2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
68 static bool devices_handle_discard_safely
= false;
69 module_param(devices_handle_discard_safely
, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely
,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct
*raid5_wq
;
77 #define NR_STRIPES 256
78 #define STRIPE_SIZE PAGE_SIZE
79 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD 1
82 #define BYPASS_THRESHOLD 1
83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH 8
87 static inline struct hlist_head
*stripe_hash(struct r5conf
*conf
, sector_t sect
)
89 int hash
= (sect
>> STRIPE_SHIFT
) & HASH_MASK
;
90 return &conf
->stripe_hashtbl
[hash
];
93 static inline int stripe_hash_locks_hash(sector_t sect
)
95 return (sect
>> STRIPE_SHIFT
) & STRIPE_HASH_LOCKS_MASK
;
98 static inline void lock_device_hash_lock(struct r5conf
*conf
, int hash
)
100 spin_lock_irq(conf
->hash_locks
+ hash
);
101 spin_lock(&conf
->device_lock
);
104 static inline void unlock_device_hash_lock(struct r5conf
*conf
, int hash
)
106 spin_unlock(&conf
->device_lock
);
107 spin_unlock_irq(conf
->hash_locks
+ hash
);
110 static inline void lock_all_device_hash_locks_irq(struct r5conf
*conf
)
114 spin_lock(conf
->hash_locks
);
115 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
116 spin_lock_nest_lock(conf
->hash_locks
+ i
, conf
->hash_locks
);
117 spin_lock(&conf
->device_lock
);
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf
*conf
)
123 spin_unlock(&conf
->device_lock
);
124 for (i
= NR_STRIPE_HASH_LOCKS
; i
; i
--)
125 spin_unlock(conf
->hash_locks
+ i
- 1);
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
135 * This function is used to determine the 'next' bio in the list, given the sector
136 * of the current stripe+device
138 static inline struct bio
*r5_next_bio(struct bio
*bio
, sector_t sector
)
140 int sectors
= bio_sectors(bio
);
141 if (bio
->bi_iter
.bi_sector
+ sectors
< sector
+ STRIPE_SECTORS
)
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
151 static inline int raid5_bi_processed_stripes(struct bio
*bio
)
153 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
154 return (atomic_read(segments
) >> 16) & 0xffff;
157 static inline int raid5_dec_bi_active_stripes(struct bio
*bio
)
159 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
160 return atomic_sub_return(1, segments
) & 0xffff;
163 static inline void raid5_inc_bi_active_stripes(struct bio
*bio
)
165 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
166 atomic_inc(segments
);
169 static inline void raid5_set_bi_processed_stripes(struct bio
*bio
,
172 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
176 old
= atomic_read(segments
);
177 new = (old
& 0xffff) | (cnt
<< 16);
178 } while (atomic_cmpxchg(segments
, old
, new) != old
);
181 static inline void raid5_set_bi_stripes(struct bio
*bio
, unsigned int cnt
)
183 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
184 atomic_set(segments
, cnt
);
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head
*sh
)
191 /* ddf always start from first device */
193 /* md starts just after Q block */
194 if (sh
->qd_idx
== sh
->disks
- 1)
197 return sh
->qd_idx
+ 1;
199 static inline int raid6_next_disk(int disk
, int raid_disks
)
202 return (disk
< raid_disks
) ? disk
: 0;
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
210 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
211 int *count
, int syndrome_disks
)
217 if (idx
== sh
->pd_idx
)
218 return syndrome_disks
;
219 if (idx
== sh
->qd_idx
)
220 return syndrome_disks
+ 1;
226 static void return_io(struct bio_list
*return_bi
)
229 while ((bi
= bio_list_pop(return_bi
)) != NULL
) {
230 bi
->bi_iter
.bi_size
= 0;
231 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
237 static void print_raid5_conf (struct r5conf
*conf
);
239 static int stripe_operations_active(struct stripe_head
*sh
)
241 return sh
->check_state
|| sh
->reconstruct_state
||
242 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
243 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
246 static void raid5_wakeup_stripe_thread(struct stripe_head
*sh
)
248 struct r5conf
*conf
= sh
->raid_conf
;
249 struct r5worker_group
*group
;
251 int i
, cpu
= sh
->cpu
;
253 if (!cpu_online(cpu
)) {
254 cpu
= cpumask_any(cpu_online_mask
);
258 if (list_empty(&sh
->lru
)) {
259 struct r5worker_group
*group
;
260 group
= conf
->worker_groups
+ cpu_to_group(cpu
);
261 list_add_tail(&sh
->lru
, &group
->handle_list
);
262 group
->stripes_cnt
++;
266 if (conf
->worker_cnt_per_group
== 0) {
267 md_wakeup_thread(conf
->mddev
->thread
);
271 group
= conf
->worker_groups
+ cpu_to_group(sh
->cpu
);
273 group
->workers
[0].working
= true;
274 /* at least one worker should run to avoid race */
275 queue_work_on(sh
->cpu
, raid5_wq
, &group
->workers
[0].work
);
277 thread_cnt
= group
->stripes_cnt
/ MAX_STRIPE_BATCH
- 1;
278 /* wakeup more workers */
279 for (i
= 1; i
< conf
->worker_cnt_per_group
&& thread_cnt
> 0; i
++) {
280 if (group
->workers
[i
].working
== false) {
281 group
->workers
[i
].working
= true;
282 queue_work_on(sh
->cpu
, raid5_wq
,
283 &group
->workers
[i
].work
);
289 static void do_release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
290 struct list_head
*temp_inactive_list
)
292 BUG_ON(!list_empty(&sh
->lru
));
293 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
294 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
295 if (test_bit(STRIPE_DELAYED
, &sh
->state
) &&
296 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
297 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
298 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
299 sh
->bm_seq
- conf
->seq_write
> 0)
300 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
302 clear_bit(STRIPE_DELAYED
, &sh
->state
);
303 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
304 if (conf
->worker_cnt_per_group
== 0) {
305 list_add_tail(&sh
->lru
, &conf
->handle_list
);
307 raid5_wakeup_stripe_thread(sh
);
311 md_wakeup_thread(conf
->mddev
->thread
);
313 BUG_ON(stripe_operations_active(sh
));
314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
315 if (atomic_dec_return(&conf
->preread_active_stripes
)
317 md_wakeup_thread(conf
->mddev
->thread
);
318 atomic_dec(&conf
->active_stripes
);
319 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
))
320 list_add_tail(&sh
->lru
, temp_inactive_list
);
324 static void __release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
325 struct list_head
*temp_inactive_list
)
327 if (atomic_dec_and_test(&sh
->count
))
328 do_release_stripe(conf
, sh
, temp_inactive_list
);
332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335 * given time. Adding stripes only takes device lock, while deleting stripes
336 * only takes hash lock.
338 static void release_inactive_stripe_list(struct r5conf
*conf
,
339 struct list_head
*temp_inactive_list
,
343 bool do_wakeup
= false;
346 if (hash
== NR_STRIPE_HASH_LOCKS
) {
347 size
= NR_STRIPE_HASH_LOCKS
;
348 hash
= NR_STRIPE_HASH_LOCKS
- 1;
352 struct list_head
*list
= &temp_inactive_list
[size
- 1];
355 * We don't hold any lock here yet, raid5_get_active_stripe() might
356 * remove stripes from the list
358 if (!list_empty_careful(list
)) {
359 spin_lock_irqsave(conf
->hash_locks
+ hash
, flags
);
360 if (list_empty(conf
->inactive_list
+ hash
) &&
362 atomic_dec(&conf
->empty_inactive_list_nr
);
363 list_splice_tail_init(list
, conf
->inactive_list
+ hash
);
365 spin_unlock_irqrestore(conf
->hash_locks
+ hash
, flags
);
372 wake_up(&conf
->wait_for_stripe
);
373 if (atomic_read(&conf
->active_stripes
) == 0)
374 wake_up(&conf
->wait_for_quiescent
);
375 if (conf
->retry_read_aligned
)
376 md_wakeup_thread(conf
->mddev
->thread
);
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf
*conf
,
382 struct list_head
*temp_inactive_list
)
384 struct stripe_head
*sh
;
386 struct llist_node
*head
;
388 head
= llist_del_all(&conf
->released_stripes
);
389 head
= llist_reverse_order(head
);
393 sh
= llist_entry(head
, struct stripe_head
, release_list
);
394 head
= llist_next(head
);
395 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
397 clear_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
);
399 * Don't worry the bit is set here, because if the bit is set
400 * again, the count is always > 1. This is true for
401 * STRIPE_ON_UNPLUG_LIST bit too.
403 hash
= sh
->hash_lock_index
;
404 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
411 void raid5_release_stripe(struct stripe_head
*sh
)
413 struct r5conf
*conf
= sh
->raid_conf
;
415 struct list_head list
;
419 /* Avoid release_list until the last reference.
421 if (atomic_add_unless(&sh
->count
, -1, 1))
424 if (unlikely(!conf
->mddev
->thread
) ||
425 test_and_set_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
))
427 wakeup
= llist_add(&sh
->release_list
, &conf
->released_stripes
);
429 md_wakeup_thread(conf
->mddev
->thread
);
432 local_irq_save(flags
);
433 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434 if (atomic_dec_and_lock(&sh
->count
, &conf
->device_lock
)) {
435 INIT_LIST_HEAD(&list
);
436 hash
= sh
->hash_lock_index
;
437 do_release_stripe(conf
, sh
, &list
);
438 spin_unlock(&conf
->device_lock
);
439 release_inactive_stripe_list(conf
, &list
, hash
);
441 local_irq_restore(flags
);
444 static inline void remove_hash(struct stripe_head
*sh
)
446 pr_debug("remove_hash(), stripe %llu\n",
447 (unsigned long long)sh
->sector
);
449 hlist_del_init(&sh
->hash
);
452 static inline void insert_hash(struct r5conf
*conf
, struct stripe_head
*sh
)
454 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
456 pr_debug("insert_hash(), stripe %llu\n",
457 (unsigned long long)sh
->sector
);
459 hlist_add_head(&sh
->hash
, hp
);
462 /* find an idle stripe, make sure it is unhashed, and return it. */
463 static struct stripe_head
*get_free_stripe(struct r5conf
*conf
, int hash
)
465 struct stripe_head
*sh
= NULL
;
466 struct list_head
*first
;
468 if (list_empty(conf
->inactive_list
+ hash
))
470 first
= (conf
->inactive_list
+ hash
)->next
;
471 sh
= list_entry(first
, struct stripe_head
, lru
);
472 list_del_init(first
);
474 atomic_inc(&conf
->active_stripes
);
475 BUG_ON(hash
!= sh
->hash_lock_index
);
476 if (list_empty(conf
->inactive_list
+ hash
))
477 atomic_inc(&conf
->empty_inactive_list_nr
);
482 static void shrink_buffers(struct stripe_head
*sh
)
486 int num
= sh
->raid_conf
->pool_size
;
488 for (i
= 0; i
< num
; i
++) {
489 WARN_ON(sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
);
493 sh
->dev
[i
].page
= NULL
;
498 static int grow_buffers(struct stripe_head
*sh
, gfp_t gfp
)
501 int num
= sh
->raid_conf
->pool_size
;
503 for (i
= 0; i
< num
; i
++) {
506 if (!(page
= alloc_page(gfp
))) {
509 sh
->dev
[i
].page
= page
;
510 sh
->dev
[i
].orig_page
= page
;
515 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
516 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
517 struct stripe_head
*sh
);
519 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
521 struct r5conf
*conf
= sh
->raid_conf
;
524 BUG_ON(atomic_read(&sh
->count
) != 0);
525 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
526 BUG_ON(stripe_operations_active(sh
));
527 BUG_ON(sh
->batch_head
);
529 pr_debug("init_stripe called, stripe %llu\n",
530 (unsigned long long)sector
);
532 seq
= read_seqcount_begin(&conf
->gen_lock
);
533 sh
->generation
= conf
->generation
- previous
;
534 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
536 stripe_set_idx(sector
, conf
, previous
, sh
);
539 for (i
= sh
->disks
; i
--; ) {
540 struct r5dev
*dev
= &sh
->dev
[i
];
542 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
543 test_bit(R5_LOCKED
, &dev
->flags
)) {
544 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
545 (unsigned long long)sh
->sector
, i
, dev
->toread
,
546 dev
->read
, dev
->towrite
, dev
->written
,
547 test_bit(R5_LOCKED
, &dev
->flags
));
551 raid5_build_block(sh
, i
, previous
);
553 if (read_seqcount_retry(&conf
->gen_lock
, seq
))
555 sh
->overwrite_disks
= 0;
556 insert_hash(conf
, sh
);
557 sh
->cpu
= smp_processor_id();
558 set_bit(STRIPE_BATCH_READY
, &sh
->state
);
561 static struct stripe_head
*__find_stripe(struct r5conf
*conf
, sector_t sector
,
564 struct stripe_head
*sh
;
566 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
567 hlist_for_each_entry(sh
, stripe_hash(conf
, sector
), hash
)
568 if (sh
->sector
== sector
&& sh
->generation
== generation
)
570 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
575 * Need to check if array has failed when deciding whether to:
577 * - remove non-faulty devices
580 * This determination is simple when no reshape is happening.
581 * However if there is a reshape, we need to carefully check
582 * both the before and after sections.
583 * This is because some failed devices may only affect one
584 * of the two sections, and some non-in_sync devices may
585 * be insync in the section most affected by failed devices.
587 static int calc_degraded(struct r5conf
*conf
)
589 int degraded
, degraded2
;
594 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
595 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
596 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
597 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
598 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
600 else if (test_bit(In_sync
, &rdev
->flags
))
603 /* not in-sync or faulty.
604 * If the reshape increases the number of devices,
605 * this is being recovered by the reshape, so
606 * this 'previous' section is not in_sync.
607 * If the number of devices is being reduced however,
608 * the device can only be part of the array if
609 * we are reverting a reshape, so this section will
612 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
616 if (conf
->raid_disks
== conf
->previous_raid_disks
)
620 for (i
= 0; i
< conf
->raid_disks
; i
++) {
621 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
622 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
623 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
624 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
626 else if (test_bit(In_sync
, &rdev
->flags
))
629 /* not in-sync or faulty.
630 * If reshape increases the number of devices, this
631 * section has already been recovered, else it
632 * almost certainly hasn't.
634 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
638 if (degraded2
> degraded
)
643 static int has_failed(struct r5conf
*conf
)
647 if (conf
->mddev
->reshape_position
== MaxSector
)
648 return conf
->mddev
->degraded
> conf
->max_degraded
;
650 degraded
= calc_degraded(conf
);
651 if (degraded
> conf
->max_degraded
)
657 raid5_get_active_stripe(struct r5conf
*conf
, sector_t sector
,
658 int previous
, int noblock
, int noquiesce
)
660 struct stripe_head
*sh
;
661 int hash
= stripe_hash_locks_hash(sector
);
663 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
665 spin_lock_irq(conf
->hash_locks
+ hash
);
668 wait_event_lock_irq(conf
->wait_for_quiescent
,
669 conf
->quiesce
== 0 || noquiesce
,
670 *(conf
->hash_locks
+ hash
));
671 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
673 if (!test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
)) {
674 sh
= get_free_stripe(conf
, hash
);
675 if (!sh
&& !test_bit(R5_DID_ALLOC
,
677 set_bit(R5_ALLOC_MORE
,
680 if (noblock
&& sh
== NULL
)
683 set_bit(R5_INACTIVE_BLOCKED
,
686 conf
->wait_for_stripe
,
687 !list_empty(conf
->inactive_list
+ hash
) &&
688 (atomic_read(&conf
->active_stripes
)
689 < (conf
->max_nr_stripes
* 3 / 4)
690 || !test_bit(R5_INACTIVE_BLOCKED
,
691 &conf
->cache_state
)),
692 *(conf
->hash_locks
+ hash
));
693 clear_bit(R5_INACTIVE_BLOCKED
,
696 init_stripe(sh
, sector
, previous
);
697 atomic_inc(&sh
->count
);
699 } else if (!atomic_inc_not_zero(&sh
->count
)) {
700 spin_lock(&conf
->device_lock
);
701 if (!atomic_read(&sh
->count
)) {
702 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
703 atomic_inc(&conf
->active_stripes
);
704 BUG_ON(list_empty(&sh
->lru
) &&
705 !test_bit(STRIPE_EXPANDING
, &sh
->state
));
706 list_del_init(&sh
->lru
);
708 sh
->group
->stripes_cnt
--;
712 atomic_inc(&sh
->count
);
713 spin_unlock(&conf
->device_lock
);
715 } while (sh
== NULL
);
717 spin_unlock_irq(conf
->hash_locks
+ hash
);
721 static bool is_full_stripe_write(struct stripe_head
*sh
)
723 BUG_ON(sh
->overwrite_disks
> (sh
->disks
- sh
->raid_conf
->max_degraded
));
724 return sh
->overwrite_disks
== (sh
->disks
- sh
->raid_conf
->max_degraded
);
727 static void lock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
731 spin_lock(&sh2
->stripe_lock
);
732 spin_lock_nested(&sh1
->stripe_lock
, 1);
734 spin_lock(&sh1
->stripe_lock
);
735 spin_lock_nested(&sh2
->stripe_lock
, 1);
739 static void unlock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
741 spin_unlock(&sh1
->stripe_lock
);
742 spin_unlock(&sh2
->stripe_lock
);
746 /* Only freshly new full stripe normal write stripe can be added to a batch list */
747 static bool stripe_can_batch(struct stripe_head
*sh
)
749 struct r5conf
*conf
= sh
->raid_conf
;
753 return test_bit(STRIPE_BATCH_READY
, &sh
->state
) &&
754 !test_bit(STRIPE_BITMAP_PENDING
, &sh
->state
) &&
755 is_full_stripe_write(sh
);
758 /* we only do back search */
759 static void stripe_add_to_batch_list(struct r5conf
*conf
, struct stripe_head
*sh
)
761 struct stripe_head
*head
;
762 sector_t head_sector
, tmp_sec
;
766 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767 tmp_sec
= sh
->sector
;
768 if (!sector_div(tmp_sec
, conf
->chunk_sectors
))
770 head_sector
= sh
->sector
- STRIPE_SECTORS
;
772 hash
= stripe_hash_locks_hash(head_sector
);
773 spin_lock_irq(conf
->hash_locks
+ hash
);
774 head
= __find_stripe(conf
, head_sector
, conf
->generation
);
775 if (head
&& !atomic_inc_not_zero(&head
->count
)) {
776 spin_lock(&conf
->device_lock
);
777 if (!atomic_read(&head
->count
)) {
778 if (!test_bit(STRIPE_HANDLE
, &head
->state
))
779 atomic_inc(&conf
->active_stripes
);
780 BUG_ON(list_empty(&head
->lru
) &&
781 !test_bit(STRIPE_EXPANDING
, &head
->state
));
782 list_del_init(&head
->lru
);
784 head
->group
->stripes_cnt
--;
788 atomic_inc(&head
->count
);
789 spin_unlock(&conf
->device_lock
);
791 spin_unlock_irq(conf
->hash_locks
+ hash
);
795 if (!stripe_can_batch(head
))
798 lock_two_stripes(head
, sh
);
799 /* clear_batch_ready clear the flag */
800 if (!stripe_can_batch(head
) || !stripe_can_batch(sh
))
807 while (dd_idx
== sh
->pd_idx
|| dd_idx
== sh
->qd_idx
)
809 if (head
->dev
[dd_idx
].towrite
->bi_rw
!= sh
->dev
[dd_idx
].towrite
->bi_rw
)
812 if (head
->batch_head
) {
813 spin_lock(&head
->batch_head
->batch_lock
);
814 /* This batch list is already running */
815 if (!stripe_can_batch(head
)) {
816 spin_unlock(&head
->batch_head
->batch_lock
);
821 * at this point, head's BATCH_READY could be cleared, but we
822 * can still add the stripe to batch list
824 list_add(&sh
->batch_list
, &head
->batch_list
);
825 spin_unlock(&head
->batch_head
->batch_lock
);
827 sh
->batch_head
= head
->batch_head
;
829 head
->batch_head
= head
;
830 sh
->batch_head
= head
->batch_head
;
831 spin_lock(&head
->batch_lock
);
832 list_add_tail(&sh
->batch_list
, &head
->batch_list
);
833 spin_unlock(&head
->batch_lock
);
836 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
837 if (atomic_dec_return(&conf
->preread_active_stripes
)
839 md_wakeup_thread(conf
->mddev
->thread
);
841 if (test_and_clear_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
842 int seq
= sh
->bm_seq
;
843 if (test_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
) &&
844 sh
->batch_head
->bm_seq
> seq
)
845 seq
= sh
->batch_head
->bm_seq
;
846 set_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
);
847 sh
->batch_head
->bm_seq
= seq
;
850 atomic_inc(&sh
->count
);
852 unlock_two_stripes(head
, sh
);
854 raid5_release_stripe(head
);
857 /* Determine if 'data_offset' or 'new_data_offset' should be used
858 * in this stripe_head.
860 static int use_new_offset(struct r5conf
*conf
, struct stripe_head
*sh
)
862 sector_t progress
= conf
->reshape_progress
;
863 /* Need a memory barrier to make sure we see the value
864 * of conf->generation, or ->data_offset that was set before
865 * reshape_progress was updated.
868 if (progress
== MaxSector
)
870 if (sh
->generation
== conf
->generation
- 1)
872 /* We are in a reshape, and this is a new-generation stripe,
873 * so use new_data_offset.
879 raid5_end_read_request(struct bio
*bi
);
881 raid5_end_write_request(struct bio
*bi
);
883 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
885 struct r5conf
*conf
= sh
->raid_conf
;
886 int i
, disks
= sh
->disks
;
887 struct stripe_head
*head_sh
= sh
;
891 if (r5l_write_stripe(conf
->log
, sh
) == 0)
893 for (i
= disks
; i
--; ) {
895 int replace_only
= 0;
896 struct bio
*bi
, *rbi
;
897 struct md_rdev
*rdev
, *rrdev
= NULL
;
900 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
901 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
905 if (test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
907 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
909 else if (test_and_clear_bit(R5_WantReplace
,
910 &sh
->dev
[i
].flags
)) {
915 if (test_and_clear_bit(R5_SyncIO
, &sh
->dev
[i
].flags
))
919 bi
= &sh
->dev
[i
].req
;
920 rbi
= &sh
->dev
[i
].rreq
; /* For writing to replacement */
923 rrdev
= rcu_dereference(conf
->disks
[i
].replacement
);
924 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
925 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
934 /* We raced and saw duplicates */
937 if (test_bit(R5_ReadRepl
, &head_sh
->dev
[i
].flags
) && rrdev
)
942 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
945 atomic_inc(&rdev
->nr_pending
);
946 if (rrdev
&& test_bit(Faulty
, &rrdev
->flags
))
949 atomic_inc(&rrdev
->nr_pending
);
952 /* We have already checked bad blocks for reads. Now
953 * need to check for writes. We never accept write errors
954 * on the replacement, so we don't to check rrdev.
956 while ((rw
& WRITE
) && rdev
&&
957 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
960 int bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
961 &first_bad
, &bad_sectors
);
966 set_bit(BlockedBadBlocks
, &rdev
->flags
);
967 if (!conf
->mddev
->external
&&
968 conf
->mddev
->flags
) {
969 /* It is very unlikely, but we might
970 * still need to write out the
971 * bad block log - better give it
973 md_check_recovery(conf
->mddev
);
976 * Because md_wait_for_blocked_rdev
977 * will dec nr_pending, we must
978 * increment it first.
