Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / drivers / i2c / busses / i2c-img-scb.c
blob379ef9c316645a09f9f8bfea82b21fa7fb3f1400
1 /*
2 * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
4 * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * There are three ways that this I2C controller can be driven:
12 * - Raw control of the SDA and SCK signals.
14 * This corresponds to MODE_RAW, which takes control of the signals
15 * directly for a certain number of clock cycles (the INT_TIMING
16 * interrupt can be used for timing).
18 * - Atomic commands. A low level I2C symbol (such as generate
19 * start/stop/ack/nack bit, generate byte, receive byte, and receive
20 * ACK) is given to the hardware, with detection of completion by bits
21 * in the LINESTAT register.
23 * This mode of operation is used by MODE_ATOMIC, which uses an I2C
24 * state machine in the interrupt handler to compose/react to I2C
25 * transactions using atomic mode commands, and also by MODE_SEQUENCE,
26 * which emits a simple fixed sequence of atomic mode commands.
28 * Due to software control, the use of atomic commands usually results
29 * in suboptimal use of the bus, with gaps between the I2C symbols while
30 * the driver decides what to do next.
32 * - Automatic mode. A bus address, and whether to read/write is
33 * specified, and the hardware takes care of the I2C state machine,
34 * using a FIFO to send/receive bytes of data to an I2C slave. The
35 * driver just has to keep the FIFO drained or filled in response to the
36 * appropriate FIFO interrupts.
38 * This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
39 * with control of repeated start bits between I2C messages.
41 * Use of automatic mode and the FIFO can make much more efficient use
42 * of the bus compared to individual atomic commands, with potentially
43 * no wasted time between I2C symbols or I2C messages.
45 * In most cases MODE_AUTOMATIC is used, however if any of the messages in
46 * a transaction are zero byte writes (e.g. used by i2cdetect for probing
47 * the bus), MODE_ATOMIC must be used since automatic mode is normally
48 * started by the writing of data into the FIFO.
50 * The other modes are used in specific circumstances where MODE_ATOMIC and
51 * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
52 * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
53 * it is in a sane state.
55 * Notice that the driver implements a timer-based timeout mechanism.
56 * The reason for this mechanism is to reduce the number of interrupts
57 * received in automatic mode.
59 * The driver would get a slave event and transaction done interrupts for
60 * each atomic mode command that gets completed. However, these events are
61 * not needed in automatic mode, becase those atomic mode commands are
62 * managed automatically by the hardware.
64 * In practice, normal I2C transactions will be complete well before you
65 * get the timer interrupt, as the timer is re-scheduled during FIFO
66 * maintenance and disabled after the transaction is complete.
68 * In this way normal automatic mode operation isn't impacted by
69 * unnecessary interrupts, but the exceptional abort condition can still be
70 * detected (with a slight delay).
73 #include <linux/bitops.h>
74 #include <linux/clk.h>
75 #include <linux/completion.h>
76 #include <linux/err.h>
77 #include <linux/i2c.h>
78 #include <linux/init.h>
79 #include <linux/interrupt.h>
80 #include <linux/io.h>
81 #include <linux/kernel.h>
82 #include <linux/module.h>
83 #include <linux/of_platform.h>
84 #include <linux/platform_device.h>
85 #include <linux/slab.h>
86 #include <linux/timer.h>
88 /* Register offsets */
90 #define SCB_STATUS_REG 0x00
91 #define SCB_OVERRIDE_REG 0x04
92 #define SCB_READ_ADDR_REG 0x08
93 #define SCB_READ_COUNT_REG 0x0c
94 #define SCB_WRITE_ADDR_REG 0x10
95 #define SCB_READ_DATA_REG 0x14
96 #define SCB_WRITE_DATA_REG 0x18
97 #define SCB_FIFO_STATUS_REG 0x1c
98 #define SCB_CONTROL_SOFT_RESET 0x1f
99 #define SCB_CLK_SET_REG 0x3c
100 #define SCB_INT_STATUS_REG 0x40
101 #define SCB_INT_CLEAR_REG 0x44
102 #define SCB_INT_MASK_REG 0x48
103 #define SCB_CONTROL_REG 0x4c
104 #define SCB_TIME_TPL_REG 0x50
105 #define SCB_TIME_TPH_REG 0x54
106 #define SCB_TIME_TP2S_REG 0x58
107 #define SCB_TIME_TBI_REG 0x60
108 #define SCB_TIME_TSL_REG 0x64
109 #define SCB_TIME_TDL_REG 0x68
110 #define SCB_TIME_TSDL_REG 0x6c
111 #define SCB_TIME_TSDH_REG 0x70
112 #define SCB_READ_XADDR_REG 0x74
113 #define SCB_WRITE_XADDR_REG 0x78
114 #define SCB_WRITE_COUNT_REG 0x7c
115 #define SCB_CORE_REV_REG 0x80
116 #define SCB_TIME_TCKH_REG 0x84
