4 * Incoming and outgoing message routing for an IPMI interface.
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
10 * Copyright 2002 MontaVista Software Inc.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
50 #define PFX "IPMI message handler: "
52 #define IPMI_DRIVER_VERSION "39.2"
54 static struct ipmi_recv_msg
*ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf
);
58 static void need_waiter(ipmi_smi_t intf
);
59 static int handle_one_recv_msg(ipmi_smi_t intf
,
60 struct ipmi_smi_msg
*msg
);
62 static int initialized
;
65 static struct proc_dir_entry
*proc_ipmi_root
;
66 #endif /* CONFIG_PROC_FS */
68 /* Remain in auto-maintenance mode for this amount of time (in ms). */
69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
71 #define MAX_EVENTS_IN_QUEUE 25
74 * Don't let a message sit in a queue forever, always time it with at lest
75 * the max message timer. This is in milliseconds.
77 #define MAX_MSG_TIMEOUT 60000
79 /* Call every ~1000 ms. */
80 #define IPMI_TIMEOUT_TIME 1000
82 /* How many jiffies does it take to get to the timeout time. */
83 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
86 * Request events from the queue every second (this is the number of
87 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
88 * future, IPMI will add a way to know immediately if an event is in
89 * the queue and this silliness can go away.
91 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
94 * The main "user" data structure.
97 struct list_head link
;
99 /* Set to false when the user is destroyed. */
102 struct kref refcount
;
104 /* The upper layer that handles receive messages. */
105 struct ipmi_user_hndl
*handler
;
108 /* The interface this user is bound to. */
111 /* Does this interface receive IPMI events? */
116 struct list_head link
;
124 * This is used to form a linked lised during mass deletion.
125 * Since this is in an RCU list, we cannot use the link above
126 * or change any data until the RCU period completes. So we
127 * use this next variable during mass deletion so we can have
128 * a list and don't have to wait and restart the search on
129 * every individual deletion of a command.
131 struct cmd_rcvr
*next
;
135 unsigned int inuse
: 1;
136 unsigned int broadcast
: 1;
138 unsigned long timeout
;
139 unsigned long orig_timeout
;
140 unsigned int retries_left
;
143 * To verify on an incoming send message response that this is
144 * the message that the response is for, we keep a sequence id
145 * and increment it every time we send a message.
150 * This is held so we can properly respond to the message on a
151 * timeout, and it is used to hold the temporary data for
152 * retransmission, too.
154 struct ipmi_recv_msg
*recv_msg
;
158 * Store the information in a msgid (long) to allow us to find a
159 * sequence table entry from the msgid.
161 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
163 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
165 seq = ((msgid >> 26) & 0x3f); \
166 seqid = (msgid & 0x3fffff); \
169 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
171 struct ipmi_channel
{
172 unsigned char medium
;
173 unsigned char protocol
;
176 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
177 * but may be changed by the user.
179 unsigned char address
;
182 * My LUN. This should generally stay the SMS LUN, but just in
188 #ifdef CONFIG_PROC_FS
189 struct ipmi_proc_entry
{
191 struct ipmi_proc_entry
*next
;
196 struct platform_device pdev
;
197 struct ipmi_device_id id
;
198 unsigned char guid
[16];
201 struct kref usecount
;
203 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
206 * Various statistics for IPMI, these index stats[] in the ipmi_smi
209 enum ipmi_stat_indexes
{
210 /* Commands we got from the user that were invalid. */
211 IPMI_STAT_sent_invalid_commands
= 0,
213 /* Commands we sent to the MC. */
214 IPMI_STAT_sent_local_commands
,
216 /* Responses from the MC that were delivered to a user. */
217 IPMI_STAT_handled_local_responses
,
219 /* Responses from the MC that were not delivered to a user. */
220 IPMI_STAT_unhandled_local_responses
,
222 /* Commands we sent out to the IPMB bus. */
223 IPMI_STAT_sent_ipmb_commands
,
225 /* Commands sent on the IPMB that had errors on the SEND CMD */
226 IPMI_STAT_sent_ipmb_command_errs
,
228 /* Each retransmit increments this count. */
229 IPMI_STAT_retransmitted_ipmb_commands
,
232 * When a message times out (runs out of retransmits) this is
235 IPMI_STAT_timed_out_ipmb_commands
,
238 * This is like above, but for broadcasts. Broadcasts are
239 * *not* included in the above count (they are expected to
242 IPMI_STAT_timed_out_ipmb_broadcasts
,
244 /* Responses I have sent to the IPMB bus. */
245 IPMI_STAT_sent_ipmb_responses
,
247 /* The response was delivered to the user. */
248 IPMI_STAT_handled_ipmb_responses
,
250 /* The response had invalid data in it. */
251 IPMI_STAT_invalid_ipmb_responses
,
253 /* The response didn't have anyone waiting for it. */
254 IPMI_STAT_unhandled_ipmb_responses
,
256 /* Commands we sent out to the IPMB bus. */
257 IPMI_STAT_sent_lan_commands
,
259 /* Commands sent on the IPMB that had errors on the SEND CMD */
260 IPMI_STAT_sent_lan_command_errs
,
262 /* Each retransmit increments this count. */
263 IPMI_STAT_retransmitted_lan_commands
,
266 * When a message times out (runs out of retransmits) this is
269 IPMI_STAT_timed_out_lan_commands
,
271 /* Responses I have sent to the IPMB bus. */
272 IPMI_STAT_sent_lan_responses
,
274 /* The response was delivered to the user. */
275 IPMI_STAT_handled_lan_responses
,
277 /* The response had invalid data in it. */
278 IPMI_STAT_invalid_lan_responses
,
280 /* The response didn't have anyone waiting for it. */
281 IPMI_STAT_unhandled_lan_responses
,
283 /* The command was delivered to the user. */
284 IPMI_STAT_handled_commands
,
286 /* The command had invalid data in it. */
287 IPMI_STAT_invalid_commands
,
289 /* The command didn't have anyone waiting for it. */
290 IPMI_STAT_unhandled_commands
,
292 /* Invalid data in an event. */
293 IPMI_STAT_invalid_events
,
295 /* Events that were received with the proper format. */
298 /* Retransmissions on IPMB that failed. */
299 IPMI_STAT_dropped_rexmit_ipmb_commands
,
301 /* Retransmissions on LAN that failed. */
302 IPMI_STAT_dropped_rexmit_lan_commands
,
304 /* This *must* remain last, add new values above this. */
309 #define IPMI_IPMB_NUM_SEQ 64
310 #define IPMI_MAX_CHANNELS 16
312 /* What interface number are we? */
315 struct kref refcount
;
317 /* Set when the interface is being unregistered. */
320 /* Used for a list of interfaces. */
321 struct list_head link
;
324 * The list of upper layers that are using me. seq_lock
327 struct list_head users
;
329 /* Information to supply to users. */
330 unsigned char ipmi_version_major
;
331 unsigned char ipmi_version_minor
;
333 /* Used for wake ups at startup. */
334 wait_queue_head_t waitq
;
336 struct bmc_device
*bmc
;
340 * This is the lower-layer's sender routine. Note that you
341 * must either be holding the ipmi_interfaces_mutex or be in
342 * an umpreemptible region to use this. You must fetch the
343 * value into a local variable and make sure it is not NULL.
345 const struct ipmi_smi_handlers
*handlers
;
348 #ifdef CONFIG_PROC_FS
349 /* A list of proc entries for this interface. */
350 struct mutex proc_entry_lock
;
351 struct ipmi_proc_entry
*proc_entries
;
354 /* Driver-model device for the system interface. */
355 struct device
*si_dev
;
358 * A table of sequence numbers for this interface. We use the
359 * sequence numbers for IPMB messages that go out of the
360 * interface to match them up with their responses. A routine
361 * is called periodically to time the items in this list.
364 struct seq_table seq_table
[IPMI_IPMB_NUM_SEQ
];
368 * Messages queued for delivery. If delivery fails (out of memory
369 * for instance), They will stay in here to be processed later in a
370 * periodic timer interrupt. The tasklet is for handling received
371 * messages directly from the handler.
373 spinlock_t waiting_rcv_msgs_lock
;
374 struct list_head waiting_rcv_msgs
;
375 atomic_t watchdog_pretimeouts_to_deliver
;
376 struct tasklet_struct recv_tasklet
;
378 spinlock_t xmit_msgs_lock
;
379 struct list_head xmit_msgs
;
380 struct ipmi_smi_msg
*curr_msg
;
381 struct list_head hp_xmit_msgs
;
384 * The list of command receivers that are registered for commands
387 struct mutex cmd_rcvrs_mutex
;
388 struct list_head cmd_rcvrs
;
391 * Events that were queues because no one was there to receive
394 spinlock_t events_lock
; /* For dealing with event stuff. */
395 struct list_head waiting_events
;
396 unsigned int waiting_events_count
; /* How many events in queue? */
397 char delivering_events
;
398 char event_msg_printed
;
399 atomic_t event_waiters
;
400 unsigned int ticks_to_req_ev
;
401 int last_needs_timer
;
404 * The event receiver for my BMC, only really used at panic
405 * shutdown as a place to store this.
407 unsigned char event_receiver
;
408 unsigned char event_receiver_lun
;
409 unsigned char local_sel_device
;
410 unsigned char local_event_generator
;
412 /* For handling of maintenance mode. */
413 int maintenance_mode
;
414 bool maintenance_mode_enable
;
415 int auto_maintenance_timeout
;
416 spinlock_t maintenance_mode_lock
; /* Used in a timer... */
419 * A cheap hack, if this is non-null and a message to an
420 * interface comes in with a NULL user, call this routine with
421 * it. Note that the message will still be freed by the
422 * caller. This only works on the system interface.
424 void (*null_user_handler
)(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
);
427 * When we are scanning the channels for an SMI, this will
428 * tell which channel we are scanning.
432 /* Channel information */
433 struct ipmi_channel channels
[IPMI_MAX_CHANNELS
];
436 struct proc_dir_entry
*proc_dir
;
437 char proc_dir_name
[10];
439 atomic_t stats
[IPMI_NUM_STATS
];
442 * run_to_completion duplicate of smb_info, smi_info
443 * and ipmi_serial_info structures. Used to decrease numbers of
444 * parameters passed by "low" level IPMI code.
446 int run_to_completion
;
448 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
451 * The driver model view of the IPMI messaging driver.
453 static struct platform_driver ipmidriver
= {
456 .bus
= &platform_bus_type
459 static DEFINE_MUTEX(ipmidriver_mutex
);
461 static LIST_HEAD(ipmi_interfaces
);
462 static DEFINE_MUTEX(ipmi_interfaces_mutex
);
465 * List of watchers that want to know when smi's are added and deleted.
467 static LIST_HEAD(smi_watchers
);
468 static DEFINE_MUTEX(smi_watchers_mutex
);
470 #define ipmi_inc_stat(intf, stat) \
471 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
472 #define ipmi_get_stat(intf, stat) \
473 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
475 static const char * const addr_src_to_str
[] = {
476 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
477 "device-tree", "default"
480 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src
)
482 if (src
> SI_DEFAULT
)
483 src
= 0; /* Invalid */
484 return addr_src_to_str
[src
];
486 EXPORT_SYMBOL(ipmi_addr_src_to_str
);
488 static int is_lan_addr(struct ipmi_addr
*addr
)
490 return addr
->addr_type
== IPMI_LAN_ADDR_TYPE
;
493 static int is_ipmb_addr(struct ipmi_addr
*addr
)
495 return addr
->addr_type
== IPMI_IPMB_ADDR_TYPE
;
498 static int is_ipmb_bcast_addr(struct ipmi_addr
*addr
)
500 return addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
;
503 static void free_recv_msg_list(struct list_head
*q
)
505 struct ipmi_recv_msg
*msg
, *msg2
;
507 list_for_each_entry_safe(msg
, msg2
, q
, link
) {
508 list_del(&msg
->link
);
509 ipmi_free_recv_msg(msg
);
513 static void free_smi_msg_list(struct list_head
*q
)
515 struct ipmi_smi_msg
*msg
, *msg2
;
517 list_for_each_entry_safe(msg
, msg2
, q
, link
) {
518 list_del(&msg
->link
);
519 ipmi_free_smi_msg(msg
);
523 static void clean_up_interface_data(ipmi_smi_t intf
)
526 struct cmd_rcvr
*rcvr
, *rcvr2
;
527 struct list_head list
;
529 tasklet_kill(&intf
->recv_tasklet
);
531 free_smi_msg_list(&intf
->waiting_rcv_msgs
);
532 free_recv_msg_list(&intf
->waiting_events
);
535 * Wholesale remove all the entries from the list in the
536 * interface and wait for RCU to know that none are in use.
538 mutex_lock(&intf
->cmd_rcvrs_mutex
);
539 INIT_LIST_HEAD(&list
);
540 list_splice_init_rcu(&intf
->cmd_rcvrs
, &list
, synchronize_rcu
);
541 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
543 list_for_each_entry_safe(rcvr
, rcvr2
, &list
, link
)
546 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
547 if ((intf
->seq_table
[i
].inuse
)
548 && (intf
->seq_table
[i
].recv_msg
))
549 ipmi_free_recv_msg(intf
->seq_table
[i
].recv_msg
);
553 static void intf_free(struct kref
*ref
)
555 ipmi_smi_t intf
= container_of(ref
, struct ipmi_smi
, refcount
);
557 clean_up_interface_data(intf
);
561 struct watcher_entry
{
564 struct list_head link
;
567 int ipmi_smi_watcher_register(struct ipmi_smi_watcher
*watcher
)
570 LIST_HEAD(to_deliver
);
571 struct watcher_entry
*e
, *e2
;
573 mutex_lock(&smi_watchers_mutex
);
575 mutex_lock(&ipmi_interfaces_mutex
);
577 /* Build a list of things to deliver. */
578 list_for_each_entry(intf
, &ipmi_interfaces
, link
) {
579 if (intf
->intf_num
== -1)
581 e
= kmalloc(sizeof(*e
), GFP_KERNEL
);
584 kref_get(&intf
->refcount
);
586 e
->intf_num
= intf
->intf_num
;
587 list_add_tail(&e
->link
, &to_deliver
);
590 /* We will succeed, so add it to the list. */
591 list_add(&watcher
->link
, &smi_watchers
);
593 mutex_unlock(&ipmi_interfaces_mutex
);
595 list_for_each_entry_safe(e
, e2
, &to_deliver
, link
) {
597 watcher
->new_smi(e
->intf_num
, e
->intf
->si_dev
);
598 kref_put(&e
->intf
->refcount
, intf_free
);
602 mutex_unlock(&smi_watchers_mutex
);
607 mutex_unlock(&ipmi_interfaces_mutex
);
608 mutex_unlock(&smi_watchers_mutex
);
609 list_for_each_entry_safe(e
, e2
, &to_deliver
, link
) {
611 kref_put(&e
->intf
->refcount
, intf_free
);
616 EXPORT_SYMBOL(ipmi_smi_watcher_register
);
618 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher
*watcher
)
620 mutex_lock(&smi_watchers_mutex
);
621 list_del(&(watcher
->link
));
622 mutex_unlock(&smi_watchers_mutex
);
625 EXPORT_SYMBOL(ipmi_smi_watcher_unregister
);
628 * Must be called with smi_watchers_mutex held.