980 atomic_inc(&rdev
->nr_pending
);
981 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
983 /* Acknowledged bad block - skip the write */
984 rdev_dec_pending(rdev
, conf
->mddev
);
990 if (s
->syncing
|| s
->expanding
|| s
->expanded
992 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
994 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
997 bi
->bi_bdev
= rdev
->bdev
;
999 bi
->bi_end_io
= (rw
& WRITE
)
1000 ? raid5_end_write_request
1001 : raid5_end_read_request
;
1002 bi
->bi_private
= sh
;
1004 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1005 __func__
, (unsigned long long)sh
->sector
,
1007 atomic_inc(&sh
->count
);
1009 atomic_inc(&head_sh
->count
);
1010 if (use_new_offset(conf
, sh
))
1011 bi
->bi_iter
.bi_sector
= (sh
->sector
1012 + rdev
->new_data_offset
);
1014 bi
->bi_iter
.bi_sector
= (sh
->sector
1015 + rdev
->data_offset
);
1016 if (test_bit(R5_ReadNoMerge
, &head_sh
->dev
[i
].flags
))
1017 bi
->bi_rw
|= REQ_NOMERGE
;
1019 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1020 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1021 sh
->dev
[i
].vec
.bv_page
= sh
->dev
[i
].page
;
1023 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1024 bi
->bi_io_vec
[0].bv_offset
= 0;
1025 bi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1027 * If this is discard request, set bi_vcnt 0. We don't
1028 * want to confuse SCSI because SCSI will replace payload
1030 if (rw
& REQ_DISCARD
)
1033 set_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
);
1035 if (conf
->mddev
->gendisk
)
1036 trace_block_bio_remap(bdev_get_queue(bi
->bi_bdev
),
1037 bi
, disk_devt(conf
->mddev
->gendisk
),
1039 generic_make_request(bi
);
1042 if (s
->syncing
|| s
->expanding
|| s
->expanded
1044 md_sync_acct(rrdev
->bdev
, STRIPE_SECTORS
);
1046 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1049 rbi
->bi_bdev
= rrdev
->bdev
;
1051 BUG_ON(!(rw
& WRITE
));
1052 rbi
->bi_end_io
= raid5_end_write_request
;
1053 rbi
->bi_private
= sh
;
1055 pr_debug("%s: for %llu schedule op %ld on "
1056 "replacement disc %d\n",
1057 __func__
, (unsigned long long)sh
->sector
,
1059 atomic_inc(&sh
->count
);
1061 atomic_inc(&head_sh
->count
);
1062 if (use_new_offset(conf
, sh
))
1063 rbi
->bi_iter
.bi_sector
= (sh
->sector
1064 + rrdev
->new_data_offset
);
1066 rbi
->bi_iter
.bi_sector
= (sh
->sector
1067 + rrdev
->data_offset
);
1068 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1069 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1070 sh
->dev
[i
].rvec
.bv_page
= sh
->dev
[i
].page
;
1072 rbi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1073 rbi
->bi_io_vec
[0].bv_offset
= 0;
1074 rbi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1076 * If this is discard request, set bi_vcnt 0. We don't
1077 * want to confuse SCSI because SCSI will replace payload
1079 if (rw
& REQ_DISCARD
)
1081 if (conf
->mddev
->gendisk
)
1082 trace_block_bio_remap(bdev_get_queue(rbi
->bi_bdev
),
1083 rbi
, disk_devt(conf
->mddev
->gendisk
),
1085 generic_make_request(rbi
);
1087 if (!rdev
&& !rrdev
) {
1089 set_bit(STRIPE_DEGRADED
, &sh
->state
);
1090 pr_debug("skip op %ld on disc %d for sector %llu\n",
1091 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
1092 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1093 set_bit(STRIPE_HANDLE
, &sh
->state
);
1096 if (!head_sh
->batch_head
)
1098 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1105 static struct dma_async_tx_descriptor
*
1106 async_copy_data(int frombio
, struct bio
*bio
, struct page
**page
,
1107 sector_t sector
, struct dma_async_tx_descriptor
*tx
,
1108 struct stripe_head
*sh
)
1111 struct bvec_iter iter
;
1112 struct page
*bio_page
;
1114 struct async_submit_ctl submit
;
1115 enum async_tx_flags flags
= 0;
1117 if (bio
->bi_iter
.bi_sector
>= sector
)
1118 page_offset
= (signed)(bio
->bi_iter
.bi_sector
- sector
) * 512;
1120 page_offset
= (signed)(sector
- bio
->bi_iter
.bi_sector
) * -512;
1123 flags
|= ASYNC_TX_FENCE
;
1124 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
1126 bio_for_each_segment(bvl
, bio
, iter
) {
1127 int len
= bvl
.bv_len
;
1131 if (page_offset
< 0) {
1132 b_offset
= -page_offset
;
1133 page_offset
+= b_offset
;
1137 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1138 clen
= STRIPE_SIZE
- page_offset
;
1143 b_offset
+= bvl
.bv_offset
;
1144 bio_page
= bvl
.bv_page
;
1146 if (sh
->raid_conf
->skip_copy
&&
1147 b_offset
== 0 && page_offset
== 0 &&
1148 clen
== STRIPE_SIZE
)
1151 tx
= async_memcpy(*page
, bio_page
, page_offset
,
1152 b_offset
, clen
, &submit
);
1154 tx
= async_memcpy(bio_page
, *page
, b_offset
,
1155 page_offset
, clen
, &submit
);
1157 /* chain the operations */
1158 submit
.depend_tx
= tx
;
1160 if (clen
< len
) /* hit end of page */
1168 static void ops_complete_biofill(void *stripe_head_ref
)
1170 struct stripe_head
*sh
= stripe_head_ref
;
1171 struct bio_list return_bi
= BIO_EMPTY_LIST
;
1174 pr_debug("%s: stripe %llu\n", __func__
,
1175 (unsigned long long)sh
->sector
);
1177 /* clear completed biofills */
1178 for (i
= sh
->disks
; i
--; ) {
1179 struct r5dev
*dev
= &sh
->dev
[i
];
1181 /* acknowledge completion of a biofill operation */
1182 /* and check if we need to reply to a read request,
1183 * new R5_Wantfill requests are held off until
1184 * !STRIPE_BIOFILL_RUN
1186 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
1187 struct bio
*rbi
, *rbi2
;
1192 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1193 dev
->sector
+ STRIPE_SECTORS
) {
1194 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1195 if (!raid5_dec_bi_active_stripes(rbi
))
1196 bio_list_add(&return_bi
, rbi
);
1201 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
1203 return_io(&return_bi
);
1205 set_bit(STRIPE_HANDLE
, &sh
->state
);
1206 raid5_release_stripe(sh
);
1209 static void ops_run_biofill(struct stripe_head
*sh
)
1211 struct dma_async_tx_descriptor
*tx
= NULL
;
1212 struct async_submit_ctl submit
;
1215 BUG_ON(sh
->batch_head
);
1216 pr_debug("%s: stripe %llu\n", __func__
,
1217 (unsigned long long)sh
->sector
);
1219 for (i
= sh
->disks
; i
--; ) {
1220 struct r5dev
*dev
= &sh
->dev
[i
];
1221 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
1223 spin_lock_irq(&sh
->stripe_lock
);
1224 dev
->read
= rbi
= dev
->toread
;
1226 spin_unlock_irq(&sh
->stripe_lock
);
1227 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1228 dev
->sector
+ STRIPE_SECTORS
) {
1229 tx
= async_copy_data(0, rbi
, &dev
->page
,
1230 dev
->sector
, tx
, sh
);
1231 rbi
= r5_next_bio(rbi
, dev
->sector
);
1236 atomic_inc(&sh
->count
);
1237 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
1238 async_trigger_callback(&submit
);
1241 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
1248 tgt
= &sh
->dev
[target
];
1249 set_bit(R5_UPTODATE
, &tgt
->flags
);
1250 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1251 clear_bit(R5_Wantcompute
, &tgt
->flags
);
1254 static void ops_complete_compute(void *stripe_head_ref
)
1256 struct stripe_head
*sh
= stripe_head_ref
;
1258 pr_debug("%s: stripe %llu\n", __func__
,
1259 (unsigned long long)sh
->sector
);
1261 /* mark the computed target(s) as uptodate */
1262 mark_target_uptodate(sh
, sh
->ops
.target
);
1263 mark_target_uptodate(sh
, sh
->ops
.target2
);
1265 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
1266 if (sh
->check_state
== check_state_compute_run
)
1267 sh
->check_state
= check_state_compute_result
;
1268 set_bit(STRIPE_HANDLE
, &sh
->state
);
1269 raid5_release_stripe(sh
);
1272 /* return a pointer to the address conversion region of the scribble buffer */
1273 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
1274 struct raid5_percpu
*percpu
, int i
)
1278 addr
= flex_array_get(percpu
->scribble
, i
);
1279 return addr
+ sizeof(struct page
*) * (sh
->disks
+ 2);
1282 /* return a pointer to the address conversion region of the scribble buffer */
1283 static struct page
**to_addr_page(struct raid5_percpu
*percpu
, int i
)
1287 addr
= flex_array_get(percpu
->scribble
, i
);
1291 static struct dma_async_tx_descriptor
*
1292 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1294 int disks
= sh
->disks
;
1295 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1296 int target
= sh
->ops
.target
;
1297 struct r5dev
*tgt
= &sh
->dev
[target
];
1298 struct page
*xor_dest
= tgt
->page
;
1300 struct dma_async_tx_descriptor
*tx
;
1301 struct async_submit_ctl submit
;
1304 BUG_ON(sh
->batch_head
);
1306 pr_debug("%s: stripe %llu block: %d\n",
1307 __func__
, (unsigned long long)sh
->sector
, target
);
1308 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1310 for (i
= disks
; i
--; )
1312 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1314 atomic_inc(&sh
->count
);
1316 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
1317 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
, 0));
1318 if (unlikely(count
== 1))
1319 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1321 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1326 /* set_syndrome_sources - populate source buffers for gen_syndrome
1327 * @srcs - (struct page *) array of size sh->disks
1328 * @sh - stripe_head to parse
1330 * Populates srcs in proper layout order for the stripe and returns the
1331 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1332 * destination buffer is recorded in srcs[count] and the Q destination
1333 * is recorded in srcs[count+1]].
1335 static int set_syndrome_sources(struct page
**srcs
,
1336 struct stripe_head
*sh
,
1339 int disks
= sh
->disks
;
1340 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
1341 int d0_idx
= raid6_d0(sh
);
1345 for (i
= 0; i
< disks
; i
++)
1351 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1352 struct r5dev
*dev
= &sh
->dev
[i
];
1354 if (i
== sh
->qd_idx
|| i
== sh
->pd_idx
||
1355 (srctype
== SYNDROME_SRC_ALL
) ||
1356 (srctype
== SYNDROME_SRC_WANT_DRAIN
&&
1357 test_bit(R5_Wantdrain
, &dev
->flags
)) ||
1358 (srctype
== SYNDROME_SRC_WRITTEN
&&
1360 srcs
[slot
] = sh
->dev
[i
].page
;
1361 i
= raid6_next_disk(i
, disks
);
1362 } while (i
!= d0_idx
);
1364 return syndrome_disks
;
1367 static struct dma_async_tx_descriptor
*
1368 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1370 int disks
= sh
->disks
;
1371 struct page
**blocks
= to_addr_page(percpu
, 0);
1373 int qd_idx
= sh
->qd_idx
;
1374 struct dma_async_tx_descriptor
*tx
;
1375 struct async_submit_ctl submit
;
1381 BUG_ON(sh
->batch_head
);
1382 if (sh
->ops
.target
< 0)
1383 target
= sh
->ops
.target2
;
1384 else if (sh
->ops
.target2
< 0)
1385 target
= sh
->ops
.target
;
1387 /* we should only have one valid target */
1390 pr_debug("%s: stripe %llu block: %d\n",
1391 __func__
, (unsigned long long)sh
->sector
, target
);
1393 tgt
= &sh
->dev
[target
];
1394 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1397 atomic_inc(&sh
->count
);
1399 if (target
== qd_idx
) {
1400 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1401 blocks
[count
] = NULL
; /* regenerating p is not necessary */
1402 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
1403 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1404 ops_complete_compute
, sh
,
1405 to_addr_conv(sh
, percpu
, 0));
1406 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1408 /* Compute any data- or p-drive using XOR */
1410 for (i
= disks
; i
-- ; ) {
1411 if (i
== target
|| i
== qd_idx
)
1413 blocks
[count
++] = sh
->dev
[i
].page
;
1416 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1417 NULL
, ops_complete_compute
, sh
,
1418 to_addr_conv(sh
, percpu
, 0));
1419 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
1425 static struct dma_async_tx_descriptor
*
1426 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1428 int i
, count
, disks
= sh
->disks
;
1429 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
1430 int d0_idx
= raid6_d0(sh
);
1431 int faila
= -1, failb
= -1;
1432 int target
= sh
->ops
.target
;
1433 int target2
= sh
->ops
.target2
;
1434 struct r5dev
*tgt
= &sh
->dev
[target
];
1435 struct r5dev
*tgt2
= &sh
->dev
[target2
];
1436 struct dma_async_tx_descriptor
*tx
;
1437 struct page
**blocks
= to_addr_page(percpu
, 0);
1438 struct async_submit_ctl submit
;
1440 BUG_ON(sh
->batch_head
);
1441 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1442 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
1443 BUG_ON(target
< 0 || target2
< 0);
1444 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1445 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
1447 /* we need to open-code set_syndrome_sources to handle the
1448 * slot number conversion for 'faila' and 'failb'
1450 for (i
= 0; i
< disks
; i
++)
1455 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1457 blocks
[slot
] = sh
->dev
[i
].page
;
1463 i
= raid6_next_disk(i
, disks
);
1464 } while (i
!= d0_idx
);
1466 BUG_ON(faila
== failb
);
1469 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1470 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
1472 atomic_inc(&sh
->count
);
1474 if (failb
== syndrome_disks
+1) {
1475 /* Q disk is one of the missing disks */
1476 if (faila
== syndrome_disks
) {
1477 /* Missing P+Q, just recompute */
1478 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1479 ops_complete_compute
, sh
,
1480 to_addr_conv(sh
, percpu
, 0));
1481 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
1482 STRIPE_SIZE
, &submit
);
1486 int qd_idx
= sh
->qd_idx
;
1488 /* Missing D+Q: recompute D from P, then recompute Q */
1489 if (target
== qd_idx
)
1490 data_target
= target2
;
1492 data_target
= target
;
1495 for (i
= disks
; i
-- ; ) {
1496 if (i
== data_target
|| i
== qd_idx
)
1498 blocks
[count
++] = sh
->dev
[i
].page
;
1500 dest
= sh
->dev
[data_target
].page
;
1501 init_async_submit(&submit
,
1502 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1504 to_addr_conv(sh
, percpu
, 0));
1505 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
1508 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1509 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
1510 ops_complete_compute
, sh
,
1511 to_addr_conv(sh
, percpu
, 0));
1512 return async_gen_syndrome(blocks
, 0, count
+2,
1513 STRIPE_SIZE
, &submit
);
1516 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1517 ops_complete_compute
, sh
,
1518 to_addr_conv(sh
, percpu
, 0));
1519 if (failb
== syndrome_disks
) {
1520 /* We're missing D+P. */
1521 return async_raid6_datap_recov(syndrome_disks
+2,
1525 /* We're missing D+D. */
1526 return async_raid6_2data_recov(syndrome_disks
+2,
1527 STRIPE_SIZE
, faila
, failb
,
1533 static void ops_complete_prexor(void *stripe_head_ref
)
1535 struct stripe_head
*sh
= stripe_head_ref
;
1537 pr_debug("%s: stripe %llu\n", __func__
,
1538 (unsigned long long)sh
->sector
);
1541 static struct dma_async_tx_descriptor
*
1542 ops_run_prexor5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1543 struct dma_async_tx_descriptor
*tx
)
1545 int disks
= sh
->disks
;
1546 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1547 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1548 struct async_submit_ctl submit
;
1550 /* existing parity data subtracted */
1551 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1553 BUG_ON(sh
->batch_head
);
1554 pr_debug("%s: stripe %llu\n", __func__
,
1555 (unsigned long long)sh
->sector
);
1557 for (i
= disks
; i
--; ) {
1558 struct r5dev
*dev
= &sh
->dev
[i
];
1559 /* Only process blocks that are known to be uptodate */
1560 if (test_bit(R5_Wantdrain
, &dev
->flags
))
1561 xor_srcs
[count
++] = dev
->page
;
1564 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1565 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1566 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1571 static struct dma_async_tx_descriptor
*
1572 ops_run_prexor6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1573 struct dma_async_tx_descriptor
*tx
)
1575 struct page
**blocks
= to_addr_page(percpu
, 0);
1577 struct async_submit_ctl submit
;
1579 pr_debug("%s: stripe %llu\n", __func__
,
1580 (unsigned long long)sh
->sector
);
1582 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_WANT_DRAIN
);
1584 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_PQ_XOR_DST
, tx
,
1585 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1586 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1591 static struct dma_async_tx_descriptor
*
1592 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1594 int disks
= sh
->disks
;
1596 struct stripe_head
*head_sh
= sh
;
1598 pr_debug("%s: stripe %llu\n", __func__
,
1599 (unsigned long long)sh
->sector
);
1601 for (i
= disks
; i
--; ) {
1606 if (test_and_clear_bit(R5_Wantdrain
, &head_sh
->dev
[i
].flags
)) {
1611 spin_lock_irq(&sh
->stripe_lock
);
1612 chosen
= dev
->towrite
;
1613 dev
->towrite
= NULL
;
1614 sh
->overwrite_disks
= 0;
1615 BUG_ON(dev
->written
);
1616 wbi
= dev
->written
= chosen
;
1617 spin_unlock_irq(&sh
->stripe_lock
);
1618 WARN_ON(dev
->page
!= dev
->orig_page
);
1620 while (wbi
&& wbi
->bi_iter
.bi_sector
<
1621 dev
->sector
+ STRIPE_SECTORS
) {
1622 if (wbi
->bi_rw
& REQ_FUA
)
1623 set_bit(R5_WantFUA
, &dev
->flags
);
1624 if (wbi
->bi_rw
& REQ_SYNC
)
1625 set_bit(R5_SyncIO
, &dev
->flags
);
1626 if (wbi
->bi_rw
& REQ_DISCARD
)
1627 set_bit(R5_Discard
, &dev
->flags
);
1629 tx
= async_copy_data(1, wbi
, &dev
->page
,
1630 dev
->sector
, tx
, sh
);
1631 if (dev
->page
!= dev
->orig_page
) {
1632 set_bit(R5_SkipCopy
, &dev
->flags
);
1633 clear_bit(R5_UPTODATE
, &dev
->flags
);
1634 clear_bit(R5_OVERWRITE
, &dev
->flags
);
1637 wbi
= r5_next_bio(wbi
, dev
->sector
);
1640 if (head_sh
->batch_head
) {
1641 sh
= list_first_entry(&sh
->batch_list
,
1654 static void ops_complete_reconstruct(void *stripe_head_ref
)
1656 struct stripe_head
*sh
= stripe_head_ref
;
1657 int disks
= sh
->disks
;
1658 int pd_idx
= sh
->pd_idx
;
1659 int qd_idx
= sh
->qd_idx
;
1661 bool fua
= false, sync
= false, discard
= false;
1663 pr_debug("%s: stripe %llu\n", __func__
,
1664 (unsigned long long)sh
->sector
);
1666 for (i
= disks
; i
--; ) {
1667 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1668 sync
|= test_bit(R5_SyncIO
, &sh
->dev
[i
].flags
);
1669 discard
|= test_bit(R5_Discard
, &sh
->dev
[i
].flags
);
1672 for (i
= disks
; i
--; ) {
1673 struct r5dev
*dev
= &sh
->dev
[i
];
1675 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1676 if (!discard
&& !test_bit(R5_SkipCopy
, &dev
->flags
))
1677 set_bit(R5_UPTODATE
, &dev
->flags
);
1679 set_bit(R5_WantFUA
, &dev
->flags
);
1681 set_bit(R5_SyncIO
, &dev
->flags
);
1685 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1686 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1687 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1688 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1690 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1691 sh
->reconstruct_state
= reconstruct_state_result
;
1694 set_bit(STRIPE_HANDLE
, &sh
->state
);
1695 raid5_release_stripe(sh
);
1699 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1700 struct dma_async_tx_descriptor
*tx
)
1702 int disks
= sh
->disks
;
1703 struct page
**xor_srcs
;
1704 struct async_submit_ctl submit
;
1705 int count
, pd_idx
= sh
->pd_idx
, i
;
1706 struct page
*xor_dest
;
1708 unsigned long flags
;
1710 struct stripe_head
*head_sh
= sh
;
1713 pr_debug("%s: stripe %llu\n", __func__
,
1714 (unsigned long long)sh
->sector
);
1716 for (i
= 0; i
< sh
->disks
; i
++) {
1719 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1722 if (i
>= sh
->disks
) {
1723 atomic_inc(&sh
->count
);
1724 set_bit(R5_Discard
, &sh
->dev
[pd_idx
].flags
);
1725 ops_complete_reconstruct(sh
);
1730 xor_srcs
= to_addr_page(percpu
, j
);
1731 /* check if prexor is active which means only process blocks
1732 * that are part of a read-modify-write (written)
1734 if (head_sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1736 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1737 for (i
= disks
; i
--; ) {
1738 struct r5dev
*dev
= &sh
->dev
[i
];
1739 if (head_sh
->dev
[i
].written
)
1740 xor_srcs
[count
++] = dev
->page
;
1743 xor_dest
= sh
->dev
[pd_idx
].page
;
1744 for (i
= disks
; i
--; ) {
1745 struct r5dev
*dev
= &sh
->dev
[i
];
1747 xor_srcs
[count
++] = dev
->page
;
1751 /* 1/ if we prexor'd then the dest is reused as a source
1752 * 2/ if we did not prexor then we are redoing the parity
1753 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1754 * for the synchronous xor case
1756 last_stripe
= !head_sh
->batch_head
||
1757 list_first_entry(&sh
->batch_list
,
1758 struct stripe_head
, batch_list
) == head_sh
;
1760 flags
= ASYNC_TX_ACK
|
1761 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1763 atomic_inc(&head_sh
->count
);
1764 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, head_sh
,
1765 to_addr_conv(sh
, percpu
, j
));
1767 flags
= prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
;
1768 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
,
1769 to_addr_conv(sh
, percpu
, j
));
1772 if (unlikely(count
== 1))
1773 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1775 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1778 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1785 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1786 struct dma_async_tx_descriptor
*tx
)
1788 struct async_submit_ctl submit
;
1789 struct page
**blocks
;
1790 int count
, i
, j
= 0;
1791 struct stripe_head
*head_sh
= sh
;
1794 unsigned long txflags
;
1796 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1798 for (i
= 0; i
< sh
->disks
; i
++) {
1799 if (sh
->pd_idx
== i
|| sh
->qd_idx
== i
)
1801 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1804 if (i
>= sh
->disks
) {
1805 atomic_inc(&sh
->count
);
1806 set_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
1807 set_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
1808 ops_complete_reconstruct(sh
);
1813 blocks
= to_addr_page(percpu
, j
);
1815 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1816 synflags
= SYNDROME_SRC_WRITTEN
;
1817 txflags
= ASYNC_TX_ACK
| ASYNC_TX_PQ_XOR_DST
;
1819 synflags
= SYNDROME_SRC_ALL
;
1820 txflags
= ASYNC_TX_ACK
;
1823 count
= set_syndrome_sources(blocks
, sh
, synflags
);
1824 last_stripe
= !head_sh
->batch_head
||
1825 list_first_entry(&sh
->batch_list
,
1826 struct stripe_head
, batch_list
) == head_sh
;
1829 atomic_inc(&head_sh
->count
);
1830 init_async_submit(&submit
, txflags
, tx
, ops_complete_reconstruct
,
1831 head_sh
, to_addr_conv(sh
, percpu
, j
));
1833 init_async_submit(&submit
, 0, tx
, NULL
, NULL
,
1834 to_addr_conv(sh
, percpu
, j
));
1835 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1838 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1844 static void ops_complete_check(void *stripe_head_ref
)
1846 struct stripe_head
*sh
= stripe_head_ref
;
1848 pr_debug("%s: stripe %llu\n", __func__
,
1849 (unsigned long long)sh
->sector
);
1851 sh
->check_state
= check_state_check_result
;
1852 set_bit(STRIPE_HANDLE
, &sh
->state
);
1853 raid5_release_stripe(sh
);
1856 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1858 int disks
= sh
->disks
;
1859 int pd_idx
= sh
->pd_idx
;
1860 int qd_idx
= sh
->qd_idx
;
1861 struct page
*xor_dest
;
1862 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1863 struct dma_async_tx_descriptor
*tx
;
1864 struct async_submit_ctl submit
;
1868 pr_debug("%s: stripe %llu\n", __func__
,
1869 (unsigned long long)sh
->sector
);
1871 BUG_ON(sh
->batch_head
);
1873 xor_dest
= sh
->dev
[pd_idx
].page
;
1874 xor_srcs
[count
++] = xor_dest
;
1875 for (i
= disks
; i
--; ) {
1876 if (i
== pd_idx
|| i
== qd_idx
)
1878 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1881 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1882 to_addr_conv(sh
, percpu
, 0));
1883 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1884 &sh
->ops
.zero_sum_result
, &submit
);
1886 atomic_inc(&sh
->count
);
1887 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1888 tx
= async_trigger_callback(&submit
);
1891 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1893 struct page
**srcs
= to_addr_page(percpu
, 0);
1894 struct async_submit_ctl submit
;
1897 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1898 (unsigned long long)sh
->sector
, checkp
);
1900 BUG_ON(sh
->batch_head
);
1901 count
= set_syndrome_sources(srcs
, sh
, SYNDROME_SRC_ALL
);
1905 atomic_inc(&sh
->count
);
1906 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1907 sh
, to_addr_conv(sh
, percpu
, 0));
1908 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1909 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1912 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1914 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1915 struct dma_async_tx_descriptor
*tx
= NULL
;
1916 struct r5conf
*conf
= sh
->raid_conf
;
1917 int level
= conf
->level
;
1918 struct raid5_percpu
*percpu
;
1922 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1923 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1924 ops_run_biofill(sh
);
1928 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1930 tx
= ops_run_compute5(sh
, percpu
);
1932 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1933 tx
= ops_run_compute6_1(sh
, percpu
);
1935 tx
= ops_run_compute6_2(sh
, percpu
);
1937 /* terminate the chain if reconstruct is not set to be run */
1938 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1942 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
)) {
1944 tx
= ops_run_prexor5(sh
, percpu
, tx
);
1946 tx
= ops_run_prexor6(sh
, percpu
, tx
);
1949 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1950 tx
= ops_run_biodrain(sh
, tx
);
1954 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1956 ops_run_reconstruct5(sh
, percpu
, tx
);
1958 ops_run_reconstruct6(sh
, percpu
, tx
);
1961 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1962 if (sh
->check_state
== check_state_run
)
1963 ops_run_check_p(sh
, percpu
);
1964 else if (sh
->check_state
== check_state_run_q
)
1965 ops_run_check_pq(sh
, percpu
, 0);
1966 else if (sh
->check_state
== check_state_run_pq
)
1967 ops_run_check_pq(sh
, percpu
, 1);
1972 if (overlap_clear
&& !sh
->batch_head
)
1973 for (i
= disks
; i
--; ) {
1974 struct r5dev
*dev
= &sh
->dev
[i
];
1975 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1976 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1981 static struct stripe_head
*alloc_stripe(struct kmem_cache
*sc
, gfp_t gfp
)
1983 struct stripe_head
*sh
;
1985 sh
= kmem_cache_zalloc(sc
, gfp
);
1987 spin_lock_init(&sh
->stripe_lock
);
1988 spin_lock_init(&sh
->batch_lock
);
1989 INIT_LIST_HEAD(&sh
->batch_list
);
1990 INIT_LIST_HEAD(&sh
->lru
);
1991 atomic_set(&sh
->count
, 1);
1995 static int grow_one_stripe(struct r5conf
*conf
, gfp_t gfp
)
1997 struct stripe_head
*sh
;
1999 sh
= alloc_stripe(conf
->slab_cache
, gfp
);
2003 sh
->raid_conf
= conf
;
2005 if (grow_buffers(sh
, gfp
)) {
2007 kmem_cache_free(conf
->slab_cache
, sh
);
2010 sh
->hash_lock_index
=
2011 conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
;
2012 /* we just created an active stripe so... */
2013 atomic_inc(&conf
->active_stripes
);
2015 raid5_release_stripe(sh
);
2016 conf
->max_nr_stripes
++;
2020 static int grow_stripes(struct r5conf
*conf
, int num
)
2022 struct kmem_cache
*sc
;
2023 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
2025 if (conf
->mddev
->gendisk
)
2026 sprintf(conf
->cache_name
[0],
2027 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
2029 sprintf(conf
->cache_name
[0],
2030 "raid%d-%p", conf
->level
, conf
->mddev
);
2031 sprintf(conf
->cache_name
[1], "%s-alt", conf
->cache_name
[0]);
2033 conf
->active_name
= 0;
2034 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
2035 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
2039 conf
->slab_cache
= sc
;
2040 conf
->pool_size
= devs
;
2042 if (!grow_one_stripe(conf
, GFP_KERNEL
))
2049 * scribble_len - return the required size of the scribble region
2050 * @num - total number of disks in the array
2052 * The size must be enough to contain:
2053 * 1/ a struct page pointer for each device in the array +2
2054 * 2/ room to convert each entry in (1) to its corresponding dma
2055 * (dma_map_page()) or page (page_address()) address.
2057 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2058 * calculate over all devices (not just the data blocks), using zeros in place
2059 * of the P and Q blocks.
2061 static struct flex_array
*scribble_alloc(int num
, int cnt
, gfp_t flags
)
2063 struct flex_array
*ret
;
2066 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
2067 ret
= flex_array_alloc(len
, cnt
, flags
);
2070 /* always prealloc all elements, so no locking is required */
2071 if (flex_array_prealloc(ret
, 0, cnt
, flags
)) {
2072 flex_array_free(ret
);
2078 static int resize_chunks(struct r5conf
*conf
, int new_disks
, int new_sectors
)
2084 * Never shrink. And mddev_suspend() could deadlock if this is called
2085 * from raid5d. In that case, scribble_disks and scribble_sectors
2086 * should equal to new_disks and new_sectors
2088 if (conf
->scribble_disks
>= new_disks
&&
2089 conf
->scribble_sectors
>= new_sectors
)
2091 mddev_suspend(conf
->mddev
);
2093 for_each_present_cpu(cpu
) {
2094 struct raid5_percpu
*percpu
;
2095 struct flex_array
*scribble
;
2097 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
2098 scribble
= scribble_alloc(new_disks
,
2099 new_sectors
/ STRIPE_SECTORS
,
2103 flex_array_free(percpu
->scribble
);
2104 percpu
->scribble
= scribble
;
2111 mddev_resume(conf
->mddev
);
2113 conf
->scribble_disks
= new_disks
;
2114 conf
->scribble_sectors
= new_sectors
;
2119 static int resize_stripes(struct r5conf
*conf
, int newsize
)
2121 /* Make all the stripes able to hold 'newsize' devices.
2122 * New slots in each stripe get 'page' set to a new page.
2124 * This happens in stages:
2125 * 1/ create a new kmem_cache and allocate the required number of
2127 * 2/ gather all the old stripe_heads and transfer the pages across
2128 * to the new stripe_heads. This will have the side effect of
2129 * freezing the array as once all stripe_heads have been collected,
2130 * no IO will be possible. Old stripe heads are freed once their
2131 * pages have been transferred over, and the old kmem_cache is
2132 * freed when all stripes are done.
2133 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2134 * we simple return a failre status - no need to clean anything up.
2135 * 4/ allocate new pages for the new slots in the new stripe_heads.
2136 * If this fails, we don't bother trying the shrink the
2137 * stripe_heads down again, we just leave them as they are.
2138 * As each stripe_head is processed the new one is released into
2141 * Once step2 is started, we cannot afford to wait for a write,
2142 * so we use GFP_NOIO allocations.
2144 struct stripe_head
*osh
, *nsh
;
2145 LIST_HEAD(newstripes
);
2146 struct disk_info
*ndisks
;
2148 struct kmem_cache
*sc
;
2152 if (newsize
<= conf
->pool_size
)
2153 return 0; /* never bother to shrink */
2155 err
= md_allow_write(conf
->mddev
);
2160 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
2161 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
2166 /* Need to ensure auto-resizing doesn't interfere */
2167 mutex_lock(&conf
->cache_size_mutex
);
2169 for (i
= conf
->max_nr_stripes
; i
; i
--) {
2170 nsh
= alloc_stripe(sc
, GFP_KERNEL
);
2174 nsh
->raid_conf
= conf
;
2175 list_add(&nsh
->lru
, &newstripes
);
2178 /* didn't get enough, give up */
2179 while (!list_empty(&newstripes
)) {
2180 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2181 list_del(&nsh
->lru
);
2182 kmem_cache_free(sc
, nsh
);
2184 kmem_cache_destroy(sc
);
2185 mutex_unlock(&conf
->cache_size_mutex
);
2188 /* Step 2 - Must use GFP_NOIO now.
