2 * Register map access API
4 * Copyright 2011 Wolfson Microelectronics plc
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
24 #define CREATE_TRACE_POINTS
30 * Sometimes for failures during very early init the trace
31 * infrastructure isn't available early enough to be used. For this
32 * sort of problem defining LOG_DEVICE will add printks for basic
33 * register I/O on a specific device.
37 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
38 unsigned int mask
, unsigned int val
,
39 bool *change
, bool force_write
);
41 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
43 static int _regmap_bus_read(void *context
, unsigned int reg
,
45 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
47 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
49 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
52 bool regmap_reg_in_ranges(unsigned int reg
,
53 const struct regmap_range
*ranges
,
56 const struct regmap_range
*r
;
59 for (i
= 0, r
= ranges
; i
< nranges
; i
++, r
++)
60 if (regmap_reg_in_range(reg
, r
))
64 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges
);
66 bool regmap_check_range_table(struct regmap
*map
, unsigned int reg
,
67 const struct regmap_access_table
*table
)
69 /* Check "no ranges" first */
70 if (regmap_reg_in_ranges(reg
, table
->no_ranges
, table
->n_no_ranges
))
73 /* In case zero "yes ranges" are supplied, any reg is OK */
74 if (!table
->n_yes_ranges
)
77 return regmap_reg_in_ranges(reg
, table
->yes_ranges
,
80 EXPORT_SYMBOL_GPL(regmap_check_range_table
);
82 bool regmap_writeable(struct regmap
*map
, unsigned int reg
)
84 if (map
->max_register
&& reg
> map
->max_register
)
87 if (map
->writeable_reg
)
88 return map
->writeable_reg(map
->dev
, reg
);
91 return regmap_check_range_table(map
, reg
, map
->wr_table
);
96 bool regmap_readable(struct regmap
*map
, unsigned int reg
)
101 if (map
->max_register
&& reg
> map
->max_register
)
104 if (map
->format
.format_write
)
107 if (map
->readable_reg
)
108 return map
->readable_reg(map
->dev
, reg
);
111 return regmap_check_range_table(map
, reg
, map
->rd_table
);
116 bool regmap_volatile(struct regmap
*map
, unsigned int reg
)
118 if (!map
->format
.format_write
&& !regmap_readable(map
, reg
))
121 if (map
->volatile_reg
)
122 return map
->volatile_reg(map
->dev
, reg
);
124 if (map
->volatile_table
)
125 return regmap_check_range_table(map
, reg
, map
->volatile_table
);
133 bool regmap_precious(struct regmap
*map
, unsigned int reg
)
135 if (!regmap_readable(map
, reg
))
138 if (map
->precious_reg
)
139 return map
->precious_reg(map
->dev
, reg
);
141 if (map
->precious_table
)
142 return regmap_check_range_table(map
, reg
, map
->precious_table
);
147 static bool regmap_volatile_range(struct regmap
*map
, unsigned int reg
,
152 for (i
= 0; i
< num
; i
++)
153 if (!regmap_volatile(map
, reg
+ i
))
159 static void regmap_format_2_6_write(struct regmap
*map
,
160 unsigned int reg
, unsigned int val
)
162 u8
*out
= map
->work_buf
;
164 *out
= (reg
<< 6) | val
;
167 static void regmap_format_4_12_write(struct regmap
*map
,
168 unsigned int reg
, unsigned int val
)
170 __be16
*out
= map
->work_buf
;
171 *out
= cpu_to_be16((reg
<< 12) | val
);
174 static void regmap_format_7_9_write(struct regmap
*map
,
175 unsigned int reg
, unsigned int val
)
177 __be16
*out
= map
->work_buf
;
178 *out
= cpu_to_be16((reg
<< 9) | val
);
181 static void regmap_format_10_14_write(struct regmap
*map
,
182 unsigned int reg
, unsigned int val
)
184 u8
*out
= map
->work_buf
;
187 out
[1] = (val
>> 8) | (reg
<< 6);
191 static void regmap_format_8(void *buf
, unsigned int val
, unsigned int shift
)
198 static void regmap_format_16_be(void *buf
, unsigned int val
, unsigned int shift
)
202 b
[0] = cpu_to_be16(val
<< shift
);
205 static void regmap_format_16_le(void *buf
, unsigned int val
, unsigned int shift
)
209 b
[0] = cpu_to_le16(val
<< shift
);
212 static void regmap_format_16_native(void *buf
, unsigned int val
,
215 *(u16
*)buf
= val
<< shift
;
218 static void regmap_format_24(void *buf
, unsigned int val
, unsigned int shift
)
229 static void regmap_format_32_be(void *buf
, unsigned int val
, unsigned int shift
)
233 b
[0] = cpu_to_be32(val
<< shift
);
236 static void regmap_format_32_le(void *buf
, unsigned int val
, unsigned int shift
)
240 b
[0] = cpu_to_le32(val
<< shift
);
243 static void regmap_format_32_native(void *buf
, unsigned int val
,
246 *(u32
*)buf
= val
<< shift
;
250 static void regmap_format_64_be(void *buf
, unsigned int val
, unsigned int shift
)
254 b
[0] = cpu_to_be64((u64
)val
<< shift
);
257 static void regmap_format_64_le(void *buf
, unsigned int val
, unsigned int shift
)
261 b
[0] = cpu_to_le64((u64
)val
<< shift
);
264 static void regmap_format_64_native(void *buf
, unsigned int val
,
267 *(u64
*)buf
= (u64
)val
<< shift
;
271 static void regmap_parse_inplace_noop(void *buf
)
275 static unsigned int regmap_parse_8(const void *buf
)
282 static unsigned int regmap_parse_16_be(const void *buf
)
284 const __be16
*b
= buf
;
286 return be16_to_cpu(b
[0]);
289 static unsigned int regmap_parse_16_le(const void *buf
)
291 const __le16
*b
= buf
;
293 return le16_to_cpu(b
[0]);
296 static void regmap_parse_16_be_inplace(void *buf
)
300 b
[0] = be16_to_cpu(b
[0]);
303 static void regmap_parse_16_le_inplace(void *buf
)
307 b
[0] = le16_to_cpu(b
[0]);
310 static unsigned int regmap_parse_16_native(const void *buf
)
315 static unsigned int regmap_parse_24(const void *buf
)
318 unsigned int ret
= b
[2];
319 ret
|= ((unsigned int)b
[1]) << 8;
320 ret
|= ((unsigned int)b
[0]) << 16;
325 static unsigned int regmap_parse_32_be(const void *buf
)
327 const __be32
*b
= buf
;
329 return be32_to_cpu(b
[0]);
332 static unsigned int regmap_parse_32_le(const void *buf
)
334 const __le32
*b
= buf
;
336 return le32_to_cpu(b
[0]);
339 static void regmap_parse_32_be_inplace(void *buf
)
343 b
[0] = be32_to_cpu(b
[0]);
346 static void regmap_parse_32_le_inplace(void *buf
)
350 b
[0] = le32_to_cpu(b
[0]);
353 static unsigned int regmap_parse_32_native(const void *buf
)
359 static unsigned int regmap_parse_64_be(const void *buf
)
361 const __be64
*b
= buf
;
363 return be64_to_cpu(b
[0]);
366 static unsigned int regmap_parse_64_le(const void *buf
)
368 const __le64
*b
= buf
;
370 return le64_to_cpu(b
[0]);
373 static void regmap_parse_64_be_inplace(void *buf
)
377 b
[0] = be64_to_cpu(b
[0]);
380 static void regmap_parse_64_le_inplace(void *buf
)
384 b
[0] = le64_to_cpu(b
[0]);
387 static unsigned int regmap_parse_64_native(const void *buf
)
393 static void regmap_lock_mutex(void *__map
)
395 struct regmap
*map
= __map
;
396 mutex_lock(&map
->mutex
);
399 static void regmap_unlock_mutex(void *__map
)
401 struct regmap
*map
= __map
;
402 mutex_unlock(&map
->mutex
);
405 static void regmap_lock_spinlock(void *__map
)
406 __acquires(&map
->spinlock
)
408 struct regmap
*map
= __map
;
411 spin_lock_irqsave(&map
->spinlock
, flags
);
412 map
->spinlock_flags
= flags
;
415 static void regmap_unlock_spinlock(void *__map
)
416 __releases(&map
->spinlock
)
418 struct regmap
*map
= __map
;
419 spin_unlock_irqrestore(&map
->spinlock
, map
->spinlock_flags
);
422 static void dev_get_regmap_release(struct device
*dev
, void *res
)
425 * We don't actually have anything to do here; the goal here
426 * is not to manage the regmap but to provide a simple way to
427 * get the regmap back given a struct device.
