2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/wait.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/module.h>
30 MODULE_LICENSE("GPL");
33 * We define a module parameter that allows the user to override
34 * the hardware and decide what timing mode should be used.
36 #define NAND_DEFAULT_TIMINGS -1
38 static int onfi_timing_mode
= NAND_DEFAULT_TIMINGS
;
39 module_param(onfi_timing_mode
, int, S_IRUGO
);
40 MODULE_PARM_DESC(onfi_timing_mode
,
41 "Overrides default ONFI setting. -1 indicates use default timings");
43 #define DENALI_NAND_NAME "denali-nand"
46 * We define a macro here that combines all interrupts this driver uses into
47 * a single constant value, for convenience.
49 #define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
50 INTR_STATUS__ECC_TRANSACTION_DONE | \
51 INTR_STATUS__ECC_ERR | \
52 INTR_STATUS__PROGRAM_FAIL | \
53 INTR_STATUS__LOAD_COMP | \
54 INTR_STATUS__PROGRAM_COMP | \
55 INTR_STATUS__TIME_OUT | \
56 INTR_STATUS__ERASE_FAIL | \
57 INTR_STATUS__RST_COMP | \
58 INTR_STATUS__ERASE_COMP)
61 * indicates whether or not the internal value for the flash bank is
64 #define CHIP_SELECT_INVALID -1
66 #define SUPPORT_8BITECC 1
69 * This macro divides two integers and rounds fractional values up
70 * to the nearest integer value.
72 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
75 * this macro allows us to convert from an MTD structure to our own
76 * device context (denali) structure.
78 static inline struct denali_nand_info
*mtd_to_denali(struct mtd_info
*mtd
)
80 return container_of(mtd_to_nand(mtd
), struct denali_nand_info
, nand
);
84 * These constants are defined by the driver to enable common driver
85 * configuration options.
87 #define SPARE_ACCESS 0x41
88 #define MAIN_ACCESS 0x42
89 #define MAIN_SPARE_ACCESS 0x43
90 #define PIPELINE_ACCESS 0x2000
93 #define DENALI_WRITE 0x100
95 /* types of device accesses. We can issue commands and get status */
96 #define COMMAND_CYCLE 0
98 #define STATUS_CYCLE 2
101 * this is a helper macro that allows us to
102 * format the bank into the proper bits for the controller
104 #define BANK(x) ((x) << 24)
106 /* forward declarations */
107 static void clear_interrupts(struct denali_nand_info
*denali
);
108 static uint32_t wait_for_irq(struct denali_nand_info
*denali
,
110 static void denali_irq_enable(struct denali_nand_info
*denali
,
112 static uint32_t read_interrupt_status(struct denali_nand_info
*denali
);
115 * Certain operations for the denali NAND controller use an indexed mode to
116 * read/write data. The operation is performed by writing the address value
117 * of the command to the device memory followed by the data. This function
118 * abstracts this common operation.
120 static void index_addr(struct denali_nand_info
*denali
,
121 uint32_t address
, uint32_t data
)
123 iowrite32(address
, denali
->flash_mem
);
124 iowrite32(data
, denali
->flash_mem
+ 0x10);
127 /* Perform an indexed read of the device */
128 static void index_addr_read_data(struct denali_nand_info
*denali
,
129 uint32_t address
, uint32_t *pdata
)
131 iowrite32(address
, denali
->flash_mem
);
132 *pdata
= ioread32(denali
->flash_mem
+ 0x10);
136 * We need to buffer some data for some of the NAND core routines.
137 * The operations manage buffering that data.