631 call_smi_watchers(int i
, struct device
*dev
)
633 struct ipmi_smi_watcher
*w
;
635 list_for_each_entry(w
, &smi_watchers
, link
) {
636 if (try_module_get(w
->owner
)) {
638 module_put(w
->owner
);
644 ipmi_addr_equal(struct ipmi_addr
*addr1
, struct ipmi_addr
*addr2
)
646 if (addr1
->addr_type
!= addr2
->addr_type
)
649 if (addr1
->channel
!= addr2
->channel
)
652 if (addr1
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
653 struct ipmi_system_interface_addr
*smi_addr1
654 = (struct ipmi_system_interface_addr
*) addr1
;
655 struct ipmi_system_interface_addr
*smi_addr2
656 = (struct ipmi_system_interface_addr
*) addr2
;
657 return (smi_addr1
->lun
== smi_addr2
->lun
);
660 if (is_ipmb_addr(addr1
) || is_ipmb_bcast_addr(addr1
)) {
661 struct ipmi_ipmb_addr
*ipmb_addr1
662 = (struct ipmi_ipmb_addr
*) addr1
;
663 struct ipmi_ipmb_addr
*ipmb_addr2
664 = (struct ipmi_ipmb_addr
*) addr2
;
666 return ((ipmb_addr1
->slave_addr
== ipmb_addr2
->slave_addr
)
667 && (ipmb_addr1
->lun
== ipmb_addr2
->lun
));
670 if (is_lan_addr(addr1
)) {
671 struct ipmi_lan_addr
*lan_addr1
672 = (struct ipmi_lan_addr
*) addr1
;
673 struct ipmi_lan_addr
*lan_addr2
674 = (struct ipmi_lan_addr
*) addr2
;
676 return ((lan_addr1
->remote_SWID
== lan_addr2
->remote_SWID
)
677 && (lan_addr1
->local_SWID
== lan_addr2
->local_SWID
)
678 && (lan_addr1
->session_handle
679 == lan_addr2
->session_handle
)
680 && (lan_addr1
->lun
== lan_addr2
->lun
));
686 int ipmi_validate_addr(struct ipmi_addr
*addr
, int len
)
688 if (len
< sizeof(struct ipmi_system_interface_addr
))
691 if (addr
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
692 if (addr
->channel
!= IPMI_BMC_CHANNEL
)
697 if ((addr
->channel
== IPMI_BMC_CHANNEL
)
698 || (addr
->channel
>= IPMI_MAX_CHANNELS
)
699 || (addr
->channel
< 0))
702 if (is_ipmb_addr(addr
) || is_ipmb_bcast_addr(addr
)) {
703 if (len
< sizeof(struct ipmi_ipmb_addr
))
708 if (is_lan_addr(addr
)) {
709 if (len
< sizeof(struct ipmi_lan_addr
))
716 EXPORT_SYMBOL(ipmi_validate_addr
);
718 unsigned int ipmi_addr_length(int addr_type
)
720 if (addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
721 return sizeof(struct ipmi_system_interface_addr
);
723 if ((addr_type
== IPMI_IPMB_ADDR_TYPE
)
724 || (addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
))
725 return sizeof(struct ipmi_ipmb_addr
);
727 if (addr_type
== IPMI_LAN_ADDR_TYPE
)
728 return sizeof(struct ipmi_lan_addr
);
732 EXPORT_SYMBOL(ipmi_addr_length
);
734 static void deliver_response(struct ipmi_recv_msg
*msg
)
737 ipmi_smi_t intf
= msg
->user_msg_data
;
739 /* Special handling for NULL users. */
740 if (intf
->null_user_handler
) {
741 intf
->null_user_handler(intf
, msg
);
742 ipmi_inc_stat(intf
, handled_local_responses
);
744 /* No handler, so give up. */
745 ipmi_inc_stat(intf
, unhandled_local_responses
);
747 ipmi_free_recv_msg(msg
);
748 } else if (!oops_in_progress
) {
750 * If we are running in the panic context, calling the
751 * receive handler doesn't much meaning and has a deadlock
752 * risk. At this moment, simply skip it in that case.
755 ipmi_user_t user
= msg
->user
;
756 user
->handler
->ipmi_recv_hndl(msg
, user
->handler_data
);
761 deliver_err_response(struct ipmi_recv_msg
*msg
, int err
)
763 msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
764 msg
->msg_data
[0] = err
;
765 msg
->msg
.netfn
|= 1; /* Convert to a response. */
766 msg
->msg
.data_len
= 1;
767 msg
->msg
.data
= msg
->msg_data
;
768 deliver_response(msg
);
772 * Find the next sequence number not being used and add the given
773 * message with the given timeout to the sequence table. This must be
774 * called with the interface's seq_lock held.
776 static int intf_next_seq(ipmi_smi_t intf
,
777 struct ipmi_recv_msg
*recv_msg
,
778 unsigned long timeout
,
787 for (i
= intf
->curr_seq
; (i
+1)%IPMI_IPMB_NUM_SEQ
!= intf
->curr_seq
;
788 i
= (i
+1)%IPMI_IPMB_NUM_SEQ
) {
789 if (!intf
->seq_table
[i
].inuse
)
793 if (!intf
->seq_table
[i
].inuse
) {
794 intf
->seq_table
[i
].recv_msg
= recv_msg
;
797 * Start with the maximum timeout, when the send response
798 * comes in we will start the real timer.
800 intf
->seq_table
[i
].timeout
= MAX_MSG_TIMEOUT
;
801 intf
->seq_table
[i
].orig_timeout
= timeout
;
802 intf
->seq_table
[i
].retries_left
= retries
;
803 intf
->seq_table
[i
].broadcast
= broadcast
;
804 intf
->seq_table
[i
].inuse
= 1;
805 intf
->seq_table
[i
].seqid
= NEXT_SEQID(intf
->seq_table
[i
].seqid
);
807 *seqid
= intf
->seq_table
[i
].seqid
;
808 intf
->curr_seq
= (i
+1)%IPMI_IPMB_NUM_SEQ
;
818 * Return the receive message for the given sequence number and
819 * release the sequence number so it can be reused. Some other data
820 * is passed in to be sure the message matches up correctly (to help
821 * guard against message coming in after their timeout and the
822 * sequence number being reused).
824 static int intf_find_seq(ipmi_smi_t intf
,
829 struct ipmi_addr
*addr
,
830 struct ipmi_recv_msg
**recv_msg
)
835 if (seq
>= IPMI_IPMB_NUM_SEQ
)
838 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
839 if (intf
->seq_table
[seq
].inuse
) {
840 struct ipmi_recv_msg
*msg
= intf
->seq_table
[seq
].recv_msg
;
842 if ((msg
->addr
.channel
== channel
) && (msg
->msg
.cmd
== cmd
)
843 && (msg
->msg
.netfn
== netfn
)
844 && (ipmi_addr_equal(addr
, &(msg
->addr
)))) {
846 intf
->seq_table
[seq
].inuse
= 0;
850 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
856 /* Start the timer for a specific sequence table entry. */
857 static int intf_start_seq_timer(ipmi_smi_t intf
,
866 GET_SEQ_FROM_MSGID(msgid
, seq
, seqid
);
868 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
870 * We do this verification because the user can be deleted
871 * while a message is outstanding.
873 if ((intf
->seq_table
[seq
].inuse
)
874 && (intf
->seq_table
[seq
].seqid
== seqid
)) {
875 struct seq_table
*ent
= &(intf
->seq_table
[seq
]);
876 ent
->timeout
= ent
->orig_timeout
;
879 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
884 /* Got an error for the send message for a specific sequence number. */
885 static int intf_err_seq(ipmi_smi_t intf
,
893 struct ipmi_recv_msg
*msg
= NULL
;
896 GET_SEQ_FROM_MSGID(msgid
, seq
, seqid
);
898 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
900 * We do this verification because the user can be deleted
901 * while a message is outstanding.
903 if ((intf
->seq_table
[seq
].inuse
)
904 && (intf
->seq_table
[seq
].seqid
== seqid
)) {
905 struct seq_table
*ent
= &(intf
->seq_table
[seq
]);
911 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
914 deliver_err_response(msg
, err
);
920 int ipmi_create_user(unsigned int if_num
,
921 struct ipmi_user_hndl
*handler
,
926 ipmi_user_t new_user
;
931 * There is no module usecount here, because it's not
932 * required. Since this can only be used by and called from
933 * other modules, they will implicitly use this module, and
934 * thus this can't be removed unless the other modules are
942 * Make sure the driver is actually initialized, this handles
943 * problems with initialization order.
946 rv
= ipmi_init_msghandler();
951 * The init code doesn't return an error if it was turned
952 * off, but it won't initialize. Check that.
958 new_user
= kmalloc(sizeof(*new_user
), GFP_KERNEL
);
962 mutex_lock(&ipmi_interfaces_mutex
);
963 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
964 if (intf
->intf_num
== if_num
)
967 /* Not found, return an error */
972 /* Note that each existing user holds a refcount to the interface. */
973 kref_get(&intf
->refcount
);
975 kref_init(&new_user
->refcount
);
976 new_user
->handler
= handler
;
977 new_user
->handler_data
= handler_data
;
978 new_user
->intf
= intf
;
979 new_user
->gets_events
= false;
981 if (!try_module_get(intf
->handlers
->owner
)) {
986 if (intf
->handlers
->inc_usecount
) {
987 rv
= intf
->handlers
->inc_usecount(intf
->send_info
);
989 module_put(intf
->handlers
->owner
);
995 * Hold the lock so intf->handlers is guaranteed to be good
998 mutex_unlock(&ipmi_interfaces_mutex
);
1000 new_user
->valid
= true;
1001 spin_lock_irqsave(&intf
->seq_lock
, flags
);
1002 list_add_rcu(&new_user
->link
, &intf
->users
);
1003 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
1004 if (handler
->ipmi_watchdog_pretimeout
) {
1005 /* User wants pretimeouts, so make sure to watch for them. */
1006 if (atomic_inc_return(&intf
->event_waiters
) == 1)
1013 kref_put(&intf
->refcount
, intf_free
);
1015 mutex_unlock(&ipmi_interfaces_mutex
);
1019 EXPORT_SYMBOL(ipmi_create_user
);
1021 int ipmi_get_smi_info(int if_num
, struct ipmi_smi_info
*data
)
1025 const struct ipmi_smi_handlers
*handlers
;
1027 mutex_lock(&ipmi_interfaces_mutex
);
1028 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
1029 if (intf
->intf_num
== if_num
)
1032 /* Not found, return an error */
1034 mutex_unlock(&ipmi_interfaces_mutex
);
1038 handlers
= intf
->handlers
;
1040 if (handlers
->get_smi_info
)
1041 rv
= handlers
->get_smi_info(intf
->send_info
, data
);
1042 mutex_unlock(&ipmi_interfaces_mutex
);
1046 EXPORT_SYMBOL(ipmi_get_smi_info
);
1048 static void free_user(struct kref
*ref
)
1050 ipmi_user_t user
= container_of(ref
, struct ipmi_user
, refcount
);
1054 int ipmi_destroy_user(ipmi_user_t user
)
1056 ipmi_smi_t intf
= user
->intf
;
1058 unsigned long flags
;
1059 struct cmd_rcvr
*rcvr
;
1060 struct cmd_rcvr
*rcvrs
= NULL
;
1062 user
->valid
= false;
1064 if (user
->handler
->ipmi_watchdog_pretimeout
)
1065 atomic_dec(&intf
->event_waiters
);
1067 if (user
->gets_events
)
1068 atomic_dec(&intf
->event_waiters
);
1070 /* Remove the user from the interface's sequence table. */
1071 spin_lock_irqsave(&intf
->seq_lock
, flags
);
1072 list_del_rcu(&user
->link
);
1074 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
1075 if (intf
->seq_table
[i
].inuse
1076 && (intf
->seq_table
[i
].recv_msg
->user
== user
)) {
1077 intf
->seq_table
[i
].inuse
= 0;
1078 ipmi_free_recv_msg(intf
->seq_table
[i
].recv_msg
);
1081 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
1084 * Remove the user from the command receiver's table. First
1085 * we build a list of everything (not using the standard link,
1086 * since other things may be using it till we do
1087 * synchronize_rcu()) then free everything in that list.
1089 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1090 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1091 if (rcvr
->user
== user
) {
1092 list_del_rcu(&rcvr
->link
);
1097 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1105 mutex_lock(&ipmi_interfaces_mutex
);
1106 if (intf
->handlers
) {
1107 module_put(intf
->handlers
->owner
);
1108 if (intf
->handlers
->dec_usecount
)
1109 intf
->handlers
->dec_usecount(intf
->send_info
);
1111 mutex_unlock(&ipmi_interfaces_mutex
);
1113 kref_put(&intf
->refcount
, intf_free
);
1115 kref_put(&user
->refcount
, free_user
);
1119 EXPORT_SYMBOL(ipmi_destroy_user
);
1121 void ipmi_get_version(ipmi_user_t user
,
1122 unsigned char *major
,
1123 unsigned char *minor
)
1125 *major
= user
->intf
->ipmi_version_major
;
1126 *minor
= user
->intf
->ipmi_version_minor
;
1128 EXPORT_SYMBOL(ipmi_get_version
);
1130 int ipmi_set_my_address(ipmi_user_t user
,
1131 unsigned int channel
,
1132 unsigned char address
)
1134 if (channel
>= IPMI_MAX_CHANNELS
)
1136 user
->intf
->channels
[channel
].address
= address
;
1139 EXPORT_SYMBOL(ipmi_set_my_address
);
1141 int ipmi_get_my_address(ipmi_user_t user
,
1142 unsigned int channel
,
1143 unsigned char *address
)
1145 if (channel
>= IPMI_MAX_CHANNELS
)
1147 *address
= user
->intf
->channels
[channel
].address
;
1150 EXPORT_SYMBOL(ipmi_get_my_address
);
1152 int ipmi_set_my_LUN(ipmi_user_t user
,
1153 unsigned int channel
,
1156 if (channel
>= IPMI_MAX_CHANNELS
)
1158 user
->intf
->channels
[channel
].lun
= LUN
& 0x3;
1161 EXPORT_SYMBOL(ipmi_set_my_LUN
);
1163 int ipmi_get_my_LUN(ipmi_user_t user
,
1164 unsigned int channel
,
1165 unsigned char *address
)
1167 if (channel
>= IPMI_MAX_CHANNELS
)
1169 *address
= user
->intf
->channels
[channel
].lun
;
1172 EXPORT_SYMBOL(ipmi_get_my_LUN
);
1174 int ipmi_get_maintenance_mode(ipmi_user_t user
)
1177 unsigned long flags
;
1179 spin_lock_irqsave(&user
->intf
->maintenance_mode_lock
, flags
);
1180 mode
= user
->intf
->maintenance_mode
;
1181 spin_unlock_irqrestore(&user
->intf
->maintenance_mode_lock
, flags
);
1185 EXPORT_SYMBOL(ipmi_get_maintenance_mode
);
1187 static void maintenance_mode_update(ipmi_smi_t intf
)
1189 if (intf
->handlers
->set_maintenance_mode
)
1190 intf
->handlers
->set_maintenance_mode(
1191 intf
->send_info
, intf
->maintenance_mode_enable
);
1194 int ipmi_set_maintenance_mode(ipmi_user_t user
, int mode
)
1197 unsigned long flags
;
1198 ipmi_smi_t intf
= user
->intf
;
1200 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
1201 if (intf
->maintenance_mode
!= mode
) {
1203 case IPMI_MAINTENANCE_MODE_AUTO
:
1204 intf
->maintenance_mode_enable
1205 = (intf
->auto_maintenance_timeout
> 0);
1208 case IPMI_MAINTENANCE_MODE_OFF
:
1209 intf
->maintenance_mode_enable
= false;
1212 case IPMI_MAINTENANCE_MODE_ON
:
1213 intf
->maintenance_mode_enable
= true;
1220 intf
->maintenance_mode
= mode
;
1222 maintenance_mode_update(intf
);
1225 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
, flags
);
1229 EXPORT_SYMBOL(ipmi_set_maintenance_mode
);
1231 int ipmi_set_gets_events(ipmi_user_t user
, bool val
)
1233 unsigned long flags
;
1234 ipmi_smi_t intf
= user
->intf
;
1235 struct ipmi_recv_msg
*msg
, *msg2
;
1236 struct list_head msgs
;
1238 INIT_LIST_HEAD(&msgs
);
1240 spin_lock_irqsave(&intf
->events_lock
, flags
);
1241 if (user
->gets_events
== val
)
1244 user
->gets_events
= val
;
1247 if (atomic_inc_return(&intf
->event_waiters
) == 1)
1250 atomic_dec(&intf
->event_waiters
);
1253 if (intf
->delivering_events
)
1255 * Another thread is delivering events for this, so
1256 * let it handle any new events.
