3 rbd.c -- Export ceph rados objects as a Linux block device
6 based on drivers/block/osdblk.c:
8 Copyright 2009 Red Hat, Inc.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 For usage instructions, please refer to:
27 Documentation/ABI/testing/sysfs-bus-rbd
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
48 #include "rbd_types.h"
50 #define RBD_DEBUG /* Activate rbd_assert() calls */
53 * The basic unit of block I/O is a sector. It is interpreted in a
54 * number of contexts in Linux (blk, bio, genhd), but the default is
55 * universally 512 bytes. These symbols are just slightly more
56 * meaningful than the bare numbers they represent.
58 #define SECTOR_SHIFT 9
59 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
62 * Increment the given counter and return its updated value.
63 * If the counter is already 0 it will not be incremented.
64 * If the counter is already at its maximum value returns
65 * -EINVAL without updating it.
67 static int atomic_inc_return_safe(atomic_t
*v
)
71 counter
= (unsigned int)__atomic_add_unless(v
, 1, 0);
72 if (counter
<= (unsigned int)INT_MAX
)
80 /* Decrement the counter. Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t
*v
)
85 counter
= atomic_dec_return(v
);
94 #define RBD_DRV_NAME "rbd"
96 #define RBD_MINORS_PER_MAJOR 256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
99 #define RBD_MAX_PARENT_CHAIN_LEN 16
101 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
102 #define RBD_MAX_SNAP_NAME_LEN \
103 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
105 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
107 #define RBD_SNAP_HEAD_NAME "-"
109 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
111 /* This allows a single page to hold an image name sent by OSD */
112 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
113 #define RBD_IMAGE_ID_LEN_MAX 64
115 #define RBD_OBJ_PREFIX_LEN_MAX 64
119 #define RBD_FEATURE_LAYERING (1<<0)
120 #define RBD_FEATURE_STRIPINGV2 (1<<1)
121 #define RBD_FEATURES_ALL \
122 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
124 /* Features supported by this (client software) implementation. */
126 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
129 * An RBD device name will be "rbd#", where the "rbd" comes from
130 * RBD_DRV_NAME above, and # is a unique integer identifier.
131 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
132 * enough to hold all possible device names.
134 #define DEV_NAME_LEN 32
135 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
138 * block device image metadata (in-memory version)
140 struct rbd_image_header
{
141 /* These six fields never change for a given rbd image */
148 u64 features
; /* Might be changeable someday? */
150 /* The remaining fields need to be updated occasionally */
152 struct ceph_snap_context
*snapc
;
153 char *snap_names
; /* format 1 only */
154 u64
*snap_sizes
; /* format 1 only */
158 * An rbd image specification.
160 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
161 * identify an image. Each rbd_dev structure includes a pointer to
162 * an rbd_spec structure that encapsulates this identity.
164 * Each of the id's in an rbd_spec has an associated name. For a
165 * user-mapped image, the names are supplied and the id's associated
166 * with them are looked up. For a layered image, a parent image is
167 * defined by the tuple, and the names are looked up.
169 * An rbd_dev structure contains a parent_spec pointer which is
170 * non-null if the image it represents is a child in a layered
171 * image. This pointer will refer to the rbd_spec structure used
172 * by the parent rbd_dev for its own identity (i.e., the structure
173 * is shared between the parent and child).
175 * Since these structures are populated once, during the discovery
176 * phase of image construction, they are effectively immutable so
177 * we make no effort to synchronize access to them.
179 * Note that code herein does not assume the image name is known (it
180 * could be a null pointer).
184 const char *pool_name
;
186 const char *image_id
;
187 const char *image_name
;
190 const char *snap_name
;
196 * an instance of the client. multiple devices may share an rbd client.
199 struct ceph_client
*client
;
201 struct list_head node
;
204 struct rbd_img_request
;
205 typedef void (*rbd_img_callback_t
)(struct rbd_img_request
*);
207 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
209 struct rbd_obj_request
;
210 typedef void (*rbd_obj_callback_t
)(struct rbd_obj_request
*);
212 enum obj_request_type
{
213 OBJ_REQUEST_NODATA
, OBJ_REQUEST_BIO
, OBJ_REQUEST_PAGES
216 enum obj_operation_type
{
223 OBJ_REQ_DONE
, /* completion flag: not done = 0, done = 1 */
224 OBJ_REQ_IMG_DATA
, /* object usage: standalone = 0, image = 1 */
225 OBJ_REQ_KNOWN
, /* EXISTS flag valid: no = 0, yes = 1 */
226 OBJ_REQ_EXISTS
, /* target exists: no = 0, yes = 1 */
229 struct rbd_obj_request
{
230 const char *object_name
;
231 u64 offset
; /* object start byte */
232 u64 length
; /* bytes from offset */
236 * An object request associated with an image will have its
237 * img_data flag set; a standalone object request will not.
239 * A standalone object request will have which == BAD_WHICH
240 * and a null obj_request pointer.
242 * An object request initiated in support of a layered image
243 * object (to check for its existence before a write) will
244 * have which == BAD_WHICH and a non-null obj_request pointer.
246 * Finally, an object request for rbd image data will have
247 * which != BAD_WHICH, and will have a non-null img_request
248 * pointer. The value of which will be in the range
249 * 0..(img_request->obj_request_count-1).
252 struct rbd_obj_request
*obj_request
; /* STAT op */
254 struct rbd_img_request
*img_request
;
256 /* links for img_request->obj_requests list */
257 struct list_head links
;
260 u32 which
; /* posn image request list */
262 enum obj_request_type type
;
264 struct bio
*bio_list
;
270 struct page
**copyup_pages
;
271 u32 copyup_page_count
;
273 struct ceph_osd_request
*osd_req
;
275 u64 xferred
; /* bytes transferred */
278 rbd_obj_callback_t callback
;
279 struct completion completion
;
285 IMG_REQ_WRITE
, /* I/O direction: read = 0, write = 1 */
286 IMG_REQ_CHILD
, /* initiator: block = 0, child image = 1 */
287 IMG_REQ_LAYERED
, /* ENOENT handling: normal = 0, layered = 1 */
288 IMG_REQ_DISCARD
, /* discard: normal = 0, discard request = 1 */
291 struct rbd_img_request
{
292 struct rbd_device
*rbd_dev
;
293 u64 offset
; /* starting image byte offset */
294 u64 length
; /* byte count from offset */
297 u64 snap_id
; /* for reads */
298 struct ceph_snap_context
*snapc
; /* for writes */
301 struct request
*rq
; /* block request */
302 struct rbd_obj_request
*obj_request
; /* obj req initiator */
304 struct page
**copyup_pages
;
305 u32 copyup_page_count
;
306 spinlock_t completion_lock
;/* protects next_completion */
308 rbd_img_callback_t callback
;
309 u64 xferred
;/* aggregate bytes transferred */
310 int result
; /* first nonzero obj_request result */
312 u32 obj_request_count
;
313 struct list_head obj_requests
; /* rbd_obj_request structs */
318 #define for_each_obj_request(ireq, oreq) \
319 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_from(ireq, oreq) \
321 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
322 #define for_each_obj_request_safe(ireq, oreq, n) \
323 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
335 int dev_id
; /* blkdev unique id */
337 int major
; /* blkdev assigned major */
339 struct gendisk
*disk
; /* blkdev's gendisk and rq */
341 u32 image_format
; /* Either 1 or 2 */
342 struct rbd_client
*rbd_client
;
344 char name
[DEV_NAME_LEN
]; /* blkdev name, e.g. rbd3 */
346 spinlock_t lock
; /* queue, flags, open_count */
348 struct rbd_image_header header
;
349 unsigned long flags
; /* possibly lock protected */
350 struct rbd_spec
*spec
;
351 struct rbd_options
*opts
;
355 struct ceph_file_layout layout
;
357 struct ceph_osd_event
*watch_event
;
358 struct rbd_obj_request
*watch_request
;
360 struct rbd_spec
*parent_spec
;
363 struct rbd_device
*parent
;
365 /* Block layer tags. */
366 struct blk_mq_tag_set tag_set
;
368 /* protects updating the header */
369 struct rw_semaphore header_rwsem
;
371 struct rbd_mapping mapping
;
373 struct list_head node
;
377 unsigned long open_count
; /* protected by lock */
381 * Flag bits for rbd_dev->flags. If atomicity is required,
382 * rbd_dev->lock is used to protect access.
384 * Currently, only the "removing" flag (which is coupled with the
385 * "open_count" field) requires atomic access.
388 RBD_DEV_FLAG_EXISTS
, /* mapped snapshot has not been deleted */
389 RBD_DEV_FLAG_REMOVING
, /* this mapping is being removed */
392 static DEFINE_MUTEX(client_mutex
); /* Serialize client creation */
394 static LIST_HEAD(rbd_dev_list
); /* devices */
395 static DEFINE_SPINLOCK(rbd_dev_list_lock
);
397 static LIST_HEAD(rbd_client_list
); /* clients */
398 static DEFINE_SPINLOCK(rbd_client_list_lock
);
400 /* Slab caches for frequently-allocated structures */
402 static struct kmem_cache
*rbd_img_request_cache
;
403 static struct kmem_cache
*rbd_obj_request_cache
;
404 static struct kmem_cache
*rbd_segment_name_cache
;
406 static int rbd_major
;
407 static DEFINE_IDA(rbd_dev_id_ida
);
409 static struct workqueue_struct
*rbd_wq
;
412 * Default to false for now, as single-major requires >= 0.75 version of
413 * userspace rbd utility.
415 static bool single_major
= false;
416 module_param(single_major
, bool, S_IRUGO
);
417 MODULE_PARM_DESC(single_major
, "Use a single major number for all rbd devices (default: false)");
419 static int rbd_img_request_submit(struct rbd_img_request
*img_request
);
421 static ssize_t
rbd_add(struct bus_type
*bus
, const char *buf
,
423 static ssize_t
rbd_remove(struct bus_type
*bus
, const char *buf
,
425 static ssize_t
rbd_add_single_major(struct bus_type
*bus
, const char *buf
,
427 static ssize_t
rbd_remove_single_major(struct bus_type
*bus
, const char *buf
,
429 static int rbd_dev_image_probe(struct rbd_device
*rbd_dev
, int depth
);
430 static void rbd_spec_put(struct rbd_spec
*spec
);
432 static int rbd_dev_id_to_minor(int dev_id
)
434 return dev_id
<< RBD_SINGLE_MAJOR_PART_SHIFT
;
437 static int minor_to_rbd_dev_id(int minor
)
439 return minor
>> RBD_SINGLE_MAJOR_PART_SHIFT
;
442 static BUS_ATTR(add
, S_IWUSR
, NULL
, rbd_add
);
443 static BUS_ATTR(remove
, S_IWUSR
, NULL
, rbd_remove
);
444 static BUS_ATTR(add_single_major
, S_IWUSR
, NULL
, rbd_add_single_major
);
445 static BUS_ATTR(remove_single_major
, S_IWUSR
, NULL
, rbd_remove_single_major
);
447 static struct attribute
*rbd_bus_attrs
[] = {
449 &bus_attr_remove
.attr
,
450 &bus_attr_add_single_major
.attr
,
451 &bus_attr_remove_single_major
.attr
,
455 static umode_t
rbd_bus_is_visible(struct kobject
*kobj
,
456 struct attribute
*attr
, int index
)
459 (attr
== &bus_attr_add_single_major
.attr
||
460 attr
== &bus_attr_remove_single_major
.attr
))
466 static const struct attribute_group rbd_bus_group
= {
467 .attrs
= rbd_bus_attrs
,
468 .is_visible
= rbd_bus_is_visible
,
470 __ATTRIBUTE_GROUPS(rbd_bus
);
472 static struct bus_type rbd_bus_type
= {
474 .bus_groups
= rbd_bus_groups
,
477 static void rbd_root_dev_release(struct device
*dev
)
481 static struct device rbd_root_dev
= {
483 .release
= rbd_root_dev_release
,
486 static __printf(2, 3)
487 void rbd_warn(struct rbd_device
*rbd_dev
, const char *fmt
, ...)
489 struct va_format vaf
;
497 printk(KERN_WARNING
"%s: %pV\n", RBD_DRV_NAME
, &vaf
);
498 else if (rbd_dev
->disk
)
499 printk(KERN_WARNING
"%s: %s: %pV\n",
500 RBD_DRV_NAME
, rbd_dev
->disk
->disk_name
, &vaf
);
501 else if (rbd_dev
->spec
&& rbd_dev
->spec
->image_name
)
502 printk(KERN_WARNING
"%s: image %s: %pV\n",
503 RBD_DRV_NAME
, rbd_dev
->spec
->image_name
, &vaf
);
504 else if (rbd_dev
->spec
&& rbd_dev
->spec
->image_id
)
505 printk(KERN_WARNING
"%s: id %s: %pV\n",
506 RBD_DRV_NAME
, rbd_dev
->spec
->image_id
, &vaf
);
508 printk(KERN_WARNING
"%s: rbd_dev %p: %pV\n",
509 RBD_DRV_NAME
, rbd_dev
, &vaf
);
514 #define rbd_assert(expr) \
515 if (unlikely(!(expr))) { \
516 printk(KERN_ERR "\nAssertion failure in %s() " \
518 "\trbd_assert(%s);\n\n", \
519 __func__, __LINE__, #expr); \
522 #else /* !RBD_DEBUG */
523 # define rbd_assert(expr) ((void) 0)
524 #endif /* !RBD_DEBUG */
526 static void rbd_osd_copyup_callback(struct rbd_obj_request
*obj_request
);
527 static int rbd_img_obj_request_submit(struct rbd_obj_request
*obj_request
);
528 static void rbd_img_parent_read(struct rbd_obj_request
*obj_request
);
529 static void rbd_dev_remove_parent(struct rbd_device
*rbd_dev
);
531 static int rbd_dev_refresh(struct rbd_device
*rbd_dev
);
532 static int rbd_dev_v2_header_onetime(struct rbd_device
*rbd_dev
);
533 static int rbd_dev_header_info(struct rbd_device
*rbd_dev
);
534 static int rbd_dev_v2_parent_info(struct rbd_device
*rbd_dev
);
535 static const char *rbd_dev_v2_snap_name(struct rbd_device
*rbd_dev
,
537 static int _rbd_dev_v2_snap_size(struct rbd_device
*rbd_dev
, u64 snap_id
,
538 u8
*order
, u64
*snap_size
);
539 static int _rbd_dev_v2_snap_features(struct rbd_device
*rbd_dev
, u64 snap_id
,
541 static u64
rbd_snap_id_by_name(struct rbd_device
*rbd_dev
, const char *name
);
543 static int rbd_open(struct block_device
*bdev
, fmode_t mode
)
545 struct rbd_device
*rbd_dev
= bdev
->bd_disk
->private_data
;
546 bool removing
= false;
548 if ((mode
& FMODE_WRITE
) && rbd_dev
->mapping
.read_only
)
551 spin_lock_irq(&rbd_dev
->lock
);
552 if (test_bit(RBD_DEV_FLAG_REMOVING
, &rbd_dev
->flags
))
555 rbd_dev
->open_count
++;
556 spin_unlock_irq(&rbd_dev
->lock
);
560 (void) get_device(&rbd_dev
->dev
);
565 static void rbd_release(struct gendisk
*disk
, fmode_t mode
)
567 struct rbd_device
*rbd_dev
= disk
->private_data
;
568 unsigned long open_count_before
;
570 spin_lock_irq(&rbd_dev
->lock
);
571 open_count_before
= rbd_dev
->open_count
--;
572 spin_unlock_irq(&rbd_dev
->lock
);
573 rbd_assert(open_count_before
> 0);
575 put_device(&rbd_dev
->dev
);
578 static int rbd_ioctl_set_ro(struct rbd_device
*rbd_dev
, unsigned long arg
)
583 bool ro_changed
= false;
585 /* get_user() may sleep, so call it before taking rbd_dev->lock */
586 if (get_user(val
, (int __user
*)(arg
)))
589 ro
= val
? true : false;
590 /* Snapshot doesn't allow to write*/
591 if (rbd_dev
->spec
->snap_id
!= CEPH_NOSNAP
&& !ro
)
594 spin_lock_irq(&rbd_dev
->lock
);
595 /* prevent others open this device */
596 if (rbd_dev
->open_count
> 1) {
601 if (rbd_dev
->mapping
.read_only
!= ro
) {
602 rbd_dev
->mapping
.read_only
= ro
;
607 spin_unlock_irq(&rbd_dev
->lock
);
608 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
609 if (ret
== 0 && ro_changed
)
610 set_disk_ro(rbd_dev
->disk
, ro
? 1 : 0);
615 static int rbd_ioctl(struct block_device
*bdev
, fmode_t mode
,
616 unsigned int cmd
, unsigned long arg
)
618 struct rbd_device
*rbd_dev
= bdev
->bd_disk
->private_data
;
623 ret
= rbd_ioctl_set_ro(rbd_dev
, arg
);
633 static int rbd_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
634 unsigned int cmd
, unsigned long arg
)
636 return rbd_ioctl(bdev
, mode
, cmd
, arg
);
638 #endif /* CONFIG_COMPAT */
640 static const struct block_device_operations rbd_bd_ops
= {
641 .owner
= THIS_MODULE
,
643 .release
= rbd_release
,
646 .compat_ioctl
= rbd_compat_ioctl
,
651 * Initialize an rbd client instance. Success or not, this function
652 * consumes ceph_opts. Caller holds client_mutex.
654 static struct rbd_client
*rbd_client_create(struct ceph_options
*ceph_opts
)
656 struct rbd_client
*rbdc
;
659 dout("%s:\n", __func__
);
660 rbdc
= kmalloc(sizeof(struct rbd_client
), GFP_KERNEL
);
664 kref_init(&rbdc
->kref
);
665 INIT_LIST_HEAD(&rbdc
->node
);
667 rbdc
->client
= ceph_create_client(ceph_opts
, rbdc
, 0, 0);
668 if (IS_ERR(rbdc
->client
))
670 ceph_opts
= NULL
; /* Now rbdc->client is responsible for ceph_opts */
672 ret
= ceph_open_session(rbdc
->client
);
676 spin_lock(&rbd_client_list_lock
);
677 list_add_tail(&rbdc
->node
, &rbd_client_list
);
678 spin_unlock(&rbd_client_list_lock
);
680 dout("%s: rbdc %p\n", __func__
, rbdc
);
684 ceph_destroy_client(rbdc
->client
);
689 ceph_destroy_options(ceph_opts
);
690 dout("%s: error %d\n", __func__
, ret
);
695 static struct rbd_client
*__rbd_get_client(struct rbd_client
*rbdc
)
697 kref_get(&rbdc
->kref
);
703 * Find a ceph client with specific addr and configuration. If
704 * found, bump its reference count.
706 static struct rbd_client
*rbd_client_find(struct ceph_options
*ceph_opts
)
708 struct rbd_client
*client_node
;
711 if (ceph_opts
->flags
& CEPH_OPT_NOSHARE
)
714 spin_lock(&rbd_client_list_lock
);
715 list_for_each_entry(client_node
, &rbd_client_list
, node
) {
716 if (!ceph_compare_options(ceph_opts
, client_node
->client
)) {
717 __rbd_get_client(client_node
);
723 spin_unlock(&rbd_client_list_lock
);
725 return found
? client_node
: NULL
;
729 * (Per device) rbd map options
736 /* string args above */
742 static match_table_t rbd_opts_tokens
= {
743 {Opt_queue_depth
, "queue_depth=%d"},
745 /* string args above */
746 {Opt_read_only
, "read_only"},
747 {Opt_read_only
, "ro"}, /* Alternate spelling */
748 {Opt_read_write
, "read_write"},
749 {Opt_read_write
, "rw"}, /* Alternate spelling */
758 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
759 #define RBD_READ_ONLY_DEFAULT false
761 static int parse_rbd_opts_token(char *c
, void *private)
763 struct rbd_options
*rbd_opts
= private;
764 substring_t argstr
[MAX_OPT_ARGS
];
765 int token
, intval
, ret
;
767 token
= match_token(c
, rbd_opts_tokens
, argstr
);
768 if (token
< Opt_last_int
) {
769 ret
= match_int(&argstr
[0], &intval
);
771 pr_err("bad mount option arg (not int) at '%s'\n", c
);
774 dout("got int token %d val %d\n", token
, intval
);
775 } else if (token
> Opt_last_int
&& token
< Opt_last_string
) {
776 dout("got string token %d val %s\n", token
, argstr
[0].from
);
778 dout("got token %d\n", token
);
782 case Opt_queue_depth
:
784 pr_err("queue_depth out of range\n");
787 rbd_opts
->queue_depth
= intval
;
790 rbd_opts
->read_only
= true;
793 rbd_opts
->read_only
= false;
796 /* libceph prints "bad option" msg */
803 static char* obj_op_name(enum obj_operation_type op_type
)
818 * Get a ceph client with specific addr and configuration, if one does
819 * not exist create it. Either way, ceph_opts is consumed by this
822 static struct rbd_client
*rbd_get_client(struct ceph_options
*ceph_opts
)
824 struct rbd_client
*rbdc
;
826 mutex_lock_nested(&client_mutex
, SINGLE_DEPTH_NESTING
);
827 rbdc
= rbd_client_find(ceph_opts
);
828 if (rbdc
) /* using an existing client */
829 ceph_destroy_options(ceph_opts
);
831 rbdc
= rbd_client_create(ceph_opts
);
832 mutex_unlock(&client_mutex
);
838 * Destroy ceph client
840 * Caller must hold rbd_client_list_lock.