139 static void reset_buf(struct denali_nand_info
*denali
)
141 denali
->buf
.head
= denali
->buf
.tail
= 0;
144 static void write_byte_to_buf(struct denali_nand_info
*denali
, uint8_t byte
)
146 denali
->buf
.buf
[denali
->buf
.tail
++] = byte
;
149 /* reads the status of the device */
150 static void read_status(struct denali_nand_info
*denali
)
154 /* initialize the data buffer to store status */
157 cmd
= ioread32(denali
->flash_reg
+ WRITE_PROTECT
);
159 write_byte_to_buf(denali
, NAND_STATUS_WP
);
161 write_byte_to_buf(denali
, 0);
164 /* resets a specific device connected to the core */
165 static void reset_bank(struct denali_nand_info
*denali
)
168 uint32_t irq_mask
= INTR_STATUS__RST_COMP
| INTR_STATUS__TIME_OUT
;
170 clear_interrupts(denali
);
172 iowrite32(1 << denali
->flash_bank
, denali
->flash_reg
+ DEVICE_RESET
);
174 irq_status
= wait_for_irq(denali
, irq_mask
);
176 if (irq_status
& INTR_STATUS__TIME_OUT
)
177 dev_err(denali
->dev
, "reset bank failed.\n");
180 /* Reset the flash controller */
181 static uint16_t denali_nand_reset(struct denali_nand_info
*denali
)
185 dev_dbg(denali
->dev
, "%s, Line %d, Function: %s\n",
186 __FILE__
, __LINE__
, __func__
);
188 for (i
= 0; i
< denali
->max_banks
; i
++)
189 iowrite32(INTR_STATUS__RST_COMP
| INTR_STATUS__TIME_OUT
,
190 denali
->flash_reg
+ INTR_STATUS(i
));
192 for (i
= 0; i
< denali
->max_banks
; i
++) {
193 iowrite32(1 << i
, denali
->flash_reg
+ DEVICE_RESET
);
194 while (!(ioread32(denali
->flash_reg
+ INTR_STATUS(i
)) &
195 (INTR_STATUS__RST_COMP
| INTR_STATUS__TIME_OUT
)))
197 if (ioread32(denali
->flash_reg
+ INTR_STATUS(i
)) &
198 INTR_STATUS__TIME_OUT
)
200 "NAND Reset operation timed out on bank %d\n", i
);
203 for (i
= 0; i
< denali
->max_banks
; i
++)
204 iowrite32(INTR_STATUS__RST_COMP
| INTR_STATUS__TIME_OUT
,
205 denali
->flash_reg
+ INTR_STATUS(i
));
211 * this routine calculates the ONFI timing values for a given mode and
212 * programs the clocking register accordingly. The mode is determined by
213 * the get_onfi_nand_para routine.
215 static void nand_onfi_timing_set(struct denali_nand_info
*denali
,
218 uint16_t Trea
[6] = {40, 30, 25, 20, 20, 16};
219 uint16_t Trp
[6] = {50, 25, 17, 15, 12, 10};
220 uint16_t Treh
[6] = {30, 15, 15, 10, 10, 7};
221 uint16_t Trc
[6] = {100, 50, 35, 30, 25, 20};
222 uint16_t Trhoh
[6] = {0, 15, 15, 15, 15, 15};
223 uint16_t Trloh
[6] = {0, 0, 0, 0, 5, 5};
224 uint16_t Tcea
[6] = {100, 45, 30, 25, 25, 25};
225 uint16_t Tadl
[6] = {200, 100, 100, 100, 70, 70};
226 uint16_t Trhw
[6] = {200, 100, 100, 100, 100, 100};
227 uint16_t Trhz
[6] = {200, 100, 100, 100, 100, 100};
228 uint16_t Twhr
[6] = {120, 80, 80, 60, 60, 60};
229 uint16_t Tcs
[6] = {70, 35, 25, 25, 20, 15};
231 uint16_t data_invalid_rhoh
, data_invalid_rloh
, data_invalid
;
232 uint16_t dv_window
= 0;
233 uint16_t en_lo
, en_hi
;
235 uint16_t addr_2_data
, re_2_we
, re_2_re
, we_2_re
, cs_cnt
;
237 dev_dbg(denali
->dev
, "%s, Line %d, Function: %s\n",
238 __FILE__
, __LINE__
, __func__
);
240 en_lo
= CEIL_DIV(Trp
[mode
], CLK_X
);
241 en_hi
= CEIL_DIV(Treh
[mode
], CLK_X
);
243 if ((en_hi
* CLK_X
) < (Treh
[mode
] + 2))
247 if ((en_lo
+ en_hi
) * CLK_X
< Trc
[mode
])
248 en_lo
+= CEIL_DIV((Trc
[mode
] - (en_lo
+ en_hi
) * CLK_X
), CLK_X
);
250 if ((en_lo
+ en_hi
) < CLK_MULTI
)
251 en_lo
+= CLK_MULTI
- en_lo
- en_hi
;
253 while (dv_window
< 8) {
254 data_invalid_rhoh
= en_lo
* CLK_X
+ Trhoh
[mode
];
256 data_invalid_rloh
= (en_lo
+ en_hi
) * CLK_X
+ Trloh
[mode
];
258 data_invalid
= data_invalid_rhoh
< data_invalid_rloh
?
