1 // SPDX-License-Identifier: GPL-2.0
2 /* ePAPR hypervisor byte channel device driver
4 * Copyright 2009-2011 Freescale Semiconductor, Inc.
6 * Author: Timur Tabi <timur@freescale.com>
8 * This driver support three distinct interfaces, all of which are related to
9 * ePAPR hypervisor byte channels.
11 * 1) An early-console (udbg) driver. This provides early console output
12 * through a byte channel. The byte channel handle must be specified in a
15 * 2) A normal console driver. Output is sent to the byte channel designated
16 * for stdout in the device tree. The console driver is for handling kernel
19 * 3) A tty driver, which is used to handle user-space input and output. The
20 * byte channel used for the console is designated as the default tty.
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
28 #include <linux/poll.h>
29 #include <asm/epapr_hcalls.h>
31 #include <linux/of_irq.h>
32 #include <linux/platform_device.h>
33 #include <linux/cdev.h>
34 #include <linux/console.h>
35 #include <linux/tty.h>
36 #include <linux/tty_flip.h>
37 #include <linux/circ_buf.h>
40 /* The size of the transmit circular buffer. This must be a power of two. */
43 /* Per-byte channel private data */
51 spinlock_t lock
; /* lock for transmit buffer */
52 unsigned char buf
[BUF_SIZE
]; /* transmit circular buffer */
53 unsigned int head
; /* circular buffer head */
54 unsigned int tail
; /* circular buffer tail */
56 int tx_irq_enabled
; /* true == TX interrupt is enabled */
59 /* Array of byte channel objects */
60 static struct ehv_bc_data
*bcs
;
62 /* Byte channel handle for stdout (and stdin), taken from device tree */
63 static unsigned int stdout_bc
;
65 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
66 static unsigned int stdout_irq
;
68 /**************************** SUPPORT FUNCTIONS ****************************/
71 * Enable the transmit interrupt
73 * Unlike a serial device, byte channels have no mechanism for disabling their
74 * own receive or transmit interrupts. To emulate that feature, we toggle
75 * the IRQ in the kernel.
77 * We cannot just blindly call enable_irq() or disable_irq(), because these
78 * calls are reference counted. This means that we cannot call enable_irq()
79 * if interrupts are already enabled. This can happen in two situations:
81 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
82 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
84 * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
86 static void enable_tx_interrupt(struct ehv_bc_data
*bc
)
88 if (!bc
->tx_irq_enabled
) {
89 enable_irq(bc
->tx_irq
);
90 bc
->tx_irq_enabled
= 1;
94 static void disable_tx_interrupt(struct ehv_bc_data
*bc
)
96 if (bc
->tx_irq_enabled
) {
97 disable_irq_nosync(bc
->tx_irq
);
98 bc
->tx_irq_enabled
= 0;
103 * find the byte channel handle to use for the console
105 * The byte channel to be used for the console is specified via a "stdout"
106 * property in the /chosen node.
108 static int find_console_handle(void)
110 struct device_node
*np
= of_stdout
;
111 const uint32_t *iprop
;
113 /* We don't care what the aliased node is actually called. We only
114 * care if it's compatible with "epapr,hv-byte-channel", because that
115 * indicates that it's a byte channel node.
117 if (!np
|| !of_device_is_compatible(np
, "epapr,hv-byte-channel"))
120 stdout_irq
= irq_of_parse_and_map(np
, 0);
121 if (stdout_irq
== NO_IRQ
) {
122 pr_err("ehv-bc: no 'interrupts' property in %pOF node\n", np
);
127 * The 'hv-handle' property contains the handle for this byte channel.
129 iprop
= of_get_property(np
, "hv-handle", NULL
);
131 pr_err("ehv-bc: no 'hv-handle' property in %pOFn node\n",
135 stdout_bc
= be32_to_cpu(*iprop
);
139 static unsigned int local_ev_byte_channel_send(unsigned int handle
,
143 char buffer
[EV_BYTE_CHANNEL_MAX_BYTES
];
144 unsigned int c
= *count
;
146 if (c
< sizeof(buffer
)) {
147 memcpy(buffer
, p
, c
);
148 memset(&buffer
[c
], 0, sizeof(buffer
) - c
);
151 return ev_byte_channel_send(handle
, count
, p
);
154 /*************************** EARLY CONSOLE DRIVER ***************************/
156 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
159 * send a byte to a byte channel, wait if necessary
161 * This function sends a byte to a byte channel, and it waits and
162 * retries if the byte channel is full. It returns if the character
163 * has been sent, or if some error has occurred.
