2 * Driver for the Conexant CX23885 PCIe bridge
4 * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/init.h>
25 static unsigned int vbibufs
= 4;
26 module_param(vbibufs
, int, 0644);
27 MODULE_PARM_DESC(vbibufs
, "number of vbi buffers, range 2-32");
29 static unsigned int vbi_debug
;
30 module_param(vbi_debug
, int, 0644);
31 MODULE_PARM_DESC(vbi_debug
, "enable debug messages [vbi]");
33 #define dprintk(level, fmt, arg...)\
34 do { if (vbi_debug >= level)\
35 printk(KERN_DEBUG "%s/0: " fmt, dev->name, ## arg);\
38 /* ------------------------------------------------------------------ */
40 #define VBI_LINE_LENGTH 1440
41 #define VBI_NTSC_LINE_COUNT 12
42 #define VBI_PAL_LINE_COUNT 18
45 int cx23885_vbi_fmt(struct file
*file
, void *priv
,
46 struct v4l2_format
*f
)
48 struct cx23885_dev
*dev
= video_drvdata(file
);
50 f
->fmt
.vbi
.sampling_rate
= 27000000;
51 f
->fmt
.vbi
.samples_per_line
= VBI_LINE_LENGTH
;
52 f
->fmt
.vbi
.sample_format
= V4L2_PIX_FMT_GREY
;
53 f
->fmt
.vbi
.offset
= 0;
55 if (dev
->tvnorm
& V4L2_STD_525_60
) {
57 f
->fmt
.vbi
.start
[0] = V4L2_VBI_ITU_525_F1_START
+ 9;
58 f
->fmt
.vbi
.start
[1] = V4L2_VBI_ITU_525_F2_START
+ 9;
59 f
->fmt
.vbi
.count
[0] = VBI_NTSC_LINE_COUNT
;
60 f
->fmt
.vbi
.count
[1] = VBI_NTSC_LINE_COUNT
;
61 } else if (dev
->tvnorm
& V4L2_STD_625_50
) {
63 f
->fmt
.vbi
.start
[0] = V4L2_VBI_ITU_625_F1_START
+ 5;
64 f
->fmt
.vbi
.start
[1] = V4L2_VBI_ITU_625_F2_START
+ 5;
65 f
->fmt
.vbi
.count
[0] = VBI_PAL_LINE_COUNT
;
66 f
->fmt
.vbi
.count
[1] = VBI_PAL_LINE_COUNT
;
72 /* We're given the Video Interrupt status register.
73 * The cx23885_video_irq() func has already validated
74 * the potential error bits, we just need to
75 * deal with vbi payload and return indication if
76 * we actually processed any payload.
78 int cx23885_vbi_irq(struct cx23885_dev
*dev
, u32 status
)
83 if (status
& VID_BC_MSK_VBI_RISCI1
) {
84 dprintk(1, "%s() VID_BC_MSK_VBI_RISCI1\n", __func__
);
85 spin_lock(&dev
->slock
);
86 count
= cx_read(VBI_A_GPCNT
);
87 cx23885_video_wakeup(dev
, &dev
->vbiq
, count
);
88 spin_unlock(&dev
->slock
);
95 static int cx23885_start_vbi_dma(struct cx23885_dev
*dev
,
96 struct cx23885_dmaqueue
*q
,
97 struct cx23885_buffer
*buf
)
99 dprintk(1, "%s()\n", __func__
);
101 /* setup fifo + format */
102 cx23885_sram_channel_setup(dev
, &dev
->sram_channels
[SRAM_CH02
],
103 VBI_LINE_LENGTH
, buf
->risc
.dma
);
106 cx_write(VID_A_VBI_CTRL
, 3);
107 cx_write(VBI_A_GPCNT_CTL
, 3);
111 cx23885_irq_add_enable(dev
, 0x01);
112 cx_set(VID_A_INT_MSK
, 0x000022);
115 cx_set(DEV_CNTRL2
, (1<<5));
116 cx_set(VID_A_DMA_CTL
, 0x22); /* FIFO and RISC enable */
121 /* ------------------------------------------------------------------ */
123 static int queue_setup(struct vb2_queue
*q
,
124 unsigned int *num_buffers
, unsigned int *num_planes
,
125 unsigned int sizes
[], void *alloc_ctxs
[])
127 struct cx23885_dev
*dev
= q
->drv_priv
;
128 unsigned lines
= VBI_PAL_LINE_COUNT
;
130 if (dev
->tvnorm
& V4L2_STD_525_60
)
131 lines
= VBI_NTSC_LINE_COUNT
;
133 sizes
[0] = lines
* VBI_LINE_LENGTH
* 2;
134 alloc_ctxs
[0] = dev
->alloc_ctx
;
138 static int buffer_prepare(struct vb2_buffer
*vb
)
140 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
141 struct cx23885_dev
*dev
= vb
->vb2_queue
->drv_priv
;
142 struct cx23885_buffer
*buf
= container_of(vbuf
,
143 struct cx23885_buffer
, vb
);
144 struct sg_table
*sgt
= vb2_dma_sg_plane_desc(vb
, 0);
145 unsigned lines
= VBI_PAL_LINE_COUNT
;
147 if (dev
->tvnorm
& V4L2_STD_525_60
)
148 lines
= VBI_NTSC_LINE_COUNT
;
150 if (vb2_plane_size(vb
, 0) < lines
* VBI_LINE_LENGTH
* 2)
152 vb2_set_plane_payload(vb
, 0, lines
* VBI_LINE_LENGTH
* 2);
154 cx23885_risc_vbibuffer(dev
->pci
, &buf
->risc
,
156 0, VBI_LINE_LENGTH
* lines
,
162 static void buffer_finish(struct vb2_buffer
*vb
)
164 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
165 struct cx23885_buffer
*buf
= container_of(vbuf
,
166 struct cx23885_buffer
, vb
);
168 cx23885_free_buffer(vb
->vb2_queue
->drv_priv
, buf
);
172 * The risc program for each buffer works as follows: it starts with a simple
173 * 'JUMP to addr + 12', which is effectively a NOP. Then the code to DMA the
174 * buffer follows and at the end we have a JUMP back to the start + 12 (skipping
177 * This is the risc program of the first buffer to be queued if the active list
178 * is empty and it just keeps DMAing this buffer without generating any
181 * If a new buffer is added then the initial JUMP in the code for that buffer
182 * will generate an interrupt which signals that the previous buffer has been
183 * DMAed successfully and that it can be returned to userspace.
