2 * linux/drivers/clocksource/arm_arch_timer.c
4 * Copyright (C) 2011 ARM Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
25 #include <linux/acpi.h>
27 #include <asm/arch_timer.h>
30 #include <clocksource/arm_arch_timer.h>
33 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
35 #define CNTACR(n) (0x40 + ((n) * 4))
36 #define CNTACR_RPCT BIT(0)
37 #define CNTACR_RVCT BIT(1)
38 #define CNTACR_RFRQ BIT(2)
39 #define CNTACR_RVOFF BIT(3)
40 #define CNTACR_RWVT BIT(4)
41 #define CNTACR_RWPT BIT(5)
43 #define CNTVCT_LO 0x08
44 #define CNTVCT_HI 0x0c
46 #define CNTP_TVAL 0x28
48 #define CNTV_TVAL 0x38
51 #define ARCH_CP15_TIMER BIT(0)
52 #define ARCH_MEM_TIMER BIT(1)
53 static unsigned arch_timers_present __initdata
;
55 static void __iomem
*arch_counter_base
;
59 struct clock_event_device evt
;
62 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
64 static u32 arch_timer_rate
;
74 static int arch_timer_ppi
[MAX_TIMER_PPI
];
76 static struct clock_event_device __percpu
*arch_timer_evt
;
78 static enum ppi_nr arch_timer_uses_ppi
= VIRT_PPI
;
79 static bool arch_timer_c3stop
;
80 static bool arch_timer_mem_use_virtual
;
83 * Architected system timer support.
86 static __always_inline
87 void arch_timer_reg_write(int access
, enum arch_timer_reg reg
, u32 val
,
88 struct clock_event_device
*clk
)
90 if (access
== ARCH_TIMER_MEM_PHYS_ACCESS
) {
91 struct arch_timer
*timer
= to_arch_timer(clk
);
93 case ARCH_TIMER_REG_CTRL
:
94 writel_relaxed(val
, timer
->base
+ CNTP_CTL
);
96 case ARCH_TIMER_REG_TVAL
:
97 writel_relaxed(val
, timer
->base
+ CNTP_TVAL
);
100 } else if (access
== ARCH_TIMER_MEM_VIRT_ACCESS
) {
101 struct arch_timer
*timer
= to_arch_timer(clk
);
103 case ARCH_TIMER_REG_CTRL
:
104 writel_relaxed(val
, timer
->base
+ CNTV_CTL
);
106 case ARCH_TIMER_REG_TVAL
:
107 writel_relaxed(val
, timer
->base
+ CNTV_TVAL
);
111 arch_timer_reg_write_cp15(access
, reg
, val
);
115 static __always_inline
116 u32
arch_timer_reg_read(int access
, enum arch_timer_reg reg
,
117 struct clock_event_device
*clk
)
121 if (access
== ARCH_TIMER_MEM_PHYS_ACCESS
) {
122 struct arch_timer
*timer
= to_arch_timer(clk
);
124 case ARCH_TIMER_REG_CTRL
:
125 val
= readl_relaxed(timer
->base
+ CNTP_CTL
);
127 case ARCH_TIMER_REG_TVAL
:
128 val
= readl_relaxed(timer
->base
+ CNTP_TVAL
);
131 } else if (access
== ARCH_TIMER_MEM_VIRT_ACCESS
) {
132 struct arch_timer
*timer
= to_arch_timer(clk
);
134 case ARCH_TIMER_REG_CTRL
:
135 val
= readl_relaxed(timer
->base
+ CNTV_CTL
);
137 case ARCH_TIMER_REG_TVAL
:
138 val
= readl_relaxed(timer
->base
+ CNTV_TVAL
);
142 val
= arch_timer_reg_read_cp15(access
, reg
);
148 static __always_inline irqreturn_t
timer_handler(const int access
,
149 struct clock_event_device
*evt
)
153 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, evt
);
154 if (ctrl
& ARCH_TIMER_CTRL_IT_STAT
) {
155 ctrl
|= ARCH_TIMER_CTRL_IT_MASK
;
156 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, evt
);
157 evt
->event_handler(evt
);
164 static irqreturn_t
arch_timer_handler_virt(int irq
, void *dev_id
)
166 struct clock_event_device
*evt
= dev_id
;
168 return timer_handler(ARCH_TIMER_VIRT_ACCESS
, evt
);
171 static irqreturn_t
arch_timer_handler_phys(int irq
, void *dev_id
)
173 struct clock_event_device
*evt
= dev_id
;
175 return timer_handler(ARCH_TIMER_PHYS_ACCESS