166 static void byte_channel_spin_send(const char data
)
172 ret
= local_ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
,
174 } while (ret
== EV_EAGAIN
);
178 * The udbg subsystem calls this function to display a single character.
179 * We convert CR to a CR/LF.
181 static void ehv_bc_udbg_putc(char c
)
184 byte_channel_spin_send('\r');
186 byte_channel_spin_send(c
);
190 * early console initialization
192 * PowerPC kernels support an early printk console, also known as udbg.
193 * This function must be called via the ppc_md.init_early function pointer.
194 * At this point, the device tree has been unflattened, so we can obtain the
195 * byte channel handle for stdout.
197 * We only support displaying of characters (putc). We do not support
200 void __init
udbg_init_ehv_bc(void)
202 unsigned int rx_count
, tx_count
;
205 /* Verify the byte channel handle */
206 ret
= ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
,
207 &rx_count
, &tx_count
);
211 udbg_putc
= ehv_bc_udbg_putc
;
212 register_early_udbg_console();
214 udbg_printf("ehv-bc: early console using byte channel handle %u\n",
215 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
);
220 /****************************** CONSOLE DRIVER ******************************/
222 static struct tty_driver
*ehv_bc_driver
;
225 * Byte channel console sending worker function.
227 * For consoles, if the output buffer is full, we should just spin until it
230 static int ehv_bc_console_byte_channel_send(unsigned int handle
, const char *s
,
237 len
= min_t(unsigned int, count
, EV_BYTE_CHANNEL_MAX_BYTES
);
239 ret
= local_ev_byte_channel_send(handle
, &len
, s
);
240 } while (ret
== EV_EAGAIN
);
249 * write a string to the console
251 * This function gets called to write a string from the kernel, typically from
252 * a printk(). This function spins until all data is written.
254 * We copy the data to a temporary buffer because we need to insert a \r in
255 * front of every \n. It's more efficient to copy the data to the buffer than
256 * it is to make multiple hcalls for each character or each newline.
258 static void ehv_bc_console_write(struct console
*co
, const char *s
,
261 char s2
[EV_BYTE_CHANNEL_MAX_BYTES
];
262 unsigned int i
, j
= 0;
265 for (i
= 0; i
< count
; i
++) {
272 if (j
>= (EV_BYTE_CHANNEL_MAX_BYTES
- 1)) {
273 if (ehv_bc_console_byte_channel_send(stdout_bc
, s2
, j
))
280 ehv_bc_console_byte_channel_send(stdout_bc
, s2
, j
);
284 * When /dev/console is opened, the kernel iterates the console list looking
285 * for one with ->device and then calls that method. On success, it expects
286 * the passed-in int* to contain the minor number to use.
288 static struct tty_driver
*ehv_bc_console_device(struct console
*co
, int *index
)
292 return ehv_bc_driver
;
295 static struct console ehv_bc_console
= {
297 .write
= ehv_bc_console_write
,
298 .device
= ehv_bc_console_device
,
299 .flags
= CON_PRINTBUFFER
| CON_ENABLED
,
303 * Console initialization
305 * This is the first function that is called after the device tree is
306 * available, so here is where we determine the byte channel handle and IRQ for
307 * stdout/stdin, even though that information is used by the tty and character
310 static int __init
ehv_bc_console_init(void)
312 if (!find_console_handle()) {
313 pr_debug("ehv-bc: stdout is not a byte channel\n");
317 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
318 /* Print a friendly warning if the user chose the wrong byte channel
321 if (stdout_bc
!= CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
)
322 pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n",
323 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
);
326 /* add_preferred_console() must be called before register_console(),
327 otherwise it won't work. However, we don't want to enumerate all the
328 byte channels here, either, since we only care about one. */
330 add_preferred_console(ehv_bc_console
.name
, ehv_bc_console
.index
, NULL
);
331 register_console(&ehv_bc_console
);
333 pr_info("ehv-bc: registered console driver for byte channel %u\n",
338 console_initcall(ehv_bc_console_init
);
340 /******************************** TTY DRIVER ********************************/
343 * byte channel receive interrupt handler
345 * This ISR is called whenever data is available on a byte channel.
347 static irqreturn_t
ehv_bc_tty_rx_isr(int irq
, void *data
)
349 struct ehv_bc_data
*bc
= data
;
350 unsigned int rx_count
, tx_count
, len
;
352 char buffer
[EV_BYTE_CHANNEL_MAX_BYTES
];
355 /* Find out how much data needs to be read, and then ask the TTY layer
356 * if it can handle that much. We want to ensure that every byte we
357 * read from the byte channel will be accepted by the TTY layer.
