2 * i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
4 * Copyright (C) 2011 Weinmann Medical GmbH
5 * Author: Nikolaus Voss <n.voss@weinmann.de>
7 * Evolved from original work by:
8 * Copyright (C) 2004 Rick Bronson
9 * Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
11 * Borrowed heavily from original work by:
12 * Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
20 #include <linux/clk.h>
21 #include <linux/completion.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/err.h>
25 #include <linux/i2c.h>
26 #include <linux/interrupt.h>
28 #include <linux/module.h>
30 #include <linux/of_device.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/platform_data/dma-atmel.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/pinctrl/consumer.h>
37 #define DEFAULT_TWI_CLK_HZ 100000 /* max 400 Kbits/s */
38 #define AT91_I2C_TIMEOUT msecs_to_jiffies(100) /* transfer timeout */
39 #define AT91_I2C_DMA_THRESHOLD 8 /* enable DMA if transfer size is bigger than this threshold */
40 #define AUTOSUSPEND_TIMEOUT 2000
42 /* AT91 TWI register definitions */
43 #define AT91_TWI_CR 0x0000 /* Control Register */
44 #define AT91_TWI_START BIT(0) /* Send a Start Condition */
45 #define AT91_TWI_STOP BIT(1) /* Send a Stop Condition */
46 #define AT91_TWI_MSEN BIT(2) /* Master Transfer Enable */
47 #define AT91_TWI_MSDIS BIT(3) /* Master Transfer Disable */
48 #define AT91_TWI_SVEN BIT(4) /* Slave Transfer Enable */
49 #define AT91_TWI_SVDIS BIT(5) /* Slave Transfer Disable */
50 #define AT91_TWI_QUICK BIT(6) /* SMBus quick command */
51 #define AT91_TWI_SWRST BIT(7) /* Software Reset */
52 #define AT91_TWI_ACMEN BIT(16) /* Alternative Command Mode Enable */
53 #define AT91_TWI_ACMDIS BIT(17) /* Alternative Command Mode Disable */
54 #define AT91_TWI_THRCLR BIT(24) /* Transmit Holding Register Clear */
55 #define AT91_TWI_RHRCLR BIT(25) /* Receive Holding Register Clear */
56 #define AT91_TWI_LOCKCLR BIT(26) /* Lock Clear */
57 #define AT91_TWI_FIFOEN BIT(28) /* FIFO Enable */
58 #define AT91_TWI_FIFODIS BIT(29) /* FIFO Disable */
60 #define AT91_TWI_MMR 0x0004 /* Master Mode Register */
61 #define AT91_TWI_IADRSZ_1 0x0100 /* Internal Device Address Size */
62 #define AT91_TWI_MREAD BIT(12) /* Master Read Direction */
64 #define AT91_TWI_IADR 0x000c /* Internal Address Register */
66 #define AT91_TWI_CWGR 0x0010 /* Clock Waveform Generator Reg */
67 #define AT91_TWI_CWGR_HOLD_MAX 0x1f
68 #define AT91_TWI_CWGR_HOLD(x) (((x) & AT91_TWI_CWGR_HOLD_MAX) << 24)
70 #define AT91_TWI_SR 0x0020 /* Status Register */
71 #define AT91_TWI_TXCOMP BIT(0) /* Transmission Complete */
72 #define AT91_TWI_RXRDY BIT(1) /* Receive Holding Register Ready */
73 #define AT91_TWI_TXRDY BIT(2) /* Transmit Holding Register Ready */
74 #define AT91_TWI_OVRE BIT(6) /* Overrun Error */
75 #define AT91_TWI_UNRE BIT(7) /* Underrun Error */
76 #define AT91_TWI_NACK BIT(8) /* Not Acknowledged */
77 #define AT91_TWI_LOCK BIT(23) /* TWI Lock due to Frame Errors */
79 #define AT91_TWI_INT_MASK \
80 (AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK)
82 #define AT91_TWI_IER 0x0024 /* Interrupt Enable Register */
83 #define AT91_TWI_IDR 0x0028 /* Interrupt Disable Register */
84 #define AT91_TWI_IMR 0x002c /* Interrupt Mask Register */
85 #define AT91_TWI_RHR 0x0030 /* Receive Holding Register */
86 #define AT91_TWI_THR 0x0034 /* Transmit Holding Register */
88 #define AT91_TWI_ACR 0x0040 /* Alternative Command Register */
89 #define AT91_TWI_ACR_DATAL(len) ((len) & 0xff)
90 #define AT91_TWI_ACR_DIR BIT(8)
92 #define AT91_TWI_FMR 0x0050 /* FIFO Mode Register */
93 #define AT91_TWI_FMR_TXRDYM(mode) (((mode) & 0x3) << 0)
94 #define AT91_TWI_FMR_TXRDYM_MASK (0x3 << 0)
95 #define AT91_TWI_FMR_RXRDYM(mode) (((mode) & 0x3) << 4)
96 #define AT91_TWI_FMR_RXRDYM_MASK (0x3 << 4)
97 #define AT91_TWI_ONE_DATA 0x0
98 #define AT91_TWI_TWO_DATA 0x1
99 #define AT91_TWI_FOUR_DATA 0x2
101 #define AT91_TWI_FLR 0x0054 /* FIFO Level Register */
103 #define AT91_TWI_FSR 0x0060 /* FIFO Status Register */
104 #define AT91_TWI_FIER 0x0064 /* FIFO Interrupt Enable Register */
105 #define AT91_TWI_FIDR 0x0068 /* FIFO Interrupt Disable Register */
106 #define AT91_TWI_FIMR 0x006c /* FIFO Interrupt Mask Register */
108 #define AT91_TWI_VER 0x00fc /* Version Register */
110 struct at91_twi_pdata
{
111 unsigned clk_max_div
;
116 struct at_dma_slave dma_slave
;
119 struct at91_twi_dma
{
120 struct dma_chan