2189 * OK, we have enough stripes, start collecting inactive
2190 * stripes and copying them over
2194 list_for_each_entry(nsh
, &newstripes
, lru
) {
2195 lock_device_hash_lock(conf
, hash
);
2196 wait_event_cmd(conf
->wait_for_stripe
,
2197 !list_empty(conf
->inactive_list
+ hash
),
2198 unlock_device_hash_lock(conf
, hash
),
2199 lock_device_hash_lock(conf
, hash
));
2200 osh
= get_free_stripe(conf
, hash
);
2201 unlock_device_hash_lock(conf
, hash
);
2203 for(i
=0; i
<conf
->pool_size
; i
++) {
2204 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
2205 nsh
->dev
[i
].orig_page
= osh
->dev
[i
].page
;
2207 nsh
->hash_lock_index
= hash
;
2208 kmem_cache_free(conf
->slab_cache
, osh
);
2210 if (cnt
>= conf
->max_nr_stripes
/ NR_STRIPE_HASH_LOCKS
+
2211 !!((conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
) > hash
)) {
2216 kmem_cache_destroy(conf
->slab_cache
);
2219 * At this point, we are holding all the stripes so the array
2220 * is completely stalled, so now is a good time to resize
2221 * conf->disks and the scribble region
2223 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
2225 for (i
=0; i
<conf
->raid_disks
; i
++)
2226 ndisks
[i
] = conf
->disks
[i
];
2228 conf
->disks
= ndisks
;
2232 mutex_unlock(&conf
->cache_size_mutex
);
2233 /* Step 4, return new stripes to service */
2234 while(!list_empty(&newstripes
)) {
2235 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2236 list_del_init(&nsh
->lru
);
2238 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
2239 if (nsh
->dev
[i
].page
== NULL
) {
2240 struct page
*p
= alloc_page(GFP_NOIO
);
2241 nsh
->dev
[i
].page
= p
;
2242 nsh
->dev
[i
].orig_page
= p
;
2246 raid5_release_stripe(nsh
);
2248 /* critical section pass, GFP_NOIO no longer needed */
2250 conf
->slab_cache
= sc
;
2251 conf
->active_name
= 1-conf
->active_name
;
2253 conf
->pool_size
= newsize
;
2257 static int drop_one_stripe(struct r5conf
*conf
)
2259 struct stripe_head
*sh
;
2260 int hash
= (conf
->max_nr_stripes
- 1) & STRIPE_HASH_LOCKS_MASK
;
2262 spin_lock_irq(conf
->hash_locks
+ hash
);
2263 sh
= get_free_stripe(conf
, hash
);
2264 spin_unlock_irq(conf
->hash_locks
+ hash
);
2267 BUG_ON(atomic_read(&sh
->count
));
2269 kmem_cache_free(conf
->slab_cache
, sh
);
2270 atomic_dec(&conf
->active_stripes
);
2271 conf
->max_nr_stripes
--;
2275 static void shrink_stripes(struct r5conf
*conf
)
2277 while (conf
->max_nr_stripes
&&
2278 drop_one_stripe(conf
))
2281 kmem_cache_destroy(conf
->slab_cache
);
2282 conf
->slab_cache
= NULL
;
2285 static void raid5_end_read_request(struct bio
* bi
)
2287 struct stripe_head
*sh
= bi
->bi_private
;
2288 struct r5conf
*conf
= sh
->raid_conf
;
2289 int disks
= sh
->disks
, i
;
2290 char b
[BDEVNAME_SIZE
];
2291 struct md_rdev
*rdev
= NULL
;
2294 for (i
=0 ; i
<disks
; i
++)
2295 if (bi
== &sh
->dev
[i
].req
)
2298 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2299 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2305 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2306 /* If replacement finished while this request was outstanding,
2307 * 'replacement' might be NULL already.
2308 * In that case it moved down to 'rdev'.
2309 * rdev is not removed until all requests are finished.
2311 rdev
= conf
->disks
[i
].replacement
;
2313 rdev
= conf
->disks
[i
].rdev
;
2315 if (use_new_offset(conf
, sh
))
2316 s
= sh
->sector
+ rdev
->new_data_offset
;
2318 s
= sh
->sector
+ rdev
->data_offset
;
2319 if (!bi
->bi_error
) {
2320 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2321 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2322 /* Note that this cannot happen on a
2323 * replacement device. We just fail those on
2328 "md/raid:%s: read error corrected"
2329 " (%lu sectors at %llu on %s)\n",
2330 mdname(conf
->mddev
), STRIPE_SECTORS
,
2331 (unsigned long long)s
,
2332 bdevname(rdev
->bdev
, b
));
2333 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
2334 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2335 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2336 } else if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2337 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2339 if (atomic_read(&rdev
->read_errors
))
2340 atomic_set(&rdev
->read_errors
, 0);
2342 const char *bdn
= bdevname(rdev
->bdev
, b
);
2346 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2347 atomic_inc(&rdev
->read_errors
);
2348 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2351 "md/raid:%s: read error on replacement device "
2352 "(sector %llu on %s).\n",
2353 mdname(conf
->mddev
),
2354 (unsigned long long)s
,
2356 else if (conf
->mddev
->degraded
>= conf
->max_degraded
) {
2360 "md/raid:%s: read error not correctable "
2361 "(sector %llu on %s).\n",
2362 mdname(conf
->mddev
),
2363 (unsigned long long)s
,
2365 } else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
)) {
2370 "md/raid:%s: read error NOT corrected!! "
2371 "(sector %llu on %s).\n",
2372 mdname(conf
->mddev
),
2373 (unsigned long long)s
,
2375 } else if (atomic_read(&rdev
->read_errors
)
2376 > conf
->max_nr_stripes
)
2378 "md/raid:%s: Too many read errors, failing device %s.\n",
2379 mdname(conf
->mddev
), bdn
);
2382 if (set_bad
&& test_bit(In_sync
, &rdev
->flags
)
2383 && !test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2386 if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
)) {
2387 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2388 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2390 set_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2392 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2393 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2395 && test_bit(In_sync
, &rdev
->flags
)
2396 && rdev_set_badblocks(
2397 rdev
, sh
->sector
, STRIPE_SECTORS
, 0)))
2398 md_error(conf
->mddev
, rdev
);
2401 rdev_dec_pending(rdev
, conf
->mddev
);
2402 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2403 set_bit(STRIPE_HANDLE
, &sh
->state
);
2404 raid5_release_stripe(sh
);
2407 static void raid5_end_write_request(struct bio
*bi
)
2409 struct stripe_head
*sh
= bi
->bi_private
;
2410 struct r5conf
*conf
= sh
->raid_conf
;
2411 int disks
= sh
->disks
, i
;
2412 struct md_rdev
*uninitialized_var(rdev
);
2415 int replacement
= 0;
2417 for (i
= 0 ; i
< disks
; i
++) {
2418 if (bi
== &sh
->dev
[i
].req
) {
2419 rdev
= conf
->disks
[i
].rdev
;
2422 if (bi
== &sh
->dev
[i
].rreq
) {
2423 rdev
= conf
->disks
[i
].replacement
;
2427 /* rdev was removed and 'replacement'
2428 * replaced it. rdev is not removed
2429 * until all requests are finished.
2431 rdev
= conf
->disks
[i
].rdev
;
2435 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2436 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2445 md_error(conf
->mddev
, rdev
);
2446 else if (is_badblock(rdev
, sh
->sector
,
2448 &first_bad
, &bad_sectors
))
2449 set_bit(R5_MadeGoodRepl
, &sh
->dev
[i
].flags
);
2452 set_bit(STRIPE_DEGRADED
, &sh
->state
);
2453 set_bit(WriteErrorSeen
, &rdev
->flags
);
2454 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
2455 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2456 set_bit(MD_RECOVERY_NEEDED
,
2457 &rdev
->mddev
->recovery
);
2458 } else if (is_badblock(rdev
, sh
->sector
,
2460 &first_bad
, &bad_sectors
)) {
2461 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
2462 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))
2463 /* That was a successful write so make
2464 * sure it looks like we already did
2467 set_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2470 rdev_dec_pending(rdev
, conf
->mddev
);
2472 if (sh
->batch_head
&& bi
->bi_error
&& !replacement
)
2473 set_bit(STRIPE_BATCH_ERR
, &sh
->batch_head
->state
);
2475 if (!test_and_clear_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
))
2476 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2477 set_bit(STRIPE_HANDLE
, &sh
->state
);
2478 raid5_release_stripe(sh
);
2480 if (sh
->batch_head
&& sh
!= sh
->batch_head
)
2481 raid5_release_stripe(sh
->batch_head
);
2484 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
2486 struct r5dev
*dev
= &sh
->dev
[i
];
2488 bio_init(&dev
->req
);
2489 dev
->req
.bi_io_vec
= &dev
->vec
;
2490 dev
->req
.bi_max_vecs
= 1;
2491 dev
->req
.bi_private
= sh
;
2493 bio_init(&dev
->rreq
);
2494 dev
->rreq
.bi_io_vec
= &dev
->rvec
;
2495 dev
->rreq
.bi_max_vecs
= 1;
2496 dev
->rreq
.bi_private
= sh
;
2499 dev
->sector
= raid5_compute_blocknr(sh
, i
, previous
);
2502 static void raid5_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
2504 char b
[BDEVNAME_SIZE
];
2505 struct r5conf
*conf
= mddev
->private;
2506 unsigned long flags
;
2507 pr_debug("raid456: error called\n");
2509 spin_lock_irqsave(&conf
->device_lock
, flags
);
2510 clear_bit(In_sync
, &rdev
->flags
);
2511 mddev
->degraded
= calc_degraded(conf
);
2512 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2513 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2515 set_bit(Blocked
, &rdev
->flags
);
2516 set_bit(Faulty
, &rdev
->flags
);
2517 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2518 set_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
2520 "md/raid:%s: Disk failure on %s, disabling device.\n"
2521 "md/raid:%s: Operation continuing on %d devices.\n",
2523 bdevname(rdev
->bdev
, b
),
2525 conf
->raid_disks
- mddev
->degraded
);
2529 * Input: a 'big' sector number,
2530 * Output: index of the data and parity disk, and the sector # in them.
2532 sector_t
raid5_compute_sector(struct r5conf
*conf
, sector_t r_sector
,
2533 int previous
, int *dd_idx
,
2534 struct stripe_head
*sh
)
2536 sector_t stripe
, stripe2
;
2537 sector_t chunk_number
;
2538 unsigned int chunk_offset
;
2541 sector_t new_sector
;
2542 int algorithm
= previous
? conf
->prev_algo
2544 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2545 : conf
->chunk_sectors
;
2546 int raid_disks
= previous
? conf
->previous_raid_disks
2548 int data_disks
= raid_disks
- conf
->max_degraded
;
2550 /* First compute the information on this sector */
2553 * Compute the chunk number and the sector offset inside the chunk
2555 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
2556 chunk_number
= r_sector
;
2559 * Compute the stripe number
2561 stripe
= chunk_number
;
2562 *dd_idx
= sector_div(stripe
, data_disks
);
2565 * Select the parity disk based on the user selected algorithm.
2567 pd_idx
= qd_idx
= -1;
2568 switch(conf
->level
) {
2570 pd_idx
= data_disks
;
2573 switch (algorithm
) {
2574 case ALGORITHM_LEFT_ASYMMETRIC
:
2575 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2576 if (*dd_idx
>= pd_idx
)
2579 case ALGORITHM_RIGHT_ASYMMETRIC
:
2580 pd_idx
= sector_div(stripe2
, raid_disks
);
2581 if (*dd_idx
>= pd_idx
)
2584 case ALGORITHM_LEFT_SYMMETRIC
:
2585 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2586 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2588 case ALGORITHM_RIGHT_SYMMETRIC
:
2589 pd_idx
= sector_div(stripe2
, raid_disks
);
2590 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2592 case ALGORITHM_PARITY_0
:
2596 case ALGORITHM_PARITY_N
:
2597 pd_idx
= data_disks
;
2605 switch (algorithm
) {
2606 case ALGORITHM_LEFT_ASYMMETRIC
:
2607 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2608 qd_idx
= pd_idx
+ 1;
2609 if (pd_idx
== raid_disks
-1) {
2610 (*dd_idx
)++; /* Q D D D P */
2612 } else if (*dd_idx
>= pd_idx
)
2613 (*dd_idx
) += 2; /* D D P Q D */
2615 case ALGORITHM_RIGHT_ASYMMETRIC
:
2616 pd_idx
= sector_div(stripe2
, raid_disks
);
2617 qd_idx
= pd_idx
+ 1;
2618 if (pd_idx
== raid_disks
-1) {
2619 (*dd_idx
)++; /* Q D D D P */
2621 } else if (*dd_idx
>= pd_idx
)
2622 (*dd_idx
) += 2; /* D D P Q D */
2624 case ALGORITHM_LEFT_SYMMETRIC
:
2625 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2626 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2627 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2629 case ALGORITHM_RIGHT_SYMMETRIC
:
2630 pd_idx
= sector_div(stripe2
, raid_disks
);
2631 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2632 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2635 case ALGORITHM_PARITY_0
:
2640 case ALGORITHM_PARITY_N
:
2641 pd_idx
= data_disks
;
2642 qd_idx
= data_disks
+ 1;
2645 case ALGORITHM_ROTATING_ZERO_RESTART
:
2646 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2647 * of blocks for computing Q is different.
2649 pd_idx
= sector_div(stripe2
, raid_disks
);
2650 qd_idx
= pd_idx
+ 1;
2651 if (pd_idx
== raid_disks
-1) {
2652 (*dd_idx
)++; /* Q D D D P */
2654 } else if (*dd_idx
>= pd_idx
)
2655 (*dd_idx
) += 2; /* D D P Q D */
2659 case ALGORITHM_ROTATING_N_RESTART
:
2660 /* Same a left_asymmetric, by first stripe is
2661 * D D D P Q rather than
2665 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2666 qd_idx
= pd_idx
+ 1;
2667 if (pd_idx
== raid_disks
-1) {
2668 (*dd_idx
)++; /* Q D D D P */
2670 } else if (*dd_idx
>= pd_idx
)
2671 (*dd_idx
) += 2; /* D D P Q D */
2675 case ALGORITHM_ROTATING_N_CONTINUE
:
2676 /* Same as left_symmetric but Q is before P */
2677 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2678 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
2679 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2683 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2684 /* RAID5 left_asymmetric, with Q on last device */
2685 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2686 if (*dd_idx
>= pd_idx
)
2688 qd_idx
= raid_disks
- 1;
2691 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2692 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2693 if (*dd_idx
>= pd_idx
)
2695 qd_idx
= raid_disks
- 1;
2698 case ALGORITHM_LEFT_SYMMETRIC_6
:
2699 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2700 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2701 qd_idx
= raid_disks
- 1;
2704 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2705 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2706 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2707 qd_idx
= raid_disks
- 1;
2710 case ALGORITHM_PARITY_0_6
:
2713 qd_idx
= raid_disks
- 1;
2723 sh
->pd_idx
= pd_idx
;
2724 sh
->qd_idx
= qd_idx
;
2725 sh
->ddf_layout
= ddf_layout
;
2728 * Finally, compute the new sector number
2730 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
2734 sector_t
raid5_compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
2736 struct r5conf
*conf
= sh
->raid_conf
;
2737 int raid_disks
= sh
->disks
;
2738 int data_disks
= raid_disks
- conf
->max_degraded
;
2739 sector_t new_sector
= sh
->sector
, check
;
2740 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2741 : conf
->chunk_sectors
;
2742 int algorithm
= previous
? conf
->prev_algo
2746 sector_t chunk_number
;
2747 int dummy1
, dd_idx
= i
;
2749 struct stripe_head sh2
;
2751 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
2752 stripe
= new_sector
;
2754 if (i
== sh
->pd_idx
)
2756 switch(conf
->level
) {
2759 switch (algorithm
) {
2760 case ALGORITHM_LEFT_ASYMMETRIC
:
2761 case ALGORITHM_RIGHT_ASYMMETRIC
:
2765 case ALGORITHM_LEFT_SYMMETRIC
:
2766 case ALGORITHM_RIGHT_SYMMETRIC
:
2769 i
-= (sh
->pd_idx
+ 1);
2771 case ALGORITHM_PARITY_0
:
2774 case ALGORITHM_PARITY_N
:
2781 if (i
== sh
->qd_idx
)
2782 return 0; /* It is the Q disk */
2783 switch (algorithm
) {
2784 case ALGORITHM_LEFT_ASYMMETRIC
:
2785 case ALGORITHM_RIGHT_ASYMMETRIC
:
2786 case ALGORITHM_ROTATING_ZERO_RESTART
:
2787 case ALGORITHM_ROTATING_N_RESTART
:
2788 if (sh
->pd_idx
== raid_disks
-1)
2789 i
--; /* Q D D D P */
2790 else if (i
> sh
->pd_idx
)
2791 i
-= 2; /* D D P Q D */
2793 case ALGORITHM_LEFT_SYMMETRIC
:
2794 case ALGORITHM_RIGHT_SYMMETRIC
:
2795 if (sh
->pd_idx
== raid_disks
-1)
2796 i
--; /* Q D D D P */
2801 i
-= (sh
->pd_idx
+ 2);
2804 case ALGORITHM_PARITY_0
:
2807 case ALGORITHM_PARITY_N
:
2809 case ALGORITHM_ROTATING_N_CONTINUE
:
2810 /* Like left_symmetric, but P is before Q */
2811 if (sh
->pd_idx
== 0)
2812 i
--; /* P D D D Q */
2817 i
-= (sh
->pd_idx
+ 1);
2820 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2821 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2825 case ALGORITHM_LEFT_SYMMETRIC_6
:
2826 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2828 i
+= data_disks
+ 1;
2829 i
-= (sh
->pd_idx
+ 1);
2831 case ALGORITHM_PARITY_0_6
:
2840 chunk_number
= stripe
* data_disks
+ i
;
2841 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
2843 check
= raid5_compute_sector(conf
, r_sector
,
2844 previous
, &dummy1
, &sh2
);
2845 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
2846 || sh2
.qd_idx
!= sh
->qd_idx
) {
2847 printk(KERN_ERR
"md/raid:%s: compute_blocknr: map not correct\n",
2848 mdname(conf
->mddev
));
2855 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2856 int rcw
, int expand
)
2858 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
, disks
= sh
->disks
;
2859 struct r5conf
*conf
= sh
->raid_conf
;
2860 int level
= conf
->level
;
2864 for (i
= disks
; i
--; ) {
2865 struct r5dev
*dev
= &sh
->dev
[i
];
2868 set_bit(R5_LOCKED
, &dev
->flags
);
2869 set_bit(R5_Wantdrain
, &dev
->flags
);
2871 clear_bit(R5_UPTODATE
, &dev
->flags
);
2875 /* if we are not expanding this is a proper write request, and
2876 * there will be bios with new data to be drained into the
2881 /* False alarm, nothing to do */
2883 sh
->reconstruct_state
= reconstruct_state_drain_run
;
2884 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2886 sh
->reconstruct_state
= reconstruct_state_run
;
2888 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2890 if (s
->locked
+ conf
->max_degraded
== disks
)
2891 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2892 atomic_inc(&conf
->pending_full_writes
);
2894 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2895 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2896 BUG_ON(level
== 6 &&
2897 (!(test_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
) ||
2898 test_bit(R5_Wantcompute
, &sh
->dev
[qd_idx
].flags
))));
2900 for (i
= disks
; i
--; ) {
2901 struct r5dev
*dev
= &sh
->dev
[i
];
2902 if (i
== pd_idx
|| i
== qd_idx
)
2906 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2907 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2908 set_bit(R5_Wantdrain
, &dev
->flags
);
2909 set_bit(R5_LOCKED
, &dev
->flags
);
2910 clear_bit(R5_UPTODATE
, &dev
->flags
);
2915 /* False alarm - nothing to do */
2917 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2918 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2919 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2920 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2923 /* keep the parity disk(s) locked while asynchronous operations
2926 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2927 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2931 int qd_idx
= sh
->qd_idx
;
2932 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2934 set_bit(R5_LOCKED
, &dev
->flags
);
2935 clear_bit(R5_UPTODATE
, &dev
->flags
);
2939 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2940 __func__
, (unsigned long long)sh
->sector
,
2941 s
->locked
, s
->ops_request
);
2945 * Each stripe/dev can have one or more bion attached.
2946 * toread/towrite point to the first in a chain.
2947 * The bi_next chain must be in order.
2949 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
,
2950 int forwrite
, int previous
)
2953 struct r5conf
*conf
= sh
->raid_conf
;
2956 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2957 (unsigned long long)bi
->bi_iter
.bi_sector
,
2958 (unsigned long long)sh
->sector
);
2961 * If several bio share a stripe. The bio bi_phys_segments acts as a
2962 * reference count to avoid race. The reference count should already be
2963 * increased before this function is called (for example, in
2964 * raid5_make_request()), so other bio sharing this stripe will not free the
2965 * stripe. If a stripe is owned by one stripe, the stripe lock will
2968 spin_lock_irq(&sh
->stripe_lock
);
2969 /* Don't allow new IO added to stripes in batch list */
2973 bip
= &sh
->dev
[dd_idx
].towrite
;
2977 bip
= &sh
->dev
[dd_idx
].toread
;
2978 while (*bip
&& (*bip
)->bi_iter
.bi_sector
< bi
->bi_iter
.bi_sector
) {
2979 if (bio_end_sector(*bip
) > bi
->bi_iter
.bi_sector
)
2981 bip
= & (*bip
)->bi_next
;
2983 if (*bip
&& (*bip
)->bi_iter
.bi_sector
< bio_end_sector(bi
))
2986 if (!forwrite
|| previous
)
2987 clear_bit(STRIPE_BATCH_READY
, &sh
->state
);
2989 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
2993 raid5_inc_bi_active_stripes(bi
);
2996 /* check if page is covered */
2997 sector_t sector
= sh
->dev
[dd_idx
].sector
;
2998 for (bi
=sh
->dev
[dd_idx
].towrite
;
2999 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
3000 bi
&& bi
->bi_iter
.bi_sector
<= sector
;
3001 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
3002 if (bio_end_sector(bi
) >= sector
)
3003 sector
= bio_end_sector(bi
);
3005 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
3006 if (!test_and_set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
))
3007 sh
->overwrite_disks
++;
3010 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3011 (unsigned long long)(*bip
)->bi_iter
.bi_sector
,
3012 (unsigned long long)sh
->sector
, dd_idx
);
3014 if (conf
->mddev
->bitmap
&& firstwrite
) {
3015 /* Cannot hold spinlock over bitmap_startwrite,
3016 * but must ensure this isn't added to a batch until
3017 * we have added to the bitmap and set bm_seq.
3018 * So set STRIPE_BITMAP_PENDING to prevent
3020 * If multiple add_stripe_bio() calls race here they
3021 * much all set STRIPE_BITMAP_PENDING. So only the first one
3022 * to complete "bitmap_startwrite" gets to set
3023 * STRIPE_BIT_DELAY. This is important as once a stripe
3024 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3027 set_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3028 spin_unlock_irq(&sh
->stripe_lock
);
3029 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
3031 spin_lock_irq(&sh
->stripe_lock
);
3032 clear_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3033 if (!sh
->batch_head
) {
3034 sh
->bm_seq
= conf
->seq_flush
+1;
3035 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
3038 spin_unlock_irq(&sh
->stripe_lock
);
3040 if (stripe_can_batch(sh
))
3041 stripe_add_to_batch_list(conf
, sh
);
3045 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
3046 spin_unlock_irq(&sh
->stripe_lock
);
3050 static void end_reshape(struct r5conf
*conf
);
3052 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
3053 struct stripe_head
*sh
)
3055 int sectors_per_chunk
=
3056 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
3058 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
3059 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
3061 raid5_compute_sector(conf
,
3062 stripe
* (disks
- conf
->max_degraded
)
3063 *sectors_per_chunk
+ chunk_offset
,
3069 handle_failed_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
3070 struct stripe_head_state
*s
, int disks
,
3071 struct bio_list
*return_bi
)
3074 BUG_ON(sh
->batch_head
);
3075 for (i
= disks
; i
--; ) {
3079 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
3080 struct md_rdev
*rdev
;
3082 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3083 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
3084 atomic_inc(&rdev
->nr_pending
);
3089 if (!rdev_set_badblocks(
3093 md_error(conf
->mddev
, rdev
);
3094 rdev_dec_pending(rdev
, conf
->mddev
);
3097 spin_lock_irq(&sh
->stripe_lock
);
3098 /* fail all writes first */
3099 bi
= sh
->dev
[i
].towrite
;
3100 sh
->dev
[i
].towrite
= NULL
;
3101 sh
->overwrite_disks
= 0;
3102 spin_unlock_irq(&sh
->stripe_lock
);
3106 r5l_stripe_write_finished(sh
);
3108 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3109 wake_up(&conf
->wait_for_overlap
);
3111 while (bi
&& bi
->bi_iter
.bi_sector
<
3112 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3113 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3115 bi
->bi_error
= -EIO
;
3116 if (!raid5_dec_bi_active_stripes(bi
)) {
3117 md_write_end(conf
->mddev
);
3118 bio_list_add(return_bi
, bi
);
3123 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3124 STRIPE_SECTORS
, 0, 0);
3126 /* and fail all 'written' */
3127 bi
= sh
->dev
[i
].written
;
3128 sh
->dev
[i
].written
= NULL
;
3129 if (test_and_clear_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
)) {
3130 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
3131 sh
->dev
[i
].page
= sh
->dev
[i
].orig_page
;
3134 if (bi
) bitmap_end
= 1;
3135 while (bi
&& bi
->bi_iter
.bi_sector
<
3136 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3137 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3139 bi
->bi_error
= -EIO
;
3140 if (!raid5_dec_bi_active_stripes(bi
)) {
3141 md_write_end(conf
->mddev
);
3142 bio_list_add(return_bi
, bi
);
3147 /* fail any reads if this device is non-operational and
3148 * the data has not reached the cache yet.
3150 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
3151 s
->failed
> conf
->max_degraded
&&
3152 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
3153 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
3154 spin_lock_irq(&sh
->stripe_lock
);
3155 bi
= sh
->dev
[i
].toread
;
3156 sh
->dev
[i
].toread
= NULL
;
3157 spin_unlock_irq(&sh
->stripe_lock
);
3158 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3159 wake_up(&conf
->wait_for_overlap
);
3162 while (bi
&& bi
->bi_iter
.bi_sector
<
3163 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3164 struct bio
*nextbi
=
3165 r5_next_bio(bi
, sh
->dev
[i
].sector
);
3167 bi
->bi_error
= -EIO
;
3168 if (!raid5_dec_bi_active_stripes(bi
))
3169 bio_list_add(return_bi
, bi
);
3174 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3175 STRIPE_SECTORS
, 0, 0);
3176 /* If we were in the middle of a write the parity block might
3177 * still be locked - so just clear all R5_LOCKED flags
3179 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3184 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3185 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3186 md_wakeup_thread(conf
->mddev
->thread
);
3190 handle_failed_sync(struct r5conf
*conf
, struct stripe_head
*sh
,
3191 struct stripe_head_state
*s
)
3196 BUG_ON(sh
->batch_head
);
3197 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3198 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
3199 wake_up(&conf
->wait_for_overlap
);
3202 /* There is nothing more to do for sync/check/repair.
3203 * Don't even need to abort as that is handled elsewhere
3204 * if needed, and not always wanted e.g. if there is a known
3206 * For recover/replace we need to record a bad block on all
3207 * non-sync devices, or abort the recovery
3209 if (test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
)) {
3210 /* During recovery devices cannot be removed, so
3211 * locking and refcounting of rdevs is not needed
3213 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3214 struct md_rdev
*rdev
= conf
->disks
[i
].rdev
;
3216 && !test_bit(Faulty
, &rdev
->flags
)
3217 && !test_bit(In_sync
, &rdev
->flags
)
3218 && !rdev_set_badblocks(rdev
, sh
->sector
,
3221 rdev
= conf
->disks
[i
].replacement
;
3223 && !test_bit(Faulty
, &rdev
->flags
)
3224 && !test_bit(In_sync
, &rdev
->flags
)
3225 && !rdev_set_badblocks(rdev
, sh
->sector
,
3230 conf
->recovery_disabled
=
3231 conf
->mddev
->recovery_disabled
;
3233 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, !abort
);
3236 static int want_replace(struct stripe_head
*sh
, int disk_idx
)
3238 struct md_rdev
*rdev
;
3240 /* Doing recovery so rcu locking not required */
3241 rdev
= sh
->raid_conf
->disks
[disk_idx
].replacement
;
3243 && !test_bit(Faulty
, &rdev
->flags
)
3244 && !test_bit(In_sync
, &rdev
->flags
)
3245 && (rdev
->recovery_offset
<= sh
->sector
3246 || rdev
->mddev
->recovery_cp
<= sh
->sector
))
3252 /* fetch_block - checks the given member device to see if its data needs
3253 * to be read or computed to satisfy a request.
