Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / drivers / crypto / picoxcell_crypto.c
blob3b1c7ecf078fea3cb2d4efe7b599c700b6aac8ff
1 /*
2 * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 #include <crypto/internal/aead.h>
19 #include <crypto/aes.h>
20 #include <crypto/algapi.h>
21 #include <crypto/authenc.h>
22 #include <crypto/des.h>
23 #include <crypto/md5.h>
24 #include <crypto/sha.h>
25 #include <crypto/internal/skcipher.h>
26 #include <linux/clk.h>
27 #include <linux/crypto.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/err.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/io.h>
35 #include <linux/list.h>
36 #include <linux/module.h>
37 #include <linux/of.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/scatterlist.h>
42 #include <linux/sched.h>
43 #include <linux/sizes.h>
44 #include <linux/slab.h>
45 #include <linux/timer.h>
47 #include "picoxcell_crypto_regs.h"
50 * The threshold for the number of entries in the CMD FIFO available before
51 * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
52 * number of interrupts raised to the CPU.
54 #define CMD0_IRQ_THRESHOLD 1
57 * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
58 * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
59 * When there are packets in flight but lower than the threshold, we enable
60 * the timer and at expiry, attempt to remove any processed packets from the
61 * queue and if there are still packets left, schedule the timer again.
63 #define PACKET_TIMEOUT 1
65 /* The priority to register each algorithm with. */
66 #define SPACC_CRYPTO_ALG_PRIORITY 10000
68 #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN 16
69 #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
70 #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ 64
71 #define SPACC_CRYPTO_IPSEC_MAX_CTXS 32
72 #define SPACC_CRYPTO_IPSEC_FIFO_SZ 32
73 #define SPACC_CRYPTO_L2_CIPHER_PG_SZ 64
74 #define SPACC_CRYPTO_L2_HASH_PG_SZ 64
75 #define SPACC_CRYPTO_L2_MAX_CTXS 128
76 #define SPACC_CRYPTO_L2_FIFO_SZ 128
78 #define MAX_DDT_LEN 16
80 /* DDT format. This must match the hardware DDT format exactly. */
81 struct spacc_ddt {
82 dma_addr_t p;
83 u32 len;
87 * Asynchronous crypto request structure.
89 * This structure defines a request that is either queued for processing or
90 * being processed.
92 struct spacc_req {
93 struct list_head list;
94 struct spacc_engine *engine;
95 struct crypto_async_request *req;
96 int result;
97 bool is_encrypt;
98 unsigned ctx_id;
99 dma_addr_t src_addr, dst_addr;
100 struct spacc_ddt *src_ddt, *dst_ddt;
101 void (*complete)(struct spacc_req *req);
104 struct spacc_aead {
105 unsigned long ctrl_default;
106 unsigned long type;
107 struct aead_alg alg;
108 struct spacc_engine *engine;
109 struct list_head entry;
110 int key_offs;
111 int iv_offs;
114 struct spacc_engine {
115 void __iomem *regs;
116 struct list_head pending;
117 int next_ctx;
118 spinlock_t hw_lock;
119 int in_flight;
120 struct list_head completed;
121 struct list_head in_progress;
122 struct tasklet_struct complete;
123 unsigned long fifo_sz;
124 void __iomem *cipher_ctx_base;
125 void __iomem *hash_key_base;
126 struct spacc_alg *algs;
127 unsigned num_algs;
128 struct list_head registered_algs;
129 struct spacc_aead *aeads;
130 unsigned num_aeads;
131 struct list_head registered_aeads;
132 size_t cipher_pg_sz;
133 size_t hash_pg_sz;
134 const char *name;
135 struct clk *clk;
136 struct device *dev;
137 unsigned max_ctxs;
138 struct timer_list packet_timeout;
139 unsigned stat_irq_thresh;
140 struct dma_pool *req_pool;
143 /* Algorithm type mask. */
144 #define SPACC_CRYPTO_ALG_MASK 0x7
146 /* SPACC definition of a crypto algorithm. */
147 struct spacc_alg {
148 unsigned long ctrl_default;
149 unsigned long type;
150 struct crypto_alg alg;
151 struct spacc_engine *engine;
152 struct list_head entry;
153 int key_offs;
154 int iv_offs;
157 /* Generic context structure for any algorithm type. */
158 struct spacc_generic_ctx {
159 struct spacc_engine *engine;
160 int flags;
161 int key_offs;
162 int iv_offs;
165 /* Block cipher context. */
166 struct spacc_ablk_ctx {
167 struct spacc_generic_ctx generic;
168 u8 key[AES_MAX_KEY_SIZE];
169 u8 key_len;
171 * The fallback cipher. If the operation can't be done in hardware,
172 * fallback to a software version.
174 struct crypto_ablkcipher *sw_cipher;
177 /* AEAD cipher context. */
178 struct spacc_aead_ctx {
179 struct spacc_generic_ctx generic;
180 u8 cipher_key[AES_MAX_KEY_SIZE];
181 u8 hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
182 u8 cipher_key_len;
183 u8 hash_key_len;
184 struct crypto_aead *sw_cipher;
187 static int spacc_ablk_submit(struct spacc_req *req);
189 static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
191 return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
194 static inline struct spacc_aead *to_spacc_aead(struct aead_alg *alg)
196 return container_of(alg, struct spacc_aead, alg);
199 static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
201 u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
203 return fifo_stat & SPA_FIFO_CMD_FULL;
207 * Given a cipher context, and a context number, get the base address of the
208 * context page.
210 * Returns the address of the context page where the key/context may
211 * be written.
213 static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
214 unsigned indx,
215 bool is_cipher_ctx)
217 return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
218 (indx * ctx->engine->cipher_pg_sz) :
219 ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
222 /* The context pages can only be written with 32-bit accesses. */
223 static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
224 unsigned count)
226 const u32 *src32 = (const u32 *) src;
228 while (count--)
229 writel(*src32++, dst++);
232 static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
233 void __iomem *page_addr, const u8 *key,
234 size_t key_len, const u8 *iv, size_t iv_len)
236 void __iomem *key_ptr = page_addr + ctx->key_offs;
237 void __iomem *iv_ptr = page_addr + ctx->iv_offs;
239 memcpy_toio32(key_ptr, key, key_len / 4);
240 memcpy_toio32(iv_ptr, iv, iv_len / 4);
244 * Load a context into the engines context memory.
246 * Returns the index of the context page where the context was loaded.
248 static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
249 const u8 *ciph_key, size_t ciph_len,
250 const u8 *iv, size_t ivlen, const u8 *hash_key,
251 size_t hash_len)
253 unsigned indx = ctx->engine->next_ctx++;
254 void __iomem *ciph_page_addr, *hash_page_addr;
256 ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
257 hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
259 ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
260 spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
261 ivlen);
262 writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
263 (1 << SPA_KEY_SZ_CIPHER_OFFSET),
264 ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
266 if (hash_key) {
267 memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
268 writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
269 ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
272 return indx;
275 static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
277 ddt->p = phys;
278 ddt->len = len;
282 * Take a crypto request and scatterlists for the data and turn them into DDTs
283 * for passing to the crypto engines. This also DMA maps the data so that the
284 * crypto engines can DMA to/from them.