*chan_rx
;
121 struct dma_chan
*chan_tx
;
122 struct scatterlist sg
[2];
123 struct dma_async_tx_descriptor
*data_desc
;
124 enum dma_data_direction direction
;
126 bool xfer_in_progress
;
129 struct at91_twi_dev
{
132 struct completion cmd_complete
;
139 unsigned transfer_status
;
140 struct i2c_adapter adapter
;
141 unsigned twi_cwgr_reg
;
142 struct at91_twi_pdata
*pdata
;
146 struct at91_twi_dma dma
;
149 static unsigned at91_twi_read(struct at91_twi_dev
*dev
, unsigned reg
)
151 return readl_relaxed(dev
->base
+ reg
);
154 static void at91_twi_write(struct at91_twi_dev
*dev
, unsigned reg
, unsigned val
)
156 writel_relaxed(val
, dev
->base
+ reg
);
159 static void at91_disable_twi_interrupts(struct at91_twi_dev
*dev
)
161 at91_twi_write(dev
, AT91_TWI_IDR
, AT91_TWI_INT_MASK
);
164 static void at91_twi_irq_save(struct at91_twi_dev
*dev
)
166 dev
->imr
= at91_twi_read(dev
, AT91_TWI_IMR
) & AT91_TWI_INT_MASK
;
167 at91_disable_twi_interrupts(dev
);
170 static void at91_twi_irq_restore(struct at91_twi_dev
*dev
)
172 at91_twi_write(dev
, AT91_TWI_IER
, dev
->imr
);
175 static void at91_init_twi_bus(struct at91_twi_dev
*dev
)
177 at91_disable_twi_interrupts(dev
);
178 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_SWRST
);
179 /* FIFO should be enabled immediately after the software reset */
181 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_FIFOEN
);
182 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_MSEN
);
183 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_SVDIS
);
184 at91_twi_write(dev
, AT91_TWI_CWGR
, dev
->twi_cwgr_reg
);
188 * Calculate symmetric clock as stated in datasheet:
189 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
191 static void at91_calc_twi_clock(struct at91_twi_dev
*dev
, int twi_clk
)
193 int ckdiv
, cdiv
, div
, hold
= 0;
194 struct at91_twi_pdata
*pdata
= dev
->pdata
;
195 int offset
= pdata
->clk_offset
;
196 int max_ckdiv
= pdata
->clk_max_div
;
197 u32 twd_hold_time_ns
= 0;
199 div
= max(0, (int)DIV_ROUND_UP(clk_get_rate(dev
->clk
),
200 2 * twi_clk
) - offset
);
201 ckdiv
= fls(div
>> 8);
204 if (ckdiv
> max_ckdiv
) {
205 dev_warn(dev
->dev
, "%d exceeds ckdiv max value which is %d.\n",
211 if (pdata
->has_hold_field
) {
212 of_property_read_u32(dev
->dev
->of_node
, "i2c-sda-hold-time-ns",
216 * hold time = HOLD + 3 x T_peripheral_clock
217 * Use clk rate in kHz to prevent overflows when computing
220 hold
= DIV_ROUND_UP(twd_hold_time_ns
221 * (clk_get_rate(dev
->clk
) / 1000), 1000000);
225 if (hold
> AT91_TWI_CWGR_HOLD_MAX
) {
227 "HOLD field set to its maximum value (%d instead of %d)\n",
228 AT91_TWI_CWGR_HOLD_MAX
, hold
);
229 hold
= AT91_TWI_CWGR_HOLD_MAX
;
233 dev
->twi_cwgr_reg
= (ckdiv
<< 16) | (cdiv
<< 8) | cdiv
234 | AT91_TWI_CWGR_HOLD(hold
);
236 dev_dbg(dev
->dev
, "cdiv %d ckdiv %d hold %d (%d ns)\n",
237 cdiv
, ckdiv
, hold
, twd_hold_time_ns
);
240 static void at91_twi_dma_cleanup(struct at91_twi_dev
*dev
)
242 struct at91_twi_dma
*dma
= &dev
->dma
;
244 at91_twi_irq_save(dev
);
246 if (dma
->xfer_in_progress
) {
247 if (dma
->direction
== DMA_FROM_DEVICE
)
248 dmaengine_terminate_all(dma
->chan_rx
);
250 dmaengine_terminate_all(dma
->chan_tx
);
251 dma
->xfer_in_progress
= false;
253 if (dma
->buf_mapped
) {
254 dma_unmap_single(dev
->dev
, sg_dma_address(&dma
->sg
[0]),
255 dev
->buf_len
, dma
->direction
);
256 dma
->buf_mapped
= false;
259 at91_twi_irq_restore(dev
);
262 static void at91_twi_write_next_byte(struct at91_twi_dev
*dev
)
267 /* 8bit write works with and without FIFO */
268 writeb_relaxed(*dev
->buf
, dev
->base
+ AT91_TWI_THR
);
270 /* send stop when last byte has been written */
271 if (--dev
->buf_len
== 0)
272 if (!dev
->pdata
->has_alt_cmd
)
273 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_STOP
);
275 dev_dbg(dev
->dev
, "wrote 0x%x, to go %d\n", *dev
->buf
, dev
->buf_len
);
280 static void at91_twi_write_data_dma_callback(void *data
)
282 struct at91_twi_dev
*dev
= (struct at91_twi_dev
*)data
;
284 dma_unmap_single(dev
->dev
, sg_dma_address(&dev
->dma
.sg
[0]),
285 dev
->buf_len
, DMA_TO_DEVICE
);
288 * When this callback is called, THR/TX FIFO is likely not to be empty
289 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
290 * Status Register to be sure that the STOP bit has been sent and the
291 * transfer is completed. The NACK interrupt has already been enabled,
292 * we just have to enable TXCOMP one.
