2 * Copyright (c) 2006 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/slab.h>
35 #include <linux/workqueue.h>
36 #include <linux/skbuff.h>
37 #include <linux/timer.h>
38 #include <linux/notifier.h>
39 #include <linux/inetdevice.h>
41 #include <net/neighbour.h>
42 #include <net/netevent.h>
43 #include <net/route.h>
46 #include "cxgb3_offload.h"
48 #include "iwch_provider.h"
51 static char *states
[] = {
68 module_param(peer2peer
, int, 0644);
69 MODULE_PARM_DESC(peer2peer
, "Support peer2peer ULPs (default=0)");
71 static int ep_timeout_secs
= 60;
72 module_param(ep_timeout_secs
, int, 0644);
73 MODULE_PARM_DESC(ep_timeout_secs
, "CM Endpoint operation timeout "
74 "in seconds (default=60)");
76 static int mpa_rev
= 1;
77 module_param(mpa_rev
, int, 0644);
78 MODULE_PARM_DESC(mpa_rev
, "MPA Revision, 0 supports amso1100, "
79 "1 is spec compliant. (default=1)");
81 static int markers_enabled
= 0;
82 module_param(markers_enabled
, int, 0644);
83 MODULE_PARM_DESC(markers_enabled
, "Enable MPA MARKERS (default(0)=disabled)");
85 static int crc_enabled
= 1;
86 module_param(crc_enabled
, int, 0644);
87 MODULE_PARM_DESC(crc_enabled
, "Enable MPA CRC (default(1)=enabled)");
89 static int rcv_win
= 256 * 1024;
90 module_param(rcv_win
, int, 0644);
91 MODULE_PARM_DESC(rcv_win
, "TCP receive window in bytes (default=256)");
93 static int snd_win
= 32 * 1024;
94 module_param(snd_win
, int, 0644);
95 MODULE_PARM_DESC(snd_win
, "TCP send window in bytes (default=32KB)");
97 static unsigned int nocong
= 0;
98 module_param(nocong
, uint
, 0644);
99 MODULE_PARM_DESC(nocong
, "Turn off congestion control (default=0)");
101 static unsigned int cong_flavor
= 1;
102 module_param(cong_flavor
, uint
, 0644);
103 MODULE_PARM_DESC(cong_flavor
, "TCP Congestion control flavor (default=1)");
105 static struct workqueue_struct
*workq
;
107 static struct sk_buff_head rxq
;
109 static struct sk_buff
*get_skb(struct sk_buff
*skb
, int len
, gfp_t gfp
);
110 static void ep_timeout(unsigned long arg
);
111 static void connect_reply_upcall(struct iwch_ep
*ep
, int status
);
113 static void start_ep_timer(struct iwch_ep
*ep
)
115 PDBG("%s ep %p\n", __func__
, ep
);
116 if (timer_pending(&ep
->timer
)) {
117 PDBG("%s stopped / restarted timer ep %p\n", __func__
, ep
);
118 del_timer_sync(&ep
->timer
);
121 ep
->timer
.expires
= jiffies
+ ep_timeout_secs
* HZ
;
122 ep
->timer
.data
= (unsigned long)ep
;
123 ep
->timer
.function
= ep_timeout
;
124 add_timer(&ep
->timer
);
127 static void stop_ep_timer(struct iwch_ep
*ep
)
129 PDBG("%s ep %p\n", __func__
, ep
);
130 if (!timer_pending(&ep
->timer
)) {
131 WARN(1, "%s timer stopped when its not running! ep %p state %u\n",
132 __func__
, ep
, ep
->com
.state
);
135 del_timer_sync(&ep
->timer
);
139 static int iwch_l2t_send(struct t3cdev
*tdev
, struct sk_buff
*skb
, struct l2t_entry
*l2e
)
142 struct cxio_rdev
*rdev
;
144 rdev
= (struct cxio_rdev
*)tdev
->ulp
;
145 if (cxio_fatal_error(rdev
)) {
149 error
= l2t_send(tdev
, skb
, l2e
);
152 return error
< 0 ? error
: 0;
155 int iwch_cxgb3_ofld_send(struct t3cdev
*tdev
, struct sk_buff
*skb
)
158 struct cxio_rdev
*rdev
;
160 rdev
= (struct cxio_rdev
*)tdev
->ulp
;
161 if (cxio_fatal_error(rdev
)) {
165 error
= cxgb3_ofld_send(tdev
, skb
);
168 return error
< 0 ? error
: 0;
171 static void release_tid(struct t3cdev
*tdev
, u32 hwtid
, struct sk_buff
*skb
)
173 struct cpl_tid_release
*req
;
175 skb
= get_skb(skb
, sizeof *req
, GFP_KERNEL
);
178 req
= (struct cpl_tid_release
*) skb_put(skb
, sizeof(*req
));
179 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
180 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE
, hwtid
));
181 skb
->priority
= CPL_PRIORITY_SETUP
;
182 iwch_cxgb3_ofld_send(tdev
, skb
);
186 int iwch_quiesce_tid(struct iwch_ep
*ep
)
188 struct cpl_set_tcb_field
*req
;
189 struct sk_buff
*skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
193 req
= (struct cpl_set_tcb_field
*) skb_put(skb
, sizeof(*req
));
194 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
195 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
196 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD
, ep
->hwtid
));
199 req
->word
= htons(W_TCB_RX_QUIESCE
);
200 req
->mask
= cpu_to_be64(1ULL << S_TCB_RX_QUIESCE
);
201 req
->val
= cpu_to_be64(1 << S_TCB_RX_QUIESCE
);
203 skb
->priority
= CPL_PRIORITY_DATA
;
204 return iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
207 int iwch_resume_tid(struct iwch_ep
*ep
)
209 struct cpl_set_tcb_field
*req
;
210 struct sk_buff
*skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
214 req
= (struct cpl_set_tcb_field
*) skb_put(skb
, sizeof(*req
));
215 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
216 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
217 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD
, ep
->hwtid
));
220 req
->word
= htons(W_TCB_RX_QUIESCE
);
221 req
->mask
= cpu_to_be64(1ULL << S_TCB_RX_QUIESCE
);
224 skb
->priority
= CPL_PRIORITY_DATA
;
225 return iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
228 static void set_emss(struct iwch_ep
*ep
, u16 opt
)
230 PDBG("%s ep %p opt %u\n", __func__
, ep
, opt
);
231 ep
->emss
= T3C_DATA(ep
->com
.tdev
)->mtus
[G_TCPOPT_MSS(opt
)] - 40;
232 if (G_TCPOPT_TSTAMP(opt
))
236 PDBG("emss=%d\n", ep
->emss
);
239 static enum iwch_ep_state
state_read(struct iwch_ep_common
*epc
)
242 enum iwch_ep_state state
;
244 spin_lock_irqsave(&epc
->lock
, flags
);
246 spin_unlock_irqrestore(&epc
->lock
, flags
);
250 static void __state_set(struct iwch_ep_common
*epc
, enum iwch_ep_state
new)
255 static void state_set(struct iwch_ep_common
*epc
, enum iwch_ep_state
new)
259 spin_lock_irqsave(&epc
->lock
, flags
);
260 PDBG("%s - %s -> %s\n", __func__
, states
[epc
->state
], states
[new]);
261 __state_set(epc
, new);
262 spin_unlock_irqrestore(&epc
->lock
, flags
);
266 static void *alloc_ep(int size
, gfp_t gfp
)
268 struct iwch_ep_common
*epc
;
270 epc
= kzalloc(size
, gfp
);
272 kref_init(&epc
->kref
);
273 spin_lock_init(&epc
->lock
);
274 init_waitqueue_head(&epc
->waitq
);
276 PDBG("%s alloc ep %p\n", __func__
, epc
);
280 void __free_ep(struct kref
*kref
)
283 ep
= container_of(container_of(kref
, struct iwch_ep_common
, kref
),
284 struct iwch_ep
, com
);
285 PDBG("%s ep %p state %s\n", __func__
, ep
, states
[state_read(&ep
->com
)]);
286 if (test_bit(RELEASE_RESOURCES
, &ep
->com
.flags
)) {
287 cxgb3_remove_tid(ep
->com
.tdev
, (void *)ep
, ep
->hwtid
);
288 dst_release(ep
->dst
);
289 l2t_release(ep
->com
.tdev
, ep
->l2t
);
294 static void release_ep_resources(struct iwch_ep
*ep
)
296 PDBG("%s ep %p tid %d\n", __func__
, ep
, ep
->hwtid
);
297 set_bit(RELEASE_RESOURCES
, &ep
->com
.flags
);
301 static int status2errno(int status
)
306 case CPL_ERR_CONN_RESET
:
308 case CPL_ERR_ARP_MISS
:
309 return -EHOSTUNREACH
;
310 case CPL_ERR_CONN_TIMEDOUT
:
312 case CPL_ERR_TCAM_FULL
:
314 case CPL_ERR_CONN_EXIST
:
322 * Try and reuse skbs already allocated...