431 static bool _regmap_range_add(struct regmap
*map
,
432 struct regmap_range_node
*data
)
434 struct rb_root
*root
= &map
->range_tree
;
435 struct rb_node
**new = &(root
->rb_node
), *parent
= NULL
;
438 struct regmap_range_node
*this =
439 container_of(*new, struct regmap_range_node
, node
);
442 if (data
->range_max
< this->range_min
)
443 new = &((*new)->rb_left
);
444 else if (data
->range_min
> this->range_max
)
445 new = &((*new)->rb_right
);
450 rb_link_node(&data
->node
, parent
, new);
451 rb_insert_color(&data
->node
, root
);
456 static struct regmap_range_node
*_regmap_range_lookup(struct regmap
*map
,
459 struct rb_node
*node
= map
->range_tree
.rb_node
;
462 struct regmap_range_node
*this =
463 container_of(node
, struct regmap_range_node
, node
);
465 if (reg
< this->range_min
)
466 node
= node
->rb_left
;
467 else if (reg
> this->range_max
)
468 node
= node
->rb_right
;
476 static void regmap_range_exit(struct regmap
*map
)
478 struct rb_node
*next
;
479 struct regmap_range_node
*range_node
;
481 next
= rb_first(&map
->range_tree
);
483 range_node
= rb_entry(next
, struct regmap_range_node
, node
);
484 next
= rb_next(&range_node
->node
);
485 rb_erase(&range_node
->node
, &map
->range_tree
);
489 kfree(map
->selector_work_buf
);
492 int regmap_attach_dev(struct device
*dev
, struct regmap
*map
,
493 const struct regmap_config
*config
)
499 regmap_debugfs_init(map
, config
->name
);
501 /* Add a devres resource for dev_get_regmap() */
502 m
= devres_alloc(dev_get_regmap_release
, sizeof(*m
), GFP_KERNEL
);
504 regmap_debugfs_exit(map
);
512 EXPORT_SYMBOL_GPL(regmap_attach_dev
);
514 static enum regmap_endian
regmap_get_reg_endian(const struct regmap_bus
*bus
,
515 const struct regmap_config
*config
)
517 enum regmap_endian endian
;
519 /* Retrieve the endianness specification from the regmap config */
520 endian
= config
->reg_format_endian
;
522 /* If the regmap config specified a non-default value, use that */
523 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
526 /* Retrieve the endianness specification from the bus config */
527 if (bus
&& bus
->reg_format_endian_default
)
528 endian
= bus
->reg_format_endian_default
;
530 /* If the bus specified a non-default value, use that */
531 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
534 /* Use this if no other value was found */
535 return REGMAP_ENDIAN_BIG
;
538 enum regmap_endian
regmap_get_val_endian(struct device
*dev
,
539 const struct regmap_bus
*bus
,
540 const struct regmap_config
*config
)
542 struct device_node
*np
;
543 enum regmap_endian endian
;
545 /* Retrieve the endianness specification from the regmap config */
546 endian
= config
->val_format_endian
;
548 /* If the regmap config specified a non-default value, use that */
549 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
552 /* If the dev and dev->of_node exist try to get endianness from DT */
553 if (dev
&& dev
->of_node
) {
556 /* Parse the device's DT node for an endianness specification */
557 if (of_property_read_bool(np
, "big-endian"))
558 endian
= REGMAP_ENDIAN_BIG
;
559 else if (of_property_read_bool(np
, "little-endian"))
560 endian
= REGMAP_ENDIAN_LITTLE
;
561 else if (of_property_read_bool(np
, "native-endian"))
562 endian
= REGMAP_ENDIAN_NATIVE
;
564 /* If the endianness was specified in DT, use that */
565 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
569 /* Retrieve the endianness specification from the bus config */
570 if (bus
&& bus
->val_format_endian_default
)
571 endian
= bus
->val_format_endian_default
;
573 /* If the bus specified a non-default value, use that */
574 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
577 /* Use this if no other value was found */
578 return REGMAP_ENDIAN_BIG
;
580 EXPORT_SYMBOL_GPL(regmap_get_val_endian
);
582 struct regmap
*__regmap_init(struct device
*dev
,
583 const struct regmap_bus
*bus
,
585 const struct regmap_config
*config
,
586 struct lock_class_key
*lock_key
,
587 const char *lock_name
)
591 enum regmap_endian reg_endian
, val_endian
;
597 map
= kzalloc(sizeof(*map
), GFP_KERNEL
);
603 if (config
->lock
&& config
->unlock
) {
604 map
->lock
= config
->lock
;
605 map
->unlock
= config
->unlock
;
606 map
->lock_arg
= config
->lock_arg
;
608 if ((bus
&& bus
->fast_io
) ||
610 spin_lock_init(&map
->spinlock
);
611 map
->lock
= regmap_lock_spinlock
;
612 map
->unlock
= regmap_unlock_spinlock
;
613 lockdep_set_class_and_name(&map
->spinlock
,
614 lock_key
, lock_name
);
616 mutex_init(&map
->mutex
);
617 map
->lock
= regmap_lock_mutex
;
618 map
->unlock
= regmap_unlock_mutex
;
619 lockdep_set_class_and_name(&map
->mutex
,
620 lock_key
, lock_name
);
626 * When we write in fast-paths with regmap_bulk_write() don't allocate
627 * scratch buffers with sleeping allocations.
629 if ((bus
&& bus
->fast_io
) || config
->fast_io
)
630 map
->alloc_flags
= GFP_ATOMIC
;
632 map
->alloc_flags
= GFP_KERNEL
;
634 map
->format
.reg_bytes
= DIV_ROUND_UP(config
->reg_bits
, 8);
635 map
->format
.pad_bytes
= config
->pad_bits
/ 8;
636 map
->format
.val_bytes
= DIV_ROUND_UP(config
->val_bits
, 8);
637 map
->format
.buf_size
= DIV_ROUND_UP(config
->reg_bits
+
638 config
->val_bits
+ config
->pad_bits
, 8);
639 map
->reg_shift
= config
->pad_bits
% 8;
640 if (config
->reg_stride
)
641 map
->reg_stride
= config
->reg_stride
;
644 if (is_power_of_2(map
->reg_stride
))
645 map
->reg_stride_order
= ilog2(map
->reg_stride
);
647 map
->reg_stride_order
= -1;
648 map
->use_single_read
= config
->use_single_rw
|| !bus
|| !bus
->read
;
649 map
->use_single_write
= config
->use_single_rw
|| !bus
|| !bus
->write
;
650 map
->can_multi_write
= config
->can_multi_write
&& bus
&& bus
->write
;
652 map
->max_raw_read
= bus
->max_raw_read
;
653 map
->max_raw_write
= bus
->max_raw_write
;
657 map
->bus_context
= bus_context
;
658 map
->max_register
= config
->max_register
;
659 map
->wr_table
= config
->wr_table
;
660 map
->rd_table
= config
->rd_table
;
661 map
->volatile_table
= config
->volatile_table
;
662 map
->precious_table
= config
->precious_table
;
663 map
->writeable_reg
= config
->writeable_reg
;
664 map
->readable_reg
= config
->readable_reg
;
665 map
->volatile_reg
= config
->volatile_reg
;
666 map
->precious_reg
= config
->precious_reg
;
667 map
->cache_type
= config
->cache_type
;
668 map
->name
= config
->name
;
670 spin_lock_init(&map
->async_lock
);
671 INIT_LIST_HEAD(&map
->async_list
);
672 INIT_LIST_HEAD(&map
->async_free
);
673 init_waitqueue_head(&map
->async_waitq
);
675 if (config
->read_flag_mask
|| config
->write_flag_mask
) {
676 map
->read_flag_mask
= config
->read_flag_mask
;
677 map
->write_flag_mask
= config
->write_flag_mask
;
679 map
->read_flag_mask
= bus
->read_flag_mask
;
683 map
->reg_read
= config
->reg_read
;
684 map
->reg_write
= config
->reg_write
;
686 map
->defer_caching
= false;
687 goto skip_format_initialization
;
688 } else if (!bus
->read
|| !bus
->write
) {
689 map
->reg_read
= _regmap_bus_reg_read
;
690 map
->reg_write
= _regmap_bus_reg_write
;
692 map
->defer_caching
= false;
693 goto skip_format_initialization
;
695 map
->reg_read
= _regmap_bus_read
;
696 map
->reg_update_bits
= bus
->reg_update_bits
;
699 reg_endian
= regmap_get_reg_endian(bus
, config
);
700 val_endian
= regmap_get_val_endian(dev
, bus
, config
);
702 switch (config
->reg_bits
+ map
->reg_shift
) {
704 switch (config
->val_bits
) {
706 map
->format
.format_write
= regmap_format_2_6_write
;
714 switch (config
->val_bits
) {
716 map
->format
.format_write
= regmap_format_4_12_write