294 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_TXCOMP
);
295 if (!dev
->pdata
->has_alt_cmd
)
296 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_STOP
);
299 static void at91_twi_write_data_dma(struct at91_twi_dev
*dev
)
302 struct dma_async_tx_descriptor
*txdesc
;
303 struct at91_twi_dma
*dma
= &dev
->dma
;
304 struct dma_chan
*chan_tx
= dma
->chan_tx
;
305 unsigned int sg_len
= 1;
310 dma
->direction
= DMA_TO_DEVICE
;
312 at91_twi_irq_save(dev
);
313 dma_addr
= dma_map_single(dev
->dev
, dev
->buf
, dev
->buf_len
,
315 if (dma_mapping_error(dev
->dev
, dma_addr
)) {
316 dev_err(dev
->dev
, "dma map failed\n");
319 dma
->buf_mapped
= true;
320 at91_twi_irq_restore(dev
);
322 if (dev
->fifo_size
) {
323 size_t part1_len
, part2_len
;
324 struct scatterlist
*sg
;
329 part1_len
= dev
->buf_len
& ~0x3;
331 sg
= &dma
->sg
[sg_len
++];
332 sg_dma_len(sg
) = part1_len
;
333 sg_dma_address(sg
) = dma_addr
;
336 part2_len
= dev
->buf_len
& 0x3;
338 sg
= &dma
->sg
[sg_len
++];
339 sg_dma_len(sg
) = part2_len
;
340 sg_dma_address(sg
) = dma_addr
+ part1_len
;
344 * DMA controller is triggered when at least 4 data can be
345 * written into the TX FIFO
347 fifo_mr
= at91_twi_read(dev
, AT91_TWI_FMR
);
348 fifo_mr
&= ~AT91_TWI_FMR_TXRDYM_MASK
;
349 fifo_mr
|= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA
);
350 at91_twi_write(dev
, AT91_TWI_FMR
, fifo_mr
);
352 sg_dma_len(&dma
->sg
[0]) = dev
->buf_len
;
353 sg_dma_address(&dma
->sg
[0]) = dma_addr
;
356 txdesc
= dmaengine_prep_slave_sg(chan_tx
, dma
->sg
, sg_len
,
358 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
360 dev_err(dev
->dev
, "dma prep slave sg failed\n");
364 txdesc
->callback
= at91_twi_write_data_dma_callback
;
365 txdesc
->callback_param
= dev
;
367 dma
->xfer_in_progress
= true;
368 dmaengine_submit(txdesc
);
369 dma_async_issue_pending(chan_tx
);
374 at91_twi_dma_cleanup(dev
);
377 static void at91_twi_read_next_byte(struct at91_twi_dev
*dev
)
380 * If we are in this case, it means there is garbage data in RHR, so
384 at91_twi_read(dev
, AT91_TWI_RHR
);
388 /* 8bit read works with and without FIFO */
389 *dev
->buf
= readb_relaxed(dev
->base
+ AT91_TWI_RHR
);
392 /* return if aborting, we only needed to read RHR to clear RXRDY*/
393 if (dev
->recv_len_abort
)
396 /* handle I2C_SMBUS_BLOCK_DATA */
397 if (unlikely(dev
->msg
->flags
& I2C_M_RECV_LEN
)) {
398 /* ensure length byte is a valid value */
399 if (*dev
->buf
<= I2C_SMBUS_BLOCK_MAX
&& *dev
->buf
> 0) {
400 dev
->msg
->flags
&= ~I2C_M_RECV_LEN
;
401 dev
->buf_len
+= *dev
->buf
;
402 dev
->msg
->len
= dev
->buf_len
+ 1;
403 dev_dbg(dev
->dev
, "received block length %d\n",
406 /* abort and send the stop by reading one more byte */
407 dev
->recv_len_abort
= true;
412 /* send stop if second but last byte has been read */
413 if (!dev
->pdata
->has_alt_cmd
&& dev
->buf_len
== 1)
414 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_STOP
);
416 dev_dbg(dev
->dev
, "read 0x%x, to go %d\n", *dev
->buf
, dev
->buf_len
);
421 static void at91_twi_read_data_dma_callback(void *data
)
423 struct at91_twi_dev
*dev
= (struct at91_twi_dev
*)data
;
424 unsigned ier
= AT91_TWI_TXCOMP
;
426 dma_unmap_single(dev
->dev
, sg_dma_address(&dev
->dma
.sg
[0]),
427 dev
->buf_len
, DMA_FROM_DEVICE
);
429 if (!dev
->pdata
->has_alt_cmd
) {
430 /* The last two bytes have to be read without using dma */
431 dev
->buf
+= dev
->buf_len
- 2;
433 ier
|= AT91_TWI_RXRDY
;
435 at91_twi_write(dev
, AT91_TWI_IER
, ier
);
438 static void at91_twi_read_data_dma(struct at91_twi_dev
*dev
)
441 struct dma_async_tx_descriptor
*rxdesc
;
442 struct at91_twi_dma
*dma
= &dev
->dma
;
443 struct dma_chan
*chan_rx
= dma
->chan_rx
;
446 buf_len
= (dev
->pdata
->has_alt_cmd
) ? dev
->buf_len
: dev
->buf_len
- 2;
447 dma
->direction
= DMA_FROM_DEVICE
;
449 /* Keep in mind that we won't use dma to read the last two bytes */
450 at91_twi_irq_save(dev
);
451 dma_addr
= dma_map_single(dev
->dev
, dev
->buf
, buf_len
, DMA_FROM_DEVICE
);
452 if (dma_mapping_error(dev
->dev
, dma_addr
)) {
453 dev_err(dev
->dev
, "dma map failed\n");
456 dma
->buf_mapped
= true;
457 at91_twi_irq_restore(dev
);
459 if (dev
->fifo_size
&& IS_ALIGNED(buf_len
, 4)) {
463 * DMA controller is triggered when at least 4 data can be
464 * read from the RX FIFO
466 fifo_mr
= at91_twi_read(dev
, AT91_TWI_FMR
);
467 fifo_mr
&= ~AT91_TWI_FMR_RXRDYM_MASK
;
468 fifo_mr
|= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA
