net: DCB: Validate DCB_ATTR_DCB_BUFFER argument
[linux/fpc-iii.git] / drivers / usb / storage / alauda.c
blobddab2cd3d2e7522a1812541b6eb79f4fb81235a3
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Driver for Alauda-based card readers
5 * Current development and maintenance by:
6 * (c) 2005 Daniel Drake <dsd@gentoo.org>
8 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
10 * Alauda implements a vendor-specific command set to access two media reader
11 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
12 * which are accepted by these devices.
14 * The driver was developed through reverse-engineering, with the help of the
15 * sddr09 driver which has many similarities, and with some help from the
16 * (very old) vendor-supplied GPL sma03 driver.
18 * For protocol info, see http://alauda.sourceforge.net
21 #include <linux/module.h>
22 #include <linux/slab.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_device.h>
28 #include "usb.h"
29 #include "transport.h"
30 #include "protocol.h"
31 #include "debug.h"
32 #include "scsiglue.h"
34 #define DRV_NAME "ums-alauda"
36 MODULE_DESCRIPTION("Driver for Alauda-based card readers");
37 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
38 MODULE_LICENSE("GPL");
39 MODULE_IMPORT_NS(USB_STORAGE);
42 * Status bytes
44 #define ALAUDA_STATUS_ERROR 0x01
45 #define ALAUDA_STATUS_READY 0x40
48 * Control opcodes (for request field)
50 #define ALAUDA_GET_XD_MEDIA_STATUS 0x08
51 #define ALAUDA_GET_SM_MEDIA_STATUS 0x98
52 #define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a
53 #define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a
54 #define ALAUDA_GET_XD_MEDIA_SIG 0x86
55 #define ALAUDA_GET_SM_MEDIA_SIG 0x96
58 * Bulk command identity (byte 0)
60 #define ALAUDA_BULK_CMD 0x40
63 * Bulk opcodes (byte 1)
65 #define ALAUDA_BULK_GET_REDU_DATA 0x85
66 #define ALAUDA_BULK_READ_BLOCK 0x94
67 #define ALAUDA_BULK_ERASE_BLOCK 0xa3
68 #define ALAUDA_BULK_WRITE_BLOCK 0xb4
69 #define ALAUDA_BULK_GET_STATUS2 0xb7
70 #define ALAUDA_BULK_RESET_MEDIA 0xe0
73 * Port to operate on (byte 8)
75 #define ALAUDA_PORT_XD 0x00
76 #define ALAUDA_PORT_SM 0x01
79 * LBA and PBA are unsigned ints. Special values.
81 #define UNDEF 0xffff
82 #define SPARE 0xfffe
83 #define UNUSABLE 0xfffd
85 struct alauda_media_info {
86 unsigned long capacity; /* total media size in bytes */
87 unsigned int pagesize; /* page size in bytes */
88 unsigned int blocksize; /* number of pages per block */
89 unsigned int uzonesize; /* number of usable blocks per zone */
90 unsigned int zonesize; /* number of blocks per zone */
91 unsigned int blockmask; /* mask to get page from address */
93 unsigned char pageshift;
94 unsigned char blockshift;
95 unsigned char zoneshift;
97 u16 **lba_to_pba; /* logical to physical block map */
98 u16 **pba_to_lba; /* physical to logical block map */
101 struct alauda_info {
102 struct alauda_media_info port[2];
103 int wr_ep; /* endpoint to write data out of */
105 unsigned char sense_key;
106 unsigned long sense_asc; /* additional sense code */
107 unsigned long sense_ascq; /* additional sense code qualifier */
110 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
111 #define LSB_of(s) ((s)&0xFF)
112 #define MSB_of(s) ((s)>>8)
114 #define MEDIA_PORT(us) us->srb->device->lun
115 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
117 #define PBA_LO(pba) ((pba & 0xF) << 5)
118 #define PBA_HI(pba) (pba >> 3)
119 #define PBA_ZONE(pba) (pba >> 11)
121 static int init_alauda(struct us_data *us);
125 * The table of devices
127 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
128 vendorName, productName, useProtocol, useTransport, \
129 initFunction, flags) \
130 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
131 .driver_info = (flags) }
133 static struct usb_device_id alauda_usb_ids[] = {
134 # include "unusual_alauda.h"
135 { } /* Terminating entry */
137 MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
139 #undef UNUSUAL_DEV
142 * The flags table
144 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
145 vendor_name, product_name, use_protocol, use_transport, \
146 init_function, Flags) \
148 .vendorName = vendor_name, \
149 .productName = product_name, \
150 .useProtocol = use_protocol, \