1260 /* Deliver any queued events. */
1261 while (user
->gets_events
&& !list_empty(&intf
->waiting_events
)) {
1262 list_for_each_entry_safe(msg
, msg2
, &intf
->waiting_events
, link
)
1263 list_move_tail(&msg
->link
, &msgs
);
1264 intf
->waiting_events_count
= 0;
1265 if (intf
->event_msg_printed
) {
1266 printk(KERN_WARNING PFX
"Event queue no longer"
1268 intf
->event_msg_printed
= 0;
1271 intf
->delivering_events
= 1;
1272 spin_unlock_irqrestore(&intf
->events_lock
, flags
);
1274 list_for_each_entry_safe(msg
, msg2
, &msgs
, link
) {
1276 kref_get(&user
->refcount
);
1277 deliver_response(msg
);
1280 spin_lock_irqsave(&intf
->events_lock
, flags
);
1281 intf
->delivering_events
= 0;
1285 spin_unlock_irqrestore(&intf
->events_lock
, flags
);
1289 EXPORT_SYMBOL(ipmi_set_gets_events
);
1291 static struct cmd_rcvr
*find_cmd_rcvr(ipmi_smi_t intf
,
1292 unsigned char netfn
,
1296 struct cmd_rcvr
*rcvr
;
1298 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1299 if ((rcvr
->netfn
== netfn
) && (rcvr
->cmd
== cmd
)
1300 && (rcvr
->chans
& (1 << chan
)))
1306 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf
,
1307 unsigned char netfn
,
1311 struct cmd_rcvr
*rcvr
;
1313 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1314 if ((rcvr
->netfn
== netfn
) && (rcvr
->cmd
== cmd
)
1315 && (rcvr
->chans
& chans
))
1321 int ipmi_register_for_cmd(ipmi_user_t user
,
1322 unsigned char netfn
,
1326 ipmi_smi_t intf
= user
->intf
;
1327 struct cmd_rcvr
*rcvr
;
1331 rcvr
= kmalloc(sizeof(*rcvr
), GFP_KERNEL
);
1335 rcvr
->netfn
= netfn
;
1336 rcvr
->chans
= chans
;
1339 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1340 /* Make sure the command/netfn is not already registered. */
1341 if (!is_cmd_rcvr_exclusive(intf
, netfn
, cmd
, chans
)) {
1346 if (atomic_inc_return(&intf
->event_waiters
) == 1)
1349 list_add_rcu(&rcvr
->link
, &intf
->cmd_rcvrs
);
1352 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1358 EXPORT_SYMBOL(ipmi_register_for_cmd
);
1360 int ipmi_unregister_for_cmd(ipmi_user_t user
,
1361 unsigned char netfn
,
1365 ipmi_smi_t intf
= user
->intf
;
1366 struct cmd_rcvr
*rcvr
;
1367 struct cmd_rcvr
*rcvrs
= NULL
;
1368 int i
, rv
= -ENOENT
;
1370 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1371 for (i
= 0; i
< IPMI_NUM_CHANNELS
; i
++) {
1372 if (((1 << i
) & chans
) == 0)
1374 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, i
);
1377 if (rcvr
->user
== user
) {
1379 rcvr
->chans
&= ~chans
;
1380 if (rcvr
->chans
== 0) {
1381 list_del_rcu(&rcvr
->link
);
1387 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1390 atomic_dec(&intf
->event_waiters
);
1397 EXPORT_SYMBOL(ipmi_unregister_for_cmd
);
1399 static unsigned char
1400 ipmb_checksum(unsigned char *data
, int size
)
1402 unsigned char csum
= 0;
1404 for (; size
> 0; size
--, data
++)
1410 static inline void format_ipmb_msg(struct ipmi_smi_msg
*smi_msg
,
1411 struct kernel_ipmi_msg
*msg
,
1412 struct ipmi_ipmb_addr
*ipmb_addr
,
1414 unsigned char ipmb_seq
,
1416 unsigned char source_address
,
1417 unsigned char source_lun
)
1421 /* Format the IPMB header data. */
1422 smi_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
1423 smi_msg
->data
[1] = IPMI_SEND_MSG_CMD
;
1424 smi_msg
->data
[2] = ipmb_addr
->channel
;
1426 smi_msg
->data
[3] = 0;
1427 smi_msg
->data
[i
+3] = ipmb_addr
->slave_addr
;
1428 smi_msg
->data
[i
+4] = (msg
->netfn
<< 2) | (ipmb_addr
->lun
& 0x3);
1429 smi_msg
->data
[i
+5] = ipmb_checksum(&(smi_msg
->data
[i
+3]), 2);
1430 smi_msg
->data
[i
+6] = source_address
;
1431 smi_msg
->data
[i
+7] = (ipmb_seq
<< 2) | source_lun
;
1432 smi_msg
->data
[i
+8] = msg
->cmd
;
1434 /* Now tack on the data to the message. */
1435 if (msg
->data_len
> 0)
1436 memcpy(&(smi_msg
->data
[i
+9]), msg
->data
,
1438 smi_msg
->data_size
= msg
->data_len
+ 9;
1440 /* Now calculate the checksum and tack it on. */
1441 smi_msg
->data
[i
+smi_msg
->data_size
]
1442 = ipmb_checksum(&(smi_msg
->data
[i
+6]),
1443 smi_msg
->data_size
-6);
1446 * Add on the checksum size and the offset from the
1449 smi_msg
->data_size
+= 1 + i
;
1451 smi_msg
->msgid
= msgid
;
1454 static inline void format_lan_msg(struct ipmi_smi_msg
*smi_msg
,
1455 struct kernel_ipmi_msg
*msg
,
1456 struct ipmi_lan_addr
*lan_addr
,
1458 unsigned char ipmb_seq
,
1459 unsigned char source_lun
)
1461 /* Format the IPMB header data. */
1462 smi_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
1463 smi_msg
->data
[1] = IPMI_SEND_MSG_CMD
;
1464 smi_msg
->data
[2] = lan_addr
->channel
;
1465 smi_msg
->data
[3] = lan_addr
->session_handle
;
1466 smi_msg
->data
[4] = lan_addr
->remote_SWID
;
1467 smi_msg
->data
[5] = (msg
->netfn
<< 2) | (lan_addr
->lun
& 0x3);
1468 smi_msg
->data
[6] = ipmb_checksum(&(smi_msg
->data
[4]), 2);
1469 smi_msg
->data
[7] = lan_addr
->local_SWID
;
1470 smi_msg
->data
[8] = (ipmb_seq
<< 2) | source_lun
;
1471 smi_msg
->data
[9] = msg
->cmd
;
1473 /* Now tack on the data to the message. */
1474 if (msg
->data_len
> 0)
1475 memcpy(&(smi_msg
->data
[10]), msg
->data
,
1477 smi_msg
->data_size
= msg
->data_len
+ 10;
1479 /* Now calculate the checksum and tack it on. */
1480 smi_msg
->data
[smi_msg
->data_size
]
1481 = ipmb_checksum(&(smi_msg
->data
[7]),
1482 smi_msg
->data_size
-7);
1485 * Add on the checksum size and the offset from the
1488 smi_msg
->data_size
+= 1;
1490 smi_msg
->msgid
= msgid
;
1493 static struct ipmi_smi_msg
*smi_add_send_msg(ipmi_smi_t intf
,
1494 struct ipmi_smi_msg
*smi_msg
,
1497 if (intf
->curr_msg
) {
1499 list_add_tail(&smi_msg
->link
, &intf
->hp_xmit_msgs
);
1501 list_add_tail(&smi_msg
->link
, &intf
->xmit_msgs
);
1504 intf
->curr_msg
= smi_msg
;
1511 static void smi_send(ipmi_smi_t intf
, const struct ipmi_smi_handlers
*handlers
,
1512 struct ipmi_smi_msg
*smi_msg
, int priority
)
1514 int run_to_completion
= intf
->run_to_completion
;
1516 if (run_to_completion
) {
1517 smi_msg
= smi_add_send_msg(intf
, smi_msg
, priority
);
1519 unsigned long flags
;
1521 spin_lock_irqsave(&intf
->xmit_msgs_lock
, flags
);
1522 smi_msg
= smi_add_send_msg(intf
, smi_msg
, priority
);
1523 spin_unlock_irqrestore(&intf
->xmit_msgs_lock
, flags
);
1527 handlers
->sender(intf
->send_info
, smi_msg
);
1531 * Separate from ipmi_request so that the user does not have to be
1532 * supplied in certain circumstances (mainly at panic time). If
1533 * messages are supplied, they will be freed, even if an error
1536 static int i_ipmi_request(ipmi_user_t user
,
1538 struct ipmi_addr
*addr
,
1540 struct kernel_ipmi_msg
*msg
,
1541 void *user_msg_data
,
1543 struct ipmi_recv_msg
*supplied_recv
,
1545 unsigned char source_address
,
1546 unsigned char source_lun
,
1548 unsigned int retry_time_ms
)
1551 struct ipmi_smi_msg
*smi_msg
;
1552 struct ipmi_recv_msg
*recv_msg
;
1553 unsigned long flags
;
1557 recv_msg
= supplied_recv
;
1559 recv_msg
= ipmi_alloc_recv_msg();
1560 if (recv_msg
== NULL
)
1563 recv_msg
->user_msg_data
= user_msg_data
;
1566 smi_msg
= (struct ipmi_smi_msg
*) supplied_smi
;
1568 smi_msg
= ipmi_alloc_smi_msg();
1569 if (smi_msg
== NULL
) {
1570 ipmi_free_recv_msg(recv_msg
);
1576 if (intf
->in_shutdown
) {
1581 recv_msg
->user
= user
;
1583 kref_get(&user
->refcount
);
1584 recv_msg
->msgid
= msgid
;
1586 * Store the message to send in the receive message so timeout
1587 * responses can get the proper response data.
1589 recv_msg
->msg
= *msg
;
1591 if (addr
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
1592 struct ipmi_system_interface_addr
*smi_addr
;
1594 if (msg
->netfn
& 1) {
1595 /* Responses are not allowed to the SMI. */
1600 smi_addr
= (struct ipmi_system_interface_addr
*) addr
;
1601 if (smi_addr
->lun
> 3) {
1602 ipmi_inc_stat(intf
, sent_invalid_commands
);
1607 memcpy(&recv_msg
->addr
, smi_addr
, sizeof(*smi_addr
));
1609 if ((msg
->netfn
== IPMI_NETFN_APP_REQUEST
)
1610 && ((msg
->cmd
== IPMI_SEND_MSG_CMD
)
1611 || (msg
->cmd
== IPMI_GET_MSG_CMD
)
1612 || (msg
->cmd
== IPMI_READ_EVENT_MSG_BUFFER_CMD
))) {
1614 * We don't let the user do these, since we manage
1615 * the sequence numbers.
1617 ipmi_inc_stat(intf
, sent_invalid_commands
);
1622 if (((msg
->netfn
== IPMI_NETFN_APP_REQUEST
)
1623 && ((msg
->cmd
== IPMI_COLD_RESET_CMD
)
1624 || (msg
->cmd
== IPMI_WARM_RESET_CMD
)))
1625 || (msg
->netfn
== IPMI_NETFN_FIRMWARE_REQUEST
)) {
1626 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
1627 intf
->auto_maintenance_timeout
1628 = IPMI_MAINTENANCE_MODE_TIMEOUT
;
1629 if (!intf
->maintenance_mode
1630 && !intf
->maintenance_mode_enable
) {
1631 intf
->maintenance_mode_enable
= true;
1632 maintenance_mode_update(intf
);
1634 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
,
1638 if ((msg
->data_len
+ 2) > IPMI_MAX_MSG_LENGTH
) {
1639 ipmi_inc_stat(intf
, sent_invalid_commands
);
1644 smi_msg
->data
[0] = (msg
->netfn
<< 2) | (smi_addr
->lun
& 0x3);
1645 smi_msg
->data
[1] = msg
->cmd
;
1646 smi_msg
->msgid
= msgid
;
1647 smi_msg
->user_data
= recv_msg
;
1648 if (msg
->data_len
> 0)
1649 memcpy(&(smi_msg
->data
[2]), msg
->data
, msg
->data_len
);
1650 smi_msg
->data_size
= msg
->data_len
+ 2;
1651 ipmi_inc_stat(intf
, sent_local_commands
);
1652 } else if (is_ipmb_addr(addr
) || is_ipmb_bcast_addr(addr
)) {
1653 struct ipmi_ipmb_addr
*ipmb_addr
;
1654 unsigned char ipmb_seq
;
1658 if (addr
->channel
>= IPMI_MAX_CHANNELS
) {
1659 ipmi_inc_stat(intf
, sent_invalid_commands
);
1664 if (intf
->channels
[addr
->channel
].medium
1665 != IPMI_CHANNEL_MEDIUM_IPMB
) {
1666 ipmi_inc_stat(intf
, sent_invalid_commands
);
1672 if (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
)
1673 retries
= 0; /* Don't retry broadcasts. */
1677 if (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
) {
1679 * Broadcasts add a zero at the beginning of the
1680 * message, but otherwise is the same as an IPMB
1683 addr
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
1688 /* Default to 1 second retries. */
1689 if (retry_time_ms
== 0)
1690 retry_time_ms
= 1000;
1693 * 9 for the header and 1 for the checksum, plus
1694 * possibly one for the broadcast.
1696 if ((msg
->data_len
+ 10 + broadcast
) > IPMI_MAX_MSG_LENGTH
) {
1697 ipmi_inc_stat(intf
, sent_invalid_commands
);
1702 ipmb_addr
= (struct ipmi_ipmb_addr
*) addr
;
1703 if (ipmb_addr
->lun
> 3) {
1704 ipmi_inc_stat(intf
, sent_invalid_commands
);
1709 memcpy(&recv_msg
->addr
, ipmb_addr
, sizeof(*ipmb_addr
));
1711 if (recv_msg
->msg
.netfn
& 0x1) {
1713 * It's a response, so use the user's sequence
1716 ipmi_inc_stat(intf
, sent_ipmb_responses
);
1717 format_ipmb_msg(smi_msg
, msg
, ipmb_addr
, msgid
,
1719 source_address
, source_lun
);
1722 * Save the receive message so we can use it
1723 * to deliver the response.
1725 smi_msg
->user_data
= recv_msg
;
1727 /* It's a command, so get a sequence for it. */
1729 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1732 * Create a sequence number with a 1 second
1733 * timeout and 4 retries.
1735 rv
= intf_next_seq(intf
,
1744 * We have used up all the sequence numbers,
1745 * probably, so abort.
1747 spin_unlock_irqrestore(&(intf
->seq_lock
),
1752 ipmi_inc_stat(intf
, sent_ipmb_commands
);
1755 * Store the sequence number in the message,
1756 * so that when the send message response
1757 * comes back we can start the timer.
1759 format_ipmb_msg(smi_msg
, msg
, ipmb_addr
,
1760 STORE_SEQ_IN_MSGID(ipmb_seq
, seqid
),
1761 ipmb_seq
, broadcast
,
1762 source_address
, source_lun
);
1765 * Copy the message into the recv message data, so we
1766 * can retransmit it later if necessary.
1768 memcpy(recv_msg
->msg_data
, smi_msg
->data
,
1769 smi_msg
->data_size
);
1770 recv_msg
->msg
.data
= recv_msg
->msg_data
;
1771 recv_msg
->msg
.data_len
= smi_msg
->data_size
;
1774 * We don't unlock until here, because we need
1775 * to copy the completed message into the
1776 * recv_msg before we release the lock.
1777 * Otherwise, race conditions may bite us. I
1778 * know that's pretty paranoid, but I prefer
1781 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1783 } else if (is_lan_addr(addr
)) {
1784 struct ipmi_lan_addr
*lan_addr
;
1785 unsigned char ipmb_seq
;
1788 if (addr
->channel
>= IPMI_MAX_CHANNELS
) {
1789 ipmi_inc_stat(intf
, sent_invalid_commands
);
1794 if ((intf
->channels
[addr
->channel
].medium
1795 != IPMI_CHANNEL_MEDIUM_8023LAN
)
1796 && (intf
->channels
[addr
->channel
].medium
1797 != IPMI_CHANNEL_MEDIUM_ASYNC
)) {
1798 ipmi_inc_stat(intf
, sent_invalid_commands
);
1805 /* Default to 1 second retries. */
1806 if (retry_time_ms
== 0)
1807 retry_time_ms
= 1000;
1809 /* 11 for the header and 1 for the checksum. */
1810 if ((msg
->data_len
+ 12) > IPMI_MAX_MSG_LENGTH
) {
1811 ipmi_inc_stat(intf
, sent_invalid_commands
);
1816 lan_addr
= (struct ipmi_lan_addr
*) addr
;
1817 if (lan_addr
->lun
> 3) {
1818 ipmi_inc_stat(intf
, sent_invalid_commands
);
1823 memcpy(&recv_msg
->addr
, lan_addr
, sizeof(*lan_addr
));
1825 if (recv_msg
->msg
.netfn
& 0x1) {
1827 * It's a response, so use the user's sequence
1830 ipmi_inc_stat(intf
, sent_lan_responses
);
1831 format_lan_msg(smi_msg
, msg
, lan_addr
, msgid
,
1835 * Save the receive message so we can use it
1836 * to deliver the response.
1838 smi_msg
->user_data
= recv_msg
;
1840 /* It's a command, so get a sequence for it. */
1842 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1845 * Create a sequence number with a 1 second
1846 * timeout and 4 retries.
1848 rv
= intf_next_seq(intf
,
1857 * We have used up all the sequence numbers,
1858 * probably, so abort.
1860 spin_unlock_irqrestore(&(intf
->seq_lock
),
1865 ipmi_inc_stat(intf
, sent_lan_commands
);
1868 * Store the sequence number in the message,
1869 * so that when the send message response
1870 * comes back we can start the timer.
1872 format_lan_msg(smi_msg
, msg
, lan_addr
,
1873 STORE_SEQ_IN_MSGID(ipmb_seq
, seqid
),
1874 ipmb_seq
, source_lun
);
1877 * Copy the message into the recv message data, so we
1878 * can retransmit it later if necessary.
