net: DCB: Validate DCB_ATTR_DCB_BUFFER argument
[linux/fpc-iii.git] / drivers / spi / spi-mem.c
blobde0ba3e5449faed32da0617c6e52581a7795b20b
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
6 * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7 */
8 #include <linux/dmaengine.h>
9 #include <linux/pm_runtime.h>
10 #include <linux/spi/spi.h>
11 #include <linux/spi/spi-mem.h>
13 #include "internals.h"
15 #define SPI_MEM_MAX_BUSWIDTH 8
17 /**
18 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
19 * memory operation
20 * @ctlr: the SPI controller requesting this dma_map()
21 * @op: the memory operation containing the buffer to map
22 * @sgt: a pointer to a non-initialized sg_table that will be filled by this
23 * function
25 * Some controllers might want to do DMA on the data buffer embedded in @op.
26 * This helper prepares everything for you and provides a ready-to-use
27 * sg_table. This function is not intended to be called from spi drivers.
28 * Only SPI controller drivers should use it.
29 * Note that the caller must ensure the memory region pointed by
30 * op->data.buf.{in,out} is DMA-able before calling this function.
32 * Return: 0 in case of success, a negative error code otherwise.
34 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
35 const struct spi_mem_op *op,
36 struct sg_table *sgt)
38 struct device *dmadev;
40 if (!op->data.nbytes)
41 return -EINVAL;
43 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
44 dmadev = ctlr->dma_tx->device->dev;
45 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
46 dmadev = ctlr->dma_rx->device->dev;
47 else
48 dmadev = ctlr->dev.parent;
50 if (!dmadev)
51 return -EINVAL;
53 return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
54 op->data.dir == SPI_MEM_DATA_IN ?
55 DMA_FROM_DEVICE : DMA_TO_DEVICE);
57 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
59 /**
60 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
61 * memory operation
62 * @ctlr: the SPI controller requesting this dma_unmap()
63 * @op: the memory operation containing the buffer to unmap
64 * @sgt: a pointer to an sg_table previously initialized by
65 * spi_controller_dma_map_mem_op_data()
67 * Some controllers might want to do DMA on the data buffer embedded in @op.
68 * This helper prepares things so that the CPU can access the
69 * op->data.buf.{in,out} buffer again.
71 * This function is not intended to be called from SPI drivers. Only SPI
72 * controller drivers should use it.
74 * This function should be called after the DMA operation has finished and is
75 * only valid if the previous spi_controller_dma_map_mem_op_data() call
76 * returned 0.
78 * Return: 0 in case of success, a negative error code otherwise.
80 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
81 const struct spi_mem_op *op,
82 struct sg_table *sgt)
84 struct device *dmadev;
86 if (!op->data.nbytes)
87 return;
89 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
90 dmadev = ctlr->dma_tx->device->dev;
91 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
92 dmadev = ctlr->dma_rx->device->dev;
93 else
94 dmadev = ctlr->dev.parent;
96 spi_unmap_buf(ctlr, dmadev, sgt,
97 op->data.dir == SPI_MEM_DATA_IN ?