151 .useTransport = use_transport, \
152 .initFunction = init_function, \
155 static struct us_unusual_dev alauda_unusual_dev_list[] = {
156 # include "unusual_alauda.h"
157 { } /* Terminating entry */
160 #undef UNUSUAL_DEV
164 * Media handling
167 struct alauda_card_info {
168 unsigned char id; /* id byte */
169 unsigned char chipshift; /* 1<<cs bytes total capacity */
170 unsigned char pageshift; /* 1<<ps bytes in a page */
171 unsigned char blockshift; /* 1<<bs pages per block */
172 unsigned char zoneshift; /* 1<<zs blocks per zone */
175 static struct alauda_card_info alauda_card_ids[] = {
176 /* NAND flash */
177 { 0x6e, 20, 8, 4, 8}, /* 1 MB */
178 { 0xe8, 20, 8, 4, 8}, /* 1 MB */
179 { 0xec, 20, 8, 4, 8}, /* 1 MB */
180 { 0x64, 21, 8, 4, 9}, /* 2 MB */
181 { 0xea, 21, 8, 4, 9}, /* 2 MB */
182 { 0x6b, 22, 9, 4, 9}, /* 4 MB */
183 { 0xe3, 22, 9, 4, 9}, /* 4 MB */
184 { 0xe5, 22, 9, 4, 9}, /* 4 MB */
185 { 0xe6, 23, 9, 4, 10}, /* 8 MB */
186 { 0x73, 24, 9, 5, 10}, /* 16 MB */
187 { 0x75, 25, 9, 5, 10}, /* 32 MB */
188 { 0x76, 26, 9, 5, 10}, /* 64 MB */
189 { 0x79, 27, 9, 5, 10}, /* 128 MB */
190 { 0x71, 28, 9, 5, 10}, /* 256 MB */
192 /* MASK ROM */
193 { 0x5d, 21, 9, 4, 8}, /* 2 MB */
194 { 0xd5, 22, 9, 4, 9}, /* 4 MB */
195 { 0xd6, 23, 9, 4, 10}, /* 8 MB */
196 { 0x57, 24, 9, 4, 11}, /* 16 MB */
197 { 0x58, 25, 9, 4, 12}, /* 32 MB */
198 { 0,}
201 static struct alauda_card_info *alauda_card_find_id(unsigned char id)
203 int i;
205 for (i = 0; alauda_card_ids[i].id != 0; i++)
206 if (alauda_card_ids[i].id == id)
207 return &(alauda_card_ids[i]);
208 return NULL;
212 * ECC computation.
215 static unsigned char parity[256];
216 static unsigned char ecc2[256];
218 static void nand_init_ecc(void)
220 int i, j, a;
222 parity[0] = 0;
223 for (i = 1; i < 256; i++)
224 parity[i] = (parity[i&(i-1)] ^ 1);
226 for (i = 0; i < 256; i++) {
227 a = 0;
228 for (j = 0; j < 8; j++) {
229 if (i & (1<<j)) {
230 if ((j & 1) == 0)
231 a ^= 0x04;
232 if ((j & 2) == 0)
233 a ^= 0x10;
234 if ((j & 4) == 0)
235 a ^= 0x40;
238 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
242 /* compute 3-byte ecc on 256 bytes */
243 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
245 int i, j, a;
246 unsigned char par = 0, bit, bits[8] = {0};
248 /* collect 16 checksum bits */
249 for (i = 0; i < 256; i++) {
250 par ^= data[i];
251 bit = parity[data[i]];
252 for (j = 0; j < 8; j++)
253 if ((i & (1<<j)) == 0)
254 bits[j] ^= bit;
257 /* put 4+4+4 = 12 bits in the ecc */
258 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
259 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
261 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
262 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
264 ecc[2] = ecc2[par];
267 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
269 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
272 static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
274 memcpy(data, ecc, 3);
278 * Alauda driver
282 * Forget our PBA <---> LBA mappings for a particular port
284 static void alauda_free_maps (struct alauda_media_info *media_info)
286 unsigned int shift = media_info->zoneshift
287 + media_info->blockshift + media_info->pageshift;
288 unsigned int num_zones = media_info->capacity >> shift;
289 unsigned int i;
291 if (media_info->lba_to_pba != NULL)
292 for (i = 0; i < num_zones; i++) {
293 kfree(media_info->lba_to_pba[i]);
294 media_info->lba_to_pba[i] = NULL;
297 if (media_info->pba_to_lba != NULL)
298 for (i = 0; i < num_zones; i++) {
299 kfree(media_info->pba_to_lba[i]);
300 media_info->pba_to_lba[i] = NULL;
305 * Returns 2 bytes of status data
306 * The first byte describes media status, and second byte describes door status
308 static int alauda_get_media_status(struct us_data *us, unsigned char *data)
310 int rc;
311 unsigned char command;
313 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
314 command = ALAUDA_GET_XD_MEDIA_STATUS;
315 else
316 command = ALAUDA_GET_SM_MEDIA_STATUS;
318 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
319 command, 0xc0, 0, 1, data, 2);
321 usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
323 return rc;
327 * Clears the "media was changed" bit so that we know when it changes again
328 * in the future.