286 static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
287 struct scatterlist *payload,
288 unsigned nbytes,
289 enum dma_data_direction dir,
290 dma_addr_t *ddt_phys)
292 unsigned mapped_ents;
293 struct scatterlist *cur;
294 struct spacc_ddt *ddt;
295 int i;
296 int nents;
298 nents = sg_nents_for_len(payload, nbytes);
299 if (nents < 0) {
300 dev_err(engine->dev, "Invalid numbers of SG.\n");
301 return NULL;
303 mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
305 if (mapped_ents + 1 > MAX_DDT_LEN)
306 goto out;
308 ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
309 if (!ddt)
310 goto out;
312 for_each_sg(payload, cur, mapped_ents, i)
313 ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
314 ddt_set(&ddt[mapped_ents], 0, 0);
316 return ddt;
318 out:
319 dma_unmap_sg(engine->dev, payload, nents, dir);
320 return NULL;
323 static int spacc_aead_make_ddts(struct aead_request *areq)
325 struct crypto_aead *aead = crypto_aead_reqtfm(areq);
326 struct spacc_req *req = aead_request_ctx(areq);
327 struct spacc_engine *engine = req->engine;
328 struct spacc_ddt *src_ddt, *dst_ddt;
329 unsigned total;
330 int src_nents, dst_nents;
331 struct scatterlist *cur;
332 int i, dst_ents, src_ents;
334 total = areq->assoclen + areq->cryptlen;
335 if (req->is_encrypt)
336 total += crypto_aead_authsize(aead);
338 src_nents = sg_nents_for_len(areq->src, total);
339 if (src_nents < 0) {
340 dev_err(engine->dev, "Invalid numbers of src SG.\n");
341 return src_nents;
343 if (src_nents + 1 > MAX_DDT_LEN)
344 return -E2BIG;
346 dst_nents = 0;
347 if (areq->src != areq->dst) {
348 dst_nents = sg_nents_for_len(areq->dst, total);
349 if (dst_nents < 0) {
350 dev_err(engine->dev, "Invalid numbers of dst SG.\n");
351 return dst_nents;
353 if (src_nents + 1 > MAX_DDT_LEN)
354 return -E2BIG;
357 src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
358 if (!src_ddt)
359 goto err;
361 dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
362 if (!dst_ddt)
363 goto err_free_src;
365 req->src_ddt = src_ddt;
366 req->dst_ddt = dst_ddt;
368 if (dst_nents) {
369 src_ents = dma_map_sg(engine->dev, areq->src, src_nents,
370 DMA_TO_DEVICE);
371 if (!src_ents)
372 goto err_free_dst;
374 dst_ents = dma_map_sg(engine->dev, areq->dst, dst_nents,
375 DMA_FROM_DEVICE);
377 if (!dst_ents) {
378 dma_unmap_sg(engine->dev, areq->src, src_nents,
379 DMA_TO_DEVICE);
380 goto err_free_dst;
382 } else {
383 src_ents = dma_map_sg(engine->dev, areq->src, src_nents,
384 DMA_BIDIRECTIONAL);
385 if (!src_ents)
386 goto err_free_dst;
387 dst_ents = src_ents;
391 * Now map in the payload for the source and destination and terminate
392 * with the NULL pointers.
394 for_each_sg(areq->src, cur, src_ents, i)
395 ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
397 /* For decryption we need to skip the associated data. */
398 total = req->is_encrypt ? 0 : areq->assoclen;
399 for_each_sg(areq->dst, cur, dst_ents, i) {
400 unsigned len = sg_dma_len(cur);
402 if (len <= total) {
403 total -= len;
404 continue;
407 ddt_set(dst_ddt++, sg_dma_address(cur) + total, len - total);
410 ddt_set(src_ddt, 0, 0);
411 ddt_set(dst_ddt, 0, 0);
413 return 0;
415 err_free_dst:
416 dma_pool_free(engine->req_pool, dst_ddt, req->dst_addr);
417 err_free_src:
418 dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
419 err:
420 return -ENOMEM;
423 static void spacc_aead_free_ddts(struct spacc_req *req)
425 struct aead_request *areq = container_of(req->req, struct aead_request,
426 base);
427 struct crypto_aead *aead = crypto_aead_reqtfm(areq);
428 unsigned total = areq->assoclen + areq->cryptlen +
429 (req->is_encrypt ? crypto_aead_authsize(aead) : 0);
430 struct spacc_aead_ctx *aead_ctx = crypto_aead_ctx(aead);
431 struct spacc_engine *engine = aead_ctx->generic.engine;
432 int nents = sg_nents_for_len(areq->src, total);
434 /* sg_nents_for_len should not fail since it works when mapping sg */
435 if (unlikely(nents < 0)) {
436 dev_err(engine->dev, "Invalid numbers of src SG.\n");
437 return;
440 if (areq->src != areq->dst) {
441 dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
442 nents = sg_nents_for_len(areq->dst, total);
443 if (unlikely(nents < 0)) {
444 dev_err(engine->dev, "Invalid numbers of dst SG.\n");
445 return;
447 dma_unmap_sg(engine->dev, areq->dst, nents, DMA_FROM_DEVICE);
448 } else
449 dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
451 dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
452 dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
455 static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
456 dma_addr_t ddt_addr, struct scatterlist *payload,
457 unsigned nbytes, enum dma_data_direction dir)
459 int nents = sg_nents_for_len(payload, nbytes);
461 if (nents < 0) {
462 dev_err(req->engine->dev, "Invalid numbers of SG.\n");
463 return;
466 dma_unmap_sg(req->engine->dev, payload, nents, dir);
467 dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
470 static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
471 unsigned int keylen)
473 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
474 struct crypto_authenc_keys keys;
475 int err;
477 crypto_aead_clear_flags(ctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
478 crypto_aead_set_flags(ctx->sw_cipher, crypto_aead_get_flags(tfm) &
479 CRYPTO_TFM_REQ_MASK);
480 err = crypto_aead_setkey(ctx->sw_cipher, key, keylen);
481 crypto_aead_clear_flags(tfm, CRYPTO_TFM_RES_MASK);
482 crypto_aead_set_flags(tfm, crypto_aead_get_flags(ctx->sw_cipher) &
483 CRYPTO_TFM_RES_MASK);
484 if (err)
485 return err;
487 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
488 goto badkey;
490 if (keys.enckeylen > AES_MAX_KEY_SIZE)
491 goto badkey;
493 if (keys.authkeylen > sizeof(ctx->hash_ctx))
494 goto badkey;
496 memcpy(ctx->cipher_key, keys.enckey, keys.enckeylen);
497 ctx->cipher_key_len = keys.enckeylen;
499 memcpy(ctx->hash_ctx, keys.authkey, keys.authkeylen);
500 ctx->hash_key_len = keys.authkeylen;
502 return 0;
504 badkey:
505 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
506 return -EINVAL;
509 static int spacc_aead_setauthsize(struct crypto_aead *tfm,
510 unsigned int authsize)
512 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
514 return crypto_aead_setauthsize(ctx->sw_cipher, authsize);
518 * Check if an AEAD request requires a fallback operation. Some requests can't
519 * be completed in hardware because the hardware may not support certain key
520 * sizes. In these cases we need to complete the request in software.
