Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / drivers / base / regmap / regmap.c
blobdf2d2ef5d6b38bf374ab8ed3158d80e301a92852
1 /*
2 * Register map access API
4 * Copyright 2011 Wolfson Microelectronics plc
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
27 #include "internal.h"
30 * Sometimes for failures during very early init the trace
31 * infrastructure isn't available early enough to be used. For this
32 * sort of problem defining LOG_DEVICE will add printks for basic
33 * register I/O on a specific device.
35 #undef LOG_DEVICE
37 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
38 unsigned int mask, unsigned int val,
39 bool *change, bool force_write);
41 static int _regmap_bus_reg_read(void *context, unsigned int reg,
42 unsigned int *val);
43 static int _regmap_bus_read(void *context, unsigned int reg,
44 unsigned int *val);
45 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
46 unsigned int val);
47 static int _regmap_bus_reg_write(void *context, unsigned int reg,
48 unsigned int val);
49 static int _regmap_bus_raw_write(void *context, unsigned int reg,
50 unsigned int val);
52 bool regmap_reg_in_ranges(unsigned int reg,
53 const struct regmap_range *ranges,
54 unsigned int nranges)
56 const struct regmap_range *r;
57 int i;
59 for (i = 0, r = ranges; i < nranges; i++, r++)
60 if (regmap_reg_in_range(reg, r))
61 return true;
62 return false;
64 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
66 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
67 const struct regmap_access_table *table)
69 /* Check "no ranges" first */
70 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
71 return false;
73 /* In case zero "yes ranges" are supplied, any reg is OK */
74 if (!table->n_yes_ranges)
75 return true;
77 return regmap_reg_in_ranges(reg, table->yes_ranges,
78 table->n_yes_ranges);
80 EXPORT_SYMBOL_GPL(regmap_check_range_table);
82 bool regmap_writeable(struct regmap *map, unsigned int reg)
84 if (map->max_register && reg > map->max_register)
85 return false;
87 if (map->writeable_reg)
88 return map->writeable_reg(map->dev, reg);
90 if (map->wr_table)
91 return regmap_check_range_table(map, reg, map->wr_table);
93 return true;
96 bool regmap_readable(struct regmap *map, unsigned int reg)
98 if (!map->reg_read)
99 return false;
101 if (map->max_register && reg > map->max_register)
102 return false;
104 if (map->format.format_write)
105 return false;
107 if (map->readable_reg)
108 return map->readable_reg(map->dev, reg);
110 if (map->rd_table)
111 return regmap_check_range_table(map, reg, map->rd_table);
113 return true;
116 bool regmap_volatile(struct regmap *map, unsigned int reg)
118 if (!map->format.format_write && !regmap_readable(map, reg))
119 return false;
121 if (map->volatile_reg)
122 return map->volatile_reg(map->dev, reg);
124 if (map->volatile_table)
125 return regmap_check_range_table(map, reg, map->volatile_table);
127 if (map->cache_ops)
128 return false;
129 else
130 return true;
133 bool regmap_precious(struct regmap *map, unsigned int reg)
135 if (!regmap_readable(map, reg))
136 return false;
138 if (map->precious_reg)
139 return map->precious_reg(map->dev, reg);
141 if (map->precious_table)
142 return regmap_check_range_table(map, reg, map->precious_table);
144 return false;
147 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
148 size_t num)
150 unsigned int i;
152 for (i = 0; i < num; i++)
153 if (!regmap_volatile(map, reg + i))
154 return false;
156 return true;
159 static void regmap_format_2_6_write(struct regmap *map,
160 unsigned int reg, unsigned int val)
162 u8 *out = map->work_buf;
164 *out = (reg << 6) | val;
167 static void regmap_format_4_12_write(struct regmap *map,
168 unsigned int reg, unsigned int val)
170 __be16 *out = map->work_buf;
171 *out = cpu_to_be16((reg << 12) | val);
174 static void regmap_format_7_9_write(struct regmap *map,
175 unsigned int reg, unsigned int val)
177 __be16 *out = map->work_buf;
178 *out = cpu_to_be16((reg << 9) | val);
181 static void regmap_format_10_14_write(struct regmap *map,
182 unsigned int reg, unsigned int val)
184 u8 *out = map->work_buf;
186 out[2] = val;
187 out[1] = (val >> 8) | (reg << 6);
188 out[0] = reg >> 2;
191 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
193 u8 *b = buf;
195 b[0] = val << shift;
198 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
200 __be16 *b = buf;
202 b[0] = cpu_to_be16(val << shift);
205 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
207 __le16 *b = buf;
209 b[0] = cpu_to_le16(val << shift);
212 static void regmap_format_16_native(void *buf, unsigned int val,
213 unsigned int shift)
215 *(u16 *)buf = val << shift;
218 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
220 u8 *b = buf;
222 val <<= shift;
224 b[0] = val >> 16;
225 b[1] = val >> 8;
226 b[2] = val;
229 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
231 __be32 *b = buf;
233 b[0] = cpu_to_be32(val << shift);
236 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
238 __le32 *b = buf;
240 b[0] = cpu_to_le32(val << shift);
243 static void regmap_format_32_native(void *buf, unsigned int val,
244 unsigned int shift)
246 *(u32 *)buf = val << shift;
249 #ifdef CONFIG_64BIT
250 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
252 __be64 *b = buf;
254 b[0] = cpu_to_be64((u64)val << shift);
257 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
259 __le64 *b = buf;
261 b[0] = cpu_to_le64((u64)val << shift);
264 static void regmap_format_64_native(void *buf, unsigned int val,
265 unsigned int shift)
267 *(u64 *)buf = (u64)val << shift;
269 #endif
271 static void regmap_parse_inplace_noop(void *buf)
275 static unsigned int regmap_parse_8(const void *buf)
277 const u8 *b = buf;
279 return b[0];
282 static unsigned int regmap_parse_16_be(const void *buf)
284 const __be16 *b = buf;
286 return be16_to_cpu(b[0]);
289 static unsigned int regmap_parse_16_le(const void *buf)
291 const __le16 *b = buf;
293 return le16_to_cpu(b[0]);
296 static void regmap_parse_16_be_inplace(void *buf)
298 __be16 *b = buf;
300 b[0] = be16_to_cpu(b[0]);
303 static void regmap_parse_16_le_inplace(void *buf)
305 __le16 *b = buf;
307 b[0] = le16_to_cpu(b[0]);
310 static unsigned int regmap_parse_16_native(const void *buf)
312 return *(u16 *)buf;
315 static unsigned int regmap_parse_24(const void *buf)
317 const u8 *b = buf;
318 unsigned int ret = b[2];
319 ret |= ((unsigned int)b[1]) << 8;
320 ret |= ((unsigned int)b[0]) << 16;
322 return ret;
325 static unsigned int regmap_parse_32_be(const void *buf)
327 const __be32 *b = buf;
329 return be32_to_cpu(b[0]);
332 static unsigned int regmap_parse_32_le(const void *buf)
334 const __le32 *b = buf;
336 return le32_to_cpu(b[0]);
339 static void regmap_parse_32_be_inplace(void *buf)
341 __be32 *b = buf;
343 b[0] = be32_to_cpu(b[0]);
346 static void regmap_parse_32_le_inplace(void *buf)
348 __le32 *b = buf;
350 b[0] = le32_to_cpu(b[0]);
353 static unsigned int regmap_parse_32_native(const void *buf)
355 return *(u32 *)buf;
358 #ifdef CONFIG_64BIT
359 static unsigned int regmap_parse_64_be(const void *buf)
361 const __be64 *b = buf;
363 return be64_to_cpu(b[0]);
366 static unsigned int regmap_parse_64_le(const void *buf)
368 const __le64 *b = buf;
370 return le64_to_cpu(b[0]);
373 static void regmap_parse_64_be_inplace(void *buf)
375 __be64 *b = buf;
377 b[0] = be64_to_cpu(b[0]);
380 static void regmap_parse_64_le_inplace(void *buf)
382 __le64 *b = buf;
384 b[0] = le64_to_cpu(b[0]);
387 static unsigned int regmap_parse_64_native(const void *buf)
389 return *(u64 *)buf;
391 #endif
393 static void regmap_lock_mutex(void *__map)
395 struct regmap *map = __map;
396 mutex_lock(&map->mutex);
399 static void regmap_unlock_mutex(void *__map)
401 struct regmap *map = __map;
402 mutex_unlock(&map->mutex);
405 static void regmap_lock_spinlock(void *__map)
406 __acquires(&map->spinlock)
408 struct regmap *map = __map;
409 unsigned long flags;
411 spin_lock_irqsave(&map->spinlock, flags);
412 map->spinlock_flags = flags;
415 static void regmap_unlock_spinlock(void *__map)
416 __releases(&map->spinlock)
418 struct regmap *map = __map;
419 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
422 static void dev_get_regmap_release(struct device *dev, void *res)
425 * We don't actually have anything to do here; the goal here
426 * is not to manage the regmap but to provide a simple way to
427 * get the regmap back given a struct device.
