Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / drivers / infiniband / hw / cxgb3 / iwch_cm.c
blobd403231a4aff8d571de464b6a9d5158ec5edd1d0
1 /*
2 * Copyright (c) 2006 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/slab.h>
35 #include <linux/workqueue.h>
36 #include <linux/skbuff.h>
37 #include <linux/timer.h>
38 #include <linux/notifier.h>
39 #include <linux/inetdevice.h>
41 #include <net/neighbour.h>
42 #include <net/netevent.h>
43 #include <net/route.h>
45 #include "tcb.h"
46 #include "cxgb3_offload.h"
47 #include "iwch.h"
48 #include "iwch_provider.h"
49 #include "iwch_cm.h"
51 static char *states[] = {
52 "idle",
53 "listen",
54 "connecting",
55 "mpa_wait_req",
56 "mpa_req_sent",
57 "mpa_req_rcvd",
58 "mpa_rep_sent",
59 "fpdu_mode",
60 "aborting",
61 "closing",
62 "moribund",
63 "dead",
64 NULL,
67 int peer2peer = 0;
68 module_param(peer2peer, int, 0644);
69 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=0)");
71 static int ep_timeout_secs = 60;
72 module_param(ep_timeout_secs, int, 0644);
73 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
74 "in seconds (default=60)");
76 static int mpa_rev = 1;
77 module_param(mpa_rev, int, 0644);
78 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
79 "1 is spec compliant. (default=1)");
81 static int markers_enabled = 0;
82 module_param(markers_enabled, int, 0644);
83 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
85 static int crc_enabled = 1;
86 module_param(crc_enabled, int, 0644);
87 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
89 static int rcv_win = 256 * 1024;
90 module_param(rcv_win, int, 0644);
91 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256)");
93 static int snd_win = 32 * 1024;
94 module_param(snd_win, int, 0644);
95 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=32KB)");
97 static unsigned int nocong = 0;
98 module_param(nocong, uint, 0644);
99 MODULE_PARM_DESC(nocong, "Turn off congestion control (default=0)");
101 static unsigned int cong_flavor = 1;
102 module_param(cong_flavor, uint, 0644);
103 MODULE_PARM_DESC(cong_flavor, "TCP Congestion control flavor (default=1)");
105 static struct workqueue_struct *workq;
107 static struct sk_buff_head rxq;
109 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
110 static void ep_timeout(unsigned long arg);
111 static void connect_reply_upcall(struct iwch_ep *ep, int status);
113 static void start_ep_timer(struct iwch_ep *ep)
115 PDBG("%s ep %p\n", __func__, ep);
116 if (timer_pending(&ep->timer)) {
117 PDBG("%s stopped / restarted timer ep %p\n", __func__, ep);
118 del_timer_sync(&ep->timer);
119 } else
120 get_ep(&ep->com);
121 ep->timer.expires = jiffies + ep_timeout_secs * HZ;
122 ep->timer.data = (unsigned long)ep;
123 ep->timer.function = ep_timeout;
124 add_timer(&ep->timer);
127 static void stop_ep_timer(struct iwch_ep *ep)
129 PDBG("%s ep %p\n", __func__, ep);
130 if (!timer_pending(&ep->timer)) {
131 WARN(1, "%s timer stopped when its not running! ep %p state %u\n",
132 __func__, ep, ep->com.state);
133 return;
135 del_timer_sync(&ep->timer);
136 put_ep(&ep->com);
139 static int iwch_l2t_send(struct t3cdev *tdev, struct sk_buff *skb, struct l2t_entry *l2e)
141 int error = 0;
142 struct cxio_rdev *rdev;
144 rdev = (struct cxio_rdev *)tdev->ulp;
145 if (cxio_fatal_error(rdev)) {
146 kfree_skb(skb);
147 return -EIO;
149 error = l2t_send(tdev, skb, l2e);
150 if (error < 0)
151 kfree_skb(skb);
152 return error < 0 ? error : 0;
155 int iwch_cxgb3_ofld_send(struct t3cdev *tdev, struct sk_buff *skb)
157 int error = 0;
158 struct cxio_rdev *rdev;
160 rdev = (struct cxio_rdev *)tdev->ulp;
161 if (cxio_fatal_error(rdev)) {
162 kfree_skb(skb);
163 return -EIO;
165 error = cxgb3_ofld_send(tdev, skb);
166 if (error < 0)
167 kfree_skb(skb);
168 return error < 0 ? error : 0;
171 static void release_tid(struct t3cdev *tdev, u32 hwtid, struct sk_buff *skb)
173 struct cpl_tid_release *req;
175 skb = get_skb(skb, sizeof *req, GFP_KERNEL);
176 if (!skb)
177 return;
178 req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
179 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
180 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
181 skb->priority = CPL_PRIORITY_SETUP;
182 iwch_cxgb3_ofld_send(tdev, skb);
183 return;
186 int iwch_quiesce_tid(struct iwch_ep *ep)
188 struct cpl_set_tcb_field *req;
189 struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
191 if (!skb)
192 return -ENOMEM;
193 req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
194 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
195 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
196 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
197 req->reply = 0;
198 req->cpu_idx = 0;
199 req->word = htons(W_TCB_RX_QUIESCE);
200 req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
201 req->val = cpu_to_be64(1 << S_TCB_RX_QUIESCE);
203 skb->priority = CPL_PRIORITY_DATA;
204 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
207 int iwch_resume_tid(struct iwch_ep *ep)
209 struct cpl_set_tcb_field *req;
210 struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
212 if (!skb)
213 return -ENOMEM;
214 req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
215 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
216 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
217 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
218 req->reply = 0;
219 req->cpu_idx = 0;
220 req->word = htons(W_TCB_RX_QUIESCE);
221 req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
222 req->val = 0;
224 skb->priority = CPL_PRIORITY_DATA;
225 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
228 static void set_emss(struct iwch_ep *ep, u16 opt)
230 PDBG("%s ep %p opt %u\n", __func__, ep, opt);
231 ep->emss = T3C_DATA(ep->com.tdev)->mtus[G_TCPOPT_MSS(opt)] - 40;
232 if (G_TCPOPT_TSTAMP(opt))
233 ep->emss -= 12;
234 if (ep->emss < 128)
235 ep->emss = 128;
236 PDBG("emss=%d\n", ep->emss);
239 static enum iwch_ep_state state_read(struct iwch_ep_common *epc)
241 unsigned long flags;
242 enum iwch_ep_state state;
244 spin_lock_irqsave(&epc->lock, flags);
245 state = epc->state;
246 spin_unlock_irqrestore(&epc->lock, flags);
247 return state;
250 static void __state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
252 epc->state = new;
255 static void state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
257 unsigned long flags;
259 spin_lock_irqsave(&epc->lock, flags);
260 PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
261 __state_set(epc, new);
262 spin_unlock_irqrestore(&epc->lock, flags);
263 return;
266 static void *alloc_ep(int size, gfp_t gfp)
268 struct iwch_ep_common *epc;
270 epc = kzalloc(size, gfp);
271 if (epc) {
272 kref_init(&epc->kref);
273 spin_lock_init(&epc->lock);
274 init_waitqueue_head(&epc->waitq);
276 PDBG("%s alloc ep %p\n", __func__, epc);
277 return epc;
280 void __free_ep(struct kref *kref)
282 struct iwch_ep *ep;
283 ep = container_of(container_of(kref, struct iwch_ep_common, kref),
284 struct iwch_ep, com);
285 PDBG("%s ep %p state %s\n", __func__, ep, states[state_read(&ep->com)]);
286 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
287 cxgb3_remove_tid(ep->com.tdev, (void *)ep, ep->hwtid);
288 dst_release(ep->dst);
289 l2t_release(ep->com.tdev, ep->l2t);
291 kfree(ep);
294 static void release_ep_resources(struct iwch_ep *ep)
296 PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
297 set_bit(RELEASE_RESOURCES, &ep->com.flags);
298 put_ep(&ep->com);
301 static int status2errno(int status)
303 switch (status) {
304 case CPL_ERR_NONE:
305 return 0;
306 case CPL_ERR_CONN_RESET:
307 return -ECONNRESET;
308 case CPL_ERR_ARP_MISS:
309 return -EHOSTUNREACH;
310 case CPL_ERR_CONN_TIMEDOUT:
311 return -ETIMEDOUT;
312 case CPL_ERR_TCAM_FULL:
313 return -ENOMEM;
314 case CPL_ERR_CONN_EXIST:
315 return -EADDRINUSE;
316 default:
317 return -EIO;
322 * Try and reuse skbs already allocated...