259 data_invalid_rhoh
: data_invalid_rloh
;
261 dv_window
= data_invalid
- Trea
[mode
];
267 acc_clks
= CEIL_DIV(Trea
[mode
], CLK_X
);
269 while (acc_clks
* CLK_X
- Trea
[mode
] < 3)
272 if (data_invalid
- acc_clks
* CLK_X
< 2)
273 dev_warn(denali
->dev
, "%s, Line %d: Warning!\n",
276 addr_2_data
= CEIL_DIV(Tadl
[mode
], CLK_X
);
277 re_2_we
= CEIL_DIV(Trhw
[mode
], CLK_X
);
278 re_2_re
= CEIL_DIV(Trhz
[mode
], CLK_X
);
279 we_2_re
= CEIL_DIV(Twhr
[mode
], CLK_X
);
280 cs_cnt
= CEIL_DIV((Tcs
[mode
] - Trp
[mode
]), CLK_X
);
285 while (cs_cnt
* CLK_X
+ Trea
[mode
] < Tcea
[mode
])
294 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
295 if (ioread32(denali
->flash_reg
+ MANUFACTURER_ID
) == 0 &&
296 ioread32(denali
->flash_reg
+ DEVICE_ID
) == 0x88)
299 iowrite32(acc_clks
, denali
->flash_reg
+ ACC_CLKS
);
300 iowrite32(re_2_we
, denali
->flash_reg
+ RE_2_WE
);
301 iowrite32(re_2_re
, denali
->flash_reg
+ RE_2_RE
);
302 iowrite32(we_2_re
, denali
->flash_reg
+ WE_2_RE
);
303 iowrite32(addr_2_data
, denali
->flash_reg
+ ADDR_2_DATA
);
304 iowrite32(en_lo
, denali
->flash_reg
+ RDWR_EN_LO_CNT
);
305 iowrite32(en_hi
, denali
->flash_reg
+ RDWR_EN_HI_CNT
);
306 iowrite32(cs_cnt
, denali
->flash_reg
+ CS_SETUP_CNT
);
309 /* queries the NAND device to see what ONFI modes it supports. */
310 static uint16_t get_onfi_nand_para(struct denali_nand_info
*denali
)
315 * we needn't to do a reset here because driver has already
316 * reset all the banks before
318 if (!(ioread32(denali
->flash_reg
+ ONFI_TIMING_MODE
) &
319 ONFI_TIMING_MODE__VALUE
))
322 for (i
= 5; i
> 0; i
--) {
323 if (ioread32(denali
->flash_reg
+ ONFI_TIMING_MODE
) &
328 nand_onfi_timing_set(denali
, i
);
331 * By now, all the ONFI devices we know support the page cache
332 * rw feature. So here we enable the pipeline_rw_ahead feature
334 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
335 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
340 static void get_samsung_nand_para(struct denali_nand_info
*denali
,
343 if (device_id
== 0xd3) { /* Samsung K9WAG08U1A */
344 /* Set timing register values according to datasheet */
345 iowrite32(5, denali
->flash_reg
+ ACC_CLKS
);
346 iowrite32(20, denali
->flash_reg
+ RE_2_WE
);
347 iowrite32(12, denali
->flash_reg
+ WE_2_RE
);
348 iowrite32(14, denali
->flash_reg
+ ADDR_2_DATA
);
349 iowrite32(3, denali
->flash_reg
+ RDWR_EN_LO_CNT
);
350 iowrite32(2, denali
->flash_reg
+ RDWR_EN_HI_CNT
);
351 iowrite32(2, denali
->flash_reg
+ CS_SETUP_CNT
);
355 static void get_toshiba_nand_para(struct denali_nand_info
*denali
)
360 * Workaround to fix a controller bug which reports a wrong
361 * spare area size for some kind of Toshiba NAND device
363 if ((ioread32(denali
->flash_reg
+ DEVICE_MAIN_AREA_SIZE
) == 4096) &&
364 (ioread32(denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
) == 64)) {
365 iowrite32(216, denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
);
366 tmp
= ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
) *
367 ioread32(denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
);
369 denali
->flash_reg
+ LOGICAL_PAGE_SPARE_SIZE
);
371 iowrite32(15, denali
->flash_reg
+ ECC_CORRECTION
);
372 #elif SUPPORT_8BITECC
373 iowrite32(8, denali
->flash_reg
+ ECC_CORRECTION
);
378 static void get_hynix_nand_para(struct denali_nand_info
*denali
,
381 uint32_t main_size
, spare_size
;
384 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
385 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
386 iowrite32(128, denali
->flash_reg
+ PAGES_PER_BLOCK
);
387 iowrite32(4096, denali
->flash_reg
+ DEVICE_MAIN_AREA_SIZE
);
388 iowrite32(224, denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
);
390 ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
);
392 ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
);
394 denali
->flash_reg
+ LOGICAL_PAGE_DATA_SIZE
);
395 iowrite32(spare_size
,
396 denali
->flash_reg
+ LOGICAL_PAGE_SPARE_SIZE
);
397 iowrite32(0, denali
->flash_reg
+ DEVICE_WIDTH
);
399 iowrite32(15, denali
->flash_reg
+ ECC_CORRECTION
);
400 #elif SUPPORT_8BITECC
401 iowrite32(8, denali
->flash_reg
+ ECC_CORRECTION
);
405 dev_warn(denali
->dev
,
406 "Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
407 "Will use default parameter values instead.\n",
413 * determines how many NAND chips are connected to the controller. Note for
414 * Intel CE4100 devices we don't support more than one device.