431 static bool _regmap_range_add(struct regmap *map,
432 struct regmap_range_node *data)
434 struct rb_root *root = &map->range_tree;
435 struct rb_node **new = &(root->rb_node), *parent = NULL;
437 while (*new) {
438 struct regmap_range_node *this =
439 container_of(*new, struct regmap_range_node, node);
441 parent = *new;
442 if (data->range_max < this->range_min)
443 new = &((*new)->rb_left);
444 else if (data->range_min > this->range_max)
445 new = &((*new)->rb_right);
446 else
447 return false;
450 rb_link_node(&data->node, parent, new);
451 rb_insert_color(&data->node, root);
453 return true;
456 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
457 unsigned int reg)
459 struct rb_node *node = map->range_tree.rb_node;
461 while (node) {
462 struct regmap_range_node *this =
463 container_of(node, struct regmap_range_node, node);
465 if (reg < this->range_min)
466 node = node->rb_left;
467 else if (reg > this->range_max)
468 node = node->rb_right;
469 else
470 return this;
473 return NULL;
476 static void regmap_range_exit(struct regmap *map)
478 struct rb_node *next;
479 struct regmap_range_node *range_node;
481 next = rb_first(&map->range_tree);
482 while (next) {
483 range_node = rb_entry(next, struct regmap_range_node, node);
484 next = rb_next(&range_node->node);
485 rb_erase(&range_node->node, &map->range_tree);
486 kfree(range_node);
489 kfree(map->selector_work_buf);
492 int regmap_attach_dev(struct device *dev, struct regmap *map,
493 const struct regmap_config *config)
495 struct regmap **m;
497 map->dev = dev;
499 regmap_debugfs_init(map, config->name);
501 /* Add a devres resource for dev_get_regmap() */
502 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
503 if (!m) {
504 regmap_debugfs_exit(map);
505 return -ENOMEM;
507 *m = map;
508 devres_add(dev, m);
510 return 0;
512 EXPORT_SYMBOL_GPL(regmap_attach_dev);
514 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
515 const struct regmap_config *config)
517 enum regmap_endian endian;
519 /* Retrieve the endianness specification from the regmap config */
520 endian = config->reg_format_endian;
522 /* If the regmap config specified a non-default value, use that */
523 if (endian != REGMAP_ENDIAN_DEFAULT)
524 return endian;
526 /* Retrieve the endianness specification from the bus config */
527 if (bus && bus->reg_format_endian_default)
528 endian = bus->reg_format_endian_default;
530 /* If the bus specified a non-default value, use that */
531 if (endian != REGMAP_ENDIAN_DEFAULT)
532 return endian;
534 /* Use this if no other value was found */
535 return REGMAP_ENDIAN_BIG;
538 enum regmap_endian regmap_get_val_endian(struct device *dev,
539 const struct regmap_bus *bus,
540 const struct regmap_config *config)
542 struct device_node *np;
543 enum regmap_endian endian;
545 /* Retrieve the endianness specification from the regmap config */
546 endian = config->val_format_endian;
548 /* If the regmap config specified a non-default value, use that */
549 if (endian != REGMAP_ENDIAN_DEFAULT)
550 return endian;
552 /* If the dev and dev->of_node exist try to get endianness from DT */
553 if (dev && dev->of_node) {
554 np = dev->of_node;
556 /* Parse the device's DT node for an endianness specification */
557 if (of_property_read_bool(np, "big-endian"))
558 endian = REGMAP_ENDIAN_BIG;
559 else if (of_property_read_bool(np, "little-endian"))
560 endian = REGMAP_ENDIAN_LITTLE;
561 else if (of_property_read_bool(np, "native-endian"))
562 endian = REGMAP_ENDIAN_NATIVE;
564 /* If the endianness was specified in DT, use that */
565 if (endian != REGMAP_ENDIAN_DEFAULT)
566 return endian;
569 /* Retrieve the endianness specification from the bus config */
570 if (bus && bus->val_format_endian_default)
571 endian = bus->val_format_endian_default;
573 /* If the bus specified a non-default value, use that */
574 if (endian != REGMAP_ENDIAN_DEFAULT)
575 return endian;
577 /* Use this if no other value was found */
578 return REGMAP_ENDIAN_BIG;
580 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
582 struct regmap *__regmap_init(struct device *dev,
583 const struct regmap_bus *bus,
584 void *bus_context,
585 const struct regmap_config *config,
586 struct lock_class_key *lock_key,
587 const char *lock_name)
589 struct regmap *map;
590 int ret = -EINVAL;
591 enum regmap_endian reg_endian, val_endian;
592 int i, j;
594 if (!config)
595 goto err;
597 map = kzalloc(sizeof(*map), GFP_KERNEL);
598 if (map == NULL) {
599 ret = -ENOMEM;
600 goto err;
603 if (config->lock && config->unlock) {
604 map->lock = config->lock;
605 map->unlock = config->unlock;
606 map->lock_arg = config->lock_arg;
607 } else {
608 if ((bus && bus->fast_io) ||
609 config->fast_io) {
610 spin_lock_init(&map->spinlock);
611 map->lock = regmap_lock_spinlock;
612 map->unlock = regmap_unlock_spinlock;
613 lockdep_set_class_and_name(&map->spinlock,
614 lock_key, lock_name);
615 } else {
616 mutex_init(&map->mutex);
617 map->lock = regmap_lock_mutex;
618 map->unlock = regmap_unlock_mutex;
619 lockdep_set_class_and_name(&map->mutex,
620 lock_key, lock_name);
622 map->lock_arg = map;
626 * When we write in fast-paths with regmap_bulk_write() don't allocate
627 * scratch buffers with sleeping allocations.
629 if ((bus && bus->fast_io) || config->fast_io)
630 map->alloc_flags = GFP_ATOMIC;
631 else
632 map->alloc_flags = GFP_KERNEL;
634 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
635 map->format.pad_bytes = config->pad_bits / 8;
636 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
637 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
638 config->val_bits + config->pad_bits, 8);
639 map->reg_shift = config->pad_bits % 8;
640 if (config->reg_stride)
641 map->reg_stride = config->reg_stride;
642 else
643 map->reg_stride = 1;
644 if (is_power_of_2(map->reg_stride))
645 map->reg_stride_order = ilog2(map->reg_stride);
646 else
647 map->reg_stride_order = -1;
648 map->use_single_read = config->use_single_rw || !bus || !bus->read;
649 map->use_single_write = config->use_single_rw || !bus || !bus->write;
650 map->can_multi_write = config->can_multi_write && bus && bus->write;
651 if (bus) {
652 map->max_raw_read = bus->max_raw_read;
653 map->max_raw_write = bus->max_raw_write;
655 map->dev = dev;
656 map->bus = bus;
657 map->bus_context = bus_context;
658 map->max_register = config->max_register;
659 map->wr_table = config->wr_table;
660 map->rd_table = config->rd_table;
661 map->volatile_table = config->volatile_table;
662 map->precious_table = config->precious_table;
663 map->writeable_reg = config->writeable_reg;
664 map->readable_reg = config->readable_reg;
665 map->volatile_reg = config->volatile_reg;
666 map->precious_reg = config->precious_reg;
667 map->cache_type = config->cache_type;
668 map->name = config->name;
670 spin_lock_init(&map->async_lock);
671 INIT_LIST_HEAD(&map->async_list);
672 INIT_LIST_HEAD(&map->async_free);
673 init_waitqueue_head(&map->async_waitq);
675 if (config->read_flag_mask || config->write_flag_mask) {
676 map->read_flag_mask = config->read_flag_mask;
677 map->write_flag_mask = config->write_flag_mask;
678 } else if (bus) {
679 map->read_flag_mask = bus->read_flag_mask;
682 if (!bus) {
683 map->reg_read = config->reg_read;
684 map->reg_write = config->reg_write;
686 map->defer_caching = false;
687 goto skip_format_initialization;
688 } else if (!bus->read || !bus->write) {
689 map->reg_read = _regmap_bus_reg_read;
690 map->reg_write = _regmap_bus_reg_write;
692 map->defer_caching = false;
693 goto skip_format_initialization;
694 } else {
695 map->reg_read = _regmap_bus_read;
696 map->reg_update_bits = bus->reg_update_bits;
699 reg_endian = regmap_get_reg_endian(bus, config);
700 val_endian = regmap_get_val_endian(dev, bus, config);
702 switch (config->reg_bits + map->reg_shift) {
703 case 2:
704 switch (config->val_bits) {
705 case 6:
706 map->format.format_write = regmap_format_2_6_write;
707 break;
708 default:
709 goto err_map;
711 break;
713 case 4:
714 switch (config->val_bits) {
715 case 12:
716 map->format.format_write = regmap_format_4_12_write;
717 break;
718 default:
719 goto err_map;
721 break;
723 case 7:
724 switch (config->val_bits) {
725 case 9:
726 map->format.format_write = regmap_format_7_9_write;
727 break;
728 default:
729 goto err_map;
731 break;
733 case 10:
734 switch (config->val_bits) {
735 case 14:
736 map->format.format_write = regmap_format_10_14_write;
737 break;
738 default:
739 goto err_map;
741 break;
743 case 8:
744 map->format.format_reg = regmap_format_8;