324 static struct sk_buff
*get_skb(struct sk_buff
*skb
, int len
, gfp_t gfp
)
326 if (skb
&& !skb_is_nonlinear(skb
) && !skb_cloned(skb
)) {
330 skb
= alloc_skb(len
, gfp
);
335 static struct rtable
*find_route(struct t3cdev
*dev
, __be32 local_ip
,
336 __be32 peer_ip
, __be16 local_port
,
337 __be16 peer_port
, u8 tos
)
342 rt
= ip_route_output_ports(&init_net
, &fl4
, NULL
, peer_ip
, local_ip
,
343 peer_port
, local_port
, IPPROTO_TCP
,
350 static unsigned int find_best_mtu(const struct t3c_data
*d
, unsigned short mtu
)
354 while (i
< d
->nmtus
- 1 && d
->mtus
[i
+ 1] <= mtu
)
359 static void arp_failure_discard(struct t3cdev
*dev
, struct sk_buff
*skb
)
361 PDBG("%s t3cdev %p\n", __func__
, dev
);
366 * Handle an ARP failure for an active open.
368 static void act_open_req_arp_failure(struct t3cdev
*dev
, struct sk_buff
*skb
)
370 printk(KERN_ERR MOD
"ARP failure duing connect\n");
375 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
378 static void abort_arp_failure(struct t3cdev
*dev
, struct sk_buff
*skb
)
380 struct cpl_abort_req
*req
= cplhdr(skb
);
382 PDBG("%s t3cdev %p\n", __func__
, dev
);
383 req
->cmd
= CPL_ABORT_NO_RST
;
384 iwch_cxgb3_ofld_send(dev
, skb
);
387 static int send_halfclose(struct iwch_ep
*ep
, gfp_t gfp
)
389 struct cpl_close_con_req
*req
;
392 PDBG("%s ep %p\n", __func__
, ep
);
393 skb
= get_skb(NULL
, sizeof(*req
), gfp
);
395 printk(KERN_ERR MOD
"%s - failed to alloc skb\n", __func__
);
398 skb
->priority
= CPL_PRIORITY_DATA
;
399 set_arp_failure_handler(skb
, arp_failure_discard
);
400 req
= (struct cpl_close_con_req
*) skb_put(skb
, sizeof(*req
));
401 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_CLOSE_CON
));
402 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
403 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ
, ep
->hwtid
));
404 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
407 static int send_abort(struct iwch_ep
*ep
, struct sk_buff
*skb
, gfp_t gfp
)
409 struct cpl_abort_req
*req
;
411 PDBG("%s ep %p\n", __func__
, ep
);
412 skb
= get_skb(skb
, sizeof(*req
), gfp
);
414 printk(KERN_ERR MOD
"%s - failed to alloc skb.\n",
418 skb
->priority
= CPL_PRIORITY_DATA
;
419 set_arp_failure_handler(skb
, abort_arp_failure
);
420 req
= (struct cpl_abort_req
*) skb_put(skb
, sizeof(*req
));
421 memset(req
, 0, sizeof(*req
));
422 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ
));
423 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
424 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ
, ep
->hwtid
));
425 req
->cmd
= CPL_ABORT_SEND_RST
;
426 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
429 static int send_connect(struct iwch_ep
*ep
)
431 struct cpl_act_open_req
*req
;
433 u32 opt0h
, opt0l
, opt2
;
434 unsigned int mtu_idx
;
437 PDBG("%s ep %p\n", __func__
, ep
);
439 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
441 printk(KERN_ERR MOD
"%s - failed to alloc skb.\n",
445 mtu_idx
= find_best_mtu(T3C_DATA(ep
->com
.tdev
), dst_mtu(ep
->dst
));
446 wscale
= compute_wscale(rcv_win
);
451 V_WND_SCALE(wscale
) |
453 V_L2T_IDX(ep
->l2t
->idx
) | V_TX_CHANNEL(ep
->l2t
->smt_idx
);
454 opt0l
= V_TOS((ep
->tos
>> 2) & M_TOS
) | V_RCV_BUFSIZ(rcv_win
>>10);
455 opt2
= F_RX_COALESCE_VALID
| V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
456 V_CONG_CONTROL_FLAVOR(cong_flavor
);
457 skb
->priority
= CPL_PRIORITY_SETUP
;
458 set_arp_failure_handler(skb
, act_open_req_arp_failure
);
460 req
= (struct cpl_act_open_req
*) skb_put(skb
, sizeof(*req
));
461 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
462 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ
, ep
->atid
));
463 req
->local_port
= ep
->com
.local_addr
.sin_port
;
464 req
->peer_port
= ep
->com
.remote_addr
.sin_port
;
465 req
->local_ip
= ep
->com
.local_addr
.sin_addr
.s_addr
;
466 req
->peer_ip
= ep
->com
.remote_addr
.sin_addr
.s_addr
;
467 req
->opt0h
= htonl(opt0h
);
468 req
->opt0l
= htonl(opt0l
);
470 req
->opt2
= htonl(opt2
);
471 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
474 static void send_mpa_req(struct iwch_ep
*ep
, struct sk_buff
*skb
)
477 struct tx_data_wr
*req
;
478 struct mpa_message
*mpa
;
481 PDBG("%s ep %p pd_len %d\n", __func__
, ep
, ep
->plen
);
483 BUG_ON(skb_cloned(skb
));
485 mpalen
= sizeof(*mpa
) + ep
->plen
;
486 if (skb
->data
+ mpalen
+ sizeof(*req
) > skb_end_pointer(skb
)) {
488 skb
=alloc_skb(mpalen
+ sizeof(*req
), GFP_KERNEL
);
490 connect_reply_upcall(ep
, -ENOMEM
);
495 skb_reserve(skb
, sizeof(*req
));
496 skb_put(skb
, mpalen
);
497 skb
->priority
= CPL_PRIORITY_DATA
;
498 mpa
= (struct mpa_message
*) skb
->data
;
499 memset(mpa
, 0, sizeof(*mpa
));
500 memcpy(mpa
->key
, MPA_KEY_REQ
, sizeof(mpa
->key
));
501 mpa
->flags
= (crc_enabled
? MPA_CRC
: 0) |
502 (markers_enabled
? MPA_MARKERS
: 0);
503 mpa
->private_data_size
= htons(ep
->plen
);
504 mpa
->revision
= mpa_rev
;
507 memcpy(mpa
->private_data
, ep
->mpa_pkt
+ sizeof(*mpa
), ep
->plen
);
510 * Reference the mpa skb. This ensures the data area
511 * will remain in memory until the hw acks the tx.
512 * Function tx_ack() will deref it.
515 set_arp_failure_handler(skb
, arp_failure_discard
);
516 skb_reset_transport_header(skb
);
518 req
= (struct tx_data_wr
*) skb_push(skb
, sizeof(*req
));
519 req
->wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA
)|F_WR_COMPL
);
520 req
->wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
521 req
->len
= htonl(len
);
522 req
->param
= htonl(V_TX_PORT(ep
->l2t
->smt_idx
) |
523 V_TX_SNDBUF(snd_win
>>15));
524 req
->flags
= htonl(F_TX_INIT
);
525 req
->sndseq
= htonl(ep
->snd_seq
);
528 iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
530 state_set(&ep
->com
, MPA_REQ_SENT
);
534 static int send_mpa_reject(struct iwch_ep
*ep
, const void *pdata
, u8 plen
)
537 struct tx_data_wr
*req
;
538 struct mpa_message
*mpa
;
541 PDBG("%s ep %p plen %d\n", __func__
, ep
, plen
);
543 mpalen
= sizeof(*mpa
) + plen
;
545 skb
= get_skb(NULL
, mpalen
+ sizeof(*req
), GFP_KERNEL
);
547 printk(KERN_ERR MOD
"%s - cannot alloc skb!\n", __func__
);
550 skb_reserve(skb
, sizeof(*req
));
551 mpa
= (struct mpa_message
*) skb_put(skb
, mpalen
);
552 memset(mpa
, 0, sizeof(*mpa
));
553 memcpy(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
));
554 mpa
->flags
= MPA_REJECT
;
555 mpa
->revision
= mpa_rev
;
556 mpa
->private_data_size
= htons(plen
);
558 memcpy(mpa
->private_data
, pdata
, plen
);
561 * Reference the mpa skb again. This ensures the data area
562 * will remain in memory until the hw acks the tx.
563 * Function tx_ack() will deref it.
566 skb
->priority
= CPL_PRIORITY_DATA
;
567 set_arp_failure_handler(skb
, arp_failure_discard
);
568 skb_reset_transport_header(skb
);
569 req
= (struct tx_data_wr
*) skb_push(skb
, sizeof(*req
));
570 req
->wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA
)|F_WR_COMPL
);
571 req
->wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
572 req
->len
= htonl(mpalen
);
573 req
->param
= htonl(V_TX_PORT(ep
->l2t
->smt_idx
) |
574 V_TX_SNDBUF(snd_win
>>15));
575 req
->flags
= htonl(F_TX_INIT
);
576 req
->sndseq
= htonl(ep
->snd_seq
);
579 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
582 static int send_mpa_reply(struct iwch_ep
*ep
, const void *pdata
, u8 plen
)
585 struct tx_data_wr
*req
;
586 struct mpa_message
*mpa
;
590 PDBG("%s ep %p plen %d\n", __func__
, ep
, plen
);
592 mpalen
= sizeof(*mpa
) + plen
;
594 skb
= get_skb(NULL
, mpalen
+ sizeof(*req
), GFP_KERNEL
);
596 printk(KERN_ERR MOD
"%s - cannot alloc skb!\n", __func__
);
599 skb
->priority
= CPL_PRIORITY_DATA
;
600 skb_reserve(skb
, sizeof(*req
));
601 mpa
= (struct mpa_message
*) skb_put(skb
, mpalen
);
602 memset(mpa
, 0, sizeof(*mpa
));
603 memcpy(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
));
604 mpa
->flags
= (ep
->mpa_attr
.crc_enabled
? MPA_CRC
: 0) |
605 (markers_enabled
? MPA_MARKERS
: 0);
606 mpa
->revision
= mpa_rev
;
607 mpa
->private_data_size
= htons(plen
);
609 memcpy(mpa
->private_data
, pdata
, plen
);
612 * Reference the mpa skb. This ensures the data area
613 * will remain in memory until the hw acks the tx.