, evt
);
178 static irqreturn_t
arch_timer_handler_phys_mem(int irq
, void *dev_id
)
180 struct clock_event_device
*evt
= dev_id
;
182 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS
, evt
);
185 static irqreturn_t
arch_timer_handler_virt_mem(int irq
, void *dev_id
)
187 struct clock_event_device
*evt
= dev_id
;
189 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS
, evt
);
192 static __always_inline
int timer_shutdown(const int access
,
193 struct clock_event_device
*clk
)
197 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
198 ctrl
&= ~ARCH_TIMER_CTRL_ENABLE
;
199 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
204 static int arch_timer_shutdown_virt(struct clock_event_device
*clk
)
206 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS
, clk
);
209 static int arch_timer_shutdown_phys(struct clock_event_device
*clk
)
211 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS
, clk
);
214 static int arch_timer_shutdown_virt_mem(struct clock_event_device
*clk
)
216 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS
, clk
);
219 static int arch_timer_shutdown_phys_mem(struct clock_event_device
*clk
)
221 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS
, clk
);
224 static __always_inline
void set_next_event(const int access
, unsigned long evt
,
225 struct clock_event_device
*clk
)
228 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
229 ctrl
|= ARCH_TIMER_CTRL_ENABLE
;
230 ctrl
&= ~ARCH_TIMER_CTRL_IT_MASK
;
231 arch_timer_reg_write(access
, ARCH_TIMER_REG_TVAL
, evt
, clk
);
232 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
235 static int arch_timer_set_next_event_virt(unsigned long evt
,
236 struct clock_event_device
*clk
)
238 set_next_event(ARCH_TIMER_VIRT_ACCESS
, evt
, clk
);
242 static int arch_timer_set_next_event_phys(unsigned long evt
,
243 struct clock_event_device
*clk
)
245 set_next_event(ARCH_TIMER_PHYS_ACCESS
, evt
, clk
);
249 static int arch_timer_set_next_event_virt_mem(unsigned long evt
,
250 struct clock_event_device
*clk
)
252 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS
, evt
, clk
);
256 static int arch_timer_set_next_event_phys_mem(unsigned long evt
,
257 struct clock_event_device
*clk
)
259 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS
, evt
, clk
);
263 static void __arch_timer_setup(unsigned type
,
264 struct clock_event_device
*clk
)
266 clk
->features
= CLOCK_EVT_FEAT_ONESHOT
;
268 if (type
== ARCH_CP15_TIMER
) {
269 if (arch_timer_c3stop
)
270 clk
->features
|= CLOCK_EVT_FEAT_C3STOP
;
271 clk
->name
= "arch_sys_timer";
273 clk
->cpumask
= cpumask_of(smp_processor_id());
274 clk
->irq
= arch_timer_ppi
[arch_timer_uses_ppi
];
275 switch (arch_timer_uses_ppi
) {
277 clk
->set_state_shutdown
= arch_timer_shutdown_virt
;
278 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_virt
;
279 clk
->set_next_event
= arch_timer_set_next_event_virt
;
281 case PHYS_SECURE_PPI
:
282 case PHYS_NONSECURE_PPI
:
284 clk
->set_state_shutdown
= arch_timer_shutdown_phys
;
285 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_phys
;
286 clk
->set_next_event
= arch_timer_set_next_event_phys
;
292 clk
->features
|= CLOCK_EVT_FEAT_DYNIRQ
;
293 clk
->name
= "arch_mem_timer";
295 clk
->cpumask
= cpu_all_mask
;
296 if (arch_timer_mem_use_virtual
) {
297 clk