745 break;
747 case 16:
748 switch (reg_endian) {
749 case REGMAP_ENDIAN_BIG:
750 map->format.format_reg = regmap_format_16_be;
751 break;
752 case REGMAP_ENDIAN_NATIVE:
753 map->format.format_reg = regmap_format_16_native;
754 break;
755 default:
756 goto err_map;
758 break;
760 case 24:
761 if (reg_endian != REGMAP_ENDIAN_BIG)
762 goto err_map;
763 map->format.format_reg = regmap_format_24;
764 break;
766 case 32:
767 switch (reg_endian) {
768 case REGMAP_ENDIAN_BIG:
769 map->format.format_reg = regmap_format_32_be;
770 break;
771 case REGMAP_ENDIAN_NATIVE:
772 map->format.format_reg = regmap_format_32_native;
773 break;
774 default:
775 goto err_map;
777 break;
779 #ifdef CONFIG_64BIT
780 case 64:
781 switch (reg_endian) {
782 case REGMAP_ENDIAN_BIG:
783 map->format.format_reg = regmap_format_64_be;
784 break;
785 case REGMAP_ENDIAN_NATIVE:
786 map->format.format_reg = regmap_format_64_native;
787 break;
788 default:
789 goto err_map;
791 break;
792 #endif
794 default:
795 goto err_map;
798 if (val_endian == REGMAP_ENDIAN_NATIVE)
799 map->format.parse_inplace = regmap_parse_inplace_noop;
801 switch (config->val_bits) {
802 case 8:
803 map->format.format_val = regmap_format_8;
804 map->format.parse_val = regmap_parse_8;
805 map->format.parse_inplace = regmap_parse_inplace_noop;
806 break;
807 case 16:
808 switch (val_endian) {
809 case REGMAP_ENDIAN_BIG:
810 map->format.format_val = regmap_format_16_be;
811 map->format.parse_val = regmap_parse_16_be;
812 map->format.parse_inplace = regmap_parse_16_be_inplace;
813 break;
814 case REGMAP_ENDIAN_LITTLE:
815 map->format.format_val = regmap_format_16_le;
816 map->format.parse_val = regmap_parse_16_le;
817 map->format.parse_inplace = regmap_parse_16_le_inplace;
818 break;
819 case REGMAP_ENDIAN_NATIVE:
820 map->format.format_val = regmap_format_16_native;
821 map->format.parse_val = regmap_parse_16_native;
822 break;
823 default:
824 goto err_map;
826 break;
827 case 24:
828 if (val_endian != REGMAP_ENDIAN_BIG)
829 goto err_map;
830 map->format.format_val = regmap_format_24;
831 map->format.parse_val = regmap_parse_24;
832 break;
833 case 32:
834 switch (val_endian) {
835 case REGMAP_ENDIAN_BIG:
836 map->format.format_val = regmap_format_32_be;
837 map->format.parse_val = regmap_parse_32_be;
838 map->format.parse_inplace = regmap_parse_32_be_inplace;
839 break;
840 case REGMAP_ENDIAN_LITTLE:
841 map->format.format_val = regmap_format_32_le;
842 map->format.parse_val = regmap_parse_32_le;
843 map->format.parse_inplace = regmap_parse_32_le_inplace;
844 break;
845 case REGMAP_ENDIAN_NATIVE:
846 map->format.format_val = regmap_format_32_native;
847 map->format.parse_val = regmap_parse_32_native;
848 break;
849 default:
850 goto err_map;
852 break;
853 #ifdef CONFIG_64BIT
854 case 64:
855 switch (val_endian) {
856 case REGMAP_ENDIAN_BIG:
857 map->format.format_val = regmap_format_64_be;
858 map->format.parse_val = regmap_parse_64_be;
859 map->format.parse_inplace = regmap_parse_64_be_inplace;
860 break;
861 case REGMAP_ENDIAN_LITTLE:
862 map->format.format_val = regmap_format_64_le;
863 map->format.parse_val = regmap_parse_64_le;
864 map->format.parse_inplace = regmap_parse_64_le_inplace;
865 break;
866 case REGMAP_ENDIAN_NATIVE:
867 map->format.format_val = regmap_format_64_native;
868 map->format.parse_val = regmap_parse_64_native;
869 break;
870 default:
871 goto err_map;
873 break;
874 #endif
877 if (map->format.format_write) {
878 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
879 (val_endian != REGMAP_ENDIAN_BIG))
880 goto err_map;
881 map->use_single_write = true;
884 if (!map->format.format_write &&
885 !(map->format.format_reg && map->format.format_val))
886 goto err_map;
888 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
889 if (map->work_buf == NULL) {
890 ret = -ENOMEM;
891 goto err_map;
894 if (map->format.format_write) {
895 map->defer_caching = false;
896 map->reg_write = _regmap_bus_formatted_write;
897 } else if (map->format.format_val) {
898 map->defer_caching = true;
899 map->reg_write = _regmap_bus_raw_write;
902 skip_format_initialization:
904 map->range_tree = RB_ROOT;
905 for (i = 0; i < config->num_ranges; i++) {
906 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
907 struct regmap_range_node *new;
909 /* Sanity check */
910 if (range_cfg->range_max < range_cfg->range_min) {
911 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
912 range_cfg->range_max, range_cfg->range_min);
913 goto err_range;
916 if (range_cfg->range_max > map->max_register) {
917 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
918 range_cfg->range_max, map->max_register);
919 goto err_range;
922 if (range_cfg->selector_reg > map->max_register) {
923 dev_err(map->dev,
924 "Invalid range %d: selector out of map\n", i);
925 goto err_range;
928 if (range_cfg->window_len == 0) {
929 dev_err(map->dev, "Invalid range %d: window_len 0\n",
931 goto err_range;
934 /* Make sure, that this register range has no selector
935 or data window within its boundary */
936 for (j = 0; j < config->num_ranges; j++) {
937 unsigned sel_reg = config->ranges[j].selector_reg;
938 unsigned win_min = config->ranges[j].window_start;
939 unsigned win_max = win_min +
940 config->ranges[j].window_len - 1;
942 /* Allow data window inside its own virtual range */
943 if (j == i)
944 continue;
946 if (range_cfg->range_min <= sel_reg &&
947 sel_reg <= range_cfg->range_max) {
948 dev_err(map->dev,
949 "Range %d: selector for %d in window\n",
950 i, j);
951 goto err_range;
954 if (!(win_max < range_cfg->range_min ||
955 win_min > range_cfg->range_max)) {
956 dev_err(map->dev,
957 "Range %d: window for %d in window\n",
958 i, j);
959 goto err_range;
963 new = kzalloc(sizeof(*new), GFP_KERNEL);
964 if (new == NULL) {
965 ret = -ENOMEM;
966 goto err_range;
969 new->map = map;
970 new->name = range_cfg->name;
971 new->range_min = range_cfg->range_min;
972 new->range_max = range_cfg->range_max;
973 new->selector_reg = range_cfg->selector_reg;
974 new->selector_mask = range_cfg->selector_mask;
975 new->selector_shift = range_cfg->selector_shift;
976 new->window_start = range_cfg->window_start;
977 new->window_len = range_cfg->window_len;
979 if (!_regmap_range_add(map, new)) {
980 dev_err(map->dev, "Failed to add range %d\n", i);
981 kfree(new);
982 goto err_range;
985 if (map->selector_work_buf == NULL) {
986 map->selector_work_buf =
987 kzalloc(map->format.buf_size, GFP_KERNEL);
988 if (map->selector_work_buf == NULL) {
989 ret = -ENOMEM;
990 goto err_range;
995 ret = regcache_init(map, config);
996 if (ret != 0)
997 goto err_range;
999 if (dev) {
1000 ret = regmap_attach_dev(dev, map, config);
1001 if (ret != 0)
1002 goto err_regcache;
1005 return map;
1007 err_regcache:
1008 regcache_exit(map);
1009 err_range:
1010 regmap_range_exit(map);
1011 kfree(map->work_buf);
1012 err_map:
1013 kfree(map);
1014 err:
1015 return ERR_PTR(ret);
1017 EXPORT_SYMBOL_GPL(__regmap_init);
1019 static void devm_regmap_release(struct device *dev, void *res)
1021 regmap_exit(*(struct regmap **)res);
1024 struct regmap *__devm_regmap_init(struct device *dev,
1025 const struct regmap_bus *bus,
1026 void *bus_context,
1027 const struct regmap_config *config,
1028 struct lock_class_key *lock_key,
1029 const char *lock_name)
1031 struct regmap **ptr, *regmap;
1033 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1034 if (!ptr)
1035 return ERR_PTR(-ENOMEM);
1037 regmap = __regmap_init(dev, bus, bus_context, config,
1038 lock_key, lock_name);
1039 if (!IS_ERR(regmap)) {
1040 *ptr = regmap;
1041 devres_add(dev, ptr);
1042 } else {
1043 devres_free(ptr);
1046 return regmap;
1048 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1050 static void regmap_field_init(struct regmap_field *rm_field,
1051 struct regmap *regmap, struct reg_field reg_field)
1053 rm_field->regmap = regmap;
1054 rm_field->reg = reg_field.reg;
1055 rm_field->shift = reg_field.lsb;
1056 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1057 rm_field->id_size = reg_field.id_size;
1058 rm_field->id_offset = reg_field.id_offset;
1062 * devm_regmap_field_alloc(): Allocate and initialise a register field
1063 * in a register map.
1065 * @dev: Device that will be interacted with
1066 * @regmap: regmap bank in which this register field is located.
1067 * @reg_field: Register field with in the bank.
1069 * The return value will be an ERR_PTR() on error or a valid pointer
1070 * to a struct regmap_field. The regmap_field will be automatically freed
1071 * by the device management code.