522 static int spacc_aead_need_fallback(struct aead_request *aead_req)
524 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
525 struct aead_alg *alg = crypto_aead_alg(aead);
526 struct spacc_aead *spacc_alg = to_spacc_aead(alg);
527 struct spacc_aead_ctx *ctx = crypto_aead_ctx(aead);
530 * If we have a non-supported key-length, then we need to do a
531 * software fallback.
533 if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
534 SPA_CTRL_CIPH_ALG_AES &&
535 ctx->cipher_key_len != AES_KEYSIZE_128 &&
536 ctx->cipher_key_len != AES_KEYSIZE_256)
537 return 1;
539 return 0;
542 static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
543 bool is_encrypt)
545 struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
546 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
547 struct aead_request *subreq = aead_request_ctx(req);
549 aead_request_set_tfm(subreq, ctx->sw_cipher);
550 aead_request_set_callback(subreq, req->base.flags,
551 req->base.complete, req->base.data);
552 aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
553 req->iv);
554 aead_request_set_ad(subreq, req->assoclen);
556 return is_encrypt ? crypto_aead_encrypt(subreq) :
557 crypto_aead_decrypt(subreq);
560 static void spacc_aead_complete(struct spacc_req *req)
562 spacc_aead_free_ddts(req);
563 req->req->complete(req->req, req->result);
566 static int spacc_aead_submit(struct spacc_req *req)
568 struct aead_request *aead_req =
569 container_of(req->req, struct aead_request, base);
570 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
571 unsigned int authsize = crypto_aead_authsize(aead);
572 struct spacc_aead_ctx *ctx = crypto_aead_ctx(aead);
573 struct aead_alg *alg = crypto_aead_alg(aead);
574 struct spacc_aead *spacc_alg = to_spacc_aead(alg);
575 struct spacc_engine *engine = ctx->generic.engine;
576 u32 ctrl, proc_len, assoc_len;
578 req->result = -EINPROGRESS;
579 req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
580 ctx->cipher_key_len, aead_req->iv, crypto_aead_ivsize(aead),
581 ctx->hash_ctx, ctx->hash_key_len);
583 /* Set the source and destination DDT pointers. */
584 writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
585 writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
586 writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
588 assoc_len = aead_req->assoclen;
589 proc_len = aead_req->cryptlen + assoc_len;
592 * If we are decrypting, we need to take the length of the ICV out of
593 * the processing length.
595 if (!req->is_encrypt)
596 proc_len -= authsize;
598 writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
599 writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
600 writel(authsize, engine->regs + SPA_ICV_LEN_REG_OFFSET);
601 writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
602 writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
604 ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
605 (1 << SPA_CTRL_ICV_APPEND);
606 if (req->is_encrypt)
607 ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
608 else
609 ctrl |= (1 << SPA_CTRL_KEY_EXP);
611 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
613 writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
615 return -EINPROGRESS;
618 static int spacc_req_submit(struct spacc_req *req);
620 static void spacc_push(struct spacc_engine *engine)
622 struct spacc_req *req;
624 while (!list_empty(&engine->pending) &&
625 engine->in_flight + 1 <= engine->fifo_sz) {
627 ++engine->in_flight;
628 req = list_first_entry(&engine->pending, struct spacc_req,
629 list);
630 list_move_tail(&req->list, &engine->in_progress);
632 req->result = spacc_req_submit(req);
637 * Setup an AEAD request for processing. This will configure the engine, load
638 * the context and then start the packet processing.
640 static int spacc_aead_setup(struct aead_request *req,
641 unsigned alg_type, bool is_encrypt)
643 struct crypto_aead *aead = crypto_aead_reqtfm(req);
644 struct aead_alg *alg = crypto_aead_alg(aead);
645 struct spacc_engine *engine = to_spacc_aead(alg)->engine;
646 struct spacc_req *dev_req = aead_request_ctx(req);
647 int err;
648 unsigned long flags;
650 dev_req->req = &req->base;
651 dev_req->is_encrypt = is_encrypt;
652 dev_req->result = -EBUSY;
653 dev_req->engine = engine;
654 dev_req->complete = spacc_aead_complete;
656 if (unlikely(spacc_aead_need_fallback(req) ||
657 ((err = spacc_aead_make_ddts(req)) == -E2BIG)))
658 return spacc_aead_do_fallback(req, alg_type, is_encrypt);
660 if (err)
661 goto out;
663 err = -EINPROGRESS;
664 spin_lock_irqsave(&engine->hw_lock, flags);
665 if (unlikely(spacc_fifo_cmd_full(engine)) ||
666 engine->in_flight + 1 > engine->fifo_sz) {
667 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
668 err = -EBUSY;
669 spin_unlock_irqrestore(&engine->hw_lock, flags);
670 goto out_free_ddts;
672 list_add_tail(&dev_req->list, &engine->pending);
673 } else {
674 list_add_tail(&dev_req->list, &engine->pending);
675 spacc_push(engine);
677 spin_unlock_irqrestore(&engine->hw_lock, flags);
679 goto out;
681 out_free_ddts:
682 spacc_aead_free_ddts(dev_req);
683 out:
684 return err;
687 static int spacc_aead_encrypt(struct aead_request *req)
689 struct crypto_aead *aead = crypto_aead_reqtfm(req);
690 struct spacc_aead *alg = to_spacc_aead(crypto_aead_alg(aead));
692 return spacc_aead_setup(req, alg->type, 1);
695 static int spacc_aead_decrypt(struct aead_request *req)
697 struct crypto_aead *aead = crypto_aead_reqtfm(req);
698 struct spacc_aead *alg = to_spacc_aead(crypto_aead_alg(aead));
700 return spacc_aead_setup(req, alg->type, 0);
704 * Initialise a new AEAD context. This is responsible for allocating the
705 * fallback cipher and initialising the context.
707 static int spacc_aead_cra_init(struct crypto_aead *tfm)
709 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
710 struct aead_alg *alg = crypto_aead_alg(tfm);
711 struct spacc_aead *spacc_alg = to_spacc_aead(alg);
712 struct spacc_engine *engine = spacc_alg->engine;
714 ctx->generic.flags = spacc_alg->type;
715 ctx->generic.engine = engine;
716 ctx->sw_cipher = crypto_alloc_aead(alg->base.cra_name, 0,
717 CRYPTO_ALG_NEED_FALLBACK);
718 if (IS_ERR(ctx->sw_cipher))
719 return PTR_ERR(ctx->sw_cipher);
720 ctx->generic.key_offs = spacc_alg->key_offs;
721 ctx->generic.iv_offs = spacc_alg->iv_offs;
723 crypto_aead_set_reqsize(
724 tfm,
725 max(sizeof(struct spacc_req),
726 sizeof(struct aead_request) +
727 crypto_aead_reqsize(ctx->sw_cipher)));
729 return 0;
733 * Destructor for an AEAD context. This is called when the transform is freed
734 * and must free the fallback cipher.