);
469 at91_twi_write(dev
, AT91_TWI_FMR
, fifo_mr
);
472 sg_dma_len(&dma
->sg
[0]) = buf_len
;
473 sg_dma_address(&dma
->sg
[0]) = dma_addr
;
475 rxdesc
= dmaengine_prep_slave_sg(chan_rx
, dma
->sg
, 1, DMA_DEV_TO_MEM
,
476 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
478 dev_err(dev
->dev
, "dma prep slave sg failed\n");
482 rxdesc
->callback
= at91_twi_read_data_dma_callback
;
483 rxdesc
->callback_param
= dev
;
485 dma
->xfer_in_progress
= true;
486 dmaengine_submit(rxdesc
);
487 dma_async_issue_pending(dma
->chan_rx
);
492 at91_twi_dma_cleanup(dev
);
495 static irqreturn_t
atmel_twi_interrupt(int irq
, void *dev_id
)
497 struct at91_twi_dev
*dev
= dev_id
;
498 const unsigned status
= at91_twi_read(dev
, AT91_TWI_SR
);
499 const unsigned irqstatus
= status
& at91_twi_read(dev
, AT91_TWI_IMR
);
504 * In reception, the behavior of the twi device (before sama5d2) is
505 * weird. There is some magic about RXRDY flag! When a data has been
506 * almost received, the reception of a new one is anticipated if there
507 * is no stop command to send. That is the reason why ask for sending
508 * the stop command not on the last data but on the second last one.
510 * Unfortunately, we could still have the RXRDY flag set even if the
511 * transfer is done and we have read the last data. It might happen
512 * when the i2c slave device sends too quickly data after receiving the
513 * ack from the master. The data has been almost received before having
514 * the order to send stop. In this case, sending the stop command could
515 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
516 * the RXRDY interrupt first in order to not keep garbage data in the
517 * Receive Holding Register for the next transfer.
519 if (irqstatus
& AT91_TWI_RXRDY
)
520 at91_twi_read_next_byte(dev
);
523 * When a NACK condition is detected, the I2C controller sets the NACK,
524 * TXCOMP and TXRDY bits all together in the Status Register (SR).
526 * 1 - Handling NACK errors with CPU write transfer.
528 * In such case, we should not write the next byte into the Transmit
529 * Holding Register (THR) otherwise the I2C controller would start a new
530 * transfer and the I2C slave is likely to reply by another NACK.
532 * 2 - Handling NACK errors with DMA write transfer.
534 * By setting the TXRDY bit in the SR, the I2C controller also triggers
535 * the DMA controller to write the next data into the THR. Then the
536 * result depends on the hardware version of the I2C controller.
538 * 2a - Without support of the Alternative Command mode.
540 * This is the worst case: the DMA controller is triggered to write the
541 * next data into the THR, hence starting a new transfer: the I2C slave
542 * is likely to reply by another NACK.
543 * Concurrently, this interrupt handler is likely to be called to manage
544 * the first NACK before the I2C controller detects the second NACK and
545 * sets once again the NACK bit into the SR.
546 * When handling the first NACK, this interrupt handler disables the I2C
547 * controller interruptions, especially the NACK interrupt.
548 * Hence, the NACK bit is pending into the SR. This is why we should
549 * read the SR to clear all pending interrupts at the beginning of
550 * at91_do_twi_transfer() before actually starting a new transfer.
552 * 2b - With support of the Alternative Command mode.
554 * When a NACK condition is detected, the I2C controller also locks the
555 * THR (and sets the LOCK bit in the SR): even though the DMA controller
556 * is triggered by the TXRDY bit to write the next data into the THR,
557 * this data actually won't go on the I2C bus hence a second NACK is not
560 if (irqstatus
& (AT91_TWI_TXCOMP
| AT91_TWI_NACK
)) {
561 at91_disable_twi_interrupts(dev
);
562 complete(&dev
->cmd_complete
);
563 } else if (irqstatus
& AT91_TWI_TXRDY
) {
564 at91_twi_write_next_byte(dev
);
567 /* catch error flags */
568 dev
->transfer_status
|= status
;
573 static int at91_do_twi_transfer(struct at91_twi_dev
*dev
)
576 unsigned long time_left
;
577 bool has_unre_flag
= dev
->pdata
->has_unre_flag
;
578 bool has_alt_cmd
= dev
->pdata
->has_alt_cmd
;
581 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
582 * read flag but shows the state of the transmission at the time the
583 * Status Register is read. According to the programmer datasheet,
584 * TXCOMP is set when both holding register and internal shifter are
585 * empty and STOP condition has been sent.