117 #define SCB_TIME_TCKL_REG 0x88
118 #define SCB_FIFO_FLUSH_REG 0x8c
119 #define SCB_READ_FIFO_REG 0x94
120 #define SCB_CLEAR_REG 0x98
122 /* SCB_CONTROL_REG bits */
124 #define SCB_CONTROL_CLK_ENABLE 0x1e0
125 #define SCB_CONTROL_TRANSACTION_HALT 0x200
127 #define FIFO_READ_FULL BIT(0)
128 #define FIFO_READ_EMPTY BIT(1)
129 #define FIFO_WRITE_FULL BIT(2)
130 #define FIFO_WRITE_EMPTY BIT(3)
132 /* SCB_CLK_SET_REG bits */
133 #define SCB_FILT_DISABLE BIT(31)
134 #define SCB_FILT_BYPASS BIT(30)
135 #define SCB_FILT_INC_MASK 0x7f
136 #define SCB_FILT_INC_SHIFT 16
137 #define SCB_INC_MASK 0x7f
138 #define SCB_INC_SHIFT 8
140 /* SCB_INT_*_REG bits */
142 #define INT_BUS_INACTIVE BIT(0)
143 #define INT_UNEXPECTED_START BIT(1)
144 #define INT_SCLK_LOW_TIMEOUT BIT(2)
145 #define INT_SDAT_LOW_TIMEOUT BIT(3)
146 #define INT_WRITE_ACK_ERR BIT(4)
147 #define INT_ADDR_ACK_ERR BIT(5)
148 #define INT_FIFO_FULL BIT(9)
149 #define INT_FIFO_FILLING BIT(10)
150 #define INT_FIFO_EMPTY BIT(11)
151 #define INT_FIFO_EMPTYING BIT(12)
152 #define INT_TRANSACTION_DONE BIT(15)
153 #define INT_SLAVE_EVENT BIT(16)
154 #define INT_MASTER_HALTED BIT(17)
155 #define INT_TIMING BIT(18)
156 #define INT_STOP_DETECTED BIT(19)
158 #define INT_FIFO_FULL_FILLING (INT_FIFO_FULL | INT_FIFO_FILLING)
160 /* Level interrupts need clearing after handling instead of before */
161 #define INT_LEVEL 0x01e00
163 /* Don't allow any interrupts while the clock may be off */
164 #define INT_ENABLE_MASK_INACTIVE 0x00000
166 /* Interrupt masks for the different driver modes */
168 #define INT_ENABLE_MASK_RAW INT_TIMING
170 #define INT_ENABLE_MASK_ATOMIC (INT_TRANSACTION_DONE | \
171 INT_SLAVE_EVENT | \
172 INT_ADDR_ACK_ERR | \
173 INT_WRITE_ACK_ERR)
175 #define INT_ENABLE_MASK_AUTOMATIC (INT_SCLK_LOW_TIMEOUT | \
176 INT_ADDR_ACK_ERR | \
177 INT_WRITE_ACK_ERR | \
178 INT_FIFO_FULL | \
179 INT_FIFO_FILLING | \
180 INT_FIFO_EMPTY | \
181 INT_MASTER_HALTED | \
182 INT_STOP_DETECTED)
184 #define INT_ENABLE_MASK_WAITSTOP (INT_SLAVE_EVENT | \
185 INT_ADDR_ACK_ERR | \
186 INT_WRITE_ACK_ERR)
188 /* SCB_STATUS_REG fields */
190 #define LINESTAT_SCLK_LINE_STATUS BIT(0)
191 #define LINESTAT_SCLK_EN BIT(1)
192 #define LINESTAT_SDAT_LINE_STATUS BIT(2)
193 #define LINESTAT_SDAT_EN BIT(3)
194 #define LINESTAT_DET_START_STATUS BIT(4)
195 #define LINESTAT_DET_STOP_STATUS BIT(5)
196 #define LINESTAT_DET_ACK_STATUS BIT(6)
197 #define LINESTAT_DET_NACK_STATUS BIT(7)
198 #define LINESTAT_BUS_IDLE BIT(8)
199 #define LINESTAT_T_DONE_STATUS BIT(9)
200 #define LINESTAT_SCLK_OUT_STATUS BIT(10)
201 #define LINESTAT_SDAT_OUT_STATUS BIT(11)
202 #define LINESTAT_GEN_LINE_MASK_STATUS BIT(12)
203 #define LINESTAT_START_BIT_DET BIT(13)
204 #define LINESTAT_STOP_BIT_DET BIT(14)
205 #define LINESTAT_ACK_DET BIT(15)
206 #define LINESTAT_NACK_DET BIT(16)
207 #define LINESTAT_INPUT_HELD_V BIT(17)
208 #define LINESTAT_ABORT_DET BIT(18)
209 #define LINESTAT_ACK_OR_NACK_DET (LINESTAT_ACK_DET | LINESTAT_NACK_DET)
210 #define LINESTAT_INPUT_DATA 0xff000000
211 #define LINESTAT_INPUT_DATA_SHIFT 24
213 #define LINESTAT_CLEAR_SHIFT 13
214 #define LINESTAT_LATCHED (0x3f << LINESTAT_CLEAR_SHIFT)
216 /* SCB_OVERRIDE_REG fields */
218 #define OVERRIDE_SCLK_OVR BIT(0)
219 #define OVERRIDE_SCLKEN_OVR BIT(1)
220 #define OVERRIDE_SDAT_OVR BIT(2)
221 #define OVERRIDE_SDATEN_OVR BIT(3)
222 #define OVERRIDE_MASTER BIT(9)
223 #define OVERRIDE_LINE_OVR_EN BIT(10)
224 #define OVERRIDE_DIRECT BIT(11)
225 #define OVERRIDE_CMD_SHIFT 4
226 #define OVERRIDE_CMD_MASK 0x1f
227 #define OVERRIDE_DATA_SHIFT 24
229 #define OVERRIDE_SCLK_DOWN (OVERRIDE_LINE_OVR_EN | \
230 OVERRIDE_SCLKEN_OVR)
231 #define OVERRIDE_SCLK_UP (OVERRIDE_LINE_OVR_EN | \
232 OVERRIDE_SCLKEN_OVR | \
233 OVERRIDE_SCLK_OVR)
234 #define OVERRIDE_SDAT_DOWN (OVERRIDE_LINE_OVR_EN | \
235 OVERRIDE_SDATEN_OVR)
236 #define OVERRIDE_SDAT_UP (OVERRIDE_LINE_OVR_EN | \
237 OVERRIDE_SDATEN_OVR | \
238 OVERRIDE_SDAT_OVR)
240 /* OVERRIDE_CMD values */
242 #define CMD_PAUSE 0x00
243 #define CMD_GEN_DATA 0x01
244 #define CMD_GEN_START 0x02
245 #define CMD_GEN_STOP 0x03
246 #define CMD_GEN_ACK 0x04
247 #define CMD_GEN_NACK 0x05
248 #define CMD_RET_DATA 0x08
249 #define CMD_RET_ACK 0x09
251 /* Fixed timing values */
253 #define TIMEOUT_TBI 0x0
254 #define TIMEOUT_TSL 0xffff
255 #define TIMEOUT_TDL 0x0
257 /* Transaction timeout */
259 #define IMG_I2C_TIMEOUT (msecs_to_jiffies(1000))
262 * Worst incs are 1 (innacurate) and 16*256 (irregular).
263 * So a sensible inc is the logarithmic mean: 64 (2^6), which is
264 * in the middle of the valid range (0-127).