736 static void spacc_aead_cra_exit(struct crypto_aead *tfm)
738 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
740 crypto_free_aead(ctx->sw_cipher);
744 * Set the DES key for a block cipher transform. This also performs weak key
745 * checking if the transform has requested it.
747 static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
748 unsigned int len)
750 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
751 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
752 u32 tmp[DES_EXPKEY_WORDS];
754 if (len > DES3_EDE_KEY_SIZE) {
755 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
756 return -EINVAL;
759 if (unlikely(!des_ekey(tmp, key)) &&
760 (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) {
761 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
762 return -EINVAL;
765 memcpy(ctx->key, key, len);
766 ctx->key_len = len;
768 return 0;
772 * Set the key for an AES block cipher. Some key lengths are not supported in
773 * hardware so this must also check whether a fallback is needed.
775 static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
776 unsigned int len)
778 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
779 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
780 int err = 0;
782 if (len > AES_MAX_KEY_SIZE) {
783 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
784 return -EINVAL;
788 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
789 * request for any other size (192 bits) then we need to do a software
790 * fallback.
792 if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
793 ctx->sw_cipher) {
795 * Set the fallback transform to use the same request flags as
796 * the hardware transform.
798 ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
799 ctx->sw_cipher->base.crt_flags |=
800 cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK;
802 err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len);
803 if (err)
804 goto sw_setkey_failed;
805 } else if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
806 !ctx->sw_cipher)
807 err = -EINVAL;
809 memcpy(ctx->key, key, len);
810 ctx->key_len = len;
812 sw_setkey_failed:
813 if (err && ctx->sw_cipher) {
814 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
815 tfm->crt_flags |=
816 ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK;
819 return err;
822 static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher,
823 const u8 *key, unsigned int len)
825 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
826 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
827 int err = 0;
829 if (len > AES_MAX_KEY_SIZE) {
830 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
831 err = -EINVAL;
832 goto out;
835 memcpy(ctx->key, key, len);
836 ctx->key_len = len;
838 out:
839 return err;
842 static int spacc_ablk_need_fallback(struct spacc_req *req)
844 struct spacc_ablk_ctx *ctx;
845 struct crypto_tfm *tfm = req->req->tfm;
846 struct crypto_alg *alg = req->req->tfm->__crt_alg;
847 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
849 ctx = crypto_tfm_ctx(tfm);
851 return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
852 SPA_CTRL_CIPH_ALG_AES &&
853 ctx->key_len != AES_KEYSIZE_128 &&
854 ctx->key_len != AES_KEYSIZE_256;
857 static void spacc_ablk_complete(struct spacc_req *req)
859 struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
861 if (ablk_req->src != ablk_req->dst) {
862 spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
863 ablk_req->nbytes, DMA_TO_DEVICE);
864 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
865 ablk_req->nbytes, DMA_FROM_DEVICE);
866 } else
867 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
868 ablk_req->nbytes, DMA_BIDIRECTIONAL);
870 req->req->complete(req->req, req->result);
873 static int spacc_ablk_submit(struct spacc_req *req)
875 struct crypto_tfm *tfm = req->req->tfm;
876 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
877 struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
878 struct crypto_alg *alg = req->req->tfm->__crt_alg;
879 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
880 struct spacc_engine *engine = ctx->generic.engine;
881 u32 ctrl;
883 req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
884 ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize,
885 NULL, 0);
887 writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
888 writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
889 writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
891 writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET);
892 writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
893 writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
894 writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
896 ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
897 (req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
898 (1 << SPA_CTRL_KEY_EXP));
900 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
902 writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
904 return -EINPROGRESS;
907 static int spacc_ablk_do_fallback(struct ablkcipher_request *req,
908 unsigned alg_type, bool is_encrypt)
910 struct crypto_tfm *old_tfm =
911 crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
912 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
913 int err;
915 if (!ctx->sw_cipher)
916 return -EINVAL;
919 * Change the request to use the software fallback transform, and once
920 * the ciphering has completed, put the old transform back into the
921 * request.
923 ablkcipher_request_set_tfm(req, ctx->sw_cipher);
924 err = is_encrypt ? crypto_ablkcipher_encrypt(req) :
925 crypto_ablkcipher_decrypt(req);
926 ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm));
928 return err;
931 static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
932 bool is_encrypt)
934 struct crypto_alg *alg = req->base.tfm->__crt_alg;
935 struct spacc_engine *engine = to_spacc_alg(alg)->engine;
936 struct spacc_req *dev_req = ablkcipher_request_ctx(req);
937 unsigned long flags;
938 int err = -ENOMEM;
940 dev_req->req = &req->base;
941 dev_req->is_encrypt = is_encrypt;
942 dev_req->engine = engine;
943 dev_req->complete = spacc_ablk_complete;
944 dev_req->result = -EINPROGRESS;
946 if (unlikely(spacc_ablk_need_fallback(dev_req)))
947 return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
950 * Create the DDT's for the engine. If we share the same source and
951 * destination then we can optimize by reusing the DDT's.
953 if (req->src != req->dst) {
954 dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
955 req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr);
956 if (!dev_req->src_ddt)
957 goto out;
959 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
960 req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr);
961 if (!dev_req->dst_ddt)
962 goto out_free_src;
963 } else {
964 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
965 req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
966 if (!dev_req->dst_ddt)
967 goto out;
969 dev_req->src_ddt = NULL;
970 dev_req->src_addr = dev_req->dst_addr;
973 err = -EINPROGRESS;
974 spin_lock_irqsave(&engine->hw_lock, flags);
976 * Check if the engine will accept the operation now. If it won't then
977 * we either stick it on the end of a pending list if we can backlog,
978 * or bailout with an error if not.
980 if (unlikely(spacc_fifo_cmd_full(engine)) ||
981 engine->in_flight + 1 > engine->fifo_sz) {
982 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
983 err = -EBUSY;
984 spin_unlock_irqrestore(&engine->hw_lock, flags);
985 goto out_free_ddts;
987 list_add_tail(&dev_req->list, &engine->pending);
988 } else {
989 list_add_tail(&dev_req->list, &engine->pending);
990 spacc_push(engine);
992 spin_unlock_irqrestore(&engine->hw_lock, flags);
994 goto out;
996 out_free_ddts:
997 spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
998 req->nbytes, req->src == req->dst ?