;
724 switch (config
->val_bits
) {
726 map
->format
.format_write
= regmap_format_7_9_write
;
734 switch (config
->val_bits
) {
736 map
->format
.format_write
= regmap_format_10_14_write
;
744 map
->format
.format_reg
= regmap_format_8
;
748 switch (reg_endian
) {
749 case REGMAP_ENDIAN_BIG
:
750 map
->format
.format_reg
= regmap_format_16_be
;
752 case REGMAP_ENDIAN_NATIVE
:
753 map
->format
.format_reg
= regmap_format_16_native
;
761 if (reg_endian
!= REGMAP_ENDIAN_BIG
)
763 map
->format
.format_reg
= regmap_format_24
;
767 switch (reg_endian
) {
768 case REGMAP_ENDIAN_BIG
:
769 map
->format
.format_reg
= regmap_format_32_be
;
771 case REGMAP_ENDIAN_NATIVE
:
772 map
->format
.format_reg
= regmap_format_32_native
;
781 switch (reg_endian
) {
782 case REGMAP_ENDIAN_BIG
:
783 map
->format
.format_reg
= regmap_format_64_be
;
785 case REGMAP_ENDIAN_NATIVE
:
786 map
->format
.format_reg
= regmap_format_64_native
;
798 if (val_endian
== REGMAP_ENDIAN_NATIVE
)
799 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
801 switch (config
->val_bits
) {
803 map
->format
.format_val
= regmap_format_8
;
804 map
->format
.parse_val
= regmap_parse_8
;
805 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
808 switch (val_endian
) {
809 case REGMAP_ENDIAN_BIG
:
810 map
->format
.format_val
= regmap_format_16_be
;
811 map
->format
.parse_val
= regmap_parse_16_be
;
812 map
->format
.parse_inplace
= regmap_parse_16_be_inplace
;
814 case REGMAP_ENDIAN_LITTLE
:
815 map
->format
.format_val
= regmap_format_16_le
;
816 map
->format
.parse_val
= regmap_parse_16_le
;
817 map
->format
.parse_inplace
= regmap_parse_16_le_inplace
;
819 case REGMAP_ENDIAN_NATIVE
:
820 map
->format
.format_val
= regmap_format_16_native
;
821 map
->format
.parse_val
= regmap_parse_16_native
;
828 if (val_endian
!= REGMAP_ENDIAN_BIG
)
830 map
->format
.format_val
= regmap_format_24
;
831 map
->format
.parse_val
= regmap_parse_24
;
834 switch (val_endian
) {
835 case REGMAP_ENDIAN_BIG
:
836 map
->format
.format_val
= regmap_format_32_be
;
837 map
->format
.parse_val
= regmap_parse_32_be
;
838 map
->format
.parse_inplace
= regmap_parse_32_be_inplace
;
840 case REGMAP_ENDIAN_LITTLE
:
841 map
->format
.format_val
= regmap_format_32_le
;
842 map
->format
.parse_val
= regmap_parse_32_le
;
843 map
->format
.parse_inplace
= regmap_parse_32_le_inplace
;
845 case REGMAP_ENDIAN_NATIVE
:
846 map
->format
.format_val
= regmap_format_32_native
;
847 map
->format
.parse_val
= regmap_parse_32_native
;
855 switch (val_endian
) {
856 case REGMAP_ENDIAN_BIG
:
857 map
->format
.format_val
= regmap_format_64_be
;
858 map
->format
.parse_val
= regmap_parse_64_be
;
859 map
->format
.parse_inplace
= regmap_parse_64_be_inplace
;
861 case REGMAP_ENDIAN_LITTLE
:
862 map
->format
.format_val
= regmap_format_64_le
;
863 map
->format
.parse_val
= regmap_parse_64_le
;
864 map
->format
.parse_inplace
= regmap_parse_64_le_inplace
;
866 case REGMAP_ENDIAN_NATIVE
:
867 map
->format
.format_val
= regmap_format_64_native
;
868 map
->format
.parse_val
= regmap_parse_64_native
;
877 if (map
->format
.format_write
) {
878 if ((reg_endian
!= REGMAP_ENDIAN_BIG
) ||
879 (val_endian
!= REGMAP_ENDIAN_BIG
))
881 map
->use_single_write
= true;
884 if (!map
->format
.format_write
&&
885 !(map
->format
.format_reg
&& map
->format
.format_val
))
888 map
->work_buf
= kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
889 if (map
->work_buf
== NULL
) {
894 if (map
->format
.format_write
) {
895 map
->defer_caching
= false;
896 map
->reg_write
= _regmap_bus_formatted_write
;
897 } else if (map
->format
.format_val
) {
898 map
->defer_caching
= true;
899 map
->reg_write
= _regmap_bus_raw_write
;
902 skip_format_initialization
:
904 map
->range_tree
= RB_ROOT
;
905 for (i
= 0; i
< config
->num_ranges
; i
++) {
906 const struct regmap_range_cfg
*range_cfg
= &config
->ranges
[i
];
907 struct regmap_range_node
*new;
910 if (range_cfg
->range_max
< range_cfg
->range_min
) {
911 dev_err(map
->dev
, "Invalid range %d: %d < %d\n", i
,
912 range_cfg
->range_max
, range_cfg
->range_min
);
916 if (range_cfg
->range_max
> map
->max_register
) {
917 dev_err(map
->dev
, "Invalid range %d: %d > %d\n", i
,
918 range_cfg
->range_max
, map
->max_register
);
922 if (range_cfg
->selector_reg
> map
->max_register
) {
924 "Invalid range %d: selector out of map\n", i
);
928 if (range_cfg
->window_len
== 0) {
929 dev_err(map
->dev
, "Invalid range %d: window_len 0\n",
934 /* Make sure, that this register range has no selector
935 or data window within its boundary */
936 for (j
= 0; j
< config
->num_ranges
; j
++) {
937 unsigned sel_reg
= config
->ranges
[j
].selector_reg
;
938 unsigned win_min
= config
->ranges
[j
].window_start
;
939 unsigned win_max
= win_min
+
940 config
->ranges
[j
].window_len
- 1;
942 /* Allow data window inside its own virtual range */
946 if (range_cfg
->range_min
<= sel_reg
&&
947 sel_reg
<= range_cfg
->range_max
) {
949 "Range %d: selector for %d in window\n",
954 if (!(win_max
< range_cfg
->range_min
||
955 win_min
> range_cfg
->range_max
)) {
957 "Range %d: window for %d in window\n",
963 new = kzalloc(sizeof(*new), GFP_KERNEL
);
970 new->name
= range_cfg
->name
;
971 new->range_min
= range_cfg
->range_min
;
972 new->range_max
= range_cfg
->range_max
;
973 new->selector_reg
= range_cfg
->selector_reg
;
974 new->selector_mask
= range_cfg
->selector_mask
;
975 new->selector_shift
= range_cfg
->selector_shift
;
976 new->window_start
= range_cfg
->window_start
;
977 new->window_len
= range_cfg
->window_len
;
979 if (!_regmap_range_add(map
, new)) {
980 dev_err(map
->dev
, "Failed to add range %d\n", i
);
985 if (map
->selector_work_buf
== NULL
) {
986 map
->selector_work_buf
=
987 kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
988 if (map
->selector_work_buf
== NULL
) {
995 ret
= regcache_init(map
, config
);
1000 ret
= regmap_attach_dev(dev
, map
, config
);
1010 regmap_range_exit(map
);
1011 kfree(map
->work_buf
);
1015 return ERR_PTR(ret
);
1017 EXPORT_SYMBOL_GPL(__regmap_init
);
1019 static void devm_regmap_release(struct device
*dev
, void *res
)
1021 regmap_exit(*(struct regmap
**)res
);
1024 struct regmap
*__devm_regmap_init(struct device
*dev
,
1025 const struct regmap_bus
*bus
,
1027 const struct regmap_config
*config
,
1028 struct lock_class_key
*lock_key
,
1029 const char *lock_name
)
1031 struct regmap
**ptr
, *regmap
;
1033 ptr
= devres_alloc(devm_regmap_release
, sizeof(*ptr
), GFP_KERNEL
);
1035 return ERR_PTR(-ENOMEM
);
1037 regmap
= __regmap_init(dev
, bus
, bus_context
, config
,
1038 lock_key
, lock_name
);
1039 if (!IS_ERR(regmap
)) {
1041 devres_add(dev
, ptr
);
1048 EXPORT_SYMBOL_GPL(__devm_regmap_init
);
1050 static void regmap_field_init(struct regmap_field
*rm_field
,
1051 struct regmap
*regmap
, struct reg_field reg_field
)
1053 rm_field
->regmap
= regmap
;
1054 rm_field
->reg
= reg_field
.reg
;
1055 rm_field
->shift
= reg_field
.lsb
;
1056 rm_field
->mask
= GENMASK(reg_field
.msb
, reg_field
.lsb
);
1057 rm_field
->id_size
= reg_field
.id_size
;
1058 rm_field
->id_offset
= reg_field
.id_offset
;
1062 * devm_regmap_field_alloc(): Allocate and initialise a register field
1063 * in a register map.
1065 * @dev: Device that will be interacted with
1066 * @regmap: regmap bank in which this register field is located.
1067 * @reg_field: Register field with in the bank.
1069 * The return value will be an ERR_PTR() on error or a valid pointer
1070 * to a struct regmap_field. The regmap_field will be automatically freed
1071 * by the device management code.