266 #define SCB_OPT_INC 64
268 /* Setup the clock enable filtering for 25 ns */
269 #define SCB_FILT_GLITCH 25
272 * Bits to return from interrupt handler functions for different modes.
273 * This delays completion until we've finished with the registers, so that the
274 * function waiting for completion can safely disable the clock to save power.
276 #define ISR_COMPLETE_M BIT(31)
277 #define ISR_FATAL_M BIT(30)
278 #define ISR_WAITSTOP BIT(29)
279 #define ISR_STATUS_M 0x0000ffff /* contains +ve errno */
280 #define ISR_COMPLETE(err) (ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
281 #define ISR_FATAL(err) (ISR_COMPLETE(err) | ISR_FATAL_M)
283 enum img_i2c_mode {
284 MODE_INACTIVE,
285 MODE_RAW,
286 MODE_ATOMIC,
287 MODE_AUTOMATIC,
288 MODE_SEQUENCE,
289 MODE_FATAL,
290 MODE_WAITSTOP,
291 MODE_SUSPEND,
294 /* Timing parameters for i2c modes (in ns) */
295 struct img_i2c_timings {
296 const char *name;
297 unsigned int max_bitrate;
298 unsigned int tckh, tckl, tsdh, tsdl;
299 unsigned int tp2s, tpl, tph;
302 /* The timings array must be ordered from slower to faster */
303 static struct img_i2c_timings timings[] = {
304 /* Standard mode */
306 .name = "standard",
307 .max_bitrate = 100000,
308 .tckh = 4000,
309 .tckl = 4700,
310 .tsdh = 4700,
311 .tsdl = 8700,
312 .tp2s = 4700,
313 .tpl = 4700,
314 .tph = 4000,
316 /* Fast mode */
318 .name = "fast",
319 .max_bitrate = 400000,
320 .tckh = 600,
321 .tckl = 1300,
322 .tsdh = 600,
323 .tsdl = 1200,
324 .tp2s = 1300,
325 .tpl = 600,
326 .tph = 600,
330 /* Reset dance */
331 static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
332 CMD_GEN_DATA, 0xff,
333 CMD_RET_ACK,
334 CMD_GEN_START,
335 CMD_GEN_STOP,
336 0 };
337 /* Just issue a stop (after an abort condition) */
338 static u8 img_i2c_stop_seq[] = { CMD_GEN_STOP,
339 0 };
341 /* We're interested in different interrupts depending on the mode */
342 static unsigned int img_i2c_int_enable_by_mode[] = {
343 [MODE_INACTIVE] = INT_ENABLE_MASK_INACTIVE,
344 [MODE_RAW] = INT_ENABLE_MASK_RAW,
345 [MODE_ATOMIC] = INT_ENABLE_MASK_ATOMIC,
346 [MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
347 [MODE_SEQUENCE] = INT_ENABLE_MASK_ATOMIC,
348 [MODE_FATAL] = 0,
349 [MODE_WAITSTOP] = INT_ENABLE_MASK_WAITSTOP,
350 [MODE_SUSPEND] = 0,
353 /* Atomic command names */
354 static const char * const img_i2c_atomic_cmd_names[] = {
355 [CMD_PAUSE] = "PAUSE",
356 [CMD_GEN_DATA] = "GEN_DATA",
357 [CMD_GEN_START] = "GEN_START",
358 [CMD_GEN_STOP] = "GEN_STOP",
359 [CMD_GEN_ACK] = "GEN_ACK",
360 [CMD_GEN_NACK] = "GEN_NACK",
361 [CMD_RET_DATA] = "RET_DATA",
362 [CMD_RET_ACK] = "RET_ACK",
365 struct img_i2c {
366 struct i2c_adapter adap;
368 void __iomem *base;
371 * The scb core clock is used to get the input frequency, and to disable
372 * it after every set of transactions to save some power.
374 struct clk *scb_clk, *sys_clk;
375 unsigned int bitrate;
376 bool need_wr_rd_fence;
378 /* state */
379 struct completion msg_complete;
380 spinlock_t lock; /* lock before doing anything with the state */
381 struct i2c_msg msg;
383 /* After the last transaction, wait for a stop bit */
384 bool last_msg;
385 int msg_status;
387 enum img_i2c_mode mode;
388 u32 int_enable; /* depends on mode */
389 u32 line_status; /* line status over command */
392 * To avoid slave event interrupts in automatic mode, use a timer to
393 * poll the abort condition if we don't get an interrupt for too long.
395 struct timer_list check_timer;
396 bool t_halt;
398 /* atomic mode state */
399 bool at_t_done;
400 bool at_slave_event;
401 int at_cur_cmd;
402 u8 at_cur_data;
404 /* Sequence: either reset or stop. See img_i2c_sequence. */
405 u8 *seq;
407 /* raw mode */
408 unsigned int raw_timeout;
411 static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
413 writel(value, i2c->base + offset);
416 static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
418 return readl(i2c->base + offset);
422 * The code to read from the master read fifo, and write to the master
423 * write fifo, checks a bit in an SCB register before every byte to
424 * ensure that the fifo is not full (write fifo) or empty (read fifo).
425 * Due to clock domain crossing inside the SCB block the updated value
426 * of this bit is only visible after 2 cycles.
428 * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
429 * revision register), and it's called after reading from or writing to the
430 * fifos to ensure that subsequent reads of the fifo status bits do not read
431 * stale values.
