Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / drivers / media / platform / ti-vpe / sc.c
blobf82d1c7f667f6184f7deee8ffbe75d8336916e58
1 /*
2 * Scaler library
4 * Copyright (c) 2013 Texas Instruments Inc.
6 * David Griego, <dagriego@biglakesoftware.com>
7 * Dale Farnsworth, <dale@farnsworth.org>
8 * Archit Taneja, <archit@ti.com>
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License version 2 as published by
12 * the Free Software Foundation.
15 #include <linux/err.h>
16 #include <linux/io.h>
17 #include <linux/platform_device.h>
18 #include <linux/slab.h>
20 #include "sc.h"
21 #include "sc_coeff.h"
23 void sc_dump_regs(struct sc_data *sc)
25 struct device *dev = &sc->pdev->dev;
27 #define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, \
28 ioread32(sc->base + CFG_##r))
30 DUMPREG(SC0);
31 DUMPREG(SC1);
32 DUMPREG(SC2);
33 DUMPREG(SC3);
34 DUMPREG(SC4);
35 DUMPREG(SC5);
36 DUMPREG(SC6);
37 DUMPREG(SC8);
38 DUMPREG(SC9);
39 DUMPREG(SC10);
40 DUMPREG(SC11);
41 DUMPREG(SC12);
42 DUMPREG(SC13);
43 DUMPREG(SC17);
44 DUMPREG(SC18);
45 DUMPREG(SC19);
46 DUMPREG(SC20);
47 DUMPREG(SC21);
48 DUMPREG(SC22);
49 DUMPREG(SC23);
50 DUMPREG(SC24);
51 DUMPREG(SC25);
53 #undef DUMPREG
57 * set the horizontal scaler coefficients according to the ratio of output to
58 * input widths, after accounting for up to two levels of decimation
60 void sc_set_hs_coeffs(struct sc_data *sc, void *addr, unsigned int src_w,
61 unsigned int dst_w)
63 int sixteenths;
64 int idx;
65 int i, j;
66 u16 *coeff_h = addr;
67 const u16 *cp;
69 if (dst_w > src_w) {
70 idx = HS_UP_SCALE;
71 } else {
72 if ((dst_w << 1) < src_w)
73 dst_w <<= 1; /* first level decimation */
74 if ((dst_w << 1) < src_w)
75 dst_w <<= 1; /* second level decimation */
77 if (dst_w == src_w) {
78 idx = HS_LE_16_16_SCALE;
79 } else {
80 sixteenths = (dst_w << 4) / src_w;
81 if (sixteenths < 8)
82 sixteenths = 8;
83 idx = HS_LT_9_16_SCALE + sixteenths - 8;
87 if (idx == sc->hs_index)
88 return;
90 cp = scaler_hs_coeffs[idx];
92 for (i = 0; i < SC_NUM_PHASES * 2; i++) {
93 for (j = 0; j < SC_H_NUM_TAPS; j++)
94 *coeff_h++ = *cp++;
96 * for each phase, the scaler expects space for 8 coefficients
97 * in it's memory. For the horizontal scaler, we copy the first
98 * 7 coefficients and skip the last slot to move to the next
99 * row to hold coefficients for the next phase
101 coeff_h += SC_NUM_TAPS_MEM_ALIGN - SC_H_NUM_TAPS;
104 sc->hs_index = idx;
106 sc->load_coeff_h = true;
110 * set the vertical scaler coefficients according to the ratio of output to
111 * input heights
113 void sc_set_vs_coeffs(struct sc_data *sc, void *addr, unsigned int src_h,
114 unsigned int dst_h)
116 int sixteenths;
117 int idx;
118 int i, j;
119 u16 *coeff_v = addr;
120 const u16 *cp;
122 if (dst_h > src_h) {
123 idx = VS_UP_SCALE;
124 } else if (dst_h == src_h) {
125 idx = VS_1_TO_1_SCALE;
126 } else {
127 sixteenths = (dst_h << 4) / src_h;
128 if (sixteenths < 8)
129 sixteenths = 8;
130 idx = VS_LT_9_16_SCALE + sixteenths - 8;
133 if (idx == sc->vs_index)
134 return;
136 cp = scaler_vs_coeffs[idx];
138 for (i = 0; i < SC_NUM_PHASES * 2; i++) {
139 for (j = 0; j < SC_V_NUM_TAPS; j++)
140 *coeff_v++ = *cp++;
142 * for the vertical scaler, we copy the first 5 coefficients and
143 * skip the last 3 slots to move to the next row to hold
144 * coefficients for the next phase
146 coeff_v += SC_NUM_TAPS_MEM_ALIGN - SC_V_NUM_TAPS;
149 sc->vs_index = idx;
150 sc->load_coeff_v = true;
153 void sc_config_scaler(struct sc_data *sc, u32 *sc_reg0, u32 *sc_reg8,
154 u32 *sc_reg17, unsigned int src_w, unsigned int src_h,
155 unsigned int dst_w, unsigned int dst_h)
157 struct device *dev = &sc->pdev->dev;
158 u32 val;
159 int dcm_x, dcm_shift;
160 bool use_rav;
161 unsigned long lltmp;
162 u32 lin_acc_inc, lin_acc_inc_u;
163 u32 col_acc_offset;
164 u16 factor = 0;