1073 struct regmap_field
*devm_regmap_field_alloc(struct device
*dev
,
1074 struct regmap
*regmap
, struct reg_field reg_field
)
1076 struct regmap_field
*rm_field
= devm_kzalloc(dev
,
1077 sizeof(*rm_field
), GFP_KERNEL
);
1079 return ERR_PTR(-ENOMEM
);
1081 regmap_field_init(rm_field
, regmap
, reg_field
);
1086 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc
);
1089 * devm_regmap_field_free(): Free register field allocated using
1090 * devm_regmap_field_alloc. Usally drivers need not call this function,
1091 * as the memory allocated via devm will be freed as per device-driver
1094 * @dev: Device that will be interacted with
1095 * @field: regmap field which should be freed.
1097 void devm_regmap_field_free(struct device
*dev
,
1098 struct regmap_field
*field
)
1100 devm_kfree(dev
, field
);
1102 EXPORT_SYMBOL_GPL(devm_regmap_field_free
);
1105 * regmap_field_alloc(): Allocate and initialise a register field
1106 * in a register map.
1108 * @regmap: regmap bank in which this register field is located.
1109 * @reg_field: Register field with in the bank.
1111 * The return value will be an ERR_PTR() on error or a valid pointer
1112 * to a struct regmap_field. The regmap_field should be freed by the
1113 * user once its finished working with it using regmap_field_free().
1115 struct regmap_field
*regmap_field_alloc(struct regmap
*regmap
,
1116 struct reg_field reg_field
)
1118 struct regmap_field
*rm_field
= kzalloc(sizeof(*rm_field
), GFP_KERNEL
);
1121 return ERR_PTR(-ENOMEM
);
1123 regmap_field_init(rm_field
, regmap
, reg_field
);
1127 EXPORT_SYMBOL_GPL(regmap_field_alloc
);
1130 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1132 * @field: regmap field which should be freed.
1134 void regmap_field_free(struct regmap_field
*field
)
1138 EXPORT_SYMBOL_GPL(regmap_field_free
);
1141 * regmap_reinit_cache(): Reinitialise the current register cache
1143 * @map: Register map to operate on.
1144 * @config: New configuration. Only the cache data will be used.
1146 * Discard any existing register cache for the map and initialize a
1147 * new cache. This can be used to restore the cache to defaults or to
1148 * update the cache configuration to reflect runtime discovery of the
1151 * No explicit locking is done here, the user needs to ensure that
1152 * this function will not race with other calls to regmap.
1154 int regmap_reinit_cache(struct regmap
*map
, const struct regmap_config
*config
)
1157 regmap_debugfs_exit(map
);
1159 map
->max_register
= config
->max_register
;
1160 map
->writeable_reg
= config
->writeable_reg
;
1161 map
->readable_reg
= config
->readable_reg
;
1162 map
->volatile_reg
= config
->volatile_reg
;
1163 map
->precious_reg
= config
->precious_reg
;
1164 map
->cache_type
= config
->cache_type
;
1166 regmap_debugfs_init(map
, config
->name
);
1168 map
->cache_bypass
= false;
1169 map
->cache_only
= false;
1171 return regcache_init(map
, config
);
1173 EXPORT_SYMBOL_GPL(regmap_reinit_cache
);
1176 * regmap_exit(): Free a previously allocated register map
1178 void regmap_exit(struct regmap
*map
)
1180 struct regmap_async
*async
;
1183 regmap_debugfs_exit(map
);
1184 regmap_range_exit(map
);
1185 if (map
->bus
&& map
->bus
->free_context
)
1186 map
->bus
->free_context(map
->bus_context
);
1187 kfree(map
->work_buf
);
1188 while (!list_empty(&map
->async_free
)) {
1189 async
= list_first_entry_or_null(&map
->async_free
,
1190 struct regmap_async
,
1192 list_del(&async
->list
);
1193 kfree(async
->work_buf
);
1198 EXPORT_SYMBOL_GPL(regmap_exit
);
1200 static int dev_get_regmap_match(struct device
*dev
, void *res
, void *data
)
1202 struct regmap
**r
= res
;
1208 /* If the user didn't specify a name match any */
1210 return (*r
)->name
== data
;
1216 * dev_get_regmap(): Obtain the regmap (if any) for a device
1218 * @dev: Device to retrieve the map for
1219 * @name: Optional name for the register map, usually NULL.
1221 * Returns the regmap for the device if one is present, or NULL. If
1222 * name is specified then it must match the name specified when
1223 * registering the device, if it is NULL then the first regmap found
1224 * will be used. Devices with multiple register maps are very rare,
1225 * generic code should normally not need to specify a name.
1227 struct regmap
*dev_get_regmap(struct device
*dev
, const char *name
)
1229 struct regmap
**r
= devres_find(dev
, dev_get_regmap_release
,
1230 dev_get_regmap_match
, (void *)name
);
1236 EXPORT_SYMBOL_GPL(dev_get_regmap
);
1239 * regmap_get_device(): Obtain the device from a regmap
1241 * @map: Register map to operate on.
1243 * Returns the underlying device that the regmap has been created for.
1245 struct device
*regmap_get_device(struct regmap
*map
)
1249 EXPORT_SYMBOL_GPL(regmap_get_device
);
1251 static int _regmap_select_page(struct regmap
*map
, unsigned int *reg
,
1252 struct regmap_range_node
*range
,
1253 unsigned int val_num
)
1255 void *orig_work_buf
;
1256 unsigned int win_offset
;
1257 unsigned int win_page
;
1261 win_offset
= (*reg
- range
->range_min
) % range
->window_len
;
1262 win_page
= (*reg
- range
->range_min
) / range
->window_len
;
1265 /* Bulk write shouldn't cross range boundary */
1266 if (*reg
+ val_num
- 1 > range
->range_max
)
1269 /* ... or single page boundary */
1270 if (val_num
> range
->window_len
- win_offset
)
1274 /* It is possible to have selector register inside data window.
1275 In that case, selector register is located on every page and
1276 it needs no page switching, when accessed alone. */
1278 range
->window_start
+ win_offset
!= range
->selector_reg
) {
1279 /* Use separate work_buf during page switching */
1280 orig_work_buf
= map
->work_buf
;
1281 map
->work_buf
= map
->selector_work_buf
;
1283 ret
= _regmap_update_bits(map
, range
->selector_reg
,
1284 range
->selector_mask
,
1285 win_page
<< range
->selector_shift
,
1288 map
->work_buf
= orig_work_buf
;
1294 *reg
= range
->window_start
+ win_offset
;
1299 int _regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1300 const void *val
, size_t val_len
)
1302 struct regmap_range_node
*range
;
1303 unsigned long flags
;
1304 u8
*u8
= map
->work_buf
;
1305 void *work_val
= map
->work_buf
+ map
->format
.reg_bytes
+
1306 map
->format
.pad_bytes
;
1308 int ret
= -ENOTSUPP
;
1314 /* Check for unwritable registers before we start */
1315 if (map
->writeable_reg
)
1316 for (i
= 0; i
< val_len
/ map
->format
.val_bytes
; i
++)
1317 if (!map
->writeable_reg(map
->dev
,
1318 reg
+ regmap_get_offset(map
, i
)))
1321 if (!map
->cache_bypass
&& map
->format
.parse_val
) {
1323 int val_bytes
= map
->format
.val_bytes
;
1324 for (i
= 0; i
< val_len
/ val_bytes
; i
++) {
1325 ival
= map
->format
.parse_val(val
+ (i
* val_bytes
));
1326 ret
= regcache_write(map
,
1327 reg
+ regmap_get_offset(map
, i
),
1331 "Error in caching of register: %x ret: %d\n",
1336 if (map
->cache_only
) {
1337 map
->cache_dirty
= true;
1342 range
= _regmap_range_lookup(map
, reg
);
1344 int val_num
= val_len
/ map
->format
.val_bytes
;
1345 int win_offset
= (reg
- range
->range_min
) % range
->window_len
;
1346 int win_residue
= range
->window_len
- win_offset
;
1348 /* If the write goes beyond the end of the window split it */
1349 while (val_num
> win_residue
) {
1350 dev_dbg(map
->dev
, "Writing window %d/%zu\n",
1351 win_residue
, val_len
/ map
->format
.val_bytes
);
1352 ret
= _regmap_raw_write(map
, reg
, val
, win_residue
*
1353 map
->format
.val_bytes
);
1358 val_num
-= win_residue
;
1359 val
+= win_residue
* map
->format
.val_bytes
;
1360 val_len
-= win_residue
* map
->format
.val_bytes
;
1362 win_offset
= (reg
- range
->range_min
) %
1364 win_residue
= range
->window_len
- win_offset
;
1367 ret
= _regmap_select_page(map
, ®
, range
, val_num
);
1372 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
1374 u8
[0] |= map
->write_flag_mask
;
1377 * Essentially all I/O mechanisms will be faster with a single
1378 * buffer to write. Since register syncs often generate raw
1379 * writes of single registers optimise that case.
