Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / drivers / block / cciss.c
blob63c2064689f864aa515bf8a5b78c5841e7e91bab
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/pci-aspm.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <linux/bitmap.h>
45 #include <linux/io.h>
46 #include <asm/uaccess.h>
48 #include <linux/dma-mapping.h>
49 #include <linux/blkdev.h>
50 #include <linux/genhd.h>
51 #include <linux/completion.h>
52 #include <scsi/scsi.h>
53 #include <scsi/sg.h>
54 #include <scsi/scsi_ioctl.h>
55 #include <linux/cdrom.h>
56 #include <linux/scatterlist.h>
57 #include <linux/kthread.h>
59 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
60 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
61 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
63 /* Embedded module documentation macros - see modules.h */
64 MODULE_AUTHOR("Hewlett-Packard Company");
65 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
66 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
67 MODULE_VERSION("3.6.26");
68 MODULE_LICENSE("GPL");
69 static int cciss_tape_cmds = 6;
70 module_param(cciss_tape_cmds, int, 0644);
71 MODULE_PARM_DESC(cciss_tape_cmds,
72 "number of commands to allocate for tape devices (default: 6)");
73 static int cciss_simple_mode;
74 module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(cciss_simple_mode,
76 "Use 'simple mode' rather than 'performant mode'");
78 static int cciss_allow_hpsa;
79 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
80 MODULE_PARM_DESC(cciss_allow_hpsa,
81 "Prevent cciss driver from accessing hardware known to be "
82 " supported by the hpsa driver");
84 static DEFINE_MUTEX(cciss_mutex);
85 static struct proc_dir_entry *proc_cciss;
87 #include "cciss_cmd.h"
88 #include "cciss.h"
89 #include <linux/cciss_ioctl.h>
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id cciss_pci_device_id[] = {
93 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
94 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
95 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
96 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
97 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
98 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
99 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
100 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
101 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
113 {0,}
116 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
118 /* board_id = Subsystem Device ID & Vendor ID
119 * product = Marketing Name for the board
120 * access = Address of the struct of function pointers
122 static struct board_type products[] = {
123 {0x40700E11, "Smart Array 5300", &SA5_access},
124 {0x40800E11, "Smart Array 5i", &SA5B_access},
125 {0x40820E11, "Smart Array 532", &SA5B_access},
126 {0x40830E11, "Smart Array 5312", &SA5B_access},
127 {0x409A0E11, "Smart Array 641", &SA5_access},
128 {0x409B0E11, "Smart Array 642", &SA5_access},
129 {0x409C0E11, "Smart Array 6400", &SA5_access},
130 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
131 {0x40910E11, "Smart Array 6i", &SA5_access},
132 {0x3225103C, "Smart Array P600", &SA5_access},
133 {0x3223103C, "Smart Array P800", &SA5_access},
134 {0x3234103C, "Smart Array P400", &SA5_access},
135 {0x3235103C, "Smart Array P400i", &SA5_access},
136 {0x3211103C, "Smart Array E200i", &SA5_access},
137 {0x3212103C, "Smart Array E200", &SA5_access},
138 {0x3213103C, "Smart Array E200i", &SA5_access},
139 {0x3214103C, "Smart Array E200i", &SA5_access},
140 {0x3215103C, "Smart Array E200i", &SA5_access},
141 {0x3237103C, "Smart Array E500", &SA5_access},
142 {0x323D103C, "Smart Array P700m", &SA5_access},
145 /* How long to wait (in milliseconds) for board to go into simple mode */
146 #define MAX_CONFIG_WAIT 30000
147 #define MAX_IOCTL_CONFIG_WAIT 1000
149 /*define how many times we will try a command because of bus resets */
150 #define MAX_CMD_RETRIES 3
152 #define MAX_CTLR 32
154 /* Originally cciss driver only supports 8 major numbers */
155 #define MAX_CTLR_ORIG 8
157 static ctlr_info_t *hba[MAX_CTLR];
159 static struct task_struct *cciss_scan_thread;
160 static DEFINE_MUTEX(scan_mutex);
161 static LIST_HEAD(scan_q);
163 static void do_cciss_request(struct request_queue *q);
164 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
165 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
166 static int cciss_open(struct block_device *bdev, fmode_t mode);
167 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
168 static void cciss_release(struct gendisk *disk, fmode_t mode);
169 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
170 unsigned int cmd, unsigned long arg);
171 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
173 static int cciss_revalidate(struct gendisk *disk);
174 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
175 static int deregister_disk(ctlr_info_t *h, int drv_index,
176 int clear_all, int via_ioctl);
178 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
179 sector_t *total_size, unsigned int *block_size);
180 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
181 sector_t *total_size, unsigned int *block_size);
182 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
183 sector_t total_size,
184 unsigned int block_size, InquiryData_struct *inq_buff,
185 drive_info_struct *drv);
186 static void cciss_interrupt_mode(ctlr_info_t *);
187 static int cciss_enter_simple_mode(struct ctlr_info *h);
188 static void start_io(ctlr_info_t *h);
189 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
190 __u8 page_code, unsigned char scsi3addr[],
191 int cmd_type);
192 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
193 int attempt_retry);
194 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
196 static int add_to_scan_list(struct ctlr_info *h);
197 static int scan_thread(void *data);
198 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
199 static void cciss_hba_release(struct device *dev);
200 static void cciss_device_release(struct device *dev);
201 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
202 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
203 static inline u32 next_command(ctlr_info_t *h);
204 static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
205 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
206 u64 *cfg_offset);
207 static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
208 unsigned long *memory_bar);
209 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
210 static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable);
212 /* performant mode helper functions */
213 static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
214 int *bucket_map);
215 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
217 #ifdef CONFIG_PROC_FS
218 static void cciss_procinit(ctlr_info_t *h);
219 #else
220 static void cciss_procinit(ctlr_info_t *h)
223 #endif /* CONFIG_PROC_FS */
225 #ifdef CONFIG_COMPAT
226 static int cciss_compat_ioctl(struct block_device *, fmode_t,
227 unsigned, unsigned long);
228 #endif
230 static const struct block_device_operations cciss_fops = {
231 .owner = THIS_MODULE,
232 .open = cciss_unlocked_open,
233 .release = cciss_release,
234 .ioctl = cciss_ioctl,
235 .getgeo = cciss_getgeo,
236 #ifdef CONFIG_COMPAT
237 .compat_ioctl = cciss_compat_ioctl,
238 #endif
239 .revalidate_disk = cciss_revalidate,
242 /* set_performant_mode: Modify the tag for cciss performant
243 * set bit 0 for pull model, bits 3-1 for block fetch
244 * register number
246 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
248 if (likely(h->transMethod & CFGTBL_Trans_Performant))
249 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
253 * Enqueuing and dequeuing functions for cmdlists.
255 static inline void addQ(struct list_head *list, CommandList_struct *c)
257 list_add_tail(&c->list, list);
260 static inline void removeQ(CommandList_struct *c)
263 * After kexec/dump some commands might still
264 * be in flight, which the firmware will try
265 * to complete. Resetting the firmware doesn't work
266 * with old fw revisions, so we have to mark
267 * them off as 'stale' to prevent the driver from
268 * falling over.
270 if (WARN_ON(list_empty(&c->list))) {
271 c->cmd_type = CMD_MSG_STALE;
272 return;
275 list_del_init(&c->list);
278 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
279 CommandList_struct *c)
281 unsigned long flags;
282 set_performant_mode(h, c);
283 spin_lock_irqsave(&h->lock, flags);
284 addQ(&h->reqQ, c);
285 h->Qdepth++;
286 if (h->Qdepth > h->maxQsinceinit)
287 h->maxQsinceinit = h->Qdepth;
288 start_io(h);
289 spin_unlock_irqrestore(&h->lock, flags);
292 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
293 int nr_cmds)
295 int i;
297 if (!cmd_sg_list)
298 return;
299 for (i = 0; i < nr_cmds; i++) {
300 kfree(cmd_sg_list[i]);
301 cmd_sg_list[i] = NULL;
303 kfree(cmd_sg_list);
306 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
307 ctlr_info_t *h, int chainsize, int nr_cmds)
309 int j;
310 SGDescriptor_struct **cmd_sg_list;
312 if (chainsize <= 0)
313 return NULL;
315 cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
316 if (!cmd_sg_list)
317 return NULL;
319 /* Build up chain blocks for each command */
320 for (j = 0; j < nr_cmds; j++) {
321 /* Need a block of chainsized s/g elements. */
322 cmd_sg_list[j] = kmalloc((chainsize *
323 sizeof(*cmd_sg_list[j])), GFP_KERNEL);
324 if (!cmd_sg_list[j]) {
325 dev_err(&h->pdev->dev, "Cannot get memory "
326 "for s/g chains.\n");
327 goto clean;
330 return cmd_sg_list;
331 clean:
332 cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
333 return NULL;
336 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
338 SGDescriptor_struct *chain_sg;
339 u64bit temp64;
341 if (c->Header.SGTotal <= h->max_cmd_sgentries)
342 return;
344 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
345 temp64.val32.lower = chain_sg->Addr.lower;
346 temp64.val32.upper = chain_sg->Addr.upper;
347 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
350 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
351 SGDescriptor_struct *chain_block, int len)
353 SGDescriptor_struct *chain_sg;
354 u64bit temp64;
356 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
357 chain_sg->Ext = CCISS_SG_CHAIN;
358 chain_sg->Len = len;
359 temp64.val = pci_map_single(h->pdev, chain_block, len,
360 PCI_DMA_TODEVICE);
361 chain_sg->Addr.lower = temp64.val32.lower;
362 chain_sg->Addr.upper = temp64.val32.upper;
365 #include "cciss_scsi.c" /* For SCSI tape support */
367 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
368 "UNKNOWN"
370 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
372 #ifdef CONFIG_PROC_FS
375 * Report information about this controller.
377 #define ENG_GIG 1000000000
378 #define ENG_GIG_FACTOR (ENG_GIG/512)
379 #define ENGAGE_SCSI "engage scsi"
381 static void cciss_seq_show_header(struct seq_file *seq)
383 ctlr_info_t *h = seq->private;
385 seq_printf(seq, "%s: HP %s Controller\n"
386 "Board ID: 0x%08lx\n"
387 "Firmware Version: %c%c%c%c\n"
388 "IRQ: %d\n"
389 "Logical drives: %d\n"
390 "Current Q depth: %d\n"
391 "Current # commands on controller: %d\n"
392 "Max Q depth since init: %d\n"
393 "Max # commands on controller since init: %d\n"
394 "Max SG entries since init: %d\n",
395 h->devname,
396 h->product_name,
397 (unsigned long)h->board_id,
398 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
399 h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
400 h->num_luns,
401 h->Qdepth, h->commands_outstanding,
402 h->maxQsinceinit, h->max_outstanding, h->maxSG);
404 #ifdef CONFIG_CISS_SCSI_TAPE
405 cciss_seq_tape_report(seq, h);
406 #endif /* CONFIG_CISS_SCSI_TAPE */
409 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
411 ctlr_info_t *h = seq->private;
412 unsigned long flags;
414 /* prevent displaying bogus info during configuration
415 * or deconfiguration of a logical volume
417 spin_lock_irqsave(&h->lock, flags);
418 if (h->busy_configuring) {
419 spin_unlock_irqrestore(&h->lock, flags);
420 return ERR_PTR(-EBUSY);
422 h->busy_configuring = 1;
423 spin_unlock_irqrestore(&h->lock, flags);
425 if (*pos == 0)
426 cciss_seq_show_header(seq);
428 return pos;
431 static int cciss_seq_show(struct seq_file *seq, void *v)
433 sector_t vol_sz, vol_sz_frac;
434 ctlr_info_t *h = seq->private;
435 unsigned ctlr = h->ctlr;
436 loff_t *pos = v;
437 drive_info_struct *drv = h->drv[*pos];
439 if (*pos > h->highest_lun)
440 return 0;
442 if (drv == NULL) /* it's possible for h->drv[] to have holes. */
443 return 0;
445 if (drv->heads == 0)
446 return 0;
448 vol_sz = drv->nr_blocks;
449 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
450 vol_sz_frac *= 100;
451 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
453 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
454 drv->raid_level = RAID_UNKNOWN;
455 seq_printf(seq, "cciss/c%dd%d:"
456 "\t%4u.%02uGB\tRAID %s\n",
457 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
458 raid_label[drv->raid_level]);
459 return 0;
462 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
464 ctlr_info_t *h = seq->private;
466 if (*pos > h->highest_lun)
467 return NULL;
468 *pos += 1;
470 return pos;
473 static void cciss_seq_stop(struct seq_file *seq, void *v)
475 ctlr_info_t *h = seq->private;
477 /* Only reset h->busy_configuring if we succeeded in setting
478 * it during cciss_seq_start. */
479 if (v == ERR_PTR(-EBUSY))
480 return;
482 h->busy_configuring = 0;
485 static const struct seq_operations cciss_seq_ops = {
486 .start = cciss_seq_start,
487 .show = cciss_seq_show,
488 .next = cciss_seq_next,
489 .stop = cciss_seq_stop,
492 static int cciss_seq_open(struct inode *inode, struct file *file)
494 int ret = seq_open(file, &cciss_seq_ops);
495 struct seq_file *seq = file->private_data;
497 if (!ret)
498 seq->private = PDE_DATA(inode);
500 return ret;
503 static ssize_t
504 cciss_proc_write(struct file *file, const char __user *buf,
505 size_t length, loff_t *ppos)
507 int err;
508 char *buffer;
510 #ifndef CONFIG_CISS_SCSI_TAPE
511 return -EINVAL;
512 #endif
514 if (!buf || length > PAGE_SIZE - 1)
515 return -EINVAL;
517 buffer = memdup_user_nul(buf, length);
518 if (IS_ERR(buffer))
519 return PTR_ERR(buffer);
521 #ifdef CONFIG_CISS_SCSI_TAPE
522 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
523 struct seq_file *seq = file->private_data;
524 ctlr_info_t *h = seq->private;
526 err = cciss_engage_scsi(h);
527 if (err == 0)
528 err = length;
529 } else
530 #endif /* CONFIG_CISS_SCSI_TAPE */
531 err = -EINVAL;
532 /* might be nice to have "disengage" too, but it's not
533 safely possible. (only 1 module use count, lock issues.) */
535 kfree(buffer);
536 return err;
539 static const struct file_operations cciss_proc_fops = {
540 .owner = THIS_MODULE,
541 .open = cciss_seq_open,
542 .read = seq_read,
543 .llseek = seq_lseek,
544 .release = seq_release,
545 .write = cciss_proc_write,
548 static void cciss_procinit(ctlr_info_t *h)
550 struct proc_dir_entry *pde;
552 if (proc_cciss == NULL)
553 proc_cciss = proc_mkdir("driver/cciss", NULL);
554 if (!proc_cciss)
555 return;
556 pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
557 S_IROTH, proc_cciss,
558 &cciss_proc_fops, h);
560 #endif /* CONFIG_PROC_FS */
562 #define MAX_PRODUCT_NAME_LEN 19
564 #define to_hba(n) container_of(n, struct ctlr_info, dev)
565 #define to_drv(n) container_of(n, drive_info_struct, dev)
567 /* List of controllers which cannot be hard reset on kexec with reset_devices */
568 static u32 unresettable_controller[] = {
569 0x3223103C, /* Smart Array P800 */
570 0x3234103C, /* Smart Array P400 */
571 0x3235103C, /* Smart Array P400i */
572 0x3211103C, /* Smart Array E200i */
573 0x3212103C, /* Smart Array E200 */
574 0x3213103C, /* Smart Array E200i */
575 0x3214103C, /* Smart Array E200i */
576 0x3215103C, /* Smart Array E200i */
577 0x3237103C, /* Smart Array E500 */
578 0x323D103C, /* Smart Array P700m */
579 0x40800E11, /* Smart Array 5i */
580 0x409C0E11, /* Smart Array 6400 */
581 0x409D0E11, /* Smart Array 6400 EM */
582 0x40700E11, /* Smart Array 5300 */
583 0x40820E11, /* Smart Array 532 */
584 0x40830E11, /* Smart Array 5312 */
585 0x409A0E11, /* Smart Array 641 */
586 0x409B0E11, /* Smart Array 642 */
587 0x40910E11, /* Smart Array 6i */
590 /* List of controllers which cannot even be soft reset */
591 static u32 soft_unresettable_controller[] = {
592 0x40800E11, /* Smart Array 5i */
593 0x40700E11, /* Smart Array 5300 */
594 0x40820E11, /* Smart Array 532 */
595 0x40830E11, /* Smart Array 5312 */
596 0x409A0E11, /* Smart Array 641 */
597 0x409B0E11, /* Smart Array 642 */
598 0x40910E11, /* Smart Array 6i */
599 /* Exclude 640x boards. These are two pci devices in one slot
600 * which share a battery backed cache module. One controls the
601 * cache, the other accesses the cache through the one that controls
602 * it. If we reset the one controlling the cache, the other will
603 * likely not be happy. Just forbid resetting this conjoined mess.
605 0x409C0E11, /* Smart Array 6400 */
606 0x409D0E11, /* Smart Array 6400 EM */
609 static int ctlr_is_hard_resettable(u32 board_id)
611 int i;
613 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
614 if (unresettable_controller[i] == board_id)
615 return 0;
616 return 1;
619 static int ctlr_is_soft_resettable(u32 board_id)
621 int i;
623 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
624 if (soft_unresettable_controller[i] == board_id)
625 return 0;
626 return 1;
629 static int ctlr_is_resettable(u32 board_id)
631 return ctlr_is_hard_resettable(board_id) ||
632 ctlr_is_soft_resettable(board_id);
635 static ssize_t host_show_resettable(struct device *dev,
636 struct device_attribute *attr,
637 char *buf)
639 struct ctlr_info *h = to_hba(dev);
641 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
643 static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
645 static ssize_t host_store_rescan(struct device *dev,
646 struct device_attribute *attr,
647 const char *buf, size_t count)
649 struct ctlr_info *h = to_hba(dev);
651 add_to_scan_list(h);
652 wake_up_process(cciss_scan_thread);
653 wait_for_completion_interruptible(&h->scan_wait);
655 return count;
657 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
659 static ssize_t host_show_transport_mode(struct device *dev,
660 struct device_attribute *attr,
661 char *buf)
663 struct ctlr_info *h = to_hba(dev);
665 return snprintf(buf, 20, "%s\n",
666 h->transMethod & CFGTBL_Trans_Performant ?