433 static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
435 if (i2c->need_wr_rd_fence) {
436 img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
437 img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
441 static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
443 i2c->mode = mode;
444 i2c->int_enable = img_i2c_int_enable_by_mode[mode];
445 i2c->line_status = 0;
448 static void img_i2c_raw_op(struct img_i2c *i2c)
450 i2c->raw_timeout = 0;
451 img_i2c_writel(i2c, SCB_OVERRIDE_REG,
452 OVERRIDE_SCLKEN_OVR |
453 OVERRIDE_SDATEN_OVR |
454 OVERRIDE_MASTER |
455 OVERRIDE_LINE_OVR_EN |
456 OVERRIDE_DIRECT |
457 ((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
458 (i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
461 static const char *img_i2c_atomic_op_name(unsigned int cmd)
463 if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
464 return "UNKNOWN";
465 return img_i2c_atomic_cmd_names[cmd];
468 /* Send a single atomic mode command to the hardware */
469 static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
471 i2c->at_cur_cmd = cmd;
472 i2c->at_cur_data = data;
474 /* work around lack of data setup time when generating data */
475 if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
476 u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
478 if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
479 /* hold the data line down for a moment */
480 img_i2c_switch_mode(i2c, MODE_RAW);
481 img_i2c_raw_op(i2c);
482 return;
486 dev_dbg(i2c->adap.dev.parent,
487 "atomic cmd=%s (%d) data=%#x\n",
488 img_i2c_atomic_op_name(cmd), cmd, data);
489 i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
490 i2c->at_slave_event = false;
491 i2c->line_status = 0;
493 img_i2c_writel(i2c, SCB_OVERRIDE_REG,
494 ((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
495 OVERRIDE_MASTER |
496 OVERRIDE_DIRECT |
497 (data << OVERRIDE_DATA_SHIFT));
500 /* Start a transaction in atomic mode */
501 static void img_i2c_atomic_start(struct img_i2c *i2c)
503 img_i2c_switch_mode(i2c, MODE_ATOMIC);
504 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
505 img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
508 static void img_i2c_soft_reset(struct img_i2c *i2c)
510 i2c->t_halt = false;
511 img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
512 img_i2c_writel(i2c, SCB_CONTROL_REG,
513 SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
517 * Enable or release transaction halt for control of repeated starts.
518 * In version 3.3 of the IP when transaction halt is set, an interrupt
519 * will be generated after each byte of a transfer instead of after
520 * every transfer but before the stop bit.
521 * Due to this behaviour we have to be careful that every time we
522 * release the transaction halt we have to re-enable it straight away
523 * so that we only process a single byte, not doing so will result in
524 * all remaining bytes been processed and a stop bit being issued,
525 * which will prevent us having a repeated start.
527 static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
529 u32 val;
531 if (i2c->t_halt == t_halt)
532 return;
533 i2c->t_halt = t_halt;
534 val = img_i2c_readl(i2c, SCB_CONTROL_REG);
535 if (t_halt)
536 val |= SCB_CONTROL_TRANSACTION_HALT;
537 else
538 val &= ~SCB_CONTROL_TRANSACTION_HALT;
539 img_i2c_writel(i2c, SCB_CONTROL_REG, val);
542 /* Drain data from the FIFO into the buffer (automatic mode) */
543 static void img_i2c_read_fifo(struct img_i2c *i2c)
545 while (i2c->msg.len) {
546 u32 fifo_status;
547 u8 data;
549 img_i2c_wr_rd_fence(i2c);
550 fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
551 if (fifo_status & FIFO_READ_EMPTY)
552 break;
554 data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
555 *i2c->msg.buf = data;
557 img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
558 i2c->msg.len--;
559 i2c->msg.buf++;
563 /* Fill the FIFO with data from the buffer (automatic mode) */
564 static void img_i2c_write_fifo(struct img_i2c *i2c)
566 while (i2c->msg.len) {
567 u32 fifo_status;
569 img_i2c_wr_rd_fence(i2c);
570 fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
571 if (fifo_status & FIFO_WRITE_FULL)
572 break;
574 img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
575 i2c->msg.len--;
576 i2c->msg.buf++;
579 /* Disable fifo emptying interrupt if nothing more to write */
580 if (!i2c->msg.len)
581 i2c->int_enable &= ~INT_FIFO_EMPTYING;
584 /* Start a read transaction in automatic mode */
585 static void img_i2c_read(struct img_i2c *i2c)
587 img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
588 if (!i2c->last_msg)
589 i2c->int_enable |= INT_SLAVE_EVENT;
591 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
592 img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
593 img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
595 mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
598 /* Start a write transaction in automatic mode */
599 static void img_i2c_write(struct img_i2c *i2c)
601 img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
602 if (!i2c->last_msg)
603 i2c->int_enable |= INT_SLAVE_EVENT;
605 img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
606 img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
608 mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
609 img_i2c_write_fifo(i2c);
611 /* img_i2c_write_fifo() may modify int_enable */
612 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
616 * Indicate that the transaction is complete. This is called from the
617 * ISR to wake up the waiting thread, after which the ISR must not
618 * access any more SCB registers.