324 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
326 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
327 skb_trim(skb, 0);
328 skb_get(skb);
329 } else {
330 skb = alloc_skb(len, gfp);
332 return skb;
335 static struct rtable *find_route(struct t3cdev *dev, __be32 local_ip,
336 __be32 peer_ip, __be16 local_port,
337 __be16 peer_port, u8 tos)
339 struct rtable *rt;
340 struct flowi4 fl4;
342 rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip, local_ip,
343 peer_port, local_port, IPPROTO_TCP,
344 tos, 0);
345 if (IS_ERR(rt))
346 return NULL;
347 return rt;
350 static unsigned int find_best_mtu(const struct t3c_data *d, unsigned short mtu)
352 int i = 0;
354 while (i < d->nmtus - 1 && d->mtus[i + 1] <= mtu)
355 ++i;
356 return i;
359 static void arp_failure_discard(struct t3cdev *dev, struct sk_buff *skb)
361 PDBG("%s t3cdev %p\n", __func__, dev);
362 kfree_skb(skb);
366 * Handle an ARP failure for an active open.
368 static void act_open_req_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
370 printk(KERN_ERR MOD "ARP failure duing connect\n");
371 kfree_skb(skb);
375 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
376 * and send it along.
378 static void abort_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
380 struct cpl_abort_req *req = cplhdr(skb);
382 PDBG("%s t3cdev %p\n", __func__, dev);
383 req->cmd = CPL_ABORT_NO_RST;
384 iwch_cxgb3_ofld_send(dev, skb);
387 static int send_halfclose(struct iwch_ep *ep, gfp_t gfp)
389 struct cpl_close_con_req *req;
390 struct sk_buff *skb;
392 PDBG("%s ep %p\n", __func__, ep);
393 skb = get_skb(NULL, sizeof(*req), gfp);
394 if (!skb) {
395 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
396 return -ENOMEM;
398 skb->priority = CPL_PRIORITY_DATA;
399 set_arp_failure_handler(skb, arp_failure_discard);
400 req = (struct cpl_close_con_req *) skb_put(skb, sizeof(*req));
401 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_CLOSE_CON));
402 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
403 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, ep->hwtid));
404 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
407 static int send_abort(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
409 struct cpl_abort_req *req;
411 PDBG("%s ep %p\n", __func__, ep);
412 skb = get_skb(skb, sizeof(*req), gfp);
413 if (!skb) {
414 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
415 __func__);
416 return -ENOMEM;
418 skb->priority = CPL_PRIORITY_DATA;
419 set_arp_failure_handler(skb, abort_arp_failure);
420 req = (struct cpl_abort_req *) skb_put(skb, sizeof(*req));
421 memset(req, 0, sizeof(*req));
422 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ));
423 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
424 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
425 req->cmd = CPL_ABORT_SEND_RST;
426 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
429 static int send_connect(struct iwch_ep *ep)
431 struct cpl_act_open_req *req;
432 struct sk_buff *skb;
433 u32 opt0h, opt0l, opt2;
434 unsigned int mtu_idx;
435 int wscale;
437 PDBG("%s ep %p\n", __func__, ep);
439 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
440 if (!skb) {
441 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
442 __func__);
443 return -ENOMEM;
445 mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
446 wscale = compute_wscale(rcv_win);
447 opt0h = V_NAGLE(0) |
448 V_NO_CONG(nocong) |
449 V_KEEP_ALIVE(1) |
450 F_TCAM_BYPASS |
451 V_WND_SCALE(wscale) |
452 V_MSS_IDX(mtu_idx) |
453 V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
454 opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
455 opt2 = F_RX_COALESCE_VALID | V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
456 V_CONG_CONTROL_FLAVOR(cong_flavor);
457 skb->priority = CPL_PRIORITY_SETUP;
458 set_arp_failure_handler(skb, act_open_req_arp_failure);
460 req = (struct cpl_act_open_req *) skb_put(skb, sizeof(*req));
461 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
462 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, ep->atid));
463 req->local_port = ep->com.local_addr.sin_port;
464 req->peer_port = ep->com.remote_addr.sin_port;
465 req->local_ip = ep->com.local_addr.sin_addr.s_addr;
466 req->peer_ip = ep->com.remote_addr.sin_addr.s_addr;
467 req->opt0h = htonl(opt0h);
468 req->opt0l = htonl(opt0l);
469 req->params = 0;
470 req->opt2 = htonl(opt2);
471 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
474 static void send_mpa_req(struct iwch_ep *ep, struct sk_buff *skb)
476 int mpalen;
477 struct tx_data_wr *req;
478 struct mpa_message *mpa;
479 int len;
481 PDBG("%s ep %p pd_len %d\n", __func__, ep, ep->plen);
483 BUG_ON(skb_cloned(skb));
485 mpalen = sizeof(*mpa) + ep->plen;
486 if (skb->data + mpalen + sizeof(*req) > skb_end_pointer(skb)) {
487 kfree_skb(skb);
488 skb=alloc_skb(mpalen + sizeof(*req), GFP_KERNEL);
489 if (!skb) {
490 connect_reply_upcall(ep, -ENOMEM);
491 return;
494 skb_trim(skb, 0);
495 skb_reserve(skb, sizeof(*req));
496 skb_put(skb, mpalen);
497 skb->priority = CPL_PRIORITY_DATA;
498 mpa = (struct mpa_message *) skb->data;
499 memset(mpa, 0, sizeof(*mpa));
500 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
501 mpa->flags = (crc_enabled ? MPA_CRC : 0) |
502 (markers_enabled ? MPA_MARKERS : 0);
503 mpa->private_data_size = htons(ep->plen);
504 mpa->revision = mpa_rev;
506 if (ep->plen)
507 memcpy(mpa->private_data, ep->mpa_pkt + sizeof(*mpa), ep->plen);
510 * Reference the mpa skb. This ensures the data area
511 * will remain in memory until the hw acks the tx.
512 * Function tx_ack() will deref it.
514 skb_get(skb);
515 set_arp_failure_handler(skb, arp_failure_discard);
516 skb_reset_transport_header(skb);
517 len = skb->len;
518 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
519 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
520 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
521 req->len = htonl(len);
522 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
523 V_TX_SNDBUF(snd_win>>15));
524 req->flags = htonl(F_TX_INIT);
525 req->sndseq = htonl(ep->snd_seq);
526 BUG_ON(ep->mpa_skb);
527 ep->mpa_skb = skb;
528 iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
529 start_ep_timer(ep);
530 state_set(&ep->com, MPA_REQ_SENT);
531 return;
534 static int send_mpa_reject(struct iwch_ep *ep, const void *pdata, u8 plen)
536 int mpalen;
537 struct tx_data_wr *req;
538 struct mpa_message *mpa;
539 struct sk_buff *skb;
541 PDBG("%s ep %p plen %d\n", __func__, ep, plen);
543 mpalen = sizeof(*mpa) + plen;
545 skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
546 if (!skb) {
547 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
548 return -ENOMEM;
550 skb_reserve(skb, sizeof(*req));
551 mpa = (struct mpa_message *) skb_put(skb, mpalen);
552 memset(mpa, 0, sizeof(*mpa));
553 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
554 mpa->flags = MPA_REJECT;
555 mpa->revision = mpa_rev;
556 mpa->private_data_size = htons(plen);
557 if (plen)
558 memcpy(mpa->private_data, pdata, plen);
561 * Reference the mpa skb again. This ensures the data area
562 * will remain in memory until the hw acks the tx.
563 * Function tx_ack() will deref it.
565 skb_get(skb);
566 skb->priority = CPL_PRIORITY_DATA;
567 set_arp_failure_handler(skb, arp_failure_discard);
568 skb_reset_transport_header(skb);
569 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
570 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
571 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
572 req->len = htonl(mpalen);
573 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
574 V_TX_SNDBUF(snd_win>>15));
575 req->flags = htonl(F_TX_INIT);
576 req->sndseq = htonl(ep->snd_seq);
577 BUG_ON(ep->mpa_skb);
578 ep->mpa_skb = skb;
579 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
582 static int send_mpa_reply(struct iwch_ep *ep, const void *pdata, u8 plen)
584 int mpalen;
585 struct tx_data_wr *req;
586 struct mpa_message *mpa;
587 int len;
588 struct sk_buff *skb;
590 PDBG("%s ep %p plen %d\n", __func__, ep, plen);
592 mpalen = sizeof(*mpa) + plen;
594 skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
595 if (!skb) {
596 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
597 return -ENOMEM;
599 skb->priority = CPL_PRIORITY_DATA;
600 skb_reserve(skb, sizeof(*req));
601 mpa = (struct mpa_message *) skb_put(skb, mpalen);
602 memset(mpa, 0, sizeof(*mpa));
603 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
604 mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
605 (markers_enabled ? MPA_MARKERS : 0);
606 mpa->revision = mpa_rev;
607 mpa->private_data_size = htons(plen);
608 if (plen)
609 memcpy(mpa->private_data, pdata, plen);
612 * Reference the mpa skb. This ensures the data area
613 * will remain in memory until the hw acks the tx.
614 * Function tx_ack() will deref it.