->set_state_shutdown
= arch_timer_shutdown_virt_mem
;
298 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_virt_mem
;
299 clk
->set_next_event
=
300 arch_timer_set_next_event_virt_mem
;
302 clk
->set_state_shutdown
= arch_timer_shutdown_phys_mem
;
303 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_phys_mem
;
304 clk
->set_next_event
=
305 arch_timer_set_next_event_phys_mem
;
309 clk
->set_state_shutdown(clk
);
311 clockevents_config_and_register(clk
, arch_timer_rate
, 0xf, 0x7fffffff);
314 static void arch_timer_evtstrm_enable(int divider
)
316 u32 cntkctl
= arch_timer_get_cntkctl();
318 cntkctl
&= ~ARCH_TIMER_EVT_TRIGGER_MASK
;
319 /* Set the divider and enable virtual event stream */
320 cntkctl
|= (divider
<< ARCH_TIMER_EVT_TRIGGER_SHIFT
)
321 | ARCH_TIMER_VIRT_EVT_EN
;
322 arch_timer_set_cntkctl(cntkctl
);
323 elf_hwcap
|= HWCAP_EVTSTRM
;
325 compat_elf_hwcap
|= COMPAT_HWCAP_EVTSTRM
;
329 static void arch_timer_configure_evtstream(void)
331 int evt_stream_div
, pos
;
333 /* Find the closest power of two to the divisor */
334 evt_stream_div
= arch_timer_rate
/ ARCH_TIMER_EVT_STREAM_FREQ
;
335 pos
= fls(evt_stream_div
);
336 if (pos
> 1 && !(evt_stream_div
& (1 << (pos
- 2))))
338 /* enable event stream */
339 arch_timer_evtstrm_enable(min(pos
, 15));
342 static void arch_counter_set_user_access(void)
344 u32 cntkctl
= arch_timer_get_cntkctl();
346 /* Disable user access to the timers and the physical counter */
347 /* Also disable virtual event stream */
348 cntkctl
&= ~(ARCH_TIMER_USR_PT_ACCESS_EN
349 | ARCH_TIMER_USR_VT_ACCESS_EN
350 | ARCH_TIMER_VIRT_EVT_EN
351 | ARCH_TIMER_USR_PCT_ACCESS_EN
);
353 /* Enable user access to the virtual counter */
354 cntkctl
|= ARCH_TIMER_USR_VCT_ACCESS_EN
;
356 arch_timer_set_cntkctl(cntkctl
);
359 static bool arch_timer_has_nonsecure_ppi(void)
361 return (arch_timer_uses_ppi
== PHYS_SECURE_PPI
&&
362 arch_timer_ppi
[PHYS_NONSECURE_PPI
]);
365 static int arch_timer_setup(struct clock_event_device
*clk
)
367 __arch_timer_setup(ARCH_CP15_TIMER
, clk
);
369 enable_percpu_irq(arch_timer_ppi
[arch_timer_uses_ppi
], 0);
371 if (arch_timer_has_nonsecure_ppi())
372 enable_percpu_irq(arch_timer_ppi
[PHYS_NONSECURE_PPI
], 0);
374 arch_counter_set_user_access();
375 if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM
))
376 arch_timer_configure_evtstream();
382 arch_timer_detect_rate(void __iomem
*cntbase
, struct device_node
*np
)
384 /* Who has more than one independent system counter? */
389 * Try to determine the frequency from the device tree or CNTFRQ,
390 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
392 if (!acpi_disabled
||
393 of_property_read_u32(np
, "clock-frequency", &arch_timer_rate
)) {
395 arch_timer_rate
= readl_relaxed(cntbase
+ CNTFRQ
);
397 arch_timer_rate
= arch_timer_get_cntfrq();
400 /* Check the timer frequency. */
401 if (arch_timer_rate
== 0)
402 pr_warn("Architected timer frequency not available\n");
405 static void arch_timer_banner(unsigned type
)
407 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
408 type
& ARCH_CP15_TIMER
? "cp15" : "",
409 type
== (ARCH_CP15_TIMER
| ARCH_MEM_TIMER
) ? " and " : "",
410 type
& ARCH_MEM_TIMER
? "mmio" : "",
411 (unsigned long)arch_timer_rate
/ 1000000,
412 (unsigned long)(arch_timer_rate
/ 10000) % 100,
413 type
& ARCH_CP15_TIMER
?