667 "performant" : "simple");
669 static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
671 static ssize_t dev_show_unique_id(struct device *dev,
672 struct device_attribute *attr,
673 char *buf)
675 drive_info_struct *drv = to_drv(dev);
676 struct ctlr_info *h = to_hba(drv->dev.parent);
677 __u8 sn[16];
678 unsigned long flags;
679 int ret = 0;
681 spin_lock_irqsave(&h->lock, flags);
682 if (h->busy_configuring)
683 ret = -EBUSY;
684 else
685 memcpy(sn, drv->serial_no, sizeof(sn));
686 spin_unlock_irqrestore(&h->lock, flags);
688 if (ret)
689 return ret;
690 else
691 return snprintf(buf, 16 * 2 + 2,
692 "%02X%02X%02X%02X%02X%02X%02X%02X"
693 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
694 sn[0], sn[1], sn[2], sn[3],
695 sn[4], sn[5], sn[6], sn[7],
696 sn[8], sn[9], sn[10], sn[11],
697 sn[12], sn[13], sn[14], sn[15]);
699 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
701 static ssize_t dev_show_vendor(struct device *dev,
702 struct device_attribute *attr,
703 char *buf)
705 drive_info_struct *drv = to_drv(dev);
706 struct ctlr_info *h = to_hba(drv->dev.parent);
707 char vendor[VENDOR_LEN + 1];
708 unsigned long flags;
709 int ret = 0;
711 spin_lock_irqsave(&h->lock, flags);
712 if (h->busy_configuring)
713 ret = -EBUSY;
714 else
715 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
716 spin_unlock_irqrestore(&h->lock, flags);
718 if (ret)
719 return ret;
720 else
721 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
723 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
725 static ssize_t dev_show_model(struct device *dev,
726 struct device_attribute *attr,
727 char *buf)
729 drive_info_struct *drv = to_drv(dev);
730 struct ctlr_info *h = to_hba(drv->dev.parent);
731 char model[MODEL_LEN + 1];
732 unsigned long flags;
733 int ret = 0;
735 spin_lock_irqsave(&h->lock, flags);
736 if (h->busy_configuring)
737 ret = -EBUSY;
738 else
739 memcpy(model, drv->model, MODEL_LEN + 1);
740 spin_unlock_irqrestore(&h->lock, flags);
742 if (ret)
743 return ret;
744 else
745 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
747 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
749 static ssize_t dev_show_rev(struct device *dev,
750 struct device_attribute *attr,
751 char *buf)
753 drive_info_struct *drv = to_drv(dev);
754 struct ctlr_info *h = to_hba(drv->dev.parent);
755 char rev[REV_LEN + 1];
756 unsigned long flags;
757 int ret = 0;
759 spin_lock_irqsave(&h->lock, flags);
760 if (h->busy_configuring)
761 ret = -EBUSY;
762 else
763 memcpy(rev, drv->rev, REV_LEN + 1);
764 spin_unlock_irqrestore(&h->lock, flags);
766 if (ret)
767 return ret;
768 else
769 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
771 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
773 static ssize_t cciss_show_lunid(struct device *dev,
774 struct device_attribute *attr, char *buf)
776 drive_info_struct *drv = to_drv(dev);
777 struct ctlr_info *h = to_hba(drv->dev.parent);
778 unsigned long flags;
779 unsigned char lunid[8];
781 spin_lock_irqsave(&h->lock, flags);
782 if (h->busy_configuring) {
783 spin_unlock_irqrestore(&h->lock, flags);
784 return -EBUSY;
786 if (!drv->heads) {
787 spin_unlock_irqrestore(&h->lock, flags);
788 return -ENOTTY;
790 memcpy(lunid, drv->LunID, sizeof(lunid));
791 spin_unlock_irqrestore(&h->lock, flags);
792 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
793 lunid[0], lunid[1], lunid[2], lunid[3],
794 lunid[4], lunid[5], lunid[6], lunid[7]);
796 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
798 static ssize_t cciss_show_raid_level(struct device *dev,
799 struct device_attribute *attr, char *buf)
801 drive_info_struct *drv = to_drv(dev);
802 struct ctlr_info *h = to_hba(drv->dev.parent);
803 int raid;
804 unsigned long flags;
806 spin_lock_irqsave(&h->lock, flags);
807 if (h->busy_configuring) {
808 spin_unlock_irqrestore(&h->lock, flags);
809 return -EBUSY;
811 raid = drv->raid_level;
812 spin_unlock_irqrestore(&h->lock, flags);
813 if (raid < 0 || raid > RAID_UNKNOWN)
814 raid = RAID_UNKNOWN;
816 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
817 raid_label[raid]);
819 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
821 static ssize_t cciss_show_usage_count(struct device *dev,
822 struct device_attribute *attr, char *buf)
824 drive_info_struct *drv = to_drv(dev);
825 struct ctlr_info *h = to_hba(drv->dev.parent);
826 unsigned long flags;
827 int count;
829 spin_lock_irqsave(&h->lock, flags);
830 if (h->busy_configuring) {
831 spin_unlock_irqrestore(&h->lock, flags);
832 return -EBUSY;
834 count = drv->usage_count;
835 spin_unlock_irqrestore(&h->lock, flags);
836 return snprintf(buf, 20, "%d\n", count);
838 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
840 static struct attribute *cciss_host_attrs[] = {
841 &dev_attr_rescan.attr,
842 &dev_attr_resettable.attr,
843 &dev_attr_transport_mode.attr,
844 NULL
847 static struct attribute_group cciss_host_attr_group = {
848 .attrs = cciss_host_attrs,
851 static const struct attribute_group *cciss_host_attr_groups[] = {
852 &cciss_host_attr_group,
853 NULL
856 static struct device_type cciss_host_type = {
857 .name = "cciss_host",
858 .groups = cciss_host_attr_groups,
859 .release = cciss_hba_release,
862 static struct attribute *cciss_dev_attrs[] = {
863 &dev_attr_unique_id.attr,
864 &dev_attr_model.attr,
865 &dev_attr_vendor.attr,
866 &dev_attr_rev.attr,
867 &dev_attr_lunid.attr,
868 &dev_attr_raid_level.attr,
869 &dev_attr_usage_count.attr,
870 NULL
873 static struct attribute_group cciss_dev_attr_group = {
874 .attrs = cciss_dev_attrs,
877 static const struct attribute_group *cciss_dev_attr_groups[] = {
878 &cciss_dev_attr_group,
879 NULL
882 static struct device_type cciss_dev_type = {
883 .name = "cciss_device",
884 .groups = cciss_dev_attr_groups,
885 .release = cciss_device_release,
888 static struct bus_type cciss_bus_type = {
889 .name = "cciss",
893 * cciss_hba_release is called when the reference count
894 * of h->dev goes to zero.
896 static void cciss_hba_release(struct device *dev)
899 * nothing to do, but need this to avoid a warning
900 * about not having a release handler from lib/kref.c.
905 * Initialize sysfs entry for each controller. This sets up and registers
906 * the 'cciss#' directory for each individual controller under
907 * /sys/bus/pci/devices/<dev>/.
909 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
911 device_initialize(&h->dev);
912 h->dev.type = &cciss_host_type;
913 h->dev.bus = &cciss_bus_type;
914 dev_set_name(&h->dev, "%s", h->devname);
915 h->dev.parent = &h->pdev->dev;
917 return device_add(&h->dev);
921 * Remove sysfs entries for an hba.
923 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
925 device_del(&h->dev);
926 put_device(&h->dev); /* final put. */
929 /* cciss_device_release is called when the reference count
930 * of h->drv[x]dev goes to zero.
932 static void cciss_device_release(struct device *dev)
934 drive_info_struct *drv = to_drv(dev);
935 kfree(drv);
939 * Initialize sysfs for each logical drive. This sets up and registers
940 * the 'c#d#' directory for each individual logical drive under
941 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
942 * /sys/block/cciss!c#d# to this entry.
944 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
945 int drv_index)
947 struct device *dev;
949 if (h->drv[drv_index]->device_initialized)
950 return 0;
952 dev = &h->drv[drv_index]->dev;
953 device_initialize(dev);
954 dev->type = &cciss_dev_type;
955 dev->bus = &cciss_bus_type;
956 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
957 dev->parent = &h->dev;
958 h->drv[drv_index]->device_initialized = 1;
959 return device_add(dev);
963 * Remove sysfs entries for a logical drive.
965 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
966 int ctlr_exiting)
968 struct device *dev = &h->drv[drv_index]->dev;
970 /* special case for c*d0, we only destroy it on controller exit */
971 if (drv_index == 0 && !ctlr_exiting)
972 return;
974 device_del(dev);
975 put_device(dev); /* the "final" put. */
976 h->drv[drv_index] = NULL;
980 * For operations that cannot sleep, a command block is allocated at init,
981 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
982 * which ones are free or in use.
984 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
986 CommandList_struct *c;
987 int i;
988 u64bit temp64;
989 dma_addr_t cmd_dma_handle, err_dma_handle;
991 do {
992 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
993 if (i == h->nr_cmds)
994 return NULL;
995 } while (test_and_set_bit(i, h->cmd_pool_bits) != 0);
996 c = h->cmd_pool + i;
997 memset(c, 0, sizeof(CommandList_struct));
998 cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
999 c->err_info = h->errinfo_pool + i;
1000 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1001 err_dma_handle = h->errinfo_pool_dhandle
1002 + i * sizeof(ErrorInfo_struct);
1003 h->nr_allocs++;
1005 c->cmdindex = i;
1007 INIT_LIST_HEAD(&c->list);
1008 c->busaddr = (__u32) cmd_dma_handle;
1009 temp64.val = (__u64) err_dma_handle;
1010 c->ErrDesc.Addr.lower = temp64.val32.lower;
1011 c->ErrDesc.Addr.upper = temp64.val32.upper;
1012 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1014 c->ctlr = h->ctlr;
1015 return c;
1018 /* allocate a command using pci_alloc_consistent, used for ioctls,
1019 * etc., not for the main i/o path.
1021 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1023 CommandList_struct *c;
1024 u64bit temp64;
1025 dma_addr_t cmd_dma_handle, err_dma_handle;
1027 c = pci_zalloc_consistent(h->pdev, sizeof(CommandList_struct),
1028 &cmd_dma_handle);
1029 if (c == NULL)
1030 return NULL;
1032 c->cmdindex = -1;
1034 c->err_info = pci_zalloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1035 &err_dma_handle);
1037 if (c->err_info == NULL) {
1038 pci_free_consistent(h->pdev,
1039 sizeof(CommandList_struct), c, cmd_dma_handle);
1040 return NULL;
1043 INIT_LIST_HEAD(&c->list);
1044 c->busaddr = (__u32) cmd_dma_handle;
1045 temp64.val = (__u64) err_dma_handle;
1046 c->ErrDesc.Addr.lower = temp64.val32.lower;
1047 c->ErrDesc.Addr.upper = temp64.val32.upper;
1048 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1050 c->ctlr = h->ctlr;
1051 return c;
1054 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1056 int i;
1058 i = c - h->cmd_pool;
1059 clear_bit(i, h->cmd_pool_bits);
1060 h->nr_frees++;
1063 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1065 u64bit temp64;
1067 temp64.val32.lower = c->ErrDesc.Addr.lower;
1068 temp64.val32.upper = c->ErrDesc.Addr.upper;
1069 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1070 c->err_info, (dma_addr_t) temp64.val);
1071 pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1072 (dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1075 static inline ctlr_info_t *get_host(struct gendisk *disk)
1077 return disk->queue->queuedata;
1080 static inline drive_info_struct *get_drv(struct gendisk *disk)
1082 return disk->private_data;
1086 * Open. Make sure the device is really there.
1088 static int cciss_open(struct block_device *bdev, fmode_t mode)
1090 ctlr_info_t *h = get_host(bdev->bd_disk);
1091 drive_info_struct *drv = get_drv(bdev->bd_disk);
1093 dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1094 if (drv->busy_configuring)
1095 return -EBUSY;
1097 * Root is allowed to open raw volume zero even if it's not configured
1098 * so array config can still work. Root is also allowed to open any
1099 * volume that has a LUN ID, so it can issue IOCTL to reread the
1100 * disk information. I don't think I really like this
1101 * but I'm already using way to many device nodes to claim another one
1102 * for "raw controller".
1104 if (drv->heads == 0) {
1105 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1106 /* if not node 0 make sure it is a partition = 0 */
1107 if (MINOR(bdev->bd_dev) & 0x0f) {
1108 return -ENXIO;
1109 /* if it is, make sure we have a LUN ID */
1110 } else if (memcmp(drv->LunID, CTLR_LUNID,
1111 sizeof(drv->LunID))) {
1112 return -ENXIO;
1115 if (!capable(CAP_SYS_ADMIN))
1116 return -EPERM;
1118 drv->usage_count++;
1119 h->usage_count++;
1120 return 0;
1123 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1125 int ret;
1127 mutex_lock(&cciss_mutex);
1128 ret = cciss_open(bdev, mode);
1129 mutex_unlock(&cciss_mutex);
1131 return ret;
1135 * Close. Sync first.
1137 static void cciss_release(struct gendisk *disk, fmode_t mode)
1139 ctlr_info_t *h;
1140 drive_info_struct *drv;
1142 mutex_lock(&cciss_mutex);
1143 h = get_host(disk);
1144 drv = get_drv(disk);
1145 dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1146 drv->usage_count--;
1147 h->usage_count--;
1148 mutex_unlock(&cciss_mutex);
1151 #ifdef CONFIG_COMPAT
1153 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1154 unsigned cmd, unsigned long arg);
1155 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1156 unsigned cmd, unsigned long arg);
1158 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1159 unsigned cmd, unsigned long arg)
1161 switch (cmd) {
1162 case CCISS_GETPCIINFO:
1163 case CCISS_GETINTINFO:
1164 case CCISS_SETINTINFO:
1165 case CCISS_GETNODENAME:
1166 case CCISS_SETNODENAME:
1167 case CCISS_GETHEARTBEAT:
1168 case CCISS_GETBUSTYPES:
1169 case CCISS_GETFIRMVER:
1170 case CCISS_GETDRIVVER:
1171 case CCISS_REVALIDVOLS:
1172 case CCISS_DEREGDISK:
1173 case CCISS_REGNEWDISK:
1174 case CCISS_REGNEWD:
1175 case CCISS_RESCANDISK:
1176 case CCISS_GETLUNINFO:
1177 return cciss_ioctl(bdev, mode, cmd, arg);
1179 case CCISS_PASSTHRU32:
1180 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1181 case CCISS_BIG_PASSTHRU32:
1182 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1184 default:
1185 return -ENOIOCTLCMD;
1189 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1190 unsigned cmd, unsigned long arg)
1192 IOCTL32_Command_struct __user *arg32 =
1193 (IOCTL32_Command_struct __user *) arg;
1194 IOCTL_Command_struct arg64;
1195 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1196 int err;
1197 u32 cp;
1199 memset(&arg64, 0, sizeof(arg64));
1200 err = 0;
1201 err |=
1202 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1203 sizeof(arg64.LUN_info));
1204 err |=
1205 copy_from_user(&arg64.Request, &arg32->Request,
1206 sizeof(arg64.Request));
1207 err |=
1208 copy_from_user(&arg64.error_info, &arg32->error_info,
1209 sizeof(arg64.error_info));
1210 err |= get_user(arg64.buf_size, &arg32->buf_size);
1211 err |= get_user(cp, &arg32->buf);
1212 arg64.buf = compat_ptr(cp);
1213 err |= copy_to_user(p, &arg64, sizeof(arg64));
1215 if (err)
1216 return -EFAULT;
1218 err = cciss_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1219 if (err)
1220 return err;
1221 err |=
1222 copy_in_user(&arg32->error_info, &p->error_info,
1223 sizeof(arg32->error_info));
1224 if (err)
1225 return -EFAULT;
1226 return err;
1229 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1230 unsigned cmd, unsigned long arg)
1232 BIG_IOCTL32_Command_struct __user *arg32 =
1233 (BIG_IOCTL32_Command_struct __user *) arg;
1234 BIG_IOCTL_Command_struct arg64;
1235 BIG_IOCTL_Command_struct __user *p =
1236 compat_alloc_user_space(sizeof(arg64));
1237 int err;
1238 u32 cp;
1240 memset(&arg64, 0, sizeof(arg64));
1241 err = 0;
1242 err |=
1243 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1244 sizeof(arg64.LUN_info));
1245 err |=
1246 copy_from_user(&arg64.Request, &arg32->Request,
1247 sizeof(arg64.Request));
1248 err |=
1249 copy_from_user(&arg64.error_info, &arg32->error_info,
1250 sizeof(arg64.error_info));
1251 err |= get_user(arg64.buf_size, &arg32->buf_size);
1252 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1253 err |= get_user(cp, &arg32->buf);
1254 arg64.buf = compat_ptr(cp);
1255 err |= copy_to_user(p, &arg64, sizeof(arg64));
1257 if (err)
1258 return -EFAULT;
1260 err = cciss_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1261 if (err)
1262 return err;
1263 err |=
1264 copy_in_user(&arg32->error_info, &p->error_info,
1265 sizeof(arg32->error_info));
1266 if (err)
1267 return -EFAULT;
1268 return err;
1270 #endif
1272 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1274 drive_info_struct *drv = get_drv(bdev->bd_disk);
1276 if (!drv->cylinders)
1277 return -ENXIO;
1279 geo->heads = drv->heads;
1280 geo->sectors = drv->sectors;
1281 geo->cylinders = drv->cylinders;
1282 return 0;
1285 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1287 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1288 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1289 (void)check_for_unit_attention(h, c);
1292 static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1294 cciss_pci_info_struct pciinfo;
1296 if (!argp)
1297 return -EINVAL;
1298 pciinfo.domain = pci_domain_nr(h->pdev->bus);
1299 pciinfo.bus = h->pdev->bus->number;
1300 pciinfo.dev_fn = h->pdev->devfn;
1301 pciinfo.board_id = h->board_id;
1302 if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1303 return -EFAULT;
1304 return 0;
1307 static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1309 cciss_coalint_struct intinfo;
1310 unsigned long flags;
1312 if (!argp)
1313 return -EINVAL;
1314 spin_lock_irqsave(&h->lock, flags);
1315 intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1316 intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1317 spin_unlock_irqrestore(&h->lock, flags);
1318 if (copy_to_user
1319 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1320 return -EFAULT;
1321 return 0;
1324 static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1326 cciss_coalint_struct intinfo;
1327 unsigned long flags;
1328 int i;
1330 if (!argp)
1331 return -EINVAL;
1332 if (!capable(CAP_SYS_ADMIN))
1333 return -EPERM;
1334 if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1335 return -EFAULT;
1336 if ((intinfo.delay == 0) && (intinfo.count == 0))
1337 return -EINVAL;
1338 spin_lock_irqsave(&h->lock, flags);
1339 /* Update the field, and then ring the doorbell */
1340 writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1341 writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1342 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1344 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1345 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1346 break;
1347 udelay(1000); /* delay and try again */
1349 spin_unlock_irqrestore(&h->lock, flags);
1350 if (i >= MAX_IOCTL_CONFIG_WAIT)
1351 return -EAGAIN;
1352 return 0;
1355 static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1357 NodeName_type NodeName;
1358 unsigned long flags;
1359 int i;
1361 if (!argp)
1362 return -EINVAL;
1363 spin_lock_irqsave(&h->lock, flags);
1364 for (i = 0; i < 16; i++)
1365 NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1366 spin_unlock_irqrestore(&h->lock, flags);
1367 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1368 return -EFAULT;
1369 return 0;
1372 static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1374 NodeName_type NodeName;
1375 unsigned long flags;
1376 int i;
1378 if (!argp)
1379 return -EINVAL;
1380 if (!capable(CAP_SYS_ADMIN))
1381 return -EPERM;
1382 if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1383 return -EFAULT;
1384 spin_lock_irqsave(&h->lock, flags);
1385 /* Update the field, and then ring the doorbell */
1386 for (i = 0; i < 16; i++)
1387 writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1388 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1389 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1390 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1391 break;
1392 udelay(1000); /* delay and try again */
1394 spin_unlock_irqrestore(&h->lock, flags);
1395 if (i >= MAX_IOCTL_CONFIG_WAIT)
1396 return -EAGAIN;
1397 return 0;
1400 static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1402 Heartbeat_type heartbeat;
1403 unsigned long flags;
1405 if (!argp)
1406 return -EINVAL;
1407 spin_lock_irqsave(&h->lock, flags);
1408 heartbeat = readl(&h->cfgtable->HeartBeat);
1409 spin_unlock_irqrestore(&h->lock, flags);
1410 if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1411 return -EFAULT;
1412 return 0;
1415 static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1417 BusTypes_type BusTypes;
1418 unsigned long flags;
1420 if (!argp)
1421 return -EINVAL;
1422 spin_lock_irqsave(&h->lock, flags);
1423 BusTypes = readl(&h->cfgtable->BusTypes);
1424 spin_unlock_irqrestore(&h->lock, flags);
1425 if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1426 return -EFAULT;
1427 return 0;
1430 static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1432 FirmwareVer_type firmware;
1434 if (!argp)
1435 return -EINVAL;
1436 memcpy(firmware, h->firm_ver, 4);
1438 if (copy_to_user