616 skb_get(skb);
617 set_arp_failure_handler(skb, arp_failure_discard);
618 skb_reset_transport_header(skb);
619 len = skb->len;
620 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
621 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
622 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
623 req->len = htonl(len);
624 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
625 V_TX_SNDBUF(snd_win>>15));
626 req->flags = htonl(F_TX_INIT);
627 req->sndseq = htonl(ep->snd_seq);
628 ep->mpa_skb = skb;
629 state_set(&ep->com, MPA_REP_SENT);
630 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
633 static int act_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
635 struct iwch_ep *ep = ctx;
636 struct cpl_act_establish *req = cplhdr(skb);
637 unsigned int tid = GET_TID(req);
639 PDBG("%s ep %p tid %d\n", __func__, ep, tid);
641 dst_confirm(ep->dst);
643 /* setup the hwtid for this connection */
644 ep->hwtid = tid;
645 cxgb3_insert_tid(ep->com.tdev, &t3c_client, ep, tid);
647 ep->snd_seq = ntohl(req->snd_isn);
648 ep->rcv_seq = ntohl(req->rcv_isn);
650 set_emss(ep, ntohs(req->tcp_opt));
652 /* dealloc the atid */
653 cxgb3_free_atid(ep->com.tdev, ep->atid);
655 /* start MPA negotiation */
656 send_mpa_req(ep, skb);
658 return 0;
661 static void abort_connection(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
663 PDBG("%s ep %p\n", __FILE__, ep);
664 state_set(&ep->com, ABORTING);
665 send_abort(ep, skb, gfp);
668 static void close_complete_upcall(struct iwch_ep *ep)
670 struct iw_cm_event event;
672 PDBG("%s ep %p\n", __func__, ep);
673 memset(&event, 0, sizeof(event));
674 event.event = IW_CM_EVENT_CLOSE;
675 if (ep->com.cm_id) {
676 PDBG("close complete delivered ep %p cm_id %p tid %d\n",
677 ep, ep->com.cm_id, ep->hwtid);
678 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
679 ep->com.cm_id->rem_ref(ep->com.cm_id);
680 ep->com.cm_id = NULL;
681 ep->com.qp = NULL;
685 static void peer_close_upcall(struct iwch_ep *ep)
687 struct iw_cm_event event;
689 PDBG("%s ep %p\n", __func__, ep);
690 memset(&event, 0, sizeof(event));
691 event.event = IW_CM_EVENT_DISCONNECT;
692 if (ep->com.cm_id) {
693 PDBG("peer close delivered ep %p cm_id %p tid %d\n",
694 ep, ep->com.cm_id, ep->hwtid);
695 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
699 static void peer_abort_upcall(struct iwch_ep *ep)
701 struct iw_cm_event event;
703 PDBG("%s ep %p\n", __func__, ep);
704 memset(&event, 0, sizeof(event));
705 event.event = IW_CM_EVENT_CLOSE;
706 event.status = -ECONNRESET;
707 if (ep->com.cm_id) {
708 PDBG("abort delivered ep %p cm_id %p tid %d\n", ep,
709 ep->com.cm_id, ep->hwtid);
710 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
711 ep->com.cm_id->rem_ref(ep->com.cm_id);
712 ep->com.cm_id = NULL;
713 ep->com.qp = NULL;
717 static void connect_reply_upcall(struct iwch_ep *ep, int status)
719 struct iw_cm_event event;
721 PDBG("%s ep %p status %d\n", __func__, ep, status);
722 memset(&event, 0, sizeof(event));
723 event.event = IW_CM_EVENT_CONNECT_REPLY;
724 event.status = status;
725 memcpy(&event.local_addr, &ep->com.local_addr,
726 sizeof(ep->com.local_addr));
727 memcpy(&event.remote_addr, &ep->com.remote_addr,
728 sizeof(ep->com.remote_addr));
730 if ((status == 0) || (status == -ECONNREFUSED)) {
731 event.private_data_len = ep->plen;
732 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
734 if (ep->com.cm_id) {
735 PDBG("%s ep %p tid %d status %d\n", __func__, ep,
736 ep->hwtid, status);
737 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
739 if (status < 0) {
740 ep->com.cm_id->rem_ref(ep->com.cm_id);
741 ep->com.cm_id = NULL;
742 ep->com.qp = NULL;
746 static void connect_request_upcall(struct iwch_ep *ep)
748 struct iw_cm_event event;
750 PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
751 memset(&event, 0, sizeof(event));
752 event.event = IW_CM_EVENT_CONNECT_REQUEST;
753 memcpy(&event.local_addr, &ep->com.local_addr,
754 sizeof(ep->com.local_addr));
755 memcpy(&event.remote_addr, &ep->com.remote_addr,
756 sizeof(ep->com.local_addr));
757 event.private_data_len = ep->plen;
758 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
759 event.provider_data = ep;
761 * Until ird/ord negotiation via MPAv2 support is added, send max
762 * supported values
764 event.ird = event.ord = 8;
765 if (state_read(&ep->parent_ep->com) != DEAD) {
766 get_ep(&ep->com);
767 ep->parent_ep->com.cm_id->event_handler(
768 ep->parent_ep->com.cm_id,
769 &event);
771 put_ep(&ep->parent_ep->com);
772 ep->parent_ep = NULL;
775 static void established_upcall(struct iwch_ep *ep)
777 struct iw_cm_event event;
779 PDBG("%s ep %p\n", __func__, ep);
780 memset(&event, 0, sizeof(event));
781 event.event = IW_CM_EVENT_ESTABLISHED;
783 * Until ird/ord negotiation via MPAv2 support is added, send max
784 * supported values
786 event.ird = event.ord = 8;
787 if (ep->com.cm_id) {
788 PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
789 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
793 static int update_rx_credits(struct iwch_ep *ep, u32 credits)
795 struct cpl_rx_data_ack *req;
796 struct sk_buff *skb;
798 PDBG("%s ep %p credits %u\n", __func__, ep, credits);
799 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
800 if (!skb) {
801 printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
802 return 0;
805 req = (struct cpl_rx_data_ack *) skb_put(skb, sizeof(*req));
806 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
807 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RX_DATA_ACK, ep->hwtid));
808 req->credit_dack = htonl(V_RX_CREDITS(credits) | V_RX_FORCE_ACK(1));
809 skb->priority = CPL_PRIORITY_ACK;
810 iwch_cxgb3_ofld_send(ep->com.tdev, skb);
811 return credits;
814 static void process_mpa_reply(struct iwch_ep *ep, struct sk_buff *skb)
816 struct mpa_message *mpa;
817 u16 plen;
818 struct iwch_qp_attributes attrs;
819 enum iwch_qp_attr_mask mask;
820 int err;
822 PDBG("%s ep %p\n", __func__, ep);
825 * Stop mpa timer. If it expired, then the state has
826 * changed and we bail since ep_timeout already aborted
827 * the connection.
829 stop_ep_timer(ep);
830 if (state_read(&ep->com) != MPA_REQ_SENT)
831 return;
834 * If we get more than the supported amount of private data
835 * then we must fail this connection.
837 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
838 err = -EINVAL;
839 goto err;
843 * copy the new data into our accumulation buffer.
845 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
846 skb->len);
847 ep->mpa_pkt_len += skb->len;
850 * if we don't even have the mpa message, then bail.
852 if (ep->mpa_pkt_len < sizeof(*mpa))
853 return;
854 mpa = (struct mpa_message *) ep->mpa_pkt;
856 /* Validate MPA header. */
857 if (mpa->revision != mpa_rev) {
858 err = -EPROTO;
859 goto err;
861 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
862 err = -EPROTO;
863 goto err;
866 plen = ntohs(mpa->private_data_size);
869 * Fail if there's too much private data.
871 if (plen > MPA_MAX_PRIVATE_DATA) {
872 err = -EPROTO;
873 goto err;
877 * If plen does not account for pkt size
879 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
880 err = -EPROTO;
881 goto err;
884 ep->plen = (u8) plen;
887 * If we don't have all the pdata yet, then bail.
888 * We'll continue process when more data arrives.
890 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
891 return;
893 if (mpa->flags & MPA_REJECT) {
894 err = -ECONNREFUSED;
895 goto err;
899 * If we get here we have accumulated the entire mpa
900 * start reply message including private data. And
901 * the MPA header is valid.