1880 memcpy(recv_msg
->msg_data
, smi_msg
->data
,
1881 smi_msg
->data_size
);
1882 recv_msg
->msg
.data
= recv_msg
->msg_data
;
1883 recv_msg
->msg
.data_len
= smi_msg
->data_size
;
1886 * We don't unlock until here, because we need
1887 * to copy the completed message into the
1888 * recv_msg before we release the lock.
1889 * Otherwise, race conditions may bite us. I
1890 * know that's pretty paranoid, but I prefer
1893 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1896 /* Unknown address type. */
1897 ipmi_inc_stat(intf
, sent_invalid_commands
);
1905 for (m
= 0; m
< smi_msg
->data_size
; m
++)
1906 printk(" %2.2x", smi_msg
->data
[m
]);
1911 smi_send(intf
, intf
->handlers
, smi_msg
, priority
);
1918 ipmi_free_smi_msg(smi_msg
);
1919 ipmi_free_recv_msg(recv_msg
);
1923 static int check_addr(ipmi_smi_t intf
,
1924 struct ipmi_addr
*addr
,
1925 unsigned char *saddr
,
1928 if (addr
->channel
>= IPMI_MAX_CHANNELS
)
1930 *lun
= intf
->channels
[addr
->channel
].lun
;
1931 *saddr
= intf
->channels
[addr
->channel
].address
;
1935 int ipmi_request_settime(ipmi_user_t user
,
1936 struct ipmi_addr
*addr
,
1938 struct kernel_ipmi_msg
*msg
,
1939 void *user_msg_data
,
1942 unsigned int retry_time_ms
)
1944 unsigned char saddr
= 0, lun
= 0;
1949 rv
= check_addr(user
->intf
, addr
, &saddr
, &lun
);
1952 return i_ipmi_request(user
,
1965 EXPORT_SYMBOL(ipmi_request_settime
);
1967 int ipmi_request_supply_msgs(ipmi_user_t user
,
1968 struct ipmi_addr
*addr
,
1970 struct kernel_ipmi_msg
*msg
,
1971 void *user_msg_data
,
1973 struct ipmi_recv_msg
*supplied_recv
,
1976 unsigned char saddr
= 0, lun
= 0;
1981 rv
= check_addr(user
->intf
, addr
, &saddr
, &lun
);
1984 return i_ipmi_request(user
,
1997 EXPORT_SYMBOL(ipmi_request_supply_msgs
);
1999 #ifdef CONFIG_PROC_FS
2000 static int smi_ipmb_proc_show(struct seq_file
*m
, void *v
)
2002 ipmi_smi_t intf
= m
->private;
2005 seq_printf(m
, "%x", intf
->channels
[0].address
);
2006 for (i
= 1; i
< IPMI_MAX_CHANNELS
; i
++)
2007 seq_printf(m
, " %x", intf
->channels
[i
].address
);
2013 static int smi_ipmb_proc_open(struct inode
*inode
, struct file
*file
)
2015 return single_open(file
, smi_ipmb_proc_show
, PDE_DATA(inode
));
2018 static const struct file_operations smi_ipmb_proc_ops
= {
2019 .open
= smi_ipmb_proc_open
,
2021 .llseek
= seq_lseek
,
2022 .release
= single_release
,
2025 static int smi_version_proc_show(struct seq_file
*m
, void *v
)
2027 ipmi_smi_t intf
= m
->private;
2029 seq_printf(m
, "%u.%u\n",
2030 ipmi_version_major(&intf
->bmc
->id
),
2031 ipmi_version_minor(&intf
->bmc
->id
));
2036 static int smi_version_proc_open(struct inode
*inode
, struct file
*file
)
2038 return single_open(file
, smi_version_proc_show
, PDE_DATA(inode
));
2041 static const struct file_operations smi_version_proc_ops
= {
2042 .open
= smi_version_proc_open
,
2044 .llseek
= seq_lseek
,
2045 .release
= single_release
,
2048 static int smi_stats_proc_show(struct seq_file
*m
, void *v
)
2050 ipmi_smi_t intf
= m
->private;
2052 seq_printf(m
, "sent_invalid_commands: %u\n",
2053 ipmi_get_stat(intf
, sent_invalid_commands
));
2054 seq_printf(m
, "sent_local_commands: %u\n",
2055 ipmi_get_stat(intf
, sent_local_commands
));
2056 seq_printf(m
, "handled_local_responses: %u\n",
2057 ipmi_get_stat(intf
, handled_local_responses
));
2058 seq_printf(m
, "unhandled_local_responses: %u\n",
2059 ipmi_get_stat(intf
, unhandled_local_responses
));
2060 seq_printf(m
, "sent_ipmb_commands: %u\n",
2061 ipmi_get_stat(intf
, sent_ipmb_commands
));
2062 seq_printf(m
, "sent_ipmb_command_errs: %u\n",
2063 ipmi_get_stat(intf
, sent_ipmb_command_errs
));
2064 seq_printf(m
, "retransmitted_ipmb_commands: %u\n",
2065 ipmi_get_stat(intf
, retransmitted_ipmb_commands
));
2066 seq_printf(m
, "timed_out_ipmb_commands: %u\n",
2067 ipmi_get_stat(intf
, timed_out_ipmb_commands
));
2068 seq_printf(m
, "timed_out_ipmb_broadcasts: %u\n",
2069 ipmi_get_stat(intf
, timed_out_ipmb_broadcasts
));
2070 seq_printf(m
, "sent_ipmb_responses: %u\n",
2071 ipmi_get_stat(intf
, sent_ipmb_responses
));
2072 seq_printf(m
, "handled_ipmb_responses: %u\n",
2073 ipmi_get_stat(intf
, handled_ipmb_responses
));
2074 seq_printf(m
, "invalid_ipmb_responses: %u\n",
2075 ipmi_get_stat(intf
, invalid_ipmb_responses
));
2076 seq_printf(m
, "unhandled_ipmb_responses: %u\n",
2077 ipmi_get_stat(intf
, unhandled_ipmb_responses
));
2078 seq_printf(m
, "sent_lan_commands: %u\n",
2079 ipmi_get_stat(intf
, sent_lan_commands
));
2080 seq_printf(m
, "sent_lan_command_errs: %u\n",
2081 ipmi_get_stat(intf
, sent_lan_command_errs
));
2082 seq_printf(m
, "retransmitted_lan_commands: %u\n",
2083 ipmi_get_stat(intf
, retransmitted_lan_commands
));
2084 seq_printf(m
, "timed_out_lan_commands: %u\n",
2085 ipmi_get_stat(intf
, timed_out_lan_commands
));
2086 seq_printf(m
, "sent_lan_responses: %u\n",
2087 ipmi_get_stat(intf
, sent_lan_responses
));
2088 seq_printf(m
, "handled_lan_responses: %u\n",
2089 ipmi_get_stat(intf
, handled_lan_responses
));
2090 seq_printf(m
, "invalid_lan_responses: %u\n",
2091 ipmi_get_stat(intf
, invalid_lan_responses
));
2092 seq_printf(m
, "unhandled_lan_responses: %u\n",
2093 ipmi_get_stat(intf
, unhandled_lan_responses
));
2094 seq_printf(m
, "handled_commands: %u\n",
2095 ipmi_get_stat(intf
, handled_commands
));
2096 seq_printf(m
, "invalid_commands: %u\n",
2097 ipmi_get_stat(intf
, invalid_commands
));
2098 seq_printf(m
, "unhandled_commands: %u\n",
2099 ipmi_get_stat(intf
, unhandled_commands
));
2100 seq_printf(m
, "invalid_events: %u\n",
2101 ipmi_get_stat(intf
, invalid_events
));
2102 seq_printf(m
, "events: %u\n",
2103 ipmi_get_stat(intf
, events
));
2104 seq_printf(m
, "failed rexmit LAN msgs: %u\n",
2105 ipmi_get_stat(intf
, dropped_rexmit_lan_commands
));
2106 seq_printf(m
, "failed rexmit IPMB msgs: %u\n",
2107 ipmi_get_stat(intf
, dropped_rexmit_ipmb_commands
));
2111 static int smi_stats_proc_open(struct inode
*inode
, struct file
*file
)
2113 return single_open(file
, smi_stats_proc_show
, PDE_DATA(inode
));
2116 static const struct file_operations smi_stats_proc_ops
= {
2117 .open
= smi_stats_proc_open
,
2119 .llseek
= seq_lseek
,
2120 .release
= single_release
,
2122 #endif /* CONFIG_PROC_FS */
2124 int ipmi_smi_add_proc_entry(ipmi_smi_t smi
, char *name
,
2125 const struct file_operations
*proc_ops
,
2129 #ifdef CONFIG_PROC_FS
2130 struct proc_dir_entry
*file
;
2131 struct ipmi_proc_entry
*entry
;
2133 /* Create a list element. */
2134 entry
= kmalloc(sizeof(*entry
), GFP_KERNEL
);
2137 entry
->name
= kstrdup(name
, GFP_KERNEL
);
2143 file
= proc_create_data(name
, 0, smi
->proc_dir
, proc_ops
, data
);
2149 mutex_lock(&smi
->proc_entry_lock
);
2150 /* Stick it on the list. */
2151 entry
->next
= smi
->proc_entries
;
2152 smi
->proc_entries
= entry
;
2153 mutex_unlock(&smi
->proc_entry_lock
);
2155 #endif /* CONFIG_PROC_FS */
2159 EXPORT_SYMBOL(ipmi_smi_add_proc_entry
);
2161 static int add_proc_entries(ipmi_smi_t smi
, int num
)
2165 #ifdef CONFIG_PROC_FS
2166 sprintf(smi
->proc_dir_name
, "%d", num
);
2167 smi
->proc_dir
= proc_mkdir(smi
->proc_dir_name
, proc_ipmi_root
);
2172 rv
= ipmi_smi_add_proc_entry(smi
, "stats",
2173 &smi_stats_proc_ops
,
2177 rv
= ipmi_smi_add_proc_entry(smi
, "ipmb",
2182 rv
= ipmi_smi_add_proc_entry(smi
, "version",
2183 &smi_version_proc_ops
,
2185 #endif /* CONFIG_PROC_FS */
2190 static void remove_proc_entries(ipmi_smi_t smi
)
2192 #ifdef CONFIG_PROC_FS
2193 struct ipmi_proc_entry
*entry
;
2195 mutex_lock(&smi
->proc_entry_lock
);
2196 while (smi
->proc_entries
) {
2197 entry
= smi
->proc_entries
;
2198 smi
->proc_entries
= entry
->next
;
2200 remove_proc_entry(entry
->name
, smi
->proc_dir
);
2204 mutex_unlock(&smi
->proc_entry_lock
);
2205 remove_proc_entry(smi
->proc_dir_name
, proc_ipmi_root
);
2206 #endif /* CONFIG_PROC_FS */
2209 static int __find_bmc_guid(struct device
*dev
, void *data
)
2211 unsigned char *id
= data
;
2212 struct bmc_device
*bmc
= to_bmc_device(dev
);
2213 return memcmp(bmc
->guid
, id
, 16) == 0;
2216 static struct bmc_device
*ipmi_find_bmc_guid(struct device_driver
*drv
,
2217 unsigned char *guid
)
2221 dev
= driver_find_device(drv
, NULL
, guid
, __find_bmc_guid
);
2223 return to_bmc_device(dev
);
2228 struct prod_dev_id
{
2229 unsigned int product_id
;
2230 unsigned char device_id
;
2233 static int __find_bmc_prod_dev_id(struct device
*dev
, void *data
)
2235 struct prod_dev_id
*id
= data
;
2236 struct bmc_device
*bmc
= to_bmc_device(dev
);
2238 return (bmc
->id
.product_id
== id
->product_id
2239 && bmc
->id
.device_id
== id
->device_id
);
2242 static struct bmc_device
*ipmi_find_bmc_prod_dev_id(
2243 struct device_driver
*drv
,
2244 unsigned int product_id
, unsigned char device_id
)
2246 struct prod_dev_id id
= {
2247 .product_id
= product_id
,
2248 .device_id
= device_id
,
2252 dev
= driver_find_device(drv
, NULL
, &id
, __find_bmc_prod_dev_id
);
2254 return to_bmc_device(dev
);
2259 static ssize_t
device_id_show(struct device
*dev
,
2260 struct device_attribute
*attr
,
2263 struct bmc_device
*bmc
= to_bmc_device(dev
);
2265 return snprintf(buf
, 10, "%u\n", bmc
->id
.device_id
);
2267 static DEVICE_ATTR(device_id
, S_IRUGO
, device_id_show
, NULL
);
2269 static ssize_t
provides_device_sdrs_show(struct device
*dev
,
2270 struct device_attribute
*attr
,
2273 struct bmc_device
*bmc
= to_bmc_device(dev
);
2275 return snprintf(buf
, 10, "%u\n",
2276 (bmc
->id
.device_revision
& 0x80) >> 7);
2278 static DEVICE_ATTR(provides_device_sdrs
, S_IRUGO
, provides_device_sdrs_show
,
2281 static ssize_t
revision_show(struct device
*dev
, struct device_attribute
*attr
,
2284 struct bmc_device
*bmc
= to_bmc_device(dev
);
2286 return snprintf(buf
, 20, "%u\n",
2287 bmc
->id
.device_revision
& 0x0F);
2289 static DEVICE_ATTR(revision
, S_IRUGO
, revision_show
, NULL
);
2291 static ssize_t
firmware_revision_show(struct device
*dev
,
2292 struct device_attribute
*attr
,
2295 struct bmc_device
*bmc
= to_bmc_device(dev
);
2297 return snprintf(buf
, 20, "%u.%x\n", bmc
->id
.firmware_revision_1
,
2298 bmc
->id
.firmware_revision_2
);
2300 static DEVICE_ATTR(firmware_revision
, S_IRUGO
, firmware_revision_show
, NULL
);
2302 static ssize_t
ipmi_version_show(struct device
*dev
,
2303 struct device_attribute
*attr
,
2306 struct bmc_device
*bmc
= to_bmc_device(dev
);
2308 return snprintf(buf
, 20, "%u.%u\n",
2309 ipmi_version_major(&bmc
->id
),
2310 ipmi_version_minor(&bmc
->id
));
2312 static DEVICE_ATTR(ipmi_version
, S_IRUGO
, ipmi_version_show
, NULL
);
2314 static ssize_t
add_dev_support_show(struct device
*dev
,
2315 struct device_attribute
*attr
,
2318 struct bmc_device
*bmc
= to_bmc_device(dev
);
2320 return snprintf(buf
, 10, "0x%02x\n",
2321 bmc
->id
.additional_device_support
);
2323 static DEVICE_ATTR(additional_device_support
, S_IRUGO
, add_dev_support_show
,
2326 static ssize_t
manufacturer_id_show(struct device
*dev
,
2327 struct device_attribute
*attr
,
2330 struct bmc_device
*bmc
= to_bmc_device(dev
);
2332 return snprintf(buf
, 20, "0x%6.6x\n", bmc
->id
.manufacturer_id
);
2334 static DEVICE_ATTR(manufacturer_id
, S_IRUGO
, manufacturer_id_show
, NULL
);
2336 static ssize_t
product_id_show(struct device
*dev
,
2337 struct device_attribute
*attr
,
2340 struct bmc_device
*bmc
= to_bmc_device(dev
);
2342 return snprintf(buf
, 10, "0x%4.4x\n", bmc
->id
.product_id
);
2344 static DEVICE_ATTR(product_id
, S_IRUGO
, product_id_show
, NULL
);
2346 static ssize_t
aux_firmware_rev_show(struct device
*dev
,
2347 struct device_attribute
*attr
,
2350 struct bmc_device
*bmc
= to_bmc_device(dev
);
2352 return snprintf(buf
, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2353 bmc
->id
.aux_firmware_revision
[3],
2354 bmc
->id
.aux_firmware_revision
[2],
2355 bmc
->id
.aux_firmware_revision
[1],
2356 bmc
->id
.aux_firmware_revision
[0]);
2358 static DEVICE_ATTR(aux_firmware_revision
, S_IRUGO
, aux_firmware_rev_show
, NULL
);
2360 static ssize_t
guid_show(struct device
*dev
, struct device_attribute
*attr
,
2363 struct bmc_device
*bmc
= to_bmc_device(dev
);
2365 return snprintf(buf
, 100, "%Lx%Lx\n",
2366 (long long) bmc
->guid
[0],
2367 (long long) bmc
->guid
[8]);
2369 static DEVICE_ATTR(guid
, S_IRUGO
, guid_show
, NULL
);
2371 static struct attribute
*bmc_dev_attrs
[] = {
2372 &dev_attr_device_id
.attr
,
2373 &dev_attr_provides_device_sdrs
.attr
,
2374 &dev_attr_revision
.attr
,
2375 &dev_attr_firmware_revision
.attr
,
2376 &dev_attr_ipmi_version
.attr
,
2377 &dev_attr_additional_device_support
.attr
,
2378 &dev_attr_manufacturer_id
.attr
,
2379 &dev_attr_product_id
.attr
,
2380 &dev_attr_aux_firmware_revision
.attr
,
2381 &dev_attr_guid
.attr
,
2385 static umode_t
bmc_dev_attr_is_visible(struct kobject
*kobj
,
2386 struct attribute
*attr
, int idx
)
2388 struct device
*dev
= kobj_to_dev(kobj
);
2389 struct bmc_device
*bmc
= to_bmc_device(dev
);
2390 umode_t mode
= attr
->mode
;
2392 if (attr
== &dev_attr_aux_firmware_revision
.attr
)
2393 return bmc
->id
.aux_firmware_revision_set
? mode
: 0;
2394 if (attr
== &dev_attr_guid
.attr
)
2395 return bmc
->guid_set
? mode
: 0;
2399 static struct attribute_group bmc_dev_attr_group
= {
2400 .attrs
= bmc_dev_attrs
,
2401 .is_visible
= bmc_dev_attr_is_visible
,
2404 static const struct attribute_group
*bmc_dev_attr_groups
[] = {
2405 &bmc_dev_attr_group
,
2409 static struct device_type bmc_device_type
= {
2410 .groups
= bmc_dev_attr_groups
,
2414 release_bmc_device(struct device
*dev
)
2416 kfree(to_bmc_device(dev
));
2420 cleanup_bmc_device(struct kref
*ref
)
2422 struct bmc_device
*bmc
= container_of(ref
, struct bmc_device
, usecount
);
2424 platform_device_unregister(&bmc
->pdev
);
2427 static void ipmi_bmc_unregister(ipmi_smi_t intf
)
2429 struct bmc_device
*bmc
= intf
->bmc
;
2431 sysfs_remove_link(&intf
->si_dev
->kobj
, "bmc");
2432 if (intf
->my_dev_name
) {
2433 sysfs_remove_link(&bmc
->pdev
.dev
.kobj
, intf
->my_dev_name
);
2434 kfree(intf
->my_dev_name
);
2435 intf
->my_dev_name
= NULL
;
2438 mutex_lock(&ipmidriver_mutex
);
2439 kref_put(&bmc
->usecount
, cleanup_bmc_device
);
2441 mutex_unlock(&ipmidriver_mutex
);
2444 static int ipmi_bmc_register(ipmi_smi_t intf
, int ifnum
)
2447 struct bmc_device
*bmc
= intf
->bmc
;
2448 struct bmc_device
*old_bmc
;
2450 mutex_lock(&ipmidriver_mutex
);
2453 * Try to find if there is an bmc_device struct
2454 * representing the interfaced BMC already
2457 old_bmc
= ipmi_find_bmc_guid(&ipmidriver
.driver
, bmc
->guid
);
2459 old_bmc
= ipmi_find_bmc_prod_dev_id(&ipmidriver
.driver
,
2464 * If there is already an bmc_device, free the new one,
2465 * otherwise register the new BMC device
2469 intf
->bmc
= old_bmc
;
2472 kref_get(&bmc
->usecount
);
2473 mutex_unlock(&ipmidriver_mutex
);
2476 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2477 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2478 bmc
->id
.manufacturer_id
,
2482 unsigned char orig_dev_id
= bmc
->id
.device_id
;
2483 int warn_printed
= 0;
2485 snprintf(bmc
->name
, sizeof(bmc
->name
),
2486 "ipmi_bmc.%4.4x", bmc
->id
.product_id
);
2487 bmc
->pdev
.name
= bmc
->name
;
2489 while (ipmi_find_bmc_prod_dev_id(&ipmidriver
.driver
,
2491 bmc
->id
.device_id
)) {
2492 if (!warn_printed
) {
2493 printk(KERN_WARNING PFX
2494 "This machine has two different BMCs"
2495 " with the same product id and device"
2496 " id. This is an error in the"
2497 " firmware, but incrementing the"
2498 " device id to work around the problem."