330 static int alauda_ack_media(struct us_data *us)
332 unsigned char command;
334 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
335 command = ALAUDA_ACK_XD_MEDIA_CHANGE;
336 else
337 command = ALAUDA_ACK_SM_MEDIA_CHANGE;
339 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
340 command, 0x40, 0, 1, NULL, 0);
344 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
345 * and some other details.
347 static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
349 unsigned char command;
351 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
352 command = ALAUDA_GET_XD_MEDIA_SIG;
353 else
354 command = ALAUDA_GET_SM_MEDIA_SIG;
356 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
357 command, 0xc0, 0, 0, data, 4);
361 * Resets the media status (but not the whole device?)
363 static int alauda_reset_media(struct us_data *us)
365 unsigned char *command = us->iobuf;
367 memset(command, 0, 9);
368 command[0] = ALAUDA_BULK_CMD;
369 command[1] = ALAUDA_BULK_RESET_MEDIA;
370 command[8] = MEDIA_PORT(us);
372 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
373 command, 9, NULL);
377 * Examines the media and deduces capacity, etc.
379 static int alauda_init_media(struct us_data *us)
381 unsigned char *data = us->iobuf;
382 int ready = 0;
383 struct alauda_card_info *media_info;
384 unsigned int num_zones;
386 while (ready == 0) {
387 msleep(20);
389 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
390 return USB_STOR_TRANSPORT_ERROR;
392 if (data[0] & 0x10)
393 ready = 1;
396 usb_stor_dbg(us, "We are ready for action!\n");
398 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
399 return USB_STOR_TRANSPORT_ERROR;
401 msleep(10);
403 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
404 return USB_STOR_TRANSPORT_ERROR;
406 if (data[0] != 0x14) {
407 usb_stor_dbg(us, "Media not ready after ack\n");
408 return USB_STOR_TRANSPORT_ERROR;
411 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
412 return USB_STOR_TRANSPORT_ERROR;
414 usb_stor_dbg(us, "Media signature: %4ph\n", data);
415 media_info = alauda_card_find_id(data[1]);
416 if (media_info == NULL) {
417 pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
418 data);
419 return USB_STOR_TRANSPORT_ERROR;
422 MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
423 usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
424 MEDIA_INFO(us).capacity >> 20);
426 MEDIA_INFO(us).pageshift = media_info->pageshift;
427 MEDIA_INFO(us).blockshift = media_info->blockshift;
428 MEDIA_INFO(us).zoneshift = media_info->zoneshift;
430 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
431 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
432 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
434 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
435 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
437 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
438 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
439 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
440 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
442 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
443 return USB_STOR_TRANSPORT_ERROR;
445 return USB_STOR_TRANSPORT_GOOD;
449 * Examines the media status and does the right thing when the media has gone,
450 * appeared, or changed.