586 * Consequently, we should enable NACK interrupt rather than TXCOMP to
587 * detect transmission failure.
588 * Indeed let's take the case of an i2c write command using DMA.
589 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
590 * TXCOMP bits are set together into the Status Register.
591 * LOCK is a clear on write bit, which is set to prevent the DMA
592 * controller from sending new data on the i2c bus after a NACK
593 * condition has happened. Once locked, this i2c peripheral stops
594 * triggering the DMA controller for new data but it is more than
595 * likely that a new DMA transaction is already in progress, writing
596 * into the Transmit Holding Register. Since the peripheral is locked,
597 * these new data won't be sent to the i2c bus but they will remain
598 * into the Transmit Holding Register, so TXCOMP bit is cleared.
599 * Then when the interrupt handler is called, the Status Register is
600 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
601 * manage the error properly, without waiting for timeout.
602 * This case can be reproduced easyly when writing into an at24 eeprom.
604 * Besides, the TXCOMP bit is already set before the i2c transaction
605 * has been started. For read transactions, this bit is cleared when
606 * writing the START bit into the Control Register. So the
607 * corresponding interrupt can safely be enabled just after.
608 * However for write transactions managed by the CPU, we first write
609 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
610 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
611 * the interrupt handler would be called immediately and the i2c command
612 * would be reported as completed.
613 * Also when a write transaction is managed by the DMA controller,
614 * enabling the TXCOMP interrupt in this function may lead to a race
615 * condition since we don't know whether the TXCOMP interrupt is enabled
616 * before or after the DMA has started to write into THR. So the TXCOMP
617 * interrupt is enabled later by at91_twi_write_data_dma_callback().
618 * Immediately after in that DMA callback, if the alternative command
619 * mode is not used, we still need to send the STOP condition manually
620 * writing the corresponding bit into the Control Register.
623 dev_dbg(dev
->dev
, "transfer: %s %d bytes.\n",
624 (dev
->msg
->flags
& I2C_M_RD
) ? "read" : "write", dev
->buf_len
);
626 reinit_completion(&dev
->cmd_complete
);
627 dev
->transfer_status
= 0;
629 /* Clear pending interrupts, such as NACK. */
630 at91_twi_read(dev
, AT91_TWI_SR
);
632 if (dev
->fifo_size
) {
633 unsigned fifo_mr
= at91_twi_read(dev
, AT91_TWI_FMR
);
635 /* Reset FIFO mode register */
636 fifo_mr
&= ~(AT91_TWI_FMR_TXRDYM_MASK
|
637 AT91_TWI_FMR_RXRDYM_MASK
);
638 fifo_mr
|= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA
);
639 fifo_mr
|= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA
);
640 at91_twi_write(dev
, AT91_TWI_FMR
, fifo_mr
);
643 at91_twi_write(dev
, AT91_TWI_CR
,
644 AT91_TWI_THRCLR
| AT91_TWI_RHRCLR
);
648 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_QUICK
);
649 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_TXCOMP
);
650 } else if (dev
->msg
->flags
& I2C_M_RD
) {
651 unsigned start_flags
= AT91_TWI_START
;
653 /* if only one byte is to be read, immediately stop transfer */
654 if (!has_alt_cmd
&& dev
->buf_len
<= 1 &&
655 !(dev
->msg
->flags
& I2C_M_RECV_LEN
))
656 start_flags
|= AT91_TWI_STOP
;
657 at91_twi_write(dev
, AT91_TWI_CR
, start_flags
);
659 * When using dma without alternative command mode, the last
660 * byte has to be read manually in order to not send the stop
661 * command too late and then to receive extra data.
662 * In practice, there are some issues if you use the dma to
663 * read n-1 bytes because of latency.
664 * Reading n-2 bytes with dma and the two last ones manually
665 * seems to be the best solution.
667 if (dev
->use_dma
&& (dev
->buf_len
> AT91_I2C_DMA_THRESHOLD
)) {
668 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_NACK
);
669 at91_twi_read_data_dma(dev
);
671 at91_twi_write(dev
, AT91_TWI_IER
,
677 if (dev
->use_dma
&& (dev
->buf_len
> AT91_I2C_DMA_THRESHOLD
)) {
678 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_NACK
);
679 at91_twi_write_data_dma(dev
);
681 at91_twi_write_next_byte(dev
);
682 at91_twi_write(dev
, AT91_TWI_IER
,
689 time_left
= wait_for_completion_timeout(&dev
->cmd_complete
,
690 dev
->adapter
.timeout
);
691 if (time_left
== 0) {
692 dev
->transfer_status
|= at91_twi_read(dev
, AT91_TWI_SR
);
693 dev_err(dev
->dev
, "controller timed out\n");
694 at91_init_twi_bus(dev
);
698 if (dev
->transfer_status
& AT91_TWI_NACK
) {
699 dev_dbg(dev
->dev
, "received nack\n");
703 if (dev
->transfer_status
& AT91_TWI_OVRE
) {
704 dev_err(dev
->dev
, "overrun while reading\n");
708 if (has_unre_flag
&& dev
->transfer_status
& AT91_TWI_UNRE
) {
709 dev_err(dev
->dev
, "underrun while writing\n");
713 if ((has_alt_cmd
|| dev
->fifo_size
) &&
714 (dev
->transfer_status
& AT91_TWI_LOCK
)) {
715 dev_err(dev
->dev
, "tx locked\n");
719 if (dev
->recv_len_abort
) {
720 dev_err(dev
->dev
, "invalid smbus block length recvd\n");
725 dev_dbg(dev
->dev
, "transfer complete\n");
730 /* first stop DMA transfer if still in progress */