2499 " Prod ID = 0x%x, Dev ID = 0x%x\n",
2500 bmc
->id
.product_id
, bmc
->id
.device_id
);
2503 bmc
->id
.device_id
++; /* Wraps at 255 */
2504 if (bmc
->id
.device_id
== orig_dev_id
) {
2506 "Out of device ids!\n");
2511 bmc
->pdev
.dev
.driver
= &ipmidriver
.driver
;
2512 bmc
->pdev
.id
= bmc
->id
.device_id
;
2513 bmc
->pdev
.dev
.release
= release_bmc_device
;
2514 bmc
->pdev
.dev
.type
= &bmc_device_type
;
2515 kref_init(&bmc
->usecount
);
2517 rv
= platform_device_register(&bmc
->pdev
);
2518 mutex_unlock(&ipmidriver_mutex
);
2520 put_device(&bmc
->pdev
.dev
);
2523 " Unable to register bmc device: %d\n",
2526 * Don't go to out_err, you can only do that if
2527 * the device is registered already.
2532 dev_info(intf
->si_dev
, "Found new BMC (man_id: 0x%6.6x, "
2533 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2534 bmc
->id
.manufacturer_id
,
2540 * create symlink from system interface device to bmc device
2543 rv
= sysfs_create_link(&intf
->si_dev
->kobj
, &bmc
->pdev
.dev
.kobj
, "bmc");
2546 "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2551 intf
->my_dev_name
= kasprintf(GFP_KERNEL
, "ipmi%d", ifnum
);
2552 if (!intf
->my_dev_name
) {
2555 "ipmi_msghandler: allocate link from BMC: %d\n",
2560 rv
= sysfs_create_link(&bmc
->pdev
.dev
.kobj
, &intf
->si_dev
->kobj
,
2563 kfree(intf
->my_dev_name
);
2564 intf
->my_dev_name
= NULL
;
2567 " Unable to create symlink to bmc: %d\n",
2575 ipmi_bmc_unregister(intf
);
2580 send_guid_cmd(ipmi_smi_t intf
, int chan
)
2582 struct kernel_ipmi_msg msg
;
2583 struct ipmi_system_interface_addr si
;
2585 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
2586 si
.channel
= IPMI_BMC_CHANNEL
;
2589 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
2590 msg
.cmd
= IPMI_GET_DEVICE_GUID_CMD
;
2593 return i_ipmi_request(NULL
,
2595 (struct ipmi_addr
*) &si
,
2602 intf
->channels
[0].address
,
2603 intf
->channels
[0].lun
,
2608 guid_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
2610 if ((msg
->addr
.addr_type
!= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
2611 || (msg
->msg
.netfn
!= IPMI_NETFN_APP_RESPONSE
)
2612 || (msg
->msg
.cmd
!= IPMI_GET_DEVICE_GUID_CMD
))
2616 if (msg
->msg
.data
[0] != 0) {
2617 /* Error from getting the GUID, the BMC doesn't have one. */
2618 intf
->bmc
->guid_set
= 0;
2622 if (msg
->msg
.data_len
< 17) {
2623 intf
->bmc
->guid_set
= 0;
2624 printk(KERN_WARNING PFX
2625 "guid_handler: The GUID response from the BMC was too"
2626 " short, it was %d but should have been 17. Assuming"
2627 " GUID is not available.\n",
2632 memcpy(intf
->bmc
->guid
, msg
->msg
.data
, 16);
2633 intf
->bmc
->guid_set
= 1;
2635 wake_up(&intf
->waitq
);
2639 get_guid(ipmi_smi_t intf
)
2643 intf
->bmc
->guid_set
= 0x2;
2644 intf
->null_user_handler
= guid_handler
;
2645 rv
= send_guid_cmd(intf
, 0);
2647 /* Send failed, no GUID available. */
2648 intf
->bmc
->guid_set
= 0;
2649 wait_event(intf
->waitq
, intf
->bmc
->guid_set
!= 2);
2650 intf
->null_user_handler
= NULL
;
2654 send_channel_info_cmd(ipmi_smi_t intf
, int chan
)
2656 struct kernel_ipmi_msg msg
;
2657 unsigned char data
[1];
2658 struct ipmi_system_interface_addr si
;
2660 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
2661 si
.channel
= IPMI_BMC_CHANNEL
;
2664 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
2665 msg
.cmd
= IPMI_GET_CHANNEL_INFO_CMD
;
2669 return i_ipmi_request(NULL
,
2671 (struct ipmi_addr
*) &si
,
2678 intf
->channels
[0].address
,
2679 intf
->channels
[0].lun
,
2684 channel_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
2689 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
2690 && (msg
->msg
.netfn
== IPMI_NETFN_APP_RESPONSE
)
2691 && (msg
->msg
.cmd
== IPMI_GET_CHANNEL_INFO_CMD
)) {
2692 /* It's the one we want */
2693 if (msg
->msg
.data
[0] != 0) {
2694 /* Got an error from the channel, just go on. */
2696 if (msg
->msg
.data
[0] == IPMI_INVALID_COMMAND_ERR
) {
2698 * If the MC does not support this
2699 * command, that is legal. We just
2700 * assume it has one IPMB at channel
2703 intf
->channels
[0].medium
2704 = IPMI_CHANNEL_MEDIUM_IPMB
;
2705 intf
->channels
[0].protocol
2706 = IPMI_CHANNEL_PROTOCOL_IPMB
;
2708 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2709 wake_up(&intf
->waitq
);
2714 if (msg
->msg
.data_len
< 4) {
2715 /* Message not big enough, just go on. */
2718 chan
= intf
->curr_channel
;
2719 intf
->channels
[chan
].medium
= msg
->msg
.data
[2] & 0x7f;
2720 intf
->channels
[chan
].protocol
= msg
->msg
.data
[3] & 0x1f;
2723 intf
->curr_channel
++;
2724 if (intf
->curr_channel
>= IPMI_MAX_CHANNELS
)
2725 wake_up(&intf
->waitq
);
2727 rv
= send_channel_info_cmd(intf
, intf
->curr_channel
);
2730 /* Got an error somehow, just give up. */
2731 printk(KERN_WARNING PFX
2732 "Error sending channel information for channel"
2733 " %d: %d\n", intf
->curr_channel
, rv
);
2735 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2736 wake_up(&intf
->waitq
);
2743 static void ipmi_poll(ipmi_smi_t intf
)
2745 if (intf
->handlers
->poll
)
2746 intf
->handlers
->poll(intf
->send_info
);
2747 /* In case something came in */
2748 handle_new_recv_msgs(intf
);
2751 void ipmi_poll_interface(ipmi_user_t user
)
2753 ipmi_poll(user
->intf
);
2755 EXPORT_SYMBOL(ipmi_poll_interface
);
2757 int ipmi_register_smi(const struct ipmi_smi_handlers
*handlers
,
2759 struct ipmi_device_id
*device_id
,
2760 struct device
*si_dev
,
2761 unsigned char slave_addr
)
2767 struct list_head
*link
;
2770 * Make sure the driver is actually initialized, this handles
2771 * problems with initialization order.
2774 rv
= ipmi_init_msghandler();
2778 * The init code doesn't return an error if it was turned
2779 * off, but it won't initialize. Check that.
2785 intf
= kzalloc(sizeof(*intf
), GFP_KERNEL
);
2789 intf
->ipmi_version_major
= ipmi_version_major(device_id
);
2790 intf
->ipmi_version_minor
= ipmi_version_minor(device_id
);
2792 intf
->bmc
= kzalloc(sizeof(*intf
->bmc
), GFP_KERNEL
);
2797 intf
->intf_num
= -1; /* Mark it invalid for now. */
2798 kref_init(&intf
->refcount
);
2799 intf
->bmc
->id
= *device_id
;
2800 intf
->si_dev
= si_dev
;
2801 for (j
= 0; j
< IPMI_MAX_CHANNELS
; j
++) {
2802 intf
->channels
[j
].address
= IPMI_BMC_SLAVE_ADDR
;
2803 intf
->channels
[j
].lun
= 2;
2805 if (slave_addr
!= 0)
2806 intf
->channels
[0].address
= slave_addr
;
2807 INIT_LIST_HEAD(&intf
->users
);
2808 intf
->handlers
= handlers
;
2809 intf
->send_info
= send_info
;
2810 spin_lock_init(&intf
->seq_lock
);
2811 for (j
= 0; j
< IPMI_IPMB_NUM_SEQ
; j
++) {
2812 intf
->seq_table
[j
].inuse
= 0;
2813 intf
->seq_table
[j
].seqid
= 0;
2816 #ifdef CONFIG_PROC_FS
2817 mutex_init(&intf
->proc_entry_lock
);
2819 spin_lock_init(&intf
->waiting_rcv_msgs_lock
);
2820 INIT_LIST_HEAD(&intf
->waiting_rcv_msgs
);
2821 tasklet_init(&intf
->recv_tasklet
,
2823 (unsigned long) intf
);
2824 atomic_set(&intf
->watchdog_pretimeouts_to_deliver
, 0);
2825 spin_lock_init(&intf
->xmit_msgs_lock
);
2826 INIT_LIST_HEAD(&intf
->xmit_msgs
);
2827 INIT_LIST_HEAD(&intf
->hp_xmit_msgs
);
2828 spin_lock_init(&intf
->events_lock
);
2829 atomic_set(&intf
->event_waiters
, 0);
2830 intf
->ticks_to_req_ev
= IPMI_REQUEST_EV_TIME
;
2831 INIT_LIST_HEAD(&intf
->waiting_events
);
2832 intf
->waiting_events_count
= 0;
2833 mutex_init(&intf
->cmd_rcvrs_mutex
);
2834 spin_lock_init(&intf
->maintenance_mode_lock
);
2835 INIT_LIST_HEAD(&intf
->cmd_rcvrs
);
2836 init_waitqueue_head(&intf
->waitq
);
2837 for (i
= 0; i
< IPMI_NUM_STATS
; i
++)
2838 atomic_set(&intf
->stats
[i
], 0);
2840 intf
->proc_dir
= NULL
;
2842 mutex_lock(&smi_watchers_mutex
);
2843 mutex_lock(&ipmi_interfaces_mutex
);
2844 /* Look for a hole in the numbers. */
2846 link
= &ipmi_interfaces
;
2847 list_for_each_entry_rcu(tintf
, &ipmi_interfaces
, link
) {
2848 if (tintf
->intf_num
!= i
) {
2849 link
= &tintf
->link
;
2854 /* Add the new interface in numeric order. */
2856 list_add_rcu(&intf
->link
, &ipmi_interfaces
);
2858 list_add_tail_rcu(&intf
->link
, link
);
2860 rv
= handlers
->start_processing(send_info
, intf
);
2866 if ((intf
->ipmi_version_major
> 1)
2867 || ((intf
->ipmi_version_major
== 1)
2868 && (intf
->ipmi_version_minor
>= 5))) {
2870 * Start scanning the channels to see what is
2873 intf
->null_user_handler
= channel_handler
;
2874 intf
->curr_channel
= 0;
2875 rv
= send_channel_info_cmd(intf
, 0);
2877 printk(KERN_WARNING PFX
2878 "Error sending channel information for channel"
2883 /* Wait for the channel info to be read. */
2884 wait_event(intf
->waitq
,
2885 intf
->curr_channel
>= IPMI_MAX_CHANNELS
);
2886 intf
->null_user_handler
= NULL
;
2888 /* Assume a single IPMB channel at zero. */
2889 intf
->channels
[0].medium
= IPMI_CHANNEL_MEDIUM_IPMB
;
2890 intf
->channels
[0].protocol
= IPMI_CHANNEL_PROTOCOL_IPMB
;
2891 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2895 rv
= add_proc_entries(intf
, i
);
2897 rv
= ipmi_bmc_register(intf
, i
);
2902 remove_proc_entries(intf
);
2903 intf
->handlers
= NULL
;
2904 list_del_rcu(&intf
->link
);
2905 mutex_unlock(&ipmi_interfaces_mutex
);
2906 mutex_unlock(&smi_watchers_mutex
);
2908 kref_put(&intf
->refcount
, intf_free
);
2911 * Keep memory order straight for RCU readers. Make
2912 * sure everything else is committed to memory before
2913 * setting intf_num to mark the interface valid.
2917 mutex_unlock(&ipmi_interfaces_mutex
);
2918 /* After this point the interface is legal to use. */
2919 call_smi_watchers(i
, intf
->si_dev
);
2920 mutex_unlock(&smi_watchers_mutex
);
2925 EXPORT_SYMBOL(ipmi_register_smi
);
2927 static void deliver_smi_err_response(ipmi_smi_t intf
,
2928 struct ipmi_smi_msg
*msg
,
2931 msg
->rsp
[0] = msg
->data
[0] | 4;
2932 msg
->rsp
[1] = msg
->data
[1];
2935 /* It's an error, so it will never requeue, no need to check return. */
2936 handle_one_recv_msg(intf
, msg
);
2939 static void cleanup_smi_msgs(ipmi_smi_t intf
)
2942 struct seq_table
*ent
;
2943 struct ipmi_smi_msg
*msg
;
2944 struct list_head
*entry
;
2945 struct list_head tmplist
;
2947 /* Clear out our transmit queues and hold the messages. */
2948 INIT_LIST_HEAD(&tmplist
);
2949 list_splice_tail(&intf
->hp_xmit_msgs
, &tmplist
);
2950 list_splice_tail(&intf
->xmit_msgs
, &tmplist
);
2952 /* Current message first, to preserve order */
2953 while (intf
->curr_msg
&& !list_empty(&intf
->waiting_rcv_msgs
)) {
2954 /* Wait for the message to clear out. */
2955 schedule_timeout(1);
2958 /* No need for locks, the interface is down. */
2961 * Return errors for all pending messages in queue and in the
2962 * tables waiting for remote responses.