1073 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1074 struct regmap *regmap, struct reg_field reg_field)
1076 struct regmap_field *rm_field = devm_kzalloc(dev,
1077 sizeof(*rm_field), GFP_KERNEL);
1078 if (!rm_field)
1079 return ERR_PTR(-ENOMEM);
1081 regmap_field_init(rm_field, regmap, reg_field);
1083 return rm_field;
1086 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1089 * devm_regmap_field_free(): Free register field allocated using
1090 * devm_regmap_field_alloc. Usally drivers need not call this function,
1091 * as the memory allocated via devm will be freed as per device-driver
1092 * life-cyle.
1094 * @dev: Device that will be interacted with
1095 * @field: regmap field which should be freed.
1097 void devm_regmap_field_free(struct device *dev,
1098 struct regmap_field *field)
1100 devm_kfree(dev, field);
1102 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1105 * regmap_field_alloc(): Allocate and initialise a register field
1106 * in a register map.
1108 * @regmap: regmap bank in which this register field is located.
1109 * @reg_field: Register field with in the bank.
1111 * The return value will be an ERR_PTR() on error or a valid pointer
1112 * to a struct regmap_field. The regmap_field should be freed by the
1113 * user once its finished working with it using regmap_field_free().
1115 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1116 struct reg_field reg_field)
1118 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1120 if (!rm_field)
1121 return ERR_PTR(-ENOMEM);
1123 regmap_field_init(rm_field, regmap, reg_field);
1125 return rm_field;
1127 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1130 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1132 * @field: regmap field which should be freed.
1134 void regmap_field_free(struct regmap_field *field)
1136 kfree(field);
1138 EXPORT_SYMBOL_GPL(regmap_field_free);
1141 * regmap_reinit_cache(): Reinitialise the current register cache
1143 * @map: Register map to operate on.
1144 * @config: New configuration. Only the cache data will be used.
1146 * Discard any existing register cache for the map and initialize a
1147 * new cache. This can be used to restore the cache to defaults or to
1148 * update the cache configuration to reflect runtime discovery of the
1149 * hardware.
1151 * No explicit locking is done here, the user needs to ensure that
1152 * this function will not race with other calls to regmap.
1154 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1156 regcache_exit(map);
1157 regmap_debugfs_exit(map);
1159 map->max_register = config->max_register;
1160 map->writeable_reg = config->writeable_reg;
1161 map->readable_reg = config->readable_reg;
1162 map->volatile_reg = config->volatile_reg;
1163 map->precious_reg = config->precious_reg;
1164 map->cache_type = config->cache_type;
1166 regmap_debugfs_init(map, config->name);
1168 map->cache_bypass = false;
1169 map->cache_only = false;
1171 return regcache_init(map, config);
1173 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1176 * regmap_exit(): Free a previously allocated register map
1178 void regmap_exit(struct regmap *map)
1180 struct regmap_async *async;
1182 regcache_exit(map);
1183 regmap_debugfs_exit(map);
1184 regmap_range_exit(map);
1185 if (map->bus && map->bus->free_context)
1186 map->bus->free_context(map->bus_context);
1187 kfree(map->work_buf);
1188 while (!list_empty(&map->async_free)) {
1189 async = list_first_entry_or_null(&map->async_free,
1190 struct regmap_async,
1191 list);
1192 list_del(&async->list);
1193 kfree(async->work_buf);
1194 kfree(async);
1196 kfree(map);
1198 EXPORT_SYMBOL_GPL(regmap_exit);
1200 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1202 struct regmap **r = res;
1203 if (!r || !*r) {
1204 WARN_ON(!r || !*r);
1205 return 0;
1208 /* If the user didn't specify a name match any */
1209 if (data)
1210 return (*r)->name == data;
1211 else
1212 return 1;
1216 * dev_get_regmap(): Obtain the regmap (if any) for a device
1218 * @dev: Device to retrieve the map for
1219 * @name: Optional name for the register map, usually NULL.
1221 * Returns the regmap for the device if one is present, or NULL. If
1222 * name is specified then it must match the name specified when
1223 * registering the device, if it is NULL then the first regmap found
1224 * will be used. Devices with multiple register maps are very rare,
1225 * generic code should normally not need to specify a name.
1227 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1229 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1230 dev_get_regmap_match, (void *)name);
1232 if (!r)
1233 return NULL;
1234 return *r;
1236 EXPORT_SYMBOL_GPL(dev_get_regmap);
1239 * regmap_get_device(): Obtain the device from a regmap
1241 * @map: Register map to operate on.
1243 * Returns the underlying device that the regmap has been created for.
1245 struct device *regmap_get_device(struct regmap *map)
1247 return map->dev;
1249 EXPORT_SYMBOL_GPL(regmap_get_device);
1251 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1252 struct regmap_range_node *range,
1253 unsigned int val_num)
1255 void *orig_work_buf;
1256 unsigned int win_offset;
1257 unsigned int win_page;
1258 bool page_chg;
1259 int ret;
1261 win_offset = (*reg - range->range_min) % range->window_len;
1262 win_page = (*reg - range->range_min) / range->window_len;
1264 if (val_num > 1) {
1265 /* Bulk write shouldn't cross range boundary */
1266 if (*reg + val_num - 1 > range->range_max)
1267 return -EINVAL;
1269 /* ... or single page boundary */
1270 if (val_num > range->window_len - win_offset)
1271 return -EINVAL;
1274 /* It is possible to have selector register inside data window.
1275 In that case, selector register is located on every page and
1276 it needs no page switching, when accessed alone. */
1277 if (val_num > 1 ||
1278 range->window_start + win_offset != range->selector_reg) {
1279 /* Use separate work_buf during page switching */
1280 orig_work_buf = map->work_buf;
1281 map->work_buf = map->selector_work_buf;
1283 ret = _regmap_update_bits(map, range->selector_reg,
1284 range->selector_mask,
1285 win_page << range->selector_shift,
1286 &page_chg, false);
1288 map->work_buf = orig_work_buf;
1290 if (ret != 0)
1291 return ret;
1294 *reg = range->window_start + win_offset;
1296 return 0;
1299 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1300 const void *val, size_t val_len)
1302 struct regmap_range_node *range;
1303 unsigned long flags;
1304 u8 *u8 = map->work_buf;
1305 void *work_val = map->work_buf + map->format.reg_bytes +
1306 map->format.pad_bytes;
1307 void *buf;
1308 int ret = -ENOTSUPP;
1309 size_t len;
1310 int i;
1312 WARN_ON(!map->bus);
1314 /* Check for unwritable registers before we start */
1315 if (map->writeable_reg)
1316 for (i = 0; i < val_len / map->format.val_bytes; i++)
1317 if (!map->writeable_reg(map->dev,
1318 reg + regmap_get_offset(map, i)))
1319 return -EINVAL;
1321 if (!map->cache_bypass && map->format.parse_val) {
1322 unsigned int ival;
1323 int val_bytes = map->format.val_bytes;
1324 for (i = 0; i < val_len / val_bytes; i++) {
1325 ival = map->format.parse_val(val + (i * val_bytes));
1326 ret = regcache_write(map,
1327 reg + regmap_get_offset(map, i),
1328 ival);
1329 if (ret) {
1330 dev_err(map->dev,
1331 "Error in caching of register: %x ret: %d\n",
1332 reg + i, ret);
1333 return ret;
1336 if (map->cache_only) {
1337 map->cache_dirty = true;
1338 return 0;
1342 range = _regmap_range_lookup(map, reg);
1343 if (range) {
1344 int val_num = val_len / map->format.val_bytes;
1345 int win_offset = (reg - range->range_min) % range->window_len;
1346 int win_residue = range->window_len - win_offset;
1348 /* If the write goes beyond the end of the window split it */
1349 while (val_num > win_residue) {
1350 dev_dbg(map->dev, "Writing window %d/%zu\n",
1351 win_residue, val_len / map->format.val_bytes);
1352 ret = _regmap_raw_write(map, reg, val, win_residue *
1353 map->format.val_bytes);
1354 if (ret != 0)
1355 return ret;
1357 reg += win_residue;
1358 val_num -= win_residue;
1359 val += win_residue * map->format.val_bytes;
1360 val_len -= win_residue * map->format.val_bytes;
1362 win_offset = (reg - range->range_min) %
1363 range->window_len;
1364 win_residue = range->window_len - win_offset;
1367 ret = _regmap_select_page(map, &reg, range, val_num);
1368 if (ret != 0)
1369 return ret;
1372 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1374 u8[0] |= map->write_flag_mask;
1377 * Essentially all I/O mechanisms will be faster with a single
1378 * buffer to write. Since register syncs often generate raw
1379 * writes of single registers optimise that case.