452 static int alauda_check_media(struct us_data *us)
454 struct alauda_info *info = (struct alauda_info *) us->extra;
455 unsigned char status[2];
456 int rc;
458 rc = alauda_get_media_status(us, status);
460 /* Check for no media or door open */
461 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
462 || ((status[1] & 0x01) == 0)) {
463 usb_stor_dbg(us, "No media, or door open\n");
464 alauda_free_maps(&MEDIA_INFO(us));
465 info->sense_key = 0x02;
466 info->sense_asc = 0x3A;
467 info->sense_ascq = 0x00;
468 return USB_STOR_TRANSPORT_FAILED;
471 /* Check for media change */
472 if (status[0] & 0x08) {
473 usb_stor_dbg(us, "Media change detected\n");
474 alauda_free_maps(&MEDIA_INFO(us));
475 alauda_init_media(us);
477 info->sense_key = UNIT_ATTENTION;
478 info->sense_asc = 0x28;
479 info->sense_ascq = 0x00;
480 return USB_STOR_TRANSPORT_FAILED;
483 return USB_STOR_TRANSPORT_GOOD;
487 * Checks the status from the 2nd status register
488 * Returns 3 bytes of status data, only the first is known
490 static int alauda_check_status2(struct us_data *us)
492 int rc;
493 unsigned char command[] = {
494 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
495 0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
497 unsigned char data[3];
499 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
500 command, 9, NULL);
501 if (rc != USB_STOR_XFER_GOOD)
502 return rc;
504 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
505 data, 3, NULL);
506 if (rc != USB_STOR_XFER_GOOD)
507 return rc;
509 usb_stor_dbg(us, "%3ph\n", data);
510 if (data[0] & ALAUDA_STATUS_ERROR)
511 return USB_STOR_XFER_ERROR;
513 return USB_STOR_XFER_GOOD;
517 * Gets the redundancy data for the first page of a PBA
518 * Returns 16 bytes.
520 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
522 int rc;
523 unsigned char command[] = {
524 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
525 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
528 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
529 command, 9, NULL);
530 if (rc != USB_STOR_XFER_GOOD)
531 return rc;
533 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
534 data, 16, NULL);
538 * Finds the first unused PBA in a zone
539 * Returns the absolute PBA of an unused PBA, or 0 if none found.
541 static u16 alauda_find_unused_pba(struct alauda_media_info *info,
542 unsigned int zone)
544 u16 *pba_to_lba = info->pba_to_lba[zone];
545 unsigned int i;
547 for (i = 0; i < info->zonesize; i++)
548 if (pba_to_lba[i] == UNDEF)
549 return (zone << info->zoneshift) + i;
551 return 0;
555 * Reads the redundancy data for all PBA's in a zone
556 * Produces lba <--> pba mappings
558 static int alauda_read_map(struct us_data *us, unsigned int zone)
560 unsigned char *data = us->iobuf;
561 int result;
562 int i, j;
563 unsigned int zonesize = MEDIA_INFO(us).zonesize;
564 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
565 unsigned int lba_offset, lba_real, blocknum;
566 unsigned int zone_base_lba = zone * uzonesize;
567 unsigned int zone_base_pba = zone * zonesize;
568 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
569 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
570 if (lba_to_pba == NULL || pba_to_lba == NULL) {
571 result = USB_STOR_TRANSPORT_ERROR;
572 goto error;
575 usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
577 /* 1024 PBA's per zone */
578 for (i = 0; i < zonesize; i++)
579 lba_to_pba[i] = pba_to_lba[i] = UNDEF;
581 for (i = 0; i < zonesize; i++) {
582 blocknum = zone_base_pba + i;
584 result = alauda_get_redu_data(us, blocknum, data);
585 if (result != USB_STOR_XFER_GOOD) {
586 result = USB_STOR_TRANSPORT_ERROR;
587 goto error;
590 /* special PBAs have control field 0^16 */
591 for (j = 0; j < 16; j++)
592 if (data[j] != 0)
593 goto nonz;
594 pba_to_lba[i] = UNUSABLE;
595 usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
596 continue;
598 nonz:
599 /* unwritten PBAs have control field FF^16 */
600 for (j = 0; j < 16; j++)
601 if (data[j] != 0xff)
602 goto nonff;
603 continue;
605 nonff:
606 /* normal PBAs start with six FFs */
607 if (j < 6) {
608 usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
609 blocknum,
610 data[0], data[1], data[2], data[3],
611 data[4], data[5]);
612 pba_to_lba[i] = UNUSABLE;
613 continue;
616 if ((data[6] >> 4) != 0x01) {
617 usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
618 blocknum, data[6], data[7],
619 data[11], data[12]);
620 pba_to_lba[i] = UNUSABLE;
621 continue;
624 /* check even parity */
625 if (parity[data[6] ^ data[7]]) {
626 printk(KERN_WARNING
627 "alauda_read_map: Bad parity in LBA for block %d"
628 " (%02X %02X)\n", i, data[6], data[7]);
629 pba_to_lba[i] = UNUSABLE;
630 continue;
633 lba_offset = short_pack(data[7], data[6]);
634 lba_offset = (lba_offset & 0x07FF) >> 1;
635 lba_real = lba_offset + zone_base_lba;
638 * Every 1024 physical blocks ("zone"), the LBA numbers
639 * go back to zero, but are within a higher block of LBA's.