1439 (argp, firmware, sizeof(FirmwareVer_type)))
1440 return -EFAULT;
1441 return 0;
1444 static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1446 DriverVer_type DriverVer = DRIVER_VERSION;
1448 if (!argp)
1449 return -EINVAL;
1450 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1451 return -EFAULT;
1452 return 0;
1455 static int cciss_getluninfo(ctlr_info_t *h,
1456 struct gendisk *disk, void __user *argp)
1458 LogvolInfo_struct luninfo;
1459 drive_info_struct *drv = get_drv(disk);
1461 if (!argp)
1462 return -EINVAL;
1463 memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1464 luninfo.num_opens = drv->usage_count;
1465 luninfo.num_parts = 0;
1466 if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1467 return -EFAULT;
1468 return 0;
1471 static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1473 IOCTL_Command_struct iocommand;
1474 CommandList_struct *c;
1475 char *buff = NULL;
1476 u64bit temp64;
1477 DECLARE_COMPLETION_ONSTACK(wait);
1479 if (!argp)
1480 return -EINVAL;
1482 if (!capable(CAP_SYS_RAWIO))
1483 return -EPERM;
1485 if (copy_from_user
1486 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1487 return -EFAULT;
1488 if ((iocommand.buf_size < 1) &&
1489 (iocommand.Request.Type.Direction != XFER_NONE)) {
1490 return -EINVAL;
1492 if (iocommand.buf_size > 0) {
1493 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1494 if (buff == NULL)
1495 return -EFAULT;
1497 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1498 /* Copy the data into the buffer we created */
1499 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1500 kfree(buff);
1501 return -EFAULT;
1503 } else {
1504 memset(buff, 0, iocommand.buf_size);
1506 c = cmd_special_alloc(h);
1507 if (!c) {
1508 kfree(buff);
1509 return -ENOMEM;
1511 /* Fill in the command type */
1512 c->cmd_type = CMD_IOCTL_PEND;
1513 /* Fill in Command Header */
1514 c->Header.ReplyQueue = 0; /* unused in simple mode */
1515 if (iocommand.buf_size > 0) { /* buffer to fill */
1516 c->Header.SGList = 1;
1517 c->Header.SGTotal = 1;
1518 } else { /* no buffers to fill */
1519 c->Header.SGList = 0;
1520 c->Header.SGTotal = 0;
1522 c->Header.LUN = iocommand.LUN_info;
1523 /* use the kernel address the cmd block for tag */
1524 c->Header.Tag.lower = c->busaddr;
1526 /* Fill in Request block */
1527 c->Request = iocommand.Request;
1529 /* Fill in the scatter gather information */
1530 if (iocommand.buf_size > 0) {
1531 temp64.val = pci_map_single(h->pdev, buff,
1532 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1533 c->SG[0].Addr.lower = temp64.val32.lower;
1534 c->SG[0].Addr.upper = temp64.val32.upper;
1535 c->SG[0].Len = iocommand.buf_size;
1536 c->SG[0].Ext = 0; /* we are not chaining */
1538 c->waiting = &wait;
1540 enqueue_cmd_and_start_io(h, c);
1541 wait_for_completion(&wait);
1543 /* unlock the buffers from DMA */
1544 temp64.val32.lower = c->SG[0].Addr.lower;
1545 temp64.val32.upper = c->SG[0].Addr.upper;
1546 pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1547 PCI_DMA_BIDIRECTIONAL);
1548 check_ioctl_unit_attention(h, c);
1550 /* Copy the error information out */
1551 iocommand.error_info = *(c->err_info);
1552 if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1553 kfree(buff);
1554 cmd_special_free(h, c);
1555 return -EFAULT;
1558 if (iocommand.Request.Type.Direction == XFER_READ) {
1559 /* Copy the data out of the buffer we created */
1560 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1561 kfree(buff);
1562 cmd_special_free(h, c);
1563 return -EFAULT;
1566 kfree(buff);
1567 cmd_special_free(h, c);
1568 return 0;
1571 static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1573 BIG_IOCTL_Command_struct *ioc;
1574 CommandList_struct *c;
1575 unsigned char **buff = NULL;
1576 int *buff_size = NULL;
1577 u64bit temp64;
1578 BYTE sg_used = 0;
1579 int status = 0;
1580 int i;
1581 DECLARE_COMPLETION_ONSTACK(wait);
1582 __u32 left;
1583 __u32 sz;
1584 BYTE __user *data_ptr;
1586 if (!argp)
1587 return -EINVAL;
1588 if (!capable(CAP_SYS_RAWIO))
1589 return -EPERM;
1590 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1591 if (!ioc) {
1592 status = -ENOMEM;
1593 goto cleanup1;
1595 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1596 status = -EFAULT;
1597 goto cleanup1;
1599 if ((ioc->buf_size < 1) &&
1600 (ioc->Request.Type.Direction != XFER_NONE)) {
1601 status = -EINVAL;
1602 goto cleanup1;
1604 /* Check kmalloc limits using all SGs */
1605 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1606 status = -EINVAL;
1607 goto cleanup1;
1609 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1610 status = -EINVAL;
1611 goto cleanup1;
1613 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1614 if (!buff) {
1615 status = -ENOMEM;
1616 goto cleanup1;
1618 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1619 if (!buff_size) {
1620 status = -ENOMEM;
1621 goto cleanup1;
1623 left = ioc->buf_size;
1624 data_ptr = ioc->buf;
1625 while (left) {
1626 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1627 buff_size[sg_used] = sz;
1628 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1629 if (buff[sg_used] == NULL) {
1630 status = -ENOMEM;
1631 goto cleanup1;
1633 if (ioc->Request.Type.Direction == XFER_WRITE) {
1634 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1635 status = -EFAULT;
1636 goto cleanup1;
1638 } else {
1639 memset(buff[sg_used], 0, sz);
1641 left -= sz;
1642 data_ptr += sz;
1643 sg_used++;
1645 c = cmd_special_alloc(h);
1646 if (!c) {
1647 status = -ENOMEM;
1648 goto cleanup1;
1650 c->cmd_type = CMD_IOCTL_PEND;
1651 c->Header.ReplyQueue = 0;
1652 c->Header.SGList = sg_used;
1653 c->Header.SGTotal = sg_used;
1654 c->Header.LUN = ioc->LUN_info;
1655 c->Header.Tag.lower = c->busaddr;
1657 c->Request = ioc->Request;
1658 for (i = 0; i < sg_used; i++) {
1659 temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1660 PCI_DMA_BIDIRECTIONAL);
1661 c->SG[i].Addr.lower = temp64.val32.lower;
1662 c->SG[i].Addr.upper = temp64.val32.upper;
1663 c->SG[i].Len = buff_size[i];
1664 c->SG[i].Ext = 0; /* we are not chaining */
1666 c->waiting = &wait;
1667 enqueue_cmd_and_start_io(h, c);
1668 wait_for_completion(&wait);
1669 /* unlock the buffers from DMA */
1670 for (i = 0; i < sg_used; i++) {
1671 temp64.val32.lower = c->SG[i].Addr.lower;
1672 temp64.val32.upper = c->SG[i].Addr.upper;
1673 pci_unmap_single(h->pdev,
1674 (dma_addr_t) temp64.val, buff_size[i],
1675 PCI_DMA_BIDIRECTIONAL);
1677 check_ioctl_unit_attention(h, c);
1678 /* Copy the error information out */
1679 ioc->error_info = *(c->err_info);
1680 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1681 cmd_special_free(h, c);
1682 status = -EFAULT;
1683 goto cleanup1;
1685 if (ioc->Request.Type.Direction == XFER_READ) {
1686 /* Copy the data out of the buffer we created */
1687 BYTE __user *ptr = ioc->buf;
1688 for (i = 0; i < sg_used; i++) {
1689 if (copy_to_user(ptr, buff[i], buff_size[i])) {
1690 cmd_special_free(h, c);
1691 status = -EFAULT;
1692 goto cleanup1;
1694 ptr += buff_size[i];
1697 cmd_special_free(h, c);
1698 status = 0;
1699 cleanup1:
1700 if (buff) {
1701 for (i = 0; i < sg_used; i++)
1702 kfree(buff[i]);
1703 kfree(buff);
1705 kfree(buff_size);
1706 kfree(ioc);
1707 return status;
1710 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1711 unsigned int cmd, unsigned long arg)
1713 struct gendisk *disk = bdev->bd_disk;
1714 ctlr_info_t *h = get_host(disk);
1715 void __user *argp = (void __user *)arg;
1717 dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1718 cmd, arg);
1719 switch (cmd) {
1720 case CCISS_GETPCIINFO:
1721 return cciss_getpciinfo(h, argp);
1722 case CCISS_GETINTINFO:
1723 return cciss_getintinfo(h, argp);
1724 case CCISS_SETINTINFO:
1725 return cciss_setintinfo(h, argp);
1726 case CCISS_GETNODENAME:
1727 return cciss_getnodename(h, argp);
1728 case CCISS_SETNODENAME:
1729 return cciss_setnodename(h, argp);
1730 case CCISS_GETHEARTBEAT:
1731 return cciss_getheartbeat(h, argp);
1732 case CCISS_GETBUSTYPES:
1733 return cciss_getbustypes(h, argp);
1734 case CCISS_GETFIRMVER:
1735 return cciss_getfirmver(h, argp);
1736 case CCISS_GETDRIVVER:
1737 return cciss_getdrivver(h, argp);
1738 case CCISS_DEREGDISK:
1739 case CCISS_REGNEWD:
1740 case CCISS_REVALIDVOLS:
1741 return rebuild_lun_table(h, 0, 1);
1742 case CCISS_GETLUNINFO:
1743 return cciss_getluninfo(h, disk, argp);
1744 case CCISS_PASSTHRU:
1745 return cciss_passthru(h, argp);
1746 case CCISS_BIG_PASSTHRU:
1747 return cciss_bigpassthru(h, argp);
1749 /* scsi_cmd_blk_ioctl handles these, below, though some are not */
1750 /* very meaningful for cciss. SG_IO is the main one people want. */
1752 case SG_GET_VERSION_NUM:
1753 case SG_SET_TIMEOUT:
1754 case SG_GET_TIMEOUT:
1755 case SG_GET_RESERVED_SIZE:
1756 case SG_SET_RESERVED_SIZE:
1757 case SG_EMULATED_HOST:
1758 case SG_IO:
1759 case SCSI_IOCTL_SEND_COMMAND:
1760 return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
1762 /* scsi_cmd_blk_ioctl would normally handle these, below, but */
1763 /* they aren't a good fit for cciss, as CD-ROMs are */
1764 /* not supported, and we don't have any bus/target/lun */
1765 /* which we present to the kernel. */
1767 case CDROM_SEND_PACKET:
1768 case CDROMCLOSETRAY:
1769 case CDROMEJECT:
1770 case SCSI_IOCTL_GET_IDLUN:
1771 case SCSI_IOCTL_GET_BUS_NUMBER:
1772 default:
1773 return -ENOTTY;
1777 static void cciss_check_queues(ctlr_info_t *h)
1779 int start_queue = h->next_to_run;
1780 int i;
1782 /* check to see if we have maxed out the number of commands that can
1783 * be placed on the queue. If so then exit. We do this check here
1784 * in case the interrupt we serviced was from an ioctl and did not
1785 * free any new commands.
1787 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1788 return;
1790 /* We have room on the queue for more commands. Now we need to queue
1791 * them up. We will also keep track of the next queue to run so
1792 * that every queue gets a chance to be started first.
1794 for (i = 0; i < h->highest_lun + 1; i++) {
1795 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1796 /* make sure the disk has been added and the drive is real
1797 * because this can be called from the middle of init_one.
1799 if (!h->drv[curr_queue])
1800 continue;
1801 if (!(h->drv[curr_queue]->queue) ||
1802 !(h->drv[curr_queue]->heads))
1803 continue;
1804 blk_start_queue(h->gendisk[curr_queue]->queue);
1806 /* check to see if we have maxed out the number of commands
1807 * that can be placed on the queue.
1809 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1810 if (curr_queue == start_queue) {
1811 h->next_to_run =
1812 (start_queue + 1) % (h->highest_lun + 1);
1813 break;
1814 } else {
1815 h->next_to_run = curr_queue;
1816 break;
1822 static void cciss_softirq_done(struct request *rq)
1824 CommandList_struct *c = rq->completion_data;
1825 ctlr_info_t *h = hba[c->ctlr];
1826 SGDescriptor_struct *curr_sg = c->SG;
1827 u64bit temp64;
1828 unsigned long flags;
1829 int i, ddir;
1830 int sg_index = 0;
1832 if (c->Request.Type.Direction == XFER_READ)
1833 ddir = PCI_DMA_FROMDEVICE;
1834 else
1835 ddir = PCI_DMA_TODEVICE;
1837 /* command did not need to be retried */
1838 /* unmap the DMA mapping for all the scatter gather elements */
1839 for (i = 0; i < c->Header.SGList; i++) {
1840 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1841 cciss_unmap_sg_chain_block(h, c);
1842 /* Point to the next block */
1843 curr_sg = h->cmd_sg_list[c->cmdindex];
1844 sg_index = 0;
1846 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1847 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1848 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1849 ddir);
1850 ++sg_index;
1853 dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1855 /* set the residual count for pc requests */
1856 if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1857 rq->resid_len = c->err_info->ResidualCnt;
1859 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1861 spin_lock_irqsave(&h->lock, flags);
1862 cmd_free(h, c);
1863 cciss_check_queues(h);
1864 spin_unlock_irqrestore(&h->lock, flags);
1867 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1868 unsigned char scsi3addr[], uint32_t log_unit)
1870 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1871 sizeof(h->drv[log_unit]->LunID));
1874 /* This function gets the SCSI vendor, model, and revision of a logical drive
1875 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1876 * they cannot be read.
1878 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1879 char *vendor, char *model, char *rev)
1881 int rc;
1882 InquiryData_struct *inq_buf;
1883 unsigned char scsi3addr[8];
1885 *vendor = '\0';
1886 *model = '\0';
1887 *rev = '\0';
1889 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1890 if (!inq_buf)
1891 return;
1893 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1894 rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1895 scsi3addr, TYPE_CMD);
1896 if (rc == IO_OK) {
1897 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1898 vendor[VENDOR_LEN] = '\0';
1899 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1900 model[MODEL_LEN] = '\0';
1901 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1902 rev[REV_LEN] = '\0';
1905 kfree(inq_buf);
1906 return;
1909 /* This function gets the serial number of a logical drive via
1910 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1911 * number cannot be had, for whatever reason, 16 bytes of 0xff
1912 * are returned instead.
1914 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1915 unsigned char *serial_no, int buflen)
1917 #define PAGE_83_INQ_BYTES 64
1918 int rc;
1919 unsigned char *buf;
1920 unsigned char scsi3addr[8];
1922 if (buflen > 16)
1923 buflen = 16;
1924 memset(serial_no, 0xff, buflen);
1925 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1926 if (!buf)
1927 return;
1928 memset(serial_no, 0, buflen);
1929 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1930 rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1931 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1932 if (rc == IO_OK)
1933 memcpy(serial_no, &buf[8], buflen);
1934 kfree(buf);
1935 return;
1939 * cciss_add_disk sets up the block device queue for a logical drive
1941 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1942 int drv_index)
1944 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1945 if (!disk->queue)
1946 goto init_queue_failure;
1947 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1948 disk->major = h->major;
1949 disk->first_minor = drv_index << NWD_SHIFT;
1950 disk->fops = &cciss_fops;
1951 if (cciss_create_ld_sysfs_entry(h, drv_index))
1952 goto cleanup_queue;
1953 disk->private_data = h->drv[drv_index];
1954 disk->driverfs_dev = &h->drv[drv_index]->dev;
1956 /* Set up queue information */
1957 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1959 /* This is a hardware imposed limit. */
1960 blk_queue_max_segments(disk->queue, h->maxsgentries);
1962 blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1964 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1966 disk->queue->queuedata = h;
1968 blk_queue_logical_block_size(disk->queue,
1969 h->drv[drv_index]->block_size);
1971 /* Make sure all queue data is written out before */
1972 /* setting h->drv[drv_index]->queue, as setting this */
1973 /* allows the interrupt handler to start the queue */
1974 wmb();
1975 h->drv[drv_index]->queue = disk->queue;
1976 add_disk(disk);
1977 return 0;
1979 cleanup_queue:
1980 blk_cleanup_queue(disk->queue);
1981 disk->queue = NULL;
1982 init_queue_failure:
1983 return -1;
1986 /* This function will check the usage_count of the drive to be updated/added.
1987 * If the usage_count is zero and it is a heretofore unknown drive, or,
1988 * the drive's capacity, geometry, or serial number has changed,
1989 * then the drive information will be updated and the disk will be
1990 * re-registered with the kernel. If these conditions don't hold,
1991 * then it will be left alone for the next reboot. The exception to this
1992 * is disk 0 which will always be left registered with the kernel since it
1993 * is also the controller node. Any changes to disk 0 will show up on
1994 * the next reboot.
1996 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1997 int first_time, int via_ioctl)
1999 struct gendisk *disk;
2000 InquiryData_struct *inq_buff = NULL;
2001 unsigned int block_size;
2002 sector_t total_size;
2003 unsigned long flags = 0;
2004 int ret = 0;
2005 drive_info_struct *drvinfo;
2007 /* Get information about the disk and modify the driver structure */
2008 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2009 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
2010 if (inq_buff == NULL || drvinfo == NULL)
2011 goto mem_msg;
2013 /* testing to see if 16-byte CDBs are already being used */
2014 if (h->cciss_read == CCISS_READ_16) {
2015 cciss_read_capacity_16(h, drv_index,
2016 &total_size, &block_size);
2018 } else {
2019 cciss_read_capacity(h, drv_index, &total_size, &block_size);
2020 /* if read_capacity returns all F's this volume is >2TB */
2021 /* in size so we switch to 16-byte CDB's for all */
2022 /* read/write ops */
2023 if (total_size == 0xFFFFFFFFULL) {
2024 cciss_read_capacity_16(h, drv_index,
2025 &total_size, &block_size);
2026 h->cciss_read = CCISS_READ_16;
2027 h->cciss_write = CCISS_WRITE_16;
2028 } else {
2029 h->cciss_read = CCISS_READ_10;
2030 h->cciss_write = CCISS_WRITE_10;
2034 cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2035 inq_buff, drvinfo);
2036 drvinfo->block_size = block_size;
2037 drvinfo->nr_blocks = total_size + 1;
2039 cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2040 drvinfo->model, drvinfo->rev);
2041 cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2042 sizeof(drvinfo->serial_no));
2043 /* Save the lunid in case we deregister the disk, below. */
2044 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2045 sizeof(drvinfo->LunID));
2047 /* Is it the same disk we already know, and nothing's changed? */
2048 if (h->drv[drv_index]->raid_level != -1 &&
2049 ((memcmp(drvinfo->serial_no,
2050 h->drv[drv_index]->serial_no, 16) == 0) &&
2051 drvinfo->block_size == h->drv[drv_index]->block_size &&
2052 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2053 drvinfo->heads == h->drv[drv_index]->heads &&
2054 drvinfo->sectors == h->drv[drv_index]->sectors &&
2055 drvinfo->cylinders == h->drv[drv_index]->cylinders))
2056 /* The disk is unchanged, nothing to update */
2057 goto freeret;
2059 /* If we get here it's not the same disk, or something's changed,
2060 * so we need to * deregister it, and re-register it, if it's not
2061 * in use.
2062 * If the disk already exists then deregister it before proceeding
2063 * (unless it's the first disk (for the controller node).
2065 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2066 dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2067 spin_lock_irqsave(&h->lock, flags);
2068 h->drv[drv_index]->busy_configuring = 1;
2069 spin_unlock_irqrestore(&h->lock, flags);
2071 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2072 * which keeps the interrupt handler from starting
2073 * the queue.
2075 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2078 /* If the disk is in use return */
2079 if (ret)
2080 goto freeret;
2082 /* Save the new information from cciss_geometry_inquiry
2083 * and serial number inquiry. If the disk was deregistered
2084 * above, then h->drv[drv_index] will be NULL.
2086 if (h->drv[drv_index] == NULL) {
2087 drvinfo->device_initialized = 0;
2088 h->drv[drv_index] = drvinfo;
2089 drvinfo = NULL; /* so it won't be freed below. */
2090 } else {
2091 /* special case for cxd0 */
2092 h->drv[drv_index]->block_size = drvinfo->block_size;
2093 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2094 h->drv[drv_index]->heads = drvinfo->heads;
2095 h->drv[drv_index]->sectors = drvinfo->sectors;
2096 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2097 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2098 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2099 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2100 VENDOR_LEN + 1);
2101 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2102 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2105 ++h->num_luns;
2106 disk = h->gendisk[drv_index];
2107 set_capacity(disk, h->drv[drv_index]->nr_blocks);
2109 /* If it's not disk 0 (drv_index != 0)
2110 * or if it was disk 0, but there was previously
2111 * no actual corresponding configured logical drive
2112 * (raid_leve == -1) then we want to update the
2113 * logical drive's information.