359 ev_byte_channel_poll(bc
->handle
, &rx_count
, &tx_count
);
360 count
= tty_buffer_request_room(&bc
->port
, rx_count
);
362 /* 'count' is the maximum amount of data the TTY layer can accept at
363 * this time. However, during testing, I was never able to get 'count'
364 * to be less than 'rx_count'. I'm not sure whether I'm calling it
369 len
= min_t(unsigned int, count
, sizeof(buffer
));
371 /* Read some data from the byte channel. This function will
372 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
374 ev_byte_channel_receive(bc
->handle
, &len
, buffer
);
376 /* 'len' is now the amount of data that's been received. 'len'
377 * can't be zero, and most likely it's equal to one.
380 /* Pass the received data to the tty layer. */
381 ret
= tty_insert_flip_string(&bc
->port
, buffer
, len
);
383 /* 'ret' is the number of bytes that the TTY layer accepted.
384 * If it's not equal to 'len', then it means the buffer is
385 * full, which should never happen. If it does happen, we can
386 * exit gracefully, but we drop the last 'len - ret' characters
387 * that we read from the byte channel.
395 /* Tell the tty layer that we're done. */
396 tty_flip_buffer_push(&bc
->port
);
402 * dequeue the transmit buffer to the hypervisor
404 * This function, which can be called in interrupt context, dequeues as much
405 * data as possible from the transmit buffer to the byte channel.
407 static void ehv_bc_tx_dequeue(struct ehv_bc_data
*bc
)
410 unsigned int len
, ret
;
414 spin_lock_irqsave(&bc
->lock
, flags
);
415 len
= min_t(unsigned int,
416 CIRC_CNT_TO_END(bc
->head
, bc
->tail
, BUF_SIZE
),
417 EV_BYTE_CHANNEL_MAX_BYTES
);
419 ret
= local_ev_byte_channel_send(bc
->handle
, &len
, bc
->buf
+ bc
->tail
);
421 /* 'len' is valid only if the return code is 0 or EV_EAGAIN */
422 if (!ret
|| (ret
== EV_EAGAIN
))
423 bc
->tail
= (bc
->tail
+ len
) & (BUF_SIZE
- 1);
425 count
= CIRC_CNT(bc
->head
, bc
->tail
, BUF_SIZE
);
426 spin_unlock_irqrestore(&bc
->lock
, flags
);
427 } while (count
&& !ret
);
429 spin_lock_irqsave(&bc
->lock
, flags
);
430 if (CIRC_CNT(bc
->head
, bc
->tail
, BUF_SIZE
))
432 * If we haven't emptied the buffer, then enable the TX IRQ.
433 * We'll get an interrupt when there's more room in the
434 * hypervisor's output buffer.
436 enable_tx_interrupt(bc
);
438 disable_tx_interrupt(bc
);
439 spin_unlock_irqrestore(&bc
->lock
, flags
);
443 * byte channel transmit interrupt handler
445 * This ISR is called whenever space becomes available for transmitting
446 * characters on a byte channel.
448 static irqreturn_t
ehv_bc_tty_tx_isr(int irq
, void *data
)
450 struct ehv_bc_data
*bc
= data
;
452 ehv_bc_tx_dequeue(bc
);
453 tty_port_tty_wakeup(&bc
->port
);
459 * This function is called when the tty layer has data for us send. We store
460 * the data first in a circular buffer, and then dequeue as much of that data
463 * We don't need to worry about whether there is enough room in the buffer for
464 * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty
465 * layer how much data it can safely send to us. We guarantee that
466 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
469 static int ehv_bc_tty_write(struct tty_struct
*ttys
, const unsigned char *s
,
472 struct ehv_bc_data
*bc
= ttys
->driver_data
;
475 unsigned int written
= 0;
478 spin_lock_irqsave(&bc
->lock
, flags
);
479 len
= CIRC_SPACE_TO_END(bc
->head
, bc
->tail
, BUF_SIZE
);
483 memcpy(bc
->buf
+ bc
->head
, s
, len
);
484 bc
->head
= (bc
->head
+ len
) & (BUF_SIZE
- 1);
486 spin_unlock_irqrestore(&bc
->lock
, flags
);
495 ehv_bc_tx_dequeue(bc
);
501 * This function can be called multiple times for a given tty_struct, which is
502 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
504 * The tty layer will still call this function even if the device was not
505 * registered (i.e. tty_register_device() was not called). This happens
506 * because tty_register_device() is optional and some legacy drivers don't
507 * use it. So we need to check for that.