1381 if (val
!= work_val
&& val_len
== map
->format
.val_bytes
) {
1382 memcpy(work_val
, val
, map
->format
.val_bytes
);
1386 if (map
->async
&& map
->bus
->async_write
) {
1387 struct regmap_async
*async
;
1389 trace_regmap_async_write_start(map
, reg
, val_len
);
1391 spin_lock_irqsave(&map
->async_lock
, flags
);
1392 async
= list_first_entry_or_null(&map
->async_free
,
1393 struct regmap_async
,
1396 list_del(&async
->list
);
1397 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1400 async
= map
->bus
->async_alloc();
1404 async
->work_buf
= kzalloc(map
->format
.buf_size
,
1405 GFP_KERNEL
| GFP_DMA
);
1406 if (!async
->work_buf
) {
1414 /* If the caller supplied the value we can use it safely. */
1415 memcpy(async
->work_buf
, map
->work_buf
, map
->format
.pad_bytes
+
1416 map
->format
.reg_bytes
+ map
->format
.val_bytes
);
1418 spin_lock_irqsave(&map
->async_lock
, flags
);
1419 list_add_tail(&async
->list
, &map
->async_list
);
1420 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1422 if (val
!= work_val
)
1423 ret
= map
->bus
->async_write(map
->bus_context
,
1425 map
->format
.reg_bytes
+
1426 map
->format
.pad_bytes
,
1427 val
, val_len
, async
);
1429 ret
= map
->bus
->async_write(map
->bus_context
,
1431 map
->format
.reg_bytes
+
1432 map
->format
.pad_bytes
+
1433 val_len
, NULL
, 0, async
);
1436 dev_err(map
->dev
, "Failed to schedule write: %d\n",
1439 spin_lock_irqsave(&map
->async_lock
, flags
);
1440 list_move(&async
->list
, &map
->async_free
);
1441 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1447 trace_regmap_hw_write_start(map
, reg
, val_len
/ map
->format
.val_bytes
);
1449 /* If we're doing a single register write we can probably just
1450 * send the work_buf directly, otherwise try to do a gather
1453 if (val
== work_val
)
1454 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1455 map
->format
.reg_bytes
+
1456 map
->format
.pad_bytes
+
1458 else if (map
->bus
->gather_write
)
1459 ret
= map
->bus
->gather_write(map
->bus_context
, map
->work_buf
,
1460 map
->format
.reg_bytes
+
1461 map
->format
.pad_bytes
,
1464 /* If that didn't work fall back on linearising by hand. */
1465 if (ret
== -ENOTSUPP
) {
1466 len
= map
->format
.reg_bytes
+ map
->format
.pad_bytes
+ val_len
;
1467 buf
= kzalloc(len
, GFP_KERNEL
);
1471 memcpy(buf
, map
->work_buf
, map
->format
.reg_bytes
);
1472 memcpy(buf
+ map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
1474 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
1479 trace_regmap_hw_write_done(map
, reg
, val_len
/ map
->format
.val_bytes
);
1485 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1487 * @map: Map to check.
1489 bool regmap_can_raw_write(struct regmap
*map
)
1491 return map
->bus
&& map
->bus
->write
&& map
->format
.format_val
&&
1492 map
->format
.format_reg
;
1494 EXPORT_SYMBOL_GPL(regmap_can_raw_write
);
1497 * regmap_get_raw_read_max - Get the maximum size we can read
1499 * @map: Map to check.
1501 size_t regmap_get_raw_read_max(struct regmap
*map
)
1503 return map
->max_raw_read
;
1505 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max
);
1508 * regmap_get_raw_write_max - Get the maximum size we can read
1510 * @map: Map to check.
1512 size_t regmap_get_raw_write_max(struct regmap
*map
)
1514 return map
->max_raw_write
;
1516 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max
);
1518 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
1522 struct regmap_range_node
*range
;
1523 struct regmap
*map
= context
;
1525 WARN_ON(!map
->bus
|| !map
->format
.format_write
);
1527 range
= _regmap_range_lookup(map
, reg
);
1529 ret
= _regmap_select_page(map
, ®
, range
, 1);
1534 map
->format
.format_write(map
, reg
, val
);
1536 trace_regmap_hw_write_start(map
, reg
, 1);
1538 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1539 map
->format
.buf_size
);
1541 trace_regmap_hw_write_done(map
, reg
, 1);
1546 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
1549 struct regmap
*map
= context
;
1551 return map
->bus
->reg_write(map
->bus_context
, reg
, val
);
1554 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
1557 struct regmap
*map
= context
;
1559 WARN_ON(!map
->bus
|| !map
->format
.format_val
);
1561 map
->format
.format_val(map
->work_buf
+ map
->format
.reg_bytes
1562 + map
->format
.pad_bytes
, val
, 0);
1563 return _regmap_raw_write(map
, reg
,
1565 map
->format
.reg_bytes
+
1566 map
->format
.pad_bytes
,
1567 map
->format
.val_bytes
);
1570 static inline void *_regmap_map_get_context(struct regmap
*map
)
1572 return (map
->bus
) ? map
: map
->bus_context
;
1575 int _regmap_write(struct regmap
*map
, unsigned int reg
,
1579 void *context
= _regmap_map_get_context(map
);
1581 if (!regmap_writeable(map
, reg
))
1584 if (!map
->cache_bypass
&& !map
->defer_caching
) {
1585 ret
= regcache_write(map
, reg
, val
);
1588 if (map
->cache_only
) {
1589 map
->cache_dirty
= true;
1595 if (map
->dev
&& strcmp(dev_name(map
->dev
), LOG_DEVICE
) == 0)
1596 dev_info(map
->dev
, "%x <= %x\n", reg
, val
);
1599 trace_regmap_reg_write(map
, reg
, val
);
1601 return map
->reg_write(context
, reg
, val
);
1605 * regmap_write(): Write a value to a single register
1607 * @map: Register map to write to
1608 * @reg: Register to write to
1609 * @val: Value to be written
1611 * A value of zero will be returned on success, a negative errno will
1612 * be returned in error cases.
1614 int regmap_write(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1618 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1621 map
->lock(map
->lock_arg
);
1623 ret
= _regmap_write(map
, reg
, val
);
1625 map
->unlock(map
->lock_arg
);
1629 EXPORT_SYMBOL_GPL(regmap_write
);
1632 * regmap_write_async(): Write a value to a single register asynchronously
1634 * @map: Register map to write to
1635 * @reg: Register to write to
1636 * @val: Value to be written
1638 * A value of zero will be returned on success, a negative errno will
1639 * be returned in error cases.
1641 int regmap_write_async(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1645 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1648 map
->lock(map
->lock_arg
);
1652 ret
= _regmap_write(map
, reg
, val
);
1656 map
->unlock(map
->lock_arg
);
1660 EXPORT_SYMBOL_GPL(regmap_write_async
);
1663 * regmap_raw_write(): Write raw values to one or more registers
1665 * @map: Register map to write to
1666 * @reg: Initial register to write to
1667 * @val: Block of data to be written, laid out for direct transmission to the
1669 * @val_len: Length of data pointed to by val.
1671 * This function is intended to be used for things like firmware
1672 * download where a large block of data needs to be transferred to the
1673 * device. No formatting will be done on the data provided.
1675 * A value of zero will be returned on success, a negative errno will
1676 * be returned in error cases.
1678 int regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1679 const void *val
, size_t val_len
)
1683 if (!regmap_can_raw_write(map
))
1685 if (val_len
% map
->format
.val_bytes
)
1687 if (map
->max_raw_write
&& map
->max_raw_write
> val_len
)
1690 map
->lock(map
->lock_arg
);
1692 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
1694 map
->unlock(map
->lock_arg
);
1698 EXPORT_SYMBOL_GPL(regmap_raw_write
);
1701 * regmap_field_update_bits_base():
1702 * Perform a read/modify/write cycle on the register field
1703 * with change, async, force option
1705 * @field: Register field to write to
1706 * @mask: Bitmask to change
1707 * @val: Value to be written
1708 * @change: Boolean indicating if a write was done
1709 * @async: Boolean indicating asynchronously
1710 * @force: Boolean indicating use force update
1712 * A value of zero will be returned on success, a negative errno will
1713 * be returned in error cases.
1715 int regmap_field_update_bits_base(struct regmap_field
*field
,
1716 unsigned int mask
, unsigned int val
,
1717 bool *change
, bool async
, bool force
)
1719 mask
= (mask
<< field
->shift
) & field
->mask
;
1721 return regmap_update_bits_base(field
->regmap
, field
->reg
,
1722 mask
, val
<< field
->shift
,
1723 change
, async
, force
);
1725 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base
);
1728 * regmap_fields_update_bits_base():
1729 * Perform a read/modify/write cycle on the register field
1730 * with change, async, force option
1732 * @field: Register field to write to
1734 * @mask: Bitmask to change
1735 * @val: Value to be written
1736 * @change: Boolean indicating if a write was done
1737 * @async: Boolean indicating asynchronously
1738 * @force: Boolean indicating use force update
1740 * A value of zero will be returned on success, a negative errno will
1741 * be returned in error cases.