731 at91_twi_dma_cleanup(dev
);
732 /* then flush THR/FIFO and unlock TX if locked */
733 if ((has_alt_cmd
|| dev
->fifo_size
) &&
734 (dev
->transfer_status
& AT91_TWI_LOCK
)) {
735 dev_dbg(dev
->dev
, "unlock tx\n");
736 at91_twi_write(dev
, AT91_TWI_CR
,
737 AT91_TWI_THRCLR
| AT91_TWI_LOCKCLR
);
742 static int at91_twi_xfer(struct i2c_adapter
*adap
, struct i2c_msg
*msg
, int num
)
744 struct at91_twi_dev
*dev
= i2c_get_adapdata(adap
);
746 unsigned int_addr_flag
= 0;
747 struct i2c_msg
*m_start
= msg
;
748 bool is_read
, use_alt_cmd
= false;
750 dev_dbg(&adap
->dev
, "at91_xfer: processing %d messages:\n", num
);
752 ret
= pm_runtime_get_sync(dev
->dev
);
757 int internal_address
= 0;
760 /* 1st msg is put into the internal address, start with 2nd */
762 for (i
= 0; i
< msg
->len
; ++i
) {
763 const unsigned addr
= msg
->buf
[msg
->len
- 1 - i
];
765 internal_address
|= addr
<< (8 * i
);
766 int_addr_flag
+= AT91_TWI_IADRSZ_1
;
768 at91_twi_write(dev
, AT91_TWI_IADR
, internal_address
);
771 is_read
= (m_start
->flags
& I2C_M_RD
);
772 if (dev
->pdata
->has_alt_cmd
) {
773 if (m_start
->len
> 0) {
774 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_ACMEN
);
775 at91_twi_write(dev
, AT91_TWI_ACR
,
776 AT91_TWI_ACR_DATAL(m_start
->len
) |
777 ((is_read
) ? AT91_TWI_ACR_DIR
: 0));
780 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_ACMDIS
);
784 at91_twi_write(dev
, AT91_TWI_MMR
,
785 (m_start
->addr
<< 16) |
787 ((!use_alt_cmd
&& is_read
) ? AT91_TWI_MREAD
: 0));
789 dev
->buf_len
= m_start
->len
;
790 dev
->buf
= m_start
->buf
;
792 dev
->recv_len_abort
= false;
794 ret
= at91_do_twi_transfer(dev
);
796 ret
= (ret
< 0) ? ret
: num
;
798 pm_runtime_mark_last_busy(dev
->dev
);
799 pm_runtime_put_autosuspend(dev
->dev
);
805 * The hardware can handle at most two messages concatenated by a
806 * repeated start via it's internal address feature.
808 static struct i2c_adapter_quirks at91_twi_quirks
= {
809 .flags
= I2C_AQ_COMB
| I2C_AQ_COMB_WRITE_FIRST
| I2C_AQ_COMB_SAME_ADDR
,
810 .max_comb_1st_msg_len
= 3,
813 static u32
at91_twi_func(struct i2c_adapter
*adapter
)
815 return I2C_FUNC_I2C
| I2C_FUNC_SMBUS_EMUL
816 | I2C_FUNC_SMBUS_READ_BLOCK_DATA
;
819 static struct i2c_algorithm at91_twi_algorithm
= {
820 .master_xfer
= at91_twi_xfer
,
821 .functionality
= at91_twi_func
,
824 static struct at91_twi_pdata at91rm9200_config
= {
827 .has_unre_flag
= true,
828 .has_alt_cmd
= false,
829 .has_hold_field
= false,
832 static struct at91_twi_pdata at91sam9261_config
= {
835 .has_unre_flag
= false,
836 .has_alt_cmd
= false,
837 .has_hold_field
= false,
840 static struct at91_twi_pdata at91sam9260_config
= {
843 .has_unre_flag
= false,
844 .has_alt_cmd
= false,
845 .has_hold_field
= false,
848 static struct at91_twi_pdata at91sam9g20_config
= {
851 .has_unre_flag
= false,
852 .has_alt_cmd
= false,
853 .has_hold_field
= false,
856 static struct at91_twi_pdata at91sam9g10_config
= {
859 .has_unre_flag
= false,
860 .has_alt_cmd
= false,
861 .has_hold_field
= false,
864 static const struct platform_device_id at91_twi_devtypes
[] = {
866 .name
= "i2c-at91rm9200",
867 .driver_data
= (unsigned long) &at91rm9200_config
,
869 .name
= "i2c-at91sam9261",
870 .driver_data
= (unsigned long) &at91sam9261_config
,
872 .name
= "i2c-at91sam9260",
873 .driver_data
= (unsigned long) &at91sam9260_config
,
875 .name
= "i2c-at91sam9g20",
876 .driver_data
= (unsigned long) &at91sam9g20_config
,
878 .name
= "i2c-at91sam9g10",
879 .driver_data
= (unsigned long) &at91sam9g10_config
,
885 #if defined(CONFIG_OF)
886 static struct at91_twi_pdata at91sam9x5_config
= {
889 .has_unre_flag
= false,
890 .has_alt_cmd
= false,
891 .has_hold_field
= false,
894 static struct at91_twi_pdata sama5d4_config
= {
897 .has_unre_flag
= false,
898 .has_alt_cmd
= false,
899 .has_hold_field
= true,
902 static struct at91_twi_pdata sama5d2_config
= {
905 .has_unre_flag
= true,
907 .has_hold_field
= true,
910 static const struct of_device_id atmel_twi_dt_ids
[] = {
912 .compatible
= "atmel,at91rm9200-i2c",
913 .data
= &at91rm9200_config
,
915 .compatible
= "atmel,at91sam9260-i2c",
916 .data
= &at91sam9260_config
,
918 .compatible
= "atmel,at91sam9261-i2c",
919 .data
= &at91sam9261_config
,
921 .compatible
= "atmel,at91sam9g20-i2c",
922 .data
= &at91sam9g20_config
,
924 .compatible
= "atmel,at91sam9g10-i2c",
925 .data
= &at91sam9g10_config
,
927 .compatible
= "atmel,at91sam9x5-i2c",
928 .data
= &at91sam9x5_config
,
930 .compatible
= "atmel,sama5d4-i2c",
931 .data
= &sama5d4_config
,
933 .compatible
= "atmel,sama5d2-i2c",
934 .data
= &sama5d2_config
,
939 MODULE_DEVICE_TABLE(of
, atmel_twi_dt_ids
);
942 static int at91_twi_configure_dma(struct at91_twi_dev
*dev
, u32 phy_addr
)
945 struct dma_slave_config slave_config
;
946 struct at91_twi_dma
*dma
= &dev
->dma
;
947 enum dma_slave_buswidth addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
950 * The actual width of the access will be chosen in
951 * dmaengine_prep_slave_sg():
952 * for each buffer in the scatter-gather list, if its size is aligned
953 * to addr_width then addr_width accesses will be performed to transfer
954 * the buffer. On the other hand, if the buffer size is not aligned to
955 * addr_width then the buffer is transferred using single byte accesses.