2115 if (drv_index || first_time) {
2116 if (cciss_add_disk(h, disk, drv_index) != 0) {
2117 cciss_free_gendisk(h, drv_index);
2118 cciss_free_drive_info(h, drv_index);
2119 dev_warn(&h->pdev->dev, "could not update disk %d\n",
2120 drv_index);
2121 --h->num_luns;
2125 freeret:
2126 kfree(inq_buff);
2127 kfree(drvinfo);
2128 return;
2129 mem_msg:
2130 dev_err(&h->pdev->dev, "out of memory\n");
2131 goto freeret;
2134 /* This function will find the first index of the controllers drive array
2135 * that has a null drv pointer and allocate the drive info struct and
2136 * will return that index This is where new drives will be added.
2137 * If the index to be returned is greater than the highest_lun index for
2138 * the controller then highest_lun is set * to this new index.
2139 * If there are no available indexes or if tha allocation fails, then -1
2140 * is returned. * "controller_node" is used to know if this is a real
2141 * logical drive, or just the controller node, which determines if this
2142 * counts towards highest_lun.
2144 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2146 int i;
2147 drive_info_struct *drv;
2149 /* Search for an empty slot for our drive info */
2150 for (i = 0; i < CISS_MAX_LUN; i++) {
2152 /* if not cxd0 case, and it's occupied, skip it. */
2153 if (h->drv[i] && i != 0)
2154 continue;
2156 * If it's cxd0 case, and drv is alloc'ed already, and a
2157 * disk is configured there, skip it.
2159 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2160 continue;
2163 * We've found an empty slot. Update highest_lun
2164 * provided this isn't just the fake cxd0 controller node.
2166 if (i > h->highest_lun && !controller_node)
2167 h->highest_lun = i;
2169 /* If adding a real disk at cxd0, and it's already alloc'ed */
2170 if (i == 0 && h->drv[i] != NULL)
2171 return i;
2174 * Found an empty slot, not already alloc'ed. Allocate it.
2175 * Mark it with raid_level == -1, so we know it's new later on.
2177 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2178 if (!drv)
2179 return -1;
2180 drv->raid_level = -1; /* so we know it's new */
2181 h->drv[i] = drv;
2182 return i;
2184 return -1;
2187 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2189 kfree(h->drv[drv_index]);
2190 h->drv[drv_index] = NULL;
2193 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2195 put_disk(h->gendisk[drv_index]);
2196 h->gendisk[drv_index] = NULL;
2199 /* cciss_add_gendisk finds a free hba[]->drv structure
2200 * and allocates a gendisk if needed, and sets the lunid
2201 * in the drvinfo structure. It returns the index into
2202 * the ->drv[] array, or -1 if none are free.
2203 * is_controller_node indicates whether highest_lun should
2204 * count this disk, or if it's only being added to provide
2205 * a means to talk to the controller in case no logical
2206 * drives have yet been configured.
2208 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2209 int controller_node)
2211 int drv_index;
2213 drv_index = cciss_alloc_drive_info(h, controller_node);
2214 if (drv_index == -1)
2215 return -1;
2217 /*Check if the gendisk needs to be allocated */
2218 if (!h->gendisk[drv_index]) {
2219 h->gendisk[drv_index] =
2220 alloc_disk(1 << NWD_SHIFT);
2221 if (!h->gendisk[drv_index]) {
2222 dev_err(&h->pdev->dev,
2223 "could not allocate a new disk %d\n",
2224 drv_index);
2225 goto err_free_drive_info;
2228 memcpy(h->drv[drv_index]->LunID, lunid,
2229 sizeof(h->drv[drv_index]->LunID));
2230 if (cciss_create_ld_sysfs_entry(h, drv_index))
2231 goto err_free_disk;
2232 /* Don't need to mark this busy because nobody */
2233 /* else knows about this disk yet to contend */
2234 /* for access to it. */
2235 h->drv[drv_index]->busy_configuring = 0;
2236 wmb();
2237 return drv_index;
2239 err_free_disk:
2240 cciss_free_gendisk(h, drv_index);
2241 err_free_drive_info:
2242 cciss_free_drive_info(h, drv_index);
2243 return -1;
2246 /* This is for the special case of a controller which
2247 * has no logical drives. In this case, we still need
2248 * to register a disk so the controller can be accessed
2249 * by the Array Config Utility.
2251 static void cciss_add_controller_node(ctlr_info_t *h)
2253 struct gendisk *disk;
2254 int drv_index;
2256 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2257 return;
2259 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2260 if (drv_index == -1)
2261 goto error;
2262 h->drv[drv_index]->block_size = 512;
2263 h->drv[drv_index]->nr_blocks = 0;
2264 h->drv[drv_index]->heads = 0;
2265 h->drv[drv_index]->sectors = 0;
2266 h->drv[drv_index]->cylinders = 0;
2267 h->drv[drv_index]->raid_level = -1;
2268 memset(h->drv[drv_index]->serial_no, 0, 16);
2269 disk = h->gendisk[drv_index];
2270 if (cciss_add_disk(h, disk, drv_index) == 0)
2271 return;
2272 cciss_free_gendisk(h, drv_index);
2273 cciss_free_drive_info(h, drv_index);
2274 error:
2275 dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2276 return;
2279 /* This function will add and remove logical drives from the Logical
2280 * drive array of the controller and maintain persistency of ordering
2281 * so that mount points are preserved until the next reboot. This allows
2282 * for the removal of logical drives in the middle of the drive array
2283 * without a re-ordering of those drives.
2284 * INPUT
2285 * h = The controller to perform the operations on
2287 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2288 int via_ioctl)
2290 int num_luns;
2291 ReportLunData_struct *ld_buff = NULL;
2292 int return_code;
2293 int listlength = 0;
2294 int i;
2295 int drv_found;
2296 int drv_index = 0;
2297 unsigned char lunid[8] = CTLR_LUNID;
2298 unsigned long flags;
2300 if (!capable(CAP_SYS_RAWIO))
2301 return -EPERM;
2303 /* Set busy_configuring flag for this operation */
2304 spin_lock_irqsave(&h->lock, flags);
2305 if (h->busy_configuring) {
2306 spin_unlock_irqrestore(&h->lock, flags);
2307 return -EBUSY;
2309 h->busy_configuring = 1;
2310 spin_unlock_irqrestore(&h->lock, flags);
2312 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2313 if (ld_buff == NULL)
2314 goto mem_msg;
2316 return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2317 sizeof(ReportLunData_struct),
2318 0, CTLR_LUNID, TYPE_CMD);
2320 if (return_code == IO_OK)
2321 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2322 else { /* reading number of logical volumes failed */
2323 dev_warn(&h->pdev->dev,
2324 "report logical volume command failed\n");
2325 listlength = 0;
2326 goto freeret;
2329 num_luns = listlength / 8; /* 8 bytes per entry */
2330 if (num_luns > CISS_MAX_LUN) {
2331 num_luns = CISS_MAX_LUN;
2332 dev_warn(&h->pdev->dev, "more luns configured"
2333 " on controller than can be handled by"
2334 " this driver.\n");
2337 if (num_luns == 0)
2338 cciss_add_controller_node(h);
2340 /* Compare controller drive array to driver's drive array
2341 * to see if any drives are missing on the controller due
2342 * to action of Array Config Utility (user deletes drive)
2343 * and deregister logical drives which have disappeared.
2345 for (i = 0; i <= h->highest_lun; i++) {
2346 int j;
2347 drv_found = 0;
2349 /* skip holes in the array from already deleted drives */
2350 if (h->drv[i] == NULL)
2351 continue;
2353 for (j = 0; j < num_luns; j++) {
2354 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2355 if (memcmp(h->drv[i]->LunID, lunid,
2356 sizeof(lunid)) == 0) {
2357 drv_found = 1;
2358 break;
2361 if (!drv_found) {
2362 /* Deregister it from the OS, it's gone. */
2363 spin_lock_irqsave(&h->lock, flags);
2364 h->drv[i]->busy_configuring = 1;
2365 spin_unlock_irqrestore(&h->lock, flags);
2366 return_code = deregister_disk(h, i, 1, via_ioctl);
2367 if (h->drv[i] != NULL)
2368 h->drv[i]->busy_configuring = 0;
2372 /* Compare controller drive array to driver's drive array.
2373 * Check for updates in the drive information and any new drives
2374 * on the controller due to ACU adding logical drives, or changing
2375 * a logical drive's size, etc. Reregister any new/changed drives
2377 for (i = 0; i < num_luns; i++) {
2378 int j;
2380 drv_found = 0;
2382 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2383 /* Find if the LUN is already in the drive array
2384 * of the driver. If so then update its info
2385 * if not in use. If it does not exist then find
2386 * the first free index and add it.
2388 for (j = 0; j <= h->highest_lun; j++) {
2389 if (h->drv[j] != NULL &&
2390 memcmp(h->drv[j]->LunID, lunid,
2391 sizeof(h->drv[j]->LunID)) == 0) {
2392 drv_index = j;
2393 drv_found = 1;
2394 break;
2398 /* check if the drive was found already in the array */
2399 if (!drv_found) {
2400 drv_index = cciss_add_gendisk(h, lunid, 0);
2401 if (drv_index == -1)
2402 goto freeret;
2404 cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2405 } /* end for */
2407 freeret:
2408 kfree(ld_buff);
2409 h->busy_configuring = 0;
2410 /* We return -1 here to tell the ACU that we have registered/updated
2411 * all of the drives that we can and to keep it from calling us
2412 * additional times.
2414 return -1;
2415 mem_msg:
2416 dev_err(&h->pdev->dev, "out of memory\n");
2417 h->busy_configuring = 0;
2418 goto freeret;
2421 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2423 /* zero out the disk size info */
2424 drive_info->nr_blocks = 0;
2425 drive_info->block_size = 0;
2426 drive_info->heads = 0;
2427 drive_info->sectors = 0;
2428 drive_info->cylinders = 0;
2429 drive_info->raid_level = -1;
2430 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2431 memset(drive_info->model, 0, sizeof(drive_info->model));
2432 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2433 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2435 * don't clear the LUNID though, we need to remember which
2436 * one this one is.
2440 /* This function will deregister the disk and it's queue from the
2441 * kernel. It must be called with the controller lock held and the
2442 * drv structures busy_configuring flag set. It's parameters are:
2444 * disk = This is the disk to be deregistered
2445 * drv = This is the drive_info_struct associated with the disk to be
2446 * deregistered. It contains information about the disk used
2447 * by the driver.
2448 * clear_all = This flag determines whether or not the disk information
2449 * is going to be completely cleared out and the highest_lun
2450 * reset. Sometimes we want to clear out information about
2451 * the disk in preparation for re-adding it. In this case
2452 * the highest_lun should be left unchanged and the LunID
2453 * should not be cleared.
2454 * via_ioctl
2455 * This indicates whether we've reached this path via ioctl.
2456 * This affects the maximum usage count allowed for c0d0 to be messed with.
2457 * If this path is reached via ioctl(), then the max_usage_count will
2458 * be 1, as the process calling ioctl() has got to have the device open.
2459 * If we get here via sysfs, then the max usage count will be zero.
2461 static int deregister_disk(ctlr_info_t *h, int drv_index,
2462 int clear_all, int via_ioctl)
2464 int i;
2465 struct gendisk *disk;
2466 drive_info_struct *drv;
2467 int recalculate_highest_lun;
2469 if (!capable(CAP_SYS_RAWIO))
2470 return -EPERM;
2472 drv = h->drv[drv_index];
2473 disk = h->gendisk[drv_index];
2475 /* make sure logical volume is NOT is use */
2476 if (clear_all || (h->gendisk[0] == disk)) {
2477 if (drv->usage_count > via_ioctl)
2478 return -EBUSY;
2479 } else if (drv->usage_count > 0)
2480 return -EBUSY;
2482 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2484 /* invalidate the devices and deregister the disk. If it is disk
2485 * zero do not deregister it but just zero out it's values. This
2486 * allows us to delete disk zero but keep the controller registered.
2488 if (h->gendisk[0] != disk) {
2489 struct request_queue *q = disk->queue;
2490 if (disk->flags & GENHD_FL_UP) {
2491 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2492 del_gendisk(disk);
2494 if (q)
2495 blk_cleanup_queue(q);
2496 /* If clear_all is set then we are deleting the logical
2497 * drive, not just refreshing its info. For drives
2498 * other than disk 0 we will call put_disk. We do not
2499 * do this for disk 0 as we need it to be able to
2500 * configure the controller.
2502 if (clear_all){
2503 /* This isn't pretty, but we need to find the
2504 * disk in our array and NULL our the pointer.
2505 * This is so that we will call alloc_disk if
2506 * this index is used again later.
2508 for (i=0; i < CISS_MAX_LUN; i++){
2509 if (h->gendisk[i] == disk) {
2510 h->gendisk[i] = NULL;
2511 break;
2514 put_disk(disk);
2516 } else {
2517 set_capacity(disk, 0);
2518 cciss_clear_drive_info(drv);
2521 --h->num_luns;
2523 /* if it was the last disk, find the new hightest lun */
2524 if (clear_all && recalculate_highest_lun) {
2525 int newhighest = -1;
2526 for (i = 0; i <= h->highest_lun; i++) {
2527 /* if the disk has size > 0, it is available */
2528 if (h->drv[i] && h->drv[i]->heads)
2529 newhighest = i;
2531 h->highest_lun = newhighest;
2533 return 0;
2536 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2537 size_t size, __u8 page_code, unsigned char *scsi3addr,
2538 int cmd_type)
2540 u64bit buff_dma_handle;
2541 int status = IO_OK;
2543 c->cmd_type = CMD_IOCTL_PEND;
2544 c->Header.ReplyQueue = 0;
2545 if (buff != NULL) {
2546 c->Header.SGList = 1;
2547 c->Header.SGTotal = 1;
2548 } else {
2549 c->Header.SGList = 0;
2550 c->Header.SGTotal = 0;
2552 c->Header.Tag.lower = c->busaddr;
2553 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2555 c->Request.Type.Type = cmd_type;
2556 if (cmd_type == TYPE_CMD) {
2557 switch (cmd) {
2558 case CISS_INQUIRY:
2559 /* are we trying to read a vital product page */
2560 if (page_code != 0) {
2561 c->Request.CDB[1] = 0x01;
2562 c->Request.CDB[2] = page_code;
2564 c->Request.CDBLen = 6;
2565 c->Request.Type.Attribute = ATTR_SIMPLE;
2566 c->Request.Type.Direction = XFER_READ;
2567 c->Request.Timeout = 0;
2568 c->Request.CDB[0] = CISS_INQUIRY;
2569 c->Request.CDB[4] = size & 0xFF;
2570 break;
2571 case CISS_REPORT_LOG:
2572 case CISS_REPORT_PHYS:
2573 /* Talking to controller so It's a physical command
2574 mode = 00 target = 0. Nothing to write.
2576 c->Request.CDBLen = 12;
2577 c->Request.Type.Attribute = ATTR_SIMPLE;
2578 c->Request.Type.Direction = XFER_READ;
2579 c->Request.Timeout = 0;
2580 c->Request.CDB[0] = cmd;
2581 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2582 c->Request.CDB[7] = (size >> 16) & 0xFF;
2583 c->Request.CDB[8] = (size >> 8) & 0xFF;
2584 c->Request.CDB[9] = size & 0xFF;
2585 break;
2587 case CCISS_READ_CAPACITY:
2588 c->Request.CDBLen = 10;
2589 c->Request.Type.Attribute = ATTR_SIMPLE;
2590 c->Request.Type.Direction = XFER_READ;
2591 c->Request.Timeout = 0;
2592 c->Request.CDB[0] = cmd;
2593 break;
2594 case CCISS_READ_CAPACITY_16:
2595 c->Request.CDBLen = 16;
2596 c->Request.Type.Attribute = ATTR_SIMPLE;
2597 c->Request.Type.Direction = XFER_READ;
2598 c->Request.Timeout = 0;
2599 c->Request.CDB[0] = cmd;
2600 c->Request.CDB[1] = 0x10;
2601 c->Request.CDB[10] = (size >> 24) & 0xFF;
2602 c->Request.CDB[11] = (size >> 16) & 0xFF;
2603 c->Request.CDB[12] = (size >> 8) & 0xFF;
2604 c->Request.CDB[13] = size & 0xFF;
2605 c->Request.Timeout = 0;
2606 c->Request.CDB[0] = cmd;
2607 break;
2608 case CCISS_CACHE_FLUSH:
2609 c->Request.CDBLen = 12;
2610 c->Request.Type.Attribute = ATTR_SIMPLE;
2611 c->Request.Type.Direction = XFER_WRITE;
2612 c->Request.Timeout = 0;
2613 c->Request.CDB[0] = BMIC_WRITE;
2614 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2615 c->Request.CDB[7] = (size >> 8) & 0xFF;
2616 c->Request.CDB[8] = size & 0xFF;
2617 break;
2618 case TEST_UNIT_READY:
2619 c->Request.CDBLen = 6;
2620 c->Request.Type.Attribute = ATTR_SIMPLE;
2621 c->Request.Type.Direction = XFER_NONE;
2622 c->Request.Timeout = 0;
2623 break;
2624 default:
2625 dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2626 return IO_ERROR;
2628 } else if (cmd_type == TYPE_MSG) {
2629 switch (cmd) {
2630 case CCISS_ABORT_MSG:
2631 c->Request.CDBLen = 12;
2632 c->Request.Type.Attribute = ATTR_SIMPLE;
2633 c->Request.Type.Direction = XFER_WRITE;
2634 c->Request.Timeout = 0;
2635 c->Request.CDB[0] = cmd; /* abort */
2636 c->Request.CDB[1] = 0; /* abort a command */
2637 /* buff contains the tag of the command to abort */
2638 memcpy(&c->Request.CDB[4], buff, 8);
2639 break;
2640 case CCISS_RESET_MSG:
2641 c->Request.CDBLen = 16;
2642 c->Request.Type.Attribute = ATTR_SIMPLE;
2643 c->Request.Type.Direction = XFER_NONE;
2644 c->Request.Timeout = 0;
2645 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2646 c->Request.CDB[0] = cmd; /* reset */
2647 c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2648 break;
2649 case CCISS_NOOP_MSG:
2650 c->Request.CDBLen = 1;
2651 c->Request.Type.Attribute = ATTR_SIMPLE;
2652 c->Request.Type.Direction = XFER_WRITE;
2653 c->Request.Timeout = 0;
2654 c->Request.CDB[0] = cmd;
2655 break;
2656 default:
2657 dev_warn(&h->pdev->dev,
2658 "unknown message type %d\n", cmd);
2659 return IO_ERROR;
2661 } else {
2662 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2663 return IO_ERROR;
2665 /* Fill in the scatter gather information */
2666 if (size > 0) {
2667 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2668 buff, size,
2669 PCI_DMA_BIDIRECTIONAL);
2670 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2671 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2672 c->SG[0].Len = size;
2673 c->SG[0].Ext = 0; /* we are not chaining */
2675 return status;
2678 static int cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2679 u8 reset_type)
2681 CommandList_struct *c;
2682 int return_status;
2684 c = cmd_alloc(h);
2685 if (!c)
2686 return -ENOMEM;
2687 return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2688 CTLR_LUNID, TYPE_MSG);
2689 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2690 if (return_status != IO_OK) {
2691 cmd_special_free(h, c);
2692 return return_status;
2694 c->waiting = NULL;
2695 enqueue_cmd_and_start_io(h, c);
2696 /* Don't wait for completion, the reset won't complete. Don't free
2697 * the command either. This is the last command we will send before
2698 * re-initializing everything, so it doesn't matter and won't leak.