1743 int regmap_fields_update_bits_base(struct regmap_field
*field
, unsigned int id
,
1744 unsigned int mask
, unsigned int val
,
1745 bool *change
, bool async
, bool force
)
1747 if (id
>= field
->id_size
)
1750 mask
= (mask
<< field
->shift
) & field
->mask
;
1752 return regmap_update_bits_base(field
->regmap
,
1753 field
->reg
+ (field
->id_offset
* id
),
1754 mask
, val
<< field
->shift
,
1755 change
, async
, force
);
1757 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base
);
1760 * regmap_bulk_write(): Write multiple registers to the device
1762 * @map: Register map to write to
1763 * @reg: First register to be write from
1764 * @val: Block of data to be written, in native register size for device
1765 * @val_count: Number of registers to write
1767 * This function is intended to be used for writing a large block of
1768 * data to the device either in single transfer or multiple transfer.
1770 * A value of zero will be returned on success, a negative errno will
1771 * be returned in error cases.
1773 int regmap_bulk_write(struct regmap
*map
, unsigned int reg
, const void *val
,
1777 size_t val_bytes
= map
->format
.val_bytes
;
1778 size_t total_size
= val_bytes
* val_count
;
1780 if (map
->bus
&& !map
->format
.parse_inplace
)
1782 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1786 * Some devices don't support bulk write, for
1787 * them we have a series of single write operations in the first two if
1790 * The first if block is used for memory mapped io. It does not allow
1791 * val_bytes of 3 for example.
1792 * The second one is used for busses which do not have this limitation
1793 * and can write arbitrary value lengths.
1796 map
->lock(map
->lock_arg
);
1797 for (i
= 0; i
< val_count
; i
++) {
1800 switch (val_bytes
) {
1802 ival
= *(u8
*)(val
+ (i
* val_bytes
));
1805 ival
= *(u16
*)(val
+ (i
* val_bytes
));
1808 ival
= *(u32
*)(val
+ (i
* val_bytes
));
1812 ival
= *(u64
*)(val
+ (i
* val_bytes
));
1820 ret
= _regmap_write(map
,
1821 reg
+ regmap_get_offset(map
, i
),
1827 map
->unlock(map
->lock_arg
);
1828 } else if (map
->use_single_write
||
1829 (map
->max_raw_write
&& map
->max_raw_write
< total_size
)) {
1830 int chunk_stride
= map
->reg_stride
;
1831 size_t chunk_size
= val_bytes
;
1832 size_t chunk_count
= val_count
;
1834 if (!map
->use_single_write
) {
1835 chunk_size
= map
->max_raw_write
;
1836 if (chunk_size
% val_bytes
)
1837 chunk_size
-= chunk_size
% val_bytes
;
1838 chunk_count
= total_size
/ chunk_size
;
1839 chunk_stride
*= chunk_size
/ val_bytes
;
1842 map
->lock(map
->lock_arg
);
1843 /* Write as many bytes as possible with chunk_size */
1844 for (i
= 0; i
< chunk_count
; i
++) {
1845 ret
= _regmap_raw_write(map
,
1846 reg
+ (i
* chunk_stride
),
1847 val
+ (i
* chunk_size
),
1853 /* Write remaining bytes */
1854 if (!ret
&& chunk_size
* i
< total_size
) {
1855 ret
= _regmap_raw_write(map
, reg
+ (i
* chunk_stride
),
1856 val
+ (i
* chunk_size
),
1857 total_size
- i
* chunk_size
);
1859 map
->unlock(map
->lock_arg
);
1866 wval
= kmemdup(val
, val_count
* val_bytes
, map
->alloc_flags
);
1868 dev_err(map
->dev
, "Error in memory allocation\n");
1871 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
1872 map
->format
.parse_inplace(wval
+ i
);
1874 map
->lock(map
->lock_arg
);
1875 ret
= _regmap_raw_write(map
, reg
, wval
, val_bytes
* val_count
);
1876 map
->unlock(map
->lock_arg
);
1882 EXPORT_SYMBOL_GPL(regmap_bulk_write
);
1885 * _regmap_raw_multi_reg_write()
1887 * the (register,newvalue) pairs in regs have not been formatted, but
1888 * they are all in the same page and have been changed to being page
1889 * relative. The page register has been written if that was necessary.
1891 static int _regmap_raw_multi_reg_write(struct regmap
*map
,
1892 const struct reg_sequence
*regs
,
1899 size_t val_bytes
= map
->format
.val_bytes
;
1900 size_t reg_bytes
= map
->format
.reg_bytes
;
1901 size_t pad_bytes
= map
->format
.pad_bytes
;
1902 size_t pair_size
= reg_bytes
+ pad_bytes
+ val_bytes
;
1903 size_t len
= pair_size
* num_regs
;
1908 buf
= kzalloc(len
, GFP_KERNEL
);
1912 /* We have to linearise by hand. */
1916 for (i
= 0; i
< num_regs
; i
++) {
1917 unsigned int reg
= regs
[i
].reg
;
1918 unsigned int val
= regs
[i
].def
;
1919 trace_regmap_hw_write_start(map
, reg
, 1);
1920 map
->format
.format_reg(u8
, reg
, map
->reg_shift
);
1921 u8
+= reg_bytes
+ pad_bytes
;
1922 map
->format
.format_val(u8
, val
, 0);
1926 *u8
|= map
->write_flag_mask
;
1928 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
1932 for (i
= 0; i
< num_regs
; i
++) {
1933 int reg
= regs
[i
].reg
;
1934 trace_regmap_hw_write_done(map
, reg
, 1);
1939 static unsigned int _regmap_register_page(struct regmap
*map
,
1941 struct regmap_range_node
*range
)
1943 unsigned int win_page
= (reg
- range
->range_min
) / range
->window_len
;
1948 static int _regmap_range_multi_paged_reg_write(struct regmap
*map
,
1949 struct reg_sequence
*regs
,
1954 struct reg_sequence
*base
;
1955 unsigned int this_page
= 0;
1956 unsigned int page_change
= 0;
1958 * the set of registers are not neccessarily in order, but
1959 * since the order of write must be preserved this algorithm
1960 * chops the set each time the page changes. This also applies
1961 * if there is a delay required at any point in the sequence.
1964 for (i
= 0, n
= 0; i
< num_regs
; i
++, n
++) {
1965 unsigned int reg
= regs
[i
].reg
;
1966 struct regmap_range_node
*range
;
1968 range
= _regmap_range_lookup(map
, reg
);
1970 unsigned int win_page
= _regmap_register_page(map
, reg
,
1974 this_page
= win_page
;
1975 if (win_page
!= this_page
) {
1976 this_page
= win_page
;
1981 /* If we have both a page change and a delay make sure to
1982 * write the regs and apply the delay before we change the
1986 if (page_change
|| regs
[i
].delay_us
) {
1988 /* For situations where the first write requires
1989 * a delay we need to make sure we don't call
1990 * raw_multi_reg_write with n=0
1991 * This can't occur with page breaks as we
1992 * never write on the first iteration
1994 if (regs
[i
].delay_us
&& i
== 0)
1997 ret
= _regmap_raw_multi_reg_write(map
, base
, n
);
2001 if (regs
[i
].delay_us
)
2002 udelay(regs
[i
].delay_us
);
2008 ret
= _regmap_select_page(map
,
2021 return _regmap_raw_multi_reg_write(map
, base
, n
);
2025 static int _regmap_multi_reg_write(struct regmap
*map
,
2026 const struct reg_sequence
*regs
,
2032 if (!map
->can_multi_write
) {
2033 for (i
= 0; i
< num_regs
; i
++) {
2034 ret
= _regmap_write(map
, regs
[i
].reg
, regs
[i
].def
);
2038 if (regs
[i
].delay_us
)
2039 udelay(regs
[i
].delay_us
);
2044 if (!map
->format
.parse_inplace
)
2047 if (map
->writeable_reg
)
2048 for (i
= 0; i
< num_regs
; i
++) {
2049 int reg
= regs
[i
].reg
;
2050 if (!map
->writeable_reg(map
->dev
, reg
))
2052 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2056 if (!map
->cache_bypass
) {
2057 for (i
= 0; i
< num_regs
; i
++) {
2058 unsigned int val
= regs
[i
].def
;
2059 unsigned int reg
= regs
[i
].reg
;
2060 ret
= regcache_write(map
, reg
, val
);
2063 "Error in caching of register: %x ret: %d\n",
2068 if (map
->cache_only
) {
2069 map
->cache_dirty
= true;
2076 for (i
= 0; i
< num_regs
; i
++) {
2077 unsigned int reg
= regs
[i
].reg
;
2078 struct regmap_range_node
*range
;
2080 /* Coalesce all the writes between a page break or a delay
2083 range
= _regmap_range_lookup(map
, reg
);
2084 if (range
|| regs
[i
].delay_us
) {
2085 size_t len
= sizeof(struct reg_sequence
)*num_regs
;
2086 struct reg_sequence
*base
= kmemdup(regs
, len
,
2090 ret
= _regmap_range_multi_paged_reg_write(map
, base
,
2097 return _regmap_raw_multi_reg_write(map
, regs
, num_regs
);
2101 * regmap_multi_reg_write(): Write multiple registers to the device
2103 * where the set of register,value pairs are supplied in any order,
2104 * possibly not all in a single range.