640 * Also, there is a maximum of 1000 LBA's per zone.
641 * In other words, in PBA 1024-2047 you will find LBA 0-999
642 * which are really LBA 1000-1999. This allows for 24 bad
643 * or special physical blocks per zone.
646 if (lba_offset >= uzonesize) {
647 printk(KERN_WARNING
648 "alauda_read_map: Bad low LBA %d for block %d\n",
649 lba_real, blocknum);
650 continue;
653 if (lba_to_pba[lba_offset] != UNDEF) {
654 printk(KERN_WARNING
655 "alauda_read_map: "
656 "LBA %d seen for PBA %d and %d\n",
657 lba_real, lba_to_pba[lba_offset], blocknum);
658 continue;
661 pba_to_lba[i] = lba_real;
662 lba_to_pba[lba_offset] = blocknum;
663 continue;
666 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
667 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
668 result = 0;
669 goto out;
671 error:
672 kfree(lba_to_pba);
673 kfree(pba_to_lba);
674 out:
675 return result;
679 * Checks to see whether we have already mapped a certain zone
680 * If we haven't, the map is generated
682 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
684 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
685 || MEDIA_INFO(us).pba_to_lba[zone] == NULL)
686 alauda_read_map(us, zone);
690 * Erases an entire block
692 static int alauda_erase_block(struct us_data *us, u16 pba)
694 int rc;
695 unsigned char command[] = {
696 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
697 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
699 unsigned char buf[2];
701 usb_stor_dbg(us, "Erasing PBA %d\n", pba);
703 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
704 command, 9, NULL);
705 if (rc != USB_STOR_XFER_GOOD)
706 return rc;
708 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
709 buf, 2, NULL);
710 if (rc != USB_STOR_XFER_GOOD)
711 return rc;
713 usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
714 return rc;
718 * Reads data from a certain offset page inside a PBA, including interleaved
719 * redundancy data. Returns (pagesize+64)*pages bytes in data.
721 static int alauda_read_block_raw(struct us_data *us, u16 pba,
722 unsigned int page, unsigned int pages, unsigned char *data)
724 int rc;
725 unsigned char command[] = {
726 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
727 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
730 usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
732 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
733 command, 9, NULL);
734 if (rc != USB_STOR_XFER_GOOD)
735 return rc;
737 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
738 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
742 * Reads data from a certain offset page inside a PBA, excluding redundancy
743 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
744 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
745 * trailing bytes outside this function.
747 static int alauda_read_block(struct us_data *us, u16 pba,
748 unsigned int page, unsigned int pages, unsigned char *data)
750 int i, rc;
751 unsigned int pagesize = MEDIA_INFO(us).pagesize;
753 rc = alauda_read_block_raw(us, pba, page, pages, data);
754 if (rc != USB_STOR_XFER_GOOD)
755 return rc;
757 /* Cut out the redundancy data */
758 for (i = 0; i < pages; i++) {
759 int dest_offset = i * pagesize;
760 int src_offset = i * (pagesize + 64);
761 memmove(data + dest_offset, data + src_offset, pagesize);
764 return rc;
768 * Writes an entire block of data and checks status after write.
769 * Redundancy data must be already included in data. Data should be
770 * (pagesize+64)*blocksize bytes in length.
772 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
774 int rc;
775 struct alauda_info *info = (struct alauda_info *) us->extra;
776 unsigned char command[] = {
777 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
778 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
781 usb_stor_dbg(us, "pba %d\n", pba);
783 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
784 command, 9, NULL);
785 if (rc != USB_STOR_XFER_GOOD)
786 return rc;
788 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
789 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
790 NULL);
791 if (rc != USB_STOR_XFER_GOOD)
792 return rc;
794 return alauda_check_status2(us);
798 * Write some data to a specific LBA.
800 static int alauda_write_lba(struct us_data *us, u16 lba,
801 unsigned int page, unsigned int pages,
802 unsigned char *ptr, unsigned char *blockbuffer)
804 u16 pba, lbap, new_pba;
805 unsigned char *bptr, *cptr, *xptr;
806 unsigned char ecc[3];
807 int i, result;
808 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
809 unsigned int zonesize = MEDIA_INFO(us).zonesize;
810 unsigned int pagesize = MEDIA_INFO(us).pagesize;
811 unsigned int blocksize = MEDIA_INFO(us).blocksize;
812 unsigned int lba_offset = lba % uzonesize;
813 unsigned int new_pba_offset;
814 unsigned int zone = lba / uzonesize;
816 alauda_ensure_map_for_zone(us, zone);
818 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
819 if (pba == 1) {
821 * Maybe it is impossible to write to PBA 1.