2700 return 0;
2703 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2705 switch (c->err_info->ScsiStatus) {
2706 case SAM_STAT_GOOD:
2707 return IO_OK;
2708 case SAM_STAT_CHECK_CONDITION:
2709 switch (0xf & c->err_info->SenseInfo[2]) {
2710 case 0: return IO_OK; /* no sense */
2711 case 1: return IO_OK; /* recovered error */
2712 default:
2713 if (check_for_unit_attention(h, c))
2714 return IO_NEEDS_RETRY;
2715 dev_warn(&h->pdev->dev, "cmd 0x%02x "
2716 "check condition, sense key = 0x%02x\n",
2717 c->Request.CDB[0], c->err_info->SenseInfo[2]);
2719 break;
2720 default:
2721 dev_warn(&h->pdev->dev, "cmd 0x%02x"
2722 "scsi status = 0x%02x\n",
2723 c->Request.CDB[0], c->err_info->ScsiStatus);
2724 break;
2726 return IO_ERROR;
2729 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2731 int return_status = IO_OK;
2733 if (c->err_info->CommandStatus == CMD_SUCCESS)
2734 return IO_OK;
2736 switch (c->err_info->CommandStatus) {
2737 case CMD_TARGET_STATUS:
2738 return_status = check_target_status(h, c);
2739 break;
2740 case CMD_DATA_UNDERRUN:
2741 case CMD_DATA_OVERRUN:
2742 /* expected for inquiry and report lun commands */
2743 break;
2744 case CMD_INVALID:
2745 dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2746 "reported invalid\n", c->Request.CDB[0]);
2747 return_status = IO_ERROR;
2748 break;
2749 case CMD_PROTOCOL_ERR:
2750 dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2751 "protocol error\n", c->Request.CDB[0]);
2752 return_status = IO_ERROR;
2753 break;
2754 case CMD_HARDWARE_ERR:
2755 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2756 " hardware error\n", c->Request.CDB[0]);
2757 return_status = IO_ERROR;
2758 break;
2759 case CMD_CONNECTION_LOST:
2760 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2761 "connection lost\n", c->Request.CDB[0]);
2762 return_status = IO_ERROR;
2763 break;
2764 case CMD_ABORTED:
2765 dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2766 "aborted\n", c->Request.CDB[0]);
2767 return_status = IO_ERROR;
2768 break;
2769 case CMD_ABORT_FAILED:
2770 dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2771 "abort failed\n", c->Request.CDB[0]);
2772 return_status = IO_ERROR;
2773 break;
2774 case CMD_UNSOLICITED_ABORT:
2775 dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2776 c->Request.CDB[0]);
2777 return_status = IO_NEEDS_RETRY;
2778 break;
2779 case CMD_UNABORTABLE:
2780 dev_warn(&h->pdev->dev, "cmd unabortable\n");
2781 return_status = IO_ERROR;
2782 break;
2783 default:
2784 dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2785 "unknown status %x\n", c->Request.CDB[0],
2786 c->err_info->CommandStatus);
2787 return_status = IO_ERROR;
2789 return return_status;
2792 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2793 int attempt_retry)
2795 DECLARE_COMPLETION_ONSTACK(wait);
2796 u64bit buff_dma_handle;
2797 int return_status = IO_OK;
2799 resend_cmd2:
2800 c->waiting = &wait;
2801 enqueue_cmd_and_start_io(h, c);
2803 wait_for_completion(&wait);
2805 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2806 goto command_done;
2808 return_status = process_sendcmd_error(h, c);
2810 if (return_status == IO_NEEDS_RETRY &&
2811 c->retry_count < MAX_CMD_RETRIES) {
2812 dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2813 c->Request.CDB[0]);
2814 c->retry_count++;
2815 /* erase the old error information */
2816 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2817 return_status = IO_OK;
2818 reinit_completion(&wait);
2819 goto resend_cmd2;
2822 command_done:
2823 /* unlock the buffers from DMA */
2824 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2825 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2826 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2827 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2828 return return_status;
2831 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2832 __u8 page_code, unsigned char scsi3addr[],
2833 int cmd_type)
2835 CommandList_struct *c;
2836 int return_status;
2838 c = cmd_special_alloc(h);
2839 if (!c)
2840 return -ENOMEM;
2841 return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2842 scsi3addr, cmd_type);
2843 if (return_status == IO_OK)
2844 return_status = sendcmd_withirq_core(h, c, 1);
2846 cmd_special_free(h, c);
2847 return return_status;
2850 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2851 sector_t total_size,
2852 unsigned int block_size,
2853 InquiryData_struct *inq_buff,
2854 drive_info_struct *drv)
2856 int return_code;
2857 unsigned long t;
2858 unsigned char scsi3addr[8];
2860 memset(inq_buff, 0, sizeof(InquiryData_struct));
2861 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2862 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2863 sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2864 if (return_code == IO_OK) {
2865 if (inq_buff->data_byte[8] == 0xFF) {
2866 dev_warn(&h->pdev->dev,
2867 "reading geometry failed, volume "
2868 "does not support reading geometry\n");
2869 drv->heads = 255;
2870 drv->sectors = 32; /* Sectors per track */
2871 drv->cylinders = total_size + 1;
2872 drv->raid_level = RAID_UNKNOWN;
2873 } else {
2874 drv->heads = inq_buff->data_byte[6];
2875 drv->sectors = inq_buff->data_byte[7];
2876 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2877 drv->cylinders += inq_buff->data_byte[5];
2878 drv->raid_level = inq_buff->data_byte[8];
2880 drv->block_size = block_size;
2881 drv->nr_blocks = total_size + 1;
2882 t = drv->heads * drv->sectors;
2883 if (t > 1) {
2884 sector_t real_size = total_size + 1;
2885 unsigned long rem = sector_div(real_size, t);
2886 if (rem)
2887 real_size++;
2888 drv->cylinders = real_size;
2890 } else { /* Get geometry failed */
2891 dev_warn(&h->pdev->dev, "reading geometry failed\n");
2895 static void
2896 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2897 unsigned int *block_size)
2899 ReadCapdata_struct *buf;
2900 int return_code;
2901 unsigned char scsi3addr[8];
2903 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2904 if (!buf) {
2905 dev_warn(&h->pdev->dev, "out of memory\n");
2906 return;
2909 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2910 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2911 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2912 if (return_code == IO_OK) {
2913 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2914 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2915 } else { /* read capacity command failed */
2916 dev_warn(&h->pdev->dev, "read capacity failed\n");
2917 *total_size = 0;
2918 *block_size = BLOCK_SIZE;
2920 kfree(buf);
2923 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2924 sector_t *total_size, unsigned int *block_size)
2926 ReadCapdata_struct_16 *buf;
2927 int return_code;
2928 unsigned char scsi3addr[8];
2930 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2931 if (!buf) {
2932 dev_warn(&h->pdev->dev, "out of memory\n");
2933 return;
2936 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2937 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2938 buf, sizeof(ReadCapdata_struct_16),
2939 0, scsi3addr, TYPE_CMD);
2940 if (return_code == IO_OK) {
2941 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2942 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2943 } else { /* read capacity command failed */
2944 dev_warn(&h->pdev->dev, "read capacity failed\n");
2945 *total_size = 0;
2946 *block_size = BLOCK_SIZE;
2948 dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n",
2949 (unsigned long long)*total_size+1, *block_size);
2950 kfree(buf);
2953 static int cciss_revalidate(struct gendisk *disk)
2955 ctlr_info_t *h = get_host(disk);
2956 drive_info_struct *drv = get_drv(disk);
2957 int logvol;
2958 int FOUND = 0;
2959 unsigned int block_size;
2960 sector_t total_size;
2961 InquiryData_struct *inq_buff = NULL;
2963 for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2964 if (!h->drv[logvol])
2965 continue;
2966 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2967 sizeof(drv->LunID)) == 0) {
2968 FOUND = 1;
2969 break;
2973 if (!FOUND)
2974 return 1;
2976 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2977 if (inq_buff == NULL) {
2978 dev_warn(&h->pdev->dev, "out of memory\n");
2979 return 1;
2981 if (h->cciss_read == CCISS_READ_10) {
2982 cciss_read_capacity(h, logvol,
2983 &total_size, &block_size);
2984 } else {
2985 cciss_read_capacity_16(h, logvol,
2986 &total_size, &block_size);
2988 cciss_geometry_inquiry(h, logvol, total_size, block_size,
2989 inq_buff, drv);
2991 blk_queue_logical_block_size(drv->queue, drv->block_size);
2992 set_capacity(disk, drv->nr_blocks);
2994 kfree(inq_buff);
2995 return 0;
2999 * Map (physical) PCI mem into (virtual) kernel space
3001 static void __iomem *remap_pci_mem(ulong base, ulong size)
3003 ulong page_base = ((ulong) base) & PAGE_MASK;
3004 ulong page_offs = ((ulong) base) - page_base;
3005 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3007 return page_remapped ? (page_remapped + page_offs) : NULL;
3011 * Takes jobs of the Q and sends them to the hardware, then puts it on
3012 * the Q to wait for completion.
3014 static void start_io(ctlr_info_t *h)
3016 CommandList_struct *c;
3018 while (!list_empty(&h->reqQ)) {
3019 c = list_entry(h->reqQ.next, CommandList_struct, list);
3020 /* can't do anything if fifo is full */
3021 if ((h->access.fifo_full(h))) {
3022 dev_warn(&h->pdev->dev, "fifo full\n");
3023 break;
3026 /* Get the first entry from the Request Q */
3027 removeQ(c);
3028 h->Qdepth--;
3030 /* Tell the controller execute command */
3031 h->access.submit_command(h, c);
3033 /* Put job onto the completed Q */
3034 addQ(&h->cmpQ, c);
3038 /* Assumes that h->lock is held. */
3039 /* Zeros out the error record and then resends the command back */
3040 /* to the controller */
3041 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3043 /* erase the old error information */
3044 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3046 /* add it to software queue and then send it to the controller */
3047 addQ(&h->reqQ, c);
3048 h->Qdepth++;
3049 if (h->Qdepth > h->maxQsinceinit)
3050 h->maxQsinceinit = h->Qdepth;
3052 start_io(h);
3055 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3056 unsigned int msg_byte, unsigned int host_byte,
3057 unsigned int driver_byte)
3059 /* inverse of macros in scsi.h */
3060 return (scsi_status_byte & 0xff) |
3061 ((msg_byte & 0xff) << 8) |
3062 ((host_byte & 0xff) << 16) |
3063 ((driver_byte & 0xff) << 24);
3066 static inline int evaluate_target_status(ctlr_info_t *h,
3067 CommandList_struct *cmd, int *retry_cmd)
3069 unsigned char sense_key;
3070 unsigned char status_byte, msg_byte, host_byte, driver_byte;
3071 int error_value;
3073 *retry_cmd = 0;
3074 /* If we get in here, it means we got "target status", that is, scsi status */
3075 status_byte = cmd->err_info->ScsiStatus;
3076 driver_byte = DRIVER_OK;
3077 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
3079 if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3080 host_byte = DID_PASSTHROUGH;
3081 else
3082 host_byte = DID_OK;
3084 error_value = make_status_bytes(status_byte, msg_byte,
3085 host_byte, driver_byte);
3087 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3088 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3089 dev_warn(&h->pdev->dev, "cmd %p "
3090 "has SCSI Status 0x%x\n",
3091 cmd, cmd->err_info->ScsiStatus);
3092 return error_value;
3095 /* check the sense key */
3096 sense_key = 0xf & cmd->err_info->SenseInfo[2];
3097 /* no status or recovered error */
3098 if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3099 (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3100 error_value = 0;
3102 if (check_for_unit_attention(h, cmd)) {
3103 *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3104 return 0;
3107 /* Not SG_IO or similar? */
3108 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3109 if (error_value != 0)
3110 dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3111 " sense key = 0x%x\n", cmd, sense_key);
3112 return error_value;
3115 /* SG_IO or similar, copy sense data back */
3116 if (cmd->rq->sense) {
3117 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3118 cmd->rq->sense_len = cmd->err_info->SenseLen;
3119 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3120 cmd->rq->sense_len);
3121 } else
3122 cmd->rq->sense_len = 0;
3124 return error_value;
3127 /* checks the status of the job and calls complete buffers to mark all
3128 * buffers for the completed job. Note that this function does not need
3129 * to hold the hba/queue lock.
3131 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3132 int timeout)
3134 int retry_cmd = 0;
3135 struct request *rq = cmd->rq;
3137 rq->errors = 0;
3139 if (timeout)
3140 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3142 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3143 goto after_error_processing;
3145 switch (cmd->err_info->CommandStatus) {
3146 case CMD_TARGET_STATUS:
3147 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3148 break;
3149 case CMD_DATA_UNDERRUN:
3150 if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3151 dev_warn(&h->pdev->dev, "cmd %p has"
3152 " completed with data underrun "
3153 "reported\n", cmd);
3154 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3156 break;
3157 case CMD_DATA_OVERRUN:
3158 if (cmd->rq->cmd_type == REQ_TYPE_FS)
3159 dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3160 " completed with data overrun "
3161 "reported\n", cmd);
3162 break;
3163 case CMD_INVALID:
3164 dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3165 "reported invalid\n", cmd);
3166 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3167 cmd->err_info->CommandStatus, DRIVER_OK,
3168 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3169 DID_PASSTHROUGH : DID_ERROR);
3170 break;
3171 case CMD_PROTOCOL_ERR:
3172 dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3173 "protocol error\n", cmd);
3174 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3175 cmd->err_info->CommandStatus, DRIVER_OK,
3176 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3177 DID_PASSTHROUGH : DID_ERROR);
3178 break;
3179 case CMD_HARDWARE_ERR:
3180 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3181 " hardware error\n", cmd);
3182 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3183 cmd->err_info->CommandStatus, DRIVER_OK,
3184 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3185 DID_PASSTHROUGH : DID_ERROR);
3186 break;
3187 case CMD_CONNECTION_LOST:
3188 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3189 "connection lost\n", cmd);
3190 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3191 cmd->err_info->CommandStatus, DRIVER_OK,
3192 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3193 DID_PASSTHROUGH : DID_ERROR);
3194 break;
3195 case CMD_ABORTED:
3196 dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3197 "aborted\n", cmd);
3198 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3199 cmd->err_info->CommandStatus, DRIVER_OK,
3200 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3201 DID_PASSTHROUGH : DID_ABORT);
3202 break;
3203 case CMD_ABORT_FAILED:
3204 dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3205 "abort failed\n", cmd);
3206 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3207 cmd->err_info->CommandStatus, DRIVER_OK,
3208 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3209 DID_PASSTHROUGH : DID_ERROR);
3210 break;
3211 case CMD_UNSOLICITED_ABORT:
3212 dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3213 "abort %p\n", h->ctlr, cmd);
3214 if (cmd->retry_count < MAX_CMD_RETRIES) {
3215 retry_cmd = 1;
3216 dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3217 cmd->retry_count++;
3218 } else
3219 dev_warn(&h->pdev->dev,
3220 "%p retried too many times\n", cmd);
3221 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3222 cmd->err_info->CommandStatus, DRIVER_OK,
3223 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3224 DID_PASSTHROUGH : DID_ABORT);
3225 break;
3226 case CMD_TIMEOUT:
3227 dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3228 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3229 cmd->err_info->CommandStatus, DRIVER_OK,
3230 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3231 DID_PASSTHROUGH : DID_ERROR);
3232 break;
3233 case CMD_UNABORTABLE:
3234 dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3235 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3236 cmd->err_info->CommandStatus, DRIVER_OK,
3237 cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3238 DID_PASSTHROUGH : DID_ERROR);
3239 break;
3240 default:
3241 dev_warn(&h->pdev->dev, "cmd %p returned "
3242 "unknown status %x\n", cmd,
3243 cmd->err_info->CommandStatus);
3244 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3245 cmd->err_info->CommandStatus, DRIVER_OK,
3246 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3247 DID_PASSTHROUGH : DID_ERROR);
3250 after_error_processing:
3252 /* We need to return this command */
3253 if (retry_cmd) {
3254 resend_cciss_cmd(h, cmd);
3255 return;
3257 cmd->rq->completion_data = cmd;
3258 blk_complete_request(cmd->rq);
3261 static inline u32 cciss_tag_contains_index(u32 tag)
3263 #define DIRECT_LOOKUP_BIT 0x10
3264 return tag & DIRECT_LOOKUP_BIT;
3267 static inline u32 cciss_tag_to_index(u32 tag)
3269 #define DIRECT_LOOKUP_SHIFT 5
3270 return tag >> DIRECT_LOOKUP_SHIFT;
3273 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3275 #define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3276 #define CCISS_SIMPLE_ERROR_BITS 0x03
3277 if (likely(h->transMethod & CFGTBL_Trans_Performant))
3278 return tag & ~CCISS_PERF_ERROR_BITS;
3279 return tag & ~CCISS_SIMPLE_ERROR_BITS;
3282 static inline void cciss_mark_tag_indexed(u32 *tag)
3284 *tag |= DIRECT_LOOKUP_BIT;
3287 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3289 *tag |= (index << DIRECT_LOOKUP_SHIFT);
3293 * Get a request and submit it to the controller.
3295 static void do_cciss_request(struct request_queue *q)
3297 ctlr_info_t *h = q->queuedata;
3298 CommandList_struct *c;
3299 sector_t start_blk;
3300 int seg;
3301 struct request *creq;
3302 u64bit temp64;
3303 struct scatterlist *tmp_sg;
3304 SGDescriptor_struct *curr_sg;
3305 drive_info_struct *drv;
3306 int i, dir;
3307 int sg_index = 0;
3308 int chained = 0;
3310 queue:
3311 creq = blk_peek_request(q);
3312 if (!creq)
3313 goto startio;
3315 BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3317 c = cmd_alloc(h);
3318 if (!c)
3319 goto full;
3321 blk_start_request(creq);
3323 tmp_sg = h->scatter_list[c->cmdindex];
3324 spin_unlock_irq(q->queue_lock);
3326 c->cmd_type = CMD_RWREQ;
3327 c->rq = creq;
3329 /* fill in the request */
3330 drv = creq->rq_disk->private_data;
3331 c->Header.ReplyQueue = 0; /* unused in simple mode */
3332 /* got command from pool, so use the command block index instead */
3333 /* for direct lookups. */
3334 /* The first 2 bits are reserved for controller error reporting. */
3335 cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3336 cciss_mark_tag_indexed(&c->Header.Tag.lower);
3337 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3338 c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3339 c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3340 c->Request.Type.Attribute = ATTR_SIMPLE;
3341 c->Request.Type.Direction =
3342 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3343 c->Request.Timeout = 0; /* Don't time out */
3344 c->Request.CDB[0] =
3345 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3346 start_blk = blk_rq_pos(creq);
3347 dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3348 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3349 sg_init_table(tmp_sg, h->maxsgentries);
3350 seg = blk_rq_map_sg(q, creq, tmp_sg);
3352 /* get the DMA records for the setup */
3353 if (c->Request.Type.Direction == XFER_READ)
3354 dir = PCI_DMA_FROMDEVICE;
3355 else
3356 dir = PCI_DMA_TODEVICE;
3358 curr_sg = c->SG;
3359 sg_index = 0;
3360 chained = 0;
3362 for (i = 0; i < seg; i++) {
3363 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3364 !chained && ((seg - i) > 1)) {
3365 /* Point to next chain block. */
3366 curr_sg = h->cmd_sg_list[c->cmdindex];
3367 sg_index = 0;
3368 chained = 1;
3370 curr_sg[sg_index].Len = tmp_sg[i].length;
3371 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3372 tmp_sg[i].offset,
3373 tmp_sg[i].length, dir);
3374 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3375 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3376 curr_sg[sg_index].Ext = 0; /* we are not chaining */
3377 ++sg_index;
3379 if (chained)
3380 cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3381 (seg - (h->max_cmd_sgentries - 1)) *
3382 sizeof(SGDescriptor_struct));
3384 /* track how many SG entries we are using */
3385 if (seg > h->maxSG)
3386 h->maxSG = seg;
3388 dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3389 "chained[%d]\n",
3390 blk_rq_sectors(creq), seg, chained);
3392 c->Header.SGTotal = seg + chained;
3393 if (seg <= h->max_cmd_sgentries)
3394 c->Header.SGList = c->Header.SGTotal;
3395 else
3396 c->Header.SGList = h->max_cmd_sgentries;
3397 set_performant_mode(h, c);
3399 if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3400 if(h->cciss_read == CCISS_READ_10) {
3401 c->Request.CDB[1] = 0;
3402 c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3403 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3404 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3405 c->Request.CDB[5] = start_blk & 0xff;
3406 c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3407 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3408 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3409 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3410 } else {
3411 u32 upper32 = upper_32_bits(start_blk);
3413 c->Request.CDBLen = 16;
3414 c->Request.CDB[1]= 0;
3415 c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3416 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3417 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3418 c->Request.CDB[5]= upper32 & 0xff;
3419 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3420 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3421 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3422 c->Request.CDB[9]= start_blk & 0xff;
3423 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3424 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3425 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3426 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3427 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3429 } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3430 c->Request.CDBLen = creq->cmd_len;
3431 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3432 } else {
3433 dev_warn(&h->pdev->dev, "bad request type %d\n",
3434 creq->cmd_type);
3435 BUG();
3438 spin_lock_irq(q->queue_lock);
3440 addQ(&h->reqQ, c);
3441 h->Qdepth++;
3442 if (h->Qdepth > h->maxQsinceinit)
3443 h->maxQsinceinit = h->Qdepth;
3445 goto queue;
3446 full:
3447 blk_stop_queue(q);
3448 startio:
3449 /* We will already have the driver lock here so not need
3450 * to lock it.