614 * Function tx_ack() will deref it.
617 set_arp_failure_handler(skb
, arp_failure_discard
);
618 skb_reset_transport_header(skb
);
620 req
= (struct tx_data_wr
*) skb_push(skb
, sizeof(*req
));
621 req
->wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA
)|F_WR_COMPL
);
622 req
->wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
623 req
->len
= htonl(len
);
624 req
->param
= htonl(V_TX_PORT(ep
->l2t
->smt_idx
) |
625 V_TX_SNDBUF(snd_win
>>15));
626 req
->flags
= htonl(F_TX_INIT
);
627 req
->sndseq
= htonl(ep
->snd_seq
);
629 state_set(&ep
->com
, MPA_REP_SENT
);
630 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
633 static int act_establish(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
635 struct iwch_ep
*ep
= ctx
;
636 struct cpl_act_establish
*req
= cplhdr(skb
);
637 unsigned int tid
= GET_TID(req
);
639 PDBG("%s ep %p tid %d\n", __func__
, ep
, tid
);
641 dst_confirm(ep
->dst
);
643 /* setup the hwtid for this connection */
645 cxgb3_insert_tid(ep
->com
.tdev
, &t3c_client
, ep
, tid
);
647 ep
->snd_seq
= ntohl(req
->snd_isn
);
648 ep
->rcv_seq
= ntohl(req
->rcv_isn
);
650 set_emss(ep
, ntohs(req
->tcp_opt
));
652 /* dealloc the atid */
653 cxgb3_free_atid(ep
->com
.tdev
, ep
->atid
);
655 /* start MPA negotiation */
656 send_mpa_req(ep
, skb
);
661 static void abort_connection(struct iwch_ep
*ep
, struct sk_buff
*skb
, gfp_t gfp
)
663 PDBG("%s ep %p\n", __FILE__
, ep
);
664 state_set(&ep
->com
, ABORTING
);
665 send_abort(ep
, skb
, gfp
);
668 static void close_complete_upcall(struct iwch_ep
*ep
)
670 struct iw_cm_event event
;
672 PDBG("%s ep %p\n", __func__
, ep
);
673 memset(&event
, 0, sizeof(event
));
674 event
.event
= IW_CM_EVENT_CLOSE
;
676 PDBG("close complete delivered ep %p cm_id %p tid %d\n",
677 ep
, ep
->com
.cm_id
, ep
->hwtid
);
678 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
679 ep
->com
.cm_id
->rem_ref(ep
->com
.cm_id
);
680 ep
->com
.cm_id
= NULL
;
685 static void peer_close_upcall(struct iwch_ep
*ep
)
687 struct iw_cm_event event
;
689 PDBG("%s ep %p\n", __func__
, ep
);
690 memset(&event
, 0, sizeof(event
));
691 event
.event
= IW_CM_EVENT_DISCONNECT
;
693 PDBG("peer close delivered ep %p cm_id %p tid %d\n",
694 ep
, ep
->com
.cm_id
, ep
->hwtid
);
695 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
699 static void peer_abort_upcall(struct iwch_ep
*ep
)
701 struct iw_cm_event event
;
703 PDBG("%s ep %p\n", __func__
, ep
);
704 memset(&event
, 0, sizeof(event
));
705 event
.event
= IW_CM_EVENT_CLOSE
;
706 event
.status
= -ECONNRESET
;
708 PDBG("abort delivered ep %p cm_id %p tid %d\n", ep
,
709 ep
->com
.cm_id
, ep
->hwtid
);
710 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
711 ep
->com
.cm_id
->rem_ref(ep
->com
.cm_id
);
712 ep
->com
.cm_id
= NULL
;
717 static void connect_reply_upcall(struct iwch_ep
*ep
, int status
)
719 struct iw_cm_event event
;
721 PDBG("%s ep %p status %d\n", __func__
, ep
, status
);
722 memset(&event
, 0, sizeof(event
));
723 event
.event
= IW_CM_EVENT_CONNECT_REPLY
;
724 event
.status
= status
;
725 memcpy(&event
.local_addr
, &ep
->com
.local_addr
,
726 sizeof(ep
->com
.local_addr
));
727 memcpy(&event
.remote_addr
, &ep
->com
.remote_addr
,
728 sizeof(ep
->com
.remote_addr
));
730 if ((status
== 0) || (status
== -ECONNREFUSED
)) {
731 event
.private_data_len
= ep
->plen
;
732 event
.private_data
= ep
->mpa_pkt
+ sizeof(struct mpa_message
);
735 PDBG("%s ep %p tid %d status %d\n", __func__
, ep
,
737 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
740 ep
->com
.cm_id
->rem_ref(ep
->com
.cm_id
);
741 ep
->com
.cm_id
= NULL
;
746 static void connect_request_upcall(struct iwch_ep
*ep
)
748 struct iw_cm_event event
;
750 PDBG("%s ep %p tid %d\n", __func__
, ep
, ep
->hwtid
);
751 memset(&event
, 0, sizeof(event
));
752 event
.event
= IW_CM_EVENT_CONNECT_REQUEST
;
753 memcpy(&event
.local_addr
, &ep
->com
.local_addr
,
754 sizeof(ep
->com
.local_addr
));
755 memcpy(&event
.remote_addr
, &ep
->com
.remote_addr
,
756 sizeof(ep
->com
.local_addr
));
757 event
.private_data_len
= ep
->plen
;
758 event
.private_data
= ep
->mpa_pkt
+ sizeof(struct mpa_message
);
759 event
.provider_data
= ep
;
761 * Until ird/ord negotiation via MPAv2 support is added, send max
764 event
.ird
= event
.ord
= 8;
765 if (state_read(&ep
->parent_ep
->com
) != DEAD
) {
767 ep
->parent_ep
->com
.cm_id
->event_handler(
768 ep
->parent_ep
->com
.cm_id
,
771 put_ep(&ep
->parent_ep
->com
);
772 ep
->parent_ep
= NULL
;
775 static void established_upcall(struct iwch_ep
*ep
)
777 struct iw_cm_event event
;
779 PDBG("%s ep %p\n", __func__
, ep
);
780 memset(&event
, 0, sizeof(event
));
781 event
.event
= IW_CM_EVENT_ESTABLISHED
;
783 * Until ird/ord negotiation via MPAv2 support is added, send max
786 event
.ird
= event
.ord
= 8;
788 PDBG("%s ep %p tid %d\n", __func__
, ep
, ep
->hwtid
);
789 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
793 static int update_rx_credits(struct iwch_ep
*ep
, u32 credits
)
795 struct cpl_rx_data_ack
*req
;
798 PDBG("%s ep %p credits %u\n", __func__
, ep
, credits
);
799 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
801 printk(KERN_ERR MOD
"update_rx_credits - cannot alloc skb!\n");
805 req
= (struct cpl_rx_data_ack
*) skb_put(skb
, sizeof(*req
));
806 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
807 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_RX_DATA_ACK
, ep
->hwtid
));
808 req
->credit_dack
= htonl(V_RX_CREDITS(credits
) | V_RX_FORCE_ACK(1));
809 skb
->priority
= CPL_PRIORITY_ACK
;
810 iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
814 static void process_mpa_reply(struct iwch_ep
*ep
, struct sk_buff
*skb
)
816 struct mpa_message
*mpa
;
818 struct iwch_qp_attributes attrs
;
819 enum iwch_qp_attr_mask mask
;
822 PDBG("%s ep %p\n", __func__
, ep
);
825 * Stop mpa timer. If it expired, then the state has
826 * changed and we bail since ep_timeout already aborted
830 if (state_read(&ep
->com
) != MPA_REQ_SENT
)
834 * If we get more than the supported amount of private data
835 * then we must fail this connection.
837 if (ep
->mpa_pkt_len
+ skb
->len
> sizeof(ep
->mpa_pkt
)) {
843 * copy the new data into our accumulation buffer.
845 skb_copy_from_linear_data(skb
, &(ep
->mpa_pkt
[ep
->mpa_pkt_len
]),
847 ep
->mpa_pkt_len
+= skb
->len
;
850 * if we don't even have the mpa message, then bail.
852 if (ep
->mpa_pkt_len
< sizeof(*mpa
))
854 mpa
= (struct mpa_message
*) ep
->mpa_pkt
;
856 /* Validate MPA header. */
857 if (mpa
->revision
!= mpa_rev
) {
861 if (memcmp(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
))) {
866 plen
= ntohs(mpa
->private_data_size
);
869 * Fail if there's too much private data.