999 DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
1000 out_free_src:
1001 if (req->src != req->dst)
1002 spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
1003 req->src, req->nbytes, DMA_TO_DEVICE);
1004 out:
1005 return err;
1008 static int spacc_ablk_cra_init(struct crypto_tfm *tfm)
1010 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1011 struct crypto_alg *alg = tfm->__crt_alg;
1012 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
1013 struct spacc_engine *engine = spacc_alg->engine;
1015 ctx->generic.flags = spacc_alg->type;
1016 ctx->generic.engine = engine;
1017 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1018 ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0,
1019 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
1020 if (IS_ERR(ctx->sw_cipher)) {
1021 dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1022 alg->cra_name);
1023 ctx->sw_cipher = NULL;
1026 ctx->generic.key_offs = spacc_alg->key_offs;
1027 ctx->generic.iv_offs = spacc_alg->iv_offs;
1029 tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req);
1031 return 0;
1034 static void spacc_ablk_cra_exit(struct crypto_tfm *tfm)
1036 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1038 if (ctx->sw_cipher)
1039 crypto_free_ablkcipher(ctx->sw_cipher);
1040 ctx->sw_cipher = NULL;
1043 static int spacc_ablk_encrypt(struct ablkcipher_request *req)
1045 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1046 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1047 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1049 return spacc_ablk_setup(req, alg->type, 1);
1052 static int spacc_ablk_decrypt(struct ablkcipher_request *req)
1054 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1055 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1056 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1058 return spacc_ablk_setup(req, alg->type, 0);
1061 static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1063 return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1064 SPA_FIFO_STAT_EMPTY;
1067 static void spacc_process_done(struct spacc_engine *engine)
1069 struct spacc_req *req;
1070 unsigned long flags;
1072 spin_lock_irqsave(&engine->hw_lock, flags);
1074 while (!spacc_fifo_stat_empty(engine)) {
1075 req = list_first_entry(&engine->in_progress, struct spacc_req,
1076 list);
1077 list_move_tail(&req->list, &engine->completed);
1078 --engine->in_flight;
1080 /* POP the status register. */
1081 writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1082 req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1083 SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
1086 * Convert the SPAcc error status into the standard POSIX error
1087 * codes.
1089 if (unlikely(req->result)) {
1090 switch (req->result) {
1091 case SPA_STATUS_ICV_FAIL:
1092 req->result = -EBADMSG;
1093 break;
1095 case SPA_STATUS_MEMORY_ERROR:
1096 dev_warn(engine->dev,
1097 "memory error triggered\n");
1098 req->result = -EFAULT;
1099 break;
1101 case SPA_STATUS_BLOCK_ERROR:
1102 dev_warn(engine->dev,
1103 "block error triggered\n");
1104 req->result = -EIO;
1105 break;
1110 tasklet_schedule(&engine->complete);
1112 spin_unlock_irqrestore(&engine->hw_lock, flags);
1115 static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1117 struct spacc_engine *engine = (struct spacc_engine *)dev;
1118 u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1120 writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1121 spacc_process_done(engine);
1123 return IRQ_HANDLED;
1126 static void spacc_packet_timeout(unsigned long data)
1128 struct spacc_engine *engine = (struct spacc_engine *)data;
1130 spacc_process_done(engine);
1133 static int spacc_req_submit(struct spacc_req *req)
1135 struct crypto_alg *alg = req->req->tfm->__crt_alg;
1137 if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
1138 return spacc_aead_submit(req);
1139 else
1140 return spacc_ablk_submit(req);
1143 static void spacc_spacc_complete(unsigned long data)
1145 struct spacc_engine *engine = (struct spacc_engine *)data;
1146 struct spacc_req *req, *tmp;
1147 unsigned long flags;
1148 LIST_HEAD(completed);
1150 spin_lock_irqsave(&engine->hw_lock, flags);
1152 list_splice_init(&engine->completed, &completed);
1153 spacc_push(engine);
1154 if (engine->in_flight)
1155 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1157 spin_unlock_irqrestore(&engine->hw_lock, flags);
1159 list_for_each_entry_safe(req, tmp, &completed, list) {
1160 list_del(&req->list);
1161 req->complete(req);
1165 #ifdef CONFIG_PM
1166 static int spacc_suspend(struct device *dev)
1168 struct platform_device *pdev = to_platform_device(dev);
1169 struct spacc_engine *engine = platform_get_drvdata(pdev);
1172 * We only support standby mode. All we have to do is gate the clock to
1173 * the spacc. The hardware will preserve state until we turn it back
1174 * on again.
1176 clk_disable(engine->clk);
1178 return 0;
1181 static int spacc_resume(struct device *dev)
1183 struct platform_device *pdev = to_platform_device(dev);
1184 struct spacc_engine *engine = platform_get_drvdata(pdev);
1186 return clk_enable(engine->clk);
1189 static const struct dev_pm_ops spacc_pm_ops = {
1190 .suspend = spacc_suspend,
1191 .resume = spacc_resume,
1193 #endif /* CONFIG_PM */
1195 static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1197 return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL;
1200 static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1201 struct device_attribute *attr,
1202 char *buf)
1204 struct spacc_engine *engine = spacc_dev_to_engine(dev);
1206 return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1209 static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1210 struct device_attribute *attr,
1211 const char *buf, size_t len)
1213 struct spacc_engine *engine = spacc_dev_to_engine(dev);
1214 unsigned long thresh;
1216 if (kstrtoul(buf, 0, &thresh))
1217 return -EINVAL;
1219 thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1221 engine->stat_irq_thresh = thresh;
1222 writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1223 engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1225 return len;