3255 * Returns 1 when no more member devices need to be checked, otherwise returns
3256 * 0 to tell the loop in handle_stripe_fill to continue
3259 static int need_this_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3260 int disk_idx
, int disks
)
3262 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3263 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
3264 &sh
->dev
[s
->failed_num
[1]] };
3268 if (test_bit(R5_LOCKED
, &dev
->flags
) ||
3269 test_bit(R5_UPTODATE
, &dev
->flags
))
3270 /* No point reading this as we already have it or have
3271 * decided to get it.
3276 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)))
3277 /* We need this block to directly satisfy a request */
3280 if (s
->syncing
|| s
->expanding
||
3281 (s
->replacing
&& want_replace(sh
, disk_idx
)))
3282 /* When syncing, or expanding we read everything.
3283 * When replacing, we need the replaced block.
3287 if ((s
->failed
>= 1 && fdev
[0]->toread
) ||
3288 (s
->failed
>= 2 && fdev
[1]->toread
))
3289 /* If we want to read from a failed device, then
3290 * we need to actually read every other device.
3294 /* Sometimes neither read-modify-write nor reconstruct-write
3295 * cycles can work. In those cases we read every block we
3296 * can. Then the parity-update is certain to have enough to
3298 * This can only be a problem when we need to write something,
3299 * and some device has failed. If either of those tests
3300 * fail we need look no further.
3302 if (!s
->failed
|| !s
->to_write
)
3305 if (test_bit(R5_Insync
, &dev
->flags
) &&
3306 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3307 /* Pre-reads at not permitted until after short delay
3308 * to gather multiple requests. However if this
3309 * device is no Insync, the block could only be be computed
3310 * and there is no need to delay that.
3314 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3315 if (fdev
[i
]->towrite
&&
3316 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3317 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3318 /* If we have a partial write to a failed
3319 * device, then we will need to reconstruct
3320 * the content of that device, so all other
3321 * devices must be read.
3326 /* If we are forced to do a reconstruct-write, either because
3327 * the current RAID6 implementation only supports that, or
3328 * or because parity cannot be trusted and we are currently
3329 * recovering it, there is extra need to be careful.
3330 * If one of the devices that we would need to read, because
3331 * it is not being overwritten (and maybe not written at all)
3332 * is missing/faulty, then we need to read everything we can.
3334 if (sh
->raid_conf
->level
!= 6 &&
3335 sh
->sector
< sh
->raid_conf
->mddev
->recovery_cp
)
3336 /* reconstruct-write isn't being forced */
3338 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3339 if (s
->failed_num
[i
] != sh
->pd_idx
&&
3340 s
->failed_num
[i
] != sh
->qd_idx
&&
3341 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3342 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3349 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3350 int disk_idx
, int disks
)
3352 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3354 /* is the data in this block needed, and can we get it? */
3355 if (need_this_block(sh
, s
, disk_idx
, disks
)) {
3356 /* we would like to get this block, possibly by computing it,
3357 * otherwise read it if the backing disk is insync
3359 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
3360 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
3361 BUG_ON(sh
->batch_head
);
3362 if ((s
->uptodate
== disks
- 1) &&
3363 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
3364 disk_idx
== s
->failed_num
[1]))) {
3365 /* have disk failed, and we're requested to fetch it;
3368 pr_debug("Computing stripe %llu block %d\n",
3369 (unsigned long long)sh
->sector
, disk_idx
);
3370 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3371 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3372 set_bit(R5_Wantcompute
, &dev
->flags
);
3373 sh
->ops
.target
= disk_idx
;
3374 sh
->ops
.target2
= -1; /* no 2nd target */
3376 /* Careful: from this point on 'uptodate' is in the eye
3377 * of raid_run_ops which services 'compute' operations
3378 * before writes. R5_Wantcompute flags a block that will
3379 * be R5_UPTODATE by the time it is needed for a
3380 * subsequent operation.
3384 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
3385 /* Computing 2-failure is *very* expensive; only
3386 * do it if failed >= 2
3389 for (other
= disks
; other
--; ) {
3390 if (other
== disk_idx
)
3392 if (!test_bit(R5_UPTODATE
,
3393 &sh
->dev
[other
].flags
))
3397 pr_debug("Computing stripe %llu blocks %d,%d\n",
3398 (unsigned long long)sh
->sector
,
3400 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3401 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3402 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
3403 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
3404 sh
->ops
.target
= disk_idx
;
3405 sh
->ops
.target2
= other
;
3409 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
3410 set_bit(R5_LOCKED
, &dev
->flags
);
3411 set_bit(R5_Wantread
, &dev
->flags
);
3413 pr_debug("Reading block %d (sync=%d)\n",
3414 disk_idx
, s
->syncing
);
3422 * handle_stripe_fill - read or compute data to satisfy pending requests.
3424 static void handle_stripe_fill(struct stripe_head
*sh
,
3425 struct stripe_head_state
*s
,
3430 /* look for blocks to read/compute, skip this if a compute
3431 * is already in flight, or if the stripe contents are in the
3432 * midst of changing due to a write
3434 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
3435 !sh
->reconstruct_state
)
3436 for (i
= disks
; i
--; )
3437 if (fetch_block(sh
, s
, i
, disks
))
3439 set_bit(STRIPE_HANDLE
, &sh
->state
);
3442 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
3443 unsigned long handle_flags
);
3444 /* handle_stripe_clean_event
3445 * any written block on an uptodate or failed drive can be returned.
3446 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3447 * never LOCKED, so we don't need to test 'failed' directly.
3449 static void handle_stripe_clean_event(struct r5conf
*conf
,
3450 struct stripe_head
*sh
, int disks
, struct bio_list
*return_bi
)
3454 int discard_pending
= 0;
3455 struct stripe_head
*head_sh
= sh
;
3456 bool do_endio
= false;
3458 for (i
= disks
; i
--; )
3459 if (sh
->dev
[i
].written
) {
3461 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
3462 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
3463 test_bit(R5_Discard
, &dev
->flags
) ||
3464 test_bit(R5_SkipCopy
, &dev
->flags
))) {
3465 /* We can return any write requests */
3466 struct bio
*wbi
, *wbi2
;
3467 pr_debug("Return write for disc %d\n", i
);
3468 if (test_and_clear_bit(R5_Discard
, &dev
->flags
))
3469 clear_bit(R5_UPTODATE
, &dev
->flags
);
3470 if (test_and_clear_bit(R5_SkipCopy
, &dev
->flags
)) {
3471 WARN_ON(test_bit(R5_UPTODATE
, &dev
->flags
));
3476 dev
->page
= dev
->orig_page
;
3478 dev
->written
= NULL
;
3479 while (wbi
&& wbi
->bi_iter
.bi_sector
<
3480 dev
->sector
+ STRIPE_SECTORS
) {
3481 wbi2
= r5_next_bio(wbi
, dev
->sector
);
3482 if (!raid5_dec_bi_active_stripes(wbi
)) {
3483 md_write_end(conf
->mddev
);
3484 bio_list_add(return_bi
, wbi
);
3488 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3490 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
3492 if (head_sh
->batch_head
) {
3493 sh
= list_first_entry(&sh
->batch_list
,
3496 if (sh
!= head_sh
) {
3503 } else if (test_bit(R5_Discard
, &dev
->flags
))
3504 discard_pending
= 1;
3505 WARN_ON(test_bit(R5_SkipCopy
, &dev
->flags
));
3506 WARN_ON(dev
->page
!= dev
->orig_page
);
3509 r5l_stripe_write_finished(sh
);
3511 if (!discard_pending
&&
3512 test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
)) {
3514 clear_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
3515 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3516 if (sh
->qd_idx
>= 0) {
3517 clear_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
3518 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
);
3520 /* now that discard is done we can proceed with any sync */
3521 clear_bit(STRIPE_DISCARD
, &sh
->state
);
3523 * SCSI discard will change some bio fields and the stripe has
3524 * no updated data, so remove it from hash list and the stripe
3525 * will be reinitialized
3528 hash
= sh
->hash_lock_index
;
3529 spin_lock_irq(conf
->hash_locks
+ hash
);
3531 spin_unlock_irq(conf
->hash_locks
+ hash
);
3532 if (head_sh
->batch_head
) {
3533 sh
= list_first_entry(&sh
->batch_list
,
3534 struct stripe_head
, batch_list
);
3540 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
3541 set_bit(STRIPE_HANDLE
, &sh
->state
);
3545 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3546 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3547 md_wakeup_thread(conf
->mddev
->thread
);
3549 if (head_sh
->batch_head
&& do_endio
)
3550 break_stripe_batch_list(head_sh
, STRIPE_EXPAND_SYNC_FLAGS
);
3553 static void handle_stripe_dirtying(struct r5conf
*conf
,
3554 struct stripe_head
*sh
,
3555 struct stripe_head_state
*s
,
3558 int rmw
= 0, rcw
= 0, i
;
3559 sector_t recovery_cp
= conf
->mddev
->recovery_cp
;
3561 /* Check whether resync is now happening or should start.
3562 * If yes, then the array is dirty (after unclean shutdown or
3563 * initial creation), so parity in some stripes might be inconsistent.
3564 * In this case, we need to always do reconstruct-write, to ensure
3565 * that in case of drive failure or read-error correction, we
3566 * generate correct data from the parity.
3568 if (conf
->rmw_level
== PARITY_DISABLE_RMW
||
3569 (recovery_cp
< MaxSector
&& sh
->sector
>= recovery_cp
&&
3571 /* Calculate the real rcw later - for now make it
3572 * look like rcw is cheaper
3575 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3576 conf
->rmw_level
, (unsigned long long)recovery_cp
,
3577 (unsigned long long)sh
->sector
);
3578 } else for (i
= disks
; i
--; ) {
3579 /* would I have to read this buffer for read_modify_write */
3580 struct r5dev
*dev
= &sh
->dev
[i
];
3581 if ((dev
->towrite
|| i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
3582 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3583 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3584 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3585 if (test_bit(R5_Insync
, &dev
->flags
))
3588 rmw
+= 2*disks
; /* cannot read it */
3590 /* Would I have to read this buffer for reconstruct_write */
3591 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3592 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3593 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3594 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3595 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3596 if (test_bit(R5_Insync
, &dev
->flags
))
3602 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3603 (unsigned long long)sh
->sector
, rmw
, rcw
);
3604 set_bit(STRIPE_HANDLE
, &sh
->state
);
3605 if ((rmw
< rcw
|| (rmw
== rcw
&& conf
->rmw_level
== PARITY_ENABLE_RMW
)) && rmw
> 0) {
3606 /* prefer read-modify-write, but need to get some data */
3607 if (conf
->mddev
->queue
)
3608 blk_add_trace_msg(conf
->mddev
->queue
,
3609 "raid5 rmw %llu %d",
3610 (unsigned long long)sh
->sector
, rmw
);
3611 for (i
= disks
; i
--; ) {
3612 struct r5dev
*dev
= &sh
->dev
[i
];
3613 if ((dev
->towrite
|| i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
3614 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3615 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3616 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
3617 test_bit(R5_Insync
, &dev
->flags
)) {
3618 if (test_bit(STRIPE_PREREAD_ACTIVE
,
3620 pr_debug("Read_old block %d for r-m-w\n",
3622 set_bit(R5_LOCKED
, &dev
->flags
);
3623 set_bit(R5_Wantread
, &dev
->flags
);
3626 set_bit(STRIPE_DELAYED
, &sh
->state
);
3627 set_bit(STRIPE_HANDLE
, &sh
->state
);
3632 if ((rcw
< rmw
|| (rcw
== rmw
&& conf
->rmw_level
!= PARITY_ENABLE_RMW
)) && rcw
> 0) {
3633 /* want reconstruct write, but need to get some data */
3636 for (i
= disks
; i
--; ) {
3637 struct r5dev
*dev
= &sh
->dev
[i
];
3638 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3639 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3640 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3641 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3642 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3644 if (test_bit(R5_Insync
, &dev
->flags
) &&
3645 test_bit(STRIPE_PREREAD_ACTIVE
,
3647 pr_debug("Read_old block "
3648 "%d for Reconstruct\n", i
);
3649 set_bit(R5_LOCKED
, &dev
->flags
);
3650 set_bit(R5_Wantread
, &dev
->flags
);
3654 set_bit(STRIPE_DELAYED
, &sh
->state
);
3655 set_bit(STRIPE_HANDLE
, &sh
->state
);
3659 if (rcw
&& conf
->mddev
->queue
)
3660 blk_add_trace_msg(conf
->mddev
->queue
, "raid5 rcw %llu %d %d %d",
3661 (unsigned long long)sh
->sector
,
3662 rcw
, qread
, test_bit(STRIPE_DELAYED
, &sh
->state
));
3665 if (rcw
> disks
&& rmw
> disks
&&
3666 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3667 set_bit(STRIPE_DELAYED
, &sh
->state
);
3669 /* now if nothing is locked, and if we have enough data,
3670 * we can start a write request
3672 /* since handle_stripe can be called at any time we need to handle the
3673 * case where a compute block operation has been submitted and then a
3674 * subsequent call wants to start a write request. raid_run_ops only
3675 * handles the case where compute block and reconstruct are requested
3676 * simultaneously. If this is not the case then new writes need to be
3677 * held off until the compute completes.
3679 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
3680 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
3681 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
3682 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
3685 static void handle_parity_checks5(struct r5conf
*conf
, struct stripe_head
*sh
,
3686 struct stripe_head_state
*s
, int disks
)
3688 struct r5dev
*dev
= NULL
;
3690 BUG_ON(sh
->batch_head
);
3691 set_bit(STRIPE_HANDLE
, &sh
->state
);
3693 switch (sh
->check_state
) {
3694 case check_state_idle
:
3695 /* start a new check operation if there are no failures */
3696 if (s
->failed
== 0) {
3697 BUG_ON(s
->uptodate
!= disks
);
3698 sh
->check_state
= check_state_run
;
3699 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3700 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3704 dev
= &sh
->dev
[s
->failed_num
[0]];
3706 case check_state_compute_result
:
3707 sh
->check_state
= check_state_idle
;
3709 dev
= &sh
->dev
[sh
->pd_idx
];
3711 /* check that a write has not made the stripe insync */
3712 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3715 /* either failed parity check, or recovery is happening */
3716 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
3717 BUG_ON(s
->uptodate
!= disks
);
3719 set_bit(R5_LOCKED
, &dev
->flags
);
3721 set_bit(R5_Wantwrite
, &dev
->flags
);
3723 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3724 set_bit(STRIPE_INSYNC
, &sh
->state
);
3726 case check_state_run
:
3727 break; /* we will be called again upon completion */
3728 case check_state_check_result
:
3729 sh
->check_state
= check_state_idle
;
3731 /* if a failure occurred during the check operation, leave
3732 * STRIPE_INSYNC not set and let the stripe be handled again
3737 /* handle a successful check operation, if parity is correct
3738 * we are done. Otherwise update the mismatch count and repair
3739 * parity if !MD_RECOVERY_CHECK
3741 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
3742 /* parity is correct (on disc,
3743 * not in buffer any more)
3745 set_bit(STRIPE_INSYNC
, &sh
->state
);
3747 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3748 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3749 /* don't try to repair!! */
3750 set_bit(STRIPE_INSYNC
, &sh
->state
);
3752 sh
->check_state
= check_state_compute_run
;
3753 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3754 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3755 set_bit(R5_Wantcompute
,
3756 &sh
->dev
[sh
->pd_idx
].flags
);
3757 sh
->ops
.target
= sh
->pd_idx
;
3758 sh
->ops
.target2
= -1;
3763 case check_state_compute_run
:
3766 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
3767 __func__
, sh
->check_state
,
3768 (unsigned long long) sh
->sector
);
3773 static void handle_parity_checks6(struct r5conf
*conf
, struct stripe_head
*sh
,
3774 struct stripe_head_state
*s
,
3777 int pd_idx
= sh
->pd_idx
;
3778 int qd_idx
= sh
->qd_idx
;
3781 BUG_ON(sh
->batch_head
);
3782 set_bit(STRIPE_HANDLE
, &sh
->state
);
3784 BUG_ON(s
->failed
> 2);
3786 /* Want to check and possibly repair P and Q.
3787 * However there could be one 'failed' device, in which
3788 * case we can only check one of them, possibly using the
3789 * other to generate missing data
3792 switch (sh
->check_state
) {
3793 case check_state_idle
:
3794 /* start a new check operation if there are < 2 failures */
3795 if (s
->failed
== s
->q_failed
) {
3796 /* The only possible failed device holds Q, so it
3797 * makes sense to check P (If anything else were failed,
3798 * we would have used P to recreate it).
3800 sh
->check_state
= check_state_run
;
3802 if (!s
->q_failed
&& s
->failed
< 2) {
3803 /* Q is not failed, and we didn't use it to generate
3804 * anything, so it makes sense to check it
3806 if (sh
->check_state
== check_state_run
)
3807 sh
->check_state
= check_state_run_pq
;
3809 sh
->check_state
= check_state_run_q
;
3812 /* discard potentially stale zero_sum_result */
3813 sh
->ops
.zero_sum_result
= 0;
3815 if (sh
->check_state
== check_state_run
) {
3816 /* async_xor_zero_sum destroys the contents of P */
3817 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
3820 if (sh
->check_state
>= check_state_run
&&
3821 sh
->check_state
<= check_state_run_pq
) {
3822 /* async_syndrome_zero_sum preserves P and Q, so
3823 * no need to mark them !uptodate here
3825 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3829 /* we have 2-disk failure */
3830 BUG_ON(s
->failed
!= 2);
3832 case check_state_compute_result
:
3833 sh
->check_state
= check_state_idle
;
3835 /* check that a write has not made the stripe insync */
3836 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3839 /* now write out any block on a failed drive,
3840 * or P or Q if they were recomputed
3842 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
3843 if (s
->failed
== 2) {
3844 dev
= &sh
->dev
[s
->failed_num
[1]];
3846 set_bit(R5_LOCKED
, &dev
->flags
);
3847 set_bit(R5_Wantwrite
, &dev
->flags
);
3849 if (s
->failed
>= 1) {
3850 dev
= &sh
->dev
[s
->failed_num
[0]];
3852 set_bit(R5_LOCKED
, &dev
->flags
);
3853 set_bit(R5_Wantwrite
, &dev
->flags
);
3855 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3856 dev
= &sh
->dev
[pd_idx
];
3858 set_bit(R5_LOCKED
, &dev
->flags
);
3859 set_bit(R5_Wantwrite
, &dev
->flags
);
3861 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3862 dev
= &sh
->dev
[qd_idx
];
3864 set_bit(R5_LOCKED
, &dev
->flags
);
3865 set_bit(R5_Wantwrite
, &dev
->flags
);
3867 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3869 set_bit(STRIPE_INSYNC
, &sh
->state
);
3871 case check_state_run
:
3872 case check_state_run_q
:
3873 case check_state_run_pq
:
3874 break; /* we will be called again upon completion */
3875 case check_state_check_result
:
3876 sh
->check_state
= check_state_idle
;
3878 /* handle a successful check operation, if parity is correct
3879 * we are done. Otherwise update the mismatch count and repair
3880 * parity if !MD_RECOVERY_CHECK
3882 if (sh
->ops
.zero_sum_result
== 0) {
3883 /* both parities are correct */
3885 set_bit(STRIPE_INSYNC
, &sh
->state
);
3887 /* in contrast to the raid5 case we can validate
3888 * parity, but still have a failure to write
3891 sh
->check_state
= check_state_compute_result
;
3892 /* Returning at this point means that we may go
3893 * off and bring p and/or q uptodate again so
3894 * we make sure to check zero_sum_result again
3895 * to verify if p or q need writeback
3899 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3900 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3901 /* don't try to repair!! */
3902 set_bit(STRIPE_INSYNC
, &sh
->state
);
3904 int *target
= &sh
->ops
.target
;
3906 sh
->ops
.target
= -1;
3907 sh
->ops
.target2
= -1;
3908 sh
->check_state
= check_state_compute_run
;
3909 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3910 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3911 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3912 set_bit(R5_Wantcompute
,
3913 &sh
->dev
[pd_idx
].flags
);
3915 target
= &sh
->ops
.target2
;
3918 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3919 set_bit(R5_Wantcompute
,
3920 &sh
->dev
[qd_idx
].flags
);
3927 case check_state_compute_run
:
3930 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
3931 __func__
, sh
->check_state
,
3932 (unsigned long long) sh
->sector
);
3937 static void handle_stripe_expansion(struct r5conf
*conf
, struct stripe_head
*sh
)
3941 /* We have read all the blocks in this stripe and now we need to
3942 * copy some of them into a target stripe for expand.
3944 struct dma_async_tx_descriptor
*tx
= NULL
;
3945 BUG_ON(sh
->batch_head
);
3946 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3947 for (i
= 0; i
< sh
->disks
; i
++)
3948 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
3950 struct stripe_head
*sh2
;
3951 struct async_submit_ctl submit
;
3953 sector_t bn
= raid5_compute_blocknr(sh
, i
, 1);
3954 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
3956 sh2
= raid5_get_active_stripe(conf
, s
, 0, 1, 1);
3958 /* so far only the early blocks of this stripe
3959 * have been requested. When later blocks
3960 * get requested, we will try again
3963 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
3964 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
3965 /* must have already done this block */
3966 raid5_release_stripe(sh2
);
3970 /* place all the copies on one channel */
3971 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
3972 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
3973 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
3976 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
3977 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
3978 for (j
= 0; j
< conf
->raid_disks
; j
++)
3979 if (j
!= sh2
->pd_idx
&&
3981 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
3983 if (j
== conf
->raid_disks
) {
3984 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
3985 set_bit(STRIPE_HANDLE
, &sh2
->state
);
3987 raid5_release_stripe(sh2
);
3990 /* done submitting copies, wait for them to complete */
3991 async_tx_quiesce(&tx
);
3995 * handle_stripe - do things to a stripe.
3997 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3998 * state of various bits to see what needs to be done.
4000 * return some read requests which now have data
4001 * return some write requests which are safely on storage
4002 * schedule a read on some buffers
4003 * schedule a write of some buffers
4004 * return confirmation of parity correctness
4008 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
4010 struct r5conf
*conf
= sh
->raid_conf
;
4011 int disks
= sh
->disks
;
4014 int do_recovery
= 0;
4016 memset(s
, 0, sizeof(*s
));
4018 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
) && !sh
->batch_head
;
4019 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
) && !sh
->batch_head
;
4020 s
->failed_num
[0] = -1;
4021 s
->failed_num
[1] = -1;
4022 s
->log_failed
= r5l_log_disk_error(conf
);
4024 /* Now to look around and see what can be done */
4026 for (i
=disks
; i
--; ) {
4027 struct md_rdev
*rdev
;
4034 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4036 dev
->toread
, dev
->towrite
, dev
->written
);
4037 /* maybe we can reply to a read
4039 * new wantfill requests are only permitted while
4040 * ops_complete_biofill is guaranteed to be inactive
4042 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
4043 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
4044 set_bit(R5_Wantfill
, &dev
->flags
);
4046 /* now count some things */
4047 if (test_bit(R5_LOCKED
, &dev
->flags
))
4049 if (test_bit(R5_UPTODATE
, &dev
->flags
))
4051 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
4053 BUG_ON(s
->compute
> 2);
4056 if (test_bit(R5_Wantfill
, &dev
->flags
))
4058 else if (dev
->toread
)
4062 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
4067 /* Prefer to use the replacement for reads, but only
4068 * if it is recovered enough and has no bad blocks.
4070 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
4071 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) &&
4072 rdev
->recovery_offset
>= sh
->sector
+ STRIPE_SECTORS
&&
4073 !is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4074 &first_bad
, &bad_sectors
))
4075 set_bit(R5_ReadRepl
, &dev
->flags
);
4077 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4078 set_bit(R5_NeedReplace
, &dev
->flags
);
4080 clear_bit(R5_NeedReplace
, &dev
->flags
);
4081 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
4082 clear_bit(R5_ReadRepl
, &dev
->flags
);
4084 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
4087 is_bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4088 &first_bad
, &bad_sectors
);
4089 if (s
->blocked_rdev
== NULL
4090 && (test_bit(Blocked
, &rdev
->flags
)
4093 set_bit(BlockedBadBlocks
,
4095 s
->blocked_rdev
= rdev
;
4096 atomic_inc(&rdev
->nr_pending
);
4099 clear_bit(R5_Insync
, &dev
->flags
);
4103 /* also not in-sync */
4104 if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
4105 test_bit(R5_UPTODATE
, &dev
->flags
)) {
4106 /* treat as in-sync, but with a read error
4107 * which we can now try to correct
4109 set_bit(R5_Insync
, &dev
->flags
);
4110 set_bit(R5_ReadError
, &dev
->flags
);
4112 } else if (test_bit(In_sync
, &rdev
->flags
))
4113 set_bit(R5_Insync
, &dev
->flags
);
4114 else if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
4115 /* in sync if before recovery_offset */
4116 set_bit(R5_Insync
, &dev
->flags
);
4117 else if (test_bit(R5_UPTODATE
, &dev
->flags
) &&
4118 test_bit(R5_Expanded
, &dev
->flags
))
4119 /* If we've reshaped into here, we assume it is Insync.
4120 * We will shortly update recovery_offset to make
4123 set_bit(R5_Insync
, &dev
->flags
);
4125 if (test_bit(R5_WriteError
, &dev
->flags
)) {
4126 /* This flag does not apply to '.replacement'
4127 * only to .rdev, so make sure to check that*/
4128 struct md_rdev
*rdev2
= rcu_dereference(
4129 conf
->disks
[i
].rdev
);
4131 clear_bit(R5_Insync
, &dev
->flags
);
4132 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4133 s
->handle_bad_blocks
= 1;
4134 atomic_inc(&rdev2
->nr_pending
);
4136 clear_bit(R5_WriteError
, &dev
->flags
);
4138 if (test_bit(R5_MadeGood
, &dev
->flags
)) {
4139 /* This flag does not apply to '.replacement'
4140 * only to .rdev, so make sure to check that*/
4141 struct md_rdev
*rdev2
= rcu_dereference(
4142 conf
->disks
[i
].rdev
);
4143 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4144 s
->handle_bad_blocks
= 1;
4145 atomic_inc(&rdev2
->nr_pending
);
4147 clear_bit(R5_MadeGood
, &dev
->flags
);
4149 if (test_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4150 struct md_rdev
*rdev2
= rcu_dereference(
4151 conf
->disks
[i
].replacement
);
4152 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4153 s
->handle_bad_blocks
= 1;
4154 atomic_inc(&rdev2
->nr_pending
);
4156 clear_bit(R5_MadeGoodRepl
, &dev
->flags
);
4158 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4159 /* The ReadError flag will just be confusing now */
4160 clear_bit(R5_ReadError
, &dev
->flags
);
4161 clear_bit(R5_ReWrite
, &dev
->flags
);
4163 if (test_bit(R5_ReadError
, &dev
->flags
))
4164 clear_bit(R5_Insync
, &dev
->flags
);
4165 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4167 s
->failed_num
[s
->failed
] = i
;
4169 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4173 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
4174 /* If there is a failed device being replaced,
4175 * we must be recovering.
4176 * else if we are after recovery_cp, we must be syncing
4177 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4178 * else we can only be replacing
4179 * sync and recovery both need to read all devices, and so
4180 * use the same flag.
4183 sh
->sector
>= conf
->mddev
->recovery_cp
||
4184 test_bit(MD_RECOVERY_REQUESTED
, &(conf
->mddev
->recovery
)))
4192 static int clear_batch_ready(struct stripe_head
*sh
)
4194 /* Return '1' if this is a member of batch, or
4195 * '0' if it is a lone stripe or a head which can now be
4198 struct stripe_head
*tmp
;
4199 if (!test_and_clear_bit(STRIPE_BATCH_READY
, &sh
->state
))
4200 return (sh
->batch_head
&& sh
->batch_head
!= sh
);
4201 spin_lock(&sh
->stripe_lock
);
4202 if (!sh
->batch_head
) {
4203 spin_unlock(&sh
->stripe_lock
);
4208 * this stripe could be added to a batch list before we check
4209 * BATCH_READY, skips it
4211 if (sh
->batch_head
!= sh
) {
4212 spin_unlock(&sh
->stripe_lock
);
4215 spin_lock(&sh
->batch_lock
);
4216 list_for_each_entry(tmp
, &sh
->batch_list
, batch_list
)
4217 clear_bit(STRIPE_BATCH_READY
, &tmp
->state
);
4218 spin_unlock(&sh
->batch_lock
);
4219 spin_unlock(&sh
->stripe_lock
);
4222 * BATCH_READY is cleared, no new stripes can be added.