871 if (plen
> MPA_MAX_PRIVATE_DATA
) {
877 * If plen does not account for pkt size
879 if (ep
->mpa_pkt_len
> (sizeof(*mpa
) + plen
)) {
884 ep
->plen
= (u8
) plen
;
887 * If we don't have all the pdata yet, then bail.
888 * We'll continue process when more data arrives.
890 if (ep
->mpa_pkt_len
< (sizeof(*mpa
) + plen
))
893 if (mpa
->flags
& MPA_REJECT
) {
899 * If we get here we have accumulated the entire mpa
900 * start reply message including private data. And
901 * the MPA header is valid.
903 state_set(&ep
->com
, FPDU_MODE
);
904 ep
->mpa_attr
.initiator
= 1;
905 ep
->mpa_attr
.crc_enabled
= (mpa
->flags
& MPA_CRC
) | crc_enabled
? 1 : 0;
906 ep
->mpa_attr
.recv_marker_enabled
= markers_enabled
;
907 ep
->mpa_attr
.xmit_marker_enabled
= mpa
->flags
& MPA_MARKERS
? 1 : 0;
908 ep
->mpa_attr
.version
= mpa_rev
;
909 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
910 "xmit_marker_enabled=%d, version=%d\n", __func__
,
911 ep
->mpa_attr
.crc_enabled
, ep
->mpa_attr
.recv_marker_enabled
,
912 ep
->mpa_attr
.xmit_marker_enabled
, ep
->mpa_attr
.version
);
914 attrs
.mpa_attr
= ep
->mpa_attr
;
915 attrs
.max_ird
= ep
->ird
;
916 attrs
.max_ord
= ep
->ord
;
917 attrs
.llp_stream_handle
= ep
;
918 attrs
.next_state
= IWCH_QP_STATE_RTS
;
920 mask
= IWCH_QP_ATTR_NEXT_STATE
|
921 IWCH_QP_ATTR_LLP_STREAM_HANDLE
| IWCH_QP_ATTR_MPA_ATTR
|
922 IWCH_QP_ATTR_MAX_IRD
| IWCH_QP_ATTR_MAX_ORD
;
924 /* bind QP and TID with INIT_WR */
925 err
= iwch_modify_qp(ep
->com
.qp
->rhp
,
926 ep
->com
.qp
, mask
, &attrs
, 1);
930 if (peer2peer
&& iwch_rqes_posted(ep
->com
.qp
) == 0) {
931 iwch_post_zb_read(ep
);
936 abort_connection(ep
, skb
, GFP_KERNEL
);
938 connect_reply_upcall(ep
, err
);
942 static void process_mpa_request(struct iwch_ep
*ep
, struct sk_buff
*skb
)
944 struct mpa_message
*mpa
;
947 PDBG("%s ep %p\n", __func__
, ep
);
950 * Stop mpa timer. If it expired, then the state has
951 * changed and we bail since ep_timeout already aborted
955 if (state_read(&ep
->com
) != MPA_REQ_WAIT
)
959 * If we get more than the supported amount of private data
960 * then we must fail this connection.
962 if (ep
->mpa_pkt_len
+ skb
->len
> sizeof(ep
->mpa_pkt
)) {
963 abort_connection(ep
, skb
, GFP_KERNEL
);
967 PDBG("%s enter (%s line %u)\n", __func__
, __FILE__
, __LINE__
);
970 * Copy the new data into our accumulation buffer.
972 skb_copy_from_linear_data(skb
, &(ep
->mpa_pkt
[ep
->mpa_pkt_len
]),
974 ep
->mpa_pkt_len
+= skb
->len
;
977 * If we don't even have the mpa message, then bail.
978 * We'll continue process when more data arrives.
980 if (ep
->mpa_pkt_len
< sizeof(*mpa
))
982 PDBG("%s enter (%s line %u)\n", __func__
, __FILE__
, __LINE__
);
983 mpa
= (struct mpa_message
*) ep
->mpa_pkt
;
986 * Validate MPA Header.
988 if (mpa
->revision
!= mpa_rev
) {
989 abort_connection(ep
, skb
, GFP_KERNEL
);
993 if (memcmp(mpa
->key
, MPA_KEY_REQ
, sizeof(mpa
->key
))) {
994 abort_connection(ep
, skb
, GFP_KERNEL
);
998 plen
= ntohs(mpa
->private_data_size
);
1001 * Fail if there's too much private data.
1003 if (plen
> MPA_MAX_PRIVATE_DATA
) {
1004 abort_connection(ep
, skb
, GFP_KERNEL
);
1009 * If plen does not account for pkt size
1011 if (ep
->mpa_pkt_len
> (sizeof(*mpa
) + plen
)) {
1012 abort_connection(ep
, skb
, GFP_KERNEL
);
1015 ep
->plen
= (u8
) plen
;
1018 * If we don't have all the pdata yet, then bail.
1020 if (ep
->mpa_pkt_len
< (sizeof(*mpa
) + plen
))
1024 * If we get here we have accumulated the entire mpa
1025 * start reply message including private data.
1027 ep
->mpa_attr
.initiator
= 0;
1028 ep
->mpa_attr
.crc_enabled
= (mpa
->flags
& MPA_CRC
) | crc_enabled
? 1 : 0;
1029 ep
->mpa_attr
.recv_marker_enabled
= markers_enabled
;
1030 ep
->mpa_attr
.xmit_marker_enabled
= mpa
->flags
& MPA_MARKERS
? 1 : 0;
1031 ep
->mpa_attr
.version
= mpa_rev
;
1032 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1033 "xmit_marker_enabled=%d, version=%d\n", __func__
,
1034 ep
->mpa_attr
.crc_enabled
, ep
->mpa_attr
.recv_marker_enabled
,
1035 ep
->mpa_attr
.xmit_marker_enabled
, ep
->mpa_attr
.version
);
1037 state_set(&ep
->com
, MPA_REQ_RCVD
);
1040 connect_request_upcall(ep
);
1044 static int rx_data(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1046 struct iwch_ep
*ep
= ctx
;
1047 struct cpl_rx_data
*hdr
= cplhdr(skb
);
1048 unsigned int dlen
= ntohs(hdr
->len
);
1050 PDBG("%s ep %p dlen %u\n", __func__
, ep
, dlen
);
1052 skb_pull(skb
, sizeof(*hdr
));
1053 skb_trim(skb
, dlen
);
1055 ep
->rcv_seq
+= dlen
;
1056 BUG_ON(ep
->rcv_seq
!= (ntohl(hdr
->seq
) + dlen
));
1058 switch (state_read(&ep
->com
)) {
1060 process_mpa_reply(ep
, skb
);
1063 process_mpa_request(ep
, skb
);
1068 printk(KERN_ERR MOD
"%s Unexpected streaming data."
1069 " ep %p state %d tid %d\n",
1070 __func__
, ep
, state_read(&ep
->com
), ep
->hwtid
);
1073 * The ep will timeout and inform the ULP of the failure.
1079 /* update RX credits */
1080 update_rx_credits(ep
, dlen
);
1082 return CPL_RET_BUF_DONE
;
1086 * Upcall from the adapter indicating data has been transmitted.
1087 * For us its just the single MPA request or reply. We can now free
1088 * the skb holding the mpa message.
1090 static int tx_ack(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1092 struct iwch_ep
*ep
= ctx
;
1093 struct cpl_wr_ack
*hdr
= cplhdr(skb
);
1094 unsigned int credits
= ntohs(hdr
->credits
);
1095 unsigned long flags
;
1098 PDBG("%s ep %p credits %u\n", __func__
, ep
, credits
);
1101 PDBG("%s 0 credit ack ep %p state %u\n",
1102 __func__
, ep
, state_read(&ep
->com
));
1103 return CPL_RET_BUF_DONE
;
1106 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1107 BUG_ON(credits
!= 1);
1108 dst_confirm(ep
->dst
);
1110 PDBG("%s rdma_init wr_ack ep %p state %u\n",
1111 __func__
, ep
, ep
->com
.state
);
1112 if (ep
->mpa_attr
.initiator
) {
1113 PDBG("%s initiator ep %p state %u\n",
1114 __func__
, ep
, ep
->com
.state
);
1115 if (peer2peer
&& ep
->com
.state
== FPDU_MODE
)
1118 PDBG("%s responder ep %p state %u\n",
1119 __func__
, ep
, ep
->com
.state
);
1120 if (ep
->com
.state
== MPA_REQ_RCVD
) {
1121 ep
->com
.rpl_done
= 1;
1122 wake_up(&ep
->com
.waitq
);
1126 PDBG("%s lsm ack ep %p state %u freeing skb\n",
1127 __func__
, ep
, ep
->com
.state
);
1128 kfree_skb(ep
->mpa_skb
);
1131 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1133 iwch_post_zb_read(ep
);
1134 return CPL_RET_BUF_DONE
;
1137 static int abort_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1139 struct iwch_ep
*ep
= ctx
;
1140 unsigned long flags
;
1143 PDBG("%s ep %p\n", __func__
, ep
);
1147 * We get 2 abort replies from the HW. The first one must
1148 * be ignored except for scribbling that we need one more.