956 * Please refer to the Atmel eXtended DMA controller driver.
957 * When FIFOs are used, the TXRDYM threshold can always be set to
958 * trigger the XDMAC when at least 4 data can be written into the TX
959 * FIFO, even if single byte accesses are performed.
960 * However the RXRDYM threshold must be set to fit the access width,
961 * deduced from buffer length, so the XDMAC is triggered properly to
962 * read data from the RX FIFO.
965 addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
967 memset(&slave_config
, 0, sizeof(slave_config
));
968 slave_config
.src_addr
= (dma_addr_t
)phy_addr
+ AT91_TWI_RHR
;
969 slave_config
.src_addr_width
= addr_width
;
970 slave_config
.src_maxburst
= 1;
971 slave_config
.dst_addr
= (dma_addr_t
)phy_addr
+ AT91_TWI_THR
;
972 slave_config
.dst_addr_width
= addr_width
;
973 slave_config
.dst_maxburst
= 1;
974 slave_config
.device_fc
= false;
976 dma
->chan_tx
= dma_request_slave_channel_reason(dev
->dev
, "tx");
977 if (IS_ERR(dma
->chan_tx
)) {
978 ret
= PTR_ERR(dma
->chan_tx
);
983 dma
->chan_rx
= dma_request_slave_channel_reason(dev
->dev
, "rx");
984 if (IS_ERR(dma
->chan_rx
)) {
985 ret
= PTR_ERR(dma
->chan_rx
);
990 slave_config
.direction
= DMA_MEM_TO_DEV
;
991 if (dmaengine_slave_config(dma
->chan_tx
, &slave_config
)) {
992 dev_err(dev
->dev
, "failed to configure tx channel\n");
997 slave_config
.direction
= DMA_DEV_TO_MEM
;
998 if (dmaengine_slave_config(dma
->chan_rx
, &slave_config
)) {
999 dev_err(dev
->dev
, "failed to configure rx channel\n");
1004 sg_init_table(dma
->sg
, 2);
1005 dma
->buf_mapped
= false;
1006 dma
->xfer_in_progress
= false;
1007 dev
->use_dma
= true;
1009 dev_info(dev
->dev
, "using %s (tx) and %s (rx) for DMA transfers\n",
1010 dma_chan_name(dma
->chan_tx
), dma_chan_name(dma
->chan_rx
));
1015 if (ret
!= -EPROBE_DEFER
)
1016 dev_info(dev
->dev
, "can't use DMA, error %d\n", ret
);
1018 dma_release_channel(dma
->chan_rx
);
1020 dma_release_channel(dma
->chan_tx
);
1024 static struct at91_twi_pdata
*at91_twi_get_driver_data(
1025 struct platform_device
*pdev
)
1027 if (pdev
->dev
.of_node
) {
1028 const struct of_device_id
*match
;
1029 match
= of_match_node(atmel_twi_dt_ids
, pdev
->dev
.of_node
);
1032 return (struct at91_twi_pdata
*)match
->data
;
1034 return (struct at91_twi_pdata
*) platform_get_device_id(pdev
)->driver_data
;
1037 static int at91_twi_probe(struct platform_device
*pdev
)
1039 struct at91_twi_dev
*dev
;
1040 struct resource
*mem
;
1045 dev
= devm_kzalloc(&pdev
->dev
, sizeof(*dev
), GFP_KERNEL
);
1048 init_completion(&dev
->cmd_complete
);
1049 dev
->dev
= &pdev
->dev
;
1051 mem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1054 phy_addr
= mem
->start
;
1056 dev
->pdata
= at91_twi_get_driver_data(pdev
);
1060 dev
->base
= devm_ioremap_resource(&pdev
->dev
, mem
);
1061 if (IS_ERR(dev
->base
))
1062 return PTR_ERR(dev
->base
);
1064 dev
->irq
= platform_get_irq(pdev
, 0);
1068 rc
= devm_request_irq(&pdev
->dev
, dev
->irq
, atmel_twi_interrupt
, 0,
1069 dev_name(dev
->dev
), dev
);
1071 dev_err(dev
->dev
, "Cannot get irq %d: %d\n", dev
->irq
, rc
);
1075 platform_set_drvdata(pdev
, dev
);
1077 dev
->clk
= devm_clk_get(dev
->dev
, NULL
);
1078 if (IS_ERR(dev
->clk
)) {
1079 dev_err(dev
->dev
, "no clock defined\n");
1082 clk_prepare_enable(dev
->clk
);
1084 if (dev
->dev
->of_node
) {
1085 rc
= at91_twi_configure_dma(dev
, phy_addr
);
1086 if (rc
== -EPROBE_DEFER
)