620 static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
622 img_i2c_switch_mode(i2c, MODE_INACTIVE);
623 if (status) {
624 i2c->msg_status = status;
625 img_i2c_transaction_halt(i2c, false);
627 complete(&i2c->msg_complete);
630 static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
631 u32 int_status, u32 line_status)
633 /* Stay in raw mode for this, so we don't just loop infinitely */
634 img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
635 img_i2c_switch_mode(i2c, MODE_ATOMIC);
636 return 0;
639 static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
640 u32 line_status)
642 if (int_status & INT_TIMING) {
643 if (i2c->raw_timeout == 0)
644 return img_i2c_raw_atomic_delay_handler(i2c,
645 int_status, line_status);
646 --i2c->raw_timeout;
648 return 0;
651 static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
653 static const unsigned int continue_bits[] = {
654 [CMD_GEN_START] = LINESTAT_START_BIT_DET,
655 [CMD_GEN_DATA] = LINESTAT_INPUT_HELD_V,
656 [CMD_RET_ACK] = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
657 [CMD_RET_DATA] = LINESTAT_INPUT_HELD_V,
658 [CMD_GEN_STOP] = LINESTAT_STOP_BIT_DET,
660 int next_cmd = -1;
661 u8 next_data = 0x00;
663 if (int_status & INT_SLAVE_EVENT)
664 i2c->at_slave_event = true;
665 if (int_status & INT_TRANSACTION_DONE)
666 i2c->at_t_done = true;
668 if (!i2c->at_slave_event || !i2c->at_t_done)
669 return 0;
671 /* wait if no continue bits are set */
672 if (i2c->at_cur_cmd >= 0 &&
673 i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
674 unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
676 if (cont_bits) {
677 cont_bits |= LINESTAT_ABORT_DET;
678 if (!(i2c->line_status & cont_bits))
679 return 0;
683 /* follow the sequence of commands in i2c->seq */
684 next_cmd = *i2c->seq;
685 /* stop on a nil */
686 if (!next_cmd) {
687 img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
688 return ISR_COMPLETE(0);
690 /* when generating data, the next byte is the data */
691 if (next_cmd == CMD_GEN_DATA) {
692 ++i2c->seq;
693 next_data = *i2c->seq;
695 ++i2c->seq;
696 img_i2c_atomic_op(i2c, next_cmd, next_data);
698 return 0;
701 static void img_i2c_reset_start(struct img_i2c *i2c)
703 /* Initiate the magic dance */
704 img_i2c_switch_mode(i2c, MODE_SEQUENCE);
705 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
706 i2c->seq = img_i2c_reset_seq;
707 i2c->at_slave_event = true;
708 i2c->at_t_done = true;
709 i2c->at_cur_cmd = -1;
711 /* img_i2c_reset_seq isn't empty so the following won't fail */
712 img_i2c_sequence(i2c, 0);
715 static void img_i2c_stop_start(struct img_i2c *i2c)
717 /* Initiate a stop bit sequence */
718 img_i2c_switch_mode(i2c, MODE_SEQUENCE);
719 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
720 i2c->seq = img_i2c_stop_seq;
721 i2c->at_slave_event = true;
722 i2c->at_t_done = true;
723 i2c->at_cur_cmd = -1;
725 /* img_i2c_stop_seq isn't empty so the following won't fail */
726 img_i2c_sequence(i2c, 0);
729 static unsigned int img_i2c_atomic(struct img_i2c *i2c,
730 u32 int_status,
731 u32 line_status)
733 int next_cmd = -1;
734 u8 next_data = 0x00;
736 if (int_status & INT_SLAVE_EVENT)
737 i2c->at_slave_event = true;
738 if (int_status & INT_TRANSACTION_DONE)
739 i2c->at_t_done = true;
741 if (!i2c->at_slave_event || !i2c->at_t_done)
742 goto next_atomic_cmd;
743 if (i2c->line_status & LINESTAT_ABORT_DET) {
744 dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
745 next_cmd = CMD_GEN_STOP;
746 i2c->msg_status = -EIO;
747 goto next_atomic_cmd;
750 /* i2c->at_cur_cmd may have completed */
751 switch (i2c->at_cur_cmd) {
752 case CMD_GEN_START:
753 next_cmd = CMD_GEN_DATA;
754 next_data = (i2c->msg.addr << 1);
755 if (i2c->msg.flags & I2C_M_RD)
756 next_data |= 0x1;
757 break;
758 case CMD_GEN_DATA:
759 if (i2c->line_status & LINESTAT_INPUT_HELD_V)
760 next_cmd = CMD_RET_ACK;
761 break;
762 case CMD_RET_ACK:
763 if (i2c->line_status & LINESTAT_ACK_DET ||
764 (i2c->line_status & LINESTAT_NACK_DET &&
765 i2c->msg.flags & I2C_M_IGNORE_NAK)) {
766 if (i2c->msg.len == 0) {
767 next_cmd = CMD_GEN_STOP;
768 } else if (i2c->msg.flags & I2C_M_RD) {
769 next_cmd = CMD_RET_DATA;
770 } else {
771 next_cmd = CMD_GEN_DATA;
772 next_data = *i2c->msg.buf;
773 --i2c->msg.len;
774 ++i2c->msg.buf;
776 } else if (i2c->line_status & LINESTAT_NACK_DET) {
777 i2c->msg_status = -EIO;
778 next_cmd = CMD_GEN_STOP;
780 break;
781 case CMD_RET_DATA:
782 if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
783 *i2c->msg.buf = (i2c->line_status &
784 LINESTAT_INPUT_DATA)
785 >> LINESTAT_INPUT_DATA_SHIFT;
786 --i2c->msg.len;
787 ++i2c->msg.buf;
788 if (i2c->msg.len)
789 next_cmd = CMD_GEN_ACK;
790 else
791 next_cmd = CMD_GEN_NACK;
793 break;
794 case CMD_GEN_ACK:
795 if (i2c->line_status & LINESTAT_ACK_DET) {
796 next_cmd = CMD_RET_DATA;
797 } else {
798 i2c->msg_status = -EIO;
799 next_cmd = CMD_GEN_STOP;
801 break;
802 case CMD_GEN_NACK:
803 next_cmd = CMD_GEN_STOP;
804 break;
805 case CMD_GEN_STOP:
806 img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
807 return ISR_COMPLETE(0);
808 default:
809 dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
810 i2c->at_cur_cmd);
811 i2c->msg_status = -EIO;
812 next_cmd = CMD_GEN_STOP;
813 break;
816 next_atomic_cmd:
817 if (next_cmd != -1) {
818 /* don't actually stop unless we're the last transaction */
819 if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
820 !i2c->last_msg)
821 return ISR_COMPLETE(0);
822 img_i2c_atomic_op(i2c, next_cmd, next_data);
824 return 0;
828 * Timer function to check if something has gone wrong in automatic mode (so we
829 * don't have to handle so many interrupts just to catch an exception).