1150 if (!test_and_set_bit(ABORT_REQ_IN_PROGRESS
, &ep
->com
.flags
)) {
1151 return CPL_RET_BUF_DONE
;
1154 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1155 switch (ep
->com
.state
) {
1157 close_complete_upcall(ep
);
1158 __state_set(&ep
->com
, DEAD
);
1162 printk(KERN_ERR
"%s ep %p state %d\n",
1163 __func__
, ep
, ep
->com
.state
);
1166 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1169 release_ep_resources(ep
);
1170 return CPL_RET_BUF_DONE
;
1174 * Return whether a failed active open has allocated a TID
1176 static inline int act_open_has_tid(int status
)
1178 return status
!= CPL_ERR_TCAM_FULL
&& status
!= CPL_ERR_CONN_EXIST
&&
1179 status
!= CPL_ERR_ARP_MISS
;
1182 static int act_open_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1184 struct iwch_ep
*ep
= ctx
;
1185 struct cpl_act_open_rpl
*rpl
= cplhdr(skb
);
1187 PDBG("%s ep %p status %u errno %d\n", __func__
, ep
, rpl
->status
,
1188 status2errno(rpl
->status
));
1189 connect_reply_upcall(ep
, status2errno(rpl
->status
));
1190 state_set(&ep
->com
, DEAD
);
1191 if (ep
->com
.tdev
->type
!= T3A
&& act_open_has_tid(rpl
->status
))
1192 release_tid(ep
->com
.tdev
, GET_TID(rpl
), NULL
);
1193 cxgb3_free_atid(ep
->com
.tdev
, ep
->atid
);
1194 dst_release(ep
->dst
);
1195 l2t_release(ep
->com
.tdev
, ep
->l2t
);
1197 return CPL_RET_BUF_DONE
;
1200 static int listen_start(struct iwch_listen_ep
*ep
)
1202 struct sk_buff
*skb
;
1203 struct cpl_pass_open_req
*req
;
1205 PDBG("%s ep %p\n", __func__
, ep
);
1206 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
1208 printk(KERN_ERR MOD
"t3c_listen_start failed to alloc skb!\n");
1212 req
= (struct cpl_pass_open_req
*) skb_put(skb
, sizeof(*req
));
1213 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1214 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ
, ep
->stid
));
1215 req
->local_port
= ep
->com
.local_addr
.sin_port
;
1216 req
->local_ip
= ep
->com
.local_addr
.sin_addr
.s_addr
;
1219 req
->peer_netmask
= 0;
1220 req
->opt0h
= htonl(F_DELACK
| F_TCAM_BYPASS
);
1221 req
->opt0l
= htonl(V_RCV_BUFSIZ(rcv_win
>>10));
1222 req
->opt1
= htonl(V_CONN_POLICY(CPL_CONN_POLICY_ASK
));
1225 return iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
1228 static int pass_open_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1230 struct iwch_listen_ep
*ep
= ctx
;
1231 struct cpl_pass_open_rpl
*rpl
= cplhdr(skb
);
1233 PDBG("%s ep %p status %d error %d\n", __func__
, ep
,
1234 rpl
->status
, status2errno(rpl
->status
));
1235 ep
->com
.rpl_err
= status2errno(rpl
->status
);
1236 ep
->com
.rpl_done
= 1;
1237 wake_up(&ep
->com
.waitq
);
1239 return CPL_RET_BUF_DONE
;
1242 static int listen_stop(struct iwch_listen_ep
*ep
)
1244 struct sk_buff
*skb
;
1245 struct cpl_close_listserv_req
*req
;
1247 PDBG("%s ep %p\n", __func__
, ep
);
1248 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
1250 printk(KERN_ERR MOD
"%s - failed to alloc skb\n", __func__
);
1253 req
= (struct cpl_close_listserv_req
*) skb_put(skb
, sizeof(*req
));
1254 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1256 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ
, ep
->stid
));
1258 return iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
1261 static int close_listsrv_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
,
1264 struct iwch_listen_ep
*ep
= ctx
;
1265 struct cpl_close_listserv_rpl
*rpl
= cplhdr(skb
);
1267 PDBG("%s ep %p\n", __func__
, ep
);
1268 ep
->com
.rpl_err
= status2errno(rpl
->status
);
1269 ep
->com
.rpl_done
= 1;
1270 wake_up(&ep
->com
.waitq
);
1271 return CPL_RET_BUF_DONE
;
1274 static void accept_cr(struct iwch_ep
*ep
, __be32 peer_ip
, struct sk_buff
*skb
)
1276 struct cpl_pass_accept_rpl
*rpl
;
1277 unsigned int mtu_idx
;
1278 u32 opt0h
, opt0l
, opt2
;
1281 PDBG("%s ep %p\n", __func__
, ep
);
1282 BUG_ON(skb_cloned(skb
));
1283 skb_trim(skb
, sizeof(*rpl
));
1285 mtu_idx
= find_best_mtu(T3C_DATA(ep
->com
.tdev
), dst_mtu(ep
->dst
));
1286 wscale
= compute_wscale(rcv_win
);
1287 opt0h
= V_NAGLE(0) |
1291 V_WND_SCALE(wscale
) |
1292 V_MSS_IDX(mtu_idx
) |
1293 V_L2T_IDX(ep
->l2t
->idx
) | V_TX_CHANNEL(ep
->l2t
->smt_idx
);
1294 opt0l
= V_TOS((ep
->tos
>> 2) & M_TOS
) | V_RCV_BUFSIZ(rcv_win
>>10);
1295 opt2
= F_RX_COALESCE_VALID
| V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
1296 V_CONG_CONTROL_FLAVOR(cong_flavor
);
1299 rpl
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1300 OPCODE_TID(rpl
) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL
, ep
->hwtid
));
1301 rpl
->peer_ip
= peer_ip
;
1302 rpl
->opt0h
= htonl(opt0h
);
1303 rpl
->opt0l_status
= htonl(opt0l
| CPL_PASS_OPEN_ACCEPT
);
1304 rpl
->opt2
= htonl(opt2
);
1305 rpl
->rsvd
= rpl
->opt2
; /* workaround for HW bug */
1306 skb
->priority
= CPL_PRIORITY_SETUP
;
1307 iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
1312 static void reject_cr(struct t3cdev
*tdev
, u32 hwtid
, __be32 peer_ip
,
1313 struct sk_buff
*skb
)
1315 PDBG("%s t3cdev %p tid %u peer_ip %x\n", __func__
, tdev
, hwtid
,
1317 BUG_ON(skb_cloned(skb
));
1318 skb_trim(skb
, sizeof(struct cpl_tid_release
));
1321 if (tdev
->type
!= T3A
)
1322 release_tid(tdev
, hwtid
, skb
);
1324 struct cpl_pass_accept_rpl
*rpl
;
1327 skb
->priority
= CPL_PRIORITY_SETUP
;
1328 rpl
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1329 OPCODE_TID(rpl
) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL
,
1331 rpl
->peer_ip
= peer_ip
;
1332 rpl
->opt0h
= htonl(F_TCAM_BYPASS
);
1333 rpl
->opt0l_status
= htonl(CPL_PASS_OPEN_REJECT
);
1335 rpl
->rsvd
= rpl
->opt2
;
1336 iwch_cxgb3_ofld_send(tdev
, skb
);
1340 static int pass_accept_req(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1342 struct iwch_ep
*child_ep
, *parent_ep
= ctx
;
1343 struct cpl_pass_accept_req
*req
= cplhdr(skb
);
1344 unsigned int hwtid
= GET_TID(req
);
1345 struct dst_entry
*dst
;
1346 struct l2t_entry
*l2t
;
1350 PDBG("%s parent ep %p tid %u\n", __func__
, parent_ep
, hwtid
);
1352 if (state_read(&parent_ep
->com
) != LISTEN
) {
1353 printk(KERN_ERR
"%s - listening ep not in LISTEN\n",
1359 * Find the netdev for this connection request.