2106 * @map: Register map to write to
2107 * @regs: Array of structures containing register,value to be written
2108 * @num_regs: Number of registers to write
2110 * The 'normal' block write mode will send ultimately send data on the
2111 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2112 * addressed. However, this alternative block multi write mode will send
2113 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2114 * must of course support the mode.
2116 * A value of zero will be returned on success, a negative errno will be
2117 * returned in error cases.
2119 int regmap_multi_reg_write(struct regmap
*map
, const struct reg_sequence
*regs
,
2124 map
->lock(map
->lock_arg
);
2126 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2128 map
->unlock(map
->lock_arg
);
2132 EXPORT_SYMBOL_GPL(regmap_multi_reg_write
);
2135 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2136 * device but not the cache
2138 * where the set of register are supplied in any order
2140 * @map: Register map to write to
2141 * @regs: Array of structures containing register,value to be written
2142 * @num_regs: Number of registers to write
2144 * This function is intended to be used for writing a large block of data
2145 * atomically to the device in single transfer for those I2C client devices
2146 * that implement this alternative block write mode.
2148 * A value of zero will be returned on success, a negative errno will
2149 * be returned in error cases.
2151 int regmap_multi_reg_write_bypassed(struct regmap
*map
,
2152 const struct reg_sequence
*regs
,
2158 map
->lock(map
->lock_arg
);
2160 bypass
= map
->cache_bypass
;
2161 map
->cache_bypass
= true;
2163 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2165 map
->cache_bypass
= bypass
;
2167 map
->unlock(map
->lock_arg
);
2171 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed
);
2174 * regmap_raw_write_async(): Write raw values to one or more registers
2177 * @map: Register map to write to
2178 * @reg: Initial register to write to
2179 * @val: Block of data to be written, laid out for direct transmission to the
2180 * device. Must be valid until regmap_async_complete() is called.
2181 * @val_len: Length of data pointed to by val.
2183 * This function is intended to be used for things like firmware
2184 * download where a large block of data needs to be transferred to the
2185 * device. No formatting will be done on the data provided.
2187 * If supported by the underlying bus the write will be scheduled
2188 * asynchronously, helping maximise I/O speed on higher speed buses
2189 * like SPI. regmap_async_complete() can be called to ensure that all
2190 * asynchrnous writes have been completed.
2192 * A value of zero will be returned on success, a negative errno will
2193 * be returned in error cases.
2195 int regmap_raw_write_async(struct regmap
*map
, unsigned int reg
,
2196 const void *val
, size_t val_len
)
2200 if (val_len
% map
->format
.val_bytes
)
2202 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2205 map
->lock(map
->lock_arg
);
2209 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
2213 map
->unlock(map
->lock_arg
);
2217 EXPORT_SYMBOL_GPL(regmap_raw_write_async
);
2219 static int _regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2220 unsigned int val_len
)
2222 struct regmap_range_node
*range
;
2223 u8
*u8
= map
->work_buf
;
2228 if (!map
->bus
|| !map
->bus
->read
)
2231 range
= _regmap_range_lookup(map
, reg
);
2233 ret
= _regmap_select_page(map
, ®
, range
,
2234 val_len
/ map
->format
.val_bytes
);
2239 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
2242 * Some buses or devices flag reads by setting the high bits in the
2243 * register address; since it's always the high bits for all
2244 * current formats we can do this here rather than in
2245 * formatting. This may break if we get interesting formats.
2247 u8
[0] |= map
->read_flag_mask
;
2249 trace_regmap_hw_read_start(map
, reg
, val_len
/ map
->format
.val_bytes
);
2251 ret
= map
->bus
->read(map
->bus_context
, map
->work_buf
,
2252 map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
2255 trace_regmap_hw_read_done(map
, reg
, val_len
/ map
->format
.val_bytes
);
2260 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
2263 struct regmap
*map
= context
;
2265 return map
->bus
->reg_read(map
->bus_context
, reg
, val
);
2268 static int _regmap_bus_read(void *context
, unsigned int reg
,
2272 struct regmap
*map
= context
;
2274 if (!map
->format
.parse_val
)
2277 ret
= _regmap_raw_read(map
, reg
, map
->work_buf
, map
->format
.val_bytes
);
2279 *val
= map
->format
.parse_val(map
->work_buf
);
2284 static int _regmap_read(struct regmap
*map
, unsigned int reg
,
2288 void *context
= _regmap_map_get_context(map
);
2290 if (!map
->cache_bypass
) {
2291 ret
= regcache_read(map
, reg
, val
);
2296 if (map
->cache_only
)
2299 if (!regmap_readable(map
, reg
))
2302 ret
= map
->reg_read(context
, reg
, val
);
2305 if (map
->dev
&& strcmp(dev_name(map
->dev
), LOG_DEVICE
) == 0)
2306 dev_info(map
->dev
, "%x => %x\n", reg
, *val
);
2309 trace_regmap_reg_read(map
, reg
, *val
);
2311 if (!map
->cache_bypass
)
2312 regcache_write(map
, reg
, *val
);
2319 * regmap_read(): Read a value from a single register
2321 * @map: Register map to read from
2322 * @reg: Register to be read from
2323 * @val: Pointer to store read value
2325 * A value of zero will be returned on success, a negative errno will
2326 * be returned in error cases.
2328 int regmap_read(struct regmap
*map
, unsigned int reg
, unsigned int *val
)
2332 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2335 map
->lock(map
->lock_arg
);
2337 ret
= _regmap_read(map
, reg
, val
);
2339 map
->unlock(map
->lock_arg
);
2343 EXPORT_SYMBOL_GPL(regmap_read
);
2346 * regmap_raw_read(): Read raw data from the device
2348 * @map: Register map to read from
2349 * @reg: First register to be read from
2350 * @val: Pointer to store read value
2351 * @val_len: Size of data to read
2353 * A value of zero will be returned on success, a negative errno will
2354 * be returned in error cases.
2356 int regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2359 size_t val_bytes
= map
->format
.val_bytes
;
2360 size_t val_count
= val_len
/ val_bytes
;
2366 if (val_len
% map
->format
.val_bytes
)
2368 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2373 map
->lock(map
->lock_arg
);
2375 if (regmap_volatile_range(map
, reg
, val_count
) || map
->cache_bypass
||
2376 map
->cache_type
== REGCACHE_NONE
) {
2377 if (!map
->bus
->read
) {
2381 if (map
->max_raw_read
&& map
->max_raw_read
< val_len
) {
2386 /* Physical block read if there's no cache involved */
2387 ret
= _regmap_raw_read(map
, reg
, val
, val_len
);
2390 /* Otherwise go word by word for the cache; should be low
2391 * cost as we expect to hit the cache.
2393 for (i
= 0; i
< val_count
; i
++) {
2394 ret
= _regmap_read(map
, reg
+ regmap_get_offset(map
, i
),
2399 map
->format
.format_val(val
+ (i
* val_bytes
), v
, 0);
2404 map
->unlock(map
->lock_arg
);
2408 EXPORT_SYMBOL_GPL(regmap_raw_read
);
2411 * regmap_field_read(): Read a value to a single register field
2413 * @field: Register field to read from
2414 * @val: Pointer to store read value
2416 * A value of zero will be returned on success, a negative errno will
2417 * be returned in error cases.
2419 int regmap_field_read(struct regmap_field
*field
, unsigned int *val
)
2422 unsigned int reg_val
;
2423 ret
= regmap_read(field
->regmap
, field
->reg
, ®_val
);
2427 reg_val
&= field
->mask
;
2428 reg_val
>>= field
->shift
;
2433 EXPORT_SYMBOL_GPL(regmap_field_read
);
2436 * regmap_fields_read(): Read a value to a single register field with port ID
2438 * @field: Register field to read from
2440 * @val: Pointer to store read value
2442 * A value of zero will be returned on success, a negative errno will
2443 * be returned in error cases.
2445 int regmap_fields_read(struct regmap_field
*field
, unsigned int id
,
2449 unsigned int reg_val
;
2451 if (id
>= field
->id_size
)
2454 ret
= regmap_read(field
->regmap
,
2455 field
->reg
+ (field
->id_offset
* id
),
2460 reg_val
&= field
->mask
;
2461 reg_val
>>= field
->shift
;
2466 EXPORT_SYMBOL_GPL(regmap_fields_read
);
2469 * regmap_bulk_read(): Read multiple registers from the device
2471 * @map: Register map to read from
2472 * @reg: First register to be read from
2473 * @val: Pointer to store read value, in native register size for device
2474 * @val_count: Number of registers to read
2476 * A value of zero will be returned on success, a negative errno will
2477 * be returned in error cases.