842 static void rbd_client_release(struct kref
*kref
)
844 struct rbd_client
*rbdc
= container_of(kref
, struct rbd_client
, kref
);
846 dout("%s: rbdc %p\n", __func__
, rbdc
);
847 spin_lock(&rbd_client_list_lock
);
848 list_del(&rbdc
->node
);
849 spin_unlock(&rbd_client_list_lock
);
851 ceph_destroy_client(rbdc
->client
);
856 * Drop reference to ceph client node. If it's not referenced anymore, release
859 static void rbd_put_client(struct rbd_client
*rbdc
)
862 kref_put(&rbdc
->kref
, rbd_client_release
);
865 static bool rbd_image_format_valid(u32 image_format
)
867 return image_format
== 1 || image_format
== 2;
870 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk
*ondisk
)
875 /* The header has to start with the magic rbd header text */
876 if (memcmp(&ondisk
->text
, RBD_HEADER_TEXT
, sizeof (RBD_HEADER_TEXT
)))
879 /* The bio layer requires at least sector-sized I/O */
881 if (ondisk
->options
.order
< SECTOR_SHIFT
)
884 /* If we use u64 in a few spots we may be able to loosen this */
886 if (ondisk
->options
.order
> 8 * sizeof (int) - 1)
890 * The size of a snapshot header has to fit in a size_t, and
891 * that limits the number of snapshots.
893 snap_count
= le32_to_cpu(ondisk
->snap_count
);
894 size
= SIZE_MAX
- sizeof (struct ceph_snap_context
);
895 if (snap_count
> size
/ sizeof (__le64
))
899 * Not only that, but the size of the entire the snapshot
900 * header must also be representable in a size_t.
902 size
-= snap_count
* sizeof (__le64
);
903 if ((u64
) size
< le64_to_cpu(ondisk
->snap_names_len
))
910 * Fill an rbd image header with information from the given format 1
913 static int rbd_header_from_disk(struct rbd_device
*rbd_dev
,
914 struct rbd_image_header_ondisk
*ondisk
)
916 struct rbd_image_header
*header
= &rbd_dev
->header
;
917 bool first_time
= header
->object_prefix
== NULL
;
918 struct ceph_snap_context
*snapc
;
919 char *object_prefix
= NULL
;
920 char *snap_names
= NULL
;
921 u64
*snap_sizes
= NULL
;
927 /* Allocate this now to avoid having to handle failure below */
932 len
= strnlen(ondisk
->object_prefix
,
933 sizeof (ondisk
->object_prefix
));
934 object_prefix
= kmalloc(len
+ 1, GFP_KERNEL
);
937 memcpy(object_prefix
, ondisk
->object_prefix
, len
);
938 object_prefix
[len
] = '\0';
941 /* Allocate the snapshot context and fill it in */
943 snap_count
= le32_to_cpu(ondisk
->snap_count
);
944 snapc
= ceph_create_snap_context(snap_count
, GFP_KERNEL
);
947 snapc
->seq
= le64_to_cpu(ondisk
->snap_seq
);
949 struct rbd_image_snap_ondisk
*snaps
;
950 u64 snap_names_len
= le64_to_cpu(ondisk
->snap_names_len
);
952 /* We'll keep a copy of the snapshot names... */
954 if (snap_names_len
> (u64
)SIZE_MAX
)
956 snap_names
= kmalloc(snap_names_len
, GFP_KERNEL
);
960 /* ...as well as the array of their sizes. */
962 size
= snap_count
* sizeof (*header
->snap_sizes
);
963 snap_sizes
= kmalloc(size
, GFP_KERNEL
);
968 * Copy the names, and fill in each snapshot's id
971 * Note that rbd_dev_v1_header_info() guarantees the
972 * ondisk buffer we're working with has
973 * snap_names_len bytes beyond the end of the
974 * snapshot id array, this memcpy() is safe.
976 memcpy(snap_names
, &ondisk
->snaps
[snap_count
], snap_names_len
);
977 snaps
= ondisk
->snaps
;
978 for (i
= 0; i
< snap_count
; i
++) {
979 snapc
->snaps
[i
] = le64_to_cpu(snaps
[i
].id
);
980 snap_sizes
[i
] = le64_to_cpu(snaps
[i
].image_size
);
984 /* We won't fail any more, fill in the header */
987 header
->object_prefix
= object_prefix
;
988 header
->obj_order
= ondisk
->options
.order
;
989 header
->crypt_type
= ondisk
->options
.crypt_type
;
990 header
->comp_type
= ondisk
->options
.comp_type
;
991 /* The rest aren't used for format 1 images */
992 header
->stripe_unit
= 0;
993 header
->stripe_count
= 0;
994 header
->features
= 0;
996 ceph_put_snap_context(header
->snapc
);
997 kfree(header
->snap_names
);
998 kfree(header
->snap_sizes
);
1001 /* The remaining fields always get updated (when we refresh) */
1003 header
->image_size
= le64_to_cpu(ondisk
->image_size
);
1004 header
->snapc
= snapc
;
1005 header
->snap_names
= snap_names
;
1006 header
->snap_sizes
= snap_sizes
;
1014 ceph_put_snap_context(snapc
);
1015 kfree(object_prefix
);
1020 static const char *_rbd_dev_v1_snap_name(struct rbd_device
*rbd_dev
, u32 which
)
1022 const char *snap_name
;
1024 rbd_assert(which
< rbd_dev
->header
.snapc
->num_snaps
);
1026 /* Skip over names until we find the one we are looking for */
1028 snap_name
= rbd_dev
->header
.snap_names
;
1030 snap_name
+= strlen(snap_name
) + 1;
1032 return kstrdup(snap_name
, GFP_KERNEL
);
1036 * Snapshot id comparison function for use with qsort()/bsearch().
1037 * Note that result is for snapshots in *descending* order.
1039 static int snapid_compare_reverse(const void *s1
, const void *s2
)
1041 u64 snap_id1
= *(u64
*)s1
;
1042 u64 snap_id2
= *(u64
*)s2
;
1044 if (snap_id1
< snap_id2
)
1046 return snap_id1
== snap_id2
? 0 : -1;
1050 * Search a snapshot context to see if the given snapshot id is
1053 * Returns the position of the snapshot id in the array if it's found,
1054 * or BAD_SNAP_INDEX otherwise.
1056 * Note: The snapshot array is in kept sorted (by the osd) in
1057 * reverse order, highest snapshot id first.
1059 static u32
rbd_dev_snap_index(struct rbd_device
*rbd_dev
, u64 snap_id
)
1061 struct ceph_snap_context
*snapc
= rbd_dev
->header
.snapc
;
1064 found
= bsearch(&snap_id
, &snapc
->snaps
, snapc
->num_snaps
,
1065 sizeof (snap_id
), snapid_compare_reverse
);
1067 return found
? (u32
)(found
- &snapc
->snaps
[0]) : BAD_SNAP_INDEX
;
1070 static const char *rbd_dev_v1_snap_name(struct rbd_device
*rbd_dev
,
1074 const char *snap_name
;
1076 which
= rbd_dev_snap_index(rbd_dev
, snap_id
);
1077 if (which
== BAD_SNAP_INDEX
)
1078 return ERR_PTR(-ENOENT
);
1080 snap_name
= _rbd_dev_v1_snap_name(rbd_dev
, which
);
1081 return snap_name
? snap_name
: ERR_PTR(-ENOMEM
);
1084 static const char *rbd_snap_name(struct rbd_device
*rbd_dev
, u64 snap_id
)
1086 if (snap_id
== CEPH_NOSNAP
)
1087 return RBD_SNAP_HEAD_NAME
;
1089 rbd_assert(rbd_image_format_valid(rbd_dev
->image_format
));
1090 if (rbd_dev
->image_format
== 1)
1091 return rbd_dev_v1_snap_name(rbd_dev
, snap_id
);
1093 return rbd_dev_v2_snap_name(rbd_dev
, snap_id
);
1096 static int rbd_snap_size(struct rbd_device
*rbd_dev
, u64 snap_id
,
1099 rbd_assert(rbd_image_format_valid(rbd_dev
->image_format
));
1100 if (snap_id
== CEPH_NOSNAP
) {
1101 *snap_size
= rbd_dev
->header
.image_size
;
1102 } else if (rbd_dev
->image_format
== 1) {
1105 which
= rbd_dev_snap_index(rbd_dev
, snap_id
);
1106 if (which
== BAD_SNAP_INDEX
)
1109 *snap_size
= rbd_dev
->header
.snap_sizes
[which
];
1114 ret
= _rbd_dev_v2_snap_size(rbd_dev
, snap_id
, NULL
, &size
);
1123 static int rbd_snap_features(struct rbd_device
*rbd_dev
, u64 snap_id
,
1126 rbd_assert(rbd_image_format_valid(rbd_dev
->image_format
));
1127 if (snap_id
== CEPH_NOSNAP
) {
1128 *snap_features
= rbd_dev
->header
.features
;
1129 } else if (rbd_dev
->image_format
== 1) {
1130 *snap_features
= 0; /* No features for format 1 */
1135 ret
= _rbd_dev_v2_snap_features(rbd_dev
, snap_id
, &features
);
1139 *snap_features
= features
;
1144 static int rbd_dev_mapping_set(struct rbd_device
*rbd_dev
)
1146 u64 snap_id
= rbd_dev
->spec
->snap_id
;
1151 ret
= rbd_snap_size(rbd_dev
, snap_id
, &size
);
1154 ret
= rbd_snap_features(rbd_dev
, snap_id
, &features
);
1158 rbd_dev
->mapping
.size
= size
;
1159 rbd_dev
->mapping
.features
= features
;
1164 static void rbd_dev_mapping_clear(struct rbd_device
*rbd_dev
)
1166 rbd_dev
->mapping
.size
= 0;
1167 rbd_dev
->mapping
.features
= 0;
1170 static void rbd_segment_name_free(const char *name
)
1172 /* The explicit cast here is needed to drop the const qualifier */
1174 kmem_cache_free(rbd_segment_name_cache
, (void *)name
);
1177 static const char *rbd_segment_name(struct rbd_device
*rbd_dev
, u64 offset
)
1184 name
= kmem_cache_alloc(rbd_segment_name_cache
, GFP_NOIO
);
1187 segment
= offset
>> rbd_dev
->header
.obj_order
;
1188 name_format
= "%s.%012llx";
1189 if (rbd_dev
->image_format
== 2)
1190 name_format
= "%s.%016llx";
1191 ret
= snprintf(name
, CEPH_MAX_OID_NAME_LEN
+ 1, name_format
,
1192 rbd_dev
->header
.object_prefix
, segment
);
1193 if (ret
< 0 || ret
> CEPH_MAX_OID_NAME_LEN
) {
1194 pr_err("error formatting segment name for #%llu (%d)\n",
1196 rbd_segment_name_free(name
);
1203 static u64
rbd_segment_offset(struct rbd_device
*rbd_dev
, u64 offset
)
1205 u64 segment_size
= (u64
) 1 << rbd_dev
->header
.obj_order
;
1207 return offset
& (segment_size
- 1);
1210 static u64
rbd_segment_length(struct rbd_device
*rbd_dev
,
1211 u64 offset
, u64 length
)
1213 u64 segment_size
= (u64
) 1 << rbd_dev
->header
.obj_order
;
1215 offset
&= segment_size
- 1;
1217 rbd_assert(length
<= U64_MAX
- offset
);
1218 if (offset
+ length
> segment_size
)
1219 length
= segment_size
- offset
;
1225 * returns the size of an object in the image
1227 static u64
rbd_obj_bytes(struct rbd_image_header
*header
)
1229 return 1 << header
->obj_order
;
1236 static void bio_chain_put(struct bio
*chain
)
1242 chain
= chain
->bi_next
;
1248 * zeros a bio chain, starting at specific offset
1250 static void zero_bio_chain(struct bio
*chain
, int start_ofs
)
1253 struct bvec_iter iter
;
1254 unsigned long flags
;
1259 bio_for_each_segment(bv
, chain
, iter
) {
1260 if (pos
+ bv
.bv_len
> start_ofs
) {
1261 int remainder
= max(start_ofs
- pos
, 0);
1262 buf
= bvec_kmap_irq(&bv
, &flags
);
1263 memset(buf
+ remainder
, 0,
1264 bv
.bv_len
- remainder
);
1265 flush_dcache_page(bv
.bv_page
);
1266 bvec_kunmap_irq(buf
, &flags
);
1271 chain
= chain
->bi_next
;
1276 * similar to zero_bio_chain(), zeros data defined by a page array,
1277 * starting at the given byte offset from the start of the array and
1278 * continuing up to the given end offset. The pages array is
1279 * assumed to be big enough to hold all bytes up to the end.
1281 static void zero_pages(struct page
**pages
, u64 offset
, u64 end
)
1283 struct page
**page
= &pages
[offset
>> PAGE_SHIFT
];
1285 rbd_assert(end
> offset
);
1286 rbd_assert(end
- offset
<= (u64
)SIZE_MAX
);
1287 while (offset
< end
) {
1290 unsigned long flags
;
1293 page_offset
= offset
& ~PAGE_MASK
;
1294 length
= min_t(size_t, PAGE_SIZE
- page_offset
, end
- offset
);
1295 local_irq_save(flags
);
1296 kaddr
= kmap_atomic(*page
);
1297 memset(kaddr
+ page_offset
, 0, length
);
1298 flush_dcache_page(*page
);
1299 kunmap_atomic(kaddr
);
1300 local_irq_restore(flags
);
1308 * Clone a portion of a bio, starting at the given byte offset
1309 * and continuing for the number of bytes indicated.
1311 static struct bio
*bio_clone_range(struct bio
*bio_src
,
1312 unsigned int offset
,
1318 bio
= bio_clone(bio_src
, gfpmask
);
1320 return NULL
; /* ENOMEM */
1322 bio_advance(bio
, offset
);
1323 bio
->bi_iter
.bi_size
= len
;
1329 * Clone a portion of a bio chain, starting at the given byte offset
1330 * into the first bio in the source chain and continuing for the
1331 * number of bytes indicated. The result is another bio chain of
1332 * exactly the given length, or a null pointer on error.
1334 * The bio_src and offset parameters are both in-out. On entry they
1335 * refer to the first source bio and the offset into that bio where
1336 * the start of data to be cloned is located.
1338 * On return, bio_src is updated to refer to the bio in the source
1339 * chain that contains first un-cloned byte, and *offset will
1340 * contain the offset of that byte within that bio.
1342 static struct bio
*bio_chain_clone_range(struct bio
**bio_src
,
1343 unsigned int *offset
,
1347 struct bio
*bi
= *bio_src
;
1348 unsigned int off
= *offset
;
1349 struct bio
*chain
= NULL
;
1352 /* Build up a chain of clone bios up to the limit */
1354 if (!bi
|| off
>= bi
->bi_iter
.bi_size
|| !len
)
1355 return NULL
; /* Nothing to clone */
1359 unsigned int bi_size
;
1363 rbd_warn(NULL
, "bio_chain exhausted with %u left", len
);
1364 goto out_err
; /* EINVAL; ran out of bio's */
1366 bi_size
= min_t(unsigned int, bi
->bi_iter
.bi_size
- off
, len
);
1367 bio
= bio_clone_range(bi
, off
, bi_size
, gfpmask
);
1369 goto out_err
; /* ENOMEM */
1372 end
= &bio
->bi_next
;
1375 if (off
== bi
->bi_iter
.bi_size
) {
1386 bio_chain_put(chain
);
1392 * The default/initial value for all object request flags is 0. For
1393 * each flag, once its value is set to 1 it is never reset to 0
1396 static void obj_request_img_data_set(struct rbd_obj_request
*obj_request
)
1398 if (test_and_set_bit(OBJ_REQ_IMG_DATA
, &obj_request
->flags
)) {
1399 struct rbd_device
*rbd_dev
;
1401 rbd_dev
= obj_request
->img_request
->rbd_dev
;
1402 rbd_warn(rbd_dev
, "obj_request %p already marked img_data",
1407 static bool obj_request_img_data_test(struct rbd_obj_request
*obj_request
)
1410 return test_bit(OBJ_REQ_IMG_DATA
, &obj_request
->flags
) != 0;
1413 static void obj_request_done_set(struct rbd_obj_request
*obj_request
)
1415 if (test_and_set_bit(OBJ_REQ_DONE
, &obj_request
->flags
)) {
1416 struct rbd_device
*rbd_dev
= NULL
;
1418 if (obj_request_img_data_test(obj_request
))
1419 rbd_dev
= obj_request
->img_request
->rbd_dev
;
1420 rbd_warn(rbd_dev
, "obj_request %p already marked done",
1425 static bool obj_request_done_test(struct rbd_obj_request
*obj_request
)
1428 return test_bit(OBJ_REQ_DONE
, &obj_request
->flags
) != 0;
1432 * This sets the KNOWN flag after (possibly) setting the EXISTS
1433 * flag. The latter is set based on the "exists" value provided.
1435 * Note that for our purposes once an object exists it never goes
1436 * away again. It's possible that the response from two existence
1437 * checks are separated by the creation of the target object, and
1438 * the first ("doesn't exist") response arrives *after* the second
1439 * ("does exist"). In that case we ignore the second one.
1441 static void obj_request_existence_set(struct rbd_obj_request
*obj_request
,
1445 set_bit(OBJ_REQ_EXISTS
, &obj_request
->flags
);
1446 set_bit(OBJ_REQ_KNOWN
, &obj_request
->flags
);
1450 static bool obj_request_known_test(struct rbd_obj_request
*obj_request
)
1453 return test_bit(OBJ_REQ_KNOWN
, &obj_request
->flags
) != 0;
1456 static bool obj_request_exists_test(struct rbd_obj_request
*obj_request
)
1459 return test_bit(OBJ_REQ_EXISTS
, &obj_request
->flags
) != 0;
1462 static bool obj_request_overlaps_parent(struct rbd_obj_request
*obj_request
)
1464 struct rbd_device
*rbd_dev
= obj_request
->img_request
->rbd_dev
;
1466 return obj_request
->img_offset
<
1467 round_up(rbd_dev
->parent_overlap
, rbd_obj_bytes(&rbd_dev
->header
));
1470 static void rbd_obj_request_get(struct rbd_obj_request
*obj_request
)
1472 dout("%s: obj %p (was %d)\n", __func__
, obj_request
,
1473 atomic_read(&obj_request
->kref
.refcount
));
1474 kref_get(&obj_request
->kref
);
1477 static void rbd_obj_request_destroy(struct kref
*kref
);
1478 static void rbd_obj_request_put(struct rbd_obj_request
*obj_request
)
1480 rbd_assert(obj_request
!= NULL
);
1481 dout("%s: obj %p (was %d)\n", __func__
, obj_request
,
1482 atomic_read(&obj_request
->kref
.refcount
));
1483 kref_put(&obj_request
->kref
, rbd_obj_request_destroy
);
1486 static void rbd_img_request_get(struct rbd_img_request
*img_request
)
1488 dout("%s: img %p (was %d)\n", __func__
, img_request
,
1489 atomic_read(&img_request
->kref
.refcount
));
1490 kref_get(&img_request
->kref
);
1493 static bool img_request_child_test(struct rbd_img_request
*img_request
);
1494 static void rbd_parent_request_destroy(struct kref
*kref
);
1495 static void rbd_img_request_destroy(struct kref
*kref
);
1496 static void rbd_img_request_put(struct rbd_img_request
*img_request
)
1498 rbd_assert(img_request
!= NULL
);
1499 dout("%s: img %p (was %d)\n", __func__
, img_request
,
1500 atomic_read(&img_request
->kref
.refcount
));
1501 if (img_request_child_test(img_request
))
1502 kref_put(&img_request
->kref
, rbd_parent_request_destroy
);
1504 kref_put(&img_request
->kref
, rbd_img_request_destroy
);
1507 static inline void rbd_img_obj_request_add(struct rbd_img_request
*img_request
,
1508 struct rbd_obj_request
*obj_request
)
1510 rbd_assert(obj_request
->img_request
== NULL
);
1512 /* Image request now owns object's original reference */
1513 obj_request
->img_request
= img_request
;
1514 obj_request
->which
= img_request
->obj_request_count
;
1515 rbd_assert(!obj_request_img_data_test(obj_request
));
1516 obj_request_img_data_set(obj_request
);
1517 rbd_assert(obj_request
->which
!= BAD_WHICH
);
1518 img_request
->obj_request_count
++;
1519 list_add_tail(&obj_request
->links
, &img_request
->obj_requests
);
1520 dout("%s: img %p obj %p w=%u\n", __func__
, img_request
, obj_request
,
1521 obj_request
->which
);
1524 static inline void rbd_img_obj_request_del(struct rbd_img_request
*img_request
,
1525 struct rbd_obj_request
*obj_request
)
1527 rbd_assert(obj_request
->which
!= BAD_WHICH
);
1529 dout("%s: img %p obj %p w=%u\n", __func__
, img_request
, obj_request
,
1530 obj_request
->which
);
1531 list_del(&obj_request
->links
);
1532 rbd_assert(img_request
->obj_request_count
> 0);
1533 img_request
->obj_request_count
--;
1534 rbd_assert(obj_request
->which
== img_request
->obj_request_count
);
1535 obj_request
->which
= BAD_WHICH
;
1536 rbd_assert(obj_request_img_data_test(obj_request
));
1537 rbd_assert(obj_request
->img_request
== img_request
);
1538 obj_request
->img_request
= NULL
;
1539 obj_request
->callback
= NULL
;
1540 rbd_obj_request_put(obj_request
);
1543 static bool obj_request_type_valid(enum obj_request_type type
)
1546 case OBJ_REQUEST_NODATA
:
1547 case OBJ_REQUEST_BIO
:
1548 case OBJ_REQUEST_PAGES
:
1555 static int rbd_obj_request_submit(struct ceph_osd_client
*osdc
,
1556 struct rbd_obj_request
*obj_request
)
1558 dout("%s %p\n", __func__
, obj_request
);
1559 return ceph_osdc_start_request(osdc
, obj_request
->osd_req
, false);
1562 static void rbd_obj_request_end(struct rbd_obj_request
*obj_request
)
1564 dout("%s %p\n", __func__
, obj_request
);
1565 ceph_osdc_cancel_request(obj_request
->osd_req
);
1569 * Wait for an object request to complete. If interrupted, cancel the
1570 * underlying osd request.