1227 static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1228 spacc_stat_irq_thresh_store);
1230 static struct spacc_alg ipsec_engine_algs[] = {
1232 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
1233 .key_offs = 0,
1234 .iv_offs = AES_MAX_KEY_SIZE,
1235 .alg = {
1236 .cra_name = "cbc(aes)",
1237 .cra_driver_name = "cbc-aes-picoxcell",
1238 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1239 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1240 CRYPTO_ALG_KERN_DRIVER_ONLY |
1241 CRYPTO_ALG_ASYNC |
1242 CRYPTO_ALG_NEED_FALLBACK,
1243 .cra_blocksize = AES_BLOCK_SIZE,
1244 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1245 .cra_type = &crypto_ablkcipher_type,
1246 .cra_module = THIS_MODULE,
1247 .cra_ablkcipher = {
1248 .setkey = spacc_aes_setkey,
1249 .encrypt = spacc_ablk_encrypt,
1250 .decrypt = spacc_ablk_decrypt,
1251 .min_keysize = AES_MIN_KEY_SIZE,
1252 .max_keysize = AES_MAX_KEY_SIZE,
1253 .ivsize = AES_BLOCK_SIZE,
1255 .cra_init = spacc_ablk_cra_init,
1256 .cra_exit = spacc_ablk_cra_exit,
1260 .key_offs = 0,
1261 .iv_offs = AES_MAX_KEY_SIZE,
1262 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
1263 .alg = {
1264 .cra_name = "ecb(aes)",
1265 .cra_driver_name = "ecb-aes-picoxcell",
1266 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1267 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1268 CRYPTO_ALG_KERN_DRIVER_ONLY |
1269 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1270 .cra_blocksize = AES_BLOCK_SIZE,
1271 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1272 .cra_type = &crypto_ablkcipher_type,
1273 .cra_module = THIS_MODULE,
1274 .cra_ablkcipher = {
1275 .setkey = spacc_aes_setkey,
1276 .encrypt = spacc_ablk_encrypt,
1277 .decrypt = spacc_ablk_decrypt,
1278 .min_keysize = AES_MIN_KEY_SIZE,
1279 .max_keysize = AES_MAX_KEY_SIZE,
1281 .cra_init = spacc_ablk_cra_init,
1282 .cra_exit = spacc_ablk_cra_exit,
1286 .key_offs = DES_BLOCK_SIZE,
1287 .iv_offs = 0,
1288 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1289 .alg = {
1290 .cra_name = "cbc(des)",
1291 .cra_driver_name = "cbc-des-picoxcell",
1292 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1293 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1294 CRYPTO_ALG_ASYNC |
1295 CRYPTO_ALG_KERN_DRIVER_ONLY,
1296 .cra_blocksize = DES_BLOCK_SIZE,
1297 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1298 .cra_type = &crypto_ablkcipher_type,
1299 .cra_module = THIS_MODULE,
1300 .cra_ablkcipher = {
1301 .setkey = spacc_des_setkey,
1302 .encrypt = spacc_ablk_encrypt,
1303 .decrypt = spacc_ablk_decrypt,
1304 .min_keysize = DES_KEY_SIZE,
1305 .max_keysize = DES_KEY_SIZE,
1306 .ivsize = DES_BLOCK_SIZE,
1308 .cra_init = spacc_ablk_cra_init,
1309 .cra_exit = spacc_ablk_cra_exit,
1313 .key_offs = DES_BLOCK_SIZE,
1314 .iv_offs = 0,
1315 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1316 .alg = {
1317 .cra_name = "ecb(des)",
1318 .cra_driver_name = "ecb-des-picoxcell",
1319 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1320 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1321 CRYPTO_ALG_ASYNC |
1322 CRYPTO_ALG_KERN_DRIVER_ONLY,
1323 .cra_blocksize = DES_BLOCK_SIZE,
1324 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1325 .cra_type = &crypto_ablkcipher_type,
1326 .cra_module = THIS_MODULE,
1327 .cra_ablkcipher = {
1328 .setkey = spacc_des_setkey,
1329 .encrypt = spacc_ablk_encrypt,
1330 .decrypt = spacc_ablk_decrypt,
1331 .min_keysize = DES_KEY_SIZE,
1332 .max_keysize = DES_KEY_SIZE,
1334 .cra_init = spacc_ablk_cra_init,
1335 .cra_exit = spacc_ablk_cra_exit,
1339 .key_offs = DES_BLOCK_SIZE,
1340 .iv_offs = 0,
1341 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1342 .alg = {
1343 .cra_name = "cbc(des3_ede)",
1344 .cra_driver_name = "cbc-des3-ede-picoxcell",
1345 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1346 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1347 CRYPTO_ALG_ASYNC |
1348 CRYPTO_ALG_KERN_DRIVER_ONLY,
1349 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1350 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1351 .cra_type = &crypto_ablkcipher_type,
1352 .cra_module = THIS_MODULE,
1353 .cra_ablkcipher = {
1354 .setkey = spacc_des_setkey,
1355 .encrypt = spacc_ablk_encrypt,
1356 .decrypt = spacc_ablk_decrypt,
1357 .min_keysize = DES3_EDE_KEY_SIZE,
1358 .max_keysize = DES3_EDE_KEY_SIZE,
1359 .ivsize = DES3_EDE_BLOCK_SIZE,
1361 .cra_init = spacc_ablk_cra_init,
1362 .cra_exit = spacc_ablk_cra_exit,
1366 .key_offs = DES_BLOCK_SIZE,
1367 .iv_offs = 0,
1368 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1369 .alg = {
1370 .cra_name = "ecb(des3_ede)",
1371 .cra_driver_name = "ecb-des3-ede-picoxcell",
1372 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1373 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1374 CRYPTO_ALG_ASYNC |
1375 CRYPTO_ALG_KERN_DRIVER_ONLY,
1376 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1377 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1378 .cra_type = &crypto_ablkcipher_type,
1379 .cra_module = THIS_MODULE,
1380 .cra_ablkcipher = {
1381 .setkey = spacc_des_setkey,
1382 .encrypt = spacc_ablk_encrypt,
1383 .decrypt = spacc_ablk_decrypt,
1384 .min_keysize = DES3_EDE_KEY_SIZE,
1385 .max_keysize = DES3_EDE_KEY_SIZE,
1387 .cra_init = spacc_ablk_cra_init,
1388 .cra_exit = spacc_ablk_cra_exit,
1393 static struct spacc_aead ipsec_engine_aeads[] = {
1395 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1396 SPA_CTRL_CIPH_MODE_CBC |
1397 SPA_CTRL_HASH_ALG_SHA |
1398 SPA_CTRL_HASH_MODE_HMAC,
1399 .key_offs = 0,
1400 .iv_offs = AES_MAX_KEY_SIZE,
1401 .alg = {
1402 .base = {
1403 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1404 .cra_driver_name = "authenc-hmac-sha1-"
1405 "cbc-aes-picoxcell",
1406 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1407 .cra_flags = CRYPTO_ALG_ASYNC |
1408 CRYPTO_ALG_NEED_FALLBACK |
1409 CRYPTO_ALG_KERN_DRIVER_ONLY,
1410 .cra_blocksize = AES_BLOCK_SIZE,
1411 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1412 .cra_module = THIS_MODULE,
1414 .setkey = spacc_aead_setkey,
1415 .setauthsize = spacc_aead_setauthsize,
1416 .encrypt = spacc_aead_encrypt,
1417 .decrypt = spacc_aead_decrypt,