1361 tim
.mac_addr
= req
->dst_mac
;
1362 tim
.vlan_tag
= ntohs(req
->vlan_tag
);
1363 if (tdev
->ctl(tdev
, GET_IFF_FROM_MAC
, &tim
) < 0 || !tim
.dev
) {
1364 printk(KERN_ERR
"%s bad dst mac %pM\n",
1365 __func__
, req
->dst_mac
);
1369 /* Find output route */
1370 rt
= find_route(tdev
,
1374 req
->peer_port
, G_PASS_OPEN_TOS(ntohl(req
->tos_tid
)));
1376 printk(KERN_ERR MOD
"%s - failed to find dst entry!\n",
1381 l2t
= t3_l2t_get(tdev
, dst
, NULL
, &req
->peer_ip
);
1383 printk(KERN_ERR MOD
"%s - failed to allocate l2t entry!\n",
1388 child_ep
= alloc_ep(sizeof(*child_ep
), GFP_KERNEL
);
1390 printk(KERN_ERR MOD
"%s - failed to allocate ep entry!\n",
1392 l2t_release(tdev
, l2t
);
1396 state_set(&child_ep
->com
, CONNECTING
);
1397 child_ep
->com
.tdev
= tdev
;
1398 child_ep
->com
.cm_id
= NULL
;
1399 child_ep
->com
.local_addr
.sin_family
= PF_INET
;
1400 child_ep
->com
.local_addr
.sin_port
= req
->local_port
;
1401 child_ep
->com
.local_addr
.sin_addr
.s_addr
= req
->local_ip
;
1402 child_ep
->com
.remote_addr
.sin_family
= PF_INET
;
1403 child_ep
->com
.remote_addr
.sin_port
= req
->peer_port
;
1404 child_ep
->com
.remote_addr
.sin_addr
.s_addr
= req
->peer_ip
;
1405 get_ep(&parent_ep
->com
);
1406 child_ep
->parent_ep
= parent_ep
;
1407 child_ep
->tos
= G_PASS_OPEN_TOS(ntohl(req
->tos_tid
));
1408 child_ep
->l2t
= l2t
;
1409 child_ep
->dst
= dst
;
1410 child_ep
->hwtid
= hwtid
;
1411 init_timer(&child_ep
->timer
);
1412 cxgb3_insert_tid(tdev
, &t3c_client
, child_ep
, hwtid
);
1413 accept_cr(child_ep
, req
->peer_ip
, skb
);
1416 reject_cr(tdev
, hwtid
, req
->peer_ip
, skb
);
1418 return CPL_RET_BUF_DONE
;
1421 static int pass_establish(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1423 struct iwch_ep
*ep
= ctx
;
1424 struct cpl_pass_establish
*req
= cplhdr(skb
);
1426 PDBG("%s ep %p\n", __func__
, ep
);
1427 ep
->snd_seq
= ntohl(req
->snd_isn
);
1428 ep
->rcv_seq
= ntohl(req
->rcv_isn
);
1430 set_emss(ep
, ntohs(req
->tcp_opt
));
1432 dst_confirm(ep
->dst
);
1433 state_set(&ep
->com
, MPA_REQ_WAIT
);
1436 return CPL_RET_BUF_DONE
;
1439 static int peer_close(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1441 struct iwch_ep
*ep
= ctx
;
1442 struct iwch_qp_attributes attrs
;
1443 unsigned long flags
;
1447 PDBG("%s ep %p\n", __func__
, ep
);
1448 dst_confirm(ep
->dst
);
1450 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1451 switch (ep
->com
.state
) {
1453 __state_set(&ep
->com
, CLOSING
);
1456 __state_set(&ep
->com
, CLOSING
);
1457 connect_reply_upcall(ep
, -ECONNRESET
);
1462 * We're gonna mark this puppy DEAD, but keep
1463 * the reference on it until the ULP accepts or
1464 * rejects the CR. Also wake up anyone waiting
1465 * in rdma connection migration (see iwch_accept_cr()).
1467 __state_set(&ep
->com
, CLOSING
);
1468 ep
->com
.rpl_done
= 1;
1469 ep
->com
.rpl_err
= -ECONNRESET
;
1470 PDBG("waking up ep %p\n", ep
);
1471 wake_up(&ep
->com
.waitq
);
1474 __state_set(&ep
->com
, CLOSING
);
1475 ep
->com
.rpl_done
= 1;
1476 ep
->com
.rpl_err
= -ECONNRESET
;
1477 PDBG("waking up ep %p\n", ep
);
1478 wake_up(&ep
->com
.waitq
);
1482 __state_set(&ep
->com
, CLOSING
);
1483 attrs
.next_state
= IWCH_QP_STATE_CLOSING
;
1484 iwch_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
1485 IWCH_QP_ATTR_NEXT_STATE
, &attrs
, 1);
1486 peer_close_upcall(ep
);
1492 __state_set(&ep
->com
, MORIBUND
);
1497 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
1498 attrs
.next_state
= IWCH_QP_STATE_IDLE
;
1499 iwch_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
1500 IWCH_QP_ATTR_NEXT_STATE
, &attrs
, 1);
1502 close_complete_upcall(ep
);
1503 __state_set(&ep
->com
, DEAD
);
1513 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1515 iwch_ep_disconnect(ep
, 0, GFP_KERNEL
);
1517 release_ep_resources(ep
);
1518 return CPL_RET_BUF_DONE
;
1522 * Returns whether an ABORT_REQ_RSS message is a negative advice.
1524 static int is_neg_adv_abort(unsigned int status
)
1526 return status
== CPL_ERR_RTX_NEG_ADVICE
||
1527 status
== CPL_ERR_PERSIST_NEG_ADVICE
;
1530 static int peer_abort(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1532 struct cpl_abort_req_rss
*req
= cplhdr(skb
);
1533 struct iwch_ep
*ep
= ctx
;
1534 struct cpl_abort_rpl
*rpl
;
1535 struct sk_buff
*rpl_skb
;
1536 struct iwch_qp_attributes attrs
;
1539 unsigned long flags
;
1541 if (is_neg_adv_abort(req
->status
)) {
1542 PDBG("%s neg_adv_abort ep %p tid %d\n", __func__
, ep
,
1544 t3_l2t_send_event(ep
->com
.tdev
, ep
->l2t
);
1545 return CPL_RET_BUF_DONE
;
1549 * We get 2 peer aborts from the HW. The first one must
1550 * be ignored except for scribbling that we need one more.
1552 if (!test_and_set_bit(PEER_ABORT_IN_PROGRESS
, &ep
->com
.flags
)) {
1553 return CPL_RET_BUF_DONE
;
1556 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1557 PDBG("%s ep %p state %u\n", __func__
, ep
, ep
->com
.state
);
1558 switch (ep
->com
.state
) {
1566 connect_reply_upcall(ep
, -ECONNRESET
);
1569 ep
->com
.rpl_done
= 1;
1570 ep
->com
.rpl_err
= -ECONNRESET
;
1571 PDBG("waking up ep %p\n", ep
);
1572 wake_up(&ep
->com
.waitq
);
1577 * We're gonna mark this puppy DEAD, but keep
1578 * the reference on it until the ULP accepts or
1579 * rejects the CR. Also wake up anyone waiting
1580 * in rdma connection migration (see iwch_accept_cr()).
1582 ep
->com
.rpl_done
= 1;
1583 ep
->com
.rpl_err
= -ECONNRESET
;
1584 PDBG("waking up ep %p\n", ep
);
1585 wake_up(&ep
->com
.waitq
);
1592 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
1593 attrs
.next_state
= IWCH_QP_STATE_ERROR
;
1594 ret
= iwch_modify_qp(ep
->com
.qp
->rhp
,
1595 ep
->com
.qp
, IWCH_QP_ATTR_NEXT_STATE
,
1599 "%s - qp <- error failed!\n",
1602 peer_abort_upcall(ep
);
1607 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__
);
1608 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1609 return CPL_RET_BUF_DONE
;
1614 dst_confirm(ep
->dst
);
1615 if (ep
->com
.state
!= ABORTING
) {
1616 __state_set(&ep
->com
, DEAD
);
1619 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1621 rpl_skb
= get_skb(skb
, sizeof(*rpl
), GFP_KERNEL
);
1623 printk(KERN_ERR MOD
"%s - cannot allocate skb!\n",
1628 rpl_skb
->priority
= CPL_PRIORITY_DATA
;
1629 rpl
= (struct cpl_abort_rpl
*) skb_put(rpl_skb
, sizeof(*rpl
));
1630 rpl
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL
));
1631 rpl
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
1632 OPCODE_TID(rpl
) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL
, ep
->hwtid
));
1633 rpl
->cmd
= CPL_ABORT_NO_RST
;
1634 iwch_cxgb3_ofld_send(ep
->com
.tdev
, rpl_skb
);
1637 release_ep_resources(ep
);
1638 return CPL_RET_BUF_DONE
;
1641 static int close_con_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1643 struct iwch_ep
*ep
= ctx
;
1644 struct iwch_qp_attributes attrs
;
1645 unsigned long flags
;
1648 PDBG("%s ep %p\n", __func__
, ep
);
1651 /* The cm_id may be null if we failed to connect */
1652 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1653 switch (ep
->com
.state
) {
1655 __state_set(&ep
->com
, MORIBUND
);
1659 if ((ep
->com
.cm_id
) && (ep
->com
.qp
)) {
1660 attrs
.next_state
= IWCH_QP_STATE_IDLE
;
1661 iwch_modify_qp(ep
->com
.qp
->rhp
,
1663 IWCH_QP_ATTR_NEXT_STATE
,
1666 close_complete_upcall(ep
);
1667 __state_set(&ep
->com
, DEAD
);
1677 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1679 release_ep_resources(ep
);
1680 return CPL_RET_BUF_DONE
;
1684 * T3A does 3 things when a TERM is received:
1685 * 1) send up a CPL_RDMA_TERMINATE message with the TERM packet
1686 * 2) generate an async event on the QP with the TERMINATE opcode
1687 * 3) post a TERMINATE opcode cqe into the associated CQ.
1689 * For (1), we save the message in the qp for later consumer consumption.
1690 * For (2), we move the QP into TERMINATE, post a QP event and disconnect.
1691 * For (3), we toss the CQE in cxio_poll_cq().
1693 * terminate() handles case (1)...