1572 * @timeout: in jiffies, 0 means "wait forever"
1574 static int __rbd_obj_request_wait(struct rbd_obj_request
*obj_request
,
1575 unsigned long timeout
)
1579 dout("%s %p\n", __func__
, obj_request
);
1580 ret
= wait_for_completion_interruptible_timeout(
1581 &obj_request
->completion
,
1582 ceph_timeout_jiffies(timeout
));
1586 rbd_obj_request_end(obj_request
);
1591 dout("%s %p ret %d\n", __func__
, obj_request
, (int)ret
);
1595 static int rbd_obj_request_wait(struct rbd_obj_request
*obj_request
)
1597 return __rbd_obj_request_wait(obj_request
, 0);
1600 static int rbd_obj_request_wait_timeout(struct rbd_obj_request
*obj_request
,
1601 unsigned long timeout
)
1603 return __rbd_obj_request_wait(obj_request
, timeout
);
1606 static void rbd_img_request_complete(struct rbd_img_request
*img_request
)
1609 dout("%s: img %p\n", __func__
, img_request
);
1612 * If no error occurred, compute the aggregate transfer
1613 * count for the image request. We could instead use
1614 * atomic64_cmpxchg() to update it as each object request
1615 * completes; not clear which way is better off hand.
1617 if (!img_request
->result
) {
1618 struct rbd_obj_request
*obj_request
;
1621 for_each_obj_request(img_request
, obj_request
)
1622 xferred
+= obj_request
->xferred
;
1623 img_request
->xferred
= xferred
;
1626 if (img_request
->callback
)
1627 img_request
->callback(img_request
);
1629 rbd_img_request_put(img_request
);
1633 * The default/initial value for all image request flags is 0. Each
1634 * is conditionally set to 1 at image request initialization time
1635 * and currently never change thereafter.
1637 static void img_request_write_set(struct rbd_img_request
*img_request
)
1639 set_bit(IMG_REQ_WRITE
, &img_request
->flags
);
1643 static bool img_request_write_test(struct rbd_img_request
*img_request
)
1646 return test_bit(IMG_REQ_WRITE
, &img_request
->flags
) != 0;
1650 * Set the discard flag when the img_request is an discard request
1652 static void img_request_discard_set(struct rbd_img_request
*img_request
)
1654 set_bit(IMG_REQ_DISCARD
, &img_request
->flags
);
1658 static bool img_request_discard_test(struct rbd_img_request
*img_request
)
1661 return test_bit(IMG_REQ_DISCARD
, &img_request
->flags
) != 0;
1664 static void img_request_child_set(struct rbd_img_request
*img_request
)
1666 set_bit(IMG_REQ_CHILD
, &img_request
->flags
);
1670 static void img_request_child_clear(struct rbd_img_request
*img_request
)
1672 clear_bit(IMG_REQ_CHILD
, &img_request
->flags
);
1676 static bool img_request_child_test(struct rbd_img_request
*img_request
)
1679 return test_bit(IMG_REQ_CHILD
, &img_request
->flags
) != 0;
1682 static void img_request_layered_set(struct rbd_img_request
*img_request
)
1684 set_bit(IMG_REQ_LAYERED
, &img_request
->flags
);
1688 static void img_request_layered_clear(struct rbd_img_request
*img_request
)
1690 clear_bit(IMG_REQ_LAYERED
, &img_request
->flags
);
1694 static bool img_request_layered_test(struct rbd_img_request
*img_request
)
1697 return test_bit(IMG_REQ_LAYERED
, &img_request
->flags
) != 0;
1700 static enum obj_operation_type
1701 rbd_img_request_op_type(struct rbd_img_request
*img_request
)
1703 if (img_request_write_test(img_request
))
1704 return OBJ_OP_WRITE
;
1705 else if (img_request_discard_test(img_request
))
1706 return OBJ_OP_DISCARD
;
1712 rbd_img_obj_request_read_callback(struct rbd_obj_request
*obj_request
)
1714 u64 xferred
= obj_request
->xferred
;
1715 u64 length
= obj_request
->length
;
1717 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__
,
1718 obj_request
, obj_request
->img_request
, obj_request
->result
,
1721 * ENOENT means a hole in the image. We zero-fill the entire
1722 * length of the request. A short read also implies zero-fill
1723 * to the end of the request. An error requires the whole
1724 * length of the request to be reported finished with an error
1725 * to the block layer. In each case we update the xferred
1726 * count to indicate the whole request was satisfied.
1728 rbd_assert(obj_request
->type
!= OBJ_REQUEST_NODATA
);
1729 if (obj_request
->result
== -ENOENT
) {
1730 if (obj_request
->type
== OBJ_REQUEST_BIO
)
1731 zero_bio_chain(obj_request
->bio_list
, 0);
1733 zero_pages(obj_request
->pages
, 0, length
);
1734 obj_request
->result
= 0;
1735 } else if (xferred
< length
&& !obj_request
->result
) {
1736 if (obj_request
->type
== OBJ_REQUEST_BIO
)
1737 zero_bio_chain(obj_request
->bio_list
, xferred
);
1739 zero_pages(obj_request
->pages
, xferred
, length
);
1741 obj_request
->xferred
= length
;
1742 obj_request_done_set(obj_request
);
1745 static void rbd_obj_request_complete(struct rbd_obj_request
*obj_request
)
1747 dout("%s: obj %p cb %p\n", __func__
, obj_request
,
1748 obj_request
->callback
);
1749 if (obj_request
->callback
)
1750 obj_request
->callback(obj_request
);
1752 complete_all(&obj_request
->completion
);
1755 static void rbd_osd_trivial_callback(struct rbd_obj_request
*obj_request
)
1757 dout("%s: obj %p\n", __func__
, obj_request
);
1758 obj_request_done_set(obj_request
);
1761 static void rbd_osd_read_callback(struct rbd_obj_request
*obj_request
)
1763 struct rbd_img_request
*img_request
= NULL
;
1764 struct rbd_device
*rbd_dev
= NULL
;
1765 bool layered
= false;
1767 if (obj_request_img_data_test(obj_request
)) {
1768 img_request
= obj_request
->img_request
;
1769 layered
= img_request
&& img_request_layered_test(img_request
);
1770 rbd_dev
= img_request
->rbd_dev
;
1773 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__
,
1774 obj_request
, img_request
, obj_request
->result
,
1775 obj_request
->xferred
, obj_request
->length
);
1776 if (layered
&& obj_request
->result
== -ENOENT
&&
1777 obj_request
->img_offset
< rbd_dev
->parent_overlap
)
1778 rbd_img_parent_read(obj_request
);
1779 else if (img_request
)
1780 rbd_img_obj_request_read_callback(obj_request
);
1782 obj_request_done_set(obj_request
);
1785 static void rbd_osd_write_callback(struct rbd_obj_request
*obj_request
)
1787 dout("%s: obj %p result %d %llu\n", __func__
, obj_request
,
1788 obj_request
->result
, obj_request
->length
);
1790 * There is no such thing as a successful short write. Set
1791 * it to our originally-requested length.
1793 obj_request
->xferred
= obj_request
->length
;
1794 obj_request_done_set(obj_request
);
1797 static void rbd_osd_discard_callback(struct rbd_obj_request
*obj_request
)
1799 dout("%s: obj %p result %d %llu\n", __func__
, obj_request
,
1800 obj_request
->result
, obj_request
->length
);
1802 * There is no such thing as a successful short discard. Set
1803 * it to our originally-requested length.
1805 obj_request
->xferred
= obj_request
->length
;
1806 /* discarding a non-existent object is not a problem */
1807 if (obj_request
->result
== -ENOENT
)
1808 obj_request
->result
= 0;
1809 obj_request_done_set(obj_request
);
1813 * For a simple stat call there's nothing to do. We'll do more if
1814 * this is part of a write sequence for a layered image.
1816 static void rbd_osd_stat_callback(struct rbd_obj_request
*obj_request
)
1818 dout("%s: obj %p\n", __func__
, obj_request
);
1819 obj_request_done_set(obj_request
);
1822 static void rbd_osd_call_callback(struct rbd_obj_request
*obj_request
)
1824 dout("%s: obj %p\n", __func__
, obj_request
);
1826 if (obj_request_img_data_test(obj_request
))
1827 rbd_osd_copyup_callback(obj_request
);
1829 obj_request_done_set(obj_request
);
1832 static void rbd_osd_req_callback(struct ceph_osd_request
*osd_req
,
1833 struct ceph_msg
*msg
)
1835 struct rbd_obj_request
*obj_request
= osd_req
->r_priv
;
1838 dout("%s: osd_req %p msg %p\n", __func__
, osd_req
, msg
);
1839 rbd_assert(osd_req
== obj_request
->osd_req
);
1840 if (obj_request_img_data_test(obj_request
)) {
1841 rbd_assert(obj_request
->img_request
);
1842 rbd_assert(obj_request
->which
!= BAD_WHICH
);
1844 rbd_assert(obj_request
->which
== BAD_WHICH
);
1847 if (osd_req
->r_result
< 0)
1848 obj_request
->result
= osd_req
->r_result
;
1851 * We support a 64-bit length, but ultimately it has to be
1852 * passed to the block layer, which just supports a 32-bit
1855 obj_request
->xferred
= osd_req
->r_ops
[0].outdata_len
;
1856 rbd_assert(obj_request
->xferred
< (u64
)UINT_MAX
);
1858 opcode
= osd_req
->r_ops
[0].op
;
1860 case CEPH_OSD_OP_READ
:
1861 rbd_osd_read_callback(obj_request
);
1863 case CEPH_OSD_OP_SETALLOCHINT
:
1864 rbd_assert(osd_req
->r_ops
[1].op
== CEPH_OSD_OP_WRITE
||
1865 osd_req
->r_ops
[1].op
== CEPH_OSD_OP_WRITEFULL
);
1867 case CEPH_OSD_OP_WRITE
:
1868 case CEPH_OSD_OP_WRITEFULL
:
1869 rbd_osd_write_callback(obj_request
);
1871 case CEPH_OSD_OP_STAT
:
1872 rbd_osd_stat_callback(obj_request
);
1874 case CEPH_OSD_OP_DELETE
:
1875 case CEPH_OSD_OP_TRUNCATE
:
1876 case CEPH_OSD_OP_ZERO
:
1877 rbd_osd_discard_callback(obj_request
);
1879 case CEPH_OSD_OP_CALL
:
1880 rbd_osd_call_callback(obj_request
);
1882 case CEPH_OSD_OP_NOTIFY_ACK
:
1883 case CEPH_OSD_OP_WATCH
:
1884 rbd_osd_trivial_callback(obj_request
);
1887 rbd_warn(NULL
, "%s: unsupported op %hu",
1888 obj_request
->object_name
, (unsigned short) opcode
);
1892 if (obj_request_done_test(obj_request
))
1893 rbd_obj_request_complete(obj_request
);
1896 static void rbd_osd_req_format_read(struct rbd_obj_request
*obj_request
)
1898 struct rbd_img_request
*img_request
= obj_request
->img_request
;
1899 struct ceph_osd_request
*osd_req
= obj_request
->osd_req
;
1902 rbd_assert(osd_req
!= NULL
);
1904 snap_id
= img_request
? img_request
->snap_id
: CEPH_NOSNAP
;
1905 ceph_osdc_build_request(osd_req
, obj_request
->offset
,
1906 NULL
, snap_id
, NULL
);
1909 static void rbd_osd_req_format_write(struct rbd_obj_request
*obj_request
)
1911 struct rbd_img_request
*img_request
= obj_request
->img_request
;
1912 struct ceph_osd_request
*osd_req
= obj_request
->osd_req
;
1913 struct ceph_snap_context
*snapc
;
1914 struct timespec mtime
= CURRENT_TIME
;
1916 rbd_assert(osd_req
!= NULL
);
1918 snapc
= img_request
? img_request
->snapc
: NULL
;
1919 ceph_osdc_build_request(osd_req
, obj_request
->offset
,
1920 snapc
, CEPH_NOSNAP
, &mtime
);
1924 * Create an osd request. A read request has one osd op (read).
1925 * A write request has either one (watch) or two (hint+write) osd ops.
1926 * (All rbd data writes are prefixed with an allocation hint op, but
1927 * technically osd watch is a write request, hence this distinction.)
1929 static struct ceph_osd_request
*rbd_osd_req_create(
1930 struct rbd_device
*rbd_dev
,
1931 enum obj_operation_type op_type
,
1932 unsigned int num_ops
,
1933 struct rbd_obj_request
*obj_request
)
1935 struct ceph_snap_context
*snapc
= NULL
;
1936 struct ceph_osd_client
*osdc
;
1937 struct ceph_osd_request
*osd_req
;
1939 if (obj_request_img_data_test(obj_request
) &&
1940 (op_type
== OBJ_OP_DISCARD
|| op_type
== OBJ_OP_WRITE
)) {
1941 struct rbd_img_request
*img_request
= obj_request
->img_request
;
1942 if (op_type
== OBJ_OP_WRITE
) {
1943 rbd_assert(img_request_write_test(img_request
));
1945 rbd_assert(img_request_discard_test(img_request
));
1947 snapc
= img_request
->snapc
;
1950 rbd_assert(num_ops
== 1 || ((op_type
== OBJ_OP_WRITE
) && num_ops
== 2));
1952 /* Allocate and initialize the request, for the num_ops ops */
1954 osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
1955 osd_req
= ceph_osdc_alloc_request(osdc
, snapc
, num_ops
, false,
1958 return NULL
; /* ENOMEM */
1960 if (op_type
== OBJ_OP_WRITE
|| op_type
== OBJ_OP_DISCARD
)
1961 osd_req
->r_flags
= CEPH_OSD_FLAG_WRITE
| CEPH_OSD_FLAG_ONDISK
;
1963 osd_req
->r_flags
= CEPH_OSD_FLAG_READ
;
1965 osd_req
->r_callback
= rbd_osd_req_callback
;
1966 osd_req
->r_priv
= obj_request
;
1968 osd_req
->r_base_oloc
.pool
= ceph_file_layout_pg_pool(rbd_dev
->layout
);
1969 ceph_oid_set_name(&osd_req
->r_base_oid
, obj_request
->object_name
);
1975 * Create a copyup osd request based on the information in the object
1976 * request supplied. A copyup request has two or three osd ops, a
1977 * copyup method call, potentially a hint op, and a write or truncate
1980 static struct ceph_osd_request
*
1981 rbd_osd_req_create_copyup(struct rbd_obj_request
*obj_request
)
1983 struct rbd_img_request
*img_request
;
1984 struct ceph_snap_context
*snapc
;
1985 struct rbd_device
*rbd_dev
;
1986 struct ceph_osd_client
*osdc
;
1987 struct ceph_osd_request
*osd_req
;
1988 int num_osd_ops
= 3;
1990 rbd_assert(obj_request_img_data_test(obj_request
));
1991 img_request
= obj_request
->img_request
;
1992 rbd_assert(img_request
);
1993 rbd_assert(img_request_write_test(img_request
) ||
1994 img_request_discard_test(img_request
));
1996 if (img_request_discard_test(img_request
))
1999 /* Allocate and initialize the request, for all the ops */
2001 snapc
= img_request
->snapc
;
2002 rbd_dev
= img_request
->rbd_dev
;
2003 osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
2004 osd_req
= ceph_osdc_alloc_request(osdc
, snapc
, num_osd_ops
,
2007 return NULL
; /* ENOMEM */
2009 osd_req
->r_flags
= CEPH_OSD_FLAG_WRITE
| CEPH_OSD_FLAG_ONDISK
;
2010 osd_req
->r_callback
= rbd_osd_req_callback
;
2011 osd_req
->r_priv
= obj_request
;
2013 osd_req
->r_base_oloc
.pool
= ceph_file_layout_pg_pool(rbd_dev
->layout
);
2014 ceph_oid_set_name(&osd_req
->r_base_oid
, obj_request
->object_name
);
2020 static void rbd_osd_req_destroy(struct ceph_osd_request
*osd_req
)
2022 ceph_osdc_put_request(osd_req
);
2025 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2027 static struct rbd_obj_request
*rbd_obj_request_create(const char *object_name
,
2028 u64 offset
, u64 length
,
2029 enum obj_request_type type
)
2031 struct rbd_obj_request
*obj_request
;
2035 rbd_assert(obj_request_type_valid(type
));
2037 size
= strlen(object_name
) + 1;
2038 name
= kmalloc(size
, GFP_NOIO
);
2042 obj_request
= kmem_cache_zalloc(rbd_obj_request_cache
, GFP_NOIO
);
2048 obj_request
->object_name
= memcpy(name
, object_name
, size
);
2049 obj_request
->offset
= offset
;
2050 obj_request
->length
= length
;
2051 obj_request
->flags
= 0;
2052 obj_request
->which
= BAD_WHICH
;
2053 obj_request
->type
= type
;
2054 INIT_LIST_HEAD(&obj_request
->links
);
2055 init_completion(&obj_request
->completion
);
2056 kref_init(&obj_request
->kref
);
2058 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__
, object_name
,
2059 offset
, length
, (int)type
, obj_request
);
2064 static void rbd_obj_request_destroy(struct kref
*kref
)
2066 struct rbd_obj_request
*obj_request
;
2068 obj_request
= container_of(kref
, struct rbd_obj_request
, kref
);
2070 dout("%s: obj %p\n", __func__
, obj_request
);
2072 rbd_assert(obj_request
->img_request
== NULL
);
2073 rbd_assert(obj_request
->which
== BAD_WHICH
);
2075 if (obj_request
->osd_req
)
2076 rbd_osd_req_destroy(obj_request
->osd_req
);
2078 rbd_assert(obj_request_type_valid(obj_request
->type
));
2079 switch (obj_request
->type
) {
2080 case OBJ_REQUEST_NODATA
:
2081 break; /* Nothing to do */
2082 case OBJ_REQUEST_BIO
:
2083 if (obj_request
->bio_list
)
2084 bio_chain_put(obj_request
->bio_list
);
2086 case OBJ_REQUEST_PAGES
:
2087 if (obj_request
->pages
)
2088 ceph_release_page_vector(obj_request
->pages
,
2089 obj_request
->page_count
);
2093 kfree(obj_request
->object_name
);
2094 obj_request
->object_name
= NULL
;
2095 kmem_cache_free(rbd_obj_request_cache
, obj_request
);
2098 /* It's OK to call this for a device with no parent */
2100 static void rbd_spec_put(struct rbd_spec
*spec
);
2101 static void rbd_dev_unparent(struct rbd_device
*rbd_dev
)
2103 rbd_dev_remove_parent(rbd_dev
);
2104 rbd_spec_put(rbd_dev
->parent_spec
);
2105 rbd_dev
->parent_spec
= NULL
;
2106 rbd_dev
->parent_overlap
= 0;
2110 * Parent image reference counting is used to determine when an
2111 * image's parent fields can be safely torn down--after there are no
2112 * more in-flight requests to the parent image. When the last
2113 * reference is dropped, cleaning them up is safe.
2115 static void rbd_dev_parent_put(struct rbd_device
*rbd_dev
)
2119 if (!rbd_dev
->parent_spec
)
2122 counter
= atomic_dec_return_safe(&rbd_dev
->parent_ref
);
2126 /* Last reference; clean up parent data structures */
2129 rbd_dev_unparent(rbd_dev
);
2131 rbd_warn(rbd_dev
, "parent reference underflow");
2135 * If an image has a non-zero parent overlap, get a reference to its
2138 * Returns true if the rbd device has a parent with a non-zero
2139 * overlap and a reference for it was successfully taken, or
2142 static bool rbd_dev_parent_get(struct rbd_device
*rbd_dev
)
2146 if (!rbd_dev
->parent_spec
)
2149 down_read(&rbd_dev
->header_rwsem
);
2150 if (rbd_dev
->parent_overlap
)
2151 counter
= atomic_inc_return_safe(&rbd_dev
->parent_ref
);
2152 up_read(&rbd_dev
->header_rwsem
);
2155 rbd_warn(rbd_dev
, "parent reference overflow");
2161 * Caller is responsible for filling in the list of object requests
2162 * that comprises the image request, and the Linux request pointer
2163 * (if there is one).