414 (arch_timer_uses_ppi
== VIRT_PPI
) ? "virt" : "phys" :
416 type
== (ARCH_CP15_TIMER
| ARCH_MEM_TIMER
) ? "/" : "",
417 type
& ARCH_MEM_TIMER
?
418 arch_timer_mem_use_virtual
? "virt" : "phys" :
422 u32
arch_timer_get_rate(void)
424 return arch_timer_rate
;
427 static u64
arch_counter_get_cntvct_mem(void)
429 u32 vct_lo
, vct_hi
, tmp_hi
;
432 vct_hi
= readl_relaxed(arch_counter_base
+ CNTVCT_HI
);
433 vct_lo
= readl_relaxed(arch_counter_base
+ CNTVCT_LO
);
434 tmp_hi
= readl_relaxed(arch_counter_base
+ CNTVCT_HI
);
435 } while (vct_hi
!= tmp_hi
);
437 return ((u64
) vct_hi
<< 32) | vct_lo
;
441 * Default to cp15 based access because arm64 uses this function for
442 * sched_clock() before DT is probed and the cp15 method is guaranteed
443 * to exist on arm64. arm doesn't use this before DT is probed so even
444 * if we don't have the cp15 accessors we won't have a problem.
446 u64 (*arch_timer_read_counter
)(void) = arch_counter_get_cntvct
;
448 static cycle_t
arch_counter_read(struct clocksource
*cs
)
450 return arch_timer_read_counter();
453 static cycle_t
arch_counter_read_cc(const struct cyclecounter
*cc
)
455 return arch_timer_read_counter();
458 static struct clocksource clocksource_counter
= {
459 .name
= "arch_sys_counter",
461 .read
= arch_counter_read
,
462 .mask
= CLOCKSOURCE_MASK(56),
463 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
| CLOCK_SOURCE_SUSPEND_NONSTOP
,
466 static struct cyclecounter cyclecounter
= {
467 .read
= arch_counter_read_cc
,
468 .mask
= CLOCKSOURCE_MASK(56),
471 static struct timecounter timecounter
;
473 struct timecounter
*arch_timer_get_timecounter(void)
478 static void __init
arch_counter_register(unsigned type
)
482 /* Register the CP15 based counter if we have one */
483 if (type
& ARCH_CP15_TIMER
) {
484 if (IS_ENABLED(CONFIG_ARM64
) || arch_timer_uses_ppi
== VIRT_PPI
)
485 arch_timer_read_counter
= arch_counter_get_cntvct
;
487 arch_timer_read_counter
= arch_counter_get_cntpct
;
489 arch_timer_read_counter
= arch_counter_get_cntvct_mem
;
491 /* If the clocksource name is "arch_sys_counter" the
492 * VDSO will attempt to read the CP15-based counter.
493 * Ensure this does not happen when CP15-based
494 * counter is not available.