3452 start_io(h);
3455 static inline unsigned long get_next_completion(ctlr_info_t *h)
3457 return h->access.command_completed(h);
3460 static inline int interrupt_pending(ctlr_info_t *h)
3462 return h->access.intr_pending(h);
3465 static inline long interrupt_not_for_us(ctlr_info_t *h)
3467 return ((h->access.intr_pending(h) == 0) ||
3468 (h->interrupts_enabled == 0));
3471 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3472 u32 raw_tag)
3474 if (unlikely(tag_index >= h->nr_cmds)) {
3475 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3476 return 1;
3478 return 0;
3481 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3482 u32 raw_tag)
3484 removeQ(c);
3485 if (likely(c->cmd_type == CMD_RWREQ))
3486 complete_command(h, c, 0);
3487 else if (c->cmd_type == CMD_IOCTL_PEND)
3488 complete(c->waiting);
3489 #ifdef CONFIG_CISS_SCSI_TAPE
3490 else if (c->cmd_type == CMD_SCSI)
3491 complete_scsi_command(c, 0, raw_tag);
3492 #endif
3495 static inline u32 next_command(ctlr_info_t *h)
3497 u32 a;
3499 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3500 return h->access.command_completed(h);
3502 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3503 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3504 (h->reply_pool_head)++;
3505 h->commands_outstanding--;
3506 } else {
3507 a = FIFO_EMPTY;
3509 /* Check for wraparound */
3510 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3511 h->reply_pool_head = h->reply_pool;
3512 h->reply_pool_wraparound ^= 1;
3514 return a;
3517 /* process completion of an indexed ("direct lookup") command */
3518 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3520 u32 tag_index;
3521 CommandList_struct *c;
3523 tag_index = cciss_tag_to_index(raw_tag);
3524 if (bad_tag(h, tag_index, raw_tag))
3525 return next_command(h);
3526 c = h->cmd_pool + tag_index;
3527 finish_cmd(h, c, raw_tag);
3528 return next_command(h);
3531 /* process completion of a non-indexed command */
3532 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3534 CommandList_struct *c = NULL;
3535 __u32 busaddr_masked, tag_masked;
3537 tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3538 list_for_each_entry(c, &h->cmpQ, list) {
3539 busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3540 if (busaddr_masked == tag_masked) {
3541 finish_cmd(h, c, raw_tag);
3542 return next_command(h);
3545 bad_tag(h, h->nr_cmds + 1, raw_tag);
3546 return next_command(h);
3549 /* Some controllers, like p400, will give us one interrupt
3550 * after a soft reset, even if we turned interrupts off.
3551 * Only need to check for this in the cciss_xxx_discard_completions
3552 * functions.
3554 static int ignore_bogus_interrupt(ctlr_info_t *h)
3556 if (likely(!reset_devices))
3557 return 0;
3559 if (likely(h->interrupts_enabled))
3560 return 0;
3562 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3563 "(known firmware bug.) Ignoring.\n");
3565 return 1;
3568 static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3570 ctlr_info_t *h = dev_id;
3571 unsigned long flags;
3572 u32 raw_tag;
3574 if (ignore_bogus_interrupt(h))
3575 return IRQ_NONE;
3577 if (interrupt_not_for_us(h))
3578 return IRQ_NONE;
3579 spin_lock_irqsave(&h->lock, flags);
3580 while (interrupt_pending(h)) {
3581 raw_tag = get_next_completion(h);
3582 while (raw_tag != FIFO_EMPTY)
3583 raw_tag = next_command(h);
3585 spin_unlock_irqrestore(&h->lock, flags);
3586 return IRQ_HANDLED;
3589 static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3591 ctlr_info_t *h = dev_id;
3592 unsigned long flags;
3593 u32 raw_tag;
3595 if (ignore_bogus_interrupt(h))
3596 return IRQ_NONE;
3598 spin_lock_irqsave(&h->lock, flags);
3599 raw_tag = get_next_completion(h);
3600 while (raw_tag != FIFO_EMPTY)
3601 raw_tag = next_command(h);
3602 spin_unlock_irqrestore(&h->lock, flags);
3603 return IRQ_HANDLED;
3606 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3608 ctlr_info_t *h = dev_id;
3609 unsigned long flags;
3610 u32 raw_tag;
3612 if (interrupt_not_for_us(h))
3613 return IRQ_NONE;
3614 spin_lock_irqsave(&h->lock, flags);
3615 while (interrupt_pending(h)) {
3616 raw_tag = get_next_completion(h);
3617 while (raw_tag != FIFO_EMPTY) {
3618 if (cciss_tag_contains_index(raw_tag))
3619 raw_tag = process_indexed_cmd(h, raw_tag);
3620 else
3621 raw_tag = process_nonindexed_cmd(h, raw_tag);
3624 spin_unlock_irqrestore(&h->lock, flags);
3625 return IRQ_HANDLED;
3628 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3629 * check the interrupt pending register because it is not set.
3631 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3633 ctlr_info_t *h = dev_id;
3634 unsigned long flags;
3635 u32 raw_tag;
3637 spin_lock_irqsave(&h->lock, flags);
3638 raw_tag = get_next_completion(h);
3639 while (raw_tag != FIFO_EMPTY) {
3640 if (cciss_tag_contains_index(raw_tag))
3641 raw_tag = process_indexed_cmd(h, raw_tag);
3642 else
3643 raw_tag = process_nonindexed_cmd(h, raw_tag);
3645 spin_unlock_irqrestore(&h->lock, flags);
3646 return IRQ_HANDLED;
3650 * add_to_scan_list() - add controller to rescan queue
3651 * @h: Pointer to the controller.
3653 * Adds the controller to the rescan queue if not already on the queue.
3655 * returns 1 if added to the queue, 0 if skipped (could be on the
3656 * queue already, or the controller could be initializing or shutting
3657 * down).
3659 static int add_to_scan_list(struct ctlr_info *h)
3661 struct ctlr_info *test_h;
3662 int found = 0;
3663 int ret = 0;
3665 if (h->busy_initializing)
3666 return 0;
3668 if (!mutex_trylock(&h->busy_shutting_down))
3669 return 0;
3671 mutex_lock(&scan_mutex);
3672 list_for_each_entry(test_h, &scan_q, scan_list) {
3673 if (test_h == h) {
3674 found = 1;
3675 break;
3678 if (!found && !h->busy_scanning) {
3679 reinit_completion(&h->scan_wait);
3680 list_add_tail(&h->scan_list, &scan_q);
3681 ret = 1;
3683 mutex_unlock(&scan_mutex);
3684 mutex_unlock(&h->busy_shutting_down);
3686 return ret;
3690 * remove_from_scan_list() - remove controller from rescan queue
3691 * @h: Pointer to the controller.
3693 * Removes the controller from the rescan queue if present. Blocks if
3694 * the controller is currently conducting a rescan. The controller
3695 * can be in one of three states:
3696 * 1. Doesn't need a scan
3697 * 2. On the scan list, but not scanning yet (we remove it)
3698 * 3. Busy scanning (and not on the list). In this case we want to wait for
3699 * the scan to complete to make sure the scanning thread for this
3700 * controller is completely idle.
3702 static void remove_from_scan_list(struct ctlr_info *h)
3704 struct ctlr_info *test_h, *tmp_h;
3706 mutex_lock(&scan_mutex);
3707 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3708 if (test_h == h) { /* state 2. */
3709 list_del(&h->scan_list);
3710 complete_all(&h->scan_wait);
3711 mutex_unlock(&scan_mutex);
3712 return;
3715 if (h->busy_scanning) { /* state 3. */
3716 mutex_unlock(&scan_mutex);
3717 wait_for_completion(&h->scan_wait);
3718 } else { /* state 1, nothing to do. */
3719 mutex_unlock(&scan_mutex);
3724 * scan_thread() - kernel thread used to rescan controllers
3725 * @data: Ignored.
3727 * A kernel thread used scan for drive topology changes on
3728 * controllers. The thread processes only one controller at a time
3729 * using a queue. Controllers are added to the queue using
3730 * add_to_scan_list() and removed from the queue either after done
3731 * processing or using remove_from_scan_list().
3733 * returns 0.
3735 static int scan_thread(void *data)
3737 struct ctlr_info *h;
3739 while (1) {
3740 set_current_state(TASK_INTERRUPTIBLE);
3741 schedule();
3742 if (kthread_should_stop())
3743 break;
3745 while (1) {
3746 mutex_lock(&scan_mutex);
3747 if (list_empty(&scan_q)) {
3748 mutex_unlock(&scan_mutex);
3749 break;
3752 h = list_entry(scan_q.next,
3753 struct ctlr_info,
3754 scan_list);
3755 list_del(&h->scan_list);
3756 h->busy_scanning = 1;
3757 mutex_unlock(&scan_mutex);
3759 rebuild_lun_table(h, 0, 0);
3760 complete_all(&h->scan_wait);
3761 mutex_lock(&scan_mutex);
3762 h->busy_scanning = 0;
3763 mutex_unlock(&scan_mutex);
3767 return 0;
3770 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3772 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3773 return 0;
3775 switch (c->err_info->SenseInfo[12]) {
3776 case STATE_CHANGED:
3777 dev_warn(&h->pdev->dev, "a state change "
3778 "detected, command retried\n");
3779 return 1;
3780 break;
3781 case LUN_FAILED:
3782 dev_warn(&h->pdev->dev, "LUN failure "
3783 "detected, action required\n");
3784 return 1;
3785 break;
3786 case REPORT_LUNS_CHANGED:
3787 dev_warn(&h->pdev->dev, "report LUN data changed\n");
3789 * Here, we could call add_to_scan_list and wake up the scan thread,
3790 * except that it's quite likely that we will get more than one
3791 * REPORT_LUNS_CHANGED condition in quick succession, which means
3792 * that those which occur after the first one will likely happen
3793 * *during* the scan_thread's rescan. And the rescan code is not
3794 * robust enough to restart in the middle, undoing what it has already
3795 * done, and it's not clear that it's even possible to do this, since
3796 * part of what it does is notify the block layer, which starts
3797 * doing it's own i/o to read partition tables and so on, and the
3798 * driver doesn't have visibility to know what might need undoing.
3799 * In any event, if possible, it is horribly complicated to get right
3800 * so we just don't do it for now.
3802 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3804 return 1;
3805 break;
3806 case POWER_OR_RESET:
3807 dev_warn(&h->pdev->dev,
3808 "a power on or device reset detected\n");
3809 return 1;
3810 break;
3811 case UNIT_ATTENTION_CLEARED:
3812 dev_warn(&h->pdev->dev,
3813 "unit attention cleared by another initiator\n");
3814 return 1;
3815 break;
3816 default:
3817 dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3818 return 1;
3823 * We cannot read the structure directly, for portability we must use
3824 * the io functions.
3825 * This is for debug only.
3827 static void print_cfg_table(ctlr_info_t *h)
3829 int i;
3830 char temp_name[17];
3831 CfgTable_struct *tb = h->cfgtable;
3833 dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3834 dev_dbg(&h->pdev->dev, "------------------------------------\n");
3835 for (i = 0; i < 4; i++)
3836 temp_name[i] = readb(&(tb->Signature[i]));
3837 temp_name[4] = '\0';
3838 dev_dbg(&h->pdev->dev, " Signature = %s\n", temp_name);
3839 dev_dbg(&h->pdev->dev, " Spec Number = %d\n",
3840 readl(&(tb->SpecValence)));
3841 dev_dbg(&h->pdev->dev, " Transport methods supported = 0x%x\n",
3842 readl(&(tb->TransportSupport)));
3843 dev_dbg(&h->pdev->dev, " Transport methods active = 0x%x\n",
3844 readl(&(tb->TransportActive)));
3845 dev_dbg(&h->pdev->dev, " Requested transport Method = 0x%x\n",
3846 readl(&(tb->HostWrite.TransportRequest)));
3847 dev_dbg(&h->pdev->dev, " Coalesce Interrupt Delay = 0x%x\n",
3848 readl(&(tb->HostWrite.CoalIntDelay)));
3849 dev_dbg(&h->pdev->dev, " Coalesce Interrupt Count = 0x%x\n",
3850 readl(&(tb->HostWrite.CoalIntCount)));
3851 dev_dbg(&h->pdev->dev, " Max outstanding commands = 0x%x\n",
3852 readl(&(tb->CmdsOutMax)));
3853 dev_dbg(&h->pdev->dev, " Bus Types = 0x%x\n",
3854 readl(&(tb->BusTypes)));
3855 for (i = 0; i < 16; i++)
3856 temp_name[i] = readb(&(tb->ServerName[i]));
3857 temp_name[16] = '\0';
3858 dev_dbg(&h->pdev->dev, " Server Name = %s\n", temp_name);
3859 dev_dbg(&h->pdev->dev, " Heartbeat Counter = 0x%x\n\n\n",
3860 readl(&(tb->HeartBeat)));
3863 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3865 int i, offset, mem_type, bar_type;
3866 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3867 return 0;
3868 offset = 0;
3869 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3870 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3871 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3872 offset += 4;
3873 else {
3874 mem_type = pci_resource_flags(pdev, i) &
3875 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3876 switch (mem_type) {
3877 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3878 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3879 offset += 4; /* 32 bit */
3880 break;
3881 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3882 offset += 8;
3883 break;
3884 default: /* reserved in PCI 2.2 */
3885 dev_warn(&pdev->dev,
3886 "Base address is invalid\n");
3887 return -1;
3888 break;
3891 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3892 return i + 1;
3894 return -1;
3897 /* Fill in bucket_map[], given nsgs (the max number of
3898 * scatter gather elements supported) and bucket[],
3899 * which is an array of 8 integers. The bucket[] array
3900 * contains 8 different DMA transfer sizes (in 16
3901 * byte increments) which the controller uses to fetch
3902 * commands. This function fills in bucket_map[], which
3903 * maps a given number of scatter gather elements to one of
3904 * the 8 DMA transfer sizes. The point of it is to allow the
3905 * controller to only do as much DMA as needed to fetch the
3906 * command, with the DMA transfer size encoded in the lower
3907 * bits of the command address.
3909 static void calc_bucket_map(int bucket[], int num_buckets,
3910 int nsgs, int *bucket_map)
3912 int i, j, b, size;
3914 /* even a command with 0 SGs requires 4 blocks */
3915 #define MINIMUM_TRANSFER_BLOCKS 4
3916 #define NUM_BUCKETS 8
3917 /* Note, bucket_map must have nsgs+1 entries. */
3918 for (i = 0; i <= nsgs; i++) {
3919 /* Compute size of a command with i SG entries */
3920 size = i + MINIMUM_TRANSFER_BLOCKS;
3921 b = num_buckets; /* Assume the biggest bucket */
3922 /* Find the bucket that is just big enough */
3923 for (j = 0; j < 8; j++) {
3924 if (bucket[j] >= size) {
3925 b = j;
3926 break;
3929 /* for a command with i SG entries, use bucket b. */
3930 bucket_map[i] = b;
3934 static void cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3936 int i;
3938 /* under certain very rare conditions, this can take awhile.
3939 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3940 * as we enter this code.) */
3941 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3942 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3943 break;
3944 usleep_range(10000, 20000);
3948 static void cciss_enter_performant_mode(ctlr_info_t *h, u32 use_short_tags)
3950 /* This is a bit complicated. There are 8 registers on
3951 * the controller which we write to to tell it 8 different
3952 * sizes of commands which there may be. It's a way of
3953 * reducing the DMA done to fetch each command. Encoded into
3954 * each command's tag are 3 bits which communicate to the controller
3955 * which of the eight sizes that command fits within. The size of
3956 * each command depends on how many scatter gather entries there are.
3957 * Each SG entry requires 16 bytes. The eight registers are programmed
3958 * with the number of 16-byte blocks a command of that size requires.
3959 * The smallest command possible requires 5 such 16 byte blocks.
3960 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3961 * blocks. Note, this only extends to the SG entries contained
3962 * within the command block, and does not extend to chained blocks
3963 * of SG elements. bft[] contains the eight values we write to
3964 * the registers. They are not evenly distributed, but have more
3965 * sizes for small commands, and fewer sizes for larger commands.
3967 __u32 trans_offset;
3968 int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3970 * 5 = 1 s/g entry or 4k
3971 * 6 = 2 s/g entry or 8k
3972 * 8 = 4 s/g entry or 16k
3973 * 10 = 6 s/g entry or 24k
3975 unsigned long register_value;
3976 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3978 h->reply_pool_wraparound = 1; /* spec: init to 1 */
3980 /* Controller spec: zero out this buffer. */
3981 memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3982 h->reply_pool_head = h->reply_pool;
3984 trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3985 calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3986 h->blockFetchTable);
3987 writel(bft[0], &h->transtable->BlockFetch0);
3988 writel(bft[1], &h->transtable->BlockFetch1);
3989 writel(bft[2], &h->transtable->BlockFetch2);
3990 writel(bft[3], &h->transtable->BlockFetch3);
3991 writel(bft[4], &h->transtable->BlockFetch4);
3992 writel(bft[5], &h->transtable->BlockFetch5);
3993 writel(bft[6], &h->transtable->BlockFetch6);
3994 writel(bft[7], &h->transtable->BlockFetch7);
3996 /* size of controller ring buffer */
3997 writel(h->max_commands, &h->transtable->RepQSize);
3998 writel(1, &h->transtable->RepQCount);
3999 writel(0, &h->transtable->RepQCtrAddrLow32);
4000 writel(0, &h->transtable->RepQCtrAddrHigh32);
4001 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4002 writel(0, &h->transtable->RepQAddr0High32);
4003 writel(CFGTBL_Trans_Performant | use_short_tags,
4004 &(h->cfgtable->HostWrite.TransportRequest));
4006 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4007 cciss_wait_for_mode_change_ack(h);
4008 register_value = readl(&(h->cfgtable->TransportActive));
4009 if (!(register_value & CFGTBL_Trans_Performant))
4010 dev_warn(&h->pdev->dev, "cciss: unable to get board into"
4011 " performant mode\n");
4014 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h)
4016 __u32 trans_support;
4018 if (cciss_simple_mode)
4019 return;
4021 dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
4022 /* Attempt to put controller into performant mode if supported */
4023 /* Does board support performant mode? */
4024 trans_support = readl(&(h->cfgtable->TransportSupport));
4025 if (!(trans_support & PERFORMANT_MODE))
4026 return;
4028 dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
4029 /* Performant mode demands commands on a 32 byte boundary
4030 * pci_alloc_consistent aligns on page boundarys already.