4223 * batch_list can be accessed without lock
4228 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
4229 unsigned long handle_flags
)
4231 struct stripe_head
*sh
, *next
;
4235 list_for_each_entry_safe(sh
, next
, &head_sh
->batch_list
, batch_list
) {
4237 list_del_init(&sh
->batch_list
);
4239 WARN_ONCE(sh
->state
& ((1 << STRIPE_ACTIVE
) |
4240 (1 << STRIPE_SYNCING
) |
4241 (1 << STRIPE_REPLACED
) |
4242 (1 << STRIPE_DELAYED
) |
4243 (1 << STRIPE_BIT_DELAY
) |
4244 (1 << STRIPE_FULL_WRITE
) |
4245 (1 << STRIPE_BIOFILL_RUN
) |
4246 (1 << STRIPE_COMPUTE_RUN
) |
4247 (1 << STRIPE_OPS_REQ_PENDING
) |
4248 (1 << STRIPE_DISCARD
) |
4249 (1 << STRIPE_BATCH_READY
) |
4250 (1 << STRIPE_BATCH_ERR
) |
4251 (1 << STRIPE_BITMAP_PENDING
)),
4252 "stripe state: %lx\n", sh
->state
);
4253 WARN_ONCE(head_sh
->state
& ((1 << STRIPE_DISCARD
) |
4254 (1 << STRIPE_REPLACED
)),
4255 "head stripe state: %lx\n", head_sh
->state
);
4257 set_mask_bits(&sh
->state
, ~(STRIPE_EXPAND_SYNC_FLAGS
|
4258 (1 << STRIPE_PREREAD_ACTIVE
) |
4259 (1 << STRIPE_DEGRADED
)),
4260 head_sh
->state
& (1 << STRIPE_INSYNC
));
4262 sh
->check_state
= head_sh
->check_state
;
4263 sh
->reconstruct_state
= head_sh
->reconstruct_state
;
4264 for (i
= 0; i
< sh
->disks
; i
++) {
4265 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
4267 sh
->dev
[i
].flags
= head_sh
->dev
[i
].flags
&
4268 (~((1 << R5_WriteError
) | (1 << R5_Overlap
)));
4270 spin_lock_irq(&sh
->stripe_lock
);
4271 sh
->batch_head
= NULL
;
4272 spin_unlock_irq(&sh
->stripe_lock
);
4273 if (handle_flags
== 0 ||
4274 sh
->state
& handle_flags
)
4275 set_bit(STRIPE_HANDLE
, &sh
->state
);
4276 raid5_release_stripe(sh
);
4278 spin_lock_irq(&head_sh
->stripe_lock
);
4279 head_sh
->batch_head
= NULL
;
4280 spin_unlock_irq(&head_sh
->stripe_lock
);
4281 for (i
= 0; i
< head_sh
->disks
; i
++)
4282 if (test_and_clear_bit(R5_Overlap
, &head_sh
->dev
[i
].flags
))
4284 if (head_sh
->state
& handle_flags
)
4285 set_bit(STRIPE_HANDLE
, &head_sh
->state
);
4288 wake_up(&head_sh
->raid_conf
->wait_for_overlap
);
4291 static void handle_stripe(struct stripe_head
*sh
)
4293 struct stripe_head_state s
;
4294 struct r5conf
*conf
= sh
->raid_conf
;
4297 int disks
= sh
->disks
;
4298 struct r5dev
*pdev
, *qdev
;
4300 clear_bit(STRIPE_HANDLE
, &sh
->state
);
4301 if (test_and_set_bit_lock(STRIPE_ACTIVE
, &sh
->state
)) {
4302 /* already being handled, ensure it gets handled
4303 * again when current action finishes */
4304 set_bit(STRIPE_HANDLE
, &sh
->state
);
4308 if (clear_batch_ready(sh
) ) {
4309 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4313 if (test_and_clear_bit(STRIPE_BATCH_ERR
, &sh
->state
))
4314 break_stripe_batch_list(sh
, 0);
4316 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
) && !sh
->batch_head
) {
4317 spin_lock(&sh
->stripe_lock
);
4318 /* Cannot process 'sync' concurrently with 'discard' */
4319 if (!test_bit(STRIPE_DISCARD
, &sh
->state
) &&
4320 test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
4321 set_bit(STRIPE_SYNCING
, &sh
->state
);
4322 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4323 clear_bit(STRIPE_REPLACED
, &sh
->state
);
4325 spin_unlock(&sh
->stripe_lock
);
4327 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4329 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4330 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4331 (unsigned long long)sh
->sector
, sh
->state
,
4332 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
4333 sh
->check_state
, sh
->reconstruct_state
);
4335 analyse_stripe(sh
, &s
);
4337 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
4340 if (s
.handle_bad_blocks
) {
4341 set_bit(STRIPE_HANDLE
, &sh
->state
);
4345 if (unlikely(s
.blocked_rdev
)) {
4346 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
4347 s
.replacing
|| s
.to_write
|| s
.written
) {
4348 set_bit(STRIPE_HANDLE
, &sh
->state
);
4351 /* There is nothing for the blocked_rdev to block */
4352 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
4353 s
.blocked_rdev
= NULL
;
4356 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
4357 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
4358 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
4361 pr_debug("locked=%d uptodate=%d to_read=%d"
4362 " to_write=%d failed=%d failed_num=%d,%d\n",
4363 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
4364 s
.failed_num
[0], s
.failed_num
[1]);
4365 /* check if the array has lost more than max_degraded devices and,
4366 * if so, some requests might need to be failed.
4368 if (s
.failed
> conf
->max_degraded
|| s
.log_failed
) {
4369 sh
->check_state
= 0;
4370 sh
->reconstruct_state
= 0;
4371 break_stripe_batch_list(sh
, 0);
4372 if (s
.to_read
+s
.to_write
+s
.written
)
4373 handle_failed_stripe(conf
, sh
, &s
, disks
, &s
.return_bi
);
4374 if (s
.syncing
+ s
.replacing
)
4375 handle_failed_sync(conf
, sh
, &s
);
4378 /* Now we check to see if any write operations have recently
4382 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
4384 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
4385 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
4386 sh
->reconstruct_state
= reconstruct_state_idle
;
4388 /* All the 'written' buffers and the parity block are ready to
4389 * be written back to disk
4391 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
) &&
4392 !test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
));
4393 BUG_ON(sh
->qd_idx
>= 0 &&
4394 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
) &&
4395 !test_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
));
4396 for (i
= disks
; i
--; ) {
4397 struct r5dev
*dev
= &sh
->dev
[i
];
4398 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
4399 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
4401 pr_debug("Writing block %d\n", i
);
4402 set_bit(R5_Wantwrite
, &dev
->flags
);
4407 if (!test_bit(R5_Insync
, &dev
->flags
) ||
4408 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
4410 set_bit(STRIPE_INSYNC
, &sh
->state
);
4413 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4414 s
.dec_preread_active
= 1;
4418 * might be able to return some write requests if the parity blocks
4419 * are safe, or on a failed drive
4421 pdev
= &sh
->dev
[sh
->pd_idx
];
4422 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
4423 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
4424 qdev
= &sh
->dev
[sh
->qd_idx
];
4425 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
4426 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
4430 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
4431 && !test_bit(R5_LOCKED
, &pdev
->flags
)
4432 && (test_bit(R5_UPTODATE
, &pdev
->flags
) ||
4433 test_bit(R5_Discard
, &pdev
->flags
))))) &&
4434 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
4435 && !test_bit(R5_LOCKED
, &qdev
->flags
)
4436 && (test_bit(R5_UPTODATE
, &qdev
->flags
) ||
4437 test_bit(R5_Discard
, &qdev
->flags
))))))
4438 handle_stripe_clean_event(conf
, sh
, disks
, &s
.return_bi
);
4440 /* Now we might consider reading some blocks, either to check/generate
4441 * parity, or to satisfy requests
4442 * or to load a block that is being partially written.
4444 if (s
.to_read
|| s
.non_overwrite
4445 || (conf
->level
== 6 && s
.to_write
&& s
.failed
)
4446 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
))
4449 handle_stripe_fill(sh
, &s
, disks
);
4451 /* Now to consider new write requests and what else, if anything
4452 * should be read. We do not handle new writes when:
4453 * 1/ A 'write' operation (copy+xor) is already in flight.
4454 * 2/ A 'check' operation is in flight, as it may clobber the parity
4457 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
4458 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
4460 /* maybe we need to check and possibly fix the parity for this stripe
4461 * Any reads will already have been scheduled, so we just see if enough
4462 * data is available. The parity check is held off while parity
4463 * dependent operations are in flight.
4465 if (sh
->check_state
||
4466 (s
.syncing
&& s
.locked
== 0 &&
4467 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4468 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
4469 if (conf
->level
== 6)
4470 handle_parity_checks6(conf
, sh
, &s
, disks
);
4472 handle_parity_checks5(conf
, sh
, &s
, disks
);
4475 if ((s
.replacing
|| s
.syncing
) && s
.locked
== 0
4476 && !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)
4477 && !test_bit(STRIPE_REPLACED
, &sh
->state
)) {
4478 /* Write out to replacement devices where possible */
4479 for (i
= 0; i
< conf
->raid_disks
; i
++)
4480 if (test_bit(R5_NeedReplace
, &sh
->dev
[i
].flags
)) {
4481 WARN_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
4482 set_bit(R5_WantReplace
, &sh
->dev
[i
].flags
);
4483 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4487 set_bit(STRIPE_INSYNC
, &sh
->state
);
4488 set_bit(STRIPE_REPLACED
, &sh
->state
);
4490 if ((s
.syncing
|| s
.replacing
) && s
.locked
== 0 &&
4491 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4492 test_bit(STRIPE_INSYNC
, &sh
->state
)) {
4493 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4494 clear_bit(STRIPE_SYNCING
, &sh
->state
);
4495 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
4496 wake_up(&conf
->wait_for_overlap
);
4499 /* If the failed drives are just a ReadError, then we might need
4500 * to progress the repair/check process
4502 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
4503 for (i
= 0; i
< s
.failed
; i
++) {
4504 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
4505 if (test_bit(R5_ReadError
, &dev
->flags
)
4506 && !test_bit(R5_LOCKED
, &dev
->flags
)
4507 && test_bit(R5_UPTODATE
, &dev
->flags
)
4509 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
4510 set_bit(R5_Wantwrite
, &dev
->flags
);
4511 set_bit(R5_ReWrite
, &dev
->flags
);
4512 set_bit(R5_LOCKED
, &dev
->flags
);
4515 /* let's read it back */
4516 set_bit(R5_Wantread
, &dev
->flags
);
4517 set_bit(R5_LOCKED
, &dev
->flags
);
4523 /* Finish reconstruct operations initiated by the expansion process */
4524 if (sh
->reconstruct_state
== reconstruct_state_result
) {
4525 struct stripe_head
*sh_src
4526 = raid5_get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
4527 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
4528 /* sh cannot be written until sh_src has been read.
4529 * so arrange for sh to be delayed a little
4531 set_bit(STRIPE_DELAYED
, &sh
->state
);
4532 set_bit(STRIPE_HANDLE
, &sh
->state
);
4533 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
4535 atomic_inc(&conf
->preread_active_stripes
);
4536 raid5_release_stripe(sh_src
);
4540 raid5_release_stripe(sh_src
);
4542 sh
->reconstruct_state
= reconstruct_state_idle
;
4543 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
4544 for (i
= conf
->raid_disks
; i
--; ) {
4545 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
4546 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4551 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
4552 !sh
->reconstruct_state
) {
4553 /* Need to write out all blocks after computing parity */
4554 sh
->disks
= conf
->raid_disks
;
4555 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
4556 schedule_reconstruction(sh
, &s
, 1, 1);
4557 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
4558 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4559 atomic_dec(&conf
->reshape_stripes
);
4560 wake_up(&conf
->wait_for_overlap
);
4561 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4564 if (s
.expanding
&& s
.locked
== 0 &&
4565 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
4566 handle_stripe_expansion(conf
, sh
);
4569 /* wait for this device to become unblocked */
4570 if (unlikely(s
.blocked_rdev
)) {
4571 if (conf
->mddev
->external
)
4572 md_wait_for_blocked_rdev(s
.blocked_rdev
,
4575 /* Internal metadata will immediately
4576 * be written by raid5d, so we don't
4577 * need to wait here.
4579 rdev_dec_pending(s
.blocked_rdev
,
4583 if (s
.handle_bad_blocks
)
4584 for (i
= disks
; i
--; ) {
4585 struct md_rdev
*rdev
;
4586 struct r5dev
*dev
= &sh
->dev
[i
];
4587 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
4588 /* We own a safe reference to the rdev */
4589 rdev
= conf
->disks
[i
].rdev
;
4590 if (!rdev_set_badblocks(rdev
, sh
->sector
,
4592 md_error(conf
->mddev
, rdev
);
4593 rdev_dec_pending(rdev
, conf
->mddev
);
4595 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
4596 rdev
= conf
->disks
[i
].rdev
;
4597 rdev_clear_badblocks(rdev
, sh
->sector
,
4599 rdev_dec_pending(rdev
, conf
->mddev
);
4601 if (test_and_clear_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4602 rdev
= conf
->disks
[i
].replacement
;
4604 /* rdev have been moved down */
4605 rdev
= conf
->disks
[i
].rdev
;
4606 rdev_clear_badblocks(rdev
, sh
->sector
,
4608 rdev_dec_pending(rdev
, conf
->mddev
);
4613 raid_run_ops(sh
, s
.ops_request
);
4617 if (s
.dec_preread_active
) {
4618 /* We delay this until after ops_run_io so that if make_request
4619 * is waiting on a flush, it won't continue until the writes
4620 * have actually been submitted.
4622 atomic_dec(&conf
->preread_active_stripes
);
4623 if (atomic_read(&conf
->preread_active_stripes
) <
4625 md_wakeup_thread(conf
->mddev
->thread
);
4628 if (!bio_list_empty(&s
.return_bi
)) {
4629 if (test_bit(MD_CHANGE_PENDING
, &conf
->mddev
->flags
)) {
4630 spin_lock_irq(&conf
->device_lock
);
4631 bio_list_merge(&conf
->return_bi
, &s
.return_bi
);
4632 spin_unlock_irq(&conf
->device_lock
);
4633 md_wakeup_thread(conf
->mddev
->thread
);
4635 return_io(&s
.return_bi
);
4638 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4641 static void raid5_activate_delayed(struct r5conf
*conf
)
4643 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
4644 while (!list_empty(&conf
->delayed_list
)) {
4645 struct list_head
*l
= conf
->delayed_list
.next
;
4646 struct stripe_head
*sh
;
4647 sh
= list_entry(l
, struct stripe_head
, lru
);
4649 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4650 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4651 atomic_inc(&conf
->preread_active_stripes
);
4652 list_add_tail(&sh
->lru
, &conf
->hold_list
);
4653 raid5_wakeup_stripe_thread(sh
);
4658 static void activate_bit_delay(struct r5conf
*conf
,
4659 struct list_head
*temp_inactive_list
)
4661 /* device_lock is held */
4662 struct list_head head
;
4663 list_add(&head
, &conf
->bitmap_list
);
4664 list_del_init(&conf
->bitmap_list
);
4665 while (!list_empty(&head
)) {
4666 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
4668 list_del_init(&sh
->lru
);
4669 atomic_inc(&sh
->count
);
4670 hash
= sh
->hash_lock_index
;
4671 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
4675 static int raid5_congested(struct mddev
*mddev
, int bits
)
4677 struct r5conf
*conf
= mddev
->private;
4679 /* No difference between reads and writes. Just check
4680 * how busy the stripe_cache is
4683 if (test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
))
4687 if (atomic_read(&conf
->empty_inactive_list_nr
))
4693 static int in_chunk_boundary(struct mddev
*mddev
, struct bio
*bio
)
4695 struct r5conf
*conf
= mddev
->private;
4696 sector_t sector
= bio
->bi_iter
.bi_sector
+ get_start_sect(bio
->bi_bdev
);
4697 unsigned int chunk_sectors
;
4698 unsigned int bio_sectors
= bio_sectors(bio
);
4700 chunk_sectors
= min(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
4701 return chunk_sectors
>=
4702 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
4706 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4707 * later sampled by raid5d.
4709 static void add_bio_to_retry(struct bio
*bi
,struct r5conf
*conf
)
4711 unsigned long flags
;
4713 spin_lock_irqsave(&conf
->device_lock
, flags
);
4715 bi
->bi_next
= conf
->retry_read_aligned_list
;
4716 conf
->retry_read_aligned_list
= bi
;
4718 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4719 md_wakeup_thread(conf
->mddev
->thread
);
4722 static struct bio
*remove_bio_from_retry(struct r5conf
*conf
)
4726 bi
= conf
->retry_read_aligned
;
4728 conf
->retry_read_aligned
= NULL
;
4731 bi
= conf
->retry_read_aligned_list
;
4733 conf
->retry_read_aligned_list
= bi
->bi_next
;
4736 * this sets the active strip count to 1 and the processed
4737 * strip count to zero (upper 8 bits)
4739 raid5_set_bi_stripes(bi
, 1); /* biased count of active stripes */
4746 * The "raid5_align_endio" should check if the read succeeded and if it
4747 * did, call bio_endio on the original bio (having bio_put the new bio
4749 * If the read failed..
4751 static void raid5_align_endio(struct bio
*bi
)
4753 struct bio
* raid_bi
= bi
->bi_private
;
4754 struct mddev
*mddev
;
4755 struct r5conf
*conf
;
4756 struct md_rdev
*rdev
;
4757 int error
= bi
->bi_error
;
4761 rdev
= (void*)raid_bi
->bi_next
;
4762 raid_bi
->bi_next
= NULL
;
4763 mddev
= rdev
->mddev
;
4764 conf
= mddev
->private;
4766 rdev_dec_pending(rdev
, conf
->mddev
);
4769 trace_block_bio_complete(bdev_get_queue(raid_bi
->bi_bdev
),
4772 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4773 wake_up(&conf
->wait_for_quiescent
);
4777 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4779 add_bio_to_retry(raid_bi
, conf
);
4782 static int raid5_read_one_chunk(struct mddev
*mddev
, struct bio
*raid_bio
)
4784 struct r5conf
*conf
= mddev
->private;
4786 struct bio
* align_bi
;
4787 struct md_rdev
*rdev
;
4788 sector_t end_sector
;
4790 if (!in_chunk_boundary(mddev
, raid_bio
)) {
4791 pr_debug("%s: non aligned\n", __func__
);
4795 * use bio_clone_mddev to make a copy of the bio
4797 align_bi
= bio_clone_mddev(raid_bio
, GFP_NOIO
, mddev
);
4801 * set bi_end_io to a new function, and set bi_private to the
4804 align_bi
->bi_end_io
= raid5_align_endio
;
4805 align_bi
->bi_private
= raid_bio
;
4809 align_bi
->bi_iter
.bi_sector
=
4810 raid5_compute_sector(conf
, raid_bio
->bi_iter
.bi_sector
,
4813 end_sector
= bio_end_sector(align_bi
);
4815 rdev
= rcu_dereference(conf
->disks
[dd_idx
].replacement
);
4816 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
4817 rdev
->recovery_offset
< end_sector
) {
4818 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
4820 (test_bit(Faulty
, &rdev
->flags
) ||
4821 !(test_bit(In_sync
, &rdev
->flags
) ||
4822 rdev
->recovery_offset
>= end_sector
)))
4829 atomic_inc(&rdev
->nr_pending
);
4831 raid_bio
->bi_next
= (void*)rdev
;
4832 align_bi
->bi_bdev
= rdev
->bdev
;
4833 bio_clear_flag(align_bi
, BIO_SEG_VALID
);
4835 if (is_badblock(rdev
, align_bi
->bi_iter
.bi_sector
,
4836 bio_sectors(align_bi
),
4837 &first_bad
, &bad_sectors
)) {
4839 rdev_dec_pending(rdev
, mddev
);
4843 /* No reshape active, so we can trust rdev->data_offset */
4844 align_bi
->bi_iter
.bi_sector
+= rdev
->data_offset
;
4846 spin_lock_irq(&conf
->device_lock
);
4847 wait_event_lock_irq(conf
->wait_for_quiescent
,
4850 atomic_inc(&conf
->active_aligned_reads
);
4851 spin_unlock_irq(&conf
->device_lock
);
4854 trace_block_bio_remap(bdev_get_queue(align_bi
->bi_bdev
),
4855 align_bi
, disk_devt(mddev
->gendisk
),
4856 raid_bio
->bi_iter
.bi_sector
);
4857 generic_make_request(align_bi
);
4866 static struct bio
*chunk_aligned_read(struct mddev
*mddev
, struct bio
*raid_bio
)
4871 sector_t sector
= raid_bio
->bi_iter
.bi_sector
;
4872 unsigned chunk_sects
= mddev
->chunk_sectors
;
4873 unsigned sectors
= chunk_sects
- (sector
& (chunk_sects
-1));
4875 if (sectors
< bio_sectors(raid_bio
)) {
4876 split
= bio_split(raid_bio
, sectors
, GFP_NOIO
, fs_bio_set
);
4877 bio_chain(split
, raid_bio
);
4881 if (!raid5_read_one_chunk(mddev
, split
)) {
4882 if (split
!= raid_bio
)
4883 generic_make_request(raid_bio
);
4886 } while (split
!= raid_bio
);
4891 /* __get_priority_stripe - get the next stripe to process
4893 * Full stripe writes are allowed to pass preread active stripes up until
4894 * the bypass_threshold is exceeded. In general the bypass_count
4895 * increments when the handle_list is handled before the hold_list; however, it
4896 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4897 * stripe with in flight i/o. The bypass_count will be reset when the
4898 * head of the hold_list has changed, i.e. the head was promoted to the
4901 static struct stripe_head
*__get_priority_stripe(struct r5conf
*conf
, int group
)
4903 struct stripe_head
*sh
= NULL
, *tmp
;
4904 struct list_head
*handle_list
= NULL
;
4905 struct r5worker_group
*wg
= NULL
;
4907 if (conf
->worker_cnt_per_group
== 0) {
4908 handle_list
= &conf
->handle_list
;
4909 } else if (group
!= ANY_GROUP
) {
4910 handle_list
= &conf
->worker_groups
[group
].handle_list
;
4911 wg
= &conf
->worker_groups
[group
];
4914 for (i
= 0; i
< conf
->group_cnt
; i
++) {
4915 handle_list
= &conf
->worker_groups
[i
].handle_list
;
4916 wg
= &conf
->worker_groups
[i
];
4917 if (!list_empty(handle_list
))
4922 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4924 list_empty(handle_list
) ? "empty" : "busy",
4925 list_empty(&conf
->hold_list
) ? "empty" : "busy",
4926 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
4928 if (!list_empty(handle_list
)) {
4929 sh
= list_entry(handle_list
->next
, typeof(*sh
), lru
);
4931 if (list_empty(&conf
->hold_list
))
4932 conf
->bypass_count
= 0;
4933 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
4934 if (conf
->hold_list
.next
== conf
->last_hold
)
4935 conf
->bypass_count
++;
4937 conf
->last_hold
= conf
->hold_list
.next
;
4938 conf
->bypass_count
-= conf
->bypass_threshold
;
4939 if (conf
->bypass_count
< 0)
4940 conf
->bypass_count
= 0;
4943 } else if (!list_empty(&conf
->hold_list
) &&
4944 ((conf
->bypass_threshold
&&
4945 conf
->bypass_count
> conf
->bypass_threshold
) ||
4946 atomic_read(&conf
->pending_full_writes
) == 0)) {
4948 list_for_each_entry(tmp
, &conf
->hold_list
, lru
) {
4949 if (conf
->worker_cnt_per_group
== 0 ||
4950 group
== ANY_GROUP
||
4951 !cpu_online(tmp
->cpu
) ||
4952 cpu_to_group(tmp
->cpu
) == group
) {
4959 conf
->bypass_count
-= conf
->bypass_threshold
;
4960 if (conf
->bypass_count
< 0)
4961 conf
->bypass_count
= 0;
4973 list_del_init(&sh
->lru
);
4974 BUG_ON(atomic_inc_return(&sh
->count
) != 1);
4978 struct raid5_plug_cb
{
4979 struct blk_plug_cb cb
;
4980 struct list_head list
;
4981 struct list_head temp_inactive_list
[NR_STRIPE_HASH_LOCKS
];
4984 static void raid5_unplug(struct blk_plug_cb
*blk_cb
, bool from_schedule
)
4986 struct raid5_plug_cb
*cb
= container_of(
4987 blk_cb
, struct raid5_plug_cb
, cb
);
4988 struct stripe_head
*sh
;
4989 struct mddev
*mddev
= cb
->cb
.data
;
4990 struct r5conf
*conf
= mddev
->private;
4994 if (cb
->list
.next
&& !list_empty(&cb
->list
)) {
4995 spin_lock_irq(&conf
->device_lock
);
4996 while (!list_empty(&cb
->list
)) {
4997 sh
= list_first_entry(&cb
->list
, struct stripe_head
, lru
);
4998 list_del_init(&sh
->lru
);
5000 * avoid race release_stripe_plug() sees
5001 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5002 * is still in our list
5004 smp_mb__before_atomic();
5005 clear_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
);
5007 * STRIPE_ON_RELEASE_LIST could be set here. In that
5008 * case, the count is always > 1 here
5010 hash
= sh
->hash_lock_index
;
5011 __release_stripe(conf
, sh
, &cb
->temp_inactive_list
[hash
]);
5014 spin_unlock_irq(&conf
->device_lock
);
5016 release_inactive_stripe_list(conf
, cb
->temp_inactive_list
,
5017 NR_STRIPE_HASH_LOCKS
);
5019 trace_block_unplug(mddev
->queue
, cnt
, !from_schedule
);
5023 static void release_stripe_plug(struct mddev
*mddev
,
5024 struct stripe_head
*sh
)
5026 struct blk_plug_cb
*blk_cb
= blk_check_plugged(
5027 raid5_unplug
, mddev
,
5028 sizeof(struct raid5_plug_cb
));
5029 struct raid5_plug_cb
*cb
;
5032 raid5_release_stripe(sh
);
5036 cb
= container_of(blk_cb
, struct raid5_plug_cb
, cb
);
5038 if (cb
->list
.next
== NULL
) {
5040 INIT_LIST_HEAD(&cb
->list
);
5041 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5042 INIT_LIST_HEAD(cb
->temp_inactive_list
+ i
);
5045 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
))
5046 list_add_tail(&sh
->lru
, &cb
->list
);
5048 raid5_release_stripe(sh
);
5051 static void make_discard_request(struct mddev
*mddev
, struct bio
*bi
)
5053 struct r5conf
*conf
= mddev
->private;
5054 sector_t logical_sector
, last_sector
;
5055 struct stripe_head
*sh
;
5059 if (mddev
->reshape_position
!= MaxSector
)
5060 /* Skip discard while reshape is happening */
5063 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5064 last_sector
= bi
->bi_iter
.bi_sector
+ (bi
->bi_iter
.bi_size
>>9);
5067 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
5069 stripe_sectors
= conf
->chunk_sectors
*
5070 (conf
->raid_disks
- conf
->max_degraded
);
5071 logical_sector
= DIV_ROUND_UP_SECTOR_T(logical_sector
,
5073 sector_div(last_sector
, stripe_sectors
);
5075 logical_sector
*= conf
->chunk_sectors
;
5076 last_sector
*= conf
->chunk_sectors
;
5078 for (; logical_sector
< last_sector
;
5079 logical_sector
+= STRIPE_SECTORS
) {
5083 sh
= raid5_get_active_stripe(conf
, logical_sector
, 0, 0, 0);
5084 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5085 TASK_UNINTERRUPTIBLE
);
5086 set_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5087 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
5088 raid5_release_stripe(sh
);
5092 clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5093 spin_lock_irq(&sh
->stripe_lock
);
5094 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5095 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5097 if (sh
->dev
[d
].towrite
|| sh
->dev
[d
].toread
) {
5098 set_bit(R5_Overlap
, &sh
->dev
[d
].flags
);
5099 spin_unlock_irq(&sh
->stripe_lock
);
5100 raid5_release_stripe(sh
);
5105 set_bit(STRIPE_DISCARD
, &sh
->state
);
5106 finish_wait(&conf
->wait_for_overlap
, &w
);
5107 sh
->overwrite_disks
= 0;
5108 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5109 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5111 sh
->dev
[d
].towrite
= bi
;
5112 set_bit(R5_OVERWRITE
, &sh
->dev
[d
].flags
);
5113 raid5_inc_bi_active_stripes(bi
);
5114 sh
->overwrite_disks
++;
5116 spin_unlock_irq(&sh
->stripe_lock
);
5117 if (conf
->mddev
->bitmap
) {
5119 d
< conf
->raid_disks
- conf
->max_degraded
;
5121 bitmap_startwrite(mddev
->bitmap
,
5125 sh
->bm_seq
= conf
->seq_flush
+ 1;
5126 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
5129 set_bit(STRIPE_HANDLE
, &sh
->state
);
5130 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5131 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5132 atomic_inc(&conf
->preread_active_stripes
);
5133 release_stripe_plug(mddev
, sh
);
5136 remaining
= raid5_dec_bi_active_stripes(bi
);
5137 if (remaining
== 0) {
5138 md_write_end(mddev
);
5143 static void raid5_make_request(struct mddev
*mddev
, struct bio
* bi
)
5145 struct r5conf
*conf
= mddev
->private;
5147 sector_t new_sector
;
5148 sector_t logical_sector
, last_sector
;
5149 struct stripe_head
*sh
;
5150 const int rw
= bio_data_dir(bi
);
5155 if (unlikely(bi
->bi_rw
& REQ_FLUSH
)) {
5156 int ret
= r5l_handle_flush_request(conf
->log
, bi
);
5160 if (ret
== -ENODEV
) {
5161 md_flush_request(mddev
, bi
);
5164 /* ret == -EAGAIN, fallback */
5167 md_write_start(mddev
, bi
);
5170 * If array is degraded, better not do chunk aligned read because
5171 * later we might have to read it again in order to reconstruct
5172 * data on failed drives.