496 clocksource_counter
.name
= "arch_mem_counter";
499 start_count
= arch_timer_read_counter();
500 clocksource_register_hz(&clocksource_counter
, arch_timer_rate
);
501 cyclecounter
.mult
= clocksource_counter
.mult
;
502 cyclecounter
.shift
= clocksource_counter
.shift
;
503 timecounter_init(&timecounter
, &cyclecounter
, start_count
);
505 /* 56 bits minimum, so we assume worst case rollover */
506 sched_clock_register(arch_timer_read_counter
, 56, arch_timer_rate
);
509 static void arch_timer_stop(struct clock_event_device
*clk
)
511 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
512 clk
->irq
, smp_processor_id());
514 disable_percpu_irq(arch_timer_ppi
[arch_timer_uses_ppi
]);
515 if (arch_timer_has_nonsecure_ppi())
516 disable_percpu_irq(arch_timer_ppi
[PHYS_NONSECURE_PPI
]);
518 clk
->set_state_shutdown(clk
);
521 static int arch_timer_cpu_notify(struct notifier_block
*self
,
522 unsigned long action
, void *hcpu
)
525 * Grab cpu pointer in each case to avoid spurious
526 * preemptible warnings
528 switch (action
& ~CPU_TASKS_FROZEN
) {
530 arch_timer_setup(this_cpu_ptr(arch_timer_evt
));
533 arch_timer_stop(this_cpu_ptr(arch_timer_evt
));
540 static struct notifier_block arch_timer_cpu_nb
= {
541 .notifier_call
= arch_timer_cpu_notify
,
545 static unsigned int saved_cntkctl
;
546 static int arch_timer_cpu_pm_notify(struct notifier_block
*self
,
547 unsigned long action
, void *hcpu
)
549 if (action
== CPU_PM_ENTER
)
550 saved_cntkctl
= arch_timer_get_cntkctl();
551 else if (action
== CPU_PM_ENTER_FAILED
|| action
== CPU_PM_EXIT
)
552 arch_timer_set_cntkctl(saved_cntkctl
);
556 static struct notifier_block arch_timer_cpu_pm_notifier
= {
557 .notifier_call
= arch_timer_cpu_pm_notify
,
560 static int __init
arch_timer_cpu_pm_init(void)
562 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier
);
565 static int __init
arch_timer_cpu_pm_init(void)
571 static int __init
arch_timer_register(void)
576 arch_timer_evt
= alloc_percpu(struct clock_event_device
);
577 if (!arch_timer_evt
) {
582 ppi
= arch_timer_ppi
[arch_timer_uses_ppi
];
583 switch (arch_timer_uses_ppi
) {
585 err
= request_percpu_irq(ppi
, arch_timer_handler_virt
,
586 "arch_timer", arch_timer_evt
);
588 case PHYS_SECURE_PPI
:
589 case PHYS_NONSECURE_PPI
:
590 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
591 "arch_timer", arch_timer_evt
);
592 if (!err
&& arch_timer_ppi
[PHYS_NONSECURE_PPI
]) {
593 ppi
= arch_timer_ppi
[PHYS_NONSECURE_PPI
];
594 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
595 "arch_timer", arch_timer_evt
);
597 free_percpu_irq(arch_timer_ppi
[PHYS_SECURE_PPI
],
602 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
603 "arch_timer", arch_timer_evt
);
610 pr_err("arch_timer: can't register interrupt %d (%d)\n",
615 err
= register_cpu_notifier(&arch_timer_cpu_nb
);
619 err
= arch_timer_cpu_pm_init();
621 goto out_unreg_notify
;
623 /* Immediately configure the timer on the boot CPU */
624 arch_timer_setup(this_cpu_ptr(arch_timer_evt
));
629 unregister_cpu_notifier(&arch_timer_cpu_nb
);
631 free_percpu_irq(arch_timer_ppi
[arch_timer_uses_ppi
], arch_timer_evt
);
632 if (arch_timer_has_nonsecure_ppi())
633 free_percpu_irq(arch_timer_ppi
[PHYS_NONSECURE_PPI
],
637 free_percpu(arch_timer_evt
);
642 static int __init
arch_timer_mem_register(void __iomem
*base
, unsigned int irq
)
646 struct arch_timer
*t
;
648 t
= kzalloc(sizeof(*t
), GFP_KERNEL
);
654 __arch_timer_setup(ARCH_MEM_TIMER
, &t
->evt
);
656 if (arch_timer_mem_use_virtual
)
657 func
= arch_timer_handler_virt_mem
;
659 func
= arch_timer_handler_phys_mem