903 state_set(&ep->com, FPDU_MODE);
904 ep->mpa_attr.initiator = 1;
905 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
906 ep->mpa_attr.recv_marker_enabled = markers_enabled;
907 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
908 ep->mpa_attr.version = mpa_rev;
909 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
910 "xmit_marker_enabled=%d, version=%d\n", __func__,
911 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
912 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
914 attrs.mpa_attr = ep->mpa_attr;
915 attrs.max_ird = ep->ird;
916 attrs.max_ord = ep->ord;
917 attrs.llp_stream_handle = ep;
918 attrs.next_state = IWCH_QP_STATE_RTS;
920 mask = IWCH_QP_ATTR_NEXT_STATE |
921 IWCH_QP_ATTR_LLP_STREAM_HANDLE | IWCH_QP_ATTR_MPA_ATTR |
922 IWCH_QP_ATTR_MAX_IRD | IWCH_QP_ATTR_MAX_ORD;
924 /* bind QP and TID with INIT_WR */
925 err = iwch_modify_qp(ep->com.qp->rhp,
926 ep->com.qp, mask, &attrs, 1);
927 if (err)
928 goto err;
930 if (peer2peer && iwch_rqes_posted(ep->com.qp) == 0) {
931 iwch_post_zb_read(ep);
934 goto out;
935 err:
936 abort_connection(ep, skb, GFP_KERNEL);
937 out:
938 connect_reply_upcall(ep, err);
939 return;
942 static void process_mpa_request(struct iwch_ep *ep, struct sk_buff *skb)
944 struct mpa_message *mpa;
945 u16 plen;
947 PDBG("%s ep %p\n", __func__, ep);
950 * Stop mpa timer. If it expired, then the state has
951 * changed and we bail since ep_timeout already aborted
952 * the connection.
954 stop_ep_timer(ep);
955 if (state_read(&ep->com) != MPA_REQ_WAIT)
956 return;
959 * If we get more than the supported amount of private data
960 * then we must fail this connection.
962 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
963 abort_connection(ep, skb, GFP_KERNEL);
964 return;
967 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
970 * Copy the new data into our accumulation buffer.
972 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
973 skb->len);
974 ep->mpa_pkt_len += skb->len;
977 * If we don't even have the mpa message, then bail.
978 * We'll continue process when more data arrives.
980 if (ep->mpa_pkt_len < sizeof(*mpa))
981 return;
982 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
983 mpa = (struct mpa_message *) ep->mpa_pkt;
986 * Validate MPA Header.
988 if (mpa->revision != mpa_rev) {
989 abort_connection(ep, skb, GFP_KERNEL);
990 return;
993 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) {
994 abort_connection(ep, skb, GFP_KERNEL);
995 return;
998 plen = ntohs(mpa->private_data_size);
1001 * Fail if there's too much private data.
1003 if (plen > MPA_MAX_PRIVATE_DATA) {
1004 abort_connection(ep, skb, GFP_KERNEL);
1005 return;
1009 * If plen does not account for pkt size
1011 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1012 abort_connection(ep, skb, GFP_KERNEL);
1013 return;
1015 ep->plen = (u8) plen;
1018 * If we don't have all the pdata yet, then bail.
1020 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1021 return;
1024 * If we get here we have accumulated the entire mpa
1025 * start reply message including private data.
1027 ep->mpa_attr.initiator = 0;
1028 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1029 ep->mpa_attr.recv_marker_enabled = markers_enabled;
1030 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1031 ep->mpa_attr.version = mpa_rev;
1032 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1033 "xmit_marker_enabled=%d, version=%d\n", __func__,
1034 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1035 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
1037 state_set(&ep->com, MPA_REQ_RCVD);
1039 /* drive upcall */
1040 connect_request_upcall(ep);
1041 return;
1044 static int rx_data(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1046 struct iwch_ep *ep = ctx;
1047 struct cpl_rx_data *hdr = cplhdr(skb);
1048 unsigned int dlen = ntohs(hdr->len);
1050 PDBG("%s ep %p dlen %u\n", __func__, ep, dlen);
1052 skb_pull(skb, sizeof(*hdr));
1053 skb_trim(skb, dlen);
1055 ep->rcv_seq += dlen;
1056 BUG_ON(ep->rcv_seq != (ntohl(hdr->seq) + dlen));
1058 switch (state_read(&ep->com)) {
1059 case MPA_REQ_SENT:
1060 process_mpa_reply(ep, skb);
1061 break;
1062 case MPA_REQ_WAIT:
1063 process_mpa_request(ep, skb);
1064 break;
1065 case MPA_REP_SENT:
1066 break;
1067 default:
1068 printk(KERN_ERR MOD "%s Unexpected streaming data."
1069 " ep %p state %d tid %d\n",
1070 __func__, ep, state_read(&ep->com), ep->hwtid);
1073 * The ep will timeout and inform the ULP of the failure.
1074 * See ep_timeout().
1076 break;
1079 /* update RX credits */
1080 update_rx_credits(ep, dlen);
1082 return CPL_RET_BUF_DONE;
1086 * Upcall from the adapter indicating data has been transmitted.
1087 * For us its just the single MPA request or reply. We can now free
1088 * the skb holding the mpa message.
1090 static int tx_ack(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1092 struct iwch_ep *ep = ctx;
1093 struct cpl_wr_ack *hdr = cplhdr(skb);
1094 unsigned int credits = ntohs(hdr->credits);
1095 unsigned long flags;
1096 int post_zb = 0;
1098 PDBG("%s ep %p credits %u\n", __func__, ep, credits);
1100 if (credits == 0) {
1101 PDBG("%s 0 credit ack ep %p state %u\n",
1102 __func__, ep, state_read(&ep->com));
1103 return CPL_RET_BUF_DONE;
1106 spin_lock_irqsave(&ep->com.lock, flags);
1107 BUG_ON(credits != 1);
1108 dst_confirm(ep->dst);
1109 if (!ep->mpa_skb) {
1110 PDBG("%s rdma_init wr_ack ep %p state %u\n",
1111 __func__, ep, ep->com.state);
1112 if (ep->mpa_attr.initiator) {
1113 PDBG("%s initiator ep %p state %u\n",
1114 __func__, ep, ep->com.state);
1115 if (peer2peer && ep->com.state == FPDU_MODE)
1116 post_zb = 1;
1117 } else {
1118 PDBG("%s responder ep %p state %u\n",
1119 __func__, ep, ep->com.state);
1120 if (ep->com.state == MPA_REQ_RCVD) {
1121 ep->com.rpl_done = 1;
1122 wake_up(&ep->com.waitq);
1125 } else {
1126 PDBG("%s lsm ack ep %p state %u freeing skb\n",
1127 __func__, ep, ep->com.state);
1128 kfree_skb(ep->mpa_skb);
1129 ep->mpa_skb = NULL;
1131 spin_unlock_irqrestore(&ep->com.lock, flags);
1132 if (post_zb)
1133 iwch_post_zb_read(ep);
1134 return CPL_RET_BUF_DONE;
1137 static int abort_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1139 struct iwch_ep *ep = ctx;
1140 unsigned long flags;
1141 int release = 0;
1143 PDBG("%s ep %p\n", __func__, ep);
1144 BUG_ON(!ep);
1147 * We get 2 abort replies from the HW. The first one must
1148 * be ignored except for scribbling that we need one more.