2165 static struct rbd_img_request
*rbd_img_request_create(
2166 struct rbd_device
*rbd_dev
,
2167 u64 offset
, u64 length
,
2168 enum obj_operation_type op_type
,
2169 struct ceph_snap_context
*snapc
)
2171 struct rbd_img_request
*img_request
;
2173 img_request
= kmem_cache_alloc(rbd_img_request_cache
, GFP_NOIO
);
2177 img_request
->rq
= NULL
;
2178 img_request
->rbd_dev
= rbd_dev
;
2179 img_request
->offset
= offset
;
2180 img_request
->length
= length
;
2181 img_request
->flags
= 0;
2182 if (op_type
== OBJ_OP_DISCARD
) {
2183 img_request_discard_set(img_request
);
2184 img_request
->snapc
= snapc
;
2185 } else if (op_type
== OBJ_OP_WRITE
) {
2186 img_request_write_set(img_request
);
2187 img_request
->snapc
= snapc
;
2189 img_request
->snap_id
= rbd_dev
->spec
->snap_id
;
2191 if (rbd_dev_parent_get(rbd_dev
))
2192 img_request_layered_set(img_request
);
2193 spin_lock_init(&img_request
->completion_lock
);
2194 img_request
->next_completion
= 0;
2195 img_request
->callback
= NULL
;
2196 img_request
->result
= 0;
2197 img_request
->obj_request_count
= 0;
2198 INIT_LIST_HEAD(&img_request
->obj_requests
);
2199 kref_init(&img_request
->kref
);
2201 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__
, rbd_dev
,
2202 obj_op_name(op_type
), offset
, length
, img_request
);
2207 static void rbd_img_request_destroy(struct kref
*kref
)
2209 struct rbd_img_request
*img_request
;
2210 struct rbd_obj_request
*obj_request
;
2211 struct rbd_obj_request
*next_obj_request
;
2213 img_request
= container_of(kref
, struct rbd_img_request
, kref
);
2215 dout("%s: img %p\n", __func__
, img_request
);
2217 for_each_obj_request_safe(img_request
, obj_request
, next_obj_request
)
2218 rbd_img_obj_request_del(img_request
, obj_request
);
2219 rbd_assert(img_request
->obj_request_count
== 0);
2221 if (img_request_layered_test(img_request
)) {
2222 img_request_layered_clear(img_request
);
2223 rbd_dev_parent_put(img_request
->rbd_dev
);
2226 if (img_request_write_test(img_request
) ||
2227 img_request_discard_test(img_request
))
2228 ceph_put_snap_context(img_request
->snapc
);
2230 kmem_cache_free(rbd_img_request_cache
, img_request
);
2233 static struct rbd_img_request
*rbd_parent_request_create(
2234 struct rbd_obj_request
*obj_request
,
2235 u64 img_offset
, u64 length
)
2237 struct rbd_img_request
*parent_request
;
2238 struct rbd_device
*rbd_dev
;
2240 rbd_assert(obj_request
->img_request
);
2241 rbd_dev
= obj_request
->img_request
->rbd_dev
;
2243 parent_request
= rbd_img_request_create(rbd_dev
->parent
, img_offset
,
2244 length
, OBJ_OP_READ
, NULL
);
2245 if (!parent_request
)
2248 img_request_child_set(parent_request
);
2249 rbd_obj_request_get(obj_request
);
2250 parent_request
->obj_request
= obj_request
;
2252 return parent_request
;
2255 static void rbd_parent_request_destroy(struct kref
*kref
)
2257 struct rbd_img_request
*parent_request
;
2258 struct rbd_obj_request
*orig_request
;
2260 parent_request
= container_of(kref
, struct rbd_img_request
, kref
);
2261 orig_request
= parent_request
->obj_request
;
2263 parent_request
->obj_request
= NULL
;
2264 rbd_obj_request_put(orig_request
);
2265 img_request_child_clear(parent_request
);
2267 rbd_img_request_destroy(kref
);
2270 static bool rbd_img_obj_end_request(struct rbd_obj_request
*obj_request
)
2272 struct rbd_img_request
*img_request
;
2273 unsigned int xferred
;
2277 rbd_assert(obj_request_img_data_test(obj_request
));
2278 img_request
= obj_request
->img_request
;
2280 rbd_assert(obj_request
->xferred
<= (u64
)UINT_MAX
);
2281 xferred
= (unsigned int)obj_request
->xferred
;
2282 result
= obj_request
->result
;
2284 struct rbd_device
*rbd_dev
= img_request
->rbd_dev
;
2285 enum obj_operation_type op_type
;
2287 if (img_request_discard_test(img_request
))
2288 op_type
= OBJ_OP_DISCARD
;
2289 else if (img_request_write_test(img_request
))
2290 op_type
= OBJ_OP_WRITE
;
2292 op_type
= OBJ_OP_READ
;
2294 rbd_warn(rbd_dev
, "%s %llx at %llx (%llx)",
2295 obj_op_name(op_type
), obj_request
->length
,
2296 obj_request
->img_offset
, obj_request
->offset
);
2297 rbd_warn(rbd_dev
, " result %d xferred %x",
2299 if (!img_request
->result
)
2300 img_request
->result
= result
;
2302 * Need to end I/O on the entire obj_request worth of
2303 * bytes in case of error.
2305 xferred
= obj_request
->length
;
2308 /* Image object requests don't own their page array */
2310 if (obj_request
->type
== OBJ_REQUEST_PAGES
) {
2311 obj_request
->pages
= NULL
;
2312 obj_request
->page_count
= 0;
2315 if (img_request_child_test(img_request
)) {
2316 rbd_assert(img_request
->obj_request
!= NULL
);
2317 more
= obj_request
->which
< img_request
->obj_request_count
- 1;
2319 rbd_assert(img_request
->rq
!= NULL
);
2321 more
= blk_update_request(img_request
->rq
, result
, xferred
);
2323 __blk_mq_end_request(img_request
->rq
, result
);
2329 static void rbd_img_obj_callback(struct rbd_obj_request
*obj_request
)
2331 struct rbd_img_request
*img_request
;
2332 u32 which
= obj_request
->which
;
2335 rbd_assert(obj_request_img_data_test(obj_request
));
2336 img_request
= obj_request
->img_request
;
2338 dout("%s: img %p obj %p\n", __func__
, img_request
, obj_request
);
2339 rbd_assert(img_request
!= NULL
);
2340 rbd_assert(img_request
->obj_request_count
> 0);
2341 rbd_assert(which
!= BAD_WHICH
);
2342 rbd_assert(which
< img_request
->obj_request_count
);
2344 spin_lock_irq(&img_request
->completion_lock
);
2345 if (which
!= img_request
->next_completion
)
2348 for_each_obj_request_from(img_request
, obj_request
) {
2350 rbd_assert(which
< img_request
->obj_request_count
);
2352 if (!obj_request_done_test(obj_request
))
2354 more
= rbd_img_obj_end_request(obj_request
);
2358 rbd_assert(more
^ (which
== img_request
->obj_request_count
));
2359 img_request
->next_completion
= which
;
2361 spin_unlock_irq(&img_request
->completion_lock
);
2362 rbd_img_request_put(img_request
);
2365 rbd_img_request_complete(img_request
);
2369 * Add individual osd ops to the given ceph_osd_request and prepare
2370 * them for submission. num_ops is the current number of
2371 * osd operations already to the object request.
2373 static void rbd_img_obj_request_fill(struct rbd_obj_request
*obj_request
,
2374 struct ceph_osd_request
*osd_request
,
2375 enum obj_operation_type op_type
,
2376 unsigned int num_ops
)
2378 struct rbd_img_request
*img_request
= obj_request
->img_request
;
2379 struct rbd_device
*rbd_dev
= img_request
->rbd_dev
;
2380 u64 object_size
= rbd_obj_bytes(&rbd_dev
->header
);
2381 u64 offset
= obj_request
->offset
;
2382 u64 length
= obj_request
->length
;
2386 if (op_type
== OBJ_OP_DISCARD
) {
2387 if (!offset
&& length
== object_size
&&
2388 (!img_request_layered_test(img_request
) ||
2389 !obj_request_overlaps_parent(obj_request
))) {
2390 opcode
= CEPH_OSD_OP_DELETE
;
2391 } else if ((offset
+ length
== object_size
)) {
2392 opcode
= CEPH_OSD_OP_TRUNCATE
;
2394 down_read(&rbd_dev
->header_rwsem
);
2395 img_end
= rbd_dev
->header
.image_size
;
2396 up_read(&rbd_dev
->header_rwsem
);
2398 if (obj_request
->img_offset
+ length
== img_end
)
2399 opcode
= CEPH_OSD_OP_TRUNCATE
;
2401 opcode
= CEPH_OSD_OP_ZERO
;
2403 } else if (op_type
== OBJ_OP_WRITE
) {
2404 if (!offset
&& length
== object_size
)
2405 opcode
= CEPH_OSD_OP_WRITEFULL
;
2407 opcode
= CEPH_OSD_OP_WRITE
;
2408 osd_req_op_alloc_hint_init(osd_request
, num_ops
,
2409 object_size
, object_size
);
2412 opcode
= CEPH_OSD_OP_READ
;
2415 if (opcode
== CEPH_OSD_OP_DELETE
)
2416 osd_req_op_init(osd_request
, num_ops
, opcode
, 0);
2418 osd_req_op_extent_init(osd_request
, num_ops
, opcode
,
2419 offset
, length
, 0, 0);
2421 if (obj_request
->type
== OBJ_REQUEST_BIO
)
2422 osd_req_op_extent_osd_data_bio(osd_request
, num_ops
,
2423 obj_request
->bio_list
, length
);
2424 else if (obj_request
->type
== OBJ_REQUEST_PAGES
)
2425 osd_req_op_extent_osd_data_pages(osd_request
, num_ops
,
2426 obj_request
->pages
, length
,
2427 offset
& ~PAGE_MASK
, false, false);
2429 /* Discards are also writes */
2430 if (op_type
== OBJ_OP_WRITE
|| op_type
== OBJ_OP_DISCARD
)
2431 rbd_osd_req_format_write(obj_request
);
2433 rbd_osd_req_format_read(obj_request
);
2437 * Split up an image request into one or more object requests, each
2438 * to a different object. The "type" parameter indicates whether
2439 * "data_desc" is the pointer to the head of a list of bio
2440 * structures, or the base of a page array. In either case this
2441 * function assumes data_desc describes memory sufficient to hold
2442 * all data described by the image request.
2444 static int rbd_img_request_fill(struct rbd_img_request
*img_request
,
2445 enum obj_request_type type
,
2448 struct rbd_device
*rbd_dev
= img_request
->rbd_dev
;
2449 struct rbd_obj_request
*obj_request
= NULL
;
2450 struct rbd_obj_request
*next_obj_request
;
2451 struct bio
*bio_list
= NULL
;
2452 unsigned int bio_offset
= 0;
2453 struct page
**pages
= NULL
;
2454 enum obj_operation_type op_type
;
2458 dout("%s: img %p type %d data_desc %p\n", __func__
, img_request
,
2459 (int)type
, data_desc
);
2461 img_offset
= img_request
->offset
;
2462 resid
= img_request
->length
;
2463 rbd_assert(resid
> 0);
2464 op_type
= rbd_img_request_op_type(img_request
);
2466 if (type
== OBJ_REQUEST_BIO
) {
2467 bio_list
= data_desc
;
2468 rbd_assert(img_offset
==
2469 bio_list
->bi_iter
.bi_sector
<< SECTOR_SHIFT
);
2470 } else if (type
== OBJ_REQUEST_PAGES
) {
2475 struct ceph_osd_request
*osd_req
;
2476 const char *object_name
;
2480 object_name
= rbd_segment_name(rbd_dev
, img_offset
);
2483 offset
= rbd_segment_offset(rbd_dev
, img_offset
);
2484 length
= rbd_segment_length(rbd_dev
, img_offset
, resid
);
2485 obj_request
= rbd_obj_request_create(object_name
,
2486 offset
, length
, type
);
2487 /* object request has its own copy of the object name */
2488 rbd_segment_name_free(object_name
);
2493 * set obj_request->img_request before creating the
2494 * osd_request so that it gets the right snapc
2496 rbd_img_obj_request_add(img_request
, obj_request
);
2498 if (type
== OBJ_REQUEST_BIO
) {
2499 unsigned int clone_size
;
2501 rbd_assert(length
<= (u64
)UINT_MAX
);
2502 clone_size
= (unsigned int)length
;
2503 obj_request
->bio_list
=
2504 bio_chain_clone_range(&bio_list
,
2508 if (!obj_request
->bio_list
)
2510 } else if (type
== OBJ_REQUEST_PAGES
) {
2511 unsigned int page_count
;
2513 obj_request
->pages
= pages
;
2514 page_count
= (u32
)calc_pages_for(offset
, length
);
2515 obj_request
->page_count
= page_count
;
2516 if ((offset
+ length
) & ~PAGE_MASK
)
2517 page_count
--; /* more on last page */
2518 pages
+= page_count
;
2521 osd_req
= rbd_osd_req_create(rbd_dev
, op_type
,
2522 (op_type
== OBJ_OP_WRITE
) ? 2 : 1,
2527 obj_request
->osd_req
= osd_req
;
2528 obj_request
->callback
= rbd_img_obj_callback
;
2529 obj_request
->img_offset
= img_offset
;
2531 rbd_img_obj_request_fill(obj_request
, osd_req
, op_type
, 0);
2533 rbd_img_request_get(img_request
);
2535 img_offset
+= length
;
2542 for_each_obj_request_safe(img_request
, obj_request
, next_obj_request
)
2543 rbd_img_obj_request_del(img_request
, obj_request
);
2549 rbd_osd_copyup_callback(struct rbd_obj_request
*obj_request
)
2551 struct rbd_img_request
*img_request
;
2552 struct rbd_device
*rbd_dev
;
2553 struct page
**pages
;
2556 dout("%s: obj %p\n", __func__
, obj_request
);
2558 rbd_assert(obj_request
->type
== OBJ_REQUEST_BIO
||
2559 obj_request
->type
== OBJ_REQUEST_NODATA
);
2560 rbd_assert(obj_request_img_data_test(obj_request
));
2561 img_request
= obj_request
->img_request
;
2562 rbd_assert(img_request
);
2564 rbd_dev
= img_request
->rbd_dev
;
2565 rbd_assert(rbd_dev
);
2567 pages
= obj_request
->copyup_pages
;
2568 rbd_assert(pages
!= NULL
);
2569 obj_request
->copyup_pages
= NULL
;
2570 page_count
= obj_request
->copyup_page_count
;
2571 rbd_assert(page_count
);
2572 obj_request
->copyup_page_count
= 0;
2573 ceph_release_page_vector(pages
, page_count
);
2576 * We want the transfer count to reflect the size of the
2577 * original write request. There is no such thing as a
2578 * successful short write, so if the request was successful
2579 * we can just set it to the originally-requested length.
2581 if (!obj_request
->result
)
2582 obj_request
->xferred
= obj_request
->length
;
2584 obj_request_done_set(obj_request
);
2588 rbd_img_obj_parent_read_full_callback(struct rbd_img_request
*img_request
)
2590 struct rbd_obj_request
*orig_request
;
2591 struct ceph_osd_request
*osd_req
;
2592 struct ceph_osd_client
*osdc
;
2593 struct rbd_device
*rbd_dev
;
2594 struct page
**pages
;
2595 enum obj_operation_type op_type
;
2600 rbd_assert(img_request_child_test(img_request
));
2602 /* First get what we need from the image request */
2604 pages
= img_request
->copyup_pages
;
2605 rbd_assert(pages
!= NULL
);
2606 img_request
->copyup_pages
= NULL
;
2607 page_count
= img_request
->copyup_page_count
;
2608 rbd_assert(page_count
);
2609 img_request
->copyup_page_count
= 0;
2611 orig_request
= img_request
->obj_request
;
2612 rbd_assert(orig_request
!= NULL
);
2613 rbd_assert(obj_request_type_valid(orig_request
->type
));
2614 img_result
= img_request
->result
;
2615 parent_length
= img_request
->length
;
2616 rbd_assert(parent_length
== img_request
->xferred
);
2617 rbd_img_request_put(img_request
);
2619 rbd_assert(orig_request
->img_request
);
2620 rbd_dev
= orig_request
->img_request
->rbd_dev
;
2621 rbd_assert(rbd_dev
);
2624 * If the overlap has become 0 (most likely because the
2625 * image has been flattened) we need to free the pages
2626 * and re-submit the original write request.
2628 if (!rbd_dev
->parent_overlap
) {
2629 struct ceph_osd_client
*osdc
;
2631 ceph_release_page_vector(pages
, page_count
);
2632 osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
2633 img_result
= rbd_obj_request_submit(osdc
, orig_request
);
2642 * The original osd request is of no use to use any more.
2643 * We need a new one that can hold the three ops in a copyup
2644 * request. Allocate the new copyup osd request for the
2645 * original request, and release the old one.
2647 img_result
= -ENOMEM
;
2648 osd_req
= rbd_osd_req_create_copyup(orig_request
);
2651 rbd_osd_req_destroy(orig_request
->osd_req
);
2652 orig_request
->osd_req
= osd_req
;
2653 orig_request
->copyup_pages
= pages
;
2654 orig_request
->copyup_page_count
= page_count
;
2656 /* Initialize the copyup op */
2658 osd_req_op_cls_init(osd_req
, 0, CEPH_OSD_OP_CALL
, "rbd", "copyup");
2659 osd_req_op_cls_request_data_pages(osd_req
, 0, pages
, parent_length
, 0,
2662 /* Add the other op(s) */
2664 op_type
= rbd_img_request_op_type(orig_request
->img_request
);
2665 rbd_img_obj_request_fill(orig_request
, osd_req
, op_type
, 1);
2667 /* All set, send it off. */
2669 osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
2670 img_result
= rbd_obj_request_submit(osdc
, orig_request
);
2674 /* Record the error code and complete the request */
2676 orig_request
->result
= img_result
;
2677 orig_request
->xferred
= 0;
2678 obj_request_done_set(orig_request
);
2679 rbd_obj_request_complete(orig_request
);
2683 * Read from the parent image the range of data that covers the
2684 * entire target of the given object request. This is used for
2685 * satisfying a layered image write request when the target of an
2686 * object request from the image request does not exist.
2688 * A page array big enough to hold the returned data is allocated
2689 * and supplied to rbd_img_request_fill() as the "data descriptor."
2690 * When the read completes, this page array will be transferred to
2691 * the original object request for the copyup operation.
2693 * If an error occurs, record it as the result of the original
2694 * object request and mark it done so it gets completed.
2696 static int rbd_img_obj_parent_read_full(struct rbd_obj_request
*obj_request
)
2698 struct rbd_img_request
*img_request
= NULL
;
2699 struct rbd_img_request
*parent_request
= NULL
;
2700 struct rbd_device
*rbd_dev
;
2703 struct page
**pages
= NULL
;
2707 rbd_assert(obj_request_img_data_test(obj_request
));
2708 rbd_assert(obj_request_type_valid(obj_request
->type
));
2710 img_request
= obj_request
->img_request
;
2711 rbd_assert(img_request
!= NULL
);
2712 rbd_dev
= img_request
->rbd_dev
;
2713 rbd_assert(rbd_dev
->parent
!= NULL
);
2716 * Determine the byte range covered by the object in the
2717 * child image to which the original request was to be sent.
2719 img_offset
= obj_request
->img_offset
- obj_request
->offset
;
2720 length
= (u64
)1 << rbd_dev
->header
.obj_order
;
2723 * There is no defined parent data beyond the parent
2724 * overlap, so limit what we read at that boundary if
2727 if (img_offset
+ length
> rbd_dev
->parent_overlap
) {
2728 rbd_assert(img_offset
< rbd_dev
->parent_overlap
);
2729 length
= rbd_dev
->parent_overlap
- img_offset
;
2733 * Allocate a page array big enough to receive the data read
2736 page_count
= (u32
)calc_pages_for(0, length
);
2737 pages
= ceph_alloc_page_vector(page_count
, GFP_KERNEL
);
2738 if (IS_ERR(pages
)) {
2739 result
= PTR_ERR(pages
);
2745 parent_request
= rbd_parent_request_create(obj_request
,
2746 img_offset
, length
);
2747 if (!parent_request
)
2750 result
= rbd_img_request_fill(parent_request
, OBJ_REQUEST_PAGES
, pages
);
2753 parent_request
->copyup_pages
= pages
;
2754 parent_request
->copyup_page_count
= page_count
;
2756 parent_request
->callback
= rbd_img_obj_parent_read_full_callback
;
2757 result
= rbd_img_request_submit(parent_request
);
2761 parent_request
->copyup_pages
= NULL
;
2762 parent_request
->copyup_page_count
= 0;
2763 parent_request
->obj_request
= NULL
;
2764 rbd_obj_request_put(obj_request
);
2767 ceph_release_page_vector(pages
, page_count
);
2769 rbd_img_request_put(parent_request
);
2770 obj_request
->result
= result
;
2771 obj_request
->xferred
= 0;
2772 obj_request_done_set(obj_request
);
2777 static void rbd_img_obj_exists_callback(struct rbd_obj_request
*obj_request
)
2779 struct rbd_obj_request
*orig_request
;
2780 struct rbd_device
*rbd_dev
;
2783 rbd_assert(!obj_request_img_data_test(obj_request
));
2786 * All we need from the object request is the original
2787 * request and the result of the STAT op. Grab those, then
2788 * we're done with the request.