;
661 ret
= request_irq(irq
, func
, IRQF_TIMER
, "arch_mem_timer", &t
->evt
);
663 pr_err("arch_timer: Failed to request mem timer irq\n");
670 static const struct of_device_id arch_timer_of_match
[] __initconst
= {
671 { .compatible
= "arm,armv7-timer", },
672 { .compatible
= "arm,armv8-timer", },
676 static const struct of_device_id arch_timer_mem_of_match
[] __initconst
= {
677 { .compatible
= "arm,armv7-timer-mem", },
682 arch_timer_needs_probing(int type
, const struct of_device_id
*matches
)
684 struct device_node
*dn
;
685 bool needs_probing
= false;
687 dn
= of_find_matching_node(NULL
, matches
);
688 if (dn
&& of_device_is_available(dn
) && !(arch_timers_present
& type
))
689 needs_probing
= true;
692 return needs_probing
;
695 static void __init
arch_timer_common_init(void)
697 unsigned mask
= ARCH_CP15_TIMER
| ARCH_MEM_TIMER
;
699 /* Wait until both nodes are probed if we have two timers */
700 if ((arch_timers_present
& mask
) != mask
) {
701 if (arch_timer_needs_probing(ARCH_MEM_TIMER
, arch_timer_mem_of_match
))
703 if (arch_timer_needs_probing(ARCH_CP15_TIMER
, arch_timer_of_match
))
707 arch_timer_banner(arch_timers_present
);
708 arch_counter_register(arch_timers_present
);
709 arch_timer_arch_init();
712 static void __init
arch_timer_init(void)
715 * If HYP mode is available, we know that the physical timer
716 * has been configured to be accessible from PL1. Use it, so
717 * that a guest can use the virtual timer instead.
719 * If no interrupt provided for virtual timer, we'll have to
720 * stick to the physical timer. It'd better be accessible...
722 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
723 * accesses to CNTP_*_EL1 registers are silently redirected to
724 * their CNTHP_*_EL2 counterparts, and use a different PPI
727 if (is_hyp_mode_available() || !arch_timer_ppi
[VIRT_PPI
]) {
730 if (is_kernel_in_hyp_mode()) {
731 arch_timer_uses_ppi
= HYP_PPI
;
732 has_ppi
= !!arch_timer_ppi
[HYP_PPI
];
734 arch_timer_uses_ppi
= PHYS_SECURE_PPI
;
735 has_ppi
= (!!arch_timer_ppi
[PHYS_SECURE_PPI
] ||
736 !!arch_timer_ppi
[PHYS_NONSECURE_PPI
]);
740 pr_warn("arch_timer: No interrupt available, giving up\n");
745 arch_timer_register();
746 arch_timer_common_init();
749 static void __init
arch_timer_of_init(struct device_node
*np
)
753 if (arch_timers_present
& ARCH_CP15_TIMER
) {
754 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
758 arch_timers_present
|= ARCH_CP15_TIMER
;
759 for (i
= PHYS_SECURE_PPI
; i
< MAX_TIMER_PPI
; i
++)
760 arch_timer_ppi
[i
] = irq_of_parse_and_map(np
, i
);
762 arch_timer_detect_rate(NULL
, np
);
764 arch_timer_c3stop
= !of_property_read_bool(np
, "always-on");
767 * If we cannot rely on firmware initializing the timer registers then
768 * we should use the physical timers instead.
770 if (IS_ENABLED(CONFIG_ARM
) &&
771 of_property_read_bool(np
, "arm,cpu-registers-not-fw-configured"))
772 arch_timer_uses_ppi
= PHYS_SECURE_PPI
;
776 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer
, "arm,armv7-timer", arch_timer_of_init
);
777 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer
, "arm,armv8-timer", arch_timer_of_init
);
779 static void __init
arch_timer_mem_init(struct device_node
*np
)
781 struct device_node
*frame
, *best_frame
= NULL
;
782 void __iomem
*cntctlbase
, *base
;
786 arch_timers_present
|= ARCH_MEM_TIMER
;
787 cntctlbase
= of_iomap(np
, 0);
789 pr_err("arch_timer: Can't find CNTCTLBase\n");
793 cnttidr
= readl_relaxed(cntctlbase
+ CNTTIDR
);
796 * Try to find a virtual capable frame. Otherwise fall back to a
797 * physical capable frame.