1150 if (!test_and_set_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags)) {
1151 return CPL_RET_BUF_DONE;
1154 spin_lock_irqsave(&ep->com.lock, flags);
1155 switch (ep->com.state) {
1156 case ABORTING:
1157 close_complete_upcall(ep);
1158 __state_set(&ep->com, DEAD);
1159 release = 1;
1160 break;
1161 default:
1162 printk(KERN_ERR "%s ep %p state %d\n",
1163 __func__, ep, ep->com.state);
1164 break;
1166 spin_unlock_irqrestore(&ep->com.lock, flags);
1168 if (release)
1169 release_ep_resources(ep);
1170 return CPL_RET_BUF_DONE;
1174 * Return whether a failed active open has allocated a TID
1176 static inline int act_open_has_tid(int status)
1178 return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST &&
1179 status != CPL_ERR_ARP_MISS;
1182 static int act_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1184 struct iwch_ep *ep = ctx;
1185 struct cpl_act_open_rpl *rpl = cplhdr(skb);
1187 PDBG("%s ep %p status %u errno %d\n", __func__, ep, rpl->status,
1188 status2errno(rpl->status));
1189 connect_reply_upcall(ep, status2errno(rpl->status));
1190 state_set(&ep->com, DEAD);
1191 if (ep->com.tdev->type != T3A && act_open_has_tid(rpl->status))
1192 release_tid(ep->com.tdev, GET_TID(rpl), NULL);
1193 cxgb3_free_atid(ep->com.tdev, ep->atid);
1194 dst_release(ep->dst);
1195 l2t_release(ep->com.tdev, ep->l2t);
1196 put_ep(&ep->com);
1197 return CPL_RET_BUF_DONE;
1200 static int listen_start(struct iwch_listen_ep *ep)
1202 struct sk_buff *skb;
1203 struct cpl_pass_open_req *req;
1205 PDBG("%s ep %p\n", __func__, ep);
1206 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1207 if (!skb) {
1208 printk(KERN_ERR MOD "t3c_listen_start failed to alloc skb!\n");
1209 return -ENOMEM;
1212 req = (struct cpl_pass_open_req *) skb_put(skb, sizeof(*req));
1213 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1214 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, ep->stid));
1215 req->local_port = ep->com.local_addr.sin_port;
1216 req->local_ip = ep->com.local_addr.sin_addr.s_addr;
1217 req->peer_port = 0;
1218 req->peer_ip = 0;
1219 req->peer_netmask = 0;
1220 req->opt0h = htonl(F_DELACK | F_TCAM_BYPASS);
1221 req->opt0l = htonl(V_RCV_BUFSIZ(rcv_win>>10));
1222 req->opt1 = htonl(V_CONN_POLICY(CPL_CONN_POLICY_ASK));
1224 skb->priority = 1;
1225 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
1228 static int pass_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1230 struct iwch_listen_ep *ep = ctx;
1231 struct cpl_pass_open_rpl *rpl = cplhdr(skb);
1233 PDBG("%s ep %p status %d error %d\n", __func__, ep,
1234 rpl->status, status2errno(rpl->status));
1235 ep->com.rpl_err = status2errno(rpl->status);
1236 ep->com.rpl_done = 1;
1237 wake_up(&ep->com.waitq);
1239 return CPL_RET_BUF_DONE;
1242 static int listen_stop(struct iwch_listen_ep *ep)
1244 struct sk_buff *skb;
1245 struct cpl_close_listserv_req *req;
1247 PDBG("%s ep %p\n", __func__, ep);
1248 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1249 if (!skb) {
1250 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
1251 return -ENOMEM;
1253 req = (struct cpl_close_listserv_req *) skb_put(skb, sizeof(*req));
1254 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1255 req->cpu_idx = 0;
1256 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, ep->stid));
1257 skb->priority = 1;
1258 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
1261 static int close_listsrv_rpl(struct t3cdev *tdev, struct sk_buff *skb,
1262 void *ctx)
1264 struct iwch_listen_ep *ep = ctx;
1265 struct cpl_close_listserv_rpl *rpl = cplhdr(skb);
1267 PDBG("%s ep %p\n", __func__, ep);
1268 ep->com.rpl_err = status2errno(rpl->status);
1269 ep->com.rpl_done = 1;
1270 wake_up(&ep->com.waitq);
1271 return CPL_RET_BUF_DONE;
1274 static void accept_cr(struct iwch_ep *ep, __be32 peer_ip, struct sk_buff *skb)
1276 struct cpl_pass_accept_rpl *rpl;
1277 unsigned int mtu_idx;
1278 u32 opt0h, opt0l, opt2;
1279 int wscale;
1281 PDBG("%s ep %p\n", __func__, ep);
1282 BUG_ON(skb_cloned(skb));
1283 skb_trim(skb, sizeof(*rpl));
1284 skb_get(skb);
1285 mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
1286 wscale = compute_wscale(rcv_win);
1287 opt0h = V_NAGLE(0) |
1288 V_NO_CONG(nocong) |
1289 V_KEEP_ALIVE(1) |
1290 F_TCAM_BYPASS |
1291 V_WND_SCALE(wscale) |
1292 V_MSS_IDX(mtu_idx) |
1293 V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
1294 opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
1295 opt2 = F_RX_COALESCE_VALID | V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
1296 V_CONG_CONTROL_FLAVOR(cong_flavor);
1298 rpl = cplhdr(skb);
1299 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1300 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, ep->hwtid));
1301 rpl->peer_ip = peer_ip;
1302 rpl->opt0h = htonl(opt0h);
1303 rpl->opt0l_status = htonl(opt0l | CPL_PASS_OPEN_ACCEPT);
1304 rpl->opt2 = htonl(opt2);
1305 rpl->rsvd = rpl->opt2; /* workaround for HW bug */
1306 skb->priority = CPL_PRIORITY_SETUP;
1307 iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
1309 return;
1312 static void reject_cr(struct t3cdev *tdev, u32 hwtid, __be32 peer_ip,
1313 struct sk_buff *skb)
1315 PDBG("%s t3cdev %p tid %u peer_ip %x\n", __func__, tdev, hwtid,
1316 peer_ip);
1317 BUG_ON(skb_cloned(skb));
1318 skb_trim(skb, sizeof(struct cpl_tid_release));
1319 skb_get(skb);
1321 if (tdev->type != T3A)
1322 release_tid(tdev, hwtid, skb);
1323 else {
1324 struct cpl_pass_accept_rpl *rpl;
1326 rpl = cplhdr(skb);
1327 skb->priority = CPL_PRIORITY_SETUP;
1328 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1329 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
1330 hwtid));
1331 rpl->peer_ip = peer_ip;
1332 rpl->opt0h = htonl(F_TCAM_BYPASS);
1333 rpl->opt0l_status = htonl(CPL_PASS_OPEN_REJECT);
1334 rpl->opt2 = 0;
1335 rpl->rsvd = rpl->opt2;
1336 iwch_cxgb3_ofld_send(tdev, skb);
1340 static int pass_accept_req(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1342 struct iwch_ep *child_ep, *parent_ep = ctx;
1343 struct cpl_pass_accept_req *req = cplhdr(skb);
1344 unsigned int hwtid = GET_TID(req);
1345 struct dst_entry *dst;
1346 struct l2t_entry *l2t;
1347 struct rtable *rt;
1348 struct iff_mac tim;
1350 PDBG("%s parent ep %p tid %u\n", __func__, parent_ep, hwtid);
1352 if (state_read(&parent_ep->com) != LISTEN) {
1353 printk(KERN_ERR "%s - listening ep not in LISTEN\n",
1354 __func__);
1355 goto reject;
1359 * Find the netdev for this connection request.
1361 tim.mac_addr = req->dst_mac;
1362 tim.vlan_tag = ntohs(req->vlan_tag);
1363 if (tdev->ctl(tdev, GET_IFF_FROM_MAC, &tim) < 0 || !tim.dev) {
1364 printk(KERN_ERR "%s bad dst mac %pM\n",
1365 __func__, req->dst_mac);
1366 goto reject;
1369 /* Find output route */
1370 rt = find_route(tdev,
1371 req->local_ip,
1372 req->peer_ip,
1373 req->local_port,
1374 req->peer_port, G_PASS_OPEN_TOS(ntohl(req->tos_tid)));
1375 if (!rt) {
1376 printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
1377 __func__);
1378 goto reject;
1380 dst = &rt->dst;
1381 l2t = t3_l2t_get(tdev, dst, NULL, &req->peer_ip);
1382 if (!l2t) {
1383 printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
1384 __func__);
1385 dst_release(dst);
1386 goto reject;
1388 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
1389 if (!child_ep) {
1390 printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
1391 __func__);
1392 l2t_release(tdev, l2t);
1393 dst_release(dst);
1394 goto reject;
1396 state_set(&child_ep->com, CONNECTING);
1397 child_ep->com.tdev = tdev;
1398 child_ep->com.cm_id = NULL;
1399 child_ep->com.local_addr.sin_family = PF_INET;
1400 child_ep->com.local_addr.sin_port = req->local_port;
1401 child_ep->com.local_addr.sin_addr.s_addr = req->local_ip;
1402 child_ep->com.remote_addr.sin_family = PF_INET;
1403 child_ep->com.remote_addr.sin_port = req->peer_port;
1404 child_ep->com.remote_addr.sin_addr.s_addr = req->peer_ip;
1405 get_ep(&parent_ep->com);
1406 child_ep->parent_ep = parent_ep;
1407 child_ep->tos = G_PASS_OPEN_TOS(ntohl(req->tos_tid));
1408 child_ep->l2t = l2t;
1409 child_ep->dst = dst;
1410 child_ep->hwtid = hwtid;
1411 init_timer(&child_ep->timer);
1412 cxgb3_insert_tid(tdev, &t3c_client, child_ep, hwtid);
1413 accept_cr(child_ep, req->peer_ip, skb);
1414 goto out;
1415 reject:
1416 reject_cr(tdev, hwtid, req->peer_ip, skb);
1417 out:
1418 return CPL_RET_BUF_DONE;
1421 static int pass_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1423 struct iwch_ep *ep = ctx;
1424 struct cpl_pass_establish *req = cplhdr(skb);
1426 PDBG("%s ep %p\n", __func__, ep);
1427 ep->snd_seq = ntohl(req->snd_isn);
1428 ep->rcv_seq = ntohl(req->rcv_isn);
1430 set_emss(ep, ntohs(req->tcp_opt));
1432 dst_confirm(ep->dst);
1433 state_set(&ep->com, MPA_REQ_WAIT);
1434 start_ep_timer(ep);
1436 return CPL_RET_BUF_DONE;
1439 static int peer_close(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1441 struct iwch_ep *ep = ctx;
1442 struct iwch_qp_attributes attrs;
1443 unsigned long flags;
1444 int disconnect = 1;
1445 int release = 0;
1447 PDBG("%s ep %p\n", __func__, ep);
1448 dst_confirm(ep->dst);
1450 spin_lock_irqsave(&ep->com.lock, flags);
1451 switch (ep->com.state) {
1452 case MPA_REQ_WAIT:
1453 __state_set(&ep->com, CLOSING);
1454 break;
1455 case MPA_REQ_SENT:
1456 __state_set(&ep->com, CLOSING);
1457 connect_reply_upcall(ep, -ECONNRESET);
1458 break;
1459 case MPA_REQ_RCVD:
1462 * We're gonna mark this puppy DEAD, but keep
1463 * the reference on it until the ULP accepts or
1464 * rejects the CR. Also wake up anyone waiting
1465 * in rdma connection migration (see iwch_accept_cr()).