2479 int regmap_bulk_read(struct regmap
*map
, unsigned int reg
, void *val
,
2483 size_t val_bytes
= map
->format
.val_bytes
;
2484 bool vol
= regmap_volatile_range(map
, reg
, val_count
);
2486 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2489 if (map
->bus
&& map
->format
.parse_inplace
&& (vol
|| map
->cache_type
== REGCACHE_NONE
)) {
2491 * Some devices does not support bulk read, for
2492 * them we have a series of single read operations.
2494 size_t total_size
= val_bytes
* val_count
;
2496 if (!map
->use_single_read
&&
2497 (!map
->max_raw_read
|| map
->max_raw_read
> total_size
)) {
2498 ret
= regmap_raw_read(map
, reg
, val
,
2499 val_bytes
* val_count
);
2504 * Some devices do not support bulk read or do not
2505 * support large bulk reads, for them we have a series
2506 * of read operations.
2508 int chunk_stride
= map
->reg_stride
;
2509 size_t chunk_size
= val_bytes
;
2510 size_t chunk_count
= val_count
;
2512 if (!map
->use_single_read
) {
2513 chunk_size
= map
->max_raw_read
;
2514 if (chunk_size
% val_bytes
)
2515 chunk_size
-= chunk_size
% val_bytes
;
2516 chunk_count
= total_size
/ chunk_size
;
2517 chunk_stride
*= chunk_size
/ val_bytes
;
2520 /* Read bytes that fit into a multiple of chunk_size */
2521 for (i
= 0; i
< chunk_count
; i
++) {
2522 ret
= regmap_raw_read(map
,
2523 reg
+ (i
* chunk_stride
),
2524 val
+ (i
* chunk_size
),
2530 /* Read remaining bytes */
2531 if (chunk_size
* i
< total_size
) {
2532 ret
= regmap_raw_read(map
,
2533 reg
+ (i
* chunk_stride
),
2534 val
+ (i
* chunk_size
),
2535 total_size
- i
* chunk_size
);
2541 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
2542 map
->format
.parse_inplace(val
+ i
);
2544 for (i
= 0; i
< val_count
; i
++) {
2546 ret
= regmap_read(map
, reg
+ regmap_get_offset(map
, i
),
2551 if (map
->format
.format_val
) {
2552 map
->format
.format_val(val
+ (i
* val_bytes
), ival
, 0);
2554 /* Devices providing read and write
2555 * operations can use the bulk I/O
2556 * functions if they define a val_bytes,
2557 * we assume that the values are native
2567 switch (map
->format
.val_bytes
) {
2591 EXPORT_SYMBOL_GPL(regmap_bulk_read
);
2593 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
2594 unsigned int mask
, unsigned int val
,
2595 bool *change
, bool force_write
)
2598 unsigned int tmp
, orig
;
2603 if (regmap_volatile(map
, reg
) && map
->reg_update_bits
) {
2604 ret
= map
->reg_update_bits(map
->bus_context
, reg
, mask
, val
);
2605 if (ret
== 0 && change
)
2608 ret
= _regmap_read(map
, reg
, &orig
);
2615 if (force_write
|| (tmp
!= orig
)) {
2616 ret
= _regmap_write(map
, reg
, tmp
);
2617 if (ret
== 0 && change
)
2626 * regmap_update_bits_base:
2627 * Perform a read/modify/write cycle on the
2628 * register map with change, async, force option
2630 * @map: Register map to update
2631 * @reg: Register to update
2632 * @mask: Bitmask to change
2633 * @val: New value for bitmask
2634 * @change: Boolean indicating if a write was done
2635 * @async: Boolean indicating asynchronously
2636 * @force: Boolean indicating use force update
2638 * if async was true,
2639 * With most buses the read must be done synchronously so this is most
2640 * useful for devices with a cache which do not need to interact with
2641 * the hardware to determine the current register value.
2643 * Returns zero for success, a negative number on error.
2645 int regmap_update_bits_base(struct regmap
*map
, unsigned int reg
,
2646 unsigned int mask
, unsigned int val
,
2647 bool *change
, bool async
, bool force
)
2651 map
->lock(map
->lock_arg
);
2655 ret
= _regmap_update_bits(map
, reg
, mask
, val
, change
, force
);
2659 map
->unlock(map
->lock_arg
);
2663 EXPORT_SYMBOL_GPL(regmap_update_bits_base
);
2665 void regmap_async_complete_cb(struct regmap_async
*async
, int ret
)
2667 struct regmap
*map
= async
->map
;
2670 trace_regmap_async_io_complete(map
);
2672 spin_lock(&map
->async_lock
);
2673 list_move(&async
->list
, &map
->async_free
);
2674 wake
= list_empty(&map
->async_list
);
2677 map
->async_ret
= ret
;
2679 spin_unlock(&map
->async_lock
);
2682 wake_up(&map
->async_waitq
);
2684 EXPORT_SYMBOL_GPL(regmap_async_complete_cb
);
2686 static int regmap_async_is_done(struct regmap
*map
)
2688 unsigned long flags
;
2691 spin_lock_irqsave(&map
->async_lock
, flags
);
2692 ret
= list_empty(&map
->async_list
);
2693 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2699 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2701 * @map: Map to operate on.
2703 * Blocks until any pending asynchronous I/O has completed. Returns
2704 * an error code for any failed I/O operations.
2706 int regmap_async_complete(struct regmap
*map
)
2708 unsigned long flags
;
2711 /* Nothing to do with no async support */
2712 if (!map
->bus
|| !map
->bus
->async_write
)
2715 trace_regmap_async_complete_start(map
);
2717 wait_event(map
->async_waitq
, regmap_async_is_done(map
));
2719 spin_lock_irqsave(&map
->async_lock
, flags
);
2720 ret
= map
->async_ret
;
2722 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2724 trace_regmap_async_complete_done(map
);
2728 EXPORT_SYMBOL_GPL(regmap_async_complete
);
2731 * regmap_register_patch: Register and apply register updates to be applied
2732 * on device initialistion
2734 * @map: Register map to apply updates to.
2735 * @regs: Values to update.
2736 * @num_regs: Number of entries in regs.
2738 * Register a set of register updates to be applied to the device
2739 * whenever the device registers are synchronised with the cache and
2740 * apply them immediately. Typically this is used to apply
2741 * corrections to be applied to the device defaults on startup, such
2742 * as the updates some vendors provide to undocumented registers.
2744 * The caller must ensure that this function cannot be called
2745 * concurrently with either itself or regcache_sync().
2747 int regmap_register_patch(struct regmap
*map
, const struct reg_sequence
*regs
,
2750 struct reg_sequence
*p
;
2754 if (WARN_ONCE(num_regs
<= 0, "invalid registers number (%d)\n",
2758 p
= krealloc(map
->patch
,
2759 sizeof(struct reg_sequence
) * (map
->patch_regs
+ num_regs
),
2762 memcpy(p
+ map
->patch_regs
, regs
, num_regs
* sizeof(*regs
));
2764 map
->patch_regs
+= num_regs
;
2769 map
->lock(map
->lock_arg
);
2771 bypass
= map
->cache_bypass
;
2773 map
->cache_bypass
= true;
2776 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2779 map
->cache_bypass
= bypass
;
2781 map
->unlock(map
->lock_arg
);
2783 regmap_async_complete(map
);
2787 EXPORT_SYMBOL_GPL(regmap_register_patch
);
2790 * regmap_get_val_bytes(): Report the size of a register value
2792 * Report the size of a register value, mainly intended to for use by
2793 * generic infrastructure built on top of regmap.
2795 int regmap_get_val_bytes(struct regmap
*map
)
2797 if (map
->format
.format_write
)
2800 return map
->format
.val_bytes
;
2802 EXPORT_SYMBOL_GPL(regmap_get_val_bytes
);
2805 * regmap_get_max_register(): Report the max register value
2807 * Report the max register value, mainly intended to for use by
2808 * generic infrastructure built on top of regmap.
2810 int regmap_get_max_register(struct regmap
*map
)
2812 return map
->max_register
? map
->max_register
: -EINVAL
;
2814 EXPORT_SYMBOL_GPL(regmap_get_max_register
);
2817 * regmap_get_reg_stride(): Report the register address stride
2819 * Report the register address stride, mainly intended to for use by
2820 * generic infrastructure built on top of regmap.
2822 int regmap_get_reg_stride(struct regmap
*map
)
2824 return map
->reg_stride
;
2826 EXPORT_SYMBOL_GPL(regmap_get_reg_stride
);
2828 int regmap_parse_val(struct regmap
*map
, const void *buf
,
2831 if (!map
->format
.parse_val
)
2834 *val
= map
->format
.parse_val(buf
);
2838 EXPORT_SYMBOL_GPL(regmap_parse_val
);
2840 static int __init
regmap_initcall(void)
2842 regmap_debugfs_initcall();
2846 postcore_initcall(regmap_initcall
);