822 * Fake success, but don't do anything.
824 printk(KERN_WARNING
825 "alauda_write_lba: avoid writing to pba 1\n");
826 return USB_STOR_TRANSPORT_GOOD;
829 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
830 if (!new_pba) {
831 printk(KERN_WARNING
832 "alauda_write_lba: Out of unused blocks\n");
833 return USB_STOR_TRANSPORT_ERROR;
836 /* read old contents */
837 if (pba != UNDEF) {
838 result = alauda_read_block_raw(us, pba, 0,
839 blocksize, blockbuffer);
840 if (result != USB_STOR_XFER_GOOD)
841 return result;
842 } else {
843 memset(blockbuffer, 0, blocksize * (pagesize + 64));
846 lbap = (lba_offset << 1) | 0x1000;
847 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
848 lbap ^= 1;
850 /* check old contents and fill lba */
851 for (i = 0; i < blocksize; i++) {
852 bptr = blockbuffer + (i * (pagesize + 64));
853 cptr = bptr + pagesize;
854 nand_compute_ecc(bptr, ecc);
855 if (!nand_compare_ecc(cptr+13, ecc)) {
856 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
857 i, pba);
858 nand_store_ecc(cptr+13, ecc);
860 nand_compute_ecc(bptr + (pagesize / 2), ecc);
861 if (!nand_compare_ecc(cptr+8, ecc)) {
862 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
863 i, pba);
864 nand_store_ecc(cptr+8, ecc);
866 cptr[6] = cptr[11] = MSB_of(lbap);
867 cptr[7] = cptr[12] = LSB_of(lbap);
870 /* copy in new stuff and compute ECC */
871 xptr = ptr;
872 for (i = page; i < page+pages; i++) {
873 bptr = blockbuffer + (i * (pagesize + 64));
874 cptr = bptr + pagesize;
875 memcpy(bptr, xptr, pagesize);
876 xptr += pagesize;
877 nand_compute_ecc(bptr, ecc);
878 nand_store_ecc(cptr+13, ecc);
879 nand_compute_ecc(bptr + (pagesize / 2), ecc);
880 nand_store_ecc(cptr+8, ecc);
883 result = alauda_write_block(us, new_pba, blockbuffer);
884 if (result != USB_STOR_XFER_GOOD)
885 return result;
887 new_pba_offset = new_pba - (zone * zonesize);
888 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
889 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
890 usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
892 if (pba != UNDEF) {
893 unsigned int pba_offset = pba - (zone * zonesize);
894 result = alauda_erase_block(us, pba);
895 if (result != USB_STOR_XFER_GOOD)
896 return result;
897 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
900 return USB_STOR_TRANSPORT_GOOD;
904 * Read data from a specific sector address
906 static int alauda_read_data(struct us_data *us, unsigned long address,
907 unsigned int sectors)
909 unsigned char *buffer;
910 u16 lba, max_lba;
911 unsigned int page, len, offset;
912 unsigned int blockshift = MEDIA_INFO(us).blockshift;
913 unsigned int pageshift = MEDIA_INFO(us).pageshift;
914 unsigned int blocksize = MEDIA_INFO(us).blocksize;
915 unsigned int pagesize = MEDIA_INFO(us).pagesize;
916 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
917 struct scatterlist *sg;
918 int result;
921 * Since we only read in one block at a time, we have to create
922 * a bounce buffer and move the data a piece at a time between the
923 * bounce buffer and the actual transfer buffer.
924 * We make this buffer big enough to hold temporary redundancy data,
925 * which we use when reading the data blocks.
928 len = min(sectors, blocksize) * (pagesize + 64);
929 buffer = kmalloc(len, GFP_NOIO);
930 if (!buffer)
931 return USB_STOR_TRANSPORT_ERROR;
933 /* Figure out the initial LBA and page */
934 lba = address >> blockshift;
935 page = (address & MEDIA_INFO(us).blockmask);
936 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
938 result = USB_STOR_TRANSPORT_GOOD;
939 offset = 0;
940 sg = NULL;
942 while (sectors > 0) {
943 unsigned int zone = lba / uzonesize; /* integer division */
944 unsigned int lba_offset = lba - (zone * uzonesize);
945 unsigned int pages;
946 u16 pba;
947 alauda_ensure_map_for_zone(us, zone);
949 /* Not overflowing capacity? */
950 if (lba >= max_lba) {
951 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
952 lba, max_lba);
953 result = USB_STOR_TRANSPORT_ERROR;
954 break;
957 /* Find number of pages we can read in this block */
958 pages = min(sectors, blocksize - page);
959 len = pages << pageshift;
961 /* Find where this lba lives on disk */
962 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
964 if (pba == UNDEF) { /* this lba was never written */
965 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
966 pages, lba, page);
969 * This is not really an error. It just means
970 * that the block has never been written.