165 int row_acc_init_rav = 0, row_acc_init_rav_b = 0;
166 u32 row_acc_inc = 0, row_acc_offset = 0, row_acc_offset_b = 0;
168 * location of SC register in payload memory with respect to the first
169 * register in the mmr address data block
171 u32 *sc_reg9 = sc_reg8 + 1;
172 u32 *sc_reg12 = sc_reg8 + 4;
173 u32 *sc_reg13 = sc_reg8 + 5;
174 u32 *sc_reg24 = sc_reg17 + 7;
176 val = sc_reg0[0];
178 /* clear all the features(they may get enabled elsewhere later) */
179 val &= ~(CFG_SELFGEN_FID | CFG_TRIM | CFG_ENABLE_SIN2_VER_INTP |
180 CFG_INTERLACE_I | CFG_DCM_4X | CFG_DCM_2X | CFG_AUTO_HS |
181 CFG_ENABLE_EV | CFG_USE_RAV | CFG_INVT_FID | CFG_SC_BYPASS |
182 CFG_INTERLACE_O | CFG_Y_PK_EN | CFG_HP_BYPASS | CFG_LINEAR);
184 if (src_w == dst_w && src_h == dst_h) {
185 val |= CFG_SC_BYPASS;
186 sc_reg0[0] = val;
187 return;
190 /* we only support linear scaling for now */
191 val |= CFG_LINEAR;
193 /* configure horizontal scaler */
195 /* enable 2X or 4X decimation */
196 dcm_x = src_w / dst_w;
197 if (dcm_x > 4) {
198 val |= CFG_DCM_4X;
199 dcm_shift = 2;
200 } else if (dcm_x > 2) {
201 val |= CFG_DCM_2X;
202 dcm_shift = 1;
203 } else {
204 dcm_shift = 0;
207 lltmp = dst_w - 1;
208 lin_acc_inc = div64_u64(((u64)(src_w >> dcm_shift) - 1) << 24, lltmp);
209 lin_acc_inc_u = 0;
210 col_acc_offset = 0;
212 dev_dbg(dev, "hs config: src_w = %d, dst_w = %d, decimation = %s, lin_acc_inc = %08x\n",
213 src_w, dst_w, dcm_shift == 2 ? "4x" :
214 (dcm_shift == 1 ? "2x" : "none"), lin_acc_inc);
216 /* configure vertical scaler */
218 /* use RAV for vertical scaler if vertical downscaling is > 4x */
219 if (dst_h < (src_h >> 2)) {
220 use_rav = true;
221 val |= CFG_USE_RAV;
222 } else {
223 use_rav = false;
226 if (use_rav) {
227 /* use RAV */
228 factor = (u16) ((dst_h << 10) / src_h);
230 row_acc_init_rav = factor + ((1 + factor) >> 1);
231 if (row_acc_init_rav >= 1024)
232 row_acc_init_rav -= 1024;
234 row_acc_init_rav_b = row_acc_init_rav +
235 (1 + (row_acc_init_rav >> 1)) -
236 (1024 >> 1);
238 if (row_acc_init_rav_b < 0) {
239 row_acc_init_rav_b += row_acc_init_rav;
240 row_acc_init_rav *= 2;
243 dev_dbg(dev, "vs config(RAV): src_h = %d, dst_h = %d, factor = %d, acc_init = %08x, acc_init_b = %08x\n",
244 src_h, dst_h, factor, row_acc_init_rav,
245 row_acc_init_rav_b);
246 } else {
247 /* use polyphase */
248 row_acc_inc = ((src_h - 1) << 16) / (dst_h - 1);
249 row_acc_offset = 0;
250 row_acc_offset_b = 0;
252 dev_dbg(dev, "vs config(POLY): src_h = %d, dst_h = %d,row_acc_inc = %08x\n",
253 src_h, dst_h, row_acc_inc);
257 sc_reg0[0] = val;
258 sc_reg0[1] = row_acc_inc;
259 sc_reg0[2] = row_acc_offset;
260 sc_reg0[3] = row_acc_offset_b;
262 sc_reg0[4] = ((lin_acc_inc_u & CFG_LIN_ACC_INC_U_MASK) <<
263 CFG_LIN_ACC_INC_U_SHIFT) | (dst_w << CFG_TAR_W_SHIFT) |
264 (dst_h << CFG_TAR_H_SHIFT);
266 sc_reg0[5] = (src_w << CFG_SRC_W_SHIFT) | (src_h << CFG_SRC_H_SHIFT);
268 sc_reg0[6] = (row_acc_init_rav_b << CFG_ROW_ACC_INIT_RAV_B_SHIFT) |
269 (row_acc_init_rav << CFG_ROW_ACC_INIT_RAV_SHIFT);
271 *sc_reg9 = lin_acc_inc;
273 *sc_reg12 = col_acc_offset << CFG_COL_ACC_OFFSET_SHIFT;
275 *sc_reg13 = factor;
277 *sc_reg24 = (src_w << CFG_ORG_W_SHIFT) | (src_h << CFG_ORG_H_SHIFT);
280 struct sc_data *sc_create(struct platform_device *pdev)
282 struct sc_data *sc;
284 dev_dbg(&pdev->dev, "sc_create\n");
286 sc = devm_kzalloc(&pdev->dev, sizeof(*sc), GFP_KERNEL);
287 if (!sc) {
288 dev_err(&pdev->dev, "couldn't alloc sc_data\n");
289 return ERR_PTR(-ENOMEM);
292 sc->pdev = pdev;
294 sc->res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sc");
295 if (!sc->res) {
296 dev_err(&pdev->dev, "missing platform resources data\n");
297 return ERR_PTR(-ENODEV);
300 sc->base = devm_ioremap_resource(&pdev->dev, sc->res);
301 if (IS_ERR(sc->base)) {
302 dev_err(&pdev->dev, "failed to ioremap\n");
303 return ERR_CAST(sc->base);
306 return sc;