1381 if (val != work_val && val_len == map->format.val_bytes) {
1382 memcpy(work_val, val, map->format.val_bytes);
1383 val = work_val;
1386 if (map->async && map->bus->async_write) {
1387 struct regmap_async *async;
1389 trace_regmap_async_write_start(map, reg, val_len);
1391 spin_lock_irqsave(&map->async_lock, flags);
1392 async = list_first_entry_or_null(&map->async_free,
1393 struct regmap_async,
1394 list);
1395 if (async)
1396 list_del(&async->list);
1397 spin_unlock_irqrestore(&map->async_lock, flags);
1399 if (!async) {
1400 async = map->bus->async_alloc();
1401 if (!async)
1402 return -ENOMEM;
1404 async->work_buf = kzalloc(map->format.buf_size,
1405 GFP_KERNEL | GFP_DMA);
1406 if (!async->work_buf) {
1407 kfree(async);
1408 return -ENOMEM;
1412 async->map = map;
1414 /* If the caller supplied the value we can use it safely. */
1415 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1416 map->format.reg_bytes + map->format.val_bytes);
1418 spin_lock_irqsave(&map->async_lock, flags);
1419 list_add_tail(&async->list, &map->async_list);
1420 spin_unlock_irqrestore(&map->async_lock, flags);
1422 if (val != work_val)
1423 ret = map->bus->async_write(map->bus_context,
1424 async->work_buf,
1425 map->format.reg_bytes +
1426 map->format.pad_bytes,
1427 val, val_len, async);
1428 else
1429 ret = map->bus->async_write(map->bus_context,
1430 async->work_buf,
1431 map->format.reg_bytes +
1432 map->format.pad_bytes +
1433 val_len, NULL, 0, async);
1435 if (ret != 0) {
1436 dev_err(map->dev, "Failed to schedule write: %d\n",
1437 ret);
1439 spin_lock_irqsave(&map->async_lock, flags);
1440 list_move(&async->list, &map->async_free);
1441 spin_unlock_irqrestore(&map->async_lock, flags);
1444 return ret;
1447 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1449 /* If we're doing a single register write we can probably just
1450 * send the work_buf directly, otherwise try to do a gather
1451 * write.
1453 if (val == work_val)
1454 ret = map->bus->write(map->bus_context, map->work_buf,
1455 map->format.reg_bytes +
1456 map->format.pad_bytes +
1457 val_len);
1458 else if (map->bus->gather_write)
1459 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1460 map->format.reg_bytes +
1461 map->format.pad_bytes,
1462 val, val_len);
1464 /* If that didn't work fall back on linearising by hand. */
1465 if (ret == -ENOTSUPP) {
1466 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1467 buf = kzalloc(len, GFP_KERNEL);
1468 if (!buf)
1469 return -ENOMEM;
1471 memcpy(buf, map->work_buf, map->format.reg_bytes);
1472 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1473 val, val_len);
1474 ret = map->bus->write(map->bus_context, buf, len);
1476 kfree(buf);
1479 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1481 return ret;
1485 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1487 * @map: Map to check.
1489 bool regmap_can_raw_write(struct regmap *map)
1491 return map->bus && map->bus->write && map->format.format_val &&
1492 map->format.format_reg;
1494 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1497 * regmap_get_raw_read_max - Get the maximum size we can read
1499 * @map: Map to check.
1501 size_t regmap_get_raw_read_max(struct regmap *map)
1503 return map->max_raw_read;
1505 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1508 * regmap_get_raw_write_max - Get the maximum size we can read
1510 * @map: Map to check.
1512 size_t regmap_get_raw_write_max(struct regmap *map)
1514 return map->max_raw_write;
1516 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1518 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1519 unsigned int val)
1521 int ret;
1522 struct regmap_range_node *range;
1523 struct regmap *map = context;
1525 WARN_ON(!map->bus || !map->format.format_write);
1527 range = _regmap_range_lookup(map, reg);
1528 if (range) {
1529 ret = _regmap_select_page(map, &reg, range, 1);
1530 if (ret != 0)
1531 return ret;
1534 map->format.format_write(map, reg, val);
1536 trace_regmap_hw_write_start(map, reg, 1);
1538 ret = map->bus->write(map->bus_context, map->work_buf,
1539 map->format.buf_size);
1541 trace_regmap_hw_write_done(map, reg, 1);
1543 return ret;
1546 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1547 unsigned int val)
1549 struct regmap *map = context;
1551 return map->bus->reg_write(map->bus_context, reg, val);
1554 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1555 unsigned int val)
1557 struct regmap *map = context;
1559 WARN_ON(!map->bus || !map->format.format_val);
1561 map->format.format_val(map->work_buf + map->format.reg_bytes
1562 + map->format.pad_bytes, val, 0);
1563 return _regmap_raw_write(map, reg,
1564 map->work_buf +
1565 map->format.reg_bytes +
1566 map->format.pad_bytes,
1567 map->format.val_bytes);
1570 static inline void *_regmap_map_get_context(struct regmap *map)
1572 return (map->bus) ? map : map->bus_context;
1575 int _regmap_write(struct regmap *map, unsigned int reg,
1576 unsigned int val)
1578 int ret;
1579 void *context = _regmap_map_get_context(map);
1581 if (!regmap_writeable(map, reg))
1582 return -EIO;
1584 if (!map->cache_bypass && !map->defer_caching) {
1585 ret = regcache_write(map, reg, val);
1586 if (ret != 0)
1587 return ret;
1588 if (map->cache_only) {
1589 map->cache_dirty = true;
1590 return 0;
1594 #ifdef LOG_DEVICE
1595 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1596 dev_info(map->dev, "%x <= %x\n", reg, val);
1597 #endif
1599 trace_regmap_reg_write(map, reg, val);
1601 return map->reg_write(context, reg, val);
1605 * regmap_write(): Write a value to a single register
1607 * @map: Register map to write to
1608 * @reg: Register to write to
1609 * @val: Value to be written
1611 * A value of zero will be returned on success, a negative errno will
1612 * be returned in error cases.
1614 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1616 int ret;
1618 if (!IS_ALIGNED(reg, map->reg_stride))
1619 return -EINVAL;
1621 map->lock(map->lock_arg);
1623 ret = _regmap_write(map, reg, val);
1625 map->unlock(map->lock_arg);
1627 return ret;
1629 EXPORT_SYMBOL_GPL(regmap_write);
1632 * regmap_write_async(): Write a value to a single register asynchronously
1634 * @map: Register map to write to
1635 * @reg: Register to write to
1636 * @val: Value to be written
1638 * A value of zero will be returned on success, a negative errno will
1639 * be returned in error cases.
1641 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1643 int ret;
1645 if (!IS_ALIGNED(reg, map->reg_stride))
1646 return -EINVAL;
1648 map->lock(map->lock_arg);
1650 map->async = true;
1652 ret = _regmap_write(map, reg, val);
1654 map->async = false;
1656 map->unlock(map->lock_arg);
1658 return ret;
1660 EXPORT_SYMBOL_GPL(regmap_write_async);
1663 * regmap_raw_write(): Write raw values to one or more registers
1665 * @map: Register map to write to
1666 * @reg: Initial register to write to
1667 * @val: Block of data to be written, laid out for direct transmission to the
1668 * device
1669 * @val_len: Length of data pointed to by val.
1671 * This function is intended to be used for things like firmware
1672 * download where a large block of data needs to be transferred to the
1673 * device. No formatting will be done on the data provided.
1675 * A value of zero will be returned on success, a negative errno will
1676 * be returned in error cases.
1678 int regmap_raw_write(struct regmap *map, unsigned int reg,
1679 const void *val, size_t val_len)
1681 int ret;
1683 if (!regmap_can_raw_write(map))
1684 return -EINVAL;
1685 if (val_len % map->format.val_bytes)
1686 return -EINVAL;
1687 if (map->max_raw_write && map->max_raw_write > val_len)
1688 return -E2BIG;
1690 map->lock(map->lock_arg);
1692 ret = _regmap_raw_write(map, reg, val, val_len);
1694 map->unlock(map->lock_arg);
1696 return ret;
1698 EXPORT_SYMBOL_GPL(regmap_raw_write);
1701 * regmap_field_update_bits_base():
1702 * Perform a read/modify/write cycle on the register field
1703 * with change, async, force option
1705 * @field: Register field to write to
1706 * @mask: Bitmask to change
1707 * @val: Value to be written
1708 * @change: Boolean indicating if a write was done
1709 * @async: Boolean indicating asynchronously
1710 * @force: Boolean indicating use force update
1712 * A value of zero will be returned on success, a negative errno will
1713 * be returned in error cases.
1715 int regmap_field_update_bits_base(struct regmap_field *field,
1716 unsigned int mask, unsigned int val,
1717 bool *change, bool async, bool force)
1719 mask = (mask << field->shift) & field->mask;
1721 return regmap_update_bits_base(field->regmap, field->reg,
1722 mask, val << field->shift,
1723 change, async, force);
1725 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1728 * regmap_fields_update_bits_base():
1729 * Perform a read/modify/write cycle on the register field
1730 * with change, async, force option
1732 * @field: Register field to write to
1733 * @id: port ID
1734 * @mask: Bitmask to change
1735 * @val: Value to be written
1736 * @change: Boolean indicating if a write was done
1737 * @async: Boolean indicating asynchronously
1738 * @force: Boolean indicating use force update
1740 * A value of zero will be returned on success, a negative errno will
1741 * be returned in error cases.
1743 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
1744 unsigned int mask, unsigned int val,
1745 bool *change, bool async, bool force)
1747 if (id >= field->id_size)
1748 return -EINVAL;
1750 mask = (mask << field->shift) & field->mask;
1752 return regmap_update_bits_base(field->regmap,
1753 field->reg + (field->id_offset * id),
1754 mask, val << field->shift,
1755 change, async, force);
1757 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1760 * regmap_bulk_write(): Write multiple registers to the device
1762 * @map: Register map to write to
1763 * @reg: First register to be write from
1764 * @val: Block of data to be written, in native register size for device
1765 * @val_count: Number of registers to write
1767 * This function is intended to be used for writing a large block of
1768 * data to the device either in single transfer or multiple transfer.