799 for_each_available_child_of_node(np
, frame
) {
803 if (of_property_read_u32(frame
, "frame-number", &n
)) {
804 pr_err("arch_timer: Missing frame-number\n");
809 /* Try enabling everything, and see what sticks */
810 cntacr
= CNTACR_RFRQ
| CNTACR_RWPT
| CNTACR_RPCT
|
811 CNTACR_RWVT
| CNTACR_RVOFF
| CNTACR_RVCT
;
812 writel_relaxed(cntacr
, cntctlbase
+ CNTACR(n
));
813 cntacr
= readl_relaxed(cntctlbase
+ CNTACR(n
));
815 if ((cnttidr
& CNTTIDR_VIRT(n
)) &&
816 !(~cntacr
& (CNTACR_RWVT
| CNTACR_RVCT
))) {
817 of_node_put(best_frame
);
819 arch_timer_mem_use_virtual
= true;
823 if (~cntacr
& (CNTACR_RWPT
| CNTACR_RPCT
))
826 of_node_put(best_frame
);
827 best_frame
= of_node_get(frame
);
830 base
= arch_counter_base
= of_iomap(best_frame
, 0);
832 pr_err("arch_timer: Can't map frame's registers\n");
836 if (arch_timer_mem_use_virtual
)
837 irq
= irq_of_parse_and_map(best_frame
, 1);
839 irq
= irq_of_parse_and_map(best_frame
, 0);
842 pr_err("arch_timer: Frame missing %s irq",
843 arch_timer_mem_use_virtual
? "virt" : "phys");
847 arch_timer_detect_rate(base
, np
);
848 arch_timer_mem_register(base
, irq
);
849 arch_timer_common_init();
852 of_node_put(best_frame
);
854 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem
, "arm,armv7-timer-mem",
855 arch_timer_mem_init
);
858 static int __init
map_generic_timer_interrupt(u32 interrupt
, u32 flags
)
860 int trigger
, polarity
;
865 trigger
= (flags
& ACPI_GTDT_INTERRUPT_MODE
) ? ACPI_EDGE_SENSITIVE
866 : ACPI_LEVEL_SENSITIVE
;
868 polarity
= (flags
& ACPI_GTDT_INTERRUPT_POLARITY
) ? ACPI_ACTIVE_LOW
871 return acpi_register_gsi(NULL
, interrupt
, trigger
, polarity
);
874 /* Initialize per-processor generic timer */
875 static int __init
arch_timer_acpi_init(struct acpi_table_header
*table
)
877 struct acpi_table_gtdt
*gtdt
;
879 if (arch_timers_present
& ARCH_CP15_TIMER
) {
880 pr_warn("arch_timer: already initialized, skipping\n");
884 gtdt
= container_of(table
, struct acpi_table_gtdt
, header
);
886 arch_timers_present
|= ARCH_CP15_TIMER
;
888 arch_timer_ppi
[PHYS_SECURE_PPI
] =
889 map_generic_timer_interrupt(gtdt
->secure_el1_interrupt
,
890 gtdt
->secure_el1_flags
);
892 arch_timer_ppi
[PHYS_NONSECURE_PPI
] =
893 map_generic_timer_interrupt(gtdt
->non_secure_el1_interrupt
,
894 gtdt
->non_secure_el1_flags
);
896 arch_timer_ppi
[VIRT_PPI
] =
897 map_generic_timer_interrupt(gtdt
->virtual_timer_interrupt
,
898 gtdt
->virtual_timer_flags
);
900 arch_timer_ppi
[HYP_PPI
] =
901 map_generic_timer_interrupt(gtdt
->non_secure_el2_interrupt
,
902 gtdt
->non_secure_el2_flags
);
904 /* Get the frequency from CNTFRQ */
905 arch_timer_detect_rate(NULL
, NULL
);
907 /* Always-on capability */
908 arch_timer_c3stop
= !(gtdt
->non_secure_el1_flags
& ACPI_GTDT_ALWAYS_ON
);
913 CLOCKSOURCE_ACPI_DECLARE(arch_timer
, ACPI_SIG_GTDT
, arch_timer_acpi_init
);