98 DMA_FROM_DEVICE : DMA_TO_DEVICE);
100 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
102 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
104 u32 mode = mem->spi->mode;
106 switch (buswidth) {
107 case 1:
108 return 0;
110 case 2:
111 if ((tx &&
112 (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
113 (!tx &&
114 (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
115 return 0;
117 break;
119 case 4:
120 if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
121 (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
122 return 0;
124 break;
126 case 8:
127 if ((tx && (mode & SPI_TX_OCTAL)) ||
128 (!tx && (mode & SPI_RX_OCTAL)))
129 return 0;
131 break;
133 default:
134 break;
137 return -ENOTSUPP;
140 bool spi_mem_default_supports_op(struct spi_mem *mem,
141 const struct spi_mem_op *op)
143 if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
144 return false;
146 if (op->addr.nbytes &&
147 spi_check_buswidth_req(mem, op->addr.buswidth, true))
148 return false;
150 if (op->dummy.nbytes &&
151 spi_check_buswidth_req(mem, op->dummy.buswidth, true))
152 return false;
154 if (op->data.dir != SPI_MEM_NO_DATA &&
155 spi_check_buswidth_req(mem, op->data.buswidth,
156 op->data.dir == SPI_MEM_DATA_OUT))
157 return false;
159 return true;
161 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
163 static bool spi_mem_buswidth_is_valid(u8 buswidth)
165 if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
166 return false;
168 return true;
171 static int spi_mem_check_op(const struct spi_mem_op *op)
173 if (!op->cmd.buswidth)
174 return -EINVAL;
176 if ((op->addr.nbytes && !op->addr.buswidth) ||
177 (op->dummy.nbytes && !op->dummy.buswidth) ||
178 (op->data.nbytes && !op->data.buswidth))
179 return -EINVAL;
181 if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
182 !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
183 !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
184 !spi_mem_buswidth_is_valid(op->data.buswidth))
185 return -EINVAL;
187 return 0;
190 static bool spi_mem_internal_supports_op(struct spi_mem *mem,
191 const struct spi_mem_op *op)
193 struct spi_controller *ctlr = mem->spi->controller;
195 if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
196 return ctlr->mem_ops->supports_op(mem, op);
198 return spi_mem_default_supports_op(mem, op);
202 * spi_mem_supports_op() - Check if a memory device and the controller it is
203 * connected to support a specific memory operation
204 * @mem: the SPI memory
205 * @op: the memory operation to check
207 * Some controllers are only supporting Single or Dual IOs, others might only
208 * support specific opcodes, or it can even be that the controller and device
209 * both support Quad IOs but the hardware prevents you from using it because
210 * only 2 IO lines are connected.
212 * This function checks whether a specific operation is supported.
214 * Return: true if @op is supported, false otherwise.
216 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
218 if (spi_mem_check_op(op))
219 return false;
221 return spi_mem_internal_supports_op(mem, op);
223 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
225 static int spi_mem_access_start(struct spi_mem *mem)
227 struct spi_controller *ctlr = mem->spi->controller;
230 * Flush the message queue before executing our SPI memory
231 * operation to prevent preemption of regular SPI transfers.
233 spi_flush_queue(ctlr);
235 if (ctlr->auto_runtime_pm) {
236 int ret;
238 ret = pm_runtime_get_sync(ctlr->dev.parent);
239 if (ret < 0) {
240 dev_err(&ctlr->dev, "Failed to power device: %d\n",
241 ret);
242 return ret;
246 mutex_lock(&ctlr->bus_lock_mutex);
247 mutex_lock(&ctlr->io_mutex);
249 return 0;
252 static void spi_mem_access_end(struct spi_mem *mem)
254 struct spi_controller *ctlr = mem->spi->controller;
256 mutex_unlock(&ctlr->io_mutex);
257 mutex_unlock(&ctlr->bus_lock_mutex);
259 if (ctlr->auto_runtime_pm)
260 pm_runtime_put(ctlr->dev.parent);
264 * spi_mem_exec_op() - Execute a memory operation
265 * @mem: the SPI memory
266 * @op: the memory operation to execute
268 * Executes a memory operation.
270 * This function first checks that @op is supported and then tries to execute
271 * it.
273 * Return: 0 in case of success, a negative error code otherwise.
275 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
277 unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
278 struct spi_controller *ctlr = mem->spi->controller;
279 struct spi_transfer xfers[4] = { };
280 struct spi_message msg;
281 u8 *tmpbuf;
282 int ret;
284 ret = spi_mem_check_op(op);
285 if (ret)
286 return ret;
288 if (!spi_mem_internal_supports_op(mem, op))
289 return -ENOTSUPP;
291 if (ctlr->mem_ops) {
292 ret = spi_mem_access_start(mem);
293 if (ret)
294 return ret;
296 ret = ctlr->mem_ops->exec_op(mem, op);
298 spi_mem_access_end(mem);
301 * Some controllers only optimize specific paths (typically the
302 * read path) and expect the core to use the regular SPI
303 * interface in other cases.
305 if (!ret || ret != -ENOTSUPP)
306 return ret;
309 tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
310 op->dummy.nbytes;
313 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
314 * we're guaranteed that this buffer is DMA-able, as required by the
315 * SPI layer.