509 static int ehv_bc_tty_open(struct tty_struct
*ttys
, struct file
*filp
)
511 struct ehv_bc_data
*bc
= &bcs
[ttys
->index
];
516 return tty_port_open(&bc
->port
, ttys
, filp
);
520 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
521 * still call this function to close the tty device. So we can't assume that
522 * the tty port has been initialized.
524 static void ehv_bc_tty_close(struct tty_struct
*ttys
, struct file
*filp
)
526 struct ehv_bc_data
*bc
= &bcs
[ttys
->index
];
529 tty_port_close(&bc
->port
, ttys
, filp
);
533 * Return the amount of space in the output buffer
535 * This is actually a contract between the driver and the tty layer outlining
536 * how much write room the driver can guarantee will be sent OR BUFFERED. This
537 * driver MUST honor the return value.
539 static int ehv_bc_tty_write_room(struct tty_struct
*ttys
)
541 struct ehv_bc_data
*bc
= ttys
->driver_data
;
545 spin_lock_irqsave(&bc
->lock
, flags
);
546 count
= CIRC_SPACE(bc
->head
, bc
->tail
, BUF_SIZE
);
547 spin_unlock_irqrestore(&bc
->lock
, flags
);
553 * Stop sending data to the tty layer
555 * This function is called when the tty layer's input buffers are getting full,
556 * so the driver should stop sending it data. The easiest way to do this is to
557 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
560 * The hypervisor will continue to queue up any incoming data. If there is any
561 * data in the queue when the RX interrupt is enabled, we'll immediately get an
564 static void ehv_bc_tty_throttle(struct tty_struct
*ttys
)
566 struct ehv_bc_data
*bc
= ttys
->driver_data
;
568 disable_irq(bc
->rx_irq
);
572 * Resume sending data to the tty layer
574 * This function is called after previously calling ehv_bc_tty_throttle(). The
575 * tty layer's input buffers now have more room, so the driver can resume
578 static void ehv_bc_tty_unthrottle(struct tty_struct
*ttys
)
580 struct ehv_bc_data
*bc
= ttys
->driver_data
;
582 /* If there is any data in the queue when the RX interrupt is enabled,
583 * we'll immediately get an RX interrupt.
585 enable_irq(bc
->rx_irq
);
588 static void ehv_bc_tty_hangup(struct tty_struct
*ttys
)
590 struct ehv_bc_data
*bc
= ttys
->driver_data
;
592 ehv_bc_tx_dequeue(bc
);
593 tty_port_hangup(&bc
->port
);
597 * TTY driver operations
599 * If we could ask the hypervisor how much data is still in the TX buffer, or
600 * at least how big the TX buffers are, then we could implement the
601 * .wait_until_sent and .chars_in_buffer functions.
603 static const struct tty_operations ehv_bc_ops
= {
604 .open
= ehv_bc_tty_open
,
605 .close
= ehv_bc_tty_close
,
606 .write
= ehv_bc_tty_write
,
607 .write_room
= ehv_bc_tty_write_room
,
608 .throttle
= ehv_bc_tty_throttle
,
609 .unthrottle
= ehv_bc_tty_unthrottle
,
610 .hangup
= ehv_bc_tty_hangup
,
614 * initialize the TTY port
616 * This function will only be called once, no matter how many times
617 * ehv_bc_tty_open() is called. That's why we register the ISR here, and also
618 * why we initialize tty_struct-related variables here.
620 static int ehv_bc_tty_port_activate(struct tty_port
*port
,
621 struct tty_struct
*ttys
)
623 struct ehv_bc_data
*bc
= container_of(port
, struct ehv_bc_data
, port
);
626 ttys
->driver_data
= bc
;
628 ret
= request_irq(bc
->rx_irq
, ehv_bc_tty_rx_isr
, 0, "ehv-bc", bc
);
630 dev_err(bc
->dev
, "could not request rx irq %u (ret=%i)\n",
635 /* request_irq also enables the IRQ */
636 bc
->tx_irq_enabled
= 1;
638 ret
= request_irq(bc
->tx_irq
, ehv_bc_tty_tx_isr
, 0, "ehv-bc", bc
);
640 dev_err(bc
->dev
, "could not request tx irq %u (ret=%i)\n",
642 free_irq(bc
->rx_irq
, bc
);
646 /* The TX IRQ is enabled only when we can't write all the data to the
647 * byte channel at once, so by default it's disabled.