971 * Instead of returning USB_STOR_TRANSPORT_ERROR
972 * it is better to return all zero data.
975 memset(buffer, 0, len);
976 } else {
977 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
978 pages, pba, lba, page);
980 result = alauda_read_block(us, pba, page, pages, buffer);
981 if (result != USB_STOR_TRANSPORT_GOOD)
982 break;
985 /* Store the data in the transfer buffer */
986 usb_stor_access_xfer_buf(buffer, len, us->srb,
987 &sg, &offset, TO_XFER_BUF);
989 page = 0;
990 lba++;
991 sectors -= pages;
994 kfree(buffer);
995 return result;
999 * Write data to a specific sector address
1001 static int alauda_write_data(struct us_data *us, unsigned long address,
1002 unsigned int sectors)
1004 unsigned char *buffer, *blockbuffer;
1005 unsigned int page, len, offset;
1006 unsigned int blockshift = MEDIA_INFO(us).blockshift;
1007 unsigned int pageshift = MEDIA_INFO(us).pageshift;
1008 unsigned int blocksize = MEDIA_INFO(us).blocksize;
1009 unsigned int pagesize = MEDIA_INFO(us).pagesize;
1010 struct scatterlist *sg;
1011 u16 lba, max_lba;
1012 int result;
1015 * Since we don't write the user data directly to the device,
1016 * we have to create a bounce buffer and move the data a piece
1017 * at a time between the bounce buffer and the actual transfer buffer.
1020 len = min(sectors, blocksize) * pagesize;
1021 buffer = kmalloc(len, GFP_NOIO);
1022 if (!buffer)
1023 return USB_STOR_TRANSPORT_ERROR;
1026 * We also need a temporary block buffer, where we read in the old data,
1027 * overwrite parts with the new data, and manipulate the redundancy data
1029 blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO);
1030 if (!blockbuffer) {
1031 kfree(buffer);
1032 return USB_STOR_TRANSPORT_ERROR;
1035 /* Figure out the initial LBA and page */
1036 lba = address >> blockshift;
1037 page = (address & MEDIA_INFO(us).blockmask);
1038 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1040 result = USB_STOR_TRANSPORT_GOOD;
1041 offset = 0;
1042 sg = NULL;
1044 while (sectors > 0) {
1045 /* Write as many sectors as possible in this block */
1046 unsigned int pages = min(sectors, blocksize - page);
1047 len = pages << pageshift;
1049 /* Not overflowing capacity? */
1050 if (lba >= max_lba) {
1051 usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1052 lba, max_lba);
1053 result = USB_STOR_TRANSPORT_ERROR;
1054 break;
1057 /* Get the data from the transfer buffer */
1058 usb_stor_access_xfer_buf(buffer, len, us->srb,
1059 &sg, &offset, FROM_XFER_BUF);
1061 result = alauda_write_lba(us, lba, page, pages, buffer,
1062 blockbuffer);
1063 if (result != USB_STOR_TRANSPORT_GOOD)
1064 break;
1066 page = 0;
1067 lba++;
1068 sectors -= pages;
1071 kfree(buffer);
1072 kfree(blockbuffer);
1073 return result;
1077 * Our interface with the rest of the world
1080 static void alauda_info_destructor(void *extra)
1082 struct alauda_info *info = (struct alauda_info *) extra;
1083 int port;
1085 if (!info)
1086 return;
1088 for (port = 0; port < 2; port++) {
1089 struct alauda_media_info *media_info = &info->port[port];
1091 alauda_free_maps(media_info);
1092 kfree(media_info->lba_to_pba);
1093 kfree(media_info->pba_to_lba);
1098 * Initialize alauda_info struct and find the data-write endpoint
1100 static int init_alauda(struct us_data *us)
1102 struct alauda_info *info;
1103 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1104 nand_init_ecc();
1106 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1107 if (!us->extra)
1108 return USB_STOR_TRANSPORT_ERROR;
1110 info = (struct alauda_info *) us->extra;
1111 us->extra_destructor = alauda_info_destructor;
1113 info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1114 altsetting->endpoint[0].desc.bEndpointAddress
1115 & USB_ENDPOINT_NUMBER_MASK);
1117 return USB_STOR_TRANSPORT_GOOD;
1120 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1122 int rc;