317 tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
318 if (!tmpbuf)
319 return -ENOMEM;
321 spi_message_init(&msg);
323 tmpbuf[0] = op->cmd.opcode;
324 xfers[xferpos].tx_buf = tmpbuf;
325 xfers[xferpos].len = sizeof(op->cmd.opcode);
326 xfers[xferpos].tx_nbits = op->cmd.buswidth;
327 spi_message_add_tail(&xfers[xferpos], &msg);
328 xferpos++;
329 totalxferlen++;
331 if (op->addr.nbytes) {
332 int i;
334 for (i = 0; i < op->addr.nbytes; i++)
335 tmpbuf[i + 1] = op->addr.val >>
336 (8 * (op->addr.nbytes - i - 1));
338 xfers[xferpos].tx_buf = tmpbuf + 1;
339 xfers[xferpos].len = op->addr.nbytes;
340 xfers[xferpos].tx_nbits = op->addr.buswidth;
341 spi_message_add_tail(&xfers[xferpos], &msg);
342 xferpos++;
343 totalxferlen += op->addr.nbytes;
346 if (op->dummy.nbytes) {
347 memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
348 xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
349 xfers[xferpos].len = op->dummy.nbytes;
350 xfers[xferpos].tx_nbits = op->dummy.buswidth;
351 spi_message_add_tail(&xfers[xferpos], &msg);
352 xferpos++;
353 totalxferlen += op->dummy.nbytes;
356 if (op->data.nbytes) {
357 if (op->data.dir == SPI_MEM_DATA_IN) {
358 xfers[xferpos].rx_buf = op->data.buf.in;
359 xfers[xferpos].rx_nbits = op->data.buswidth;
360 } else {
361 xfers[xferpos].tx_buf = op->data.buf.out;
362 xfers[xferpos].tx_nbits = op->data.buswidth;
365 xfers[xferpos].len = op->data.nbytes;
366 spi_message_add_tail(&xfers[xferpos], &msg);
367 xferpos++;
368 totalxferlen += op->data.nbytes;
371 ret = spi_sync(mem->spi, &msg);
373 kfree(tmpbuf);
375 if (ret)
376 return ret;
378 if (msg.actual_length != totalxferlen)
379 return -EIO;
381 return 0;
383 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
386 * spi_mem_get_name() - Return the SPI mem device name to be used by the
387 * upper layer if necessary
388 * @mem: the SPI memory
390 * This function allows SPI mem users to retrieve the SPI mem device name.
391 * It is useful if the upper layer needs to expose a custom name for
392 * compatibility reasons.
394 * Return: a string containing the name of the memory device to be used
395 * by the SPI mem user
397 const char *spi_mem_get_name(struct spi_mem *mem)
399 return mem->name;
401 EXPORT_SYMBOL_GPL(spi_mem_get_name);
404 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
405 * match controller limitations
406 * @mem: the SPI memory
407 * @op: the operation to adjust
409 * Some controllers have FIFO limitations and must split a data transfer
410 * operation into multiple ones, others require a specific alignment for
411 * optimized accesses. This function allows SPI mem drivers to split a single
412 * operation into multiple sub-operations when required.
414 * Return: a negative error code if the controller can't properly adjust @op,
415 * 0 otherwise. Note that @op->data.nbytes will be updated if @op
416 * can't be handled in a single step.