1418 .ivsize = AES_BLOCK_SIZE,
1419 .maxauthsize = SHA1_DIGEST_SIZE,
1420 .init = spacc_aead_cra_init,
1421 .exit = spacc_aead_cra_exit,
1425 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1426 SPA_CTRL_CIPH_MODE_CBC |
1427 SPA_CTRL_HASH_ALG_SHA256 |
1428 SPA_CTRL_HASH_MODE_HMAC,
1429 .key_offs = 0,
1430 .iv_offs = AES_MAX_KEY_SIZE,
1431 .alg = {
1432 .base = {
1433 .cra_name = "authenc(hmac(sha256),cbc(aes))",
1434 .cra_driver_name = "authenc-hmac-sha256-"
1435 "cbc-aes-picoxcell",
1436 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1437 .cra_flags = CRYPTO_ALG_ASYNC |
1438 CRYPTO_ALG_NEED_FALLBACK |
1439 CRYPTO_ALG_KERN_DRIVER_ONLY,
1440 .cra_blocksize = AES_BLOCK_SIZE,
1441 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1442 .cra_module = THIS_MODULE,
1444 .setkey = spacc_aead_setkey,
1445 .setauthsize = spacc_aead_setauthsize,
1446 .encrypt = spacc_aead_encrypt,
1447 .decrypt = spacc_aead_decrypt,
1448 .ivsize = AES_BLOCK_SIZE,
1449 .maxauthsize = SHA256_DIGEST_SIZE,
1450 .init = spacc_aead_cra_init,
1451 .exit = spacc_aead_cra_exit,
1455 .key_offs = 0,
1456 .iv_offs = AES_MAX_KEY_SIZE,
1457 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1458 SPA_CTRL_CIPH_MODE_CBC |
1459 SPA_CTRL_HASH_ALG_MD5 |
1460 SPA_CTRL_HASH_MODE_HMAC,
1461 .alg = {
1462 .base = {
1463 .cra_name = "authenc(hmac(md5),cbc(aes))",
1464 .cra_driver_name = "authenc-hmac-md5-"
1465 "cbc-aes-picoxcell",
1466 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1467 .cra_flags = CRYPTO_ALG_ASYNC |
1468 CRYPTO_ALG_NEED_FALLBACK |
1469 CRYPTO_ALG_KERN_DRIVER_ONLY,
1470 .cra_blocksize = AES_BLOCK_SIZE,
1471 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1472 .cra_module = THIS_MODULE,
1474 .setkey = spacc_aead_setkey,
1475 .setauthsize = spacc_aead_setauthsize,
1476 .encrypt = spacc_aead_encrypt,
1477 .decrypt = spacc_aead_decrypt,
1478 .ivsize = AES_BLOCK_SIZE,
1479 .maxauthsize = MD5_DIGEST_SIZE,
1480 .init = spacc_aead_cra_init,
1481 .exit = spacc_aead_cra_exit,
1485 .key_offs = DES_BLOCK_SIZE,
1486 .iv_offs = 0,
1487 .ctrl_default = SPA_CTRL_CIPH_ALG_DES |
1488 SPA_CTRL_CIPH_MODE_CBC |
1489 SPA_CTRL_HASH_ALG_SHA |
1490 SPA_CTRL_HASH_MODE_HMAC,
1491 .alg = {
1492 .base = {
1493 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1494 .cra_driver_name = "authenc-hmac-sha1-"
1495 "cbc-3des-picoxcell",
1496 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1497 .cra_flags = CRYPTO_ALG_ASYNC |
1498 CRYPTO_ALG_NEED_FALLBACK |
1499 CRYPTO_ALG_KERN_DRIVER_ONLY,
1500 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1501 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1502 .cra_module = THIS_MODULE,
1504 .setkey = spacc_aead_setkey,
1505 .setauthsize = spacc_aead_setauthsize,
1506 .encrypt = spacc_aead_encrypt,
1507 .decrypt = spacc_aead_decrypt,
1508 .ivsize = DES3_EDE_BLOCK_SIZE,
1509 .maxauthsize = SHA1_DIGEST_SIZE,
1510 .init = spacc_aead_cra_init,
1511 .exit = spacc_aead_cra_exit,
1515 .key_offs = DES_BLOCK_SIZE,
1516 .iv_offs = 0,
1517 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1518 SPA_CTRL_CIPH_MODE_CBC |
1519 SPA_CTRL_HASH_ALG_SHA256 |
1520 SPA_CTRL_HASH_MODE_HMAC,
1521 .alg = {
1522 .base = {
1523 .cra_name = "authenc(hmac(sha256),"
1524 "cbc(des3_ede))",
1525 .cra_driver_name = "authenc-hmac-sha256-"
1526 "cbc-3des-picoxcell",
1527 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1528 .cra_flags = CRYPTO_ALG_ASYNC |
1529 CRYPTO_ALG_NEED_FALLBACK |
1530 CRYPTO_ALG_KERN_DRIVER_ONLY,
1531 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1532 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1533 .cra_module = THIS_MODULE,
1535 .setkey = spacc_aead_setkey,
1536 .setauthsize = spacc_aead_setauthsize,
1537 .encrypt = spacc_aead_encrypt,
1538 .decrypt = spacc_aead_decrypt,
1539 .ivsize = DES3_EDE_BLOCK_SIZE,
1540 .maxauthsize = SHA256_DIGEST_SIZE,
1541 .init = spacc_aead_cra_init,
1542 .exit = spacc_aead_cra_exit,
1546 .key_offs = DES_BLOCK_SIZE,
1547 .iv_offs = 0,
1548 .ctrl_default = SPA_CTRL_CIPH_ALG_DES |
1549 SPA_CTRL_CIPH_MODE_CBC |
1550 SPA_CTRL_HASH_ALG_MD5 |
1551 SPA_CTRL_HASH_MODE_HMAC,
1552 .alg = {
1553 .base = {
1554 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1555 .cra_driver_name = "authenc-hmac-md5-"
1556 "cbc-3des-picoxcell",
1557 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1558 .cra_flags = CRYPTO_ALG_ASYNC |
1559 CRYPTO_ALG_NEED_FALLBACK |
1560 CRYPTO_ALG_KERN_DRIVER_ONLY,
1561 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1562 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1563 .cra_module = THIS_MODULE,
1565 .setkey = spacc_aead_setkey,
1566 .setauthsize = spacc_aead_setauthsize,
1567 .encrypt = spacc_aead_encrypt,
1568 .decrypt = spacc_aead_decrypt,
1569 .ivsize = DES3_EDE_BLOCK_SIZE,
1570 .maxauthsize = MD5_DIGEST_SIZE,
1571 .init = spacc_aead_cra_init,
1572 .exit = spacc_aead_cra_exit,
1577 static struct spacc_alg l2_engine_algs[] = {
1579 .key_offs = 0,
1580 .iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1581 .ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1582 SPA_CTRL_CIPH_MODE_F8,
1583 .alg = {
1584 .cra_name = "f8(kasumi)",
1585 .cra_driver_name = "f8-kasumi-picoxcell",
1586 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1587 .cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER |
1588 CRYPTO_ALG_ASYNC |
1589 CRYPTO_ALG_KERN_DRIVER_ONLY,
1590 .cra_blocksize = 8,
1591 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1592 .cra_type = &crypto_ablkcipher_type,
1593 .cra_module = THIS_MODULE,
1594 .cra_ablkcipher = {
1595 .setkey = spacc_kasumi_f8_setkey,
1596 .encrypt = spacc_ablk_encrypt,
1597 .decrypt = spacc_ablk_decrypt,
1598 .min_keysize = 16,
1599 .max_keysize = 16,
1600 .ivsize = 8,
1602 .cra_init = spacc_ablk_cra_init,
1603 .cra_exit = spacc_ablk_cra_exit,
1608 #ifdef CONFIG_OF
1609 static const struct of_device_id spacc_of_id_table[] = {
1610 { .compatible = "picochip,spacc-ipsec" },
1611 { .compatible = "picochip,spacc-l2" },
1614 MODULE_DEVICE_TABLE(of, spacc_of_id_table);
1615 #endif /* CONFIG_OF */
1617 static bool spacc_is_compatible(struct platform_device *pdev,
1618 const char *spacc_type)