185 * It also sets the final jump of the previous buffer to the start of the new
186 * buffer, thus chaining the new buffer into the DMA chain. This is a single
187 * atomic u32 write, so there is no race condition.
189 * The end-result of all this that you only get an interrupt when a buffer
190 * is ready, so the control flow is very easy.
192 static void buffer_queue(struct vb2_buffer
*vb
)
194 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
195 struct cx23885_dev
*dev
= vb
->vb2_queue
->drv_priv
;
196 struct cx23885_buffer
*buf
= container_of(vbuf
,
197 struct cx23885_buffer
, vb
);
198 struct cx23885_buffer
*prev
;
199 struct cx23885_dmaqueue
*q
= &dev
->vbiq
;
202 buf
->risc
.cpu
[1] = cpu_to_le32(buf
->risc
.dma
+ 12);
203 buf
->risc
.jmp
[0] = cpu_to_le32(RISC_JUMP
| RISC_CNT_INC
);
204 buf
->risc
.jmp
[1] = cpu_to_le32(buf
->risc
.dma
+ 12);
205 buf
->risc
.jmp
[2] = cpu_to_le32(0); /* bits 63-32 */
207 if (list_empty(&q
->active
)) {
208 spin_lock_irqsave(&dev
->slock
, flags
);
209 list_add_tail(&buf
->queue
, &q
->active
);
210 spin_unlock_irqrestore(&dev
->slock
, flags
);
211 dprintk(2, "[%p/%d] vbi_queue - first active\n",
212 buf
, buf
->vb
.vb2_buf
.index
);
215 buf
->risc
.cpu
[0] |= cpu_to_le32(RISC_IRQ1
);
216 prev
= list_entry(q
->active
.prev
, struct cx23885_buffer
,
218 spin_lock_irqsave(&dev
->slock
, flags
);
219 list_add_tail(&buf
->queue
, &q
->active
);
220 spin_unlock_irqrestore(&dev
->slock
, flags
);
221 prev
->risc
.jmp
[1] = cpu_to_le32(buf
->risc
.dma
);
222 dprintk(2, "[%p/%d] buffer_queue - append to active\n",
223 buf
, buf
->vb
.vb2_buf
.index
);
227 static int cx23885_start_streaming(struct vb2_queue
*q
, unsigned int count
)
229 struct cx23885_dev
*dev
= q
->drv_priv
;
230 struct cx23885_dmaqueue
*dmaq
= &dev
->vbiq
;
231 struct cx23885_buffer
*buf
= list_entry(dmaq
->active
.next
,
232 struct cx23885_buffer
, queue
);
234 cx23885_start_vbi_dma(dev
, dmaq
, buf
);
238 static void cx23885_stop_streaming(struct vb2_queue
*q
)
240 struct cx23885_dev
*dev
= q
->drv_priv
;
241 struct cx23885_dmaqueue
*dmaq
= &dev
->vbiq
;
244 cx_clear(VID_A_DMA_CTL
, 0x22); /* FIFO and RISC enable */
245 spin_lock_irqsave(&dev
->slock
, flags
);
246 while (!list_empty(&dmaq
->active
)) {
247 struct cx23885_buffer
*buf
= list_entry(dmaq
->active
.next
,
248 struct cx23885_buffer
, queue
);
250 list_del(&buf
->queue
);
251 vb2_buffer_done(&buf
->vb
.vb2_buf
, VB2_BUF_STATE_ERROR
);
253 spin_unlock_irqrestore(&dev
->slock
, flags
);
257 struct vb2_ops cx23885_vbi_qops
= {
258 .queue_setup
= queue_setup
,
259 .buf_prepare
= buffer_prepare
,
260 .buf_finish
= buffer_finish
,
261 .buf_queue
= buffer_queue
,
262 .wait_prepare
= vb2_ops_wait_prepare
,
263 .wait_finish
= vb2_ops_wait_finish
,
264 .start_streaming
= cx23885_start_streaming
,
265 .stop_streaming
= cx23885_stop_streaming
,