4031 * Just need to check if divisible by 32
4033 if ((sizeof(CommandList_struct) % 32) != 0) {
4034 dev_warn(&h->pdev->dev, "%s %d %s\n",
4035 "cciss info: command size[",
4036 (int)sizeof(CommandList_struct),
4037 "] not divisible by 32, no performant mode..\n");
4038 return;
4041 /* Performant mode ring buffer and supporting data structures */
4042 h->reply_pool = (__u64 *)pci_alloc_consistent(
4043 h->pdev, h->max_commands * sizeof(__u64),
4044 &(h->reply_pool_dhandle));
4046 /* Need a block fetch table for performant mode */
4047 h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4048 sizeof(__u32)), GFP_KERNEL);
4050 if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4051 goto clean_up;
4053 cciss_enter_performant_mode(h,
4054 trans_support & CFGTBL_Trans_use_short_tags);
4056 /* Change the access methods to the performant access methods */
4057 h->access = SA5_performant_access;
4058 h->transMethod = CFGTBL_Trans_Performant;
4060 return;
4061 clean_up:
4062 kfree(h->blockFetchTable);
4063 if (h->reply_pool)
4064 pci_free_consistent(h->pdev,
4065 h->max_commands * sizeof(__u64),
4066 h->reply_pool,
4067 h->reply_pool_dhandle);
4068 return;
4070 } /* cciss_put_controller_into_performant_mode */
4072 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4073 * controllers that are capable. If not, we use IO-APIC mode.
4076 static void cciss_interrupt_mode(ctlr_info_t *h)
4078 #ifdef CONFIG_PCI_MSI
4079 int err;
4080 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4081 {0, 2}, {0, 3}
4084 /* Some boards advertise MSI but don't really support it */
4085 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4086 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4087 goto default_int_mode;
4089 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4090 err = pci_enable_msix_exact(h->pdev, cciss_msix_entries, 4);
4091 if (!err) {
4092 h->intr[0] = cciss_msix_entries[0].vector;
4093 h->intr[1] = cciss_msix_entries[1].vector;
4094 h->intr[2] = cciss_msix_entries[2].vector;
4095 h->intr[3] = cciss_msix_entries[3].vector;
4096 h->msix_vector = 1;
4097 return;
4098 } else {
4099 dev_warn(&h->pdev->dev,
4100 "MSI-X init failed %d\n", err);
4103 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4104 if (!pci_enable_msi(h->pdev))
4105 h->msi_vector = 1;
4106 else
4107 dev_warn(&h->pdev->dev, "MSI init failed\n");
4109 default_int_mode:
4110 #endif /* CONFIG_PCI_MSI */
4111 /* if we get here we're going to use the default interrupt mode */
4112 h->intr[h->intr_mode] = h->pdev->irq;
4113 return;
4116 static int cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4118 int i;
4119 u32 subsystem_vendor_id, subsystem_device_id;
4121 subsystem_vendor_id = pdev->subsystem_vendor;
4122 subsystem_device_id = pdev->subsystem_device;
4123 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4124 subsystem_vendor_id;
4126 for (i = 0; i < ARRAY_SIZE(products); i++) {
4127 /* Stand aside for hpsa driver on request */
4128 if (cciss_allow_hpsa)
4129 return -ENODEV;
4130 if (*board_id == products[i].board_id)
4131 return i;
4133 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4134 *board_id);
4135 return -ENODEV;
4138 static inline bool cciss_board_disabled(ctlr_info_t *h)
4140 u16 command;
4142 (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4143 return ((command & PCI_COMMAND_MEMORY) == 0);
4146 static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4147 unsigned long *memory_bar)
4149 int i;
4151 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4152 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4153 /* addressing mode bits already removed */
4154 *memory_bar = pci_resource_start(pdev, i);
4155 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4156 *memory_bar);
4157 return 0;
4159 dev_warn(&pdev->dev, "no memory BAR found\n");
4160 return -ENODEV;
4163 static int cciss_wait_for_board_state(struct pci_dev *pdev,
4164 void __iomem *vaddr, int wait_for_ready)
4165 #define BOARD_READY 1
4166 #define BOARD_NOT_READY 0
4168 int i, iterations;
4169 u32 scratchpad;
4171 if (wait_for_ready)
4172 iterations = CCISS_BOARD_READY_ITERATIONS;
4173 else
4174 iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4176 for (i = 0; i < iterations; i++) {
4177 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4178 if (wait_for_ready) {
4179 if (scratchpad == CCISS_FIRMWARE_READY)
4180 return 0;
4181 } else {
4182 if (scratchpad != CCISS_FIRMWARE_READY)
4183 return 0;
4185 msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4187 dev_warn(&pdev->dev, "board not ready, timed out.\n");
4188 return -ENODEV;
4191 static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4192 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4193 u64 *cfg_offset)
4195 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4196 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4197 *cfg_base_addr &= (u32) 0x0000ffff;
4198 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4199 if (*cfg_base_addr_index == -1) {
4200 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4201 "*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4202 return -ENODEV;
4204 return 0;
4207 static int cciss_find_cfgtables(ctlr_info_t *h)
4209 u64 cfg_offset;
4210 u32 cfg_base_addr;
4211 u64 cfg_base_addr_index;
4212 u32 trans_offset;
4213 int rc;
4215 rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4216 &cfg_base_addr_index, &cfg_offset);
4217 if (rc)
4218 return rc;
4219 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4220 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4221 if (!h->cfgtable)
4222 return -ENOMEM;
4223 rc = write_driver_ver_to_cfgtable(h->cfgtable);
4224 if (rc)
4225 return rc;
4226 /* Find performant mode table. */
4227 trans_offset = readl(&h->cfgtable->TransMethodOffset);
4228 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4229 cfg_base_addr_index)+cfg_offset+trans_offset,
4230 sizeof(*h->transtable));
4231 if (!h->transtable)
4232 return -ENOMEM;
4233 return 0;
4236 static void cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4238 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4240 /* Limit commands in memory limited kdump scenario. */
4241 if (reset_devices && h->max_commands > 32)
4242 h->max_commands = 32;
4244 if (h->max_commands < 16) {
4245 dev_warn(&h->pdev->dev, "Controller reports "
4246 "max supported commands of %d, an obvious lie. "
4247 "Using 16. Ensure that firmware is up to date.\n",
4248 h->max_commands);
4249 h->max_commands = 16;
4253 /* Interrogate the hardware for some limits:
4254 * max commands, max SG elements without chaining, and with chaining,
4255 * SG chain block size, etc.
4257 static void cciss_find_board_params(ctlr_info_t *h)
4259 cciss_get_max_perf_mode_cmds(h);
4260 h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4261 h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4263 * The P600 may exhibit poor performnace under some workloads
4264 * if we use the value in the configuration table. Limit this
4265 * controller to MAXSGENTRIES (32) instead.
4267 if (h->board_id == 0x3225103C)
4268 h->maxsgentries = MAXSGENTRIES;
4270 * Limit in-command s/g elements to 32 save dma'able memory.
4271 * Howvever spec says if 0, use 31
4273 h->max_cmd_sgentries = 31;
4274 if (h->maxsgentries > 512) {
4275 h->max_cmd_sgentries = 32;
4276 h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4277 h->maxsgentries--; /* save one for chain pointer */
4278 } else {
4279 h->maxsgentries = 31; /* default to traditional values */
4280 h->chainsize = 0;
4284 static inline bool CISS_signature_present(ctlr_info_t *h)
4286 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4287 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4288 return false;
4290 return true;
4293 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4294 static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4296 #ifdef CONFIG_X86
4297 u32 prefetch;
4299 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4300 prefetch |= 0x100;
4301 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4302 #endif
4305 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4306 * in a prefetch beyond physical memory.
4308 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4310 u32 dma_prefetch;
4311 __u32 dma_refetch;
4313 if (h->board_id != 0x3225103C)
4314 return;
4315 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4316 dma_prefetch |= 0x8000;
4317 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4318 pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4319 dma_refetch |= 0x1;
4320 pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4323 static int cciss_pci_init(ctlr_info_t *h)
4325 int prod_index, err;
4327 prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4328 if (prod_index < 0)
4329 return -ENODEV;
4330 h->product_name = products[prod_index].product_name;
4331 h->access = *(products[prod_index].access);
4333 if (cciss_board_disabled(h)) {
4334 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4335 return -ENODEV;
4338 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4339 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4341 err = pci_enable_device(h->pdev);
4342 if (err) {
4343 dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4344 return err;
4347 err = pci_request_regions(h->pdev, "cciss");
4348 if (err) {
4349 dev_warn(&h->pdev->dev,
4350 "Cannot obtain PCI resources, aborting\n");
4351 return err;
4354 dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4355 dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4357 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4358 * else we use the IO-APIC interrupt assigned to us by system ROM.
4360 cciss_interrupt_mode(h);
4361 err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4362 if (err)
4363 goto err_out_free_res;
4364 h->vaddr = remap_pci_mem(h->paddr, 0x250);
4365 if (!h->vaddr) {
4366 err = -ENOMEM;
4367 goto err_out_free_res;
4369 err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4370 if (err)
4371 goto err_out_free_res;
4372 err = cciss_find_cfgtables(h);
4373 if (err)
4374 goto err_out_free_res;
4375 print_cfg_table(h);
4376 cciss_find_board_params(h);
4378 if (!CISS_signature_present(h)) {
4379 err = -ENODEV;
4380 goto err_out_free_res;
4382 cciss_enable_scsi_prefetch(h);
4383 cciss_p600_dma_prefetch_quirk(h);
4384 err = cciss_enter_simple_mode(h);
4385 if (err)
4386 goto err_out_free_res;
4387 cciss_put_controller_into_performant_mode(h);
4388 return 0;
4390 err_out_free_res:
4392 * Deliberately omit pci_disable_device(): it does something nasty to
4393 * Smart Array controllers that pci_enable_device does not undo
4395 if (h->transtable)
4396 iounmap(h->transtable);
4397 if (h->cfgtable)
4398 iounmap(h->cfgtable);
4399 if (h->vaddr)
4400 iounmap(h->vaddr);
4401 pci_release_regions(h->pdev);
4402 return err;
4405 /* Function to find the first free pointer into our hba[] array
4406 * Returns -1 if no free entries are left.
4408 static int alloc_cciss_hba(struct pci_dev *pdev)
4410 int i;
4412 for (i = 0; i < MAX_CTLR; i++) {
4413 if (!hba[i]) {
4414 ctlr_info_t *h;
4416 h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4417 if (!h)
4418 goto Enomem;
4419 hba[i] = h;
4420 return i;
4423 dev_warn(&pdev->dev, "This driver supports a maximum"
4424 " of %d controllers.\n", MAX_CTLR);
4425 return -1;
4426 Enomem:
4427 dev_warn(&pdev->dev, "out of memory.\n");
4428 return -1;
4431 static void free_hba(ctlr_info_t *h)
4433 int i;
4435 hba[h->ctlr] = NULL;
4436 for (i = 0; i < h->highest_lun + 1; i++)
4437 if (h->gendisk[i] != NULL)
4438 put_disk(h->gendisk[i]);
4439 kfree(h);
4442 /* Send a message CDB to the firmware. */
4443 static int cciss_message(struct pci_dev *pdev, unsigned char opcode,
4444 unsigned char type)
4446 typedef struct {
4447 CommandListHeader_struct CommandHeader;
4448 RequestBlock_struct Request;
4449 ErrDescriptor_struct ErrorDescriptor;
4450 } Command;
4451 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4452 Command *cmd;
4453 dma_addr_t paddr64;
4454 uint32_t paddr32, tag;
4455 void __iomem *vaddr;
4456 int i, err;
4458 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4459 if (vaddr == NULL)
4460 return -ENOMEM;
4462 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4463 CCISS commands, so they must be allocated from the lower 4GiB of
4464 memory. */
4465 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4466 if (err) {
4467 iounmap(vaddr);
4468 return -ENOMEM;
4471 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4472 if (cmd == NULL) {
4473 iounmap(vaddr);
4474 return -ENOMEM;
4477 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4478 although there's no guarantee, we assume that the address is at
4479 least 4-byte aligned (most likely, it's page-aligned). */
4480 paddr32 = paddr64;
4482 cmd->CommandHeader.ReplyQueue = 0;
4483 cmd->CommandHeader.SGList = 0;
4484 cmd->CommandHeader.SGTotal = 0;
4485 cmd->CommandHeader.Tag.lower = paddr32;
4486 cmd->CommandHeader.Tag.upper = 0;
4487 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4489 cmd->Request.CDBLen = 16;
4490 cmd->Request.Type.Type = TYPE_MSG;
4491 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4492 cmd->Request.Type.Direction = XFER_NONE;
4493 cmd->Request.Timeout = 0; /* Don't time out */
4494 cmd->Request.CDB[0] = opcode;
4495 cmd->Request.CDB[1] = type;
4496 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4498 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4499 cmd->ErrorDescriptor.Addr.upper = 0;
4500 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4502 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4504 for (i = 0; i < 10; i++) {
4505 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4506 if ((tag & ~3) == paddr32)
4507 break;
4508 msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4511 iounmap(vaddr);
4513 /* we leak the DMA buffer here ... no choice since the controller could
4514 still complete the command. */
4515 if (i == 10) {
4516 dev_err(&pdev->dev,
4517 "controller message %02x:%02x timed out\n",
4518 opcode, type);
4519 return -ETIMEDOUT;
4522 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4524 if (tag & 2) {
4525 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4526 opcode, type);
4527 return -EIO;
4530 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4531 opcode, type);
4532 return 0;
4535 #define cciss_noop(p) cciss_message(p, 3, 0)
4537 static int cciss_controller_hard_reset(struct pci_dev *pdev,
4538 void * __iomem vaddr, u32 use_doorbell)
4540 u16 pmcsr;
4541 int pos;
4543 if (use_doorbell) {
4544 /* For everything after the P600, the PCI power state method
4545 * of resetting the controller doesn't work, so we have this
4546 * other way using the doorbell register.
4548 dev_info(&pdev->dev, "using doorbell to reset controller\n");
4549 writel(use_doorbell, vaddr + SA5_DOORBELL);
4550 } else { /* Try to do it the PCI power state way */
4552 /* Quoting from the Open CISS Specification: "The Power
4553 * Management Control/Status Register (CSR) controls the power
4554 * state of the device. The normal operating state is D0,
4555 * CSR=00h. The software off state is D3, CSR=03h. To reset
4556 * the controller, place the interface device in D3 then to D0,
4557 * this causes a secondary PCI reset which will reset the
4558 * controller." */
4560 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4561 if (pos == 0) {
4562 dev_err(&pdev->dev,
4563 "cciss_controller_hard_reset: "
4564 "PCI PM not supported\n");
4565 return -ENODEV;
4567 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4568 /* enter the D3hot power management state */
4569 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4570 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4571 pmcsr |= PCI_D3hot;
4572 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4574 msleep(500);
4576 /* enter the D0 power management state */
4577 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4578 pmcsr |= PCI_D0;
4579 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4582 * The P600 requires a small delay when changing states.
4583 * Otherwise we may think the board did not reset and we bail.
4584 * This for kdump only and is particular to the P600.
4586 msleep(500);
4588 return 0;
4591 static void init_driver_version(char *driver_version, int len)
4593 memset(driver_version, 0, len);
4594 strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4597 static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable)
4599 char *driver_version;
4600 int i, size = sizeof(cfgtable->driver_version);
4602 driver_version = kmalloc(size, GFP_KERNEL);
4603 if (!driver_version)
4604 return -ENOMEM;
4606 init_driver_version(driver_version, size);
4607 for (i = 0; i < size; i++)
4608 writeb(driver_version[i], &cfgtable->driver_version[i]);
4609 kfree(driver_version);
4610 return 0;
4613 static void read_driver_ver_from_cfgtable(CfgTable_struct __iomem *cfgtable,
4614 unsigned char *driver_ver)
4616 int i;
4618 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4619 driver_ver[i] = readb(&cfgtable->driver_version[i]);
4622 static int controller_reset_failed(CfgTable_struct __iomem *cfgtable)
4625 char *driver_ver, *old_driver_ver;
4626 int rc, size = sizeof(cfgtable->driver_version);
4628 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4629 if (!old_driver_ver)
4630 return -ENOMEM;
4631 driver_ver = old_driver_ver + size;
4633 /* After a reset, the 32 bytes of "driver version" in the cfgtable
4634 * should have been changed, otherwise we know the reset failed.
4636 init_driver_version(old_driver_ver, size);
4637 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4638 rc = !memcmp(driver_ver, old_driver_ver, size);
4639 kfree(old_driver_ver);
4640 return rc;
4643 /* This does a hard reset of the controller using PCI power management
4644 * states or using the doorbell register. */
4645 static int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4647 u64 cfg_offset;
4648 u32 cfg_base_addr;
4649 u64 cfg_base_addr_index;
4650 void __iomem *vaddr;
4651 unsigned long paddr;
4652 u32 misc_fw_support;
4653 int rc;
4654 CfgTable_struct __iomem *cfgtable;
4655 u32 use_doorbell;
4656 u32 board_id;
4657 u16 command_register;
4659 /* For controllers as old a the p600, this is very nearly
4660 * the same thing as
4662 * pci_save_state(pci_dev);
4663 * pci_set_power_state(pci_dev, PCI_D3hot);
4664 * pci_set_power_state(pci_dev, PCI_D0);
4665 * pci_restore_state(pci_dev);
4667 * For controllers newer than the P600, the pci power state
4668 * method of resetting doesn't work so we have another way
4669 * using the doorbell register.
4672 /* Exclude 640x boards. These are two pci devices in one slot
4673 * which share a battery backed cache module. One controls the
4674 * cache, the other accesses the cache through the one that controls
4675 * it. If we reset the one controlling the cache, the other will
4676 * likely not be happy. Just forbid resetting this conjoined mess.
4678 cciss_lookup_board_id(pdev, &board_id);
4679 if (!ctlr_is_resettable(board_id)) {
4680 dev_warn(&pdev->dev, "Controller not resettable\n");
4681 return -ENODEV;
4684 /* if controller is soft- but not hard resettable... */
4685 if (!ctlr_is_hard_resettable(board_id))
4686 return -ENOTSUPP; /* try soft reset later. */
4688 /* Save the PCI command register */
4689 pci_read_config_word(pdev, 4, &command_register);
4690 /* Turn the board off. This is so that later pci_restore_state()
4691 * won't turn the board on before the rest of config space is ready.
4693 pci_disable_device(pdev);
4694 pci_save_state(pdev);
4696 /* find the first memory BAR, so we can find the cfg table */
4697 rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4698 if (rc)
4699 return rc;
4700 vaddr = remap_pci_mem(paddr, 0x250);
4701 if (!vaddr)
4702 return -ENOMEM;
4704 /* find cfgtable in order to check if reset via doorbell is supported */
4705 rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4706 &cfg_base_addr_index, &cfg_offset);
4707 if (rc)
4708 goto unmap_vaddr;
4709 cfgtable = remap_pci_mem(pci_resource_start(pdev,
4710 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4711 if (!cfgtable) {
4712 rc = -ENOMEM;
4713 goto unmap_vaddr;
4715 rc = write_driver_ver_to_cfgtable(cfgtable);
4716 if (rc)
4717 goto unmap_vaddr;
4719 /* If reset via doorbell register is supported, use that.
4720 * There are two such methods. Favor the newest method.