1620 const struct platform_device_id *platid = platform_get_device_id(pdev);
1622 if (platid && !strcmp(platid->name, spacc_type))
1623 return true;
1625 #ifdef CONFIG_OF
1626 if (of_device_is_compatible(pdev->dev.of_node, spacc_type))
1627 return true;
1628 #endif /* CONFIG_OF */
1630 return false;
1633 static int spacc_probe(struct platform_device *pdev)
1635 int i, err, ret = -EINVAL;
1636 struct resource *mem, *irq;
1637 struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1638 GFP_KERNEL);
1639 if (!engine)
1640 return -ENOMEM;
1642 if (spacc_is_compatible(pdev, "picochip,spacc-ipsec")) {
1643 engine->max_ctxs = SPACC_CRYPTO_IPSEC_MAX_CTXS;
1644 engine->cipher_pg_sz = SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ;
1645 engine->hash_pg_sz = SPACC_CRYPTO_IPSEC_HASH_PG_SZ;
1646 engine->fifo_sz = SPACC_CRYPTO_IPSEC_FIFO_SZ;
1647 engine->algs = ipsec_engine_algs;
1648 engine->num_algs = ARRAY_SIZE(ipsec_engine_algs);
1649 engine->aeads = ipsec_engine_aeads;
1650 engine->num_aeads = ARRAY_SIZE(ipsec_engine_aeads);
1651 } else if (spacc_is_compatible(pdev, "picochip,spacc-l2")) {
1652 engine->max_ctxs = SPACC_CRYPTO_L2_MAX_CTXS;
1653 engine->cipher_pg_sz = SPACC_CRYPTO_L2_CIPHER_PG_SZ;
1654 engine->hash_pg_sz = SPACC_CRYPTO_L2_HASH_PG_SZ;
1655 engine->fifo_sz = SPACC_CRYPTO_L2_FIFO_SZ;
1656 engine->algs = l2_engine_algs;
1657 engine->num_algs = ARRAY_SIZE(l2_engine_algs);
1658 } else {
1659 return -EINVAL;
1662 engine->name = dev_name(&pdev->dev);
1664 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1665 engine->regs = devm_ioremap_resource(&pdev->dev, mem);
1666 if (IS_ERR(engine->regs))
1667 return PTR_ERR(engine->regs);
1669 irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1670 if (!irq) {
1671 dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1672 return -ENXIO;
1675 if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1676 engine->name, engine)) {
1677 dev_err(engine->dev, "failed to request IRQ\n");
1678 return -EBUSY;
1681 engine->dev = &pdev->dev;
1682 engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
1683 engine->hash_key_base = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1685 engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1686 MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1687 if (!engine->req_pool)
1688 return -ENOMEM;
1690 spin_lock_init(&engine->hw_lock);
1692 engine->clk = clk_get(&pdev->dev, "ref");
1693 if (IS_ERR(engine->clk)) {
1694 dev_info(&pdev->dev, "clk unavailable\n");
1695 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1696 return PTR_ERR(engine->clk);
1699 if (clk_prepare_enable(engine->clk)) {
1700 dev_info(&pdev->dev, "unable to prepare/enable clk\n");
1701 clk_put(engine->clk);
1702 return -EIO;
1705 err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1706 if (err) {
1707 clk_disable_unprepare(engine->clk);
1708 clk_put(engine->clk);
1709 return err;
1714 * Use an IRQ threshold of 50% as a default. This seems to be a
1715 * reasonable trade off of latency against throughput but can be
1716 * changed at runtime.
1718 engine->stat_irq_thresh = (engine->fifo_sz / 2);
1721 * Configure the interrupts. We only use the STAT_CNT interrupt as we
1722 * only submit a new packet for processing when we complete another in
1723 * the queue. This minimizes time spent in the interrupt handler.
1725 writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1726 engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1727 writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
1728 engine->regs + SPA_IRQ_EN_REG_OFFSET);
1730 setup_timer(&engine->packet_timeout, spacc_packet_timeout,
1731 (unsigned long)engine);
1733 INIT_LIST_HEAD(&engine->pending);
1734 INIT_LIST_HEAD(&engine->completed);
1735 INIT_LIST_HEAD(&engine->in_progress);
1736 engine->in_flight = 0;
1737 tasklet_init(&engine->complete, spacc_spacc_complete,
1738 (unsigned long)engine);
1740 platform_set_drvdata(pdev, engine);
1742 INIT_LIST_HEAD(&engine->registered_algs);
1743 for (i = 0; i < engine->num_algs; ++i) {
1744 engine->algs[i].engine = engine;
1745 err = crypto_register_alg(&engine->algs[i].alg);
1746 if (!err) {
1747 list_add_tail(&engine->algs[i].entry,
1748 &engine->registered_algs);
1749 ret = 0;
1751 if (err)
1752 dev_err(engine->dev, "failed to register alg \"%s\"\n",
1753 engine->algs[i].alg.cra_name);
1754 else
1755 dev_dbg(engine->dev, "registered alg \"%s\"\n",
1756 engine->algs[i].alg.cra_name);
1759 INIT_LIST_HEAD(&engine->registered_aeads);
1760 for (i = 0; i < engine->num_aeads; ++i) {
1761 engine->aeads[i].engine = engine;
1762 err = crypto_register_aead(&engine->aeads[i].alg);
1763 if (!err) {
1764 list_add_tail(&engine->aeads[i].entry,
1765 &engine->registered_aeads);
1766 ret = 0;
1768 if (err)
1769 dev_err(engine->dev, "failed to register alg \"%s\"\n",
1770 engine->aeads[i].alg.base.cra_name);
1771 else
1772 dev_dbg(engine->dev, "registered alg \"%s\"\n",
1773 engine->aeads[i].alg.base.cra_name);
1776 return ret;
1779 static int spacc_remove(struct platform_device *pdev)
1781 struct spacc_aead *aead, *an;
1782 struct spacc_alg *alg, *next;
1783 struct spacc_engine *engine = platform_get_drvdata(pdev);
1785 del_timer_sync(&engine->packet_timeout);
1786 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1788 list_for_each_entry_safe(aead, an, &engine->registered_aeads, entry) {
1789 list_del(&aead->entry);
1790 crypto_unregister_aead(&aead->alg);
1793 list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1794 list_del(&alg->entry);
1795 crypto_unregister_alg(&alg->alg);
1798 clk_disable_unprepare(engine->clk);
1799 clk_put(engine->clk);
1801 return 0;
1804 static const struct platform_device_id spacc_id_table[] = {
1805 { "picochip,spacc-ipsec", },
1806 { "picochip,spacc-l2", },
1810 static struct platform_driver spacc_driver = {
1811 .probe = spacc_probe,
1812 .remove = spacc_remove,
1813 .driver = {
1814 .name = "picochip,spacc",
1815 #ifdef CONFIG_PM
1816 .pm = &spacc_pm_ops,
1817 #endif /* CONFIG_PM */
1818 .of_match_table = of_match_ptr(spacc_of_id_table),
1820 .id_table = spacc_id_table,
1823 module_platform_driver(spacc_driver);
1825 MODULE_LICENSE("GPL");
1826 MODULE_AUTHOR("Jamie Iles");