1467 __state_set(&ep->com, CLOSING);
1468 ep->com.rpl_done = 1;
1469 ep->com.rpl_err = -ECONNRESET;
1470 PDBG("waking up ep %p\n", ep);
1471 wake_up(&ep->com.waitq);
1472 break;
1473 case MPA_REP_SENT:
1474 __state_set(&ep->com, CLOSING);
1475 ep->com.rpl_done = 1;
1476 ep->com.rpl_err = -ECONNRESET;
1477 PDBG("waking up ep %p\n", ep);
1478 wake_up(&ep->com.waitq);
1479 break;
1480 case FPDU_MODE:
1481 start_ep_timer(ep);
1482 __state_set(&ep->com, CLOSING);
1483 attrs.next_state = IWCH_QP_STATE_CLOSING;
1484 iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1485 IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1486 peer_close_upcall(ep);
1487 break;
1488 case ABORTING:
1489 disconnect = 0;
1490 break;
1491 case CLOSING:
1492 __state_set(&ep->com, MORIBUND);
1493 disconnect = 0;
1494 break;
1495 case MORIBUND:
1496 stop_ep_timer(ep);
1497 if (ep->com.cm_id && ep->com.qp) {
1498 attrs.next_state = IWCH_QP_STATE_IDLE;
1499 iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1500 IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1502 close_complete_upcall(ep);
1503 __state_set(&ep->com, DEAD);
1504 release = 1;
1505 disconnect = 0;
1506 break;
1507 case DEAD:
1508 disconnect = 0;
1509 break;
1510 default:
1511 BUG_ON(1);
1513 spin_unlock_irqrestore(&ep->com.lock, flags);
1514 if (disconnect)
1515 iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1516 if (release)
1517 release_ep_resources(ep);
1518 return CPL_RET_BUF_DONE;
1522 * Returns whether an ABORT_REQ_RSS message is a negative advice.
1524 static int is_neg_adv_abort(unsigned int status)
1526 return status == CPL_ERR_RTX_NEG_ADVICE ||
1527 status == CPL_ERR_PERSIST_NEG_ADVICE;
1530 static int peer_abort(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1532 struct cpl_abort_req_rss *req = cplhdr(skb);
1533 struct iwch_ep *ep = ctx;
1534 struct cpl_abort_rpl *rpl;
1535 struct sk_buff *rpl_skb;
1536 struct iwch_qp_attributes attrs;
1537 int ret;
1538 int release = 0;
1539 unsigned long flags;
1541 if (is_neg_adv_abort(req->status)) {
1542 PDBG("%s neg_adv_abort ep %p tid %d\n", __func__, ep,
1543 ep->hwtid);
1544 t3_l2t_send_event(ep->com.tdev, ep->l2t);
1545 return CPL_RET_BUF_DONE;
1549 * We get 2 peer aborts from the HW. The first one must
1550 * be ignored except for scribbling that we need one more.
1552 if (!test_and_set_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags)) {
1553 return CPL_RET_BUF_DONE;
1556 spin_lock_irqsave(&ep->com.lock, flags);
1557 PDBG("%s ep %p state %u\n", __func__, ep, ep->com.state);
1558 switch (ep->com.state) {
1559 case CONNECTING:
1560 break;
1561 case MPA_REQ_WAIT:
1562 stop_ep_timer(ep);
1563 break;
1564 case MPA_REQ_SENT:
1565 stop_ep_timer(ep);
1566 connect_reply_upcall(ep, -ECONNRESET);
1567 break;
1568 case MPA_REP_SENT:
1569 ep->com.rpl_done = 1;
1570 ep->com.rpl_err = -ECONNRESET;
1571 PDBG("waking up ep %p\n", ep);
1572 wake_up(&ep->com.waitq);
1573 break;
1574 case MPA_REQ_RCVD:
1577 * We're gonna mark this puppy DEAD, but keep
1578 * the reference on it until the ULP accepts or
1579 * rejects the CR. Also wake up anyone waiting
1580 * in rdma connection migration (see iwch_accept_cr()).
1582 ep->com.rpl_done = 1;
1583 ep->com.rpl_err = -ECONNRESET;
1584 PDBG("waking up ep %p\n", ep);
1585 wake_up(&ep->com.waitq);
1586 break;
1587 case MORIBUND:
1588 case CLOSING:
1589 stop_ep_timer(ep);
1590 /*FALLTHROUGH*/
1591 case FPDU_MODE:
1592 if (ep->com.cm_id && ep->com.qp) {
1593 attrs.next_state = IWCH_QP_STATE_ERROR;
1594 ret = iwch_modify_qp(ep->com.qp->rhp,
1595 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1596 &attrs, 1);
1597 if (ret)
1598 printk(KERN_ERR MOD
1599 "%s - qp <- error failed!\n",
1600 __func__);
1602 peer_abort_upcall(ep);
1603 break;
1604 case ABORTING:
1605 break;
1606 case DEAD:
1607 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
1608 spin_unlock_irqrestore(&ep->com.lock, flags);
1609 return CPL_RET_BUF_DONE;
1610 default:
1611 BUG_ON(1);
1612 break;
1614 dst_confirm(ep->dst);
1615 if (ep->com.state != ABORTING) {
1616 __state_set(&ep->com, DEAD);
1617 release = 1;
1619 spin_unlock_irqrestore(&ep->com.lock, flags);
1621 rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
1622 if (!rpl_skb) {
1623 printk(KERN_ERR MOD "%s - cannot allocate skb!\n",
1624 __func__);
1625 release = 1;
1626 goto out;
1628 rpl_skb->priority = CPL_PRIORITY_DATA;
1629 rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
1630 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
1631 rpl->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
1632 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
1633 rpl->cmd = CPL_ABORT_NO_RST;
1634 iwch_cxgb3_ofld_send(ep->com.tdev, rpl_skb);
1635 out:
1636 if (release)
1637 release_ep_resources(ep);
1638 return CPL_RET_BUF_DONE;
1641 static int close_con_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1643 struct iwch_ep *ep = ctx;
1644 struct iwch_qp_attributes attrs;
1645 unsigned long flags;
1646 int release = 0;
1648 PDBG("%s ep %p\n", __func__, ep);
1649 BUG_ON(!ep);
1651 /* The cm_id may be null if we failed to connect */
1652 spin_lock_irqsave(&ep->com.lock, flags);
1653 switch (ep->com.state) {
1654 case CLOSING:
1655 __state_set(&ep->com, MORIBUND);
1656 break;
1657 case MORIBUND:
1658 stop_ep_timer(ep);
1659 if ((ep->com.cm_id) && (ep->com.qp)) {
1660 attrs.next_state = IWCH_QP_STATE_IDLE;
1661 iwch_modify_qp(ep->com.qp->rhp,
1662 ep->com.qp,
1663 IWCH_QP_ATTR_NEXT_STATE,
1664 &attrs, 1);
1666 close_complete_upcall(ep);
1667 __state_set(&ep->com, DEAD);
1668 release = 1;
1669 break;
1670 case ABORTING:
1671 case DEAD:
1672 break;
1673 default:
1674 BUG_ON(1);
1675 break;
1677 spin_unlock_irqrestore(&ep->com.lock, flags);
1678 if (release)
1679 release_ep_resources(ep);
1680 return CPL_RET_BUF_DONE;
1684 * T3A does 3 things when a TERM is received:
1685 * 1) send up a CPL_RDMA_TERMINATE message with the TERM packet
1686 * 2) generate an async event on the QP with the TERMINATE opcode
1687 * 3) post a TERMINATE opcode cqe into the associated CQ.
1689 * For (1), we save the message in the qp for later consumer consumption.
1690 * For (2), we move the QP into TERMINATE, post a QP event and disconnect.
1691 * For (3), we toss the CQE in cxio_poll_cq().
1693 * terminate() handles case (1)...