2964 while (!list_empty(&tmplist
)) {
2965 entry
= tmplist
.next
;
2967 msg
= list_entry(entry
, struct ipmi_smi_msg
, link
);
2968 deliver_smi_err_response(intf
, msg
, IPMI_ERR_UNSPECIFIED
);
2971 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
2972 ent
= &(intf
->seq_table
[i
]);
2975 deliver_err_response(ent
->recv_msg
, IPMI_ERR_UNSPECIFIED
);
2979 int ipmi_unregister_smi(ipmi_smi_t intf
)
2981 struct ipmi_smi_watcher
*w
;
2982 int intf_num
= intf
->intf_num
;
2985 ipmi_bmc_unregister(intf
);
2987 mutex_lock(&smi_watchers_mutex
);
2988 mutex_lock(&ipmi_interfaces_mutex
);
2989 intf
->intf_num
= -1;
2990 intf
->in_shutdown
= true;
2991 list_del_rcu(&intf
->link
);
2992 mutex_unlock(&ipmi_interfaces_mutex
);
2995 cleanup_smi_msgs(intf
);
2997 /* Clean up the effects of users on the lower-level software. */
2998 mutex_lock(&ipmi_interfaces_mutex
);
3000 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3001 module_put(intf
->handlers
->owner
);
3002 if (intf
->handlers
->dec_usecount
)
3003 intf
->handlers
->dec_usecount(intf
->send_info
);
3006 intf
->handlers
= NULL
;
3007 mutex_unlock(&ipmi_interfaces_mutex
);
3009 remove_proc_entries(intf
);
3012 * Call all the watcher interfaces to tell them that
3013 * an interface is gone.
3015 list_for_each_entry(w
, &smi_watchers
, link
)
3016 w
->smi_gone(intf_num
);
3017 mutex_unlock(&smi_watchers_mutex
);
3019 kref_put(&intf
->refcount
, intf_free
);
3022 EXPORT_SYMBOL(ipmi_unregister_smi
);
3024 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf
,
3025 struct ipmi_smi_msg
*msg
)
3027 struct ipmi_ipmb_addr ipmb_addr
;
3028 struct ipmi_recv_msg
*recv_msg
;
3031 * This is 11, not 10, because the response must contain a
3034 if (msg
->rsp_size
< 11) {
3035 /* Message not big enough, just ignore it. */
3036 ipmi_inc_stat(intf
, invalid_ipmb_responses
);
3040 if (msg
->rsp
[2] != 0) {
3041 /* An error getting the response, just ignore it. */
3045 ipmb_addr
.addr_type
= IPMI_IPMB_ADDR_TYPE
;
3046 ipmb_addr
.slave_addr
= msg
->rsp
[6];
3047 ipmb_addr
.channel
= msg
->rsp
[3] & 0x0f;
3048 ipmb_addr
.lun
= msg
->rsp
[7] & 3;
3051 * It's a response from a remote entity. Look up the sequence
3052 * number and handle the response.
3054 if (intf_find_seq(intf
,
3058 (msg
->rsp
[4] >> 2) & (~1),
3059 (struct ipmi_addr
*) &(ipmb_addr
),
3062 * We were unable to find the sequence number,
3063 * so just nuke the message.
3065 ipmi_inc_stat(intf
, unhandled_ipmb_responses
);
3069 memcpy(recv_msg
->msg_data
,
3073 * The other fields matched, so no need to set them, except
3074 * for netfn, which needs to be the response that was
3075 * returned, not the request value.
3077 recv_msg
->msg
.netfn
= msg
->rsp
[4] >> 2;
3078 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3079 recv_msg
->msg
.data_len
= msg
->rsp_size
- 10;
3080 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3081 ipmi_inc_stat(intf
, handled_ipmb_responses
);
3082 deliver_response(recv_msg
);
3087 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf
,
3088 struct ipmi_smi_msg
*msg
)
3090 struct cmd_rcvr
*rcvr
;
3092 unsigned char netfn
;
3095 ipmi_user_t user
= NULL
;
3096 struct ipmi_ipmb_addr
*ipmb_addr
;
3097 struct ipmi_recv_msg
*recv_msg
;
3099 if (msg
->rsp_size
< 10) {
3100 /* Message not big enough, just ignore it. */
3101 ipmi_inc_stat(intf
, invalid_commands
);
3105 if (msg
->rsp
[2] != 0) {
3106 /* An error getting the response, just ignore it. */
3110 netfn
= msg
->rsp
[4] >> 2;
3112 chan
= msg
->rsp
[3] & 0xf;
3115 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3118 kref_get(&user
->refcount
);
3124 /* We didn't find a user, deliver an error response. */
3125 ipmi_inc_stat(intf
, unhandled_commands
);
3127 msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
3128 msg
->data
[1] = IPMI_SEND_MSG_CMD
;
3129 msg
->data
[2] = msg
->rsp
[3];
3130 msg
->data
[3] = msg
->rsp
[6];
3131 msg
->data
[4] = ((netfn
+ 1) << 2) | (msg
->rsp
[7] & 0x3);
3132 msg
->data
[5] = ipmb_checksum(&(msg
->data
[3]), 2);
3133 msg
->data
[6] = intf
->channels
[msg
->rsp
[3] & 0xf].address
;
3135 msg
->data
[7] = (msg
->rsp
[7] & 0xfc) | (msg
->rsp
[4] & 0x3);
3136 msg
->data
[8] = msg
->rsp
[8]; /* cmd */
3137 msg
->data
[9] = IPMI_INVALID_CMD_COMPLETION_CODE
;
3138 msg
->data
[10] = ipmb_checksum(&(msg
->data
[6]), 4);
3139 msg
->data_size
= 11;
3144 printk("Invalid command:");
3145 for (m
= 0; m
< msg
->data_size
; m
++)
3146 printk(" %2.2x", msg
->data
[m
]);
3151 if (!intf
->in_shutdown
) {
3152 smi_send(intf
, intf
->handlers
, msg
, 0);
3154 * We used the message, so return the value
3155 * that causes it to not be freed or
3162 /* Deliver the message to the user. */
3163 ipmi_inc_stat(intf
, handled_commands
);
3165 recv_msg
= ipmi_alloc_recv_msg();
3168 * We couldn't allocate memory for the
3169 * message, so requeue it for handling
3173 kref_put(&user
->refcount
, free_user
);
3175 /* Extract the source address from the data. */
3176 ipmb_addr
= (struct ipmi_ipmb_addr
*) &recv_msg
->addr
;
3177 ipmb_addr
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
3178 ipmb_addr
->slave_addr
= msg
->rsp
[6];
3179 ipmb_addr
->lun
= msg
->rsp
[7] & 3;
3180 ipmb_addr
->channel
= msg
->rsp
[3] & 0xf;
3183 * Extract the rest of the message information
3184 * from the IPMB header.
3186 recv_msg
->user
= user
;
3187 recv_msg
->recv_type
= IPMI_CMD_RECV_TYPE
;
3188 recv_msg
->msgid
= msg
->rsp
[7] >> 2;
3189 recv_msg
->msg
.netfn
= msg
->rsp
[4] >> 2;
3190 recv_msg
->msg
.cmd
= msg
->rsp
[8];
3191 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3194 * We chop off 10, not 9 bytes because the checksum
3195 * at the end also needs to be removed.
3197 recv_msg
->msg
.data_len
= msg
->rsp_size
- 10;
3198 memcpy(recv_msg
->msg_data
,
3200 msg
->rsp_size
- 10);
3201 deliver_response(recv_msg
);
3208 static int handle_lan_get_msg_rsp(ipmi_smi_t intf
,
3209 struct ipmi_smi_msg
*msg
)
3211 struct ipmi_lan_addr lan_addr
;
3212 struct ipmi_recv_msg
*recv_msg
;
3216 * This is 13, not 12, because the response must contain a
3219 if (msg
->rsp_size
< 13) {
3220 /* Message not big enough, just ignore it. */
3221 ipmi_inc_stat(intf
, invalid_lan_responses
);
3225 if (msg
->rsp
[2] != 0) {
3226 /* An error getting the response, just ignore it. */
3230 lan_addr
.addr_type
= IPMI_LAN_ADDR_TYPE
;
3231 lan_addr
.session_handle
= msg
->rsp
[4];
3232 lan_addr
.remote_SWID
= msg
->rsp
[8];
3233 lan_addr
.local_SWID
= msg
->rsp
[5];
3234 lan_addr
.channel
= msg
->rsp
[3] & 0x0f;
3235 lan_addr
.privilege
= msg
->rsp
[3] >> 4;
3236 lan_addr
.lun
= msg
->rsp
[9] & 3;
3239 * It's a response from a remote entity. Look up the sequence
3240 * number and handle the response.
3242 if (intf_find_seq(intf
,
3246 (msg
->rsp
[6] >> 2) & (~1),
3247 (struct ipmi_addr
*) &(lan_addr
),
3250 * We were unable to find the sequence number,
3251 * so just nuke the message.
3253 ipmi_inc_stat(intf
, unhandled_lan_responses
);
3257 memcpy(recv_msg
->msg_data
,
3259 msg
->rsp_size
- 11);
3261 * The other fields matched, so no need to set them, except
3262 * for netfn, which needs to be the response that was
3263 * returned, not the request value.
3265 recv_msg
->msg
.netfn
= msg
->rsp
[6] >> 2;
3266 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3267 recv_msg
->msg
.data_len
= msg
->rsp_size
- 12;
3268 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3269 ipmi_inc_stat(intf
, handled_lan_responses
);
3270 deliver_response(recv_msg
);
3275 static int handle_lan_get_msg_cmd(ipmi_smi_t intf
,
3276 struct ipmi_smi_msg
*msg
)
3278 struct cmd_rcvr
*rcvr
;
3280 unsigned char netfn
;
3283 ipmi_user_t user
= NULL
;
3284 struct ipmi_lan_addr
*lan_addr
;
3285 struct ipmi_recv_msg
*recv_msg
;
3287 if (msg
->rsp_size
< 12) {
3288 /* Message not big enough, just ignore it. */
3289 ipmi_inc_stat(intf
, invalid_commands
);
3293 if (msg
->rsp
[2] != 0) {
3294 /* An error getting the response, just ignore it. */
3298 netfn
= msg
->rsp
[6] >> 2;
3300 chan
= msg
->rsp
[3] & 0xf;
3303 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3306 kref_get(&user
->refcount
);
3312 /* We didn't find a user, just give up. */
3313 ipmi_inc_stat(intf
, unhandled_commands
);
3316 * Don't do anything with these messages, just allow
3321 /* Deliver the message to the user. */
3322 ipmi_inc_stat(intf
, handled_commands
);
3324 recv_msg
= ipmi_alloc_recv_msg();
3327 * We couldn't allocate memory for the
3328 * message, so requeue it for handling later.
3331 kref_put(&user
->refcount
, free_user
);
3333 /* Extract the source address from the data. */
3334 lan_addr
= (struct ipmi_lan_addr
*) &recv_msg
->addr
;
3335 lan_addr
->addr_type
= IPMI_LAN_ADDR_TYPE
;
3336 lan_addr
->session_handle
= msg
->rsp
[4];
3337 lan_addr
->remote_SWID
= msg
->rsp
[8];
3338 lan_addr
->local_SWID
= msg
->rsp
[5];
3339 lan_addr
->lun
= msg
->rsp
[9] & 3;
3340 lan_addr
->channel
= msg
->rsp
[3] & 0xf;
3341 lan_addr
->privilege
= msg
->rsp
[3] >> 4;
3344 * Extract the rest of the message information
3345 * from the IPMB header.
3347 recv_msg
->user
= user
;
3348 recv_msg
->recv_type
= IPMI_CMD_RECV_TYPE
;
3349 recv_msg
->msgid
= msg
->rsp
[9] >> 2;
3350 recv_msg
->msg
.netfn
= msg
->rsp
[6] >> 2;
3351 recv_msg
->msg
.cmd
= msg
->rsp
[10];
3352 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3355 * We chop off 12, not 11 bytes because the checksum
3356 * at the end also needs to be removed.
3358 recv_msg
->msg
.data_len
= msg
->rsp_size
- 12;
3359 memcpy(recv_msg
->msg_data
,
3361 msg
->rsp_size
- 12);
3362 deliver_response(recv_msg
);
3370 * This routine will handle "Get Message" command responses with
3371 * channels that use an OEM Medium. The message format belongs to
3372 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3373 * Chapter 22, sections 22.6 and 22.24 for more details.
3375 static int handle_oem_get_msg_cmd(ipmi_smi_t intf
,
3376 struct ipmi_smi_msg
*msg
)
3378 struct cmd_rcvr
*rcvr
;
3380 unsigned char netfn
;
3383 ipmi_user_t user
= NULL
;
3384 struct ipmi_system_interface_addr
*smi_addr
;
3385 struct ipmi_recv_msg
*recv_msg
;
3388 * We expect the OEM SW to perform error checking
3389 * so we just do some basic sanity checks
3391 if (msg
->rsp_size
< 4) {
3392 /* Message not big enough, just ignore it. */
3393 ipmi_inc_stat(intf
, invalid_commands
);
3397 if (msg
->rsp
[2] != 0) {
3398 /* An error getting the response, just ignore it. */
3403 * This is an OEM Message so the OEM needs to know how
3404 * handle the message. We do no interpretation.
3406 netfn
= msg
->rsp
[0] >> 2;
3408 chan
= msg
->rsp
[3] & 0xf;
3411 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3414 kref_get(&user
->refcount
);
3420 /* We didn't find a user, just give up. */
3421 ipmi_inc_stat(intf
, unhandled_commands
);
3424 * Don't do anything with these messages, just allow
3430 /* Deliver the message to the user. */
3431 ipmi_inc_stat(intf
, handled_commands
);
3433 recv_msg
= ipmi_alloc_recv_msg();
3436 * We couldn't allocate memory for the
3437 * message, so requeue it for handling
3441 kref_put(&user
->refcount
, free_user
);
3444 * OEM Messages are expected to be delivered via
3445 * the system interface to SMS software. We might
3446 * need to visit this again depending on OEM
3449 smi_addr
= ((struct ipmi_system_interface_addr
*)
3451 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3452 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3453 smi_addr
->lun
= msg
->rsp
[0] & 3;
3455 recv_msg
->user
= user
;
3456 recv_msg
->user_msg_data
= NULL
;
3457 recv_msg
->recv_type
= IPMI_OEM_RECV_TYPE
;
3458 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3459 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3460 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3463 * The message starts at byte 4 which follows the
3464 * the Channel Byte in the "GET MESSAGE" command
3466 recv_msg
->msg
.data_len
= msg
->rsp_size
- 4;
3467 memcpy(recv_msg
->msg_data
,
3470 deliver_response(recv_msg
);
3477 static void copy_event_into_recv_msg(struct ipmi_recv_msg
*recv_msg
,
3478 struct ipmi_smi_msg
*msg
)
3480 struct ipmi_system_interface_addr
*smi_addr
;
3482 recv_msg
->msgid
= 0;
3483 smi_addr
= (struct ipmi_system_interface_addr
*) &(recv_msg
->addr
);
3484 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3485 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3486 smi_addr
->lun
= msg
->rsp
[0] & 3;
3487 recv_msg
->recv_type
= IPMI_ASYNC_EVENT_RECV_TYPE
;
3488 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3489 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3490 memcpy(recv_msg
->msg_data
, &(msg
->rsp
[3]), msg
->rsp_size
- 3);
3491 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3492 recv_msg
->msg
.data_len
= msg
->rsp_size
- 3;
3495 static int handle_read_event_rsp(ipmi_smi_t intf
,
3496 struct ipmi_smi_msg
*msg
)
3498 struct ipmi_recv_msg
*recv_msg
, *recv_msg2
;
3499 struct list_head msgs
;
3502 int deliver_count
= 0;
3503 unsigned long flags
;
3505 if (msg
->rsp_size
< 19) {
3506 /* Message is too small to be an IPMB event. */
3507 ipmi_inc_stat(intf
, invalid_events
);
3511 if (msg
->rsp
[2] != 0) {
3512 /* An error getting the event, just ignore it. */
3516 INIT_LIST_HEAD(&msgs
);
3518 spin_lock_irqsave(&intf
->events_lock
, flags
);
3520 ipmi_inc_stat(intf
, events
);
3523 * Allocate and fill in one message for every user that is
3527 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3528 if (!user
->gets_events
)
3531 recv_msg
= ipmi_alloc_recv_msg();
3534 list_for_each_entry_safe(recv_msg
, recv_msg2
, &msgs
,
3536 list_del(&recv_msg
->link
);
3537 ipmi_free_recv_msg(recv_msg
);
3540 * We couldn't allocate memory for the
3541 * message, so requeue it for handling
3550 copy_event_into_recv_msg(recv_msg
, msg
);
3551 recv_msg
->user
= user
;
3552 kref_get(&user
->refcount
);
3553 list_add_tail(&(recv_msg
->link
), &msgs
);
3557 if (deliver_count
) {
3558 /* Now deliver all the messages. */
3559 list_for_each_entry_safe(recv_msg
, recv_msg2
, &msgs
, link
) {
3560 list_del(&recv_msg
->link
);
3561 deliver_response(recv_msg
);
3563 } else if (intf
->waiting_events_count
< MAX_EVENTS_IN_QUEUE
) {
3565 * No one to receive the message, put it in queue if there's
3566 * not already too many things in the queue.