1123 struct alauda_info *info = (struct alauda_info *) us->extra;
1124 unsigned char *ptr = us->iobuf;
1125 static unsigned char inquiry_response[36] = {
1126 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1129 if (srb->cmnd[0] == INQUIRY) {
1130 usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1131 memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1132 fill_inquiry_response(us, ptr, 36);
1133 return USB_STOR_TRANSPORT_GOOD;
1136 if (srb->cmnd[0] == TEST_UNIT_READY) {
1137 usb_stor_dbg(us, "TEST_UNIT_READY\n");
1138 return alauda_check_media(us);
1141 if (srb->cmnd[0] == READ_CAPACITY) {
1142 unsigned int num_zones;
1143 unsigned long capacity;
1145 rc = alauda_check_media(us);
1146 if (rc != USB_STOR_TRANSPORT_GOOD)
1147 return rc;
1149 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1150 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1152 capacity = num_zones * MEDIA_INFO(us).uzonesize
1153 * MEDIA_INFO(us).blocksize;
1155 /* Report capacity and page size */
1156 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1157 ((__be32 *) ptr)[1] = cpu_to_be32(512);
1159 usb_stor_set_xfer_buf(ptr, 8, srb);
1160 return USB_STOR_TRANSPORT_GOOD;
1163 if (srb->cmnd[0] == READ_10) {
1164 unsigned int page, pages;
1166 rc = alauda_check_media(us);
1167 if (rc != USB_STOR_TRANSPORT_GOOD)
1168 return rc;
1170 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1171 page <<= 16;
1172 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1173 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1175 usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1177 return alauda_read_data(us, page, pages);
1180 if (srb->cmnd[0] == WRITE_10) {
1181 unsigned int page, pages;
1183 rc = alauda_check_media(us);
1184 if (rc != USB_STOR_TRANSPORT_GOOD)
1185 return rc;
1187 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1188 page <<= 16;
1189 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1190 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1192 usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1194 return alauda_write_data(us, page, pages);
1197 if (srb->cmnd[0] == REQUEST_SENSE) {
1198 usb_stor_dbg(us, "REQUEST_SENSE\n");
1200 memset(ptr, 0, 18);
1201 ptr[0] = 0xF0;
1202 ptr[2] = info->sense_key;
1203 ptr[7] = 11;
1204 ptr[12] = info->sense_asc;
1205 ptr[13] = info->sense_ascq;
1206 usb_stor_set_xfer_buf(ptr, 18, srb);
1208 return USB_STOR_TRANSPORT_GOOD;
1211 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1213 * sure. whatever. not like we can stop the user from popping
1214 * the media out of the device (no locking doors, etc)
1216 return USB_STOR_TRANSPORT_GOOD;
1219 usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1220 srb->cmnd[0], srb->cmnd[0]);
1221 info->sense_key = 0x05;
1222 info->sense_asc = 0x20;
1223 info->sense_ascq = 0x00;
1224 return USB_STOR_TRANSPORT_FAILED;
1227 static struct scsi_host_template alauda_host_template;
1229 static int alauda_probe(struct usb_interface *intf,
1230 const struct usb_device_id *id)
1232 struct us_data *us;
1233 int result;
1235 result = usb_stor_probe1(&us, intf, id,
1236 (id - alauda_usb_ids) + alauda_unusual_dev_list,
1237 &alauda_host_template);
1238 if (result)
1239 return result;
1241 us->transport_name = "Alauda Control/Bulk";
1242 us->transport = alauda_transport;
1243 us->transport_reset = usb_stor_Bulk_reset;
1244 us->max_lun = 1;
1246 result = usb_stor_probe2(us);
1247 return result;
1250 static struct usb_driver alauda_driver = {
1251 .name = DRV_NAME,
1252 .probe = alauda_probe,
1253 .disconnect = usb_stor_disconnect,
1254 .suspend = usb_stor_suspend,
1255 .resume = usb_stor_resume,
1256 .reset_resume = usb_stor_reset_resume,
1257 .pre_reset = usb_stor_pre_reset,
1258 .post_reset = usb_stor_post_reset,
1259 .id_table = alauda_usb_ids,
1260 .soft_unbind = 1,
1261 .no_dynamic_id = 1,
1264 module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);