5174 if (rw
== READ
&& mddev
->degraded
== 0 &&
5175 mddev
->reshape_position
== MaxSector
) {
5176 bi
= chunk_aligned_read(mddev
, bi
);
5181 if (unlikely(bi
->bi_rw
& REQ_DISCARD
)) {
5182 make_discard_request(mddev
, bi
);
5186 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5187 last_sector
= bio_end_sector(bi
);
5189 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
5191 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
5192 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
5198 seq
= read_seqcount_begin(&conf
->gen_lock
);
5201 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5202 TASK_UNINTERRUPTIBLE
);
5203 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
5204 /* spinlock is needed as reshape_progress may be
5205 * 64bit on a 32bit platform, and so it might be
5206 * possible to see a half-updated value
5207 * Of course reshape_progress could change after
5208 * the lock is dropped, so once we get a reference
5209 * to the stripe that we think it is, we will have
5212 spin_lock_irq(&conf
->device_lock
);
5213 if (mddev
->reshape_backwards
5214 ? logical_sector
< conf
->reshape_progress
5215 : logical_sector
>= conf
->reshape_progress
) {
5218 if (mddev
->reshape_backwards
5219 ? logical_sector
< conf
->reshape_safe
5220 : logical_sector
>= conf
->reshape_safe
) {
5221 spin_unlock_irq(&conf
->device_lock
);
5227 spin_unlock_irq(&conf
->device_lock
);
5230 new_sector
= raid5_compute_sector(conf
, logical_sector
,
5233 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5234 (unsigned long long)new_sector
,
5235 (unsigned long long)logical_sector
);
5237 sh
= raid5_get_active_stripe(conf
, new_sector
, previous
,
5238 (bi
->bi_rw
&RWA_MASK
), 0);
5240 if (unlikely(previous
)) {
5241 /* expansion might have moved on while waiting for a
5242 * stripe, so we must do the range check again.
5243 * Expansion could still move past after this
5244 * test, but as we are holding a reference to
5245 * 'sh', we know that if that happens,
5246 * STRIPE_EXPANDING will get set and the expansion
5247 * won't proceed until we finish with the stripe.
5250 spin_lock_irq(&conf
->device_lock
);
5251 if (mddev
->reshape_backwards
5252 ? logical_sector
>= conf
->reshape_progress
5253 : logical_sector
< conf
->reshape_progress
)
5254 /* mismatch, need to try again */
5256 spin_unlock_irq(&conf
->device_lock
);
5258 raid5_release_stripe(sh
);
5264 if (read_seqcount_retry(&conf
->gen_lock
, seq
)) {
5265 /* Might have got the wrong stripe_head
5268 raid5_release_stripe(sh
);
5273 logical_sector
>= mddev
->suspend_lo
&&
5274 logical_sector
< mddev
->suspend_hi
) {
5275 raid5_release_stripe(sh
);
5276 /* As the suspend_* range is controlled by
5277 * userspace, we want an interruptible
5280 flush_signals(current
);
5281 prepare_to_wait(&conf
->wait_for_overlap
,
5282 &w
, TASK_INTERRUPTIBLE
);
5283 if (logical_sector
>= mddev
->suspend_lo
&&
5284 logical_sector
< mddev
->suspend_hi
) {
5291 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
5292 !add_stripe_bio(sh
, bi
, dd_idx
, rw
, previous
)) {
5293 /* Stripe is busy expanding or
5294 * add failed due to overlap. Flush everything
5297 md_wakeup_thread(mddev
->thread
);
5298 raid5_release_stripe(sh
);
5303 set_bit(STRIPE_HANDLE
, &sh
->state
);
5304 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5305 if ((!sh
->batch_head
|| sh
== sh
->batch_head
) &&
5306 (bi
->bi_rw
& REQ_SYNC
) &&
5307 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5308 atomic_inc(&conf
->preread_active_stripes
);
5309 release_stripe_plug(mddev
, sh
);
5311 /* cannot get stripe for read-ahead, just give-up */
5312 bi
->bi_error
= -EIO
;
5316 finish_wait(&conf
->wait_for_overlap
, &w
);
5318 remaining
= raid5_dec_bi_active_stripes(bi
);
5319 if (remaining
== 0) {
5322 md_write_end(mddev
);
5324 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
5330 static sector_t
raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
);
5332 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
5334 /* reshaping is quite different to recovery/resync so it is
5335 * handled quite separately ... here.
5337 * On each call to sync_request, we gather one chunk worth of
5338 * destination stripes and flag them as expanding.
5339 * Then we find all the source stripes and request reads.
5340 * As the reads complete, handle_stripe will copy the data
5341 * into the destination stripe and release that stripe.
5343 struct r5conf
*conf
= mddev
->private;
5344 struct stripe_head
*sh
;
5345 sector_t first_sector
, last_sector
;
5346 int raid_disks
= conf
->previous_raid_disks
;
5347 int data_disks
= raid_disks
- conf
->max_degraded
;
5348 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5351 sector_t writepos
, readpos
, safepos
;
5352 sector_t stripe_addr
;
5353 int reshape_sectors
;
5354 struct list_head stripes
;
5357 if (sector_nr
== 0) {
5358 /* If restarting in the middle, skip the initial sectors */
5359 if (mddev
->reshape_backwards
&&
5360 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
5361 sector_nr
= raid5_size(mddev
, 0, 0)
5362 - conf
->reshape_progress
;
5363 } else if (mddev
->reshape_backwards
&&
5364 conf
->reshape_progress
== MaxSector
) {
5365 /* shouldn't happen, but just in case, finish up.*/
5366 sector_nr
= MaxSector
;
5367 } else if (!mddev
->reshape_backwards
&&
5368 conf
->reshape_progress
> 0)
5369 sector_nr
= conf
->reshape_progress
;
5370 sector_div(sector_nr
, new_data_disks
);
5372 mddev
->curr_resync_completed
= sector_nr
;
5373 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5380 /* We need to process a full chunk at a time.
5381 * If old and new chunk sizes differ, we need to process the
5385 reshape_sectors
= max(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
5387 /* We update the metadata at least every 10 seconds, or when
5388 * the data about to be copied would over-write the source of
5389 * the data at the front of the range. i.e. one new_stripe
5390 * along from reshape_progress new_maps to after where
5391 * reshape_safe old_maps to
5393 writepos
= conf
->reshape_progress
;
5394 sector_div(writepos
, new_data_disks
);
5395 readpos
= conf
->reshape_progress
;
5396 sector_div(readpos
, data_disks
);
5397 safepos
= conf
->reshape_safe
;
5398 sector_div(safepos
, data_disks
);
5399 if (mddev
->reshape_backwards
) {
5400 BUG_ON(writepos
< reshape_sectors
);
5401 writepos
-= reshape_sectors
;
5402 readpos
+= reshape_sectors
;
5403 safepos
+= reshape_sectors
;
5405 writepos
+= reshape_sectors
;
5406 /* readpos and safepos are worst-case calculations.
5407 * A negative number is overly pessimistic, and causes
5408 * obvious problems for unsigned storage. So clip to 0.
5410 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
5411 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
5414 /* Having calculated the 'writepos' possibly use it
5415 * to set 'stripe_addr' which is where we will write to.
5417 if (mddev
->reshape_backwards
) {
5418 BUG_ON(conf
->reshape_progress
== 0);
5419 stripe_addr
= writepos
;
5420 BUG_ON((mddev
->dev_sectors
&
5421 ~((sector_t
)reshape_sectors
- 1))
5422 - reshape_sectors
- stripe_addr
5425 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
5426 stripe_addr
= sector_nr
;
5429 /* 'writepos' is the most advanced device address we might write.
5430 * 'readpos' is the least advanced device address we might read.
5431 * 'safepos' is the least address recorded in the metadata as having
5433 * If there is a min_offset_diff, these are adjusted either by
5434 * increasing the safepos/readpos if diff is negative, or
5435 * increasing writepos if diff is positive.
5436 * If 'readpos' is then behind 'writepos', there is no way that we can
5437 * ensure safety in the face of a crash - that must be done by userspace
5438 * making a backup of the data. So in that case there is no particular
5439 * rush to update metadata.
5440 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5441 * update the metadata to advance 'safepos' to match 'readpos' so that
5442 * we can be safe in the event of a crash.
5443 * So we insist on updating metadata if safepos is behind writepos and
5444 * readpos is beyond writepos.
5445 * In any case, update the metadata every 10 seconds.
5446 * Maybe that number should be configurable, but I'm not sure it is
5447 * worth it.... maybe it could be a multiple of safemode_delay???
5449 if (conf
->min_offset_diff
< 0) {
5450 safepos
+= -conf
->min_offset_diff
;
5451 readpos
+= -conf
->min_offset_diff
;
5453 writepos
+= conf
->min_offset_diff
;
5455 if ((mddev
->reshape_backwards
5456 ? (safepos
> writepos
&& readpos
< writepos
)
5457 : (safepos
< writepos
&& readpos
> writepos
)) ||
5458 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
5459 /* Cannot proceed until we've updated the superblock... */
5460 wait_event(conf
->wait_for_overlap
,
5461 atomic_read(&conf
->reshape_stripes
)==0
5462 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5463 if (atomic_read(&conf
->reshape_stripes
) != 0)
5465 mddev
->reshape_position
= conf
->reshape_progress
;
5466 mddev
->curr_resync_completed
= sector_nr
;
5467 conf
->reshape_checkpoint
= jiffies
;
5468 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5469 md_wakeup_thread(mddev
->thread
);
5470 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
5471 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5472 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5474 spin_lock_irq(&conf
->device_lock
);
5475 conf
->reshape_safe
= mddev
->reshape_position
;
5476 spin_unlock_irq(&conf
->device_lock
);
5477 wake_up(&conf
->wait_for_overlap
);
5478 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5481 INIT_LIST_HEAD(&stripes
);
5482 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
5484 int skipped_disk
= 0;
5485 sh
= raid5_get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
5486 set_bit(STRIPE_EXPANDING
, &sh
->state
);
5487 atomic_inc(&conf
->reshape_stripes
);
5488 /* If any of this stripe is beyond the end of the old
5489 * array, then we need to zero those blocks
5491 for (j
=sh
->disks
; j
--;) {
5493 if (j
== sh
->pd_idx
)
5495 if (conf
->level
== 6 &&
5498 s
= raid5_compute_blocknr(sh
, j
, 0);
5499 if (s
< raid5_size(mddev
, 0, 0)) {
5503 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
5504 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
5505 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
5507 if (!skipped_disk
) {
5508 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
5509 set_bit(STRIPE_HANDLE
, &sh
->state
);
5511 list_add(&sh
->lru
, &stripes
);
5513 spin_lock_irq(&conf
->device_lock
);
5514 if (mddev
->reshape_backwards
)
5515 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
5517 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
5518 spin_unlock_irq(&conf
->device_lock
);
5519 /* Ok, those stripe are ready. We can start scheduling
5520 * reads on the source stripes.
5521 * The source stripes are determined by mapping the first and last
5522 * block on the destination stripes.
5525 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
5528 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
5529 * new_data_disks
- 1),
5531 if (last_sector
>= mddev
->dev_sectors
)
5532 last_sector
= mddev
->dev_sectors
- 1;
5533 while (first_sector
<= last_sector
) {
5534 sh
= raid5_get_active_stripe(conf
, first_sector
, 1, 0, 1);
5535 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
5536 set_bit(STRIPE_HANDLE
, &sh
->state
);
5537 raid5_release_stripe(sh
);
5538 first_sector
+= STRIPE_SECTORS
;
5540 /* Now that the sources are clearly marked, we can release
5541 * the destination stripes
5543 while (!list_empty(&stripes
)) {
5544 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
5545 list_del_init(&sh
->lru
);
5546 raid5_release_stripe(sh
);
5548 /* If this takes us to the resync_max point where we have to pause,
5549 * then we need to write out the superblock.
5551 sector_nr
+= reshape_sectors
;
5552 retn
= reshape_sectors
;
5554 if (mddev
->curr_resync_completed
> mddev
->resync_max
||
5555 (sector_nr
- mddev
->curr_resync_completed
) * 2
5556 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
5557 /* Cannot proceed until we've updated the superblock... */
5558 wait_event(conf
->wait_for_overlap
,
5559 atomic_read(&conf
->reshape_stripes
) == 0
5560 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5561 if (atomic_read(&conf
->reshape_stripes
) != 0)
5563 mddev
->reshape_position
= conf
->reshape_progress
;
5564 mddev
->curr_resync_completed
= sector_nr
;
5565 conf
->reshape_checkpoint
= jiffies
;
5566 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5567 md_wakeup_thread(mddev
->thread
);
5568 wait_event(mddev
->sb_wait
,
5569 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
5570 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5571 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5573 spin_lock_irq(&conf
->device_lock
);
5574 conf
->reshape_safe
= mddev
->reshape_position
;
5575 spin_unlock_irq(&conf
->device_lock
);
5576 wake_up(&conf
->wait_for_overlap
);
5577 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5583 static inline sector_t
raid5_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
5586 struct r5conf
*conf
= mddev
->private;
5587 struct stripe_head
*sh
;
5588 sector_t max_sector
= mddev
->dev_sectors
;
5589 sector_t sync_blocks
;
5590 int still_degraded
= 0;
5593 if (sector_nr
>= max_sector
) {
5594 /* just being told to finish up .. nothing much to do */
5596 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
5601 if (mddev
->curr_resync
< max_sector
) /* aborted */
5602 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
5604 else /* completed sync */
5606 bitmap_close_sync(mddev
->bitmap
);
5611 /* Allow raid5_quiesce to complete */
5612 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
5614 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
5615 return reshape_request(mddev
, sector_nr
, skipped
);
5617 /* No need to check resync_max as we never do more than one
5618 * stripe, and as resync_max will always be on a chunk boundary,
5619 * if the check in md_do_sync didn't fire, there is no chance
5620 * of overstepping resync_max here
5623 /* if there is too many failed drives and we are trying
5624 * to resync, then assert that we are finished, because there is
5625 * nothing we can do.
5627 if (mddev
->degraded
>= conf
->max_degraded
&&
5628 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
5629 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
5633 if (!test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
5635 !bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
5636 sync_blocks
>= STRIPE_SECTORS
) {
5637 /* we can skip this block, and probably more */
5638 sync_blocks
/= STRIPE_SECTORS
;
5640 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
5643 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
, false);
5645 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 1, 0);
5647 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 0, 0);
5648 /* make sure we don't swamp the stripe cache if someone else
5649 * is trying to get access
5651 schedule_timeout_uninterruptible(1);
5653 /* Need to check if array will still be degraded after recovery/resync
5654 * Note in case of > 1 drive failures it's possible we're rebuilding
5655 * one drive while leaving another faulty drive in array.
5658 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5659 struct md_rdev
*rdev
= ACCESS_ONCE(conf
->disks
[i
].rdev
);
5661 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
))
5666 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
5668 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
5669 set_bit(STRIPE_HANDLE
, &sh
->state
);
5671 raid5_release_stripe(sh
);
5673 return STRIPE_SECTORS
;
5676 static int retry_aligned_read(struct r5conf
*conf
, struct bio
*raid_bio
)
5678 /* We may not be able to submit a whole bio at once as there
5679 * may not be enough stripe_heads available.
5680 * We cannot pre-allocate enough stripe_heads as we may need
5681 * more than exist in the cache (if we allow ever large chunks).
5682 * So we do one stripe head at a time and record in
5683 * ->bi_hw_segments how many have been done.
5685 * We *know* that this entire raid_bio is in one chunk, so
5686 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5688 struct stripe_head
*sh
;
5690 sector_t sector
, logical_sector
, last_sector
;
5695 logical_sector
= raid_bio
->bi_iter
.bi_sector
&
5696 ~((sector_t
)STRIPE_SECTORS
-1);
5697 sector
= raid5_compute_sector(conf
, logical_sector
,
5699 last_sector
= bio_end_sector(raid_bio
);
5701 for (; logical_sector
< last_sector
;
5702 logical_sector
+= STRIPE_SECTORS
,
5703 sector
+= STRIPE_SECTORS
,
5706 if (scnt
< raid5_bi_processed_stripes(raid_bio
))
5707 /* already done this stripe */
5710 sh
= raid5_get_active_stripe(conf
, sector
, 0, 1, 1);
5713 /* failed to get a stripe - must wait */
5714 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
5715 conf
->retry_read_aligned
= raid_bio
;
5719 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0, 0)) {
5720 raid5_release_stripe(sh
);
5721 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
5722 conf
->retry_read_aligned
= raid_bio
;
5726 set_bit(R5_ReadNoMerge
, &sh
->dev
[dd_idx
].flags
);
5728 raid5_release_stripe(sh
);
5731 remaining
= raid5_dec_bi_active_stripes(raid_bio
);
5732 if (remaining
== 0) {
5733 trace_block_bio_complete(bdev_get_queue(raid_bio
->bi_bdev
),
5735 bio_endio(raid_bio
);
5737 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
5738 wake_up(&conf
->wait_for_quiescent
);
5742 static int handle_active_stripes(struct r5conf
*conf
, int group
,
5743 struct r5worker
*worker
,
5744 struct list_head
*temp_inactive_list
)
5746 struct stripe_head
*batch
[MAX_STRIPE_BATCH
], *sh
;
5747 int i
, batch_size
= 0, hash
;
5748 bool release_inactive
= false;
5750 while (batch_size
< MAX_STRIPE_BATCH
&&
5751 (sh
= __get_priority_stripe(conf
, group
)) != NULL
)
5752 batch
[batch_size
++] = sh
;
5754 if (batch_size
== 0) {
5755 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5756 if (!list_empty(temp_inactive_list
+ i
))
5758 if (i
== NR_STRIPE_HASH_LOCKS
) {
5759 spin_unlock_irq(&conf
->device_lock
);
5760 r5l_flush_stripe_to_raid(conf
->log
);
5761 spin_lock_irq(&conf
->device_lock
);
5764 release_inactive
= true;
5766 spin_unlock_irq(&conf
->device_lock
);
5768 release_inactive_stripe_list(conf
, temp_inactive_list
,
5769 NR_STRIPE_HASH_LOCKS
);
5771 r5l_flush_stripe_to_raid(conf
->log
);
5772 if (release_inactive
) {
5773 spin_lock_irq(&conf
->device_lock
);
5777 for (i
= 0; i
< batch_size
; i
++)
5778 handle_stripe(batch
[i
]);
5779 r5l_write_stripe_run(conf
->log
);
5783 spin_lock_irq(&conf
->device_lock
);
5784 for (i
= 0; i
< batch_size
; i
++) {
5785 hash
= batch
[i
]->hash_lock_index
;
5786 __release_stripe(conf
, batch
[i
], &temp_inactive_list
[hash
]);
5791 static void raid5_do_work(struct work_struct
*work
)
5793 struct r5worker
*worker
= container_of(work
, struct r5worker
, work
);
5794 struct r5worker_group
*group
= worker
->group
;
5795 struct r5conf
*conf
= group
->conf
;
5796 int group_id
= group
- conf
->worker_groups
;
5798 struct blk_plug plug
;
5800 pr_debug("+++ raid5worker active\n");
5802 blk_start_plug(&plug
);
5804 spin_lock_irq(&conf
->device_lock
);
5806 int batch_size
, released
;
5808 released
= release_stripe_list(conf
, worker
->temp_inactive_list
);
5810 batch_size
= handle_active_stripes(conf
, group_id
, worker
,
5811 worker
->temp_inactive_list
);
5812 worker
->working
= false;
5813 if (!batch_size
&& !released
)
5815 handled
+= batch_size
;
5817 pr_debug("%d stripes handled\n", handled
);
5819 spin_unlock_irq(&conf
->device_lock
);
5820 blk_finish_plug(&plug
);
5822 pr_debug("--- raid5worker inactive\n");
5826 * This is our raid5 kernel thread.
5828 * We scan the hash table for stripes which can be handled now.
5829 * During the scan, completed stripes are saved for us by the interrupt
5830 * handler, so that they will not have to wait for our next wakeup.