2790 orig_request
= obj_request
->obj_request
;
2791 obj_request
->obj_request
= NULL
;
2792 rbd_obj_request_put(orig_request
);
2793 rbd_assert(orig_request
);
2794 rbd_assert(orig_request
->img_request
);
2796 result
= obj_request
->result
;
2797 obj_request
->result
= 0;
2799 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__
,
2800 obj_request
, orig_request
, result
,
2801 obj_request
->xferred
, obj_request
->length
);
2802 rbd_obj_request_put(obj_request
);
2805 * If the overlap has become 0 (most likely because the
2806 * image has been flattened) we need to free the pages
2807 * and re-submit the original write request.
2809 rbd_dev
= orig_request
->img_request
->rbd_dev
;
2810 if (!rbd_dev
->parent_overlap
) {
2811 struct ceph_osd_client
*osdc
;
2813 osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
2814 result
= rbd_obj_request_submit(osdc
, orig_request
);
2820 * Our only purpose here is to determine whether the object
2821 * exists, and we don't want to treat the non-existence as
2822 * an error. If something else comes back, transfer the
2823 * error to the original request and complete it now.
2826 obj_request_existence_set(orig_request
, true);
2827 } else if (result
== -ENOENT
) {
2828 obj_request_existence_set(orig_request
, false);
2829 } else if (result
) {
2830 orig_request
->result
= result
;
2835 * Resubmit the original request now that we have recorded
2836 * whether the target object exists.
2838 orig_request
->result
= rbd_img_obj_request_submit(orig_request
);
2840 if (orig_request
->result
)
2841 rbd_obj_request_complete(orig_request
);
2844 static int rbd_img_obj_exists_submit(struct rbd_obj_request
*obj_request
)
2846 struct rbd_obj_request
*stat_request
;
2847 struct rbd_device
*rbd_dev
;
2848 struct ceph_osd_client
*osdc
;
2849 struct page
**pages
= NULL
;
2855 * The response data for a STAT call consists of:
2862 size
= sizeof (__le64
) + sizeof (__le32
) + sizeof (__le32
);
2863 page_count
= (u32
)calc_pages_for(0, size
);
2864 pages
= ceph_alloc_page_vector(page_count
, GFP_KERNEL
);
2866 return PTR_ERR(pages
);
2869 stat_request
= rbd_obj_request_create(obj_request
->object_name
, 0, 0,
2874 rbd_obj_request_get(obj_request
);
2875 stat_request
->obj_request
= obj_request
;
2876 stat_request
->pages
= pages
;
2877 stat_request
->page_count
= page_count
;
2879 rbd_assert(obj_request
->img_request
);
2880 rbd_dev
= obj_request
->img_request
->rbd_dev
;
2881 stat_request
->osd_req
= rbd_osd_req_create(rbd_dev
, OBJ_OP_READ
, 1,
2883 if (!stat_request
->osd_req
)
2885 stat_request
->callback
= rbd_img_obj_exists_callback
;
2887 osd_req_op_init(stat_request
->osd_req
, 0, CEPH_OSD_OP_STAT
, 0);
2888 osd_req_op_raw_data_in_pages(stat_request
->osd_req
, 0, pages
, size
, 0,
2890 rbd_osd_req_format_read(stat_request
);
2892 osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
2893 ret
= rbd_obj_request_submit(osdc
, stat_request
);
2896 rbd_obj_request_put(obj_request
);
2901 static bool img_obj_request_simple(struct rbd_obj_request
*obj_request
)
2903 struct rbd_img_request
*img_request
;
2904 struct rbd_device
*rbd_dev
;
2906 rbd_assert(obj_request_img_data_test(obj_request
));
2908 img_request
= obj_request
->img_request
;
2909 rbd_assert(img_request
);
2910 rbd_dev
= img_request
->rbd_dev
;
2913 if (!img_request_write_test(img_request
) &&
2914 !img_request_discard_test(img_request
))
2917 /* Non-layered writes */
2918 if (!img_request_layered_test(img_request
))
2922 * Layered writes outside of the parent overlap range don't
2923 * share any data with the parent.
2925 if (!obj_request_overlaps_parent(obj_request
))
2929 * Entire-object layered writes - we will overwrite whatever
2930 * parent data there is anyway.
2932 if (!obj_request
->offset
&&
2933 obj_request
->length
== rbd_obj_bytes(&rbd_dev
->header
))
2937 * If the object is known to already exist, its parent data has
2938 * already been copied.
2940 if (obj_request_known_test(obj_request
) &&
2941 obj_request_exists_test(obj_request
))
2947 static int rbd_img_obj_request_submit(struct rbd_obj_request
*obj_request
)
2949 if (img_obj_request_simple(obj_request
)) {
2950 struct rbd_device
*rbd_dev
;
2951 struct ceph_osd_client
*osdc
;
2953 rbd_dev
= obj_request
->img_request
->rbd_dev
;
2954 osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
2956 return rbd_obj_request_submit(osdc
, obj_request
);
2960 * It's a layered write. The target object might exist but
2961 * we may not know that yet. If we know it doesn't exist,
2962 * start by reading the data for the full target object from
2963 * the parent so we can use it for a copyup to the target.
2965 if (obj_request_known_test(obj_request
))
2966 return rbd_img_obj_parent_read_full(obj_request
);
2968 /* We don't know whether the target exists. Go find out. */
2970 return rbd_img_obj_exists_submit(obj_request
);
2973 static int rbd_img_request_submit(struct rbd_img_request
*img_request
)
2975 struct rbd_obj_request
*obj_request
;
2976 struct rbd_obj_request
*next_obj_request
;
2978 dout("%s: img %p\n", __func__
, img_request
);
2979 for_each_obj_request_safe(img_request
, obj_request
, next_obj_request
) {
2982 ret
= rbd_img_obj_request_submit(obj_request
);
2990 static void rbd_img_parent_read_callback(struct rbd_img_request
*img_request
)
2992 struct rbd_obj_request
*obj_request
;
2993 struct rbd_device
*rbd_dev
;
2998 rbd_assert(img_request_child_test(img_request
));
3000 /* First get what we need from the image request and release it */
3002 obj_request
= img_request
->obj_request
;
3003 img_xferred
= img_request
->xferred
;
3004 img_result
= img_request
->result
;
3005 rbd_img_request_put(img_request
);
3008 * If the overlap has become 0 (most likely because the
3009 * image has been flattened) we need to re-submit the
3012 rbd_assert(obj_request
);
3013 rbd_assert(obj_request
->img_request
);
3014 rbd_dev
= obj_request
->img_request
->rbd_dev
;
3015 if (!rbd_dev
->parent_overlap
) {
3016 struct ceph_osd_client
*osdc
;
3018 osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
3019 img_result
= rbd_obj_request_submit(osdc
, obj_request
);
3024 obj_request
->result
= img_result
;
3025 if (obj_request
->result
)
3029 * We need to zero anything beyond the parent overlap
3030 * boundary. Since rbd_img_obj_request_read_callback()
3031 * will zero anything beyond the end of a short read, an
3032 * easy way to do this is to pretend the data from the
3033 * parent came up short--ending at the overlap boundary.
3035 rbd_assert(obj_request
->img_offset
< U64_MAX
- obj_request
->length
);
3036 obj_end
= obj_request
->img_offset
+ obj_request
->length
;
3037 if (obj_end
> rbd_dev
->parent_overlap
) {
3040 if (obj_request
->img_offset
< rbd_dev
->parent_overlap
)
3041 xferred
= rbd_dev
->parent_overlap
-
3042 obj_request
->img_offset
;
3044 obj_request
->xferred
= min(img_xferred
, xferred
);
3046 obj_request
->xferred
= img_xferred
;
3049 rbd_img_obj_request_read_callback(obj_request
);
3050 rbd_obj_request_complete(obj_request
);
3053 static void rbd_img_parent_read(struct rbd_obj_request
*obj_request
)
3055 struct rbd_img_request
*img_request
;
3058 rbd_assert(obj_request_img_data_test(obj_request
));
3059 rbd_assert(obj_request
->img_request
!= NULL
);
3060 rbd_assert(obj_request
->result
== (s32
) -ENOENT
);
3061 rbd_assert(obj_request_type_valid(obj_request
->type
));
3063 /* rbd_read_finish(obj_request, obj_request->length); */
3064 img_request
= rbd_parent_request_create(obj_request
,
3065 obj_request
->img_offset
,
3066 obj_request
->length
);
3071 if (obj_request
->type
== OBJ_REQUEST_BIO
)
3072 result
= rbd_img_request_fill(img_request
, OBJ_REQUEST_BIO
,
3073 obj_request
->bio_list
);
3075 result
= rbd_img_request_fill(img_request
, OBJ_REQUEST_PAGES
,
3076 obj_request
->pages
);
3080 img_request
->callback
= rbd_img_parent_read_callback
;
3081 result
= rbd_img_request_submit(img_request
);
3088 rbd_img_request_put(img_request
);
3089 obj_request
->result
= result
;
3090 obj_request
->xferred
= 0;
3091 obj_request_done_set(obj_request
);
3094 static int rbd_obj_notify_ack_sync(struct rbd_device
*rbd_dev
, u64 notify_id
)
3096 struct rbd_obj_request
*obj_request
;
3097 struct ceph_osd_client
*osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
3100 obj_request
= rbd_obj_request_create(rbd_dev
->header_name
, 0, 0,
3101 OBJ_REQUEST_NODATA
);
3106 obj_request
->osd_req
= rbd_osd_req_create(rbd_dev
, OBJ_OP_READ
, 1,
3108 if (!obj_request
->osd_req
)
3111 osd_req_op_watch_init(obj_request
->osd_req
, 0, CEPH_OSD_OP_NOTIFY_ACK
,
3113 rbd_osd_req_format_read(obj_request
);
3115 ret
= rbd_obj_request_submit(osdc
, obj_request
);
3118 ret
= rbd_obj_request_wait(obj_request
);
3120 rbd_obj_request_put(obj_request
);
3125 static void rbd_watch_cb(u64 ver
, u64 notify_id
, u8 opcode
, void *data
)
3127 struct rbd_device
*rbd_dev
= (struct rbd_device
*)data
;
3133 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__
,
3134 rbd_dev
->header_name
, (unsigned long long)notify_id
,
3135 (unsigned int)opcode
);
3138 * Until adequate refresh error handling is in place, there is
3139 * not much we can do here, except warn.
3141 * See http://tracker.ceph.com/issues/5040
3143 ret
= rbd_dev_refresh(rbd_dev
);
3145 rbd_warn(rbd_dev
, "refresh failed: %d", ret
);
3147 ret
= rbd_obj_notify_ack_sync(rbd_dev
, notify_id
);
3149 rbd_warn(rbd_dev
, "notify_ack ret %d", ret
);
3153 * Send a (un)watch request and wait for the ack. Return a request
3154 * with a ref held on success or error.
3156 static struct rbd_obj_request
*rbd_obj_watch_request_helper(
3157 struct rbd_device
*rbd_dev
,
3160 struct ceph_osd_client
*osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
3161 struct ceph_options
*opts
= osdc
->client
->options
;
3162 struct rbd_obj_request
*obj_request
;
3165 obj_request
= rbd_obj_request_create(rbd_dev
->header_name
, 0, 0,
3166 OBJ_REQUEST_NODATA
);
3168 return ERR_PTR(-ENOMEM
);
3170 obj_request
->osd_req
= rbd_osd_req_create(rbd_dev
, OBJ_OP_WRITE
, 1,
3172 if (!obj_request
->osd_req
) {
3177 osd_req_op_watch_init(obj_request
->osd_req
, 0, CEPH_OSD_OP_WATCH
,
3178 rbd_dev
->watch_event
->cookie
, 0, watch
);
3179 rbd_osd_req_format_write(obj_request
);
3182 ceph_osdc_set_request_linger(osdc
, obj_request
->osd_req
);
3184 ret
= rbd_obj_request_submit(osdc
, obj_request
);
3188 ret
= rbd_obj_request_wait_timeout(obj_request
, opts
->mount_timeout
);
3192 ret
= obj_request
->result
;
3195 rbd_obj_request_end(obj_request
);
3202 rbd_obj_request_put(obj_request
);
3203 return ERR_PTR(ret
);
3207 * Initiate a watch request, synchronously.
3209 static int rbd_dev_header_watch_sync(struct rbd_device
*rbd_dev
)
3211 struct ceph_osd_client
*osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
3212 struct rbd_obj_request
*obj_request
;
3215 rbd_assert(!rbd_dev
->watch_event
);
3216 rbd_assert(!rbd_dev
->watch_request
);
3218 ret
= ceph_osdc_create_event(osdc
, rbd_watch_cb
, rbd_dev
,
3219 &rbd_dev
->watch_event
);
3223 obj_request
= rbd_obj_watch_request_helper(rbd_dev
, true);
3224 if (IS_ERR(obj_request
)) {
3225 ceph_osdc_cancel_event(rbd_dev
->watch_event
);
3226 rbd_dev
->watch_event
= NULL
;
3227 return PTR_ERR(obj_request
);
3231 * A watch request is set to linger, so the underlying osd
3232 * request won't go away until we unregister it. We retain
3233 * a pointer to the object request during that time (in
3234 * rbd_dev->watch_request), so we'll keep a reference to it.
3235 * We'll drop that reference after we've unregistered it in
3236 * rbd_dev_header_unwatch_sync().
3238 rbd_dev
->watch_request
= obj_request
;
3244 * Tear down a watch request, synchronously.
3246 static void rbd_dev_header_unwatch_sync(struct rbd_device
*rbd_dev
)
3248 struct rbd_obj_request
*obj_request
;
3250 rbd_assert(rbd_dev
->watch_event
);
3251 rbd_assert(rbd_dev
->watch_request
);
3253 rbd_obj_request_end(rbd_dev
->watch_request
);
3254 rbd_obj_request_put(rbd_dev
->watch_request
);
3255 rbd_dev
->watch_request
= NULL
;
3257 obj_request
= rbd_obj_watch_request_helper(rbd_dev
, false);
3258 if (!IS_ERR(obj_request
))
3259 rbd_obj_request_put(obj_request
);
3261 rbd_warn(rbd_dev
, "unable to tear down watch request (%ld)",
3262 PTR_ERR(obj_request
));
3264 ceph_osdc_cancel_event(rbd_dev
->watch_event
);
3265 rbd_dev
->watch_event
= NULL
;
3269 * Synchronous osd object method call. Returns the number of bytes
3270 * returned in the outbound buffer, or a negative error code.
3272 static int rbd_obj_method_sync(struct rbd_device
*rbd_dev
,
3273 const char *object_name
,
3274 const char *class_name
,
3275 const char *method_name
,
3276 const void *outbound
,
3277 size_t outbound_size
,
3279 size_t inbound_size
)
3281 struct ceph_osd_client
*osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
3282 struct rbd_obj_request
*obj_request
;
3283 struct page
**pages
;
3288 * Method calls are ultimately read operations. The result
3289 * should placed into the inbound buffer provided. They
3290 * also supply outbound data--parameters for the object
3291 * method. Currently if this is present it will be a
3294 page_count
= (u32
)calc_pages_for(0, inbound_size
);
3295 pages
= ceph_alloc_page_vector(page_count
, GFP_KERNEL
);
3297 return PTR_ERR(pages
);
3300 obj_request
= rbd_obj_request_create(object_name
, 0, inbound_size
,
3305 obj_request
->pages
= pages
;
3306 obj_request
->page_count
= page_count
;
3308 obj_request
->osd_req
= rbd_osd_req_create(rbd_dev
, OBJ_OP_READ
, 1,
3310 if (!obj_request
->osd_req
)
3313 osd_req_op_cls_init(obj_request
->osd_req
, 0, CEPH_OSD_OP_CALL
,
3314 class_name
, method_name
);
3315 if (outbound_size
) {
3316 struct ceph_pagelist
*pagelist
;
3318 pagelist
= kmalloc(sizeof (*pagelist
), GFP_NOFS
);
3322 ceph_pagelist_init(pagelist
);
3323 ceph_pagelist_append(pagelist
, outbound
, outbound_size
);
3324 osd_req_op_cls_request_data_pagelist(obj_request
->osd_req
, 0,
3327 osd_req_op_cls_response_data_pages(obj_request
->osd_req
, 0,
3328 obj_request
->pages
, inbound_size
,
3330 rbd_osd_req_format_read(obj_request
);
3332 ret
= rbd_obj_request_submit(osdc
, obj_request
);
3335 ret
= rbd_obj_request_wait(obj_request
);
3339 ret
= obj_request
->result
;
3343 rbd_assert(obj_request
->xferred
< (u64
)INT_MAX
);
3344 ret
= (int)obj_request
->xferred
;
3345 ceph_copy_from_page_vector(pages
, inbound
, 0, obj_request
->xferred
);
3348 rbd_obj_request_put(obj_request
);
3350 ceph_release_page_vector(pages
, page_count
);
3355 static void rbd_queue_workfn(struct work_struct
*work
)
3357 struct request
*rq
= blk_mq_rq_from_pdu(work
);
3358 struct rbd_device
*rbd_dev
= rq
->q
->queuedata
;
3359 struct rbd_img_request
*img_request
;
3360 struct ceph_snap_context
*snapc
= NULL
;
3361 u64 offset
= (u64
)blk_rq_pos(rq
) << SECTOR_SHIFT
;
3362 u64 length
= blk_rq_bytes(rq
);
3363 enum obj_operation_type op_type
;
3367 if (rq
->cmd_type
!= REQ_TYPE_FS
) {
3368 dout("%s: non-fs request type %d\n", __func__
,
3369 (int) rq
->cmd_type
);
3374 if (rq
->cmd_flags
& REQ_DISCARD
)
3375 op_type
= OBJ_OP_DISCARD
;
3376 else if (rq
->cmd_flags
& REQ_WRITE
)
3377 op_type
= OBJ_OP_WRITE
;
3379 op_type
= OBJ_OP_READ
;
3381 /* Ignore/skip any zero-length requests */
3384 dout("%s: zero-length request\n", __func__
);
3389 /* Only reads are allowed to a read-only device */
3391 if (op_type
!= OBJ_OP_READ
) {
3392 if (rbd_dev
->mapping
.read_only
) {
3396 rbd_assert(rbd_dev
->spec
->snap_id
== CEPH_NOSNAP
);
3400 * Quit early if the mapped snapshot no longer exists. It's
3401 * still possible the snapshot will have disappeared by the
3402 * time our request arrives at the osd, but there's no sense in
3403 * sending it if we already know.
3405 if (!test_bit(RBD_DEV_FLAG_EXISTS
, &rbd_dev
->flags
)) {
3406 dout("request for non-existent snapshot");
3407 rbd_assert(rbd_dev
->spec
->snap_id
!= CEPH_NOSNAP
);
3412 if (offset
&& length
> U64_MAX
- offset
+ 1) {
3413 rbd_warn(rbd_dev
, "bad request range (%llu~%llu)", offset
,
3416 goto err_rq
; /* Shouldn't happen */
3419 blk_mq_start_request(rq
);
3421 down_read(&rbd_dev
->header_rwsem
);
3422 mapping_size
= rbd_dev
->mapping
.size
;
3423 if (op_type
!= OBJ_OP_READ
) {
3424 snapc
= rbd_dev
->header
.snapc
;
3425 ceph_get_snap_context(snapc
);
3427 up_read(&rbd_dev
->header_rwsem
);
3429 if (offset
+ length
> mapping_size
) {
3430 rbd_warn(rbd_dev
, "beyond EOD (%llu~%llu > %llu)", offset
,
3431 length
, mapping_size
);
3436 img_request
= rbd_img_request_create(rbd_dev
, offset
, length
, op_type
,
3442 img_request
->rq
= rq
;
3443 snapc
= NULL
; /* img_request consumes a ref */
3445 if (op_type
== OBJ_OP_DISCARD
)
3446 result
= rbd_img_request_fill(img_request
, OBJ_REQUEST_NODATA
,
3449 result
= rbd_img_request_fill(img_request
, OBJ_REQUEST_BIO
,
3452 goto err_img_request
;
3454 result
= rbd_img_request_submit(img_request
);
3456 goto err_img_request
;
3461 rbd_img_request_put(img_request
);
3464 rbd_warn(rbd_dev
, "%s %llx at %llx result %d",
3465 obj_op_name(op_type
), length
, offset
, result
);
3466 ceph_put_snap_context(snapc
);
3468 blk_mq_end_request(rq
, result
);
3471 static int rbd_queue_rq(struct blk_mq_hw_ctx
*hctx
,
3472 const struct blk_mq_queue_data
*bd
)
3474 struct request
*rq
= bd
->rq
;
3475 struct work_struct
*work
= blk_mq_rq_to_pdu(rq
);
3477 queue_work(rbd_wq
, work
);
3478 return BLK_MQ_RQ_QUEUE_OK
;
3481 static void rbd_free_disk(struct rbd_device
*rbd_dev
)
3483 struct gendisk
*disk
= rbd_dev
->disk
;
3488 rbd_dev
->disk
= NULL
;
3489 if (disk
->flags
& GENHD_FL_UP
) {
3492 blk_cleanup_queue(disk
->queue
);
3493 blk_mq_free_tag_set(&rbd_dev
->tag_set
);
3498 static int rbd_obj_read_sync(struct rbd_device
*rbd_dev
,
3499 const char *object_name
,
3500 u64 offset
, u64 length
, void *buf
)
3503 struct ceph_osd_client
*osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
3504 struct rbd_obj_request
*obj_request
;
3505 struct page
**pages
= NULL
;
3510 page_count
= (u32
) calc_pages_for(offset
, length
);
3511 pages
= ceph_alloc_page_vector(page_count
, GFP_KERNEL
);
3513 return PTR_ERR(pages
);
3516 obj_request
= rbd_obj_request_create(object_name
, offset
, length
,
3521 obj_request
->pages
= pages
;
3522 obj_request
->page_count
= page_count
;
3524 obj_request
->osd_req
= rbd_osd_req_create(rbd_dev
, OBJ_OP_READ
, 1,
3526 if (!obj_request
->osd_req
)
3529 osd_req_op_extent_init(obj_request
->osd_req
, 0, CEPH_OSD_OP_READ
,
3530 offset
, length
, 0, 0);
3531 osd_req_op_extent_osd_data_pages(obj_request
->osd_req
, 0,
3533 obj_request
->length
,
3534 obj_request
->offset
& ~PAGE_MASK
,
3536 rbd_osd_req_format_read(obj_request
);
3538 ret
= rbd_obj_request_submit(osdc
, obj_request
);
3541 ret
= rbd_obj_request_wait(obj_request
);
3545 ret
= obj_request
->result
;
3549 rbd_assert(obj_request
->xferred
<= (u64
) SIZE_MAX
);
3550 size
= (size_t) obj_request
->xferred
;
3551 ceph_copy_from_page_vector(pages
, buf
, 0, size
);
3552 rbd_assert(size
<= (size_t)INT_MAX
);
3556 rbd_obj_request_put(obj_request
);
3558 ceph_release_page_vector(pages
, page_count
);
3564 * Read the complete header for the given rbd device. On successful
3565 * return, the rbd_dev->header field will contain up-to-date
3566 * information about the image.