3568 recv_msg
= ipmi_alloc_recv_msg();
3571 * We couldn't allocate memory for the
3572 * message, so requeue it for handling
3579 copy_event_into_recv_msg(recv_msg
, msg
);
3580 list_add_tail(&(recv_msg
->link
), &(intf
->waiting_events
));
3581 intf
->waiting_events_count
++;
3582 } else if (!intf
->event_msg_printed
) {
3584 * There's too many things in the queue, discard this
3587 printk(KERN_WARNING PFX
"Event queue full, discarding"
3588 " incoming events\n");
3589 intf
->event_msg_printed
= 1;
3593 spin_unlock_irqrestore(&(intf
->events_lock
), flags
);
3598 static int handle_bmc_rsp(ipmi_smi_t intf
,
3599 struct ipmi_smi_msg
*msg
)
3601 struct ipmi_recv_msg
*recv_msg
;
3602 struct ipmi_user
*user
;
3604 recv_msg
= (struct ipmi_recv_msg
*) msg
->user_data
;
3605 if (recv_msg
== NULL
) {
3607 "IPMI message received with no owner. This\n"
3608 "could be because of a malformed message, or\n"
3609 "because of a hardware error. Contact your\n"
3610 "hardware vender for assistance\n");
3614 user
= recv_msg
->user
;
3615 /* Make sure the user still exists. */
3616 if (user
&& !user
->valid
) {
3617 /* The user for the message went away, so give up. */
3618 ipmi_inc_stat(intf
, unhandled_local_responses
);
3619 ipmi_free_recv_msg(recv_msg
);
3621 struct ipmi_system_interface_addr
*smi_addr
;
3623 ipmi_inc_stat(intf
, handled_local_responses
);
3624 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3625 recv_msg
->msgid
= msg
->msgid
;
3626 smi_addr
= ((struct ipmi_system_interface_addr
*)
3628 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3629 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3630 smi_addr
->lun
= msg
->rsp
[0] & 3;
3631 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3632 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3633 memcpy(recv_msg
->msg_data
,
3636 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3637 recv_msg
->msg
.data_len
= msg
->rsp_size
- 2;
3638 deliver_response(recv_msg
);
3645 * Handle a received message. Return 1 if the message should be requeued,
3646 * 0 if the message should be freed, or -1 if the message should not
3647 * be freed or requeued.
3649 static int handle_one_recv_msg(ipmi_smi_t intf
,
3650 struct ipmi_smi_msg
*msg
)
3658 for (m
= 0; m
< msg
->rsp_size
; m
++)
3659 printk(" %2.2x", msg
->rsp
[m
]);
3662 if (msg
->rsp_size
< 2) {
3663 /* Message is too small to be correct. */
3664 printk(KERN_WARNING PFX
"BMC returned to small a message"
3665 " for netfn %x cmd %x, got %d bytes\n",
3666 (msg
->data
[0] >> 2) | 1, msg
->data
[1], msg
->rsp_size
);
3668 /* Generate an error response for the message. */
3669 msg
->rsp
[0] = msg
->data
[0] | (1 << 2);
3670 msg
->rsp
[1] = msg
->data
[1];
3671 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
3673 } else if (((msg
->rsp
[0] >> 2) != ((msg
->data
[0] >> 2) | 1))
3674 || (msg
->rsp
[1] != msg
->data
[1])) {
3676 * The NetFN and Command in the response is not even
3677 * marginally correct.
3679 printk(KERN_WARNING PFX
"BMC returned incorrect response,"
3680 " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3681 (msg
->data
[0] >> 2) | 1, msg
->data
[1],
3682 msg
->rsp
[0] >> 2, msg
->rsp
[1]);
3684 /* Generate an error response for the message. */
3685 msg
->rsp
[0] = msg
->data
[0] | (1 << 2);
3686 msg
->rsp
[1] = msg
->data
[1];
3687 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
3691 if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3692 && (msg
->rsp
[1] == IPMI_SEND_MSG_CMD
)
3693 && (msg
->user_data
!= NULL
)) {
3695 * It's a response to a response we sent. For this we
3696 * deliver a send message response to the user.
3698 struct ipmi_recv_msg
*recv_msg
= msg
->user_data
;
3701 if (msg
->rsp_size
< 2)
3702 /* Message is too small to be correct. */
3705 chan
= msg
->data
[2] & 0x0f;
3706 if (chan
>= IPMI_MAX_CHANNELS
)
3707 /* Invalid channel number */
3713 /* Make sure the user still exists. */
3714 if (!recv_msg
->user
|| !recv_msg
->user
->valid
)
3717 recv_msg
->recv_type
= IPMI_RESPONSE_RESPONSE_TYPE
;
3718 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3719 recv_msg
->msg
.data_len
= 1;
3720 recv_msg
->msg_data
[0] = msg
->rsp
[2];
3721 deliver_response(recv_msg
);
3722 } else if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3723 && (msg
->rsp
[1] == IPMI_GET_MSG_CMD
)) {
3724 /* It's from the receive queue. */
3725 chan
= msg
->rsp
[3] & 0xf;
3726 if (chan
>= IPMI_MAX_CHANNELS
) {
3727 /* Invalid channel number */
3733 * We need to make sure the channels have been initialized.
3734 * The channel_handler routine will set the "curr_channel"
3735 * equal to or greater than IPMI_MAX_CHANNELS when all the
3736 * channels for this interface have been initialized.
3738 if (intf
->curr_channel
< IPMI_MAX_CHANNELS
) {
3739 requeue
= 0; /* Throw the message away */
3743 switch (intf
->channels
[chan
].medium
) {
3744 case IPMI_CHANNEL_MEDIUM_IPMB
:
3745 if (msg
->rsp
[4] & 0x04) {
3747 * It's a response, so find the
3748 * requesting message and send it up.
3750 requeue
= handle_ipmb_get_msg_rsp(intf
, msg
);
3753 * It's a command to the SMS from some other
3754 * entity. Handle that.
3756 requeue
= handle_ipmb_get_msg_cmd(intf
, msg
);
3760 case IPMI_CHANNEL_MEDIUM_8023LAN
:
3761 case IPMI_CHANNEL_MEDIUM_ASYNC
:
3762 if (msg
->rsp
[6] & 0x04) {
3764 * It's a response, so find the
3765 * requesting message and send it up.
3767 requeue
= handle_lan_get_msg_rsp(intf
, msg
);
3770 * It's a command to the SMS from some other
3771 * entity. Handle that.
3773 requeue
= handle_lan_get_msg_cmd(intf
, msg
);
3778 /* Check for OEM Channels. Clients had better
3779 register for these commands. */
3780 if ((intf
->channels
[chan
].medium
3781 >= IPMI_CHANNEL_MEDIUM_OEM_MIN
)
3782 && (intf
->channels
[chan
].medium
3783 <= IPMI_CHANNEL_MEDIUM_OEM_MAX
)) {
3784 requeue
= handle_oem_get_msg_cmd(intf
, msg
);
3787 * We don't handle the channel type, so just
3794 } else if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3795 && (msg
->rsp
[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD
)) {
3796 /* It's an asynchronous event. */
3797 requeue
= handle_read_event_rsp(intf
, msg
);
3799 /* It's a response from the local BMC. */
3800 requeue
= handle_bmc_rsp(intf
, msg
);
3808 * If there are messages in the queue or pretimeouts, handle them.
3810 static void handle_new_recv_msgs(ipmi_smi_t intf
)
3812 struct ipmi_smi_msg
*smi_msg
;
3813 unsigned long flags
= 0;
3815 int run_to_completion
= intf
->run_to_completion
;
3817 /* See if any waiting messages need to be processed. */
3818 if (!run_to_completion
)
3819 spin_lock_irqsave(&intf
->waiting_rcv_msgs_lock
, flags
);
3820 while (!list_empty(&intf
->waiting_rcv_msgs
)) {
3821 smi_msg
= list_entry(intf
->waiting_rcv_msgs
.next
,
3822 struct ipmi_smi_msg
, link
);
3823 if (!run_to_completion
)
3824 spin_unlock_irqrestore(&intf
->waiting_rcv_msgs_lock
,
3826 rv
= handle_one_recv_msg(intf
, smi_msg
);
3827 if (!run_to_completion
)
3828 spin_lock_irqsave(&intf
->waiting_rcv_msgs_lock
, flags
);
3831 * To preserve message order, quit if we
3832 * can't handle a message.
3836 list_del(&smi_msg
->link
);
3838 /* Message handled */
3839 ipmi_free_smi_msg(smi_msg
);
3840 /* If rv < 0, fatal error, del but don't free. */
3843 if (!run_to_completion
)
3844 spin_unlock_irqrestore(&intf
->waiting_rcv_msgs_lock
, flags
);
3847 * If the pretimout count is non-zero, decrement one from it and
3848 * deliver pretimeouts to all the users.
3850 if (atomic_add_unless(&intf
->watchdog_pretimeouts_to_deliver
, -1, 0)) {
3854 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3855 if (user
->handler
->ipmi_watchdog_pretimeout
)
3856 user
->handler
->ipmi_watchdog_pretimeout(
3857 user
->handler_data
);
3863 static void smi_recv_tasklet(unsigned long val
)
3865 unsigned long flags
= 0; /* keep us warning-free. */
3866 ipmi_smi_t intf
= (ipmi_smi_t
) val
;
3867 int run_to_completion
= intf
->run_to_completion
;
3868 struct ipmi_smi_msg
*newmsg
= NULL
;
3871 * Start the next message if available.
3873 * Do this here, not in the actual receiver, because we may deadlock
3874 * because the lower layer is allowed to hold locks while calling
3877 if (!run_to_completion
)
3878 spin_lock_irqsave(&intf
->xmit_msgs_lock
, flags
);
3879 if (intf
->curr_msg
== NULL
&& !intf
->in_shutdown
) {
3880 struct list_head
*entry
= NULL
;
3882 /* Pick the high priority queue first. */
3883 if (!list_empty(&intf
->hp_xmit_msgs
))
3884 entry
= intf
->hp_xmit_msgs
.next
;
3885 else if (!list_empty(&intf
->xmit_msgs
))
3886 entry
= intf
->xmit_msgs
.next
;
3890 newmsg
= list_entry(entry
, struct ipmi_smi_msg
, link
);
3891 intf
->curr_msg
= newmsg
;
3894 if (!run_to_completion
)
3895 spin_unlock_irqrestore(&intf
->xmit_msgs_lock
, flags
);
3897 intf
->handlers
->sender(intf
->send_info
, newmsg
);
3899 handle_new_recv_msgs(intf
);
3902 /* Handle a new message from the lower layer. */
3903 void ipmi_smi_msg_received(ipmi_smi_t intf
,
3904 struct ipmi_smi_msg
*msg
)
3906 unsigned long flags
= 0; /* keep us warning-free. */
3907 int run_to_completion
= intf
->run_to_completion
;
3909 if ((msg
->data_size
>= 2)
3910 && (msg
->data
[0] == (IPMI_NETFN_APP_REQUEST
<< 2))
3911 && (msg
->data
[1] == IPMI_SEND_MSG_CMD
)
3912 && (msg
->user_data
== NULL
)) {
3914 if (intf
->in_shutdown
)
3918 * This is the local response to a command send, start
3919 * the timer for these. The user_data will not be
3920 * NULL if this is a response send, and we will let
3921 * response sends just go through.
3925 * Check for errors, if we get certain errors (ones
3926 * that mean basically we can try again later), we
3927 * ignore them and start the timer. Otherwise we
3928 * report the error immediately.
3930 if ((msg
->rsp_size
>= 3) && (msg
->rsp
[2] != 0)
3931 && (msg
->rsp
[2] != IPMI_NODE_BUSY_ERR
)
3932 && (msg
->rsp
[2] != IPMI_LOST_ARBITRATION_ERR
)
3933 && (msg
->rsp
[2] != IPMI_BUS_ERR
)
3934 && (msg
->rsp
[2] != IPMI_NAK_ON_WRITE_ERR
)) {
3935 int chan
= msg
->rsp
[3] & 0xf;
3937 /* Got an error sending the message, handle it. */
3938 if (chan
>= IPMI_MAX_CHANNELS
)
3939 ; /* This shouldn't happen */
3940 else if ((intf
->channels
[chan
].medium
3941 == IPMI_CHANNEL_MEDIUM_8023LAN
)
3942 || (intf
->channels
[chan
].medium
3943 == IPMI_CHANNEL_MEDIUM_ASYNC
))
3944 ipmi_inc_stat(intf
, sent_lan_command_errs
);
3946 ipmi_inc_stat(intf
, sent_ipmb_command_errs
);
3947 intf_err_seq(intf
, msg
->msgid
, msg
->rsp
[2]);
3949 /* The message was sent, start the timer. */
3950 intf_start_seq_timer(intf
, msg
->msgid
);
3953 ipmi_free_smi_msg(msg
);
3956 * To preserve message order, we keep a queue and deliver from
3959 if (!run_to_completion
)
3960 spin_lock_irqsave(&intf
->waiting_rcv_msgs_lock
, flags
);
3961 list_add_tail(&msg
->link
, &intf
->waiting_rcv_msgs
);
3962 if (!run_to_completion
)
3963 spin_unlock_irqrestore(&intf
->waiting_rcv_msgs_lock
,
3967 if (!run_to_completion
)
3968 spin_lock_irqsave(&intf
->xmit_msgs_lock
, flags
);
3970 * We can get an asynchronous event or receive message in addition
3971 * to commands we send.
3973 if (msg
== intf
->curr_msg
)
3974 intf
->curr_msg
= NULL
;
3975 if (!run_to_completion
)
3976 spin_unlock_irqrestore(&intf
->xmit_msgs_lock
, flags
);
3978 if (run_to_completion
)
3979 smi_recv_tasklet((unsigned long) intf
);
3981 tasklet_schedule(&intf
->recv_tasklet
);
3983 EXPORT_SYMBOL(ipmi_smi_msg_received
);
3985 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf
)
3987 if (intf
->in_shutdown
)
3990 atomic_set(&intf
->watchdog_pretimeouts_to_deliver
, 1);
3991 tasklet_schedule(&intf
->recv_tasklet
);
3993 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout
);
3995 static struct ipmi_smi_msg
*
3996 smi_from_recv_msg(ipmi_smi_t intf
, struct ipmi_recv_msg
*recv_msg
,
3997 unsigned char seq
, long seqid
)
3999 struct ipmi_smi_msg
*smi_msg
= ipmi_alloc_smi_msg();
4002 * If we can't allocate the message, then just return, we
4003 * get 4 retries, so this should be ok.
4007 memcpy(smi_msg
->data
, recv_msg
->msg
.data
, recv_msg
->msg
.data_len
);
4008 smi_msg
->data_size
= recv_msg
->msg
.data_len
;
4009 smi_msg
->msgid
= STORE_SEQ_IN_MSGID(seq
, seqid
);
4015 for (m
= 0; m
< smi_msg
->data_size
; m
++)
4016 printk(" %2.2x", smi_msg
->data
[m
]);
4023 static void check_msg_timeout(ipmi_smi_t intf
, struct seq_table
*ent
,
4024 struct list_head
*timeouts
, long timeout_period
,
4025 int slot
, unsigned long *flags
,
4026 unsigned int *waiting_msgs
)
4028 struct ipmi_recv_msg
*msg
;
4029 const struct ipmi_smi_handlers
*handlers
;
4031 if (intf
->in_shutdown
)
4037 ent
->timeout
-= timeout_period
;
4038 if (ent
->timeout
> 0) {
4043 if (ent
->retries_left
== 0) {
4044 /* The message has used all its retries. */
4046 msg
= ent
->recv_msg
;
4047 list_add_tail(&msg
->link
, timeouts
);
4049 ipmi_inc_stat(intf
, timed_out_ipmb_broadcasts
);
4050 else if (is_lan_addr(&ent
->recv_msg
->addr
))
4051 ipmi_inc_stat(intf
, timed_out_lan_commands
);
4053 ipmi_inc_stat(intf
, timed_out_ipmb_commands
);
4055 struct ipmi_smi_msg
*smi_msg
;
4056 /* More retries, send again. */
4061 * Start with the max timer, set to normal timer after
4062 * the message is sent.
