev
)
3078 struct device_node
*np
= pdev
->dev
.of_node
;
3079 int irq
= 0, err
= 0;
3080 struct resource
*res
;
3082 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "prcmu");
3084 dev_err(&pdev
->dev
, "no prcmu memory region provided\n");
3087 prcmu_base
= devm_ioremap(&pdev
->dev
, res
->start
, resource_size(res
));
3090 "failed to ioremap prcmu register memory\n");
3093 init_prcm_registers();
3094 dbx500_fw_version_init(pdev
, DB8500_PRCMU_FW_VERSION_OFFSET
);
3095 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "prcmu-tcdm");
3097 dev_err(&pdev
->dev
, "no prcmu tcdm region provided\n");
3100 tcdm_base
= devm_ioremap(&pdev
->dev
, res
->start
,
3101 resource_size(res
));
3104 "failed to ioremap prcmu-tcdm register memory\n");
3108 /* Clean up the mailbox interrupts after pre-kernel code. */
3109 writel(ALL_MBOX_BITS
, PRCM_ARM_IT1_CLR
);
3111 irq
= platform_get_irq(pdev
, 0);
3115 err
= request_threaded_irq(irq
, prcmu_irq_handler
,
3116 prcmu_irq_thread_fn
, IRQF_NO_SUSPEND
, "prcmu", NULL
);
3118 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3122 db8500_irq_init(np
);
3124 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET
);
3126 err
= mfd_add_devices(&pdev
->dev
, 0, common_prcmu_devs
,
3127 ARRAY_SIZE(common_prcmu_devs
), NULL
, 0, db8500_irq_domain
);
3129 pr_err("prcmu: Failed to add subdevices\n");
3133 /* TODO: Remove restriction when clk definitions are available. */
3134 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3135 err
= mfd_add_devices(&pdev
->dev
, 0, db8500_prcmu_devs
,
3136 ARRAY_SIZE(db8500_prcmu_devs
), NULL
, 0,
3139 mfd_remove_devices(&pdev
->dev
);
3140 pr_err("prcmu: Failed to add subdevices\n");
3145 err
= db8500_prcmu_register_ab8500(&pdev
->dev
);
3147 mfd_remove_devices(&pdev
->dev
);
3148 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3152 pr_info("DB8500 PRCMU initialized\n");
3155 static const struct of_device_id db8500_prcmu_match
[] = {
3156 { .compatible
= "stericsson,db8500-prcmu"},
3160 static struct platform_driver db8500_prcmu_driver
= {
3162 .name
= "db8500-prcmu",
3163 .of_match_table
= db8500_prcmu_match
,
3165 .probe
= db8500_prcmu_probe
,
3168 static int __init
db8500_prcmu_init(void)
3170 return platform_driver_register(&db8500_prcmu_driver
);
3172 core_initcall(db8500_prcmu_init
);