3568 static int rbd_dev_v1_header_info(struct rbd_device
*rbd_dev
)
3570 struct rbd_image_header_ondisk
*ondisk
= NULL
;
3577 * The complete header will include an array of its 64-bit
3578 * snapshot ids, followed by the names of those snapshots as
3579 * a contiguous block of NUL-terminated strings. Note that
3580 * the number of snapshots could change by the time we read
3581 * it in, in which case we re-read it.
3588 size
= sizeof (*ondisk
);
3589 size
+= snap_count
* sizeof (struct rbd_image_snap_ondisk
);
3591 ondisk
= kmalloc(size
, GFP_KERNEL
);
3595 ret
= rbd_obj_read_sync(rbd_dev
, rbd_dev
->header_name
,
3599 if ((size_t)ret
< size
) {
3601 rbd_warn(rbd_dev
, "short header read (want %zd got %d)",
3605 if (!rbd_dev_ondisk_valid(ondisk
)) {
3607 rbd_warn(rbd_dev
, "invalid header");
3611 names_size
= le64_to_cpu(ondisk
->snap_names_len
);
3612 want_count
= snap_count
;
3613 snap_count
= le32_to_cpu(ondisk
->snap_count
);
3614 } while (snap_count
!= want_count
);
3616 ret
= rbd_header_from_disk(rbd_dev
, ondisk
);
3624 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3625 * has disappeared from the (just updated) snapshot context.
3627 static void rbd_exists_validate(struct rbd_device
*rbd_dev
)
3631 if (!test_bit(RBD_DEV_FLAG_EXISTS
, &rbd_dev
->flags
))
3634 snap_id
= rbd_dev
->spec
->snap_id
;
3635 if (snap_id
== CEPH_NOSNAP
)
3638 if (rbd_dev_snap_index(rbd_dev
, snap_id
) == BAD_SNAP_INDEX
)
3639 clear_bit(RBD_DEV_FLAG_EXISTS
, &rbd_dev
->flags
);
3642 static void rbd_dev_update_size(struct rbd_device
*rbd_dev
)
3648 * Don't hold the lock while doing disk operations,
3649 * or lock ordering will conflict with the bdev mutex via:
3650 * rbd_add() -> blkdev_get() -> rbd_open()
3652 spin_lock_irq(&rbd_dev
->lock
);
3653 removing
= test_bit(RBD_DEV_FLAG_REMOVING
, &rbd_dev
->flags
);
3654 spin_unlock_irq(&rbd_dev
->lock
);
3656 * If the device is being removed, rbd_dev->disk has
3657 * been destroyed, so don't try to update its size
3660 size
= (sector_t
)rbd_dev
->mapping
.size
/ SECTOR_SIZE
;
3661 dout("setting size to %llu sectors", (unsigned long long)size
);
3662 set_capacity(rbd_dev
->disk
, size
);
3663 revalidate_disk(rbd_dev
->disk
);
3667 static int rbd_dev_refresh(struct rbd_device
*rbd_dev
)
3672 down_write(&rbd_dev
->header_rwsem
);
3673 mapping_size
= rbd_dev
->mapping
.size
;
3675 ret
= rbd_dev_header_info(rbd_dev
);
3680 * If there is a parent, see if it has disappeared due to the
3681 * mapped image getting flattened.
3683 if (rbd_dev
->parent
) {
3684 ret
= rbd_dev_v2_parent_info(rbd_dev
);
3689 if (rbd_dev
->spec
->snap_id
== CEPH_NOSNAP
) {
3690 rbd_dev
->mapping
.size
= rbd_dev
->header
.image_size
;
3692 /* validate mapped snapshot's EXISTS flag */
3693 rbd_exists_validate(rbd_dev
);
3697 up_write(&rbd_dev
->header_rwsem
);
3698 if (!ret
&& mapping_size
!= rbd_dev
->mapping
.size
)
3699 rbd_dev_update_size(rbd_dev
);
3704 static int rbd_init_request(void *data
, struct request
*rq
,
3705 unsigned int hctx_idx
, unsigned int request_idx
,
3706 unsigned int numa_node
)
3708 struct work_struct
*work
= blk_mq_rq_to_pdu(rq
);
3710 INIT_WORK(work
, rbd_queue_workfn
);
3714 static struct blk_mq_ops rbd_mq_ops
= {
3715 .queue_rq
= rbd_queue_rq
,
3716 .map_queue
= blk_mq_map_queue
,
3717 .init_request
= rbd_init_request
,
3720 static int rbd_init_disk(struct rbd_device
*rbd_dev
)
3722 struct gendisk
*disk
;
3723 struct request_queue
*q
;
3727 /* create gendisk info */
3728 disk
= alloc_disk(single_major
?
3729 (1 << RBD_SINGLE_MAJOR_PART_SHIFT
) :
3730 RBD_MINORS_PER_MAJOR
);
3734 snprintf(disk
->disk_name
, sizeof(disk
->disk_name
), RBD_DRV_NAME
"%d",
3736 disk
->major
= rbd_dev
->major
;
3737 disk
->first_minor
= rbd_dev
->minor
;
3739 disk
->flags
|= GENHD_FL_EXT_DEVT
;
3740 disk
->fops
= &rbd_bd_ops
;
3741 disk
->private_data
= rbd_dev
;
3743 memset(&rbd_dev
->tag_set
, 0, sizeof(rbd_dev
->tag_set
));
3744 rbd_dev
->tag_set
.ops
= &rbd_mq_ops
;
3745 rbd_dev
->tag_set
.queue_depth
= rbd_dev
->opts
->queue_depth
;
3746 rbd_dev
->tag_set
.numa_node
= NUMA_NO_NODE
;
3747 rbd_dev
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
| BLK_MQ_F_SG_MERGE
;
3748 rbd_dev
->tag_set
.nr_hw_queues
= 1;
3749 rbd_dev
->tag_set
.cmd_size
= sizeof(struct work_struct
);
3751 err
= blk_mq_alloc_tag_set(&rbd_dev
->tag_set
);
3755 q
= blk_mq_init_queue(&rbd_dev
->tag_set
);
3761 queue_flag_set_unlocked(QUEUE_FLAG_NONROT
, q
);
3762 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3764 /* set io sizes to object size */
3765 segment_size
= rbd_obj_bytes(&rbd_dev
->header
);
3766 blk_queue_max_hw_sectors(q
, segment_size
/ SECTOR_SIZE
);
3767 q
->limits
.max_sectors
= queue_max_hw_sectors(q
);
3768 blk_queue_max_segments(q
, segment_size
/ SECTOR_SIZE
);
3769 blk_queue_max_segment_size(q
, segment_size
);
3770 blk_queue_io_min(q
, segment_size
);
3771 blk_queue_io_opt(q
, segment_size
);
3773 /* enable the discard support */
3774 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, q
);
3775 q
->limits
.discard_granularity
= segment_size
;
3776 q
->limits
.discard_alignment
= segment_size
;
3777 blk_queue_max_discard_sectors(q
, segment_size
/ SECTOR_SIZE
);
3778 q
->limits
.discard_zeroes_data
= 1;
3780 if (!ceph_test_opt(rbd_dev
->rbd_client
->client
, NOCRC
))
3781 q
->backing_dev_info
.capabilities
|= BDI_CAP_STABLE_WRITES
;
3785 q
->queuedata
= rbd_dev
;
3787 rbd_dev
->disk
= disk
;
3791 blk_mq_free_tag_set(&rbd_dev
->tag_set
);
3801 static struct rbd_device
*dev_to_rbd_dev(struct device
*dev
)
3803 return container_of(dev
, struct rbd_device
, dev
);
3806 static ssize_t
rbd_size_show(struct device
*dev
,
3807 struct device_attribute
*attr
, char *buf
)
3809 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3811 return sprintf(buf
, "%llu\n",
3812 (unsigned long long)rbd_dev
->mapping
.size
);
3816 * Note this shows the features for whatever's mapped, which is not
3817 * necessarily the base image.
3819 static ssize_t
rbd_features_show(struct device
*dev
,
3820 struct device_attribute
*attr
, char *buf
)
3822 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3824 return sprintf(buf
, "0x%016llx\n",
3825 (unsigned long long)rbd_dev
->mapping
.features
);
3828 static ssize_t
rbd_major_show(struct device
*dev
,
3829 struct device_attribute
*attr
, char *buf
)
3831 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3834 return sprintf(buf
, "%d\n", rbd_dev
->major
);
3836 return sprintf(buf
, "(none)\n");
3839 static ssize_t
rbd_minor_show(struct device
*dev
,
3840 struct device_attribute
*attr
, char *buf
)
3842 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3844 return sprintf(buf
, "%d\n", rbd_dev
->minor
);
3847 static ssize_t
rbd_client_id_show(struct device
*dev
,
3848 struct device_attribute
*attr
, char *buf
)
3850 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3852 return sprintf(buf
, "client%lld\n",
3853 ceph_client_id(rbd_dev
->rbd_client
->client
));
3856 static ssize_t
rbd_pool_show(struct device
*dev
,
3857 struct device_attribute
*attr
, char *buf
)
3859 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3861 return sprintf(buf
, "%s\n", rbd_dev
->spec
->pool_name
);
3864 static ssize_t
rbd_pool_id_show(struct device
*dev
,
3865 struct device_attribute
*attr
, char *buf
)
3867 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3869 return sprintf(buf
, "%llu\n",
3870 (unsigned long long) rbd_dev
->spec
->pool_id
);
3873 static ssize_t
rbd_name_show(struct device
*dev
,
3874 struct device_attribute
*attr
, char *buf
)
3876 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3878 if (rbd_dev
->spec
->image_name
)
3879 return sprintf(buf
, "%s\n", rbd_dev
->spec
->image_name
);
3881 return sprintf(buf
, "(unknown)\n");
3884 static ssize_t
rbd_image_id_show(struct device
*dev
,
3885 struct device_attribute
*attr
, char *buf
)
3887 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3889 return sprintf(buf
, "%s\n", rbd_dev
->spec
->image_id
);
3893 * Shows the name of the currently-mapped snapshot (or
3894 * RBD_SNAP_HEAD_NAME for the base image).
3896 static ssize_t
rbd_snap_show(struct device
*dev
,
3897 struct device_attribute
*attr
,
3900 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3902 return sprintf(buf
, "%s\n", rbd_dev
->spec
->snap_name
);
3906 * For a v2 image, shows the chain of parent images, separated by empty
3907 * lines. For v1 images or if there is no parent, shows "(no parent
3910 static ssize_t
rbd_parent_show(struct device
*dev
,
3911 struct device_attribute
*attr
,
3914 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3917 if (!rbd_dev
->parent
)
3918 return sprintf(buf
, "(no parent image)\n");
3920 for ( ; rbd_dev
->parent
; rbd_dev
= rbd_dev
->parent
) {
3921 struct rbd_spec
*spec
= rbd_dev
->parent_spec
;
3923 count
+= sprintf(&buf
[count
], "%s"
3924 "pool_id %llu\npool_name %s\n"
3925 "image_id %s\nimage_name %s\n"
3926 "snap_id %llu\nsnap_name %s\n"
3928 !count
? "" : "\n", /* first? */
3929 spec
->pool_id
, spec
->pool_name
,
3930 spec
->image_id
, spec
->image_name
?: "(unknown)",
3931 spec
->snap_id
, spec
->snap_name
,
3932 rbd_dev
->parent_overlap
);
3938 static ssize_t
rbd_image_refresh(struct device
*dev
,
3939 struct device_attribute
*attr
,
3943 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3946 ret
= rbd_dev_refresh(rbd_dev
);
3953 static DEVICE_ATTR(size
, S_IRUGO
, rbd_size_show
, NULL
);
3954 static DEVICE_ATTR(features
, S_IRUGO
, rbd_features_show
, NULL
);
3955 static DEVICE_ATTR(major
, S_IRUGO
, rbd_major_show
, NULL
);
3956 static DEVICE_ATTR(minor
, S_IRUGO
, rbd_minor_show
, NULL
);
3957 static DEVICE_ATTR(client_id
, S_IRUGO
, rbd_client_id_show
, NULL
);
3958 static DEVICE_ATTR(pool
, S_IRUGO
, rbd_pool_show
, NULL
);
3959 static DEVICE_ATTR(pool_id
, S_IRUGO
, rbd_pool_id_show
, NULL
);
3960 static DEVICE_ATTR(name
, S_IRUGO
, rbd_name_show
, NULL
);
3961 static DEVICE_ATTR(image_id
, S_IRUGO
, rbd_image_id_show
, NULL
);
3962 static DEVICE_ATTR(refresh
, S_IWUSR
, NULL
, rbd_image_refresh
);
3963 static DEVICE_ATTR(current_snap
, S_IRUGO
, rbd_snap_show
, NULL
);
3964 static DEVICE_ATTR(parent
, S_IRUGO
, rbd_parent_show
, NULL
);
3966 static struct attribute
*rbd_attrs
[] = {
3967 &dev_attr_size
.attr
,
3968 &dev_attr_features
.attr
,
3969 &dev_attr_major
.attr
,
3970 &dev_attr_minor
.attr
,
3971 &dev_attr_client_id
.attr
,
3972 &dev_attr_pool
.attr
,
3973 &dev_attr_pool_id
.attr
,
3974 &dev_attr_name
.attr
,
3975 &dev_attr_image_id
.attr
,
3976 &dev_attr_current_snap
.attr
,
3977 &dev_attr_parent
.attr
,
3978 &dev_attr_refresh
.attr
,
3982 static struct attribute_group rbd_attr_group
= {
3986 static const struct attribute_group
*rbd_attr_groups
[] = {
3991 static void rbd_dev_release(struct device
*dev
);
3993 static struct device_type rbd_device_type
= {
3995 .groups
= rbd_attr_groups
,
3996 .release
= rbd_dev_release
,
3999 static struct rbd_spec
*rbd_spec_get(struct rbd_spec
*spec
)
4001 kref_get(&spec
->kref
);
4006 static void rbd_spec_free(struct kref
*kref
);
4007 static void rbd_spec_put(struct rbd_spec
*spec
)
4010 kref_put(&spec
->kref
, rbd_spec_free
);
4013 static struct rbd_spec
*rbd_spec_alloc(void)
4015 struct rbd_spec
*spec
;
4017 spec
= kzalloc(sizeof (*spec
), GFP_KERNEL
);
4021 spec
->pool_id
= CEPH_NOPOOL
;
4022 spec
->snap_id
= CEPH_NOSNAP
;
4023 kref_init(&spec
->kref
);
4028 static void rbd_spec_free(struct kref
*kref
)
4030 struct rbd_spec
*spec
= container_of(kref
, struct rbd_spec
, kref
);
4032 kfree(spec
->pool_name
);
4033 kfree(spec
->image_id
);
4034 kfree(spec
->image_name
);
4035 kfree(spec
->snap_name
);
4039 static void rbd_dev_release(struct device
*dev
)
4041 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
4042 bool need_put
= !!rbd_dev
->opts
;
4044 rbd_put_client(rbd_dev
->rbd_client
);
4045 rbd_spec_put(rbd_dev
->spec
);
4046 kfree(rbd_dev
->opts
);
4050 * This is racy, but way better than putting module outside of
4051 * the release callback. The race window is pretty small, so
4052 * doing something similar to dm (dm-builtin.c) is overkill.
4055 module_put(THIS_MODULE
);
4058 static struct rbd_device
*rbd_dev_create(struct rbd_client
*rbdc
,
4059 struct rbd_spec
*spec
,
4060 struct rbd_options
*opts
)
4062 struct rbd_device
*rbd_dev
;
4064 rbd_dev
= kzalloc(sizeof (*rbd_dev
), GFP_KERNEL
);
4068 spin_lock_init(&rbd_dev
->lock
);
4070 atomic_set(&rbd_dev
->parent_ref
, 0);
4071 INIT_LIST_HEAD(&rbd_dev
->node
);
4072 init_rwsem(&rbd_dev
->header_rwsem
);
4074 rbd_dev
->dev
.bus
= &rbd_bus_type
;
4075 rbd_dev
->dev
.type
= &rbd_device_type
;
4076 rbd_dev
->dev
.parent
= &rbd_root_dev
;
4077 device_initialize(&rbd_dev
->dev
);
4079 rbd_dev
->rbd_client
= rbdc
;
4080 rbd_dev
->spec
= spec
;
4081 rbd_dev
->opts
= opts
;
4083 /* Initialize the layout used for all rbd requests */
4085 rbd_dev
->layout
.fl_stripe_unit
= cpu_to_le32(1 << RBD_MAX_OBJ_ORDER
);
4086 rbd_dev
->layout
.fl_stripe_count
= cpu_to_le32(1);
4087 rbd_dev
->layout
.fl_object_size
= cpu_to_le32(1 << RBD_MAX_OBJ_ORDER
);
4088 rbd_dev
->layout
.fl_pg_pool
= cpu_to_le32((u32
) spec
->pool_id
);
4091 * If this is a mapping rbd_dev (as opposed to a parent one),
4092 * pin our module. We have a ref from do_rbd_add(), so use
4096 __module_get(THIS_MODULE
);
4101 static void rbd_dev_destroy(struct rbd_device
*rbd_dev
)
4104 put_device(&rbd_dev
->dev
);
4108 * Get the size and object order for an image snapshot, or if
4109 * snap_id is CEPH_NOSNAP, gets this information for the base
4112 static int _rbd_dev_v2_snap_size(struct rbd_device
*rbd_dev
, u64 snap_id
,
4113 u8
*order
, u64
*snap_size
)
4115 __le64 snapid
= cpu_to_le64(snap_id
);
4120 } __attribute__ ((packed
)) size_buf
= { 0 };
4122 ret
= rbd_obj_method_sync(rbd_dev
, rbd_dev
->header_name
,
4124 &snapid
, sizeof (snapid
),
4125 &size_buf
, sizeof (size_buf
));
4126 dout("%s: rbd_obj_method_sync returned %d\n", __func__
, ret
);
4129 if (ret
< sizeof (size_buf
))
4133 *order
= size_buf
.order
;
4134 dout(" order %u", (unsigned int)*order
);
4136 *snap_size
= le64_to_cpu(size_buf
.size
);
4138 dout(" snap_id 0x%016llx snap_size = %llu\n",
4139 (unsigned long long)snap_id
,
4140 (unsigned long long)*snap_size
);
4145 static int rbd_dev_v2_image_size(struct rbd_device
*rbd_dev
)
4147 return _rbd_dev_v2_snap_size(rbd_dev
, CEPH_NOSNAP
,
4148 &rbd_dev
->header
.obj_order
,
4149 &rbd_dev
->header
.image_size
);
4152 static int rbd_dev_v2_object_prefix(struct rbd_device
*rbd_dev
)
4158 reply_buf
= kzalloc(RBD_OBJ_PREFIX_LEN_MAX
, GFP_KERNEL
);
4162 ret
= rbd_obj_method_sync(rbd_dev
, rbd_dev
->header_name
,
4163 "rbd", "get_object_prefix", NULL
, 0,
4164 reply_buf
, RBD_OBJ_PREFIX_LEN_MAX
);
4165 dout("%s: rbd_obj_method_sync returned %d\n", __func__
, ret
);
4170 rbd_dev
->header
.object_prefix
= ceph_extract_encoded_string(&p
,
4171 p
+ ret
, NULL
, GFP_NOIO
);
4174 if (IS_ERR(rbd_dev
->header
.object_prefix
)) {
4175 ret
= PTR_ERR(rbd_dev
->header
.object_prefix
);
4176 rbd_dev
->header
.object_prefix
= NULL
;
4178 dout(" object_prefix = %s\n", rbd_dev
->header
.object_prefix
);
4186 static int _rbd_dev_v2_snap_features(struct rbd_device
*rbd_dev
, u64 snap_id
,
4189 __le64 snapid
= cpu_to_le64(snap_id
);
4193 } __attribute__ ((packed
)) features_buf
= { 0 };
4197 ret
= rbd_obj_method_sync(rbd_dev
, rbd_dev
->header_name
,
4198 "rbd", "get_features",
4199 &snapid
, sizeof (snapid
),
4200 &features_buf
, sizeof (features_buf
));
4201 dout("%s: rbd_obj_method_sync returned %d\n", __func__
, ret
);
4204 if (ret
< sizeof (features_buf
))
4207 incompat
= le64_to_cpu(features_buf
.incompat
);
4208 if (incompat
& ~RBD_FEATURES_SUPPORTED
)
4211 *snap_features
= le64_to_cpu(features_buf
.features
);
4213 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4214 (unsigned long long)snap_id
,
4215 (unsigned long long)*snap_features
,
4216 (unsigned long long)le64_to_cpu(features_buf
.incompat
));
4221 static int rbd_dev_v2_features(struct rbd_device
*rbd_dev
)
4223 return _rbd_dev_v2_snap_features(rbd_dev
, CEPH_NOSNAP
,
4224 &rbd_dev
->header
.features
);
4227 static int rbd_dev_v2_parent_info(struct rbd_device
*rbd_dev
)
4229 struct rbd_spec
*parent_spec
;
4231 void *reply_buf
= NULL
;
4241 parent_spec
= rbd_spec_alloc();
4245 size
= sizeof (__le64
) + /* pool_id */
4246 sizeof (__le32
) + RBD_IMAGE_ID_LEN_MAX
+ /* image_id */
4247 sizeof (__le64
) + /* snap_id */
4248 sizeof (__le64
); /* overlap */
4249 reply_buf
= kmalloc(size
, GFP_KERNEL
);
4255 snapid
= cpu_to_le64(rbd_dev
->spec
->snap_id
);
4256 ret
= rbd_obj_method_sync(rbd_dev
, rbd_dev
->header_name
,
4257 "rbd", "get_parent",
4258 &snapid
, sizeof (snapid
),
4260 dout("%s: rbd_obj_method_sync returned %d\n", __func__
, ret
);
4265 end
= reply_buf
+ ret
;
4267 ceph_decode_64_safe(&p
, end
, pool_id
, out_err
);
4268 if (pool_id
== CEPH_NOPOOL
) {
4270 * Either the parent never existed, or we have
4271 * record of it but the image got flattened so it no
4272 * longer has a parent. When the parent of a
4273 * layered image disappears we immediately set the
4274 * overlap to 0. The effect of this is that all new
4275 * requests will be treated as if the image had no
4278 if (rbd_dev
->parent_overlap
) {
4279 rbd_dev
->parent_overlap
= 0;
4280 rbd_dev_parent_put(rbd_dev
);
4281 pr_info("%s: clone image has been flattened\n",
4282 rbd_dev
->disk
->disk_name
);
4285 goto out
; /* No parent? No problem. */
4288 /* The ceph file layout needs to fit pool id in 32 bits */
4291 if (pool_id
> (u64
)U32_MAX
) {
4292 rbd_warn(NULL
, "parent pool id too large (%llu > %u)",
4293 (unsigned long long)pool_id
, U32_MAX
);
4297 image_id
= ceph_extract_encoded_string(&p
, end
, NULL
, GFP_KERNEL
);
4298 if (IS_ERR(image_id
)) {
4299 ret
= PTR_ERR(image_id
);
4302 ceph_decode_64_safe(&p
, end
, snap_id
, out_err
);
4303 ceph_decode_64_safe(&p
, end
, overlap
, out_err
);
4306 * The parent won't change (except when the clone is
4307 * flattened, already handled that). So we only need to
4308 * record the parent spec we have not already done so.