5832 static void raid5d(struct md_thread
*thread
)
5834 struct mddev
*mddev
= thread
->mddev
;
5835 struct r5conf
*conf
= mddev
->private;
5837 struct blk_plug plug
;
5839 pr_debug("+++ raid5d active\n");
5841 md_check_recovery(mddev
);
5843 if (!bio_list_empty(&conf
->return_bi
) &&
5844 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
5845 struct bio_list tmp
= BIO_EMPTY_LIST
;
5846 spin_lock_irq(&conf
->device_lock
);
5847 if (!test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
5848 bio_list_merge(&tmp
, &conf
->return_bi
);
5849 bio_list_init(&conf
->return_bi
);
5851 spin_unlock_irq(&conf
->device_lock
);
5855 blk_start_plug(&plug
);
5857 spin_lock_irq(&conf
->device_lock
);
5860 int batch_size
, released
;
5862 released
= release_stripe_list(conf
, conf
->temp_inactive_list
);
5864 clear_bit(R5_DID_ALLOC
, &conf
->cache_state
);
5867 !list_empty(&conf
->bitmap_list
)) {
5868 /* Now is a good time to flush some bitmap updates */
5870 spin_unlock_irq(&conf
->device_lock
);
5871 bitmap_unplug(mddev
->bitmap
);
5872 spin_lock_irq(&conf
->device_lock
);
5873 conf
->seq_write
= conf
->seq_flush
;
5874 activate_bit_delay(conf
, conf
->temp_inactive_list
);
5876 raid5_activate_delayed(conf
);
5878 while ((bio
= remove_bio_from_retry(conf
))) {
5880 spin_unlock_irq(&conf
->device_lock
);
5881 ok
= retry_aligned_read(conf
, bio
);
5882 spin_lock_irq(&conf
->device_lock
);
5888 batch_size
= handle_active_stripes(conf
, ANY_GROUP
, NULL
,
5889 conf
->temp_inactive_list
);
5890 if (!batch_size
&& !released
)
5892 handled
+= batch_size
;
5894 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
)) {
5895 spin_unlock_irq(&conf
->device_lock
);
5896 md_check_recovery(mddev
);
5897 spin_lock_irq(&conf
->device_lock
);
5900 pr_debug("%d stripes handled\n", handled
);
5902 spin_unlock_irq(&conf
->device_lock
);
5903 if (test_and_clear_bit(R5_ALLOC_MORE
, &conf
->cache_state
) &&
5904 mutex_trylock(&conf
->cache_size_mutex
)) {
5905 grow_one_stripe(conf
, __GFP_NOWARN
);
5906 /* Set flag even if allocation failed. This helps
5907 * slow down allocation requests when mem is short
5909 set_bit(R5_DID_ALLOC
, &conf
->cache_state
);
5910 mutex_unlock(&conf
->cache_size_mutex
);
5913 r5l_flush_stripe_to_raid(conf
->log
);
5915 async_tx_issue_pending_all();
5916 blk_finish_plug(&plug
);
5918 pr_debug("--- raid5d inactive\n");
5922 raid5_show_stripe_cache_size(struct mddev
*mddev
, char *page
)
5924 struct r5conf
*conf
;
5926 spin_lock(&mddev
->lock
);
5927 conf
= mddev
->private;
5929 ret
= sprintf(page
, "%d\n", conf
->min_nr_stripes
);
5930 spin_unlock(&mddev
->lock
);
5935 raid5_set_cache_size(struct mddev
*mddev
, int size
)
5937 struct r5conf
*conf
= mddev
->private;
5940 if (size
<= 16 || size
> 32768)
5943 conf
->min_nr_stripes
= size
;
5944 mutex_lock(&conf
->cache_size_mutex
);
5945 while (size
< conf
->max_nr_stripes
&&
5946 drop_one_stripe(conf
))
5948 mutex_unlock(&conf
->cache_size_mutex
);
5951 err
= md_allow_write(mddev
);
5955 mutex_lock(&conf
->cache_size_mutex
);
5956 while (size
> conf
->max_nr_stripes
)
5957 if (!grow_one_stripe(conf
, GFP_KERNEL
))
5959 mutex_unlock(&conf
->cache_size_mutex
);
5963 EXPORT_SYMBOL(raid5_set_cache_size
);
5966 raid5_store_stripe_cache_size(struct mddev
*mddev
, const char *page
, size_t len
)
5968 struct r5conf
*conf
;
5972 if (len
>= PAGE_SIZE
)
5974 if (kstrtoul(page
, 10, &new))
5976 err
= mddev_lock(mddev
);
5979 conf
= mddev
->private;
5983 err
= raid5_set_cache_size(mddev
, new);
5984 mddev_unlock(mddev
);
5989 static struct md_sysfs_entry
5990 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
5991 raid5_show_stripe_cache_size
,
5992 raid5_store_stripe_cache_size
);
5995 raid5_show_rmw_level(struct mddev
*mddev
, char *page
)
5997 struct r5conf
*conf
= mddev
->private;
5999 return sprintf(page
, "%d\n", conf
->rmw_level
);
6005 raid5_store_rmw_level(struct mddev
*mddev
, const char *page
, size_t len
)
6007 struct r5conf
*conf
= mddev
->private;
6013 if (len
>= PAGE_SIZE
)
6016 if (kstrtoul(page
, 10, &new))
6019 if (new != PARITY_DISABLE_RMW
&& !raid6_call
.xor_syndrome
)
6022 if (new != PARITY_DISABLE_RMW
&&
6023 new != PARITY_ENABLE_RMW
&&
6024 new != PARITY_PREFER_RMW
)
6027 conf
->rmw_level
= new;
6031 static struct md_sysfs_entry
6032 raid5_rmw_level
= __ATTR(rmw_level
, S_IRUGO
| S_IWUSR
,
6033 raid5_show_rmw_level
,
6034 raid5_store_rmw_level
);
6038 raid5_show_preread_threshold(struct mddev
*mddev
, char *page
)
6040 struct r5conf
*conf
;
6042 spin_lock(&mddev
->lock
);
6043 conf
= mddev
->private;
6045 ret
= sprintf(page
, "%d\n", conf
->bypass_threshold
);
6046 spin_unlock(&mddev
->lock
);
6051 raid5_store_preread_threshold(struct mddev
*mddev
, const char *page
, size_t len
)
6053 struct r5conf
*conf
;
6057 if (len
>= PAGE_SIZE
)
6059 if (kstrtoul(page
, 10, &new))
6062 err
= mddev_lock(mddev
);
6065 conf
= mddev
->private;
6068 else if (new > conf
->min_nr_stripes
)
6071 conf
->bypass_threshold
= new;
6072 mddev_unlock(mddev
);
6076 static struct md_sysfs_entry
6077 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
6079 raid5_show_preread_threshold
,
6080 raid5_store_preread_threshold
);
6083 raid5_show_skip_copy(struct mddev
*mddev
, char *page
)
6085 struct r5conf
*conf
;
6087 spin_lock(&mddev
->lock
);
6088 conf
= mddev
->private;
6090 ret
= sprintf(page
, "%d\n", conf
->skip_copy
);
6091 spin_unlock(&mddev
->lock
);
6096 raid5_store_skip_copy(struct mddev
*mddev
, const char *page
, size_t len
)
6098 struct r5conf
*conf
;
6102 if (len
>= PAGE_SIZE
)
6104 if (kstrtoul(page
, 10, &new))
6108 err
= mddev_lock(mddev
);
6111 conf
= mddev
->private;
6114 else if (new != conf
->skip_copy
) {
6115 mddev_suspend(mddev
);
6116 conf
->skip_copy
= new;
6118 mddev
->queue
->backing_dev_info
.capabilities
|=
6119 BDI_CAP_STABLE_WRITES
;
6121 mddev
->queue
->backing_dev_info
.capabilities
&=
6122 ~BDI_CAP_STABLE_WRITES
;
6123 mddev_resume(mddev
);
6125 mddev_unlock(mddev
);
6129 static struct md_sysfs_entry
6130 raid5_skip_copy
= __ATTR(skip_copy
, S_IRUGO
| S_IWUSR
,
6131 raid5_show_skip_copy
,
6132 raid5_store_skip_copy
);
6135 stripe_cache_active_show(struct mddev
*mddev
, char *page
)
6137 struct r5conf
*conf
= mddev
->private;
6139 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
6144 static struct md_sysfs_entry
6145 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
6148 raid5_show_group_thread_cnt(struct mddev
*mddev
, char *page
)
6150 struct r5conf
*conf
;
6152 spin_lock(&mddev
->lock
);
6153 conf
= mddev
->private;
6155 ret
= sprintf(page
, "%d\n", conf
->worker_cnt_per_group
);
6156 spin_unlock(&mddev
->lock
);
6160 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6162 int *worker_cnt_per_group
,
6163 struct r5worker_group
**worker_groups
);
6165 raid5_store_group_thread_cnt(struct mddev
*mddev
, const char *page
, size_t len
)
6167 struct r5conf
*conf
;
6170 struct r5worker_group
*new_groups
, *old_groups
;
6171 int group_cnt
, worker_cnt_per_group
;
6173 if (len
>= PAGE_SIZE
)
6175 if (kstrtoul(page
, 10, &new))
6178 err
= mddev_lock(mddev
);
6181 conf
= mddev
->private;
6184 else if (new != conf
->worker_cnt_per_group
) {
6185 mddev_suspend(mddev
);
6187 old_groups
= conf
->worker_groups
;
6189 flush_workqueue(raid5_wq
);
6191 err
= alloc_thread_groups(conf
, new,
6192 &group_cnt
, &worker_cnt_per_group
,
6195 spin_lock_irq(&conf
->device_lock
);
6196 conf
->group_cnt
= group_cnt
;
6197 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6198 conf
->worker_groups
= new_groups
;
6199 spin_unlock_irq(&conf
->device_lock
);
6202 kfree(old_groups
[0].workers
);
6205 mddev_resume(mddev
);
6207 mddev_unlock(mddev
);
6212 static struct md_sysfs_entry
6213 raid5_group_thread_cnt
= __ATTR(group_thread_cnt
, S_IRUGO
| S_IWUSR
,
6214 raid5_show_group_thread_cnt
,
6215 raid5_store_group_thread_cnt
);
6217 static struct attribute
*raid5_attrs
[] = {
6218 &raid5_stripecache_size
.attr
,
6219 &raid5_stripecache_active
.attr
,
6220 &raid5_preread_bypass_threshold
.attr
,
6221 &raid5_group_thread_cnt
.attr
,
6222 &raid5_skip_copy
.attr
,
6223 &raid5_rmw_level
.attr
,
6226 static struct attribute_group raid5_attrs_group
= {
6228 .attrs
= raid5_attrs
,
6231 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6233 int *worker_cnt_per_group
,
6234 struct r5worker_group
**worker_groups
)
6238 struct r5worker
*workers
;
6240 *worker_cnt_per_group
= cnt
;
6243 *worker_groups
= NULL
;
6246 *group_cnt
= num_possible_nodes();
6247 size
= sizeof(struct r5worker
) * cnt
;
6248 workers
= kzalloc(size
* *group_cnt
, GFP_NOIO
);
6249 *worker_groups
= kzalloc(sizeof(struct r5worker_group
) *
6250 *group_cnt
, GFP_NOIO
);
6251 if (!*worker_groups
|| !workers
) {
6253 kfree(*worker_groups
);
6257 for (i
= 0; i
< *group_cnt
; i
++) {
6258 struct r5worker_group
*group
;
6260 group
= &(*worker_groups
)[i
];
6261 INIT_LIST_HEAD(&group
->handle_list
);
6263 group
->workers
= workers
+ i
* cnt
;
6265 for (j
= 0; j
< cnt
; j
++) {
6266 struct r5worker
*worker
= group
->workers
+ j
;
6267 worker
->group
= group
;
6268 INIT_WORK(&worker
->work
, raid5_do_work
);
6270 for (k
= 0; k
< NR_STRIPE_HASH_LOCKS
; k
++)
6271 INIT_LIST_HEAD(worker
->temp_inactive_list
+ k
);
6278 static void free_thread_groups(struct r5conf
*conf
)
6280 if (conf
->worker_groups
)
6281 kfree(conf
->worker_groups
[0].workers
);
6282 kfree(conf
->worker_groups
);
6283 conf
->worker_groups
= NULL
;
6287 raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
6289 struct r5conf
*conf
= mddev
->private;
6292 sectors
= mddev
->dev_sectors
;
6294 /* size is defined by the smallest of previous and new size */
6295 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
6297 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
6298 sectors
&= ~((sector_t
)conf
->prev_chunk_sectors
- 1);
6299 return sectors
* (raid_disks
- conf
->max_degraded
);
6302 static void free_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6304 safe_put_page(percpu
->spare_page
);
6305 if (percpu
->scribble
)
6306 flex_array_free(percpu
->scribble
);
6307 percpu
->spare_page
= NULL
;
6308 percpu
->scribble
= NULL
;
6311 static int alloc_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6313 if (conf
->level
== 6 && !percpu
->spare_page
)
6314 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
6315 if (!percpu
->scribble
)
6316 percpu
->scribble
= scribble_alloc(max(conf
->raid_disks
,
6317 conf
->previous_raid_disks
),
6318 max(conf
->chunk_sectors
,
6319 conf
->prev_chunk_sectors
)
6323 if (!percpu
->scribble
|| (conf
->level
== 6 && !percpu
->spare_page
)) {
6324 free_scratch_buffer(conf
, percpu
);
6331 static void raid5_free_percpu(struct r5conf
*conf
)
6338 #ifdef CONFIG_HOTPLUG_CPU
6339 unregister_cpu_notifier(&conf
->cpu_notify
);
6343 for_each_possible_cpu(cpu
)
6344 free_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6347 free_percpu(conf
->percpu
);
6350 static void free_conf(struct r5conf
*conf
)
6353 r5l_exit_log(conf
->log
);
6354 if (conf
->shrinker
.seeks
)
6355 unregister_shrinker(&conf
->shrinker
);
6357 free_thread_groups(conf
);
6358 shrink_stripes(conf
);
6359 raid5_free_percpu(conf
);
6361 kfree(conf
->stripe_hashtbl
);
6365 #ifdef CONFIG_HOTPLUG_CPU
6366 static int raid456_cpu_notify(struct notifier_block
*nfb
, unsigned long action
,
6369 struct r5conf
*conf
= container_of(nfb
, struct r5conf
, cpu_notify
);
6370 long cpu
= (long)hcpu
;
6371 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
6374 case CPU_UP_PREPARE
:
6375 case CPU_UP_PREPARE_FROZEN
:
6376 if (alloc_scratch_buffer(conf
, percpu
)) {
6377 pr_err("%s: failed memory allocation for cpu%ld\n",
6379 return notifier_from_errno(-ENOMEM
);
6383 case CPU_DEAD_FROZEN
:
6384 case CPU_UP_CANCELED
:
6385 case CPU_UP_CANCELED_FROZEN
:
6386 free_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6395 static int raid5_alloc_percpu(struct r5conf
*conf
)
6400 conf
->percpu
= alloc_percpu(struct raid5_percpu
);
6404 #ifdef CONFIG_HOTPLUG_CPU
6405 conf
->cpu_notify
.notifier_call
= raid456_cpu_notify
;
6406 conf
->cpu_notify
.priority
= 0;
6407 err
= register_cpu_notifier(&conf
->cpu_notify
);
6413 for_each_present_cpu(cpu
) {
6414 err
= alloc_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6416 pr_err("%s: failed memory allocation for cpu%ld\n",
6424 conf
->scribble_disks
= max(conf
->raid_disks
,
6425 conf
->previous_raid_disks
);
6426 conf
->scribble_sectors
= max(conf
->chunk_sectors
,
6427 conf
->prev_chunk_sectors
);
6432 static unsigned long raid5_cache_scan(struct shrinker
*shrink
,
6433 struct shrink_control
*sc
)
6435 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6436 unsigned long ret
= SHRINK_STOP
;
6438 if (mutex_trylock(&conf
->cache_size_mutex
)) {
6440 while (ret
< sc
->nr_to_scan
&&
6441 conf
->max_nr_stripes
> conf
->min_nr_stripes
) {
6442 if (drop_one_stripe(conf
) == 0) {
6448 mutex_unlock(&conf
->cache_size_mutex
);
6453 static unsigned long raid5_cache_count(struct shrinker
*shrink
,
6454 struct shrink_control
*sc
)
6456 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6458 if (conf
->max_nr_stripes
< conf
->min_nr_stripes
)
6459 /* unlikely, but not impossible */
6461 return conf
->max_nr_stripes
- conf
->min_nr_stripes
;
6464 static struct r5conf
*setup_conf(struct mddev
*mddev
)
6466 struct r5conf
*conf
;
6467 int raid_disk
, memory
, max_disks
;
6468 struct md_rdev
*rdev
;
6469 struct disk_info
*disk
;
6472 int group_cnt
, worker_cnt_per_group
;
6473 struct r5worker_group
*new_group
;
6475 if (mddev
->new_level
!= 5
6476 && mddev
->new_level
!= 4
6477 && mddev
->new_level
!= 6) {
6478 printk(KERN_ERR
"md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6479 mdname(mddev
), mddev
->new_level
);
6480 return ERR_PTR(-EIO
);
6482 if ((mddev
->new_level
== 5
6483 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
6484 (mddev
->new_level
== 6
6485 && !algorithm_valid_raid6(mddev
->new_layout
))) {
6486 printk(KERN_ERR
"md/raid:%s: layout %d not supported\n",
6487 mdname(mddev
), mddev
->new_layout
);
6488 return ERR_PTR(-EIO
);
6490 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
6491 printk(KERN_ERR
"md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6492 mdname(mddev
), mddev
->raid_disks
);
6493 return ERR_PTR(-EINVAL
);
6496 if (!mddev
->new_chunk_sectors
||
6497 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
6498 !is_power_of_2(mddev
->new_chunk_sectors
)) {
6499 printk(KERN_ERR
"md/raid:%s: invalid chunk size %d\n",
6500 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
6501 return ERR_PTR(-EINVAL
);
6504 conf
= kzalloc(sizeof(struct r5conf
), GFP_KERNEL
);
6507 /* Don't enable multi-threading by default*/
6508 if (!alloc_thread_groups(conf
, 0, &group_cnt
, &worker_cnt_per_group
,
6510 conf
->group_cnt
= group_cnt
;
6511 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6512 conf
->worker_groups
= new_group
;
6515 spin_lock_init(&conf
->device_lock
);
6516 seqcount_init(&conf
->gen_lock
);
6517 mutex_init(&conf
->cache_size_mutex
);
6518 init_waitqueue_head(&conf
->wait_for_quiescent
);
6519 init_waitqueue_head(&conf
->wait_for_stripe
);
6520 init_waitqueue_head(&conf
->wait_for_overlap
);
6521 INIT_LIST_HEAD(&conf
->handle_list
);
6522 INIT_LIST_HEAD(&conf
->hold_list
);
6523 INIT_LIST_HEAD(&conf
->delayed_list
);
6524 INIT_LIST_HEAD(&conf
->bitmap_list
);
6525 bio_list_init(&conf
->return_bi
);
6526 init_llist_head(&conf
->released_stripes
);
6527 atomic_set(&conf
->active_stripes
, 0);
6528 atomic_set(&conf
->preread_active_stripes
, 0);
6529 atomic_set(&conf
->active_aligned_reads
, 0);
6530 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
6531 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
6533 conf
->raid_disks
= mddev
->raid_disks
;
6534 if (mddev
->reshape_position
== MaxSector
)
6535 conf
->previous_raid_disks
= mddev
->raid_disks
;
6537 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
6538 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
6540 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
6545 conf
->mddev
= mddev
;
6547 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
6550 /* We init hash_locks[0] separately to that it can be used
6551 * as the reference lock in the spin_lock_nest_lock() call
6552 * in lock_all_device_hash_locks_irq in order to convince
6553 * lockdep that we know what we are doing.
6555 spin_lock_init(conf
->hash_locks
);
6556 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6557 spin_lock_init(conf
->hash_locks
+ i
);
6559 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6560 INIT_LIST_HEAD(conf
->inactive_list
+ i
);
6562 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6563 INIT_LIST_HEAD(conf
->temp_inactive_list
+ i
);
6565 conf
->level
= mddev
->new_level
;
6566 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
6567 if (raid5_alloc_percpu(conf
) != 0)
6570 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
6572 rdev_for_each(rdev
, mddev
) {
6573 raid_disk
= rdev
->raid_disk
;
6574 if (raid_disk
>= max_disks
6575 || raid_disk
< 0 || test_bit(Journal
, &rdev
->flags
))
6577 disk
= conf
->disks
+ raid_disk
;
6579 if (test_bit(Replacement
, &rdev
->flags
)) {
6580 if (disk
->replacement
)
6582 disk
->replacement
= rdev
;
6589 if (test_bit(In_sync
, &rdev
->flags
)) {
6590 char b
[BDEVNAME_SIZE
];
6591 printk(KERN_INFO
"md/raid:%s: device %s operational as raid"
6593 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
6594 } else if (rdev
->saved_raid_disk
!= raid_disk
)
6595 /* Cannot rely on bitmap to complete recovery */
6599 conf
->level
= mddev
->new_level
;
6600 if (conf
->level
== 6) {
6601 conf
->max_degraded
= 2;
6602 if (raid6_call
.xor_syndrome
)
6603 conf
->rmw_level
= PARITY_ENABLE_RMW
;
6605 conf
->rmw_level
= PARITY_DISABLE_RMW
;
6607 conf
->max_degraded
= 1;
6608 conf
->rmw_level
= PARITY_ENABLE_RMW
;
6610 conf
->algorithm
= mddev
->new_layout
;
6611 conf
->reshape_progress
= mddev
->reshape_position
;
6612 if (conf
->reshape_progress
!= MaxSector
) {
6613 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
6614 conf
->prev_algo
= mddev
->layout
;
6616 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
6617 conf
->prev_algo
= conf
->algorithm
;
6620 conf
->min_nr_stripes
= NR_STRIPES
;
6621 memory
= conf
->min_nr_stripes
* (sizeof(struct stripe_head
) +
6622 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
6623 atomic_set(&conf
->empty_inactive_list_nr
, NR_STRIPE_HASH_LOCKS
);
6624 if (grow_stripes(conf
, conf
->min_nr_stripes
)) {
6626 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6627 mdname(mddev
), memory
);
6630 printk(KERN_INFO
"md/raid:%s: allocated %dkB\n",
6631 mdname(mddev
), memory
);
6633 * Losing a stripe head costs more than the time to refill it,
6634 * it reduces the queue depth and so can hurt throughput.
6635 * So set it rather large, scaled by number of devices.
6637 conf
->shrinker
.seeks
= DEFAULT_SEEKS
* conf
->raid_disks
* 4;
6638 conf
->shrinker
.scan_objects
= raid5_cache_scan
;
6639 conf
->shrinker
.count_objects
= raid5_cache_count
;
6640 conf
->shrinker
.batch
= 128;
6641 conf
->shrinker
.flags
= 0;
6642 register_shrinker(&conf
->shrinker
);
6644 sprintf(pers_name
, "raid%d", mddev
->new_level
);
6645 conf
->thread
= md_register_thread(raid5d
, mddev
, pers_name
);
6646 if (!conf
->thread
) {
6648 "md/raid:%s: couldn't allocate thread.\n",
6658 return ERR_PTR(-EIO
);
6660 return ERR_PTR(-ENOMEM
);
6663 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
6666 case ALGORITHM_PARITY_0
:
6667 if (raid_disk
< max_degraded
)
6670 case ALGORITHM_PARITY_N
:
6671 if (raid_disk
>= raid_disks
- max_degraded
)
6674 case ALGORITHM_PARITY_0_6
:
6675 if (raid_disk
== 0 ||
6676 raid_disk
== raid_disks
- 1)
6679 case ALGORITHM_LEFT_ASYMMETRIC_6
:
6680 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
6681 case ALGORITHM_LEFT_SYMMETRIC_6
:
6682 case ALGORITHM_RIGHT_SYMMETRIC_6
:
6683 if (raid_disk
== raid_disks
- 1)
6689 static int raid5_run(struct mddev
*mddev
)
6691 struct r5conf
*conf
;
6692 int working_disks
= 0;
6693 int dirty_parity_disks
= 0;
6694 struct md_rdev
*rdev
;
6695 struct md_rdev
*journal_dev
= NULL
;
6696 sector_t reshape_offset
= 0;
6698 long long min_offset_diff
= 0;
6701 if (mddev
->recovery_cp
!= MaxSector
)
6702 printk(KERN_NOTICE
"md/raid:%s: not clean"
6703 " -- starting background reconstruction\n",
6706 rdev_for_each(rdev
, mddev
) {
6709 if (test_bit(Journal
, &rdev
->flags
)) {
6713 if (rdev
->raid_disk
< 0)
6715 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
6717 min_offset_diff
= diff
;
6719 } else if (mddev
->reshape_backwards
&&
6720 diff
< min_offset_diff
)
6721 min_offset_diff
= diff
;
6722 else if (!mddev
->reshape_backwards
&&
6723 diff
> min_offset_diff
)
6724 min_offset_diff
= diff
;
6727 if (mddev
->reshape_position
!= MaxSector
) {
6728 /* Check that we can continue the reshape.
6729 * Difficulties arise if the stripe we would write to
6730 * next is at or after the stripe we would read from next.
6731 * For a reshape that changes the number of devices, this
6732 * is only possible for a very short time, and mdadm makes
6733 * sure that time appears to have past before assembling
6734 * the array. So we fail if that time hasn't passed.
6735 * For a reshape that keeps the number of devices the same
6736 * mdadm must be monitoring the reshape can keeping the
6737 * critical areas read-only and backed up. It will start
6738 * the array in read-only mode, so we check for that.
6740 sector_t here_new
, here_old
;
6742 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
6747 printk(KERN_ERR
"md/raid:%s: don't support reshape with journal - aborting.\n",
6752 if (mddev
->new_level
!= mddev
->level
) {
6753 printk(KERN_ERR
"md/raid:%s: unsupported reshape "
6754 "required - aborting.\n",
6758 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
6759 /* reshape_position must be on a new-stripe boundary, and one
6760 * further up in new geometry must map after here in old
6762 * If the chunk sizes are different, then as we perform reshape
6763 * in units of the largest of the two, reshape_position needs
6764 * be a multiple of the largest chunk size times new data disks.
6766 here_new
= mddev
->reshape_position
;
6767 chunk_sectors
= max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
);
6768 new_data_disks
= mddev
->raid_disks
- max_degraded
;
6769 if (sector_div(here_new
, chunk_sectors
* new_data_disks
)) {
6770 printk(KERN_ERR
"md/raid:%s: reshape_position not "
6771 "on a stripe boundary\n", mdname(mddev
));
6774 reshape_offset
= here_new
* chunk_sectors
;
6775 /* here_new is the stripe we will write to */
6776 here_old
= mddev
->reshape_position
;
6777 sector_div(here_old
, chunk_sectors
* (old_disks
-max_degraded
));
6778 /* here_old is the first stripe that we might need to read
6780 if (mddev
->delta_disks
== 0) {
6781 /* We cannot be sure it is safe to start an in-place
6782 * reshape. It is only safe if user-space is monitoring
6783 * and taking constant backups.
6784 * mdadm always starts a situation like this in
6785 * readonly mode so it can take control before
6786 * allowing any writes. So just check for that.
6788 if (abs(min_offset_diff
) >= mddev
->chunk_sectors
&&
6789 abs(min_offset_diff
) >= mddev
->new_chunk_sectors
)
6790 /* not really in-place - so OK */;
6791 else if (mddev
->ro
== 0) {
6792 printk(KERN_ERR
"md/raid:%s: in-place reshape "
6793 "must be started in read-only mode "
6798 } else if (mddev
->reshape_backwards
6799 ? (here_new
* chunk_sectors
+ min_offset_diff
<=
6800 here_old
* chunk_sectors
)
6801 : (here_new
* chunk_sectors
>=
6802 here_old
* chunk_sectors
+ (-min_offset_diff
))) {
6803 /* Reading from the same stripe as writing to - bad */
6804 printk(KERN_ERR
"md/raid:%s: reshape_position too early for "
6805 "auto-recovery - aborting.\n",
6809 printk(KERN_INFO
"md/raid:%s: reshape will continue\n",
6811 /* OK, we should be able to continue; */
6813 BUG_ON(mddev
->level
!= mddev
->new_level
);
6814 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
6815 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
6816 BUG_ON(mddev
->delta_disks
!= 0);
6819 if (mddev
->private == NULL
)
6820 conf
= setup_conf(mddev
);
6822 conf
= mddev
->private;
6825 return PTR_ERR(conf
);
6827 if (test_bit(MD_HAS_JOURNAL
, &mddev
->flags
) && !journal_dev
) {
6828 printk(KERN_ERR
"md/raid:%s: journal disk is missing, force array readonly\n",
6831 set_disk_ro(mddev
->gendisk
, 1);
6834 conf
->min_offset_diff
= min_offset_diff
;
6835 mddev
->thread
= conf
->thread
;
6836 conf
->thread
= NULL
;
6837 mddev
->private = conf
;
6839 for (i
= 0; i
< conf
->raid_disks
&& conf
->previous_raid_disks
;
6841 rdev
= conf
->disks
[i
].rdev
;
6842 if (!rdev
&& conf
->disks
[i
].replacement
) {
6843 /* The replacement is all we have yet */
6844 rdev
= conf
->disks
[i
].replacement
;
6845 conf
->disks
[i
].replacement
= NULL
;
6846 clear_bit(Replacement
, &rdev
->flags
);
6847 conf
->disks
[i
].rdev
= rdev
;
6851 if (conf
->disks
[i
].replacement
&&
6852 conf
->reshape_progress
!= MaxSector
) {
6853 /* replacements and reshape simply do not mix. */
6854 printk(KERN_ERR
"md: cannot handle concurrent "
6855 "replacement and reshape.\n");
6858 if (test_bit(In_sync
, &rdev
->flags
)) {
6862 /* This disc is not fully in-sync. However if it
6863 * just stored parity (beyond the recovery_offset),
6864 * when we don't need to be concerned about the
6865 * array being dirty.
6866 * When reshape goes 'backwards', we never have
6867 * partially completed devices, so we only need
6868 * to worry about reshape going forwards.
6870 /* Hack because v0.91 doesn't store recovery_offset properly. */
6871 if (mddev
->major_version
== 0 &&
6872 mddev
->minor_version
> 90)
6873 rdev
->recovery_offset
= reshape_offset
;
6875 if (rdev
->recovery_offset
< reshape_offset
) {
6876 /* We need to check old and new layout */
6877 if (!only_parity(rdev
->raid_disk
,
6880 conf
->max_degraded
))
6883 if (!only_parity(rdev
->raid_disk
,
6885 conf
->previous_raid_disks
,
6886 conf
->max_degraded
))
6888 dirty_parity_disks
++;
6892 * 0 for a fully functional array, 1 or 2 for a degraded array.
6894 mddev
->degraded
= calc_degraded(conf
);
6896 if (has_failed(conf
)) {
6897 printk(KERN_ERR
"md/raid:%s: not enough operational devices"
6898 " (%d/%d failed)\n",
6899 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
6903 /* device size must be a multiple of chunk size */
6904 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
6905 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
6907 if (mddev
->degraded
> dirty_parity_disks
&&
6908 mddev
->recovery_cp
!= MaxSector
) {
6909 if (mddev
->ok_start_degraded
)
6911 "md/raid:%s: starting dirty degraded array"
6912 " - data corruption possible.\n",
6916 "md/raid:%s: cannot start dirty degraded array.\n",
6922 if (mddev
->degraded
== 0)
6923 printk(KERN_INFO
"md/raid:%s: raid level %d active with %d out of %d"
6924 " devices, algorithm %d\n", mdname(mddev
), conf
->level
,
6925 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
6928 printk(KERN_ALERT
"md/raid:%s: raid level %d active with %d"
6929 " out of %d devices, algorithm %d\n",
6930 mdname(mddev
), conf
->level
,
6931 mddev
->raid_disks
- mddev
->degraded
,
6932 mddev
->raid_disks
, mddev
->new_layout
);
6934 print_raid5_conf(conf
);
6936 if (conf
->reshape_progress
!= MaxSector
) {
6937 conf
->reshape_safe
= conf
->reshape_progress
;
6938 atomic_set(&conf
->reshape_stripes
, 0);
6939 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
6940 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
6941 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
6942 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
6943 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
6947 /* Ok, everything is just fine now */
6948 if (mddev
->to_remove
== &raid5_attrs_group
)
6949 mddev
->to_remove
= NULL
;
6950 else if (mddev
->kobj
.sd
&&
6951 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
6953 "raid5: failed to create sysfs attributes for %s\n",
6955 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
6959 bool discard_supported
= true;
6960 /* read-ahead size must cover two whole stripes, which
6961 * is 2 * (datadisks) * chunksize where 'n' is the
6962 * number of raid devices
6964 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
6965 int stripe
= data_disks
*
6966 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
6967 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
6968 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
6970 chunk_size
= mddev
->chunk_sectors
<< 9;
6971 blk_queue_io_min(mddev
->queue
, chunk_size
);
6972 blk_queue_io_opt(mddev
->queue
, chunk_size
*
6973 (conf
->raid_disks
- conf
->max_degraded
));
6974 mddev
->queue
->limits
.raid_partial_stripes_expensive
= 1;
6976 * We can only discard a whole stripe. It doesn't make sense to
6977 * discard data disk but write parity disk
6979 stripe
= stripe
* PAGE_SIZE
;
6980 /* Round up to power of 2, as discard handling
6981 * currently assumes that */
6982 while ((stripe
-1) & stripe
)
6983 stripe
= (stripe
| (stripe
-1)) + 1;
6984 mddev
->queue
->limits
.discard_alignment
= stripe
;
6985 mddev
->queue
->limits
.discard_granularity
= stripe
;
6987 * unaligned part of discard request will be ignored, so can't
6988 * guarantee discard_zeroes_data
6990 mddev
->queue
->limits
.discard_zeroes_data
= 0;
6992 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
6994 rdev_for_each(rdev
, mddev
) {
6995 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
6996 rdev
->data_offset
<< 9);
6997 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
6998 rdev
->new_data_offset
<< 9);
7000 * discard_zeroes_data is required, otherwise data
7001 * could be lost. Consider a scenario: discard a stripe
7002 * (the stripe could be inconsistent if
7003 * discard_zeroes_data is 0); write one disk of the
7004 * stripe (the stripe could be inconsistent again
7005 * depending on which disks are used to calculate
7006 * parity); the disk is broken; The stripe data of this
7009 if (!blk_queue_discard(bdev_get_queue(rdev
->bdev
)) ||
7010 !bdev_get_queue(rdev
->bdev
)->
7011 limits
.discard_zeroes_data
)
7012 discard_supported
= false;
7013 /* Unfortunately, discard_zeroes_data is not currently
7014 * a guarantee - just a hint. So we only allow DISCARD
7015 * if the sysadmin has confirmed that only safe devices
7016 * are in use by setting a module parameter.