1695 static int terminate(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1697 struct iwch_ep *ep = ctx;
1699 if (state_read(&ep->com) != FPDU_MODE)
1700 return CPL_RET_BUF_DONE;
1702 PDBG("%s ep %p\n", __func__, ep);
1703 skb_pull(skb, sizeof(struct cpl_rdma_terminate));
1704 PDBG("%s saving %d bytes of term msg\n", __func__, skb->len);
1705 skb_copy_from_linear_data(skb, ep->com.qp->attr.terminate_buffer,
1706 skb->len);
1707 ep->com.qp->attr.terminate_msg_len = skb->len;
1708 ep->com.qp->attr.is_terminate_local = 0;
1709 return CPL_RET_BUF_DONE;
1712 static int ec_status(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1714 struct cpl_rdma_ec_status *rep = cplhdr(skb);
1715 struct iwch_ep *ep = ctx;
1717 PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid,
1718 rep->status);
1719 if (rep->status) {
1720 struct iwch_qp_attributes attrs;
1722 printk(KERN_ERR MOD "%s BAD CLOSE - Aborting tid %u\n",
1723 __func__, ep->hwtid);
1724 stop_ep_timer(ep);
1725 attrs.next_state = IWCH_QP_STATE_ERROR;
1726 iwch_modify_qp(ep->com.qp->rhp,
1727 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1728 &attrs, 1);
1729 abort_connection(ep, NULL, GFP_KERNEL);
1731 return CPL_RET_BUF_DONE;
1734 static void ep_timeout(unsigned long arg)
1736 struct iwch_ep *ep = (struct iwch_ep *)arg;
1737 struct iwch_qp_attributes attrs;
1738 unsigned long flags;
1739 int abort = 1;
1741 spin_lock_irqsave(&ep->com.lock, flags);
1742 PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
1743 ep->com.state);
1744 switch (ep->com.state) {
1745 case MPA_REQ_SENT:
1746 __state_set(&ep->com, ABORTING);
1747 connect_reply_upcall(ep, -ETIMEDOUT);
1748 break;
1749 case MPA_REQ_WAIT:
1750 __state_set(&ep->com, ABORTING);
1751 break;
1752 case CLOSING:
1753 case MORIBUND:
1754 if (ep->com.cm_id && ep->com.qp) {
1755 attrs.next_state = IWCH_QP_STATE_ERROR;
1756 iwch_modify_qp(ep->com.qp->rhp,
1757 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1758 &attrs, 1);
1760 __state_set(&ep->com, ABORTING);
1761 break;
1762 default:
1763 WARN(1, "%s unexpected state ep %p state %u\n",
1764 __func__, ep, ep->com.state);
1765 abort = 0;
1767 spin_unlock_irqrestore(&ep->com.lock, flags);
1768 if (abort)
1769 abort_connection(ep, NULL, GFP_ATOMIC);
1770 put_ep(&ep->com);
1773 int iwch_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
1775 int err;
1776 struct iwch_ep *ep = to_ep(cm_id);
1777 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1779 if (state_read(&ep->com) == DEAD) {
1780 put_ep(&ep->com);
1781 return -ECONNRESET;
1783 BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1784 if (mpa_rev == 0)
1785 abort_connection(ep, NULL, GFP_KERNEL);
1786 else {
1787 err = send_mpa_reject(ep, pdata, pdata_len);
1788 err = iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1790 put_ep(&ep->com);
1791 return 0;
1794 int iwch_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1796 int err;
1797 struct iwch_qp_attributes attrs;
1798 enum iwch_qp_attr_mask mask;
1799 struct iwch_ep *ep = to_ep(cm_id);
1800 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1801 struct iwch_qp *qp = get_qhp(h, conn_param->qpn);
1803 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1804 if (state_read(&ep->com) == DEAD) {
1805 err = -ECONNRESET;
1806 goto err;
1809 BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1810 BUG_ON(!qp);
1812 if ((conn_param->ord > qp->rhp->attr.max_rdma_read_qp_depth) ||
1813 (conn_param->ird > qp->rhp->attr.max_rdma_reads_per_qp)) {
1814 abort_connection(ep, NULL, GFP_KERNEL);
1815 err = -EINVAL;
1816 goto err;
1819 cm_id->add_ref(cm_id);
1820 ep->com.cm_id = cm_id;
1821 ep->com.qp = qp;
1823 ep->ird = conn_param->ird;
1824 ep->ord = conn_param->ord;
1826 if (peer2peer && ep->ird == 0)
1827 ep->ird = 1;
1829 PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
1831 /* bind QP to EP and move to RTS */
1832 attrs.mpa_attr = ep->mpa_attr;
1833 attrs.max_ird = ep->ird;
1834 attrs.max_ord = ep->ord;
1835 attrs.llp_stream_handle = ep;
1836 attrs.next_state = IWCH_QP_STATE_RTS;
1838 /* bind QP and TID with INIT_WR */
1839 mask = IWCH_QP_ATTR_NEXT_STATE |
1840 IWCH_QP_ATTR_LLP_STREAM_HANDLE |
1841 IWCH_QP_ATTR_MPA_ATTR |
1842 IWCH_QP_ATTR_MAX_IRD |
1843 IWCH_QP_ATTR_MAX_ORD;
1845 err = iwch_modify_qp(ep->com.qp->rhp,
1846 ep->com.qp, mask, &attrs, 1);
1847 if (err)
1848 goto err1;
1850 /* if needed, wait for wr_ack */
1851 if (iwch_rqes_posted(qp)) {
1852 wait_event(ep->com.waitq, ep->com.rpl_done);
1853 err = ep->com.rpl_err;
1854 if (err)
1855 goto err1;
1858 err = send_mpa_reply(ep, conn_param->private_data,
1859 conn_param->private_data_len);
1860 if (err)
1861 goto err1;
1864 state_set(&ep->com, FPDU_MODE);
1865 established_upcall(ep);
1866 put_ep(&ep->com);
1867 return 0;
1868 err1:
1869 ep->com.cm_id = NULL;
1870 ep->com.qp = NULL;
1871 cm_id->rem_ref(cm_id);
1872 err:
1873 put_ep(&ep->com);
1874 return err;
1877 static int is_loopback_dst(struct iw_cm_id *cm_id)
1879 struct net_device *dev;
1880 struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr;
1882 dev = ip_dev_find(&init_net, raddr->sin_addr.s_addr);
1883 if (!dev)
1884 return 0;
1885 dev_put(dev);
1886 return 1;
1889 int iwch_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1891 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1892 struct iwch_ep *ep;
1893 struct rtable *rt;
1894 int err = 0;
1895 struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr;
1896 struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr;
1898 if (cm_id->m_remote_addr.ss_family != PF_INET) {
1899 err = -ENOSYS;
1900 goto out;
1903 if (is_loopback_dst(cm_id)) {
1904 err = -ENOSYS;
1905 goto out;
1908 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
1909 if (!ep) {
1910 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
1911 err = -ENOMEM;
1912 goto out;
1914 init_timer(&ep->timer);
1915 ep->plen = conn_param->private_data_len;
1916 if (ep->plen)
1917 memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
1918 conn_param->private_data, ep->plen);
1919 ep->ird = conn_param->ird;
1920 ep->ord = conn_param->ord;
1922 if (peer2peer && ep->ord == 0)
1923 ep->ord = 1;
1925 ep->com.tdev = h->rdev.t3cdev_p;
1927 cm_id->add_ref(cm_id);
1928 ep->com.cm_id = cm_id;
1929 ep->com.qp = get_qhp(h, conn_param->qpn);
1930 BUG_ON(!ep->com.qp);
1931 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
1932 ep->com.qp, cm_id);
1935 * Allocate an active TID to initiate a TCP connection.
1937 ep->atid = cxgb3_alloc_atid(h->rdev.t3cdev_p, &t3c_client, ep);
1938 if (ep->atid == -1) {
1939 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
1940 err = -ENOMEM;
1941 goto fail2;
1944 /* find a route */
1945 rt = find_route(h->rdev.t3cdev_p, laddr->sin_addr.s_addr,
1946 raddr->sin_addr.s_addr, laddr->sin_port,
1947 raddr->sin_port, IPTOS_LOWDELAY);
1948 if (!rt) {
1949 printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
1950 err = -EHOSTUNREACH;
1951 goto fail3;
1953 ep->dst = &rt->dst;
1954 ep->l2t = t3_l2t_get(ep->com.tdev, ep->dst, NULL,
1955 &raddr->sin_addr.s_addr);
1956 if (!ep->l2t) {
1957 printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
1958 err = -ENOMEM;
1959 goto fail4;
1962 state_set(&ep->com, CONNECTING);
1963 ep->tos = IPTOS_LOWDELAY;
1964 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
1965 sizeof(ep->com.local_addr));
1966 memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr,
1967 sizeof(ep->com.remote_addr));
1969 /* send connect request to rnic */
1970 err = send_connect(ep);
1971 if (!err)
1972 goto out;
1974 l2t_release(h->rdev.t3cdev_p, ep->l2t);
1975 fail4:
1976 dst_release(ep->dst);
1977 fail3:
1978 cxgb3_free_atid(ep->com.tdev, ep->atid);
1979 fail2:
1980 cm_id->rem_ref(cm_id);
1981 put_ep(&ep->com);
1982 out:
1983 return err;
1986 int iwch_create_listen(struct iw_cm_id *cm_id, int backlog)
1988 int err = 0;
1989 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1990 struct iwch_listen_ep *ep;
1993 might_sleep();
1995 if (cm_id->m_local_addr.ss_family != PF_INET) {
1996 err = -ENOSYS;
1997 goto fail1;
2000 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
2001 if (!ep) {
2002 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
2003 err = -ENOMEM;
2004 goto fail1;
2006 PDBG("%s ep %p\n", __func__, ep);
2007 ep->com.tdev = h->rdev.t3cdev_p;
2008 cm_id->add_ref(cm_id);
2009 ep->com.cm_id = cm_id;
2010 ep->backlog = backlog;
2011 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
2012 sizeof(ep->com.local_addr));
2015 * Allocate a server TID.