1695 static int terminate(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1697 struct iwch_ep
*ep
= ctx
;
1699 if (state_read(&ep
->com
) != FPDU_MODE
)
1700 return CPL_RET_BUF_DONE
;
1702 PDBG("%s ep %p\n", __func__
, ep
);
1703 skb_pull(skb
, sizeof(struct cpl_rdma_terminate
));
1704 PDBG("%s saving %d bytes of term msg\n", __func__
, skb
->len
);
1705 skb_copy_from_linear_data(skb
, ep
->com
.qp
->attr
.terminate_buffer
,
1707 ep
->com
.qp
->attr
.terminate_msg_len
= skb
->len
;
1708 ep
->com
.qp
->attr
.is_terminate_local
= 0;
1709 return CPL_RET_BUF_DONE
;
1712 static int ec_status(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1714 struct cpl_rdma_ec_status
*rep
= cplhdr(skb
);
1715 struct iwch_ep
*ep
= ctx
;
1717 PDBG("%s ep %p tid %u status %d\n", __func__
, ep
, ep
->hwtid
,
1720 struct iwch_qp_attributes attrs
;
1722 printk(KERN_ERR MOD
"%s BAD CLOSE - Aborting tid %u\n",
1723 __func__
, ep
->hwtid
);
1725 attrs
.next_state
= IWCH_QP_STATE_ERROR
;
1726 iwch_modify_qp(ep
->com
.qp
->rhp
,
1727 ep
->com
.qp
, IWCH_QP_ATTR_NEXT_STATE
,
1729 abort_connection(ep
, NULL
, GFP_KERNEL
);
1731 return CPL_RET_BUF_DONE
;
1734 static void ep_timeout(unsigned long arg
)
1736 struct iwch_ep
*ep
= (struct iwch_ep
*)arg
;
1737 struct iwch_qp_attributes attrs
;
1738 unsigned long flags
;
1741 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1742 PDBG("%s ep %p tid %u state %d\n", __func__
, ep
, ep
->hwtid
,
1744 switch (ep
->com
.state
) {
1746 __state_set(&ep
->com
, ABORTING
);
1747 connect_reply_upcall(ep
, -ETIMEDOUT
);
1750 __state_set(&ep
->com
, ABORTING
);
1754 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
1755 attrs
.next_state
= IWCH_QP_STATE_ERROR
;
1756 iwch_modify_qp(ep
->com
.qp
->rhp
,
1757 ep
->com
.qp
, IWCH_QP_ATTR_NEXT_STATE
,
1760 __state_set(&ep
->com
, ABORTING
);
1763 WARN(1, "%s unexpected state ep %p state %u\n",
1764 __func__
, ep
, ep
->com
.state
);
1767 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1769 abort_connection(ep
, NULL
, GFP_ATOMIC
);
1773 int iwch_reject_cr(struct iw_cm_id
*cm_id
, const void *pdata
, u8 pdata_len
)
1776 struct iwch_ep
*ep
= to_ep(cm_id
);
1777 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
1779 if (state_read(&ep
->com
) == DEAD
) {
1783 BUG_ON(state_read(&ep
->com
) != MPA_REQ_RCVD
);
1785 abort_connection(ep
, NULL
, GFP_KERNEL
);
1787 err
= send_mpa_reject(ep
, pdata
, pdata_len
);
1788 err
= iwch_ep_disconnect(ep
, 0, GFP_KERNEL
);
1794 int iwch_accept_cr(struct iw_cm_id
*cm_id
, struct iw_cm_conn_param
*conn_param
)
1797 struct iwch_qp_attributes attrs
;
1798 enum iwch_qp_attr_mask mask
;
1799 struct iwch_ep
*ep
= to_ep(cm_id
);
1800 struct iwch_dev
*h
= to_iwch_dev(cm_id
->device
);
1801 struct iwch_qp
*qp
= get_qhp(h
, conn_param
->qpn
);
1803 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
1804 if (state_read(&ep
->com
) == DEAD
) {
1809 BUG_ON(state_read(&ep
->com
) != MPA_REQ_RCVD
);
1812 if ((conn_param
->ord
> qp
->rhp
->attr
.max_rdma_read_qp_depth
) ||
1813 (conn_param
->ird
> qp
->rhp
->attr
.max_rdma_reads_per_qp
)) {
1814 abort_connection(ep
, NULL
, GFP_KERNEL
);
1819 cm_id
->add_ref(cm_id
);
1820 ep
->com
.cm_id
= cm_id
;
1823 ep
->ird
= conn_param
->ird
;
1824 ep
->ord
= conn_param
->ord
;
1826 if (peer2peer
&& ep
->ird
== 0)
1829 PDBG("%s %d ird %d ord %d\n", __func__
, __LINE__
, ep
->ird
, ep
->ord
);
1831 /* bind QP to EP and move to RTS */
1832 attrs
.mpa_attr
= ep
->mpa_attr
;
1833 attrs
.max_ird
= ep
->ird
;
1834 attrs
.max_ord
= ep
->ord
;
1835 attrs
.llp_stream_handle
= ep
;
1836 attrs
.next_state
= IWCH_QP_STATE_RTS
;
1838 /* bind QP and TID with INIT_WR */
1839 mask
= IWCH_QP_ATTR_NEXT_STATE
|
1840 IWCH_QP_ATTR_LLP_STREAM_HANDLE
|
1841 IWCH_QP_ATTR_MPA_ATTR
|
1842 IWCH_QP_ATTR_MAX_IRD
|
1843 IWCH_QP_ATTR_MAX_ORD
;
1845 err
= iwch_modify_qp(ep
->com
.qp
->rhp
,
1846 ep
->com
.qp
, mask
, &attrs
, 1);
1850 /* if needed, wait for wr_ack */
1851 if (iwch_rqes_posted(qp
)) {
1852 wait_event(ep
->com
.waitq
, ep
->com
.rpl_done
);
1853 err
= ep
->com
.rpl_err
;
1858 err
= send_mpa_reply(ep
, conn_param
->private_data
,
1859 conn_param
->private_data_len
);
1864 state_set(&ep
->com
, FPDU_MODE
);
1865 established_upcall(ep
);
1869 ep
->com
.cm_id
= NULL
;
1871 cm_id
->rem_ref(cm_id
);
1877 static int is_loopback_dst(struct iw_cm_id
*cm_id
)
1879 struct net_device
*dev
;
1880 struct sockaddr_in
*raddr
= (struct sockaddr_in
*)&cm_id
->m_remote_addr
;
1882 dev
= ip_dev_find(&init_net
, raddr
->sin_addr
.s_addr
);
1889 int iwch_connect(struct iw_cm_id
*cm_id
, struct iw_cm_conn_param
*conn_param
)
1891 struct iwch_dev
*h
= to_iwch_dev(cm_id
->device
);
1895 struct sockaddr_in
*laddr
= (struct sockaddr_in
*)&cm_id
->m_local_addr
;
1896 struct sockaddr_in
*raddr
= (struct sockaddr_in
*)&cm_id
->m_remote_addr
;
1898 if (cm_id
->m_remote_addr
.ss_family
!= PF_INET
) {
1903 if (is_loopback_dst(cm_id
)) {
1908 ep
= alloc_ep(sizeof(*ep
), GFP_KERNEL
);
1910 printk(KERN_ERR MOD
"%s - cannot alloc ep.\n", __func__
);
1914 init_timer(&ep
->timer
);
1915 ep
->plen
= conn_param
->private_data_len
;
1917 memcpy(ep
->mpa_pkt
+ sizeof(struct mpa_message
),
1918 conn_param
->private_data
, ep
->plen
);
1919 ep
->ird
= conn_param
->ird
;
1920 ep
->ord
= conn_param
->ord
;
1922 if (peer2peer
&& ep
->ord
== 0)
1925 ep
->com
.tdev
= h
->rdev
.t3cdev_p
;
1927 cm_id
->add_ref(cm_id
);
1928 ep
->com
.cm_id
= cm_id
;
1929 ep
->com
.qp
= get_qhp(h
, conn_param
->qpn
);
1930 BUG_ON(!ep
->com
.qp
);
1931 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__
, conn_param
->qpn
,
1935 * Allocate an active TID to initiate a TCP connection.
1937 ep
->atid
= cxgb3_alloc_atid(h
->rdev
.t3cdev_p
, &t3c_client
, ep
);
1938 if (ep
->atid
== -1) {
1939 printk(KERN_ERR MOD
"%s - cannot alloc atid.\n", __func__
);
1945 rt
= find_route(h
->rdev
.t3cdev_p
, laddr
->sin_addr
.s_addr
,
1946 raddr
->sin_addr
.s_addr
, laddr
->sin_port
,
1947 raddr
->sin_port
, IPTOS_LOWDELAY
);
1949 printk(KERN_ERR MOD
"%s - cannot find route.\n", __func__
);
1950 err
= -EHOSTUNREACH
;
1954 ep
->l2t
= t3_l2t_get(ep
->com
.tdev
, ep
->dst
, NULL
,
1955 &raddr
->sin_addr
.s_addr
);
1957 printk(KERN_ERR MOD
"%s - cannot alloc l2e.\n", __func__
);
1962 state_set(&ep
->com
, CONNECTING
);
1963 ep
->tos
= IPTOS_LOWDELAY
;
1964 memcpy(&ep
->com
.local_addr
, &cm_id
->m_local_addr
,
1965 sizeof(ep
->com
.local_addr
));
1966 memcpy(&ep
->com
.remote_addr
, &cm_id
->m_remote_addr
,
1967 sizeof(ep
->com
.remote_addr
));
1969 /* send connect request to rnic */
1970 err
= send_connect(ep
);
1974 l2t_release(h
->rdev
.t3cdev_p
, ep
->l2t
);
1976 dst_release(ep
->dst
);
1978 cxgb3_free_atid(ep
->com
.tdev
, ep
->atid
);
1980 cm_id
->rem_ref(cm_id
);
1986 int iwch_create_listen(struct iw_cm_id
*cm_id
, int backlog
)
1989 struct iwch_dev
*h
= to_iwch_dev(cm_id
->device
);
1990 struct iwch_listen_ep
*ep
;
1995 if (cm_id
->m_local_addr
.ss_family
!= PF_INET
) {
2000 ep
= alloc_ep(sizeof(*ep
), GFP_KERNEL
);
2002 printk(KERN_ERR MOD
"%s - cannot alloc ep.\n", __func__
);
2006 PDBG("%s ep %p\n", __func__
, ep
);
2007 ep
->com
.tdev
= h
->rdev
.t3cdev_p
;
2008 cm_id
->add_ref(cm_id
);
2009 ep
->com
.cm_id
= cm_id
;
2010 ep
->backlog
= backlog
;
2011 memcpy(&ep
->com
.local_addr
, &cm_id
->m_local_addr
,
2012 sizeof(ep
->com
.local_addr
));
2015 * Allocate a server TID.