1770 * A value of zero will be returned on success, a negative errno will
1771 * be returned in error cases.
1773 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1774 size_t val_count)
1776 int ret = 0, i;
1777 size_t val_bytes = map->format.val_bytes;
1778 size_t total_size = val_bytes * val_count;
1780 if (map->bus && !map->format.parse_inplace)
1781 return -EINVAL;
1782 if (!IS_ALIGNED(reg, map->reg_stride))
1783 return -EINVAL;
1786 * Some devices don't support bulk write, for
1787 * them we have a series of single write operations in the first two if
1788 * blocks.
1790 * The first if block is used for memory mapped io. It does not allow
1791 * val_bytes of 3 for example.
1792 * The second one is used for busses which do not have this limitation
1793 * and can write arbitrary value lengths.
1795 if (!map->bus) {
1796 map->lock(map->lock_arg);
1797 for (i = 0; i < val_count; i++) {
1798 unsigned int ival;
1800 switch (val_bytes) {
1801 case 1:
1802 ival = *(u8 *)(val + (i * val_bytes));
1803 break;
1804 case 2:
1805 ival = *(u16 *)(val + (i * val_bytes));
1806 break;
1807 case 4:
1808 ival = *(u32 *)(val + (i * val_bytes));
1809 break;
1810 #ifdef CONFIG_64BIT
1811 case 8:
1812 ival = *(u64 *)(val + (i * val_bytes));
1813 break;
1814 #endif
1815 default:
1816 ret = -EINVAL;
1817 goto out;
1820 ret = _regmap_write(map,
1821 reg + regmap_get_offset(map, i),
1822 ival);
1823 if (ret != 0)
1824 goto out;
1826 out:
1827 map->unlock(map->lock_arg);
1828 } else if (map->use_single_write ||
1829 (map->max_raw_write && map->max_raw_write < total_size)) {
1830 int chunk_stride = map->reg_stride;
1831 size_t chunk_size = val_bytes;
1832 size_t chunk_count = val_count;
1834 if (!map->use_single_write) {
1835 chunk_size = map->max_raw_write;
1836 if (chunk_size % val_bytes)
1837 chunk_size -= chunk_size % val_bytes;
1838 chunk_count = total_size / chunk_size;
1839 chunk_stride *= chunk_size / val_bytes;
1842 map->lock(map->lock_arg);
1843 /* Write as many bytes as possible with chunk_size */
1844 for (i = 0; i < chunk_count; i++) {
1845 ret = _regmap_raw_write(map,
1846 reg + (i * chunk_stride),
1847 val + (i * chunk_size),
1848 chunk_size);
1849 if (ret)
1850 break;
1853 /* Write remaining bytes */
1854 if (!ret && chunk_size * i < total_size) {
1855 ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1856 val + (i * chunk_size),
1857 total_size - i * chunk_size);
1859 map->unlock(map->lock_arg);
1860 } else {
1861 void *wval;
1863 if (!val_count)
1864 return -EINVAL;
1866 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1867 if (!wval) {
1868 dev_err(map->dev, "Error in memory allocation\n");
1869 return -ENOMEM;
1871 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1872 map->format.parse_inplace(wval + i);
1874 map->lock(map->lock_arg);
1875 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1876 map->unlock(map->lock_arg);
1878 kfree(wval);
1880 return ret;
1882 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1885 * _regmap_raw_multi_reg_write()
1887 * the (register,newvalue) pairs in regs have not been formatted, but
1888 * they are all in the same page and have been changed to being page
1889 * relative. The page register has been written if that was necessary.
1891 static int _regmap_raw_multi_reg_write(struct regmap *map,
1892 const struct reg_sequence *regs,
1893 size_t num_regs)
1895 int ret;
1896 void *buf;
1897 int i;
1898 u8 *u8;
1899 size_t val_bytes = map->format.val_bytes;
1900 size_t reg_bytes = map->format.reg_bytes;
1901 size_t pad_bytes = map->format.pad_bytes;
1902 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1903 size_t len = pair_size * num_regs;
1905 if (!len)
1906 return -EINVAL;
1908 buf = kzalloc(len, GFP_KERNEL);
1909 if (!buf)
1910 return -ENOMEM;
1912 /* We have to linearise by hand. */
1914 u8 = buf;
1916 for (i = 0; i < num_regs; i++) {
1917 unsigned int reg = regs[i].reg;
1918 unsigned int val = regs[i].def;
1919 trace_regmap_hw_write_start(map, reg, 1);
1920 map->format.format_reg(u8, reg, map->reg_shift);
1921 u8 += reg_bytes + pad_bytes;
1922 map->format.format_val(u8, val, 0);
1923 u8 += val_bytes;
1925 u8 = buf;
1926 *u8 |= map->write_flag_mask;
1928 ret = map->bus->write(map->bus_context, buf, len);
1930 kfree(buf);
1932 for (i = 0; i < num_regs; i++) {
1933 int reg = regs[i].reg;
1934 trace_regmap_hw_write_done(map, reg, 1);
1936 return ret;
1939 static unsigned int _regmap_register_page(struct regmap *map,
1940 unsigned int reg,
1941 struct regmap_range_node *range)
1943 unsigned int win_page = (reg - range->range_min) / range->window_len;
1945 return win_page;
1948 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1949 struct reg_sequence *regs,
1950 size_t num_regs)
1952 int ret;
1953 int i, n;
1954 struct reg_sequence *base;
1955 unsigned int this_page = 0;
1956 unsigned int page_change = 0;
1958 * the set of registers are not neccessarily in order, but
1959 * since the order of write must be preserved this algorithm
1960 * chops the set each time the page changes. This also applies
1961 * if there is a delay required at any point in the sequence.
1963 base = regs;
1964 for (i = 0, n = 0; i < num_regs; i++, n++) {
1965 unsigned int reg = regs[i].reg;
1966 struct regmap_range_node *range;
1968 range = _regmap_range_lookup(map, reg);
1969 if (range) {
1970 unsigned int win_page = _regmap_register_page(map, reg,
1971 range);
1973 if (i == 0)
1974 this_page = win_page;
1975 if (win_page != this_page) {
1976 this_page = win_page;
1977 page_change = 1;
1981 /* If we have both a page change and a delay make sure to
1982 * write the regs and apply the delay before we change the
1983 * page.
1986 if (page_change || regs[i].delay_us) {
1988 /* For situations where the first write requires
1989 * a delay we need to make sure we don't call
1990 * raw_multi_reg_write with n=0
1991 * This can't occur with page breaks as we
1992 * never write on the first iteration
1994 if (regs[i].delay_us && i == 0)
1995 n = 1;
1997 ret = _regmap_raw_multi_reg_write(map, base, n);
1998 if (ret != 0)
1999 return ret;
2001 if (regs[i].delay_us)
2002 udelay(regs[i].delay_us);
2004 base += n;
2005 n = 0;
2007 if (page_change) {
2008 ret = _regmap_select_page(map,
2009 &base[n].reg,
2010 range, 1);
2011 if (ret != 0)
2012 return ret;
2014 page_change = 0;
2020 if (n > 0)
2021 return _regmap_raw_multi_reg_write(map, base, n);
2022 return 0;
2025 static int _regmap_multi_reg_write(struct regmap *map,
2026 const struct reg_sequence *regs,
2027 size_t num_regs)
2029 int i;
2030 int ret;
2032 if (!map->can_multi_write) {
2033 for (i = 0; i < num_regs; i++) {
2034 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2035 if (ret != 0)
2036 return ret;
2038 if (regs[i].delay_us)
2039 udelay(regs[i].delay_us);
2041 return 0;
2044 if (!map->format.parse_inplace)
2045 return -EINVAL;
2047 if (map->writeable_reg)
2048 for (i = 0; i < num_regs; i++) {
2049 int reg = regs[i].reg;
2050 if (!map->writeable_reg(map->dev, reg))
2051 return -EINVAL;
2052 if (!IS_ALIGNED(reg, map->reg_stride))
2053 return -EINVAL;
2056 if (!map->cache_bypass) {
2057 for (i = 0; i < num_regs; i++) {
2058 unsigned int val = regs[i].def;
2059 unsigned int reg = regs[i].reg;
2060 ret = regcache_write(map, reg, val);
2061 if (ret) {
2062 dev_err(map->dev,
2063 "Error in caching of register: %x ret: %d\n",
2064 reg, ret);
2065 return ret;
2068 if (map->cache_only) {
2069 map->cache_dirty = true;
2070 return 0;
2074 WARN_ON(!map->bus);
2076 for (i = 0; i < num_regs; i++) {
2077 unsigned int reg = regs[i].reg;
2078 struct regmap_range_node *range;
2080 /* Coalesce all the writes between a page break or a delay
2081 * in a sequence
2083 range = _regmap_range_lookup(map, reg);
2084 if (range || regs[i].delay_us) {
2085 size_t len = sizeof(struct reg_sequence)*num_regs;
2086 struct reg_sequence *base = kmemdup(regs, len,
2087 GFP_KERNEL);
2088 if (!base)
2089 return -ENOMEM;
2090 ret = _regmap_range_multi_paged_reg_write(map, base,
2091 num_regs);
2092 kfree(base);
2094 return ret;
2097 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2101 * regmap_multi_reg_write(): Write multiple registers to the device
2103 * where the set of register,value pairs are supplied in any order,
2104 * possibly not all in a single range.