2017 ep->stid = cxgb3_alloc_stid(h->rdev.t3cdev_p, &t3c_client, ep);
2018 if (ep->stid == -1) {
2019 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
2020 err = -ENOMEM;
2021 goto fail2;
2024 state_set(&ep->com, LISTEN);
2025 err = listen_start(ep);
2026 if (err)
2027 goto fail3;
2029 /* wait for pass_open_rpl */
2030 wait_event(ep->com.waitq, ep->com.rpl_done);
2031 err = ep->com.rpl_err;
2032 if (!err) {
2033 cm_id->provider_data = ep;
2034 goto out;
2036 fail3:
2037 cxgb3_free_stid(ep->com.tdev, ep->stid);
2038 fail2:
2039 cm_id->rem_ref(cm_id);
2040 put_ep(&ep->com);
2041 fail1:
2042 out:
2043 return err;
2046 int iwch_destroy_listen(struct iw_cm_id *cm_id)
2048 int err;
2049 struct iwch_listen_ep *ep = to_listen_ep(cm_id);
2051 PDBG("%s ep %p\n", __func__, ep);
2053 might_sleep();
2054 state_set(&ep->com, DEAD);
2055 ep->com.rpl_done = 0;
2056 ep->com.rpl_err = 0;
2057 err = listen_stop(ep);
2058 if (err)
2059 goto done;
2060 wait_event(ep->com.waitq, ep->com.rpl_done);
2061 cxgb3_free_stid(ep->com.tdev, ep->stid);
2062 done:
2063 err = ep->com.rpl_err;
2064 cm_id->rem_ref(cm_id);
2065 put_ep(&ep->com);
2066 return err;
2069 int iwch_ep_disconnect(struct iwch_ep *ep, int abrupt, gfp_t gfp)
2071 int ret=0;
2072 unsigned long flags;
2073 int close = 0;
2074 int fatal = 0;
2075 struct t3cdev *tdev;
2076 struct cxio_rdev *rdev;
2078 spin_lock_irqsave(&ep->com.lock, flags);
2080 PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
2081 states[ep->com.state], abrupt);
2083 tdev = (struct t3cdev *)ep->com.tdev;
2084 rdev = (struct cxio_rdev *)tdev->ulp;
2085 if (cxio_fatal_error(rdev)) {
2086 fatal = 1;
2087 close_complete_upcall(ep);
2088 ep->com.state = DEAD;
2090 switch (ep->com.state) {
2091 case MPA_REQ_WAIT:
2092 case MPA_REQ_SENT:
2093 case MPA_REQ_RCVD:
2094 case MPA_REP_SENT:
2095 case FPDU_MODE:
2096 close = 1;
2097 if (abrupt)
2098 ep->com.state = ABORTING;
2099 else {
2100 ep->com.state = CLOSING;
2101 start_ep_timer(ep);
2103 set_bit(CLOSE_SENT, &ep->com.flags);
2104 break;
2105 case CLOSING:
2106 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
2107 close = 1;
2108 if (abrupt) {
2109 stop_ep_timer(ep);
2110 ep->com.state = ABORTING;
2111 } else
2112 ep->com.state = MORIBUND;
2114 break;
2115 case MORIBUND:
2116 case ABORTING:
2117 case DEAD:
2118 PDBG("%s ignoring disconnect ep %p state %u\n",
2119 __func__, ep, ep->com.state);
2120 break;
2121 default:
2122 BUG();
2123 break;
2126 spin_unlock_irqrestore(&ep->com.lock, flags);
2127 if (close) {
2128 if (abrupt)
2129 ret = send_abort(ep, NULL, gfp);
2130 else
2131 ret = send_halfclose(ep, gfp);
2132 if (ret)
2133 fatal = 1;
2135 if (fatal)
2136 release_ep_resources(ep);
2137 return ret;
2140 int iwch_ep_redirect(void *ctx, struct dst_entry *old, struct dst_entry *new,
2141 struct l2t_entry *l2t)
2143 struct iwch_ep *ep = ctx;
2145 if (ep->dst != old)
2146 return 0;
2148 PDBG("%s ep %p redirect to dst %p l2t %p\n", __func__, ep, new,
2149 l2t);
2150 dst_hold(new);
2151 l2t_release(ep->com.tdev, ep->l2t);
2152 ep->l2t = l2t;
2153 dst_release(old);
2154 ep->dst = new;
2155 return 1;
2159 * All the CM events are handled on a work queue to have a safe context.
2160 * These are the real handlers that are called from the work queue.
2162 static const cxgb3_cpl_handler_func work_handlers[NUM_CPL_CMDS] = {
2163 [CPL_ACT_ESTABLISH] = act_establish,
2164 [CPL_ACT_OPEN_RPL] = act_open_rpl,
2165 [CPL_RX_DATA] = rx_data,
2166 [CPL_TX_DMA_ACK] = tx_ack,
2167 [CPL_ABORT_RPL_RSS] = abort_rpl,
2168 [CPL_ABORT_RPL] = abort_rpl,
2169 [CPL_PASS_OPEN_RPL] = pass_open_rpl,
2170 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
2171 [CPL_PASS_ACCEPT_REQ] = pass_accept_req,
2172 [CPL_PASS_ESTABLISH] = pass_establish,
2173 [CPL_PEER_CLOSE] = peer_close,
2174 [CPL_ABORT_REQ_RSS] = peer_abort,
2175 [CPL_CLOSE_CON_RPL] = close_con_rpl,
2176 [CPL_RDMA_TERMINATE] = terminate,
2177 [CPL_RDMA_EC_STATUS] = ec_status,
2180 static void process_work(struct work_struct *work)
2182 struct sk_buff *skb = NULL;
2183 void *ep;
2184 struct t3cdev *tdev;
2185 int ret;
2187 while ((skb = skb_dequeue(&rxq))) {
2188 ep = *((void **) (skb->cb));
2189 tdev = *((struct t3cdev **) (skb->cb + sizeof(void *)));
2190 ret = work_handlers[G_OPCODE(ntohl((__force __be32)skb->csum))](tdev, skb, ep);
2191 if (ret & CPL_RET_BUF_DONE)
2192 kfree_skb(skb);
2195 * ep was referenced in sched(), and is freed here.
2197 put_ep((struct iwch_ep_common *)ep);
2201 static DECLARE_WORK(skb_work, process_work);
2203 static int sched(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2205 struct iwch_ep_common *epc = ctx;
2207 get_ep(epc);
2210 * Save ctx and tdev in the skb->cb area.
2212 *((void **) skb->cb) = ctx;
2213 *((struct t3cdev **) (skb->cb + sizeof(void *))) = tdev;
2216 * Queue the skb and schedule the worker thread.
2218 skb_queue_tail(&rxq, skb);
2219 queue_work(workq, &skb_work);
2220 return 0;
2223 static int set_tcb_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2225 struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
2227 if (rpl->status != CPL_ERR_NONE) {
2228 printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
2229 "for tid %u\n", rpl->status, GET_TID(rpl));
2231 return CPL_RET_BUF_DONE;
2235 * All upcalls from the T3 Core go to sched() to schedule the
2236 * processing on a work queue.
2238 cxgb3_cpl_handler_func t3c_handlers[NUM_CPL_CMDS] = {
2239 [CPL_ACT_ESTABLISH] = sched,
2240 [CPL_ACT_OPEN_RPL] = sched,
2241 [CPL_RX_DATA] = sched,
2242 [CPL_TX_DMA_ACK] = sched,
2243 [CPL_ABORT_RPL_RSS] = sched,
2244 [CPL_ABORT_RPL] = sched,
2245 [CPL_PASS_OPEN_RPL] = sched,
2246 [CPL_CLOSE_LISTSRV_RPL] = sched,
2247 [CPL_PASS_ACCEPT_REQ] = sched,
2248 [CPL_PASS_ESTABLISH] = sched,
2249 [CPL_PEER_CLOSE] = sched,
2250 [CPL_CLOSE_CON_RPL] = sched,
2251 [CPL_ABORT_REQ_RSS] = sched,
2252 [CPL_RDMA_TERMINATE] = sched,
2253 [CPL_RDMA_EC_STATUS] = sched,
2254 [CPL_SET_TCB_RPL] = set_tcb_rpl,
2257 int __init iwch_cm_init(void)
2259 skb_queue_head_init(&rxq);
2261 workq = create_singlethread_workqueue("iw_cxgb3");
2262 if (!workq)
2263 return -ENOMEM;
2265 return 0;
2268 void __exit iwch_cm_term(void)
2270 flush_workqueue(workq);
2271 destroy_workqueue(workq);