4722 misc_fw_support = readl(&cfgtable->misc_fw_support);
4723 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4724 if (use_doorbell) {
4725 use_doorbell = DOORBELL_CTLR_RESET2;
4726 } else {
4727 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4728 if (use_doorbell) {
4729 dev_warn(&pdev->dev, "Controller claims that "
4730 "'Bit 2 doorbell reset' is "
4731 "supported, but not 'bit 5 doorbell reset'. "
4732 "Firmware update is recommended.\n");
4733 rc = -ENOTSUPP; /* use the soft reset */
4734 goto unmap_cfgtable;
4738 rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4739 if (rc)
4740 goto unmap_cfgtable;
4741 pci_restore_state(pdev);
4742 rc = pci_enable_device(pdev);
4743 if (rc) {
4744 dev_warn(&pdev->dev, "failed to enable device.\n");
4745 goto unmap_cfgtable;
4747 pci_write_config_word(pdev, 4, command_register);
4749 /* Some devices (notably the HP Smart Array 5i Controller)
4750 need a little pause here */
4751 msleep(CCISS_POST_RESET_PAUSE_MSECS);
4753 /* Wait for board to become not ready, then ready. */
4754 dev_info(&pdev->dev, "Waiting for board to reset.\n");
4755 rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4756 if (rc) {
4757 dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4758 " Will try soft reset.\n");
4759 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4760 goto unmap_cfgtable;
4762 rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4763 if (rc) {
4764 dev_warn(&pdev->dev,
4765 "failed waiting for board to become ready "
4766 "after hard reset\n");
4767 goto unmap_cfgtable;
4770 rc = controller_reset_failed(vaddr);
4771 if (rc < 0)
4772 goto unmap_cfgtable;
4773 if (rc) {
4774 dev_warn(&pdev->dev, "Unable to successfully hard reset "
4775 "controller. Will try soft reset.\n");
4776 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4777 } else {
4778 dev_info(&pdev->dev, "Board ready after hard reset.\n");
4781 unmap_cfgtable:
4782 iounmap(cfgtable);
4784 unmap_vaddr:
4785 iounmap(vaddr);
4786 return rc;
4789 static int cciss_init_reset_devices(struct pci_dev *pdev)
4791 int rc, i;
4793 if (!reset_devices)
4794 return 0;
4796 /* Reset the controller with a PCI power-cycle or via doorbell */
4797 rc = cciss_kdump_hard_reset_controller(pdev);
4799 /* -ENOTSUPP here means we cannot reset the controller
4800 * but it's already (and still) up and running in
4801 * "performant mode". Or, it might be 640x, which can't reset
4802 * due to concerns about shared bbwc between 6402/6404 pair.
4804 if (rc == -ENOTSUPP)
4805 return rc; /* just try to do the kdump anyhow. */
4806 if (rc)
4807 return -ENODEV;
4809 /* Now try to get the controller to respond to a no-op */
4810 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4811 for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4812 if (cciss_noop(pdev) == 0)
4813 break;
4814 else
4815 dev_warn(&pdev->dev, "no-op failed%s\n",
4816 (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4817 "; re-trying" : ""));
4818 msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4820 return 0;
4823 static int cciss_allocate_cmd_pool(ctlr_info_t *h)
4825 h->cmd_pool_bits = kmalloc(BITS_TO_LONGS(h->nr_cmds) *
4826 sizeof(unsigned long), GFP_KERNEL);
4827 h->cmd_pool = pci_alloc_consistent(h->pdev,
4828 h->nr_cmds * sizeof(CommandList_struct),
4829 &(h->cmd_pool_dhandle));
4830 h->errinfo_pool = pci_alloc_consistent(h->pdev,
4831 h->nr_cmds * sizeof(ErrorInfo_struct),
4832 &(h->errinfo_pool_dhandle));
4833 if ((h->cmd_pool_bits == NULL)
4834 || (h->cmd_pool == NULL)
4835 || (h->errinfo_pool == NULL)) {
4836 dev_err(&h->pdev->dev, "out of memory");
4837 return -ENOMEM;
4839 return 0;
4842 static int cciss_allocate_scatterlists(ctlr_info_t *h)
4844 int i;
4846 /* zero it, so that on free we need not know how many were alloc'ed */
4847 h->scatter_list = kzalloc(h->max_commands *
4848 sizeof(struct scatterlist *), GFP_KERNEL);
4849 if (!h->scatter_list)
4850 return -ENOMEM;
4852 for (i = 0; i < h->nr_cmds; i++) {
4853 h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4854 h->maxsgentries, GFP_KERNEL);
4855 if (h->scatter_list[i] == NULL) {
4856 dev_err(&h->pdev->dev, "could not allocate "
4857 "s/g lists\n");
4858 return -ENOMEM;
4861 return 0;
4864 static void cciss_free_scatterlists(ctlr_info_t *h)
4866 int i;
4868 if (h->scatter_list) {
4869 for (i = 0; i < h->nr_cmds; i++)
4870 kfree(h->scatter_list[i]);
4871 kfree(h->scatter_list);
4875 static void cciss_free_cmd_pool(ctlr_info_t *h)
4877 kfree(h->cmd_pool_bits);
4878 if (h->cmd_pool)
4879 pci_free_consistent(h->pdev,
4880 h->nr_cmds * sizeof(CommandList_struct),
4881 h->cmd_pool, h->cmd_pool_dhandle);
4882 if (h->errinfo_pool)
4883 pci_free_consistent(h->pdev,
4884 h->nr_cmds * sizeof(ErrorInfo_struct),
4885 h->errinfo_pool, h->errinfo_pool_dhandle);
4888 static int cciss_request_irq(ctlr_info_t *h,
4889 irqreturn_t (*msixhandler)(int, void *),
4890 irqreturn_t (*intxhandler)(int, void *))
4892 if (h->msix_vector || h->msi_vector) {
4893 if (!request_irq(h->intr[h->intr_mode], msixhandler,
4894 0, h->devname, h))
4895 return 0;
4896 dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4897 " for %s\n", h->intr[h->intr_mode],
4898 h->devname);
4899 return -1;
4902 if (!request_irq(h->intr[h->intr_mode], intxhandler,
4903 IRQF_SHARED, h->devname, h))
4904 return 0;
4905 dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4906 h->intr[h->intr_mode], h->devname);
4907 return -1;
4910 static int cciss_kdump_soft_reset(ctlr_info_t *h)
4912 if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4913 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4914 return -EIO;
4917 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4918 if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4919 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4920 return -1;
4923 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4924 if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4925 dev_warn(&h->pdev->dev, "Board failed to become ready "
4926 "after soft reset.\n");
4927 return -1;
4930 return 0;
4933 static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4935 int ctlr = h->ctlr;
4937 free_irq(h->intr[h->intr_mode], h);
4938 #ifdef CONFIG_PCI_MSI
4939 if (h->msix_vector)
4940 pci_disable_msix(h->pdev);
4941 else if (h->msi_vector)
4942 pci_disable_msi(h->pdev);
4943 #endif /* CONFIG_PCI_MSI */
4944 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4945 cciss_free_scatterlists(h);
4946 cciss_free_cmd_pool(h);
4947 kfree(h->blockFetchTable);
4948 if (h->reply_pool)
4949 pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4950 h->reply_pool, h->reply_pool_dhandle);
4951 if (h->transtable)
4952 iounmap(h->transtable);
4953 if (h->cfgtable)
4954 iounmap(h->cfgtable);
4955 if (h->vaddr)
4956 iounmap(h->vaddr);
4957 unregister_blkdev(h->major, h->devname);
4958 cciss_destroy_hba_sysfs_entry(h);
4959 pci_release_regions(h->pdev);
4960 kfree(h);
4961 hba[ctlr] = NULL;
4965 * This is it. Find all the controllers and register them. I really hate
4966 * stealing all these major device numbers.
4967 * returns the number of block devices registered.
4969 static int cciss_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4971 int i;
4972 int j = 0;
4973 int rc;
4974 int try_soft_reset = 0;
4975 int dac, return_code;
4976 InquiryData_struct *inq_buff;
4977 ctlr_info_t *h;
4978 unsigned long flags;
4981 * By default the cciss driver is used for all older HP Smart Array
4982 * controllers. There are module paramaters that allow a user to
4983 * override this behavior and instead use the hpsa SCSI driver. If
4984 * this is the case cciss may be loaded first from the kdump initrd
4985 * image and cause a kernel panic. So if reset_devices is true and
4986 * cciss_allow_hpsa is set just bail.
4988 if ((reset_devices) && (cciss_allow_hpsa == 1))
4989 return -ENODEV;
4990 rc = cciss_init_reset_devices(pdev);
4991 if (rc) {
4992 if (rc != -ENOTSUPP)
4993 return rc;
4994 /* If the reset fails in a particular way (it has no way to do
4995 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4996 * a soft reset once we get the controller configured up to the
4997 * point that it can accept a command.
4999 try_soft_reset = 1;
5000 rc = 0;
5003 reinit_after_soft_reset:
5005 i = alloc_cciss_hba(pdev);
5006 if (i < 0)
5007 return -ENOMEM;
5009 h = hba[i];
5010 h->pdev = pdev;
5011 h->busy_initializing = 1;
5012 h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
5013 INIT_LIST_HEAD(&h->cmpQ);
5014 INIT_LIST_HEAD(&h->reqQ);
5015 mutex_init(&h->busy_shutting_down);
5017 if (cciss_pci_init(h) != 0)
5018 goto clean_no_release_regions;
5020 sprintf(h->devname, "cciss%d", i);
5021 h->ctlr = i;
5023 if (cciss_tape_cmds < 2)
5024 cciss_tape_cmds = 2;
5025 if (cciss_tape_cmds > 16)
5026 cciss_tape_cmds = 16;
5028 init_completion(&h->scan_wait);
5030 if (cciss_create_hba_sysfs_entry(h))
5031 goto clean0;
5033 /* configure PCI DMA stuff */
5034 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
5035 dac = 1;
5036 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
5037 dac = 0;
5038 else {
5039 dev_err(&h->pdev->dev, "no suitable DMA available\n");
5040 goto clean1;
5044 * register with the major number, or get a dynamic major number
5045 * by passing 0 as argument. This is done for greater than
5046 * 8 controller support.
5048 if (i < MAX_CTLR_ORIG)
5049 h->major = COMPAQ_CISS_MAJOR + i;
5050 rc = register_blkdev(h->major, h->devname);
5051 if (rc == -EBUSY || rc == -EINVAL) {
5052 dev_err(&h->pdev->dev,
5053 "Unable to get major number %d for %s "
5054 "on hba %d\n", h->major, h->devname, i);
5055 goto clean1;
5056 } else {
5057 if (i >= MAX_CTLR_ORIG)
5058 h->major = rc;
5061 /* make sure the board interrupts are off */
5062 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5063 rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5064 if (rc)
5065 goto clean2;
5067 dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5068 h->devname, pdev->device, pci_name(pdev),
5069 h->intr[h->intr_mode], dac ? "" : " not");
5071 if (cciss_allocate_cmd_pool(h))
5072 goto clean4;
5074 if (cciss_allocate_scatterlists(h))
5075 goto clean4;
5077 h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5078 h->chainsize, h->nr_cmds);
5079 if (!h->cmd_sg_list && h->chainsize > 0)
5080 goto clean4;
5082 spin_lock_init(&h->lock);
5084 /* Initialize the pdev driver private data.
5085 have it point to h. */
5086 pci_set_drvdata(pdev, h);
5087 /* command and error info recs zeroed out before
5088 they are used */
5089 bitmap_zero(h->cmd_pool_bits, h->nr_cmds);
5091 h->num_luns = 0;
5092 h->highest_lun = -1;
5093 for (j = 0; j < CISS_MAX_LUN; j++) {
5094 h->drv[j] = NULL;
5095 h->gendisk[j] = NULL;
5098 /* At this point, the controller is ready to take commands.
5099 * Now, if reset_devices and the hard reset didn't work, try
5100 * the soft reset and see if that works.
5102 if (try_soft_reset) {
5104 /* This is kind of gross. We may or may not get a completion
5105 * from the soft reset command, and if we do, then the value
5106 * from the fifo may or may not be valid. So, we wait 10 secs
5107 * after the reset throwing away any completions we get during
5108 * that time. Unregister the interrupt handler and register
5109 * fake ones to scoop up any residual completions.
5111 spin_lock_irqsave(&h->lock, flags);
5112 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5113 spin_unlock_irqrestore(&h->lock, flags);
5114 free_irq(h->intr[h->intr_mode], h);
5115 rc = cciss_request_irq(h, cciss_msix_discard_completions,
5116 cciss_intx_discard_completions);
5117 if (rc) {
5118 dev_warn(&h->pdev->dev, "Failed to request_irq after "
5119 "soft reset.\n");
5120 goto clean4;
5123 rc = cciss_kdump_soft_reset(h);
5124 if (rc) {
5125 dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5126 goto clean4;
5129 dev_info(&h->pdev->dev, "Board READY.\n");
5130 dev_info(&h->pdev->dev,
5131 "Waiting for stale completions to drain.\n");
5132 h->access.set_intr_mask(h, CCISS_INTR_ON);
5133 msleep(10000);
5134 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5136 rc = controller_reset_failed(h->cfgtable);
5137 if (rc)
5138 dev_info(&h->pdev->dev,
5139 "Soft reset appears to have failed.\n");
5141 /* since the controller's reset, we have to go back and re-init
5142 * everything. Easiest to just forget what we've done and do it
5143 * all over again.
5145 cciss_undo_allocations_after_kdump_soft_reset(h);
5146 try_soft_reset = 0;
5147 if (rc)
5148 /* don't go to clean4, we already unallocated */
5149 return -ENODEV;
5151 goto reinit_after_soft_reset;
5154 cciss_scsi_setup(h);
5156 /* Turn the interrupts on so we can service requests */
5157 h->access.set_intr_mask(h, CCISS_INTR_ON);
5159 /* Get the firmware version */
5160 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5161 if (inq_buff == NULL) {
5162 dev_err(&h->pdev->dev, "out of memory\n");
5163 goto clean4;
5166 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5167 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5168 if (return_code == IO_OK) {
5169 h->firm_ver[0] = inq_buff->data_byte[32];
5170 h->firm_ver[1] = inq_buff->data_byte[33];
5171 h->firm_ver[2] = inq_buff->data_byte[34];
5172 h->firm_ver[3] = inq_buff->data_byte[35];
5173 } else { /* send command failed */
5174 dev_warn(&h->pdev->dev, "unable to determine firmware"
5175 " version of controller\n");
5177 kfree(inq_buff);
5179 cciss_procinit(h);
5181 h->cciss_max_sectors = 8192;
5183 rebuild_lun_table(h, 1, 0);
5184 cciss_engage_scsi(h);
5185 h->busy_initializing = 0;
5186 return 0;
5188 clean4:
5189 cciss_free_cmd_pool(h);
5190 cciss_free_scatterlists(h);
5191 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5192 free_irq(h->intr[h->intr_mode], h);
5193 clean2:
5194 unregister_blkdev(h->major, h->devname);
5195 clean1:
5196 cciss_destroy_hba_sysfs_entry(h);
5197 clean0:
5198 pci_release_regions(pdev);
5199 clean_no_release_regions:
5200 h->busy_initializing = 0;
5203 * Deliberately omit pci_disable_device(): it does something nasty to
5204 * Smart Array controllers that pci_enable_device does not undo
5206 pci_set_drvdata(pdev, NULL);
5207 free_hba(h);
5208 return -ENODEV;
5211 static void cciss_shutdown(struct pci_dev *pdev)
5213 ctlr_info_t *h;
5214 char *flush_buf;
5215 int return_code;
5217 h = pci_get_drvdata(pdev);
5218 flush_buf = kzalloc(4, GFP_KERNEL);
5219 if (!flush_buf) {
5220 dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5221 return;
5223 /* write all data in the battery backed cache to disk */
5224 return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5225 4, 0, CTLR_LUNID, TYPE_CMD);
5226 kfree(flush_buf);
5227 if (return_code != IO_OK)
5228 dev_warn(&h->pdev->dev, "Error flushing cache\n");
5229 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5230 free_irq(h->intr[h->intr_mode], h);
5233 static int cciss_enter_simple_mode(struct ctlr_info *h)
5235 u32 trans_support;
5237 trans_support = readl(&(h->cfgtable->TransportSupport));
5238 if (!(trans_support & SIMPLE_MODE))
5239 return -ENOTSUPP;
5241 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5242 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
5243 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5244 cciss_wait_for_mode_change_ack(h);
5245 print_cfg_table(h);
5246 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
5247 dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
5248 return -ENODEV;
5250 h->transMethod = CFGTBL_Trans_Simple;
5251 return 0;
5255 static void cciss_remove_one(struct pci_dev *pdev)
5257 ctlr_info_t *h;
5258 int i, j;
5260 if (pci_get_drvdata(pdev) == NULL) {
5261 dev_err(&pdev->dev, "Unable to remove device\n");
5262 return;
5265 h = pci_get_drvdata(pdev);
5266 i = h->ctlr;
5267 if (hba[i] == NULL) {
5268 dev_err(&pdev->dev, "device appears to already be removed\n");
5269 return;
5272 mutex_lock(&h->busy_shutting_down);
5274 remove_from_scan_list(h);
5275 remove_proc_entry(h->devname, proc_cciss);
5276 unregister_blkdev(h->major, h->devname);
5278 /* remove it from the disk list */
5279 for (j = 0; j < CISS_MAX_LUN; j++) {
5280 struct gendisk *disk = h->gendisk[j];
5281 if (disk) {
5282 struct request_queue *q = disk->queue;
5284 if (disk->flags & GENHD_FL_UP) {
5285 cciss_destroy_ld_sysfs_entry(h, j, 1);
5286 del_gendisk(disk);
5288 if (q)
5289 blk_cleanup_queue(q);
5293 #ifdef CONFIG_CISS_SCSI_TAPE
5294 cciss_unregister_scsi(h); /* unhook from SCSI subsystem */
5295 #endif
5297 cciss_shutdown(pdev);
5299 #ifdef CONFIG_PCI_MSI
5300 if (h->msix_vector)
5301 pci_disable_msix(h->pdev);
5302 else if (h->msi_vector)
5303 pci_disable_msi(h->pdev);
5304 #endif /* CONFIG_PCI_MSI */
5306 iounmap(h->transtable);
5307 iounmap(h->cfgtable);
5308 iounmap(h->vaddr);
5310 cciss_free_cmd_pool(h);
5311 /* Free up sg elements */
5312 for (j = 0; j < h->nr_cmds; j++)
5313 kfree(h->scatter_list[j]);
5314 kfree(h->scatter_list);
5315 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5316 kfree(h->blockFetchTable);
5317 if (h->reply_pool)
5318 pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5319 h->reply_pool, h->reply_pool_dhandle);
5321 * Deliberately omit pci_disable_device(): it does something nasty to
5322 * Smart Array controllers that pci_enable_device does not undo
5324 pci_release_regions(pdev);
5325 pci_set_drvdata(pdev, NULL);
5326 cciss_destroy_hba_sysfs_entry(h);
5327 mutex_unlock(&h->busy_shutting_down);
5328 free_hba(h);
5331 static struct pci_driver cciss_pci_driver = {
5332 .name = "cciss",
5333 .probe = cciss_init_one,
5334 .remove = cciss_remove_one,
5335 .id_table = cciss_pci_device_id, /* id_table */
5336 .shutdown = cciss_shutdown,
5340 * This is it. Register the PCI driver information for the cards we control
5341 * the OS will call our registered routines when it finds one of our cards.
5343 static int __init cciss_init(void)
5345 int err;
5348 * The hardware requires that commands are aligned on a 64-bit
5349 * boundary. Given that we use pci_alloc_consistent() to allocate an
5350 * array of them, the size must be a multiple of 8 bytes.
5352 BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5353 printk(KERN_INFO DRIVER_NAME "\n");
5355 err = bus_register(&cciss_bus_type);
5356 if (err)
5357 return err;
5359 /* Start the scan thread */
5360 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5361 if (IS_ERR(cciss_scan_thread)) {
5362 err = PTR_ERR(cciss_scan_thread);
5363 goto err_bus_unregister;
5366 /* Register for our PCI devices */
5367 err = pci_register_driver(&cciss_pci_driver);
5368 if (err)
5369 goto err_thread_stop;
5371 return err;
5373 err_thread_stop:
5374 kthread_stop(cciss_scan_thread);
5375 err_bus_unregister:
5376 bus_unregister(&cciss_bus_type);
5378 return err;
5381 static void __exit cciss_cleanup(void)
5383 int i;
5385 pci_unregister_driver(&cciss_pci_driver);
5386 /* double check that all controller entrys have been removed */
5387 for (i = 0; i < MAX_CTLR; i++) {
5388 if (hba[i] != NULL) {
5389 dev_warn(&hba[i]->pdev->dev,
5390 "had to remove controller\n");
5391 cciss_remove_one(hba[i]->pdev);
5394 kthread_stop(cciss_scan_thread);
5395 if (proc_cciss)
5396 remove_proc_entry("driver/cciss", NULL);
5397 bus_unregister(&cciss_bus_type);
5400 module_init(cciss_init);
5401 module_exit(cciss_cleanup);