2106 * @map: Register map to write to
2107 * @regs: Array of structures containing register,value to be written
2108 * @num_regs: Number of registers to write
2110 * The 'normal' block write mode will send ultimately send data on the
2111 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2112 * addressed. However, this alternative block multi write mode will send
2113 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2114 * must of course support the mode.
2116 * A value of zero will be returned on success, a negative errno will be
2117 * returned in error cases.
2119 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2120 int num_regs)
2122 int ret;
2124 map->lock(map->lock_arg);
2126 ret = _regmap_multi_reg_write(map, regs, num_regs);
2128 map->unlock(map->lock_arg);
2130 return ret;
2132 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2135 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2136 * device but not the cache
2138 * where the set of register are supplied in any order
2140 * @map: Register map to write to
2141 * @regs: Array of structures containing register,value to be written
2142 * @num_regs: Number of registers to write
2144 * This function is intended to be used for writing a large block of data
2145 * atomically to the device in single transfer for those I2C client devices
2146 * that implement this alternative block write mode.
2148 * A value of zero will be returned on success, a negative errno will
2149 * be returned in error cases.
2151 int regmap_multi_reg_write_bypassed(struct regmap *map,
2152 const struct reg_sequence *regs,
2153 int num_regs)
2155 int ret;
2156 bool bypass;
2158 map->lock(map->lock_arg);
2160 bypass = map->cache_bypass;
2161 map->cache_bypass = true;
2163 ret = _regmap_multi_reg_write(map, regs, num_regs);
2165 map->cache_bypass = bypass;
2167 map->unlock(map->lock_arg);
2169 return ret;
2171 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2174 * regmap_raw_write_async(): Write raw values to one or more registers
2175 * asynchronously
2177 * @map: Register map to write to
2178 * @reg: Initial register to write to
2179 * @val: Block of data to be written, laid out for direct transmission to the
2180 * device. Must be valid until regmap_async_complete() is called.
2181 * @val_len: Length of data pointed to by val.
2183 * This function is intended to be used for things like firmware
2184 * download where a large block of data needs to be transferred to the
2185 * device. No formatting will be done on the data provided.
2187 * If supported by the underlying bus the write will be scheduled
2188 * asynchronously, helping maximise I/O speed on higher speed buses
2189 * like SPI. regmap_async_complete() can be called to ensure that all
2190 * asynchrnous writes have been completed.
2192 * A value of zero will be returned on success, a negative errno will
2193 * be returned in error cases.
2195 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2196 const void *val, size_t val_len)
2198 int ret;
2200 if (val_len % map->format.val_bytes)
2201 return -EINVAL;
2202 if (!IS_ALIGNED(reg, map->reg_stride))
2203 return -EINVAL;
2205 map->lock(map->lock_arg);
2207 map->async = true;
2209 ret = _regmap_raw_write(map, reg, val, val_len);
2211 map->async = false;
2213 map->unlock(map->lock_arg);
2215 return ret;
2217 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2219 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2220 unsigned int val_len)
2222 struct regmap_range_node *range;
2223 u8 *u8 = map->work_buf;
2224 int ret;
2226 WARN_ON(!map->bus);
2228 if (!map->bus || !map->bus->read)
2229 return -EINVAL;
2231 range = _regmap_range_lookup(map, reg);
2232 if (range) {
2233 ret = _regmap_select_page(map, &reg, range,
2234 val_len / map->format.val_bytes);
2235 if (ret != 0)
2236 return ret;
2239 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2242 * Some buses or devices flag reads by setting the high bits in the
2243 * register address; since it's always the high bits for all
2244 * current formats we can do this here rather than in
2245 * formatting. This may break if we get interesting formats.
2247 u8[0] |= map->read_flag_mask;
2249 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2251 ret = map->bus->read(map->bus_context, map->work_buf,
2252 map->format.reg_bytes + map->format.pad_bytes,
2253 val, val_len);
2255 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2257 return ret;
2260 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2261 unsigned int *val)
2263 struct regmap *map = context;
2265 return map->bus->reg_read(map->bus_context, reg, val);
2268 static int _regmap_bus_read(void *context, unsigned int reg,
2269 unsigned int *val)
2271 int ret;
2272 struct regmap *map = context;
2274 if (!map->format.parse_val)
2275 return -EINVAL;
2277 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2278 if (ret == 0)
2279 *val = map->format.parse_val(map->work_buf);
2281 return ret;
2284 static int _regmap_read(struct regmap *map, unsigned int reg,
2285 unsigned int *val)
2287 int ret;
2288 void *context = _regmap_map_get_context(map);
2290 if (!map->cache_bypass) {
2291 ret = regcache_read(map, reg, val);
2292 if (ret == 0)
2293 return 0;
2296 if (map->cache_only)
2297 return -EBUSY;
2299 if (!regmap_readable(map, reg))
2300 return -EIO;
2302 ret = map->reg_read(context, reg, val);
2303 if (ret == 0) {
2304 #ifdef LOG_DEVICE
2305 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2306 dev_info(map->dev, "%x => %x\n", reg, *val);
2307 #endif
2309 trace_regmap_reg_read(map, reg, *val);
2311 if (!map->cache_bypass)
2312 regcache_write(map, reg, *val);
2315 return ret;
2319 * regmap_read(): Read a value from a single register
2321 * @map: Register map to read from
2322 * @reg: Register to be read from
2323 * @val: Pointer to store read value
2325 * A value of zero will be returned on success, a negative errno will
2326 * be returned in error cases.
2328 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2330 int ret;
2332 if (!IS_ALIGNED(reg, map->reg_stride))
2333 return -EINVAL;
2335 map->lock(map->lock_arg);
2337 ret = _regmap_read(map, reg, val);
2339 map->unlock(map->lock_arg);
2341 return ret;
2343 EXPORT_SYMBOL_GPL(regmap_read);
2346 * regmap_raw_read(): Read raw data from the device
2348 * @map: Register map to read from
2349 * @reg: First register to be read from
2350 * @val: Pointer to store read value
2351 * @val_len: Size of data to read
2353 * A value of zero will be returned on success, a negative errno will
2354 * be returned in error cases.
2356 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2357 size_t val_len)
2359 size_t val_bytes = map->format.val_bytes;
2360 size_t val_count = val_len / val_bytes;
2361 unsigned int v;
2362 int ret, i;
2364 if (!map->bus)
2365 return -EINVAL;
2366 if (val_len % map->format.val_bytes)
2367 return -EINVAL;
2368 if (!IS_ALIGNED(reg, map->reg_stride))
2369 return -EINVAL;
2370 if (val_count == 0)
2371 return -EINVAL;
2373 map->lock(map->lock_arg);
2375 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2376 map->cache_type == REGCACHE_NONE) {
2377 if (!map->bus->read) {
2378 ret = -ENOTSUPP;
2379 goto out;
2381 if (map->max_raw_read && map->max_raw_read < val_len) {
2382 ret = -E2BIG;
2383 goto out;
2386 /* Physical block read if there's no cache involved */
2387 ret = _regmap_raw_read(map, reg, val, val_len);
2389 } else {
2390 /* Otherwise go word by word for the cache; should be low
2391 * cost as we expect to hit the cache.
2393 for (i = 0; i < val_count; i++) {
2394 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2395 &v);
2396 if (ret != 0)
2397 goto out;
2399 map->format.format_val(val + (i * val_bytes), v, 0);
2403 out:
2404 map->unlock(map->lock_arg);
2406 return ret;
2408 EXPORT_SYMBOL_GPL(regmap_raw_read);
2411 * regmap_field_read(): Read a value to a single register field
2413 * @field: Register field to read from
2414 * @val: Pointer to store read value
2416 * A value of zero will be returned on success, a negative errno will
2417 * be returned in error cases.
2419 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2421 int ret;
2422 unsigned int reg_val;
2423 ret = regmap_read(field->regmap, field->reg, &reg_val);
2424 if (ret != 0)
2425 return ret;
2427 reg_val &= field->mask;
2428 reg_val >>= field->shift;
2429 *val = reg_val;
2431 return ret;
2433 EXPORT_SYMBOL_GPL(regmap_field_read);
2436 * regmap_fields_read(): Read a value to a single register field with port ID
2438 * @field: Register field to read from
2439 * @id: port ID
2440 * @val: Pointer to store read value
2442 * A value of zero will be returned on success, a negative errno will
2443 * be returned in error cases.
2445 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2446 unsigned int *val)
2448 int ret;
2449 unsigned int reg_val;
2451 if (id >= field->id_size)
2452 return -EINVAL;
2454 ret = regmap_read(field->regmap,
2455 field->reg + (field->id_offset * id),
2456 &reg_val);
2457 if (ret != 0)
2458 return ret;
2460 reg_val &= field->mask;
2461 reg_val >>= field->shift;
2462 *val = reg_val;
2464 return ret;
2466 EXPORT_SYMBOL_GPL(regmap_fields_read);
2469 * regmap_bulk_read(): Read multiple registers from the device
2471 * @map: Register map to read from
2472 * @reg: First register to be read from
2473 * @val: Pointer to store read value, in native register size for device
2474 * @val_count: Number of registers to read
2476 * A value of zero will be returned on success, a negative errno will
2477 * be returned in error cases.