831 static void img_i2c_check_timer(unsigned long arg)
833 struct img_i2c *i2c = (struct img_i2c *)arg;
834 unsigned long flags;
835 unsigned int line_status;
837 spin_lock_irqsave(&i2c->lock, flags);
838 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
840 /* check for an abort condition */
841 if (line_status & LINESTAT_ABORT_DET) {
842 dev_dbg(i2c->adap.dev.parent,
843 "abort condition detected by check timer\n");
844 /* enable slave event interrupt mask to trigger irq */
845 img_i2c_writel(i2c, SCB_INT_MASK_REG,
846 i2c->int_enable | INT_SLAVE_EVENT);
849 spin_unlock_irqrestore(&i2c->lock, flags);
852 static unsigned int img_i2c_auto(struct img_i2c *i2c,
853 unsigned int int_status,
854 unsigned int line_status)
856 if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
857 return ISR_COMPLETE(EIO);
859 if (line_status & LINESTAT_ABORT_DET) {
860 dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
861 /* empty the read fifo */
862 if ((i2c->msg.flags & I2C_M_RD) &&
863 (int_status & INT_FIFO_FULL_FILLING))
864 img_i2c_read_fifo(i2c);
865 /* use atomic mode and try to force a stop bit */
866 i2c->msg_status = -EIO;
867 img_i2c_stop_start(i2c);
868 return 0;
871 /* Enable transaction halt on start bit */
872 if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) {
873 img_i2c_transaction_halt(i2c, !i2c->last_msg);
874 /* we're no longer interested in the slave event */
875 i2c->int_enable &= ~INT_SLAVE_EVENT;
878 mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
880 if (int_status & INT_STOP_DETECTED) {
881 /* Drain remaining data in FIFO and complete transaction */
882 if (i2c->msg.flags & I2C_M_RD)
883 img_i2c_read_fifo(i2c);
884 return ISR_COMPLETE(0);
887 if (i2c->msg.flags & I2C_M_RD) {
888 if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) {
889 img_i2c_read_fifo(i2c);
890 if (i2c->msg.len == 0)
891 return ISR_WAITSTOP;
893 } else {
894 if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) {
895 if ((int_status & INT_FIFO_EMPTY) &&
896 i2c->msg.len == 0)
897 return ISR_WAITSTOP;
898 img_i2c_write_fifo(i2c);
901 if (int_status & INT_MASTER_HALTED) {
903 * Release and then enable transaction halt, to
904 * allow only a single byte to proceed.
906 img_i2c_transaction_halt(i2c, false);
907 img_i2c_transaction_halt(i2c, !i2c->last_msg);
910 return 0;
913 static irqreturn_t img_i2c_isr(int irq, void *dev_id)
915 struct img_i2c *i2c = (struct img_i2c *)dev_id;
916 u32 int_status, line_status;
917 /* We handle transaction completion AFTER accessing registers */
918 unsigned int hret;
920 /* Read interrupt status register. */
921 int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
922 /* Clear detected interrupts. */
923 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
926 * Read line status and clear it until it actually is clear. We have
927 * to be careful not to lose any line status bits that get latched.
929 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
930 if (line_status & LINESTAT_LATCHED) {
931 img_i2c_writel(i2c, SCB_CLEAR_REG,
932 (line_status & LINESTAT_LATCHED)
933 >> LINESTAT_CLEAR_SHIFT);
934 img_i2c_wr_rd_fence(i2c);
937 spin_lock(&i2c->lock);
939 /* Keep track of line status bits received */
940 i2c->line_status &= ~LINESTAT_INPUT_DATA;
941 i2c->line_status |= line_status;
944 * Certain interrupts indicate that sclk low timeout is not
945 * a problem. If any of these are set, just continue.
947 if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
948 !(int_status & (INT_SLAVE_EVENT |
949 INT_FIFO_EMPTY |
950 INT_FIFO_FULL))) {
951 dev_crit(i2c->adap.dev.parent,
952 "fatal: clock low timeout occurred %s addr 0x%02x\n",
953 (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
954 i2c->msg.addr);
955 hret = ISR_FATAL(EIO);
956 goto out;
959 if (i2c->mode == MODE_ATOMIC)
960 hret = img_i2c_atomic(i2c, int_status, line_status);
961 else if (i2c->mode == MODE_AUTOMATIC)
962 hret = img_i2c_auto(i2c, int_status, line_status);
963 else if (i2c->mode == MODE_SEQUENCE)
964 hret = img_i2c_sequence(i2c, int_status);
965 else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
966 (line_status & LINESTAT_STOP_BIT_DET))
967 hret = ISR_COMPLETE(0);
968 else if (i2c->mode == MODE_RAW)
969 hret = img_i2c_raw(i2c, int_status, line_status);
970 else
971 hret = 0;
973 /* Clear detected level interrupts. */
974 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
976 out:
977 if (hret & ISR_WAITSTOP) {
979 * Only wait for stop on last message.
980 * Also we may already have detected the stop bit.
982 if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
983 hret = ISR_COMPLETE(0);
984 else
985 img_i2c_switch_mode(i2c, MODE_WAITSTOP);
988 /* now we've finished using regs, handle transaction completion */
989 if (hret & ISR_COMPLETE_M) {
990 int status = -(hret & ISR_STATUS_M);
992 img_i2c_complete_transaction(i2c, status);
993 if (hret & ISR_FATAL_M)
994 img_i2c_switch_mode(i2c, MODE_FATAL);
997 /* Enable interrupts (int_enable may be altered by changing mode) */
998 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1000 spin_unlock(&i2c->lock);
1002 return IRQ_HANDLED;
1005 /* Force a bus reset sequence and wait for it to complete */
1006 static int img_i2c_reset_bus(struct img_i2c *i2c)
1008 unsigned long flags;
1009 unsigned long time_left;
1011 spin_lock_irqsave(&i2c->lock, flags);
1012 reinit_completion(&i2c->msg_complete);
1013 img_i2c_reset_start(i2c);
1014 spin_unlock_irqrestore(&i2c->lock, flags);
1016 time_left = wait_for_completion_timeout(&i2c->msg_complete,
1017 IMG_I2C_TIMEOUT);
1018 if (time_left == 0)
1019 return -ETIMEDOUT;
1020 return 0;
1023 static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
1024 int num)
1026 struct img_i2c *i2c = i2c_get_adapdata(adap);
1027 bool atomic = false;
1028 int i, ret;
1029 unsigned long time_left;
1031 if (i2c->mode == MODE_SUSPEND) {
1032 WARN(1, "refusing to service transaction in suspended state\n");
1033 return -EIO;
1036 if (i2c->mode == MODE_FATAL)
1037 return -EIO;
1039 for (i = 0; i < num; i++) {
1041 * 0 byte reads are not possible because the slave could try
1042 * and pull the data line low, preventing a stop bit.
1044 if (!msgs[i].len && msgs[i].flags & I2C_M_RD)
1045 return -EIO;
1047 * 0 byte writes are possible and used for probing, but we
1048 * cannot do them in automatic mode, so use atomic mode
1049 * instead.
1051 * Also, the I2C_M_IGNORE_NAK mode can only be implemented
1052 * in atomic mode.