4310 if (!rbd_dev
->parent_spec
) {
4311 parent_spec
->pool_id
= pool_id
;
4312 parent_spec
->image_id
= image_id
;
4313 parent_spec
->snap_id
= snap_id
;
4314 rbd_dev
->parent_spec
= parent_spec
;
4315 parent_spec
= NULL
; /* rbd_dev now owns this */
4321 * We always update the parent overlap. If it's zero we issue
4322 * a warning, as we will proceed as if there was no parent.
4326 /* refresh, careful to warn just once */
4327 if (rbd_dev
->parent_overlap
)
4329 "clone now standalone (overlap became 0)");
4332 rbd_warn(rbd_dev
, "clone is standalone (overlap 0)");
4335 rbd_dev
->parent_overlap
= overlap
;
4341 rbd_spec_put(parent_spec
);
4346 static int rbd_dev_v2_striping_info(struct rbd_device
*rbd_dev
)
4350 __le64 stripe_count
;
4351 } __attribute__ ((packed
)) striping_info_buf
= { 0 };
4352 size_t size
= sizeof (striping_info_buf
);
4359 ret
= rbd_obj_method_sync(rbd_dev
, rbd_dev
->header_name
,
4360 "rbd", "get_stripe_unit_count", NULL
, 0,
4361 (char *)&striping_info_buf
, size
);
4362 dout("%s: rbd_obj_method_sync returned %d\n", __func__
, ret
);
4369 * We don't actually support the "fancy striping" feature
4370 * (STRIPINGV2) yet, but if the striping sizes are the
4371 * defaults the behavior is the same as before. So find
4372 * out, and only fail if the image has non-default values.
4375 obj_size
= (u64
)1 << rbd_dev
->header
.obj_order
;
4376 p
= &striping_info_buf
;
4377 stripe_unit
= ceph_decode_64(&p
);
4378 if (stripe_unit
!= obj_size
) {
4379 rbd_warn(rbd_dev
, "unsupported stripe unit "
4380 "(got %llu want %llu)",
4381 stripe_unit
, obj_size
);
4384 stripe_count
= ceph_decode_64(&p
);
4385 if (stripe_count
!= 1) {
4386 rbd_warn(rbd_dev
, "unsupported stripe count "
4387 "(got %llu want 1)", stripe_count
);
4390 rbd_dev
->header
.stripe_unit
= stripe_unit
;
4391 rbd_dev
->header
.stripe_count
= stripe_count
;
4396 static char *rbd_dev_image_name(struct rbd_device
*rbd_dev
)
4398 size_t image_id_size
;
4403 void *reply_buf
= NULL
;
4405 char *image_name
= NULL
;
4408 rbd_assert(!rbd_dev
->spec
->image_name
);
4410 len
= strlen(rbd_dev
->spec
->image_id
);
4411 image_id_size
= sizeof (__le32
) + len
;
4412 image_id
= kmalloc(image_id_size
, GFP_KERNEL
);
4417 end
= image_id
+ image_id_size
;
4418 ceph_encode_string(&p
, end
, rbd_dev
->spec
->image_id
, (u32
)len
);
4420 size
= sizeof (__le32
) + RBD_IMAGE_NAME_LEN_MAX
;
4421 reply_buf
= kmalloc(size
, GFP_KERNEL
);
4425 ret
= rbd_obj_method_sync(rbd_dev
, RBD_DIRECTORY
,
4426 "rbd", "dir_get_name",
4427 image_id
, image_id_size
,
4432 end
= reply_buf
+ ret
;
4434 image_name
= ceph_extract_encoded_string(&p
, end
, &len
, GFP_KERNEL
);
4435 if (IS_ERR(image_name
))
4438 dout("%s: name is %s len is %zd\n", __func__
, image_name
, len
);
4446 static u64
rbd_v1_snap_id_by_name(struct rbd_device
*rbd_dev
, const char *name
)
4448 struct ceph_snap_context
*snapc
= rbd_dev
->header
.snapc
;
4449 const char *snap_name
;
4452 /* Skip over names until we find the one we are looking for */
4454 snap_name
= rbd_dev
->header
.snap_names
;
4455 while (which
< snapc
->num_snaps
) {
4456 if (!strcmp(name
, snap_name
))
4457 return snapc
->snaps
[which
];
4458 snap_name
+= strlen(snap_name
) + 1;
4464 static u64
rbd_v2_snap_id_by_name(struct rbd_device
*rbd_dev
, const char *name
)
4466 struct ceph_snap_context
*snapc
= rbd_dev
->header
.snapc
;
4471 for (which
= 0; !found
&& which
< snapc
->num_snaps
; which
++) {
4472 const char *snap_name
;
4474 snap_id
= snapc
->snaps
[which
];
4475 snap_name
= rbd_dev_v2_snap_name(rbd_dev
, snap_id
);
4476 if (IS_ERR(snap_name
)) {
4477 /* ignore no-longer existing snapshots */
4478 if (PTR_ERR(snap_name
) == -ENOENT
)
4483 found
= !strcmp(name
, snap_name
);
4486 return found
? snap_id
: CEPH_NOSNAP
;
4490 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4491 * no snapshot by that name is found, or if an error occurs.
4493 static u64
rbd_snap_id_by_name(struct rbd_device
*rbd_dev
, const char *name
)
4495 if (rbd_dev
->image_format
== 1)
4496 return rbd_v1_snap_id_by_name(rbd_dev
, name
);
4498 return rbd_v2_snap_id_by_name(rbd_dev
, name
);
4502 * An image being mapped will have everything but the snap id.
4504 static int rbd_spec_fill_snap_id(struct rbd_device
*rbd_dev
)
4506 struct rbd_spec
*spec
= rbd_dev
->spec
;
4508 rbd_assert(spec
->pool_id
!= CEPH_NOPOOL
&& spec
->pool_name
);
4509 rbd_assert(spec
->image_id
&& spec
->image_name
);
4510 rbd_assert(spec
->snap_name
);
4512 if (strcmp(spec
->snap_name
, RBD_SNAP_HEAD_NAME
)) {
4515 snap_id
= rbd_snap_id_by_name(rbd_dev
, spec
->snap_name
);
4516 if (snap_id
== CEPH_NOSNAP
)
4519 spec
->snap_id
= snap_id
;
4521 spec
->snap_id
= CEPH_NOSNAP
;
4528 * A parent image will have all ids but none of the names.
4530 * All names in an rbd spec are dynamically allocated. It's OK if we
4531 * can't figure out the name for an image id.
4533 static int rbd_spec_fill_names(struct rbd_device
*rbd_dev
)
4535 struct ceph_osd_client
*osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
4536 struct rbd_spec
*spec
= rbd_dev
->spec
;
4537 const char *pool_name
;
4538 const char *image_name
;
4539 const char *snap_name
;
4542 rbd_assert(spec
->pool_id
!= CEPH_NOPOOL
);
4543 rbd_assert(spec
->image_id
);
4544 rbd_assert(spec
->snap_id
!= CEPH_NOSNAP
);
4546 /* Get the pool name; we have to make our own copy of this */
4548 pool_name
= ceph_pg_pool_name_by_id(osdc
->osdmap
, spec
->pool_id
);
4550 rbd_warn(rbd_dev
, "no pool with id %llu", spec
->pool_id
);
4553 pool_name
= kstrdup(pool_name
, GFP_KERNEL
);
4557 /* Fetch the image name; tolerate failure here */
4559 image_name
= rbd_dev_image_name(rbd_dev
);
4561 rbd_warn(rbd_dev
, "unable to get image name");
4563 /* Fetch the snapshot name */
4565 snap_name
= rbd_snap_name(rbd_dev
, spec
->snap_id
);
4566 if (IS_ERR(snap_name
)) {
4567 ret
= PTR_ERR(snap_name
);
4571 spec
->pool_name
= pool_name
;
4572 spec
->image_name
= image_name
;
4573 spec
->snap_name
= snap_name
;
4583 static int rbd_dev_v2_snap_context(struct rbd_device
*rbd_dev
)
4592 struct ceph_snap_context
*snapc
;
4596 * We'll need room for the seq value (maximum snapshot id),
4597 * snapshot count, and array of that many snapshot ids.
4598 * For now we have a fixed upper limit on the number we're
4599 * prepared to receive.
4601 size
= sizeof (__le64
) + sizeof (__le32
) +
4602 RBD_MAX_SNAP_COUNT
* sizeof (__le64
);
4603 reply_buf
= kzalloc(size
, GFP_KERNEL
);
4607 ret
= rbd_obj_method_sync(rbd_dev
, rbd_dev
->header_name
,
4608 "rbd", "get_snapcontext", NULL
, 0,
4610 dout("%s: rbd_obj_method_sync returned %d\n", __func__
, ret
);
4615 end
= reply_buf
+ ret
;
4617 ceph_decode_64_safe(&p
, end
, seq
, out
);
4618 ceph_decode_32_safe(&p
, end
, snap_count
, out
);
4621 * Make sure the reported number of snapshot ids wouldn't go
4622 * beyond the end of our buffer. But before checking that,
4623 * make sure the computed size of the snapshot context we
4624 * allocate is representable in a size_t.
4626 if (snap_count
> (SIZE_MAX
- sizeof (struct ceph_snap_context
))
4631 if (!ceph_has_room(&p
, end
, snap_count
* sizeof (__le64
)))
4635 snapc
= ceph_create_snap_context(snap_count
, GFP_KERNEL
);
4641 for (i
= 0; i
< snap_count
; i
++)
4642 snapc
->snaps
[i
] = ceph_decode_64(&p
);
4644 ceph_put_snap_context(rbd_dev
->header
.snapc
);
4645 rbd_dev
->header
.snapc
= snapc
;
4647 dout(" snap context seq = %llu, snap_count = %u\n",
4648 (unsigned long long)seq
, (unsigned int)snap_count
);
4655 static const char *rbd_dev_v2_snap_name(struct rbd_device
*rbd_dev
,
4666 size
= sizeof (__le32
) + RBD_MAX_SNAP_NAME_LEN
;
4667 reply_buf
= kmalloc(size
, GFP_KERNEL
);
4669 return ERR_PTR(-ENOMEM
);
4671 snapid
= cpu_to_le64(snap_id
);
4672 ret
= rbd_obj_method_sync(rbd_dev
, rbd_dev
->header_name
,
4673 "rbd", "get_snapshot_name",
4674 &snapid
, sizeof (snapid
),
4676 dout("%s: rbd_obj_method_sync returned %d\n", __func__
, ret
);
4678 snap_name
= ERR_PTR(ret
);
4683 end
= reply_buf
+ ret
;
4684 snap_name
= ceph_extract_encoded_string(&p
, end
, NULL
, GFP_KERNEL
);
4685 if (IS_ERR(snap_name
))
4688 dout(" snap_id 0x%016llx snap_name = %s\n",
4689 (unsigned long long)snap_id
, snap_name
);
4696 static int rbd_dev_v2_header_info(struct rbd_device
*rbd_dev
)
4698 bool first_time
= rbd_dev
->header
.object_prefix
== NULL
;
4701 ret
= rbd_dev_v2_image_size(rbd_dev
);
4706 ret
= rbd_dev_v2_header_onetime(rbd_dev
);
4711 ret
= rbd_dev_v2_snap_context(rbd_dev
);
4712 if (ret
&& first_time
) {
4713 kfree(rbd_dev
->header
.object_prefix
);
4714 rbd_dev
->header
.object_prefix
= NULL
;
4720 static int rbd_dev_header_info(struct rbd_device
*rbd_dev
)
4722 rbd_assert(rbd_image_format_valid(rbd_dev
->image_format
));
4724 if (rbd_dev
->image_format
== 1)
4725 return rbd_dev_v1_header_info(rbd_dev
);
4727 return rbd_dev_v2_header_info(rbd_dev
);
4731 * Get a unique rbd identifier for the given new rbd_dev, and add
4732 * the rbd_dev to the global list.
4734 static int rbd_dev_id_get(struct rbd_device
*rbd_dev
)
4738 new_dev_id
= ida_simple_get(&rbd_dev_id_ida
,
4739 0, minor_to_rbd_dev_id(1 << MINORBITS
),
4744 rbd_dev
->dev_id
= new_dev_id
;
4746 spin_lock(&rbd_dev_list_lock
);
4747 list_add_tail(&rbd_dev
->node
, &rbd_dev_list
);
4748 spin_unlock(&rbd_dev_list_lock
);
4750 dout("rbd_dev %p given dev id %d\n", rbd_dev
, rbd_dev
->dev_id
);
4756 * Remove an rbd_dev from the global list, and record that its
4757 * identifier is no longer in use.
4759 static void rbd_dev_id_put(struct rbd_device
*rbd_dev
)
4761 spin_lock(&rbd_dev_list_lock
);
4762 list_del_init(&rbd_dev
->node
);
4763 spin_unlock(&rbd_dev_list_lock
);
4765 ida_simple_remove(&rbd_dev_id_ida
, rbd_dev
->dev_id
);
4767 dout("rbd_dev %p released dev id %d\n", rbd_dev
, rbd_dev
->dev_id
);
4771 * Skips over white space at *buf, and updates *buf to point to the
4772 * first found non-space character (if any). Returns the length of
4773 * the token (string of non-white space characters) found. Note
4774 * that *buf must be terminated with '\0'.
4776 static inline size_t next_token(const char **buf
)
4779 * These are the characters that produce nonzero for
4780 * isspace() in the "C" and "POSIX" locales.
4782 const char *spaces
= " \f\n\r\t\v";
4784 *buf
+= strspn(*buf
, spaces
); /* Find start of token */
4786 return strcspn(*buf
, spaces
); /* Return token length */
4790 * Finds the next token in *buf, dynamically allocates a buffer big
4791 * enough to hold a copy of it, and copies the token into the new
4792 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4793 * that a duplicate buffer is created even for a zero-length token.
4795 * Returns a pointer to the newly-allocated duplicate, or a null
4796 * pointer if memory for the duplicate was not available. If
4797 * the lenp argument is a non-null pointer, the length of the token
4798 * (not including the '\0') is returned in *lenp.
4800 * If successful, the *buf pointer will be updated to point beyond
4801 * the end of the found token.
4803 * Note: uses GFP_KERNEL for allocation.
4805 static inline char *dup_token(const char **buf
, size_t *lenp
)
4810 len
= next_token(buf
);
4811 dup
= kmemdup(*buf
, len
+ 1, GFP_KERNEL
);
4814 *(dup
+ len
) = '\0';
4824 * Parse the options provided for an "rbd add" (i.e., rbd image
4825 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4826 * and the data written is passed here via a NUL-terminated buffer.
4827 * Returns 0 if successful or an error code otherwise.
4829 * The information extracted from these options is recorded in
4830 * the other parameters which return dynamically-allocated
4833 * The address of a pointer that will refer to a ceph options
4834 * structure. Caller must release the returned pointer using
4835 * ceph_destroy_options() when it is no longer needed.
4837 * Address of an rbd options pointer. Fully initialized by
4838 * this function; caller must release with kfree().
4840 * Address of an rbd image specification pointer. Fully
4841 * initialized by this function based on parsed options.
4842 * Caller must release with rbd_spec_put().
4844 * The options passed take this form:
4845 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4848 * A comma-separated list of one or more monitor addresses.
4849 * A monitor address is an ip address, optionally followed
4850 * by a port number (separated by a colon).
4851 * I.e.: ip1[:port1][,ip2[:port2]...]
4853 * A comma-separated list of ceph and/or rbd options.
4855 * The name of the rados pool containing the rbd image.
4857 * The name of the image in that pool to map.
4859 * An optional snapshot id. If provided, the mapping will
4860 * present data from the image at the time that snapshot was
4861 * created. The image head is used if no snapshot id is
4862 * provided. Snapshot mappings are always read-only.
4864 static int rbd_add_parse_args(const char *buf
,
4865 struct ceph_options
**ceph_opts
,
4866 struct rbd_options
**opts
,
4867 struct rbd_spec
**rbd_spec
)
4871 const char *mon_addrs
;
4873 size_t mon_addrs_size
;
4874 struct rbd_spec
*spec
= NULL
;
4875 struct rbd_options
*rbd_opts
= NULL
;
4876 struct ceph_options
*copts
;
4879 /* The first four tokens are required */
4881 len
= next_token(&buf
);
4883 rbd_warn(NULL
, "no monitor address(es) provided");
4887 mon_addrs_size
= len
+ 1;
4891 options
= dup_token(&buf
, NULL
);
4895 rbd_warn(NULL
, "no options provided");
4899 spec
= rbd_spec_alloc();
4903 spec
->pool_name
= dup_token(&buf
, NULL
);
4904 if (!spec
->pool_name
)
4906 if (!*spec
->pool_name
) {
4907 rbd_warn(NULL
, "no pool name provided");
4911 spec
->image_name
= dup_token(&buf
, NULL
);
4912 if (!spec
->image_name
)
4914 if (!*spec
->image_name
) {
4915 rbd_warn(NULL
, "no image name provided");
4920 * Snapshot name is optional; default is to use "-"
4921 * (indicating the head/no snapshot).
4923 len
= next_token(&buf
);
4925 buf
= RBD_SNAP_HEAD_NAME
; /* No snapshot supplied */
4926 len
= sizeof (RBD_SNAP_HEAD_NAME
) - 1;
4927 } else if (len
> RBD_MAX_SNAP_NAME_LEN
) {
4928 ret
= -ENAMETOOLONG
;
4931 snap_name
= kmemdup(buf
, len
+ 1, GFP_KERNEL
);
4934 *(snap_name
+ len
) = '\0';
4935 spec
->snap_name
= snap_name
;
4937 /* Initialize all rbd options to the defaults */
4939 rbd_opts
= kzalloc(sizeof (*rbd_opts
), GFP_KERNEL
);
4943 rbd_opts
->read_only
= RBD_READ_ONLY_DEFAULT
;
4944 rbd_opts
->queue_depth
= RBD_QUEUE_DEPTH_DEFAULT
;
4946 copts
= ceph_parse_options(options
, mon_addrs
,
4947 mon_addrs
+ mon_addrs_size
- 1,
4948 parse_rbd_opts_token
, rbd_opts
);
4949 if (IS_ERR(copts
)) {
4950 ret
= PTR_ERR(copts
);
4971 * Return pool id (>= 0) or a negative error code.