7018 if (!devices_handle_discard_safely
) {
7019 if (discard_supported
) {
7020 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7021 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7023 discard_supported
= false;
7027 if (discard_supported
&&
7028 mddev
->queue
->limits
.max_discard_sectors
>= (stripe
>> 9) &&
7029 mddev
->queue
->limits
.discard_granularity
>= stripe
)
7030 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
7033 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
7038 char b
[BDEVNAME_SIZE
];
7040 printk(KERN_INFO
"md/raid:%s: using device %s as journal\n",
7041 mdname(mddev
), bdevname(journal_dev
->bdev
, b
));
7042 r5l_init_log(conf
, journal_dev
);
7047 md_unregister_thread(&mddev
->thread
);
7048 print_raid5_conf(conf
);
7050 mddev
->private = NULL
;
7051 printk(KERN_ALERT
"md/raid:%s: failed to run raid set.\n", mdname(mddev
));
7055 static void raid5_free(struct mddev
*mddev
, void *priv
)
7057 struct r5conf
*conf
= priv
;
7060 mddev
->to_remove
= &raid5_attrs_group
;
7063 static void raid5_status(struct seq_file
*seq
, struct mddev
*mddev
)
7065 struct r5conf
*conf
= mddev
->private;
7068 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
7069 conf
->chunk_sectors
/ 2, mddev
->layout
);
7070 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
7071 for (i
= 0; i
< conf
->raid_disks
; i
++)
7072 seq_printf (seq
, "%s",
7073 conf
->disks
[i
].rdev
&&
7074 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
7075 seq_printf (seq
, "]");
7078 static void print_raid5_conf (struct r5conf
*conf
)
7081 struct disk_info
*tmp
;
7083 printk(KERN_DEBUG
"RAID conf printout:\n");
7085 printk("(conf==NULL)\n");
7088 printk(KERN_DEBUG
" --- level:%d rd:%d wd:%d\n", conf
->level
,
7090 conf
->raid_disks
- conf
->mddev
->degraded
);
7092 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7093 char b
[BDEVNAME_SIZE
];
7094 tmp
= conf
->disks
+ i
;
7096 printk(KERN_DEBUG
" disk %d, o:%d, dev:%s\n",
7097 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
7098 bdevname(tmp
->rdev
->bdev
, b
));
7102 static int raid5_spare_active(struct mddev
*mddev
)
7105 struct r5conf
*conf
= mddev
->private;
7106 struct disk_info
*tmp
;
7108 unsigned long flags
;
7110 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7111 tmp
= conf
->disks
+ i
;
7112 if (tmp
->replacement
7113 && tmp
->replacement
->recovery_offset
== MaxSector
7114 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
7115 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
7116 /* Replacement has just become active. */
7118 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
7121 /* Replaced device not technically faulty,
7122 * but we need to be sure it gets removed
7123 * and never re-added.
7125 set_bit(Faulty
, &tmp
->rdev
->flags
);
7126 sysfs_notify_dirent_safe(
7127 tmp
->rdev
->sysfs_state
);
7129 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
7130 } else if (tmp
->rdev
7131 && tmp
->rdev
->recovery_offset
== MaxSector
7132 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
7133 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
7135 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
7138 spin_lock_irqsave(&conf
->device_lock
, flags
);
7139 mddev
->degraded
= calc_degraded(conf
);
7140 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7141 print_raid5_conf(conf
);
7145 static int raid5_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7147 struct r5conf
*conf
= mddev
->private;
7149 int number
= rdev
->raid_disk
;
7150 struct md_rdev
**rdevp
;
7151 struct disk_info
*p
= conf
->disks
+ number
;
7153 print_raid5_conf(conf
);
7154 if (test_bit(Journal
, &rdev
->flags
) && conf
->log
) {
7155 struct r5l_log
*log
;
7157 * we can't wait pending write here, as this is called in
7158 * raid5d, wait will deadlock.
7160 if (atomic_read(&mddev
->writes_pending
))
7168 if (rdev
== p
->rdev
)
7170 else if (rdev
== p
->replacement
)
7171 rdevp
= &p
->replacement
;
7175 if (number
>= conf
->raid_disks
&&
7176 conf
->reshape_progress
== MaxSector
)
7177 clear_bit(In_sync
, &rdev
->flags
);
7179 if (test_bit(In_sync
, &rdev
->flags
) ||
7180 atomic_read(&rdev
->nr_pending
)) {
7184 /* Only remove non-faulty devices if recovery
7187 if (!test_bit(Faulty
, &rdev
->flags
) &&
7188 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
7189 !has_failed(conf
) &&
7190 (!p
->replacement
|| p
->replacement
== rdev
) &&
7191 number
< conf
->raid_disks
) {
7197 if (atomic_read(&rdev
->nr_pending
)) {
7198 /* lost the race, try later */
7201 } else if (p
->replacement
) {
7202 /* We must have just cleared 'rdev' */
7203 p
->rdev
= p
->replacement
;
7204 clear_bit(Replacement
, &p
->replacement
->flags
);
7205 smp_mb(); /* Make sure other CPUs may see both as identical
7206 * but will never see neither - if they are careful
7208 p
->replacement
= NULL
;
7209 clear_bit(WantReplacement
, &rdev
->flags
);
7211 /* We might have just removed the Replacement as faulty-
7212 * clear the bit just in case
7214 clear_bit(WantReplacement
, &rdev
->flags
);
7217 print_raid5_conf(conf
);
7221 static int raid5_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7223 struct r5conf
*conf
= mddev
->private;
7226 struct disk_info
*p
;
7228 int last
= conf
->raid_disks
- 1;
7230 if (test_bit(Journal
, &rdev
->flags
)) {
7231 char b
[BDEVNAME_SIZE
];
7235 rdev
->raid_disk
= 0;
7237 * The array is in readonly mode if journal is missing, so no
7238 * write requests running. We should be safe
7240 r5l_init_log(conf
, rdev
);
7241 printk(KERN_INFO
"md/raid:%s: using device %s as journal\n",
7242 mdname(mddev
), bdevname(rdev
->bdev
, b
));
7245 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
7248 if (rdev
->saved_raid_disk
< 0 && has_failed(conf
))
7249 /* no point adding a device */
7252 if (rdev
->raid_disk
>= 0)
7253 first
= last
= rdev
->raid_disk
;
7256 * find the disk ... but prefer rdev->saved_raid_disk
7259 if (rdev
->saved_raid_disk
>= 0 &&
7260 rdev
->saved_raid_disk
>= first
&&
7261 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
7262 first
= rdev
->saved_raid_disk
;
7264 for (disk
= first
; disk
<= last
; disk
++) {
7265 p
= conf
->disks
+ disk
;
7266 if (p
->rdev
== NULL
) {
7267 clear_bit(In_sync
, &rdev
->flags
);
7268 rdev
->raid_disk
= disk
;
7270 if (rdev
->saved_raid_disk
!= disk
)
7272 rcu_assign_pointer(p
->rdev
, rdev
);
7276 for (disk
= first
; disk
<= last
; disk
++) {
7277 p
= conf
->disks
+ disk
;
7278 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
7279 p
->replacement
== NULL
) {
7280 clear_bit(In_sync
, &rdev
->flags
);
7281 set_bit(Replacement
, &rdev
->flags
);
7282 rdev
->raid_disk
= disk
;
7285 rcu_assign_pointer(p
->replacement
, rdev
);
7290 print_raid5_conf(conf
);
7294 static int raid5_resize(struct mddev
*mddev
, sector_t sectors
)
7296 /* no resync is happening, and there is enough space
7297 * on all devices, so we can resize.
7298 * We need to make sure resync covers any new space.
7299 * If the array is shrinking we should possibly wait until
7300 * any io in the removed space completes, but it hardly seems
7304 struct r5conf
*conf
= mddev
->private;
7308 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
7309 newsize
= raid5_size(mddev
, sectors
, mddev
->raid_disks
);
7310 if (mddev
->external_size
&&
7311 mddev
->array_sectors
> newsize
)
7313 if (mddev
->bitmap
) {
7314 int ret
= bitmap_resize(mddev
->bitmap
, sectors
, 0, 0);
7318 md_set_array_sectors(mddev
, newsize
);
7319 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
7320 revalidate_disk(mddev
->gendisk
);
7321 if (sectors
> mddev
->dev_sectors
&&
7322 mddev
->recovery_cp
> mddev
->dev_sectors
) {
7323 mddev
->recovery_cp
= mddev
->dev_sectors
;
7324 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7326 mddev
->dev_sectors
= sectors
;
7327 mddev
->resync_max_sectors
= sectors
;
7331 static int check_stripe_cache(struct mddev
*mddev
)
7333 /* Can only proceed if there are plenty of stripe_heads.
7334 * We need a minimum of one full stripe,, and for sensible progress
7335 * it is best to have about 4 times that.
7336 * If we require 4 times, then the default 256 4K stripe_heads will
7337 * allow for chunk sizes up to 256K, which is probably OK.
7338 * If the chunk size is greater, user-space should request more
7339 * stripe_heads first.
7341 struct r5conf
*conf
= mddev
->private;
7342 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7343 > conf
->min_nr_stripes
||
7344 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7345 > conf
->min_nr_stripes
) {
7346 printk(KERN_WARNING
"md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7348 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
7355 static int check_reshape(struct mddev
*mddev
)
7357 struct r5conf
*conf
= mddev
->private;
7361 if (mddev
->delta_disks
== 0 &&
7362 mddev
->new_layout
== mddev
->layout
&&
7363 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
7364 return 0; /* nothing to do */
7365 if (has_failed(conf
))
7367 if (mddev
->delta_disks
< 0 && mddev
->reshape_position
== MaxSector
) {
7368 /* We might be able to shrink, but the devices must
7369 * be made bigger first.
7370 * For raid6, 4 is the minimum size.
7371 * Otherwise 2 is the minimum
7374 if (mddev
->level
== 6)
7376 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
7380 if (!check_stripe_cache(mddev
))
7383 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
||
7384 mddev
->delta_disks
> 0)
7385 if (resize_chunks(conf
,
7386 conf
->previous_raid_disks
7387 + max(0, mddev
->delta_disks
),
7388 max(mddev
->new_chunk_sectors
,
7389 mddev
->chunk_sectors
)
7392 return resize_stripes(conf
, (conf
->previous_raid_disks
7393 + mddev
->delta_disks
));
7396 static int raid5_start_reshape(struct mddev
*mddev
)
7398 struct r5conf
*conf
= mddev
->private;
7399 struct md_rdev
*rdev
;
7401 unsigned long flags
;
7403 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
7406 if (!check_stripe_cache(mddev
))
7409 if (has_failed(conf
))
7412 rdev_for_each(rdev
, mddev
) {
7413 if (!test_bit(In_sync
, &rdev
->flags
)
7414 && !test_bit(Faulty
, &rdev
->flags
))
7418 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
7419 /* Not enough devices even to make a degraded array
7424 /* Refuse to reduce size of the array. Any reductions in
7425 * array size must be through explicit setting of array_size
7428 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
7429 < mddev
->array_sectors
) {
7430 printk(KERN_ERR
"md/raid:%s: array size must be reduced "
7431 "before number of disks\n", mdname(mddev
));
7435 atomic_set(&conf
->reshape_stripes
, 0);
7436 spin_lock_irq(&conf
->device_lock
);
7437 write_seqcount_begin(&conf
->gen_lock
);
7438 conf
->previous_raid_disks
= conf
->raid_disks
;
7439 conf
->raid_disks
+= mddev
->delta_disks
;
7440 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
7441 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
7442 conf
->prev_algo
= conf
->algorithm
;
7443 conf
->algorithm
= mddev
->new_layout
;
7445 /* Code that selects data_offset needs to see the generation update
7446 * if reshape_progress has been set - so a memory barrier needed.
7449 if (mddev
->reshape_backwards
)
7450 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
7452 conf
->reshape_progress
= 0;
7453 conf
->reshape_safe
= conf
->reshape_progress
;
7454 write_seqcount_end(&conf
->gen_lock
);
7455 spin_unlock_irq(&conf
->device_lock
);
7457 /* Now make sure any requests that proceeded on the assumption
7458 * the reshape wasn't running - like Discard or Read - have
7461 mddev_suspend(mddev
);
7462 mddev_resume(mddev
);
7464 /* Add some new drives, as many as will fit.
7465 * We know there are enough to make the newly sized array work.
7466 * Don't add devices if we are reducing the number of
7467 * devices in the array. This is because it is not possible
7468 * to correctly record the "partially reconstructed" state of
7469 * such devices during the reshape and confusion could result.
7471 if (mddev
->delta_disks
>= 0) {
7472 rdev_for_each(rdev
, mddev
)
7473 if (rdev
->raid_disk
< 0 &&
7474 !test_bit(Faulty
, &rdev
->flags
)) {
7475 if (raid5_add_disk(mddev
, rdev
) == 0) {
7477 >= conf
->previous_raid_disks
)
7478 set_bit(In_sync
, &rdev
->flags
);
7480 rdev
->recovery_offset
= 0;
7482 if (sysfs_link_rdev(mddev
, rdev
))
7483 /* Failure here is OK */;
7485 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
7486 && !test_bit(Faulty
, &rdev
->flags
)) {
7487 /* This is a spare that was manually added */
7488 set_bit(In_sync
, &rdev
->flags
);
7491 /* When a reshape changes the number of devices,
7492 * ->degraded is measured against the larger of the
7493 * pre and post number of devices.
7495 spin_lock_irqsave(&conf
->device_lock
, flags
);
7496 mddev
->degraded
= calc_degraded(conf
);
7497 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7499 mddev
->raid_disks
= conf
->raid_disks
;
7500 mddev
->reshape_position
= conf
->reshape_progress
;
7501 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
7503 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7504 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7505 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
7506 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7507 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7508 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
7510 if (!mddev
->sync_thread
) {
7511 mddev
->recovery
= 0;
7512 spin_lock_irq(&conf
->device_lock
);
7513 write_seqcount_begin(&conf
->gen_lock
);
7514 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
7515 mddev
->new_chunk_sectors
=
7516 conf
->chunk_sectors
= conf
->prev_chunk_sectors
;
7517 mddev
->new_layout
= conf
->algorithm
= conf
->prev_algo
;
7518 rdev_for_each(rdev
, mddev
)
7519 rdev
->new_data_offset
= rdev
->data_offset
;
7521 conf
->generation
--;
7522 conf
->reshape_progress
= MaxSector
;
7523 mddev
->reshape_position
= MaxSector
;
7524 write_seqcount_end(&conf
->gen_lock
);
7525 spin_unlock_irq(&conf
->device_lock
);
7528 conf
->reshape_checkpoint
= jiffies
;
7529 md_wakeup_thread(mddev
->sync_thread
);
7530 md_new_event(mddev
);
7534 /* This is called from the reshape thread and should make any
7535 * changes needed in 'conf'
7537 static void end_reshape(struct r5conf
*conf
)
7540 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
7541 struct md_rdev
*rdev
;
7543 spin_lock_irq(&conf
->device_lock
);
7544 conf
->previous_raid_disks
= conf
->raid_disks
;
7545 rdev_for_each(rdev
, conf
->mddev
)
7546 rdev
->data_offset
= rdev
->new_data_offset
;
7548 conf
->reshape_progress
= MaxSector
;
7549 conf
->mddev
->reshape_position
= MaxSector
;
7550 spin_unlock_irq(&conf
->device_lock
);
7551 wake_up(&conf
->wait_for_overlap
);
7553 /* read-ahead size must cover two whole stripes, which is
7554 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7556 if (conf
->mddev
->queue
) {
7557 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
7558 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
7560 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
7561 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
7566 /* This is called from the raid5d thread with mddev_lock held.
7567 * It makes config changes to the device.
7569 static void raid5_finish_reshape(struct mddev
*mddev
)
7571 struct r5conf
*conf
= mddev
->private;
7573 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
7575 if (mddev
->delta_disks
> 0) {
7576 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
7577 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
7578 revalidate_disk(mddev
->gendisk
);
7581 spin_lock_irq(&conf
->device_lock
);
7582 mddev
->degraded
= calc_degraded(conf
);
7583 spin_unlock_irq(&conf
->device_lock
);
7584 for (d
= conf
->raid_disks
;
7585 d
< conf
->raid_disks
- mddev
->delta_disks
;
7587 struct md_rdev
*rdev
= conf
->disks
[d
].rdev
;
7589 clear_bit(In_sync
, &rdev
->flags
);
7590 rdev
= conf
->disks
[d
].replacement
;
7592 clear_bit(In_sync
, &rdev
->flags
);
7595 mddev
->layout
= conf
->algorithm
;
7596 mddev
->chunk_sectors
= conf
->chunk_sectors
;
7597 mddev
->reshape_position
= MaxSector
;
7598 mddev
->delta_disks
= 0;
7599 mddev
->reshape_backwards
= 0;
7603 static void raid5_quiesce(struct mddev
*mddev
, int state
)
7605 struct r5conf
*conf
= mddev
->private;
7608 case 2: /* resume for a suspend */
7609 wake_up(&conf
->wait_for_overlap
);
7612 case 1: /* stop all writes */
7613 lock_all_device_hash_locks_irq(conf
);
7614 /* '2' tells resync/reshape to pause so that all
7615 * active stripes can drain
7618 wait_event_cmd(conf
->wait_for_quiescent
,
7619 atomic_read(&conf
->active_stripes
) == 0 &&
7620 atomic_read(&conf
->active_aligned_reads
) == 0,
7621 unlock_all_device_hash_locks_irq(conf
),
7622 lock_all_device_hash_locks_irq(conf
));
7624 unlock_all_device_hash_locks_irq(conf
);
7625 /* allow reshape to continue */
7626 wake_up(&conf
->wait_for_overlap
);
7629 case 0: /* re-enable writes */
7630 lock_all_device_hash_locks_irq(conf
);
7632 wake_up(&conf
->wait_for_quiescent
);
7633 wake_up(&conf
->wait_for_overlap
);
7634 unlock_all_device_hash_locks_irq(conf
);
7637 r5l_quiesce(conf
->log
, state
);
7640 static void *raid45_takeover_raid0(struct mddev
*mddev
, int level
)
7642 struct r0conf
*raid0_conf
= mddev
->private;
7645 /* for raid0 takeover only one zone is supported */
7646 if (raid0_conf
->nr_strip_zones
> 1) {
7647 printk(KERN_ERR
"md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7649 return ERR_PTR(-EINVAL
);
7652 sectors
= raid0_conf
->strip_zone
[0].zone_end
;
7653 sector_div(sectors
, raid0_conf
->strip_zone
[0].nb_dev
);
7654 mddev
->dev_sectors
= sectors
;
7655 mddev
->new_level
= level
;
7656 mddev
->new_layout
= ALGORITHM_PARITY_N
;
7657 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
7658 mddev
->raid_disks
+= 1;
7659 mddev
->delta_disks
= 1;
7660 /* make sure it will be not marked as dirty */
7661 mddev
->recovery_cp
= MaxSector
;
7663 return setup_conf(mddev
);
7666 static void *raid5_takeover_raid1(struct mddev
*mddev
)
7670 if (mddev
->raid_disks
!= 2 ||
7671 mddev
->degraded
> 1)
7672 return ERR_PTR(-EINVAL
);
7674 /* Should check if there are write-behind devices? */
7676 chunksect
= 64*2; /* 64K by default */
7678 /* The array must be an exact multiple of chunksize */
7679 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
7682 if ((chunksect
<<9) < STRIPE_SIZE
)
7683 /* array size does not allow a suitable chunk size */
7684 return ERR_PTR(-EINVAL
);
7686 mddev
->new_level
= 5;
7687 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
7688 mddev
->new_chunk_sectors
= chunksect
;
7690 return setup_conf(mddev
);
7693 static void *raid5_takeover_raid6(struct mddev
*mddev
)
7697 switch (mddev
->layout
) {
7698 case ALGORITHM_LEFT_ASYMMETRIC_6
:
7699 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
7701 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
7702 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
7704 case ALGORITHM_LEFT_SYMMETRIC_6
:
7705 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
7707 case ALGORITHM_RIGHT_SYMMETRIC_6
:
7708 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
7710 case ALGORITHM_PARITY_0_6
:
7711 new_layout
= ALGORITHM_PARITY_0
;
7713 case ALGORITHM_PARITY_N
:
7714 new_layout
= ALGORITHM_PARITY_N
;
7717 return ERR_PTR(-EINVAL
);
7719 mddev
->new_level
= 5;
7720 mddev
->new_layout
= new_layout
;
7721 mddev
->delta_disks
= -1;
7722 mddev
->raid_disks
-= 1;
7723 return setup_conf(mddev
);
7726 static int raid5_check_reshape(struct mddev
*mddev
)
7728 /* For a 2-drive array, the layout and chunk size can be changed
7729 * immediately as not restriping is needed.
7730 * For larger arrays we record the new value - after validation
7731 * to be used by a reshape pass.
7733 struct r5conf
*conf
= mddev
->private;
7734 int new_chunk
= mddev
->new_chunk_sectors
;
7736 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
7738 if (new_chunk
> 0) {
7739 if (!is_power_of_2(new_chunk
))
7741 if (new_chunk
< (PAGE_SIZE
>>9))
7743 if (mddev
->array_sectors
& (new_chunk
-1))
7744 /* not factor of array size */
7748 /* They look valid */
7750 if (mddev
->raid_disks
== 2) {
7751 /* can make the change immediately */
7752 if (mddev
->new_layout
>= 0) {
7753 conf
->algorithm
= mddev
->new_layout
;
7754 mddev
->layout
= mddev
->new_layout
;
7756 if (new_chunk
> 0) {
7757 conf
->chunk_sectors
= new_chunk
;
7758 mddev
->chunk_sectors
= new_chunk
;
7760 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
7761 md_wakeup_thread(mddev
->thread
);
7763 return check_reshape(mddev
);
7766 static int raid6_check_reshape(struct mddev
*mddev
)
7768 int new_chunk
= mddev
->new_chunk_sectors
;
7770 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
7772 if (new_chunk
> 0) {
7773 if (!is_power_of_2(new_chunk
))
7775 if (new_chunk
< (PAGE_SIZE
>> 9))
7777 if (mddev
->array_sectors
& (new_chunk
-1))
7778 /* not factor of array size */
7782 /* They look valid */
7783 return check_reshape(mddev
);
7786 static void *raid5_takeover(struct mddev
*mddev
)
7788 /* raid5 can take over:
7789 * raid0 - if there is only one strip zone - make it a raid4 layout
7790 * raid1 - if there are two drives. We need to know the chunk size
7791 * raid4 - trivial - just use a raid4 layout.
7792 * raid6 - Providing it is a *_6 layout
7794 if (mddev
->level
== 0)
7795 return raid45_takeover_raid0(mddev
, 5);
7796 if (mddev
->level
== 1)
7797 return raid5_takeover_raid1(mddev
);
7798 if (mddev
->level
== 4) {
7799 mddev
->new_layout
= ALGORITHM_PARITY_N
;
7800 mddev
->new_level
= 5;
7801 return setup_conf(mddev
);
7803 if (mddev
->level
== 6)
7804 return raid5_takeover_raid6(mddev
);
7806 return ERR_PTR(-EINVAL
);
7809 static void *raid4_takeover(struct mddev
*mddev
)
7811 /* raid4 can take over:
7812 * raid0 - if there is only one strip zone
7813 * raid5 - if layout is right
7815 if (mddev
->level
== 0)
7816 return raid45_takeover_raid0(mddev
, 4);
7817 if (mddev
->level
== 5 &&
7818 mddev
->layout
== ALGORITHM_PARITY_N
) {
7819 mddev
->new_layout
= 0;
7820 mddev
->new_level
= 4;
7821 return setup_conf(mddev
);
7823 return ERR_PTR(-EINVAL
);
7826 static struct md_personality raid5_personality
;
7828 static void *raid6_takeover(struct mddev
*mddev
)
7830 /* Currently can only take over a raid5. We map the
7831 * personality to an equivalent raid6 personality
7832 * with the Q block at the end.
7836 if (mddev
->pers
!= &raid5_personality
)
7837 return ERR_PTR(-EINVAL
);
7838 if (mddev
->degraded
> 1)
7839 return ERR_PTR(-EINVAL
);
7840 if (mddev
->raid_disks
> 253)
7841 return ERR_PTR(-EINVAL
);
7842 if (mddev
->raid_disks
< 3)
7843 return ERR_PTR(-EINVAL
);
7845 switch (mddev
->layout
) {
7846 case ALGORITHM_LEFT_ASYMMETRIC
:
7847 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
7849 case ALGORITHM_RIGHT_ASYMMETRIC
:
7850 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
7852 case ALGORITHM_LEFT_SYMMETRIC
:
7853 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
7855 case ALGORITHM_RIGHT_SYMMETRIC
:
7856 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
7858 case ALGORITHM_PARITY_0
:
7859 new_layout
= ALGORITHM_PARITY_0_6
;
7861 case ALGORITHM_PARITY_N
:
7862 new_layout
= ALGORITHM_PARITY_N
;
7865 return ERR_PTR(-EINVAL
);
7867 mddev
->new_level
= 6;
7868 mddev
->new_layout
= new_layout
;
7869 mddev
->delta_disks
= 1;
7870 mddev
->raid_disks
+= 1;
7871 return setup_conf(mddev
);
7874 static struct md_personality raid6_personality
=
7878 .owner
= THIS_MODULE
,
7879 .make_request
= raid5_make_request
,
7882 .status
= raid5_status
,
7883 .error_handler
= raid5_error
,
7884 .hot_add_disk
= raid5_add_disk
,
7885 .hot_remove_disk
= raid5_remove_disk
,
7886 .spare_active
= raid5_spare_active
,
7887 .sync_request
= raid5_sync_request
,
7888 .resize
= raid5_resize
,
7890 .check_reshape
= raid6_check_reshape
,
7891 .start_reshape
= raid5_start_reshape
,
7892 .finish_reshape
= raid5_finish_reshape
,
7893 .quiesce
= raid5_quiesce
,
7894 .takeover
= raid6_takeover
,
7895 .congested
= raid5_congested
,
7897 static struct md_personality raid5_personality
=
7901 .owner
= THIS_MODULE
,
7902 .make_request
= raid5_make_request
,
7905 .status
= raid5_status
,
7906 .error_handler
= raid5_error
,
7907 .hot_add_disk
= raid5_add_disk
,
7908 .hot_remove_disk
= raid5_remove_disk
,
7909 .spare_active
= raid5_spare_active
,
7910 .sync_request
= raid5_sync_request
,
7911 .resize
= raid5_resize
,
7913 .check_reshape
= raid5_check_reshape
,
7914 .start_reshape
= raid5_start_reshape
,
7915 .finish_reshape
= raid5_finish_reshape
,
7916 .quiesce
= raid5_quiesce
,
7917 .takeover
= raid5_takeover
,
7918 .congested
= raid5_congested
,
7921 static struct md_personality raid4_personality
=
7925 .owner
= THIS_MODULE
,
7926 .make_request
= raid5_make_request
,
7929 .status
= raid5_status
,
7930 .error_handler
= raid5_error
,
7931 .hot_add_disk
= raid5_add_disk
,
7932 .hot_remove_disk
= raid5_remove_disk
,
7933 .spare_active
= raid5_spare_active
,
7934 .sync_request
= raid5_sync_request
,
7935 .resize
= raid5_resize
,
7937 .check_reshape
= raid5_check_reshape
,
7938 .start_reshape
= raid5_start_reshape
,
7939 .finish_reshape
= raid5_finish_reshape
,
7940 .quiesce
= raid5_quiesce
,
7941 .takeover
= raid4_takeover
,
7942 .congested
= raid5_congested
,
7945 static int __init
raid5_init(void)
7947 raid5_wq
= alloc_workqueue("raid5wq",
7948 WQ_UNBOUND
|WQ_MEM_RECLAIM
|WQ_CPU_INTENSIVE
|WQ_SYSFS
, 0);
7951 register_md_personality(&raid6_personality
);
7952 register_md_personality(&raid5_personality
);
7953 register_md_personality(&raid4_personality
);
7957 static void raid5_exit(void)
7959 unregister_md_personality(&raid6_personality
);
7960 unregister_md_personality(&raid5_personality
);
7961 unregister_md_personality(&raid4_personality
);
7962 destroy_workqueue(raid5_wq
);
7965 module_init(raid5_init
);
7966 module_exit(raid5_exit
);
7967 MODULE_LICENSE("GPL");
7968 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7969 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7970 MODULE_ALIAS("md-raid5");
7971 MODULE_ALIAS("md-raid4");
7972 MODULE_ALIAS("md-level-5");
7973 MODULE_ALIAS("md-level-4");
7974 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7975 MODULE_ALIAS("md-raid6");
7976 MODULE_ALIAS("md-level-6");
7978 /* This used to be two separate modules, they were: */
7979 MODULE_ALIAS("raid5");
7980 MODULE_ALIAS("raid6");