2479 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2480 size_t val_count)
2482 int ret, i;
2483 size_t val_bytes = map->format.val_bytes;
2484 bool vol = regmap_volatile_range(map, reg, val_count);
2486 if (!IS_ALIGNED(reg, map->reg_stride))
2487 return -EINVAL;
2489 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2491 * Some devices does not support bulk read, for
2492 * them we have a series of single read operations.
2494 size_t total_size = val_bytes * val_count;
2496 if (!map->use_single_read &&
2497 (!map->max_raw_read || map->max_raw_read > total_size)) {
2498 ret = regmap_raw_read(map, reg, val,
2499 val_bytes * val_count);
2500 if (ret != 0)
2501 return ret;
2502 } else {
2504 * Some devices do not support bulk read or do not
2505 * support large bulk reads, for them we have a series
2506 * of read operations.
2508 int chunk_stride = map->reg_stride;
2509 size_t chunk_size = val_bytes;
2510 size_t chunk_count = val_count;
2512 if (!map->use_single_read) {
2513 chunk_size = map->max_raw_read;
2514 if (chunk_size % val_bytes)
2515 chunk_size -= chunk_size % val_bytes;
2516 chunk_count = total_size / chunk_size;
2517 chunk_stride *= chunk_size / val_bytes;
2520 /* Read bytes that fit into a multiple of chunk_size */
2521 for (i = 0; i < chunk_count; i++) {
2522 ret = regmap_raw_read(map,
2523 reg + (i * chunk_stride),
2524 val + (i * chunk_size),
2525 chunk_size);
2526 if (ret != 0)
2527 return ret;
2530 /* Read remaining bytes */
2531 if (chunk_size * i < total_size) {
2532 ret = regmap_raw_read(map,
2533 reg + (i * chunk_stride),
2534 val + (i * chunk_size),
2535 total_size - i * chunk_size);
2536 if (ret != 0)
2537 return ret;
2541 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2542 map->format.parse_inplace(val + i);
2543 } else {
2544 for (i = 0; i < val_count; i++) {
2545 unsigned int ival;
2546 ret = regmap_read(map, reg + regmap_get_offset(map, i),
2547 &ival);
2548 if (ret != 0)
2549 return ret;
2551 if (map->format.format_val) {
2552 map->format.format_val(val + (i * val_bytes), ival, 0);
2553 } else {
2554 /* Devices providing read and write
2555 * operations can use the bulk I/O
2556 * functions if they define a val_bytes,
2557 * we assume that the values are native
2558 * endian.
2560 #ifdef CONFIG_64BIT
2561 u64 *u64 = val;
2562 #endif
2563 u32 *u32 = val;
2564 u16 *u16 = val;
2565 u8 *u8 = val;
2567 switch (map->format.val_bytes) {
2568 #ifdef CONFIG_64BIT
2569 case 8:
2570 u64[i] = ival;
2571 break;
2572 #endif
2573 case 4:
2574 u32[i] = ival;
2575 break;
2576 case 2:
2577 u16[i] = ival;
2578 break;
2579 case 1:
2580 u8[i] = ival;
2581 break;
2582 default:
2583 return -EINVAL;
2589 return 0;
2591 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2593 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2594 unsigned int mask, unsigned int val,
2595 bool *change, bool force_write)
2597 int ret;
2598 unsigned int tmp, orig;
2600 if (change)
2601 *change = false;
2603 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2604 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2605 if (ret == 0 && change)
2606 *change = true;
2607 } else {
2608 ret = _regmap_read(map, reg, &orig);
2609 if (ret != 0)
2610 return ret;
2612 tmp = orig & ~mask;
2613 tmp |= val & mask;
2615 if (force_write || (tmp != orig)) {
2616 ret = _regmap_write(map, reg, tmp);
2617 if (ret == 0 && change)
2618 *change = true;
2622 return ret;
2626 * regmap_update_bits_base:
2627 * Perform a read/modify/write cycle on the
2628 * register map with change, async, force option
2630 * @map: Register map to update
2631 * @reg: Register to update
2632 * @mask: Bitmask to change
2633 * @val: New value for bitmask
2634 * @change: Boolean indicating if a write was done
2635 * @async: Boolean indicating asynchronously
2636 * @force: Boolean indicating use force update
2638 * if async was true,
2639 * With most buses the read must be done synchronously so this is most
2640 * useful for devices with a cache which do not need to interact with
2641 * the hardware to determine the current register value.
2643 * Returns zero for success, a negative number on error.
2645 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2646 unsigned int mask, unsigned int val,
2647 bool *change, bool async, bool force)
2649 int ret;
2651 map->lock(map->lock_arg);
2653 map->async = async;
2655 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2657 map->async = false;
2659 map->unlock(map->lock_arg);
2661 return ret;
2663 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2665 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2667 struct regmap *map = async->map;
2668 bool wake;
2670 trace_regmap_async_io_complete(map);
2672 spin_lock(&map->async_lock);
2673 list_move(&async->list, &map->async_free);
2674 wake = list_empty(&map->async_list);
2676 if (ret != 0)
2677 map->async_ret = ret;
2679 spin_unlock(&map->async_lock);
2681 if (wake)
2682 wake_up(&map->async_waitq);
2684 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2686 static int regmap_async_is_done(struct regmap *map)
2688 unsigned long flags;
2689 int ret;
2691 spin_lock_irqsave(&map->async_lock, flags);
2692 ret = list_empty(&map->async_list);
2693 spin_unlock_irqrestore(&map->async_lock, flags);
2695 return ret;
2699 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2701 * @map: Map to operate on.
2703 * Blocks until any pending asynchronous I/O has completed. Returns
2704 * an error code for any failed I/O operations.
2706 int regmap_async_complete(struct regmap *map)
2708 unsigned long flags;
2709 int ret;
2711 /* Nothing to do with no async support */
2712 if (!map->bus || !map->bus->async_write)
2713 return 0;
2715 trace_regmap_async_complete_start(map);
2717 wait_event(map->async_waitq, regmap_async_is_done(map));
2719 spin_lock_irqsave(&map->async_lock, flags);
2720 ret = map->async_ret;
2721 map->async_ret = 0;
2722 spin_unlock_irqrestore(&map->async_lock, flags);
2724 trace_regmap_async_complete_done(map);
2726 return ret;
2728 EXPORT_SYMBOL_GPL(regmap_async_complete);
2731 * regmap_register_patch: Register and apply register updates to be applied
2732 * on device initialistion
2734 * @map: Register map to apply updates to.
2735 * @regs: Values to update.
2736 * @num_regs: Number of entries in regs.
2738 * Register a set of register updates to be applied to the device
2739 * whenever the device registers are synchronised with the cache and
2740 * apply them immediately. Typically this is used to apply
2741 * corrections to be applied to the device defaults on startup, such
2742 * as the updates some vendors provide to undocumented registers.
2744 * The caller must ensure that this function cannot be called
2745 * concurrently with either itself or regcache_sync().
2747 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2748 int num_regs)
2750 struct reg_sequence *p;
2751 int ret;
2752 bool bypass;
2754 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2755 num_regs))
2756 return 0;
2758 p = krealloc(map->patch,
2759 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2760 GFP_KERNEL);
2761 if (p) {
2762 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2763 map->patch = p;
2764 map->patch_regs += num_regs;
2765 } else {
2766 return -ENOMEM;
2769 map->lock(map->lock_arg);
2771 bypass = map->cache_bypass;
2773 map->cache_bypass = true;
2774 map->async = true;
2776 ret = _regmap_multi_reg_write(map, regs, num_regs);
2778 map->async = false;
2779 map->cache_bypass = bypass;
2781 map->unlock(map->lock_arg);
2783 regmap_async_complete(map);
2785 return ret;
2787 EXPORT_SYMBOL_GPL(regmap_register_patch);
2790 * regmap_get_val_bytes(): Report the size of a register value
2792 * Report the size of a register value, mainly intended to for use by
2793 * generic infrastructure built on top of regmap.
2795 int regmap_get_val_bytes(struct regmap *map)
2797 if (map->format.format_write)
2798 return -EINVAL;
2800 return map->format.val_bytes;
2802 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2805 * regmap_get_max_register(): Report the max register value
2807 * Report the max register value, mainly intended to for use by
2808 * generic infrastructure built on top of regmap.
2810 int regmap_get_max_register(struct regmap *map)
2812 return map->max_register ? map->max_register : -EINVAL;
2814 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2817 * regmap_get_reg_stride(): Report the register address stride
2819 * Report the register address stride, mainly intended to for use by
2820 * generic infrastructure built on top of regmap.
2822 int regmap_get_reg_stride(struct regmap *map)
2824 return map->reg_stride;
2826 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2828 int regmap_parse_val(struct regmap *map, const void *buf,
2829 unsigned int *val)
2831 if (!map->format.parse_val)
2832 return -EINVAL;
2834 *val = map->format.parse_val(buf);
2836 return 0;
2838 EXPORT_SYMBOL_GPL(regmap_parse_val);
2840 static int __init regmap_initcall(void)
2842 regmap_debugfs_initcall();
2844 return 0;
2846 postcore_initcall(regmap_initcall);