649 disable_tx_interrupt(bc
);
654 static void ehv_bc_tty_port_shutdown(struct tty_port
*port
)
656 struct ehv_bc_data
*bc
= container_of(port
, struct ehv_bc_data
, port
);
658 free_irq(bc
->tx_irq
, bc
);
659 free_irq(bc
->rx_irq
, bc
);
662 static const struct tty_port_operations ehv_bc_tty_port_ops
= {
663 .activate
= ehv_bc_tty_port_activate
,
664 .shutdown
= ehv_bc_tty_port_shutdown
,
667 static int ehv_bc_tty_probe(struct platform_device
*pdev
)
669 struct device_node
*np
= pdev
->dev
.of_node
;
670 struct ehv_bc_data
*bc
;
671 const uint32_t *iprop
;
674 static unsigned int index
= 1;
677 iprop
= of_get_property(np
, "hv-handle", NULL
);
679 dev_err(&pdev
->dev
, "no 'hv-handle' property in %pOFn node\n",
684 /* We already told the console layer that the index for the console
685 * device is zero, so we need to make sure that we use that index when
686 * we probe the console byte channel node.
688 handle
= be32_to_cpu(*iprop
);
689 i
= (handle
== stdout_bc
) ? 0 : index
++;
695 spin_lock_init(&bc
->lock
);
697 bc
->rx_irq
= irq_of_parse_and_map(np
, 0);
698 bc
->tx_irq
= irq_of_parse_and_map(np
, 1);
699 if ((bc
->rx_irq
== NO_IRQ
) || (bc
->tx_irq
== NO_IRQ
)) {
700 dev_err(&pdev
->dev
, "no 'interrupts' property in %pOFn node\n",
706 tty_port_init(&bc
->port
);
707 bc
->port
.ops
= &ehv_bc_tty_port_ops
;
709 bc
->dev
= tty_port_register_device(&bc
->port
, ehv_bc_driver
, i
,
711 if (IS_ERR(bc
->dev
)) {
712 ret
= PTR_ERR(bc
->dev
);
713 dev_err(&pdev
->dev
, "could not register tty (ret=%i)\n", ret
);
717 dev_set_drvdata(&pdev
->dev
, bc
);
719 dev_info(&pdev
->dev
, "registered /dev/%s%u for byte channel %u\n",
720 ehv_bc_driver
->name
, i
, bc
->handle
);
725 tty_port_destroy(&bc
->port
);
726 irq_dispose_mapping(bc
->tx_irq
);
727 irq_dispose_mapping(bc
->rx_irq
);
729 memset(bc
, 0, sizeof(struct ehv_bc_data
));
733 static const struct of_device_id ehv_bc_tty_of_ids
[] = {
734 { .compatible
= "epapr,hv-byte-channel" },
738 static struct platform_driver ehv_bc_tty_driver
= {
741 .of_match_table
= ehv_bc_tty_of_ids
,
742 .suppress_bind_attrs
= true,
744 .probe
= ehv_bc_tty_probe
,
748 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
750 * This function is called when this driver is loaded.
752 static int __init
ehv_bc_init(void)
754 struct device_node
*np
;
755 unsigned int count
= 0; /* Number of elements in bcs[] */
758 pr_info("ePAPR hypervisor byte channel driver\n");
760 /* Count the number of byte channels */
761 for_each_compatible_node(np
, NULL
, "epapr,hv-byte-channel")
767 /* The array index of an element in bcs[] is the same as the tty index
768 * for that element. If you know the address of an element in the
769 * array, then you can use pointer math (e.g. "bc - bcs") to get its
772 bcs
= kcalloc(count
, sizeof(struct ehv_bc_data
), GFP_KERNEL
);
776 ehv_bc_driver
= alloc_tty_driver(count
);
777 if (!ehv_bc_driver
) {
782 ehv_bc_driver
->driver_name
= "ehv-bc";
783 ehv_bc_driver
->name
= ehv_bc_console
.name
;
784 ehv_bc_driver
->type
= TTY_DRIVER_TYPE_CONSOLE
;
785 ehv_bc_driver
->subtype
= SYSTEM_TYPE_CONSOLE
;
786 ehv_bc_driver
->init_termios
= tty_std_termios
;
787 ehv_bc_driver
->flags
= TTY_DRIVER_REAL_RAW
| TTY_DRIVER_DYNAMIC_DEV
;
788 tty_set_operations(ehv_bc_driver
, &ehv_bc_ops
);
790 ret
= tty_register_driver(ehv_bc_driver
);
792 pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret
);
793 goto err_put_tty_driver
;
796 ret
= platform_driver_register(&ehv_bc_tty_driver
);
798 pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
800 goto err_deregister_tty_driver
;
805 err_deregister_tty_driver
:
806 tty_unregister_driver(ehv_bc_driver
);
808 put_tty_driver(ehv_bc_driver
);
814 device_initcall(ehv_bc_init
);