4973 static int rbd_add_get_pool_id(struct rbd_client
*rbdc
, const char *pool_name
)
4975 struct ceph_options
*opts
= rbdc
->client
->options
;
4981 ret
= ceph_pg_poolid_by_name(rbdc
->client
->osdc
.osdmap
, pool_name
);
4982 if (ret
== -ENOENT
&& tries
++ < 1) {
4983 ret
= ceph_monc_do_get_version(&rbdc
->client
->monc
, "osdmap",
4988 if (rbdc
->client
->osdc
.osdmap
->epoch
< newest_epoch
) {
4989 ceph_monc_request_next_osdmap(&rbdc
->client
->monc
);
4990 (void) ceph_monc_wait_osdmap(&rbdc
->client
->monc
,
4992 opts
->mount_timeout
);
4995 /* the osdmap we have is new enough */
5004 * An rbd format 2 image has a unique identifier, distinct from the
5005 * name given to it by the user. Internally, that identifier is
5006 * what's used to specify the names of objects related to the image.
5008 * A special "rbd id" object is used to map an rbd image name to its
5009 * id. If that object doesn't exist, then there is no v2 rbd image
5010 * with the supplied name.
5012 * This function will record the given rbd_dev's image_id field if
5013 * it can be determined, and in that case will return 0. If any
5014 * errors occur a negative errno will be returned and the rbd_dev's
5015 * image_id field will be unchanged (and should be NULL).
5017 static int rbd_dev_image_id(struct rbd_device
*rbd_dev
)
5026 * When probing a parent image, the image id is already
5027 * known (and the image name likely is not). There's no
5028 * need to fetch the image id again in this case. We
5029 * do still need to set the image format though.
5031 if (rbd_dev
->spec
->image_id
) {
5032 rbd_dev
->image_format
= *rbd_dev
->spec
->image_id
? 2 : 1;
5038 * First, see if the format 2 image id file exists, and if
5039 * so, get the image's persistent id from it.
5041 size
= sizeof (RBD_ID_PREFIX
) + strlen(rbd_dev
->spec
->image_name
);
5042 object_name
= kmalloc(size
, GFP_NOIO
);
5045 sprintf(object_name
, "%s%s", RBD_ID_PREFIX
, rbd_dev
->spec
->image_name
);
5046 dout("rbd id object name is %s\n", object_name
);
5048 /* Response will be an encoded string, which includes a length */
5050 size
= sizeof (__le32
) + RBD_IMAGE_ID_LEN_MAX
;
5051 response
= kzalloc(size
, GFP_NOIO
);
5057 /* If it doesn't exist we'll assume it's a format 1 image */
5059 ret
= rbd_obj_method_sync(rbd_dev
, object_name
,
5060 "rbd", "get_id", NULL
, 0,
5061 response
, RBD_IMAGE_ID_LEN_MAX
);
5062 dout("%s: rbd_obj_method_sync returned %d\n", __func__
, ret
);
5063 if (ret
== -ENOENT
) {
5064 image_id
= kstrdup("", GFP_KERNEL
);
5065 ret
= image_id
? 0 : -ENOMEM
;
5067 rbd_dev
->image_format
= 1;
5068 } else if (ret
>= 0) {
5071 image_id
= ceph_extract_encoded_string(&p
, p
+ ret
,
5073 ret
= PTR_ERR_OR_ZERO(image_id
);
5075 rbd_dev
->image_format
= 2;
5079 rbd_dev
->spec
->image_id
= image_id
;
5080 dout("image_id is %s\n", image_id
);
5090 * Undo whatever state changes are made by v1 or v2 header info
5093 static void rbd_dev_unprobe(struct rbd_device
*rbd_dev
)
5095 struct rbd_image_header
*header
;
5097 rbd_dev_parent_put(rbd_dev
);
5099 /* Free dynamic fields from the header, then zero it out */
5101 header
= &rbd_dev
->header
;
5102 ceph_put_snap_context(header
->snapc
);
5103 kfree(header
->snap_sizes
);
5104 kfree(header
->snap_names
);
5105 kfree(header
->object_prefix
);
5106 memset(header
, 0, sizeof (*header
));
5109 static int rbd_dev_v2_header_onetime(struct rbd_device
*rbd_dev
)
5113 ret
= rbd_dev_v2_object_prefix(rbd_dev
);
5118 * Get the and check features for the image. Currently the
5119 * features are assumed to never change.
5121 ret
= rbd_dev_v2_features(rbd_dev
);
5125 /* If the image supports fancy striping, get its parameters */
5127 if (rbd_dev
->header
.features
& RBD_FEATURE_STRIPINGV2
) {
5128 ret
= rbd_dev_v2_striping_info(rbd_dev
);
5132 /* No support for crypto and compression type format 2 images */
5136 rbd_dev
->header
.features
= 0;
5137 kfree(rbd_dev
->header
.object_prefix
);
5138 rbd_dev
->header
.object_prefix
= NULL
;
5144 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5145 * rbd_dev_image_probe() recursion depth, which means it's also the
5146 * length of the already discovered part of the parent chain.
5148 static int rbd_dev_probe_parent(struct rbd_device
*rbd_dev
, int depth
)
5150 struct rbd_device
*parent
= NULL
;
5153 if (!rbd_dev
->parent_spec
)
5156 if (++depth
> RBD_MAX_PARENT_CHAIN_LEN
) {
5157 pr_info("parent chain is too long (%d)\n", depth
);
5162 parent
= rbd_dev_create(rbd_dev
->rbd_client
, rbd_dev
->parent_spec
,
5170 * Images related by parent/child relationships always share
5171 * rbd_client and spec/parent_spec, so bump their refcounts.
5173 __rbd_get_client(rbd_dev
->rbd_client
);
5174 rbd_spec_get(rbd_dev
->parent_spec
);
5176 ret
= rbd_dev_image_probe(parent
, depth
);
5180 rbd_dev
->parent
= parent
;
5181 atomic_set(&rbd_dev
->parent_ref
, 1);
5185 rbd_dev_unparent(rbd_dev
);
5186 rbd_dev_destroy(parent
);
5190 static int rbd_dev_device_setup(struct rbd_device
*rbd_dev
)
5194 /* Get an id and fill in device name. */
5196 ret
= rbd_dev_id_get(rbd_dev
);
5200 BUILD_BUG_ON(DEV_NAME_LEN
5201 < sizeof (RBD_DRV_NAME
) + MAX_INT_FORMAT_WIDTH
);
5202 sprintf(rbd_dev
->name
, "%s%d", RBD_DRV_NAME
, rbd_dev
->dev_id
);
5204 /* Record our major and minor device numbers. */
5206 if (!single_major
) {
5207 ret
= register_blkdev(0, rbd_dev
->name
);
5211 rbd_dev
->major
= ret
;
5214 rbd_dev
->major
= rbd_major
;
5215 rbd_dev
->minor
= rbd_dev_id_to_minor(rbd_dev
->dev_id
);
5218 /* Set up the blkdev mapping. */
5220 ret
= rbd_init_disk(rbd_dev
);
5222 goto err_out_blkdev
;
5224 ret
= rbd_dev_mapping_set(rbd_dev
);
5228 set_capacity(rbd_dev
->disk
, rbd_dev
->mapping
.size
/ SECTOR_SIZE
);
5229 set_disk_ro(rbd_dev
->disk
, rbd_dev
->mapping
.read_only
);
5231 dev_set_name(&rbd_dev
->dev
, "%d", rbd_dev
->dev_id
);
5232 ret
= device_add(&rbd_dev
->dev
);
5234 goto err_out_mapping
;
5236 /* Everything's ready. Announce the disk to the world. */
5238 set_bit(RBD_DEV_FLAG_EXISTS
, &rbd_dev
->flags
);
5239 add_disk(rbd_dev
->disk
);
5241 pr_info("%s: added with size 0x%llx\n", rbd_dev
->disk
->disk_name
,
5242 (unsigned long long) rbd_dev
->mapping
.size
);
5247 rbd_dev_mapping_clear(rbd_dev
);
5249 rbd_free_disk(rbd_dev
);
5252 unregister_blkdev(rbd_dev
->major
, rbd_dev
->name
);
5254 rbd_dev_id_put(rbd_dev
);
5258 static int rbd_dev_header_name(struct rbd_device
*rbd_dev
)
5260 struct rbd_spec
*spec
= rbd_dev
->spec
;
5263 /* Record the header object name for this rbd image. */
5265 rbd_assert(rbd_image_format_valid(rbd_dev
->image_format
));
5267 if (rbd_dev
->image_format
== 1)
5268 size
= strlen(spec
->image_name
) + sizeof (RBD_SUFFIX
);
5270 size
= sizeof (RBD_HEADER_PREFIX
) + strlen(spec
->image_id
);
5272 rbd_dev
->header_name
= kmalloc(size
, GFP_KERNEL
);
5273 if (!rbd_dev
->header_name
)
5276 if (rbd_dev
->image_format
== 1)
5277 sprintf(rbd_dev
->header_name
, "%s%s",
5278 spec
->image_name
, RBD_SUFFIX
);
5280 sprintf(rbd_dev
->header_name
, "%s%s",
5281 RBD_HEADER_PREFIX
, spec
->image_id
);
5285 static void rbd_dev_image_release(struct rbd_device
*rbd_dev
)
5287 rbd_dev_unprobe(rbd_dev
);
5288 kfree(rbd_dev
->header_name
);
5289 rbd_dev
->header_name
= NULL
;
5290 rbd_dev
->image_format
= 0;
5291 kfree(rbd_dev
->spec
->image_id
);
5292 rbd_dev
->spec
->image_id
= NULL
;
5294 rbd_dev_destroy(rbd_dev
);
5298 * Probe for the existence of the header object for the given rbd
5299 * device. If this image is the one being mapped (i.e., not a
5300 * parent), initiate a watch on its header object before using that
5301 * object to get detailed information about the rbd image.
5303 static int rbd_dev_image_probe(struct rbd_device
*rbd_dev
, int depth
)
5308 * Get the id from the image id object. Unless there's an
5309 * error, rbd_dev->spec->image_id will be filled in with
5310 * a dynamically-allocated string, and rbd_dev->image_format
5311 * will be set to either 1 or 2.
5313 ret
= rbd_dev_image_id(rbd_dev
);
5317 ret
= rbd_dev_header_name(rbd_dev
);
5319 goto err_out_format
;
5322 ret
= rbd_dev_header_watch_sync(rbd_dev
);
5325 pr_info("image %s/%s does not exist\n",
5326 rbd_dev
->spec
->pool_name
,
5327 rbd_dev
->spec
->image_name
);
5328 goto out_header_name
;
5332 ret
= rbd_dev_header_info(rbd_dev
);
5337 * If this image is the one being mapped, we have pool name and
5338 * id, image name and id, and snap name - need to fill snap id.
5339 * Otherwise this is a parent image, identified by pool, image
5340 * and snap ids - need to fill in names for those ids.
5343 ret
= rbd_spec_fill_snap_id(rbd_dev
);
5345 ret
= rbd_spec_fill_names(rbd_dev
);
5348 pr_info("snap %s/%s@%s does not exist\n",
5349 rbd_dev
->spec
->pool_name
,
5350 rbd_dev
->spec
->image_name
,
5351 rbd_dev
->spec
->snap_name
);
5355 if (rbd_dev
->header
.features
& RBD_FEATURE_LAYERING
) {
5356 ret
= rbd_dev_v2_parent_info(rbd_dev
);
5361 * Need to warn users if this image is the one being
5362 * mapped and has a parent.
5364 if (!depth
&& rbd_dev
->parent_spec
)
5366 "WARNING: kernel layering is EXPERIMENTAL!");
5369 ret
= rbd_dev_probe_parent(rbd_dev
, depth
);
5373 dout("discovered format %u image, header name is %s\n",
5374 rbd_dev
->image_format
, rbd_dev
->header_name
);
5378 rbd_dev_unprobe(rbd_dev
);
5381 rbd_dev_header_unwatch_sync(rbd_dev
);
5383 kfree(rbd_dev
->header_name
);
5384 rbd_dev
->header_name
= NULL
;
5386 rbd_dev
->image_format
= 0;
5387 kfree(rbd_dev
->spec
->image_id
);
5388 rbd_dev
->spec
->image_id
= NULL
;
5392 static ssize_t
do_rbd_add(struct bus_type
*bus
,
5396 struct rbd_device
*rbd_dev
= NULL
;
5397 struct ceph_options
*ceph_opts
= NULL
;
5398 struct rbd_options
*rbd_opts
= NULL
;
5399 struct rbd_spec
*spec
= NULL
;
5400 struct rbd_client
*rbdc
;
5404 if (!try_module_get(THIS_MODULE
))
5407 /* parse add command */
5408 rc
= rbd_add_parse_args(buf
, &ceph_opts
, &rbd_opts
, &spec
);
5412 rbdc
= rbd_get_client(ceph_opts
);
5419 rc
= rbd_add_get_pool_id(rbdc
, spec
->pool_name
);
5422 pr_info("pool %s does not exist\n", spec
->pool_name
);
5423 goto err_out_client
;
5425 spec
->pool_id
= (u64
)rc
;
5427 /* The ceph file layout needs to fit pool id in 32 bits */
5429 if (spec
->pool_id
> (u64
)U32_MAX
) {
5430 rbd_warn(NULL
, "pool id too large (%llu > %u)",
5431 (unsigned long long)spec
->pool_id
, U32_MAX
);
5433 goto err_out_client
;
5436 rbd_dev
= rbd_dev_create(rbdc
, spec
, rbd_opts
);
5439 goto err_out_client
;
5441 rbdc
= NULL
; /* rbd_dev now owns this */
5442 spec
= NULL
; /* rbd_dev now owns this */
5443 rbd_opts
= NULL
; /* rbd_dev now owns this */
5445 rc
= rbd_dev_image_probe(rbd_dev
, 0);
5447 goto err_out_rbd_dev
;
5449 /* If we are mapping a snapshot it must be marked read-only */
5451 read_only
= rbd_dev
->opts
->read_only
;
5452 if (rbd_dev
->spec
->snap_id
!= CEPH_NOSNAP
)
5454 rbd_dev
->mapping
.read_only
= read_only
;
5456 rc
= rbd_dev_device_setup(rbd_dev
);
5459 * rbd_dev_header_unwatch_sync() can't be moved into
5460 * rbd_dev_image_release() without refactoring, see
5461 * commit 1f3ef78861ac.
5463 rbd_dev_header_unwatch_sync(rbd_dev
);
5464 rbd_dev_image_release(rbd_dev
);
5470 module_put(THIS_MODULE
);
5474 rbd_dev_destroy(rbd_dev
);
5476 rbd_put_client(rbdc
);
5483 static ssize_t
rbd_add(struct bus_type
*bus
,
5490 return do_rbd_add(bus
, buf
, count
);
5493 static ssize_t
rbd_add_single_major(struct bus_type
*bus
,
5497 return do_rbd_add(bus
, buf
, count
);
5500 static void rbd_dev_device_release(struct rbd_device
*rbd_dev
)
5502 rbd_free_disk(rbd_dev
);
5503 clear_bit(RBD_DEV_FLAG_EXISTS
, &rbd_dev
->flags
);
5504 device_del(&rbd_dev
->dev
);
5505 rbd_dev_mapping_clear(rbd_dev
);
5507 unregister_blkdev(rbd_dev
->major
, rbd_dev
->name
);
5508 rbd_dev_id_put(rbd_dev
);
5511 static void rbd_dev_remove_parent(struct rbd_device
*rbd_dev
)
5513 while (rbd_dev
->parent
) {
5514 struct rbd_device
*first
= rbd_dev
;
5515 struct rbd_device
*second
= first
->parent
;
5516 struct rbd_device
*third
;
5519 * Follow to the parent with no grandparent and
5522 while (second
&& (third
= second
->parent
)) {
5527 rbd_dev_image_release(second
);
5528 first
->parent
= NULL
;
5529 first
->parent_overlap
= 0;
5531 rbd_assert(first
->parent_spec
);
5532 rbd_spec_put(first
->parent_spec
);
5533 first
->parent_spec
= NULL
;
5537 static ssize_t
do_rbd_remove(struct bus_type
*bus
,
5541 struct rbd_device
*rbd_dev
= NULL
;
5542 struct list_head
*tmp
;
5545 bool already
= false;
5548 ret
= kstrtoul(buf
, 10, &ul
);
5552 /* convert to int; abort if we lost anything in the conversion */
5558 spin_lock(&rbd_dev_list_lock
);
5559 list_for_each(tmp
, &rbd_dev_list
) {
5560 rbd_dev
= list_entry(tmp
, struct rbd_device
, node
);
5561 if (rbd_dev
->dev_id
== dev_id
) {
5567 spin_lock_irq(&rbd_dev
->lock
);
5568 if (rbd_dev
->open_count
)
5571 already
= test_and_set_bit(RBD_DEV_FLAG_REMOVING
,
5573 spin_unlock_irq(&rbd_dev
->lock
);
5575 spin_unlock(&rbd_dev_list_lock
);
5576 if (ret
< 0 || already
)
5579 rbd_dev_header_unwatch_sync(rbd_dev
);
5581 * flush remaining watch callbacks - these must be complete
5582 * before the osd_client is shutdown
5584 dout("%s: flushing notifies", __func__
);
5585 ceph_osdc_flush_notifies(&rbd_dev
->rbd_client
->client
->osdc
);
5588 * Don't free anything from rbd_dev->disk until after all
5589 * notifies are completely processed. Otherwise
5590 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5591 * in a potential use after free of rbd_dev->disk or rbd_dev.
5593 rbd_dev_device_release(rbd_dev
);
5594 rbd_dev_image_release(rbd_dev
);
5599 static ssize_t
rbd_remove(struct bus_type
*bus
,
5606 return do_rbd_remove(bus
, buf
, count
);
5609 static ssize_t
rbd_remove_single_major(struct bus_type
*bus
,
5613 return do_rbd_remove(bus
, buf
, count
);
5617 * create control files in sysfs
5620 static int rbd_sysfs_init(void)
5624 ret
= device_register(&rbd_root_dev
);
5628 ret
= bus_register(&rbd_bus_type
);
5630 device_unregister(&rbd_root_dev
);
5635 static void rbd_sysfs_cleanup(void)
5637 bus_unregister(&rbd_bus_type
);
5638 device_unregister(&rbd_root_dev
);
5641 static int rbd_slab_init(void)
5643 rbd_assert(!rbd_img_request_cache
);
5644 rbd_img_request_cache
= KMEM_CACHE(rbd_img_request
, 0);
5645 if (!rbd_img_request_cache
)
5648 rbd_assert(!rbd_obj_request_cache
);
5649 rbd_obj_request_cache
= KMEM_CACHE(rbd_obj_request
, 0);
5650 if (!rbd_obj_request_cache
)
5653 rbd_assert(!rbd_segment_name_cache
);
5654 rbd_segment_name_cache
= kmem_cache_create("rbd_segment_name",
5655 CEPH_MAX_OID_NAME_LEN
+ 1, 1, 0, NULL
);
5656 if (rbd_segment_name_cache
)
5659 kmem_cache_destroy(rbd_obj_request_cache
);
5660 rbd_obj_request_cache
= NULL
;
5662 kmem_cache_destroy(rbd_img_request_cache
);
5663 rbd_img_request_cache
= NULL
;
5668 static void rbd_slab_exit(void)
5670 rbd_assert(rbd_segment_name_cache
);
5671 kmem_cache_destroy(rbd_segment_name_cache
);
5672 rbd_segment_name_cache
= NULL
;
5674 rbd_assert(rbd_obj_request_cache
);
5675 kmem_cache_destroy(rbd_obj_request_cache
);
5676 rbd_obj_request_cache
= NULL
;
5678 rbd_assert(rbd_img_request_cache
);
5679 kmem_cache_destroy(rbd_img_request_cache
);
5680 rbd_img_request_cache
= NULL
;
5683 static int __init
rbd_init(void)
5687 if (!libceph_compatible(NULL
)) {
5688 rbd_warn(NULL
, "libceph incompatibility (quitting)");
5692 rc
= rbd_slab_init();
5697 * The number of active work items is limited by the number of
5698 * rbd devices * queue depth, so leave @max_active at default.
5700 rbd_wq
= alloc_workqueue(RBD_DRV_NAME
, WQ_MEM_RECLAIM
, 0);
5707 rbd_major
= register_blkdev(0, RBD_DRV_NAME
);
5708 if (rbd_major
< 0) {
5714 rc
= rbd_sysfs_init();
5716 goto err_out_blkdev
;
5719 pr_info("loaded (major %d)\n", rbd_major
);
5721 pr_info("loaded\n");
5727 unregister_blkdev(rbd_major
, RBD_DRV_NAME
);
5729 destroy_workqueue(rbd_wq
);
5735 static void __exit
rbd_exit(void)
5737 ida_destroy(&rbd_dev_id_ida
);
5738 rbd_sysfs_cleanup();
5740 unregister_blkdev(rbd_major
, RBD_DRV_NAME
);
5741 destroy_workqueue(rbd_wq
);
5745 module_init(rbd_init
);
5746 module_exit(rbd_exit
);
5748 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5749 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5750 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5751 /* following authorship retained from original osdblk.c */
5752 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5754 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5755 MODULE_LICENSE("GPL");