2017 ep
->stid
= cxgb3_alloc_stid(h
->rdev
.t3cdev_p
, &t3c_client
, ep
);
2018 if (ep
->stid
== -1) {
2019 printk(KERN_ERR MOD
"%s - cannot alloc atid.\n", __func__
);
2024 state_set(&ep
->com
, LISTEN
);
2025 err
= listen_start(ep
);
2029 /* wait for pass_open_rpl */
2030 wait_event(ep
->com
.waitq
, ep
->com
.rpl_done
);
2031 err
= ep
->com
.rpl_err
;
2033 cm_id
->provider_data
= ep
;
2037 cxgb3_free_stid(ep
->com
.tdev
, ep
->stid
);
2039 cm_id
->rem_ref(cm_id
);
2046 int iwch_destroy_listen(struct iw_cm_id
*cm_id
)
2049 struct iwch_listen_ep
*ep
= to_listen_ep(cm_id
);
2051 PDBG("%s ep %p\n", __func__
, ep
);
2054 state_set(&ep
->com
, DEAD
);
2055 ep
->com
.rpl_done
= 0;
2056 ep
->com
.rpl_err
= 0;
2057 err
= listen_stop(ep
);
2060 wait_event(ep
->com
.waitq
, ep
->com
.rpl_done
);
2061 cxgb3_free_stid(ep
->com
.tdev
, ep
->stid
);
2063 err
= ep
->com
.rpl_err
;
2064 cm_id
->rem_ref(cm_id
);
2069 int iwch_ep_disconnect(struct iwch_ep
*ep
, int abrupt
, gfp_t gfp
)
2072 unsigned long flags
;
2075 struct t3cdev
*tdev
;
2076 struct cxio_rdev
*rdev
;
2078 spin_lock_irqsave(&ep
->com
.lock
, flags
);
2080 PDBG("%s ep %p state %s, abrupt %d\n", __func__
, ep
,
2081 states
[ep
->com
.state
], abrupt
);
2083 tdev
= (struct t3cdev
*)ep
->com
.tdev
;
2084 rdev
= (struct cxio_rdev
*)tdev
->ulp
;
2085 if (cxio_fatal_error(rdev
)) {
2087 close_complete_upcall(ep
);
2088 ep
->com
.state
= DEAD
;
2090 switch (ep
->com
.state
) {
2098 ep
->com
.state
= ABORTING
;
2100 ep
->com
.state
= CLOSING
;
2103 set_bit(CLOSE_SENT
, &ep
->com
.flags
);
2106 if (!test_and_set_bit(CLOSE_SENT
, &ep
->com
.flags
)) {
2110 ep
->com
.state
= ABORTING
;
2112 ep
->com
.state
= MORIBUND
;
2118 PDBG("%s ignoring disconnect ep %p state %u\n",
2119 __func__
, ep
, ep
->com
.state
);
2126 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
2129 ret
= send_abort(ep
, NULL
, gfp
);
2131 ret
= send_halfclose(ep
, gfp
);
2136 release_ep_resources(ep
);
2140 int iwch_ep_redirect(void *ctx
, struct dst_entry
*old
, struct dst_entry
*new,
2141 struct l2t_entry
*l2t
)
2143 struct iwch_ep
*ep
= ctx
;
2148 PDBG("%s ep %p redirect to dst %p l2t %p\n", __func__
, ep
, new,
2151 l2t_release(ep
->com
.tdev
, ep
->l2t
);
2159 * All the CM events are handled on a work queue to have a safe context.
2160 * These are the real handlers that are called from the work queue.
2162 static const cxgb3_cpl_handler_func work_handlers
[NUM_CPL_CMDS
] = {
2163 [CPL_ACT_ESTABLISH
] = act_establish
,
2164 [CPL_ACT_OPEN_RPL
] = act_open_rpl
,
2165 [CPL_RX_DATA
] = rx_data
,
2166 [CPL_TX_DMA_ACK
] = tx_ack
,
2167 [CPL_ABORT_RPL_RSS
] = abort_rpl
,
2168 [CPL_ABORT_RPL
] = abort_rpl
,
2169 [CPL_PASS_OPEN_RPL
] = pass_open_rpl
,
2170 [CPL_CLOSE_LISTSRV_RPL
] = close_listsrv_rpl
,
2171 [CPL_PASS_ACCEPT_REQ
] = pass_accept_req
,
2172 [CPL_PASS_ESTABLISH
] = pass_establish
,
2173 [CPL_PEER_CLOSE
] = peer_close
,
2174 [CPL_ABORT_REQ_RSS
] = peer_abort
,
2175 [CPL_CLOSE_CON_RPL
] = close_con_rpl
,
2176 [CPL_RDMA_TERMINATE
] = terminate
,
2177 [CPL_RDMA_EC_STATUS
] = ec_status
,
2180 static void process_work(struct work_struct
*work
)
2182 struct sk_buff
*skb
= NULL
;
2184 struct t3cdev
*tdev
;
2187 while ((skb
= skb_dequeue(&rxq
))) {
2188 ep
= *((void **) (skb
->cb
));
2189 tdev
= *((struct t3cdev
**) (skb
->cb
+ sizeof(void *)));
2190 ret
= work_handlers
[G_OPCODE(ntohl((__force __be32
)skb
->csum
))](tdev
, skb
, ep
);
2191 if (ret
& CPL_RET_BUF_DONE
)
2195 * ep was referenced in sched(), and is freed here.
2197 put_ep((struct iwch_ep_common
*)ep
);
2201 static DECLARE_WORK(skb_work
, process_work
);
2203 static int sched(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
2205 struct iwch_ep_common
*epc
= ctx
;
2210 * Save ctx and tdev in the skb->cb area.
2212 *((void **) skb
->cb
) = ctx
;
2213 *((struct t3cdev
**) (skb
->cb
+ sizeof(void *))) = tdev
;
2216 * Queue the skb and schedule the worker thread.
2218 skb_queue_tail(&rxq
, skb
);
2219 queue_work(workq
, &skb_work
);
2223 static int set_tcb_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
2225 struct cpl_set_tcb_rpl
*rpl
= cplhdr(skb
);
2227 if (rpl
->status
!= CPL_ERR_NONE
) {
2228 printk(KERN_ERR MOD
"Unexpected SET_TCB_RPL status %u "
2229 "for tid %u\n", rpl
->status
, GET_TID(rpl
));
2231 return CPL_RET_BUF_DONE
;
2235 * All upcalls from the T3 Core go to sched() to schedule the
2236 * processing on a work queue.
2238 cxgb3_cpl_handler_func t3c_handlers
[NUM_CPL_CMDS
] = {
2239 [CPL_ACT_ESTABLISH
] = sched
,
2240 [CPL_ACT_OPEN_RPL
] = sched
,
2241 [CPL_RX_DATA
] = sched
,
2242 [CPL_TX_DMA_ACK
] = sched
,
2243 [CPL_ABORT_RPL_RSS
] = sched
,
2244 [CPL_ABORT_RPL
] = sched
,
2245 [CPL_PASS_OPEN_RPL
] = sched
,
2246 [CPL_CLOSE_LISTSRV_RPL
] = sched
,
2247 [CPL_PASS_ACCEPT_REQ
] = sched
,
2248 [CPL_PASS_ESTABLISH
] = sched
,
2249 [CPL_PEER_CLOSE
] = sched
,
2250 [CPL_CLOSE_CON_RPL
] = sched
,
2251 [CPL_ABORT_REQ_RSS
] = sched
,
2252 [CPL_RDMA_TERMINATE
] = sched
,
2253 [CPL_RDMA_EC_STATUS
] = sched
,
2254 [CPL_SET_TCB_RPL
] = set_tcb_rpl
,
2257 int __init
iwch_cm_init(void)
2259 skb_queue_head_init(&rxq
);
2261 workq
= create_singlethread_workqueue("iw_cxgb3");
2268 void __exit
iwch_cm_term(void)
2270 flush_workqueue(workq
);
2271 destroy_workqueue(workq
);