4064 ent
->timeout
= MAX_MSG_TIMEOUT
;
4065 ent
->retries_left
--;
4066 smi_msg
= smi_from_recv_msg(intf
, ent
->recv_msg
, slot
,
4069 if (is_lan_addr(&ent
->recv_msg
->addr
))
4071 dropped_rexmit_lan_commands
);
4074 dropped_rexmit_ipmb_commands
);
4078 spin_unlock_irqrestore(&intf
->seq_lock
, *flags
);
4081 * Send the new message. We send with a zero
4082 * priority. It timed out, I doubt time is that
4083 * critical now, and high priority messages are really
4084 * only for messages to the local MC, which don't get
4087 handlers
= intf
->handlers
;
4089 if (is_lan_addr(&ent
->recv_msg
->addr
))
4091 retransmitted_lan_commands
);
4094 retransmitted_ipmb_commands
);
4096 smi_send(intf
, handlers
, smi_msg
, 0);
4098 ipmi_free_smi_msg(smi_msg
);
4100 spin_lock_irqsave(&intf
->seq_lock
, *flags
);
4104 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf
, long timeout_period
)
4106 struct list_head timeouts
;
4107 struct ipmi_recv_msg
*msg
, *msg2
;
4108 unsigned long flags
;
4110 unsigned int waiting_msgs
= 0;
4113 * Go through the seq table and find any messages that
4114 * have timed out, putting them in the timeouts
4117 INIT_LIST_HEAD(&timeouts
);
4118 spin_lock_irqsave(&intf
->seq_lock
, flags
);
4119 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++)
4120 check_msg_timeout(intf
, &(intf
->seq_table
[i
]),
4121 &timeouts
, timeout_period
, i
,
4122 &flags
, &waiting_msgs
);
4123 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
4125 list_for_each_entry_safe(msg
, msg2
, &timeouts
, link
)
4126 deliver_err_response(msg
, IPMI_TIMEOUT_COMPLETION_CODE
);
4129 * Maintenance mode handling. Check the timeout
4130 * optimistically before we claim the lock. It may
4131 * mean a timeout gets missed occasionally, but that
4132 * only means the timeout gets extended by one period
4133 * in that case. No big deal, and it avoids the lock
4136 if (intf
->auto_maintenance_timeout
> 0) {
4137 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
4138 if (intf
->auto_maintenance_timeout
> 0) {
4139 intf
->auto_maintenance_timeout
4141 if (!intf
->maintenance_mode
4142 && (intf
->auto_maintenance_timeout
<= 0)) {
4143 intf
->maintenance_mode_enable
= false;
4144 maintenance_mode_update(intf
);
4147 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
,
4151 tasklet_schedule(&intf
->recv_tasklet
);
4153 return waiting_msgs
;
4156 static void ipmi_request_event(ipmi_smi_t intf
)
4158 /* No event requests when in maintenance mode. */
4159 if (intf
->maintenance_mode_enable
)
4162 if (!intf
->in_shutdown
)
4163 intf
->handlers
->request_events(intf
->send_info
);
4166 static struct timer_list ipmi_timer
;
4168 static atomic_t stop_operation
;
4170 static void ipmi_timeout(unsigned long data
)
4175 if (atomic_read(&stop_operation
))
4179 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4182 if (atomic_read(&intf
->event_waiters
)) {
4183 intf
->ticks_to_req_ev
--;
4184 if (intf
->ticks_to_req_ev
== 0) {
4185 ipmi_request_event(intf
);
4186 intf
->ticks_to_req_ev
= IPMI_REQUEST_EV_TIME
;
4191 lnt
+= ipmi_timeout_handler(intf
, IPMI_TIMEOUT_TIME
);
4194 if (lnt
!= intf
->last_needs_timer
&&
4195 intf
->handlers
->set_need_watch
)
4196 intf
->handlers
->set_need_watch(intf
->send_info
, lnt
);
4197 intf
->last_needs_timer
= lnt
;
4204 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4207 static void need_waiter(ipmi_smi_t intf
)
4209 /* Racy, but worst case we start the timer twice. */
4210 if (!timer_pending(&ipmi_timer
))
4211 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4214 static atomic_t smi_msg_inuse_count
= ATOMIC_INIT(0);
4215 static atomic_t recv_msg_inuse_count
= ATOMIC_INIT(0);
4217 static void free_smi_msg(struct ipmi_smi_msg
*msg
)
4219 atomic_dec(&smi_msg_inuse_count
);
4223 struct ipmi_smi_msg
*ipmi_alloc_smi_msg(void)
4225 struct ipmi_smi_msg
*rv
;
4226 rv
= kmalloc(sizeof(struct ipmi_smi_msg
), GFP_ATOMIC
);
4228 rv
->done
= free_smi_msg
;
4229 rv
->user_data
= NULL
;
4230 atomic_inc(&smi_msg_inuse_count
);
4234 EXPORT_SYMBOL(ipmi_alloc_smi_msg
);
4236 static void free_recv_msg(struct ipmi_recv_msg
*msg
)
4238 atomic_dec(&recv_msg_inuse_count
);
4242 static struct ipmi_recv_msg
*ipmi_alloc_recv_msg(void)
4244 struct ipmi_recv_msg
*rv
;
4246 rv
= kmalloc(sizeof(struct ipmi_recv_msg
), GFP_ATOMIC
);
4249 rv
->done
= free_recv_msg
;
4250 atomic_inc(&recv_msg_inuse_count
);
4255 void ipmi_free_recv_msg(struct ipmi_recv_msg
*msg
)
4258 kref_put(&msg
->user
->refcount
, free_user
);
4261 EXPORT_SYMBOL(ipmi_free_recv_msg
);
4263 #ifdef CONFIG_IPMI_PANIC_EVENT
4265 static atomic_t panic_done_count
= ATOMIC_INIT(0);
4267 static void dummy_smi_done_handler(struct ipmi_smi_msg
*msg
)
4269 atomic_dec(&panic_done_count
);
4272 static void dummy_recv_done_handler(struct ipmi_recv_msg
*msg
)
4274 atomic_dec(&panic_done_count
);
4278 * Inside a panic, send a message and wait for a response.
4280 static void ipmi_panic_request_and_wait(ipmi_smi_t intf
,
4281 struct ipmi_addr
*addr
,
4282 struct kernel_ipmi_msg
*msg
)
4284 struct ipmi_smi_msg smi_msg
;
4285 struct ipmi_recv_msg recv_msg
;
4288 smi_msg
.done
= dummy_smi_done_handler
;
4289 recv_msg
.done
= dummy_recv_done_handler
;
4290 atomic_add(2, &panic_done_count
);
4291 rv
= i_ipmi_request(NULL
,
4300 intf
->channels
[0].address
,
4301 intf
->channels
[0].lun
,
4302 0, 1); /* Don't retry, and don't wait. */
4304 atomic_sub(2, &panic_done_count
);
4305 else if (intf
->handlers
->flush_messages
)
4306 intf
->handlers
->flush_messages(intf
->send_info
);
4308 while (atomic_read(&panic_done_count
) != 0)
4312 #ifdef CONFIG_IPMI_PANIC_STRING
4313 static void event_receiver_fetcher(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
4315 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
4316 && (msg
->msg
.netfn
== IPMI_NETFN_SENSOR_EVENT_RESPONSE
)
4317 && (msg
->msg
.cmd
== IPMI_GET_EVENT_RECEIVER_CMD
)
4318 && (msg
->msg
.data
[0] == IPMI_CC_NO_ERROR
)) {
4319 /* A get event receiver command, save it. */
4320 intf
->event_receiver
= msg
->msg
.data
[1];
4321 intf
->event_receiver_lun
= msg
->msg
.data
[2] & 0x3;
4325 static void device_id_fetcher(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
4327 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
4328 && (msg
->msg
.netfn
== IPMI_NETFN_APP_RESPONSE
)
4329 && (msg
->msg
.cmd
== IPMI_GET_DEVICE_ID_CMD
)
4330 && (msg
->msg
.data
[0] == IPMI_CC_NO_ERROR
)) {
4332 * A get device id command, save if we are an event
4333 * receiver or generator.
4335 intf
->local_sel_device
= (msg
->msg
.data
[6] >> 2) & 1;
4336 intf
->local_event_generator
= (msg
->msg
.data
[6] >> 5) & 1;
4341 static void send_panic_events(char *str
)
4343 struct kernel_ipmi_msg msg
;
4345 unsigned char data
[16];
4346 struct ipmi_system_interface_addr
*si
;
4347 struct ipmi_addr addr
;
4349 si
= (struct ipmi_system_interface_addr
*) &addr
;
4350 si
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4351 si
->channel
= IPMI_BMC_CHANNEL
;
4354 /* Fill in an event telling that we have failed. */
4355 msg
.netfn
= 0x04; /* Sensor or Event. */
4356 msg
.cmd
= 2; /* Platform event command. */
4359 data
[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4360 data
[1] = 0x03; /* This is for IPMI 1.0. */
4361 data
[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4362 data
[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4363 data
[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4366 * Put a few breadcrumbs in. Hopefully later we can add more things
4367 * to make the panic events more useful.
4375 /* For every registered interface, send the event. */
4376 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4377 if (!intf
->handlers
)
4378 /* Interface is not ready. */
4381 /* Send the event announcing the panic. */
4382 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
4385 #ifdef CONFIG_IPMI_PANIC_STRING
4387 * On every interface, dump a bunch of OEM event holding the
4393 /* For every registered interface, send the event. */
4394 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4396 struct ipmi_ipmb_addr
*ipmb
;
4399 if (intf
->intf_num
== -1)
4400 /* Interface was not ready yet. */
4404 * intf_num is used as an marker to tell if the
4405 * interface is valid. Thus we need a read barrier to
4406 * make sure data fetched before checking intf_num
4412 * First job here is to figure out where to send the
4413 * OEM events. There's no way in IPMI to send OEM
4414 * events using an event send command, so we have to
4415 * find the SEL to put them in and stick them in
4419 /* Get capabilities from the get device id. */
4420 intf
->local_sel_device
= 0;
4421 intf
->local_event_generator
= 0;
4422 intf
->event_receiver
= 0;
4424 /* Request the device info from the local MC. */
4425 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
4426 msg
.cmd
= IPMI_GET_DEVICE_ID_CMD
;
4429 intf
->null_user_handler
= device_id_fetcher
;
4430 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
4432 if (intf
->local_event_generator
) {
4433 /* Request the event receiver from the local MC. */
4434 msg
.netfn
= IPMI_NETFN_SENSOR_EVENT_REQUEST
;
4435 msg
.cmd
= IPMI_GET_EVENT_RECEIVER_CMD
;
4438 intf
->null_user_handler
= event_receiver_fetcher
;
4439 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
4441 intf
->null_user_handler
= NULL
;
4444 * Validate the event receiver. The low bit must not
4445 * be 1 (it must be a valid IPMB address), it cannot
4446 * be zero, and it must not be my address.
4448 if (((intf
->event_receiver
& 1) == 0)
4449 && (intf
->event_receiver
!= 0)
4450 && (intf
->event_receiver
!= intf
->channels
[0].address
)) {
4452 * The event receiver is valid, send an IPMB
4455 ipmb
= (struct ipmi_ipmb_addr
*) &addr
;
4456 ipmb
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
4457 ipmb
->channel
= 0; /* FIXME - is this right? */
4458 ipmb
->lun
= intf
->event_receiver_lun
;
4459 ipmb
->slave_addr
= intf
->event_receiver
;
4460 } else if (intf
->local_sel_device
) {
4462 * The event receiver was not valid (or was
4463 * me), but I am an SEL device, just dump it
4466 si
= (struct ipmi_system_interface_addr
*) &addr
;
4467 si
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4468 si
->channel
= IPMI_BMC_CHANNEL
;
4471 continue; /* No where to send the event. */
4473 msg
.netfn
= IPMI_NETFN_STORAGE_REQUEST
; /* Storage. */
4474 msg
.cmd
= IPMI_ADD_SEL_ENTRY_CMD
;
4480 int size
= strlen(p
);
4486 data
[2] = 0xf0; /* OEM event without timestamp. */
4487 data
[3] = intf
->channels
[0].address
;
4488 data
[4] = j
++; /* sequence # */
4490 * Always give 11 bytes, so strncpy will fill
4491 * it with zeroes for me.
4493 strncpy(data
+5, p
, 11);
4496 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
4499 #endif /* CONFIG_IPMI_PANIC_STRING */
4501 #endif /* CONFIG_IPMI_PANIC_EVENT */
4503 static int has_panicked
;
4505 static int panic_event(struct notifier_block
*this,
4506 unsigned long event
,
4515 /* For every registered interface, set it to run to completion. */
4516 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4517 if (!intf
->handlers
)
4518 /* Interface is not ready. */
4522 * If we were interrupted while locking xmit_msgs_lock or
4523 * waiting_rcv_msgs_lock, the corresponding list may be
4524 * corrupted. In this case, drop items on the list for
4527 if (!spin_trylock(&intf
->xmit_msgs_lock
)) {
4528 INIT_LIST_HEAD(&intf
->xmit_msgs
);
4529 INIT_LIST_HEAD(&intf
->hp_xmit_msgs
);
4531 spin_unlock(&intf
->xmit_msgs_lock
);
4533 if (!spin_trylock(&intf
->waiting_rcv_msgs_lock
))
4534 INIT_LIST_HEAD(&intf
->waiting_rcv_msgs
);
4536 spin_unlock(&intf
->waiting_rcv_msgs_lock
);
4538 intf
->run_to_completion
= 1;
4539 intf
->handlers
->set_run_to_completion(intf
->send_info
, 1);
4542 #ifdef CONFIG_IPMI_PANIC_EVENT
4543 send_panic_events(ptr
);
4549 static struct notifier_block panic_block
= {
4550 .notifier_call
= panic_event
,
4552 .priority
= 200 /* priority: INT_MAX >= x >= 0 */
4555 static int ipmi_init_msghandler(void)
4562 rv
= driver_register(&ipmidriver
.driver
);
4564 printk(KERN_ERR PFX
"Could not register IPMI driver\n");
4568 printk(KERN_INFO
"ipmi message handler version "
4569 IPMI_DRIVER_VERSION
"\n");
4571 #ifdef CONFIG_PROC_FS
4572 proc_ipmi_root
= proc_mkdir("ipmi", NULL
);
4573 if (!proc_ipmi_root
) {
4574 printk(KERN_ERR PFX
"Unable to create IPMI proc dir");
4575 driver_unregister(&ipmidriver
.driver
);
4579 #endif /* CONFIG_PROC_FS */
4581 setup_timer(&ipmi_timer
, ipmi_timeout
, 0);
4582 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4584 atomic_notifier_chain_register(&panic_notifier_list
, &panic_block
);
4591 static int __init
ipmi_init_msghandler_mod(void)
4593 ipmi_init_msghandler();
4597 static void __exit
cleanup_ipmi(void)
4604 atomic_notifier_chain_unregister(&panic_notifier_list
, &panic_block
);
4607 * This can't be called if any interfaces exist, so no worry
4608 * about shutting down the interfaces.
4612 * Tell the timer to stop, then wait for it to stop. This
4613 * avoids problems with race conditions removing the timer
4616 atomic_inc(&stop_operation
);
4617 del_timer_sync(&ipmi_timer
);
4619 #ifdef CONFIG_PROC_FS
4620 proc_remove(proc_ipmi_root
);
4621 #endif /* CONFIG_PROC_FS */
4623 driver_unregister(&ipmidriver
.driver
);
4627 /* Check for buffer leaks. */
4628 count
= atomic_read(&smi_msg_inuse_count
);
4630 printk(KERN_WARNING PFX
"SMI message count %d at exit\n",
4632 count
= atomic_read(&recv_msg_inuse_count
);
4634 printk(KERN_WARNING PFX
"recv message count %d at exit\n",
4637 module_exit(cleanup_ipmi
);
4639 module_init(ipmi_init_msghandler_mod
);
4640 MODULE_LICENSE("GPL");
4641 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4642 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4644 MODULE_VERSION(IPMI_DRIVER_VERSION
);