1054 if (!msgs[i].len ||
1055 (msgs[i].flags & I2C_M_IGNORE_NAK))
1056 atomic = true;
1059 ret = clk_prepare_enable(i2c->scb_clk);
1060 if (ret)
1061 return ret;
1063 for (i = 0; i < num; i++) {
1064 struct i2c_msg *msg = &msgs[i];
1065 unsigned long flags;
1067 spin_lock_irqsave(&i2c->lock, flags);
1070 * Make a copy of the message struct. We mustn't modify the
1071 * original or we'll confuse drivers and i2c-dev.
1073 i2c->msg = *msg;
1074 i2c->msg_status = 0;
1077 * After the last message we must have waited for a stop bit.
1078 * Not waiting can cause problems when the clock is disabled
1079 * before the stop bit is sent, and the linux I2C interface
1080 * requires separate transfers not to joined with repeated
1081 * start.
1083 i2c->last_msg = (i == num - 1);
1084 reinit_completion(&i2c->msg_complete);
1087 * Clear line status and all interrupts before starting a
1088 * transfer, as we may have unserviced interrupts from
1089 * previous transfers that might be handled in the context
1090 * of the new transfer.
1092 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1093 img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1095 if (atomic) {
1096 img_i2c_atomic_start(i2c);
1097 } else {
1099 * Enable transaction halt if not the last message in
1100 * the queue so that we can control repeated starts.
1102 img_i2c_transaction_halt(i2c, !i2c->last_msg);
1104 if (msg->flags & I2C_M_RD)
1105 img_i2c_read(i2c);
1106 else
1107 img_i2c_write(i2c);
1110 * Release and then enable transaction halt, to
1111 * allow only a single byte to proceed.
1112 * This doesn't have an effect on the initial transfer
1113 * but will allow the following transfers to start
1114 * processing if the previous transfer was marked as
1115 * complete while the i2c block was halted.
1117 img_i2c_transaction_halt(i2c, false);
1118 img_i2c_transaction_halt(i2c, !i2c->last_msg);
1120 spin_unlock_irqrestore(&i2c->lock, flags);
1122 time_left = wait_for_completion_timeout(&i2c->msg_complete,
1123 IMG_I2C_TIMEOUT);
1124 del_timer_sync(&i2c->check_timer);
1126 if (time_left == 0) {
1127 dev_err(adap->dev.parent, "i2c transfer timed out\n");
1128 i2c->msg_status = -ETIMEDOUT;
1129 break;
1132 if (i2c->msg_status)
1133 break;
1136 clk_disable_unprepare(i2c->scb_clk);
1138 return i2c->msg_status ? i2c->msg_status : num;
1141 static u32 img_i2c_func(struct i2c_adapter *adap)
1143 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1146 static const struct i2c_algorithm img_i2c_algo = {
1147 .master_xfer = img_i2c_xfer,
1148 .functionality = img_i2c_func,
1151 static int img_i2c_init(struct img_i2c *i2c)
1153 unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
1154 unsigned int i, ret, data, prescale, inc, int_bitrate, filt;
1155 struct img_i2c_timings timing;
1156 u32 rev;
1158 ret = clk_prepare_enable(i2c->scb_clk);
1159 if (ret)
1160 return ret;
1162 rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
1163 if ((rev & 0x00ffffff) < 0x00020200) {
1164 dev_info(i2c->adap.dev.parent,
1165 "Unknown hardware revision (%d.%d.%d.%d)\n",
1166 (rev >> 24) & 0xff, (rev >> 16) & 0xff,
1167 (rev >> 8) & 0xff, rev & 0xff);
1168 clk_disable_unprepare(i2c->scb_clk);
1169 return -EINVAL;
1172 /* Fencing enabled by default. */
1173 i2c->need_wr_rd_fence = true;
1175 /* Determine what mode we're in from the bitrate */
1176 timing = timings[0];
1177 for (i = 0; i < ARRAY_SIZE(timings); i++) {
1178 if (i2c->bitrate <= timings[i].max_bitrate) {
1179 timing = timings[i];
1180 break;
1183 if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) {
1184 dev_warn(i2c->adap.dev.parent,
1185 "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
1186 i2c->bitrate,
1187 timings[ARRAY_SIZE(timings) - 1].max_bitrate);
1188 timing = timings[ARRAY_SIZE(timings) - 1];
1189 i2c->bitrate = timing.max_bitrate;
1192 bitrate_khz = i2c->bitrate / 1000;
1193 clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
1195 /* Find the prescale that would give us that inc (approx delay = 0) */
1196 prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
1197 prescale = clamp_t(unsigned int, prescale, 1, 8);
1198 clk_khz /= prescale;
1200 /* Setup the clock increment value */
1201 inc = (256 * 16 * bitrate_khz) / clk_khz;
1204 * The clock generation logic allows to filter glitches on the bus.
1205 * This filter is able to remove bus glitches shorter than 50ns.
1206 * If the clock enable rate is greater than 20 MHz, no filtering
1207 * is required, so we need to disable it.
1208 * If it's between the 20-40 MHz range, there's no need to divide
1209 * the clock to get a filter.