418 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
420 struct spi_controller *ctlr = mem->spi->controller;
421 size_t len;
423 len = sizeof(op->cmd.opcode) + op->addr.nbytes + op->dummy.nbytes;
425 if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
426 return ctlr->mem_ops->adjust_op_size(mem, op);
428 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
429 if (len > spi_max_transfer_size(mem->spi))
430 return -EINVAL;
432 op->data.nbytes = min3((size_t)op->data.nbytes,
433 spi_max_transfer_size(mem->spi),
434 spi_max_message_size(mem->spi) -
435 len);
436 if (!op->data.nbytes)
437 return -EINVAL;
440 return 0;
442 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
444 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
445 u64 offs, size_t len, void *buf)
447 struct spi_mem_op op = desc->info.op_tmpl;
448 int ret;
450 op.addr.val = desc->info.offset + offs;
451 op.data.buf.in = buf;
452 op.data.nbytes = len;
453 ret = spi_mem_adjust_op_size(desc->mem, &op);
454 if (ret)
455 return ret;
457 ret = spi_mem_exec_op(desc->mem, &op);
458 if (ret)
459 return ret;
461 return op.data.nbytes;
464 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
465 u64 offs, size_t len, const void *buf)
467 struct spi_mem_op op = desc->info.op_tmpl;
468 int ret;
470 op.addr.val = desc->info.offset + offs;
471 op.data.buf.out = buf;
472 op.data.nbytes = len;
473 ret = spi_mem_adjust_op_size(desc->mem, &op);
474 if (ret)
475 return ret;
477 ret = spi_mem_exec_op(desc->mem, &op);
478 if (ret)
479 return ret;
481 return op.data.nbytes;
485 * spi_mem_dirmap_create() - Create a direct mapping descriptor
486 * @mem: SPI mem device this direct mapping should be created for
487 * @info: direct mapping information
489 * This function is creating a direct mapping descriptor which can then be used
490 * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
491 * If the SPI controller driver does not support direct mapping, this function
492 * fallback to an implementation using spi_mem_exec_op(), so that the caller
493 * doesn't have to bother implementing a fallback on his own.
495 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
497 struct spi_mem_dirmap_desc *
498 spi_mem_dirmap_create(struct spi_mem *mem,
499 const struct spi_mem_dirmap_info *info)
501 struct spi_controller *ctlr = mem->spi->controller;
502 struct spi_mem_dirmap_desc *desc;
503 int ret = -ENOTSUPP;
505 /* Make sure the number of address cycles is between 1 and 8 bytes. */
506 if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
507 return ERR_PTR(-EINVAL);
509 /* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
510 if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
511 return ERR_PTR(-EINVAL);
513 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
514 if (!desc)
515 return ERR_PTR(-ENOMEM);
517 desc->mem = mem;
518 desc->info = *info;
519 if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
520 ret = ctlr->mem_ops->dirmap_create(desc);
522 if (ret) {
523 desc->nodirmap = true;
524 if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
525 ret = -ENOTSUPP;
526 else
527 ret = 0;
530 if (ret) {
531 kfree(desc);
532 return ERR_PTR(ret);
535 return desc;
537 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
540 * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
541 * @desc: the direct mapping descriptor to destroy
543 * This function destroys a direct mapping descriptor previously created by
544 * spi_mem_dirmap_create().
546 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
548 struct spi_controller *ctlr = desc->mem->spi->controller;
550 if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
551 ctlr->mem_ops->dirmap_destroy(desc);
553 kfree(desc);
555 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
557 static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
559 struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
561 spi_mem_dirmap_destroy(desc);
565 * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
566 * it to a device
567 * @dev: device the dirmap desc will be attached to
568 * @mem: SPI mem device this direct mapping should be created for
569 * @info: direct mapping information
571 * devm_ variant of the spi_mem_dirmap_create() function. See
572 * spi_mem_dirmap_create() for more details.
574 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
576 struct spi_mem_dirmap_desc *
577 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
578 const struct spi_mem_dirmap_info *info)
580 struct spi_mem_dirmap_desc **ptr, *desc;
582 ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
583 GFP_KERNEL);
584 if (!ptr)
585 return ERR_PTR(-ENOMEM);
587 desc = spi_mem_dirmap_create(mem, info);
588 if (IS_ERR(desc)) {
589 devres_free(ptr);
590 } else {
591 *ptr = desc;
592 devres_add(dev, ptr);
595 return desc;
597 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
599 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
601 struct spi_mem_dirmap_desc **ptr = res;
603 if (WARN_ON(!ptr || !*ptr))
604 return 0;
606 return *ptr == data;
610 * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
611 * to a device
612 * @dev: device the dirmap desc is attached to
613 * @desc: the direct mapping descriptor to destroy
615 * devm_ variant of the spi_mem_dirmap_destroy() function. See
616 * spi_mem_dirmap_destroy() for more details.