1090 if (!of_property_read_u32(pdev
->dev
.of_node
, "atmel,fifo-size",
1092 dev_info(dev
->dev
, "Using FIFO (%u data)\n", dev
->fifo_size
);
1095 rc
= of_property_read_u32(dev
->dev
->of_node
, "clock-frequency",
1098 bus_clk_rate
= DEFAULT_TWI_CLK_HZ
;
1100 at91_calc_twi_clock(dev
, bus_clk_rate
);
1101 at91_init_twi_bus(dev
);
1103 snprintf(dev
->adapter
.name
, sizeof(dev
->adapter
.name
), "AT91");
1104 i2c_set_adapdata(&dev
->adapter
, dev
);
1105 dev
->adapter
.owner
= THIS_MODULE
;
1106 dev
->adapter
.class = I2C_CLASS_DEPRECATED
;
1107 dev
->adapter
.algo
= &at91_twi_algorithm
;
1108 dev
->adapter
.quirks
= &at91_twi_quirks
;
1109 dev
->adapter
.dev
.parent
= dev
->dev
;
1110 dev
->adapter
.nr
= pdev
->id
;
1111 dev
->adapter
.timeout
= AT91_I2C_TIMEOUT
;
1112 dev
->adapter
.dev
.of_node
= pdev
->dev
.of_node
;
1114 pm_runtime_set_autosuspend_delay(dev
->dev
, AUTOSUSPEND_TIMEOUT
);
1115 pm_runtime_use_autosuspend(dev
->dev
);
1116 pm_runtime_set_active(dev
->dev
);
1117 pm_runtime_enable(dev
->dev
);
1119 rc
= i2c_add_numbered_adapter(&dev
->adapter
);
1121 dev_err(dev
->dev
, "Adapter %s registration failed\n",
1123 clk_disable_unprepare(dev
->clk
);
1125 pm_runtime_disable(dev
->dev
);
1126 pm_runtime_set_suspended(dev
->dev
);
1131 dev_info(dev
->dev
, "AT91 i2c bus driver (hw version: %#x).\n",
1132 at91_twi_read(dev
, AT91_TWI_VER
));
1136 static int at91_twi_remove(struct platform_device
*pdev
)
1138 struct at91_twi_dev
*dev
= platform_get_drvdata(pdev
);
1140 i2c_del_adapter(&dev
->adapter
);
1141 clk_disable_unprepare(dev
->clk
);
1143 pm_runtime_disable(dev
->dev
);
1144 pm_runtime_set_suspended(dev
->dev
);
1151 static int at91_twi_runtime_suspend(struct device
*dev
)
1153 struct at91_twi_dev
*twi_dev
= dev_get_drvdata(dev
);
1155 clk_disable_unprepare(twi_dev
->clk
);
1157 pinctrl_pm_select_sleep_state(dev
);
1162 static int at91_twi_runtime_resume(struct device
*dev
)
1164 struct at91_twi_dev
*twi_dev
= dev_get_drvdata(dev
);
1166 pinctrl_pm_select_default_state(dev
);
1168 return clk_prepare_enable(twi_dev
->clk
);
1171 static int at91_twi_suspend_noirq(struct device
*dev
)
1173 if (!pm_runtime_status_suspended(dev
))
1174 at91_twi_runtime_suspend(dev
);
1179 static int at91_twi_resume_noirq(struct device
*dev
)
1183 if (!pm_runtime_status_suspended(dev
)) {
1184 ret
= at91_twi_runtime_resume(dev
);
1189 pm_runtime_mark_last_busy(dev
);
1190 pm_request_autosuspend(dev
);
1195 static const struct dev_pm_ops at91_twi_pm
= {
1196 .suspend_noirq
= at91_twi_suspend_noirq
,
1197 .resume_noirq
= at91_twi_resume_noirq
,
1198 .runtime_suspend
= at91_twi_runtime_suspend
,
1199 .runtime_resume
= at91_twi_runtime_resume
,
1202 #define at91_twi_pm_ops (&at91_twi_pm)
1204 #define at91_twi_pm_ops NULL
1207 static struct platform_driver at91_twi_driver
= {
1208 .probe
= at91_twi_probe
,
1209 .remove
= at91_twi_remove
,
1210 .id_table
= at91_twi_devtypes
,
1213 .of_match_table
= of_match_ptr(atmel_twi_dt_ids
),
1214 .pm
= at91_twi_pm_ops
,
1218 static int __init
at91_twi_init(void)
1220 return platform_driver_register(&at91_twi_driver
);
1223 static void __exit
at91_twi_exit(void)
1225 platform_driver_unregister(&at91_twi_driver
);
1228 subsys_initcall(at91_twi_init
);
1229 module_exit(at91_twi_exit
);
1231 MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
1232 MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91");
1233 MODULE_LICENSE("GPL");
1234 MODULE_ALIAS("platform:at91_i2c");