1211 if (clk_khz < 20000) {
1212 filt = SCB_FILT_DISABLE;
1213 } else if (clk_khz < 40000) {
1214 filt = SCB_FILT_BYPASS;
1215 } else {
1216 /* Calculate filter clock */
1217 filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
1219 /* Scale up if needed */
1220 if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
1221 inc++;
1223 if (filt > SCB_FILT_INC_MASK)
1224 filt = SCB_FILT_INC_MASK;
1226 filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
1228 data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
1229 img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
1231 /* Obtain the clock period of the fx16 clock in ns */
1232 clk_period = (256 * 1000000) / (clk_khz * inc);
1234 /* Calculate the bitrate in terms of internal clock pulses */
1235 int_bitrate = 1000000 / (bitrate_khz * clk_period);
1236 if ((1000000 % (bitrate_khz * clk_period)) >=
1237 ((bitrate_khz * clk_period) / 2))
1238 int_bitrate++;
1241 * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
1242 * values from there if they don't meet minimum timing requirements
1244 tckh = int_bitrate / 2;
1245 tckl = int_bitrate - tckh;
1247 /* Adjust TCKH and TCKL values */
1248 data = DIV_ROUND_UP(timing.tckl, clk_period);
1250 if (tckl < data) {
1251 tckl = data;
1252 tckh = int_bitrate - tckl;
1255 if (tckh > 0)
1256 --tckh;
1258 if (tckl > 0)
1259 --tckl;
1261 img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh);
1262 img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl);
1264 /* Setup TSDH value */
1265 tsdh = DIV_ROUND_UP(timing.tsdh, clk_period);
1267 if (tsdh > 1)
1268 data = tsdh - 1;
1269 else
1270 data = 0x01;
1271 img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
1273 /* This value is used later */
1274 tsdh = data;
1276 /* Setup TPL value */
1277 data = timing.tpl / clk_period;
1278 if (data > 0)
1279 --data;
1280 img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
1282 /* Setup TPH value */
1283 data = timing.tph / clk_period;
1284 if (data > 0)
1285 --data;
1286 img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
1288 /* Setup TSDL value to TPL + TSDH + 2 */
1289 img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
1291 /* Setup TP2S value */
1292 data = timing.tp2s / clk_period;
1293 if (data > 0)
1294 --data;
1295 img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
1297 img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
1298 img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
1299 img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
1301 /* Take module out of soft reset and enable clocks */
1302 img_i2c_soft_reset(i2c);
1304 /* Disable all interrupts */
1305 img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
1307 /* Clear all interrupts */
1308 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1310 /* Clear the scb_line_status events */
1311 img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1313 /* Enable interrupts */
1314 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1316 /* Perform a synchronous sequence to reset the bus */
1317 ret = img_i2c_reset_bus(i2c);
1319 clk_disable_unprepare(i2c->scb_clk);
1321 return ret;
1324 static int img_i2c_probe(struct platform_device *pdev)
1326 struct device_node *node = pdev->dev.of_node;
1327 struct img_i2c *i2c;
1328 struct resource *res;
1329 int irq, ret;
1330 u32 val;
1332 i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
1333 if (!i2c)
1334 return -ENOMEM;
1336 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1337 i2c->base = devm_ioremap_resource(&pdev->dev, res);
1338 if (IS_ERR(i2c->base))
1339 return PTR_ERR(i2c->base);
1341 irq = platform_get_irq(pdev, 0);
1342 if (irq < 0) {
1343 dev_err(&pdev->dev, "can't get irq number\n");
1344 return irq;
1347 i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
1348 if (IS_ERR(i2c->sys_clk)) {
1349 dev_err(&pdev->dev, "can't get system clock\n");
1350 return PTR_ERR(i2c->sys_clk);
1353 i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
1354 if (IS_ERR(i2c->scb_clk)) {
1355 dev_err(&pdev->dev, "can't get core clock\n");
1356 return PTR_ERR(i2c->scb_clk);
1359 ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
1360 pdev->name, i2c);
1361 if (ret) {
1362 dev_err(&pdev->dev, "can't request irq %d\n", irq);
1363 return ret;
1366 /* Set up the exception check timer */
1367 init_timer(&i2c->check_timer);
1368 i2c->check_timer.function = img_i2c_check_timer;
1369 i2c->check_timer.data = (unsigned long)i2c;
1371 i2c->bitrate = timings[0].max_bitrate;
1372 if (!of_property_read_u32(node, "clock-frequency", &val))
1373 i2c->bitrate = val;
1375 i2c_set_adapdata(&i2c->adap, i2c);
1376 i2c->adap.dev.parent = &pdev->dev;
1377 i2c->adap.dev.of_node = node;
1378 i2c->adap.owner = THIS_MODULE;
1379 i2c->adap.algo = &img_i2c_algo;
1380 i2c->adap.retries = 5;
1381 i2c->adap.nr = pdev->id;
1382 snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
1384 img_i2c_switch_mode(i2c, MODE_INACTIVE);
1385 spin_lock_init(&i2c->lock);
1386 init_completion(&i2c->msg_complete);
1388 platform_set_drvdata(pdev, i2c);
1390 ret = clk_prepare_enable(i2c->sys_clk);
1391 if (ret)
1392 return ret;
1394 ret = img_i2c_init(i2c);
1395 if (ret)
1396 goto disable_clk;
1398 ret = i2c_add_numbered_adapter(&i2c->adap);
1399 if (ret < 0) {
1400 dev_err(&pdev->dev, "failed to add adapter\n");
1401 goto disable_clk;
1404 return 0;
1406 disable_clk:
1407 clk_disable_unprepare(i2c->sys_clk);
1408 return ret;
1411 static int img_i2c_remove(struct platform_device *dev)
1413 struct img_i2c *i2c = platform_get_drvdata(dev);
1415 i2c_del_adapter(&i2c->adap);
1416 clk_disable_unprepare(i2c->sys_clk);
1418 return 0;
1421 #ifdef CONFIG_PM_SLEEP
1422 static int img_i2c_suspend(struct device *dev)
1424 struct img_i2c *i2c = dev_get_drvdata(dev);
1426 img_i2c_switch_mode(i2c, MODE_SUSPEND);
1428 clk_disable_unprepare(i2c->sys_clk);
1430 return 0;
1433 static int img_i2c_resume(struct device *dev)
1435 struct img_i2c *i2c = dev_get_drvdata(dev);
1436 int ret;
1438 ret = clk_prepare_enable(i2c->sys_clk);
1439 if (ret)
1440 return ret;
1442 img_i2c_init(i2c);
1444 return 0;
1446 #endif /* CONFIG_PM_SLEEP */
1448 static SIMPLE_DEV_PM_OPS(img_i2c_pm, img_i2c_suspend, img_i2c_resume);
1450 static const struct of_device_id img_scb_i2c_match[] = {
1451 { .compatible = "img,scb-i2c" },
1454 MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
1456 static struct platform_driver img_scb_i2c_driver = {
1457 .driver = {
1458 .name = "img-i2c-scb",
1459 .of_match_table = img_scb_i2c_match,
1460 .pm = &img_i2c_pm,
1462 .probe = img_i2c_probe,
1463 .remove = img_i2c_remove,
1465 module_platform_driver(img_scb_i2c_driver);
1467 MODULE_AUTHOR("James Hogan <james.hogan@imgtec.com>");
1468 MODULE_DESCRIPTION("IMG host I2C driver");
1469 MODULE_LICENSE("GPL v2");