618 void devm_spi_mem_dirmap_destroy(struct device *dev,
619 struct spi_mem_dirmap_desc *desc)
621 devres_release(dev, devm_spi_mem_dirmap_release,
622 devm_spi_mem_dirmap_match, desc);
624 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
627 * spi_mem_dirmap_read() - Read data through a direct mapping
628 * @desc: direct mapping descriptor
629 * @offs: offset to start reading from. Note that this is not an absolute
630 * offset, but the offset within the direct mapping which already has
631 * its own offset
632 * @len: length in bytes
633 * @buf: destination buffer. This buffer must be DMA-able
635 * This function reads data from a memory device using a direct mapping
636 * previously instantiated with spi_mem_dirmap_create().
638 * Return: the amount of data read from the memory device or a negative error
639 * code. Note that the returned size might be smaller than @len, and the caller
640 * is responsible for calling spi_mem_dirmap_read() again when that happens.
642 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
643 u64 offs, size_t len, void *buf)
645 struct spi_controller *ctlr = desc->mem->spi->controller;
646 ssize_t ret;
648 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
649 return -EINVAL;
651 if (!len)
652 return 0;
654 if (desc->nodirmap) {
655 ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
656 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
657 ret = spi_mem_access_start(desc->mem);
658 if (ret)
659 return ret;
661 ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
663 spi_mem_access_end(desc->mem);
664 } else {
665 ret = -ENOTSUPP;
668 return ret;
670 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
673 * spi_mem_dirmap_write() - Write data through a direct mapping
674 * @desc: direct mapping descriptor
675 * @offs: offset to start writing from. Note that this is not an absolute
676 * offset, but the offset within the direct mapping which already has
677 * its own offset
678 * @len: length in bytes
679 * @buf: source buffer. This buffer must be DMA-able
681 * This function writes data to a memory device using a direct mapping
682 * previously instantiated with spi_mem_dirmap_create().
684 * Return: the amount of data written to the memory device or a negative error
685 * code. Note that the returned size might be smaller than @len, and the caller
686 * is responsible for calling spi_mem_dirmap_write() again when that happens.
688 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
689 u64 offs, size_t len, const void *buf)
691 struct spi_controller *ctlr = desc->mem->spi->controller;
692 ssize_t ret;
694 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
695 return -EINVAL;
697 if (!len)
698 return 0;
700 if (desc->nodirmap) {
701 ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
702 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
703 ret = spi_mem_access_start(desc->mem);
704 if (ret)
705 return ret;
707 ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
709 spi_mem_access_end(desc->mem);
710 } else {
711 ret = -ENOTSUPP;
714 return ret;
716 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
718 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
720 return container_of(drv, struct spi_mem_driver, spidrv.driver);
723 static int spi_mem_probe(struct spi_device *spi)
725 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
726 struct spi_controller *ctlr = spi->controller;
727 struct spi_mem *mem;
729 mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
730 if (!mem)
731 return -ENOMEM;
733 mem->spi = spi;
735 if (ctlr->mem_ops && ctlr->mem_ops->get_name)
736 mem->name = ctlr->mem_ops->get_name(mem);
737 else
738 mem->name = dev_name(&spi->dev);
740 if (IS_ERR_OR_NULL(mem->name))
741 return PTR_ERR(mem->name);
743 spi_set_drvdata(spi, mem);
745 return memdrv->probe(mem);
748 static int spi_mem_remove(struct spi_device *spi)
750 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
751 struct spi_mem *mem = spi_get_drvdata(spi);
753 if (memdrv->remove)
754 return memdrv->remove(mem);
756 return 0;
759 static void spi_mem_shutdown(struct spi_device *spi)
761 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
762 struct spi_mem *mem = spi_get_drvdata(spi);
764 if (memdrv->shutdown)
765 memdrv->shutdown(mem);
769 * spi_mem_driver_register_with_owner() - Register a SPI memory driver
770 * @memdrv: the SPI memory driver to register
771 * @owner: the owner of this driver
773 * Registers a SPI memory driver.
775 * Return: 0 in case of success, a negative error core otherwise.
778 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
779 struct module *owner)
781 memdrv->spidrv.probe = spi_mem_probe;
782 memdrv->spidrv.remove = spi_mem_remove;
783 memdrv->spidrv.shutdown = spi_mem_shutdown;
785 return __spi_register_driver(owner, &memdrv->spidrv);
787 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
790 * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
791 * @memdrv: the SPI memory driver to unregister
793 * Unregisters a SPI memory driver.
795 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
797 spi_unregister_driver(&memdrv->spidrv);
799 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);