416 static void find_valid_banks(struct denali_nand_info
*denali
)
418 uint32_t id
[denali
->max_banks
];
421 denali
->total_used_banks
= 1;
422 for (i
= 0; i
< denali
->max_banks
; i
++) {
423 index_addr(denali
, MODE_11
| (i
<< 24) | 0, 0x90);
424 index_addr(denali
, MODE_11
| (i
<< 24) | 1, 0);
425 index_addr_read_data(denali
, MODE_11
| (i
<< 24) | 2, &id
[i
]);
428 "Return 1st ID for bank[%d]: %x\n", i
, id
[i
]);
431 if (!(id
[i
] & 0x0ff))
434 if ((id
[i
] & 0x0ff) == (id
[0] & 0x0ff))
435 denali
->total_used_banks
++;
441 if (denali
->platform
== INTEL_CE4100
) {
443 * Platform limitations of the CE4100 device limit
444 * users to a single chip solution for NAND.
445 * Multichip support is not enabled.
447 if (denali
->total_used_banks
!= 1) {
449 "Sorry, Intel CE4100 only supports a single NAND device.\n");
454 "denali->total_used_banks: %d\n", denali
->total_used_banks
);
458 * Use the configuration feature register to determine the maximum number of
459 * banks that the hardware supports.
461 static void detect_max_banks(struct denali_nand_info
*denali
)
463 uint32_t features
= ioread32(denali
->flash_reg
+ FEATURES
);
465 * Read the revision register, so we can calculate the max_banks
466 * properly: the encoding changed from rev 5.0 to 5.1
468 u32 revision
= MAKE_COMPARABLE_REVISION(
469 ioread32(denali
->flash_reg
+ REVISION
));
471 if (revision
< REVISION_5_1
)
472 denali
->max_banks
= 2 << (features
& FEATURES__N_BANKS
);
474 denali
->max_banks
= 1 << (features
& FEATURES__N_BANKS
);
477 static void detect_partition_feature(struct denali_nand_info
*denali
)
480 * For MRST platform, denali->fwblks represent the
481 * number of blocks firmware is taken,
482 * FW is in protect partition and MTD driver has no
483 * permission to access it. So let driver know how many
484 * blocks it can't touch.
486 if (ioread32(denali
->flash_reg
+ FEATURES
) & FEATURES__PARTITION
) {
487 if ((ioread32(denali
->flash_reg
+ PERM_SRC_ID(1)) &
488 PERM_SRC_ID__SRCID
) == SPECTRA_PARTITION_ID
) {
490 ((ioread32(denali
->flash_reg
+ MIN_MAX_BANK(1)) &
491 MIN_MAX_BANK__MIN_VALUE
) *
494 (ioread32(denali
->flash_reg
+ MIN_BLK_ADDR(1)) &
495 MIN_BLK_ADDR__VALUE
);
497 denali
->fwblks
= SPECTRA_START_BLOCK
;
500 denali
->fwblks
= SPECTRA_START_BLOCK
;
504 static uint16_t denali_nand_timing_set(struct denali_nand_info
*denali
)
506 uint16_t status
= PASS
;
507 uint32_t id_bytes
[8], addr
;
508 uint8_t maf_id
, device_id
;
511 dev_dbg(denali
->dev
, "%s, Line %d, Function: %s\n",
512 __FILE__
, __LINE__
, __func__
);
515 * Use read id method to get device ID and other params.
516 * For some NAND chips, controller can't report the correct
517 * device ID by reading from DEVICE_ID register
519 addr
= MODE_11
| BANK(denali
->flash_bank
);
520 index_addr(denali
, addr
| 0, 0x90);
521 index_addr(denali
, addr
| 1, 0);
522 for (i
= 0; i
< 8; i
++)
523 index_addr_read_data(denali
, addr
| 2, &id_bytes
[i
]);
524 maf_id
= id_bytes
[0];
525 device_id
= id_bytes
[1];
527 if (ioread32(denali
->flash_reg
+ ONFI_DEVICE_NO_OF_LUNS
) &
528 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE
) { /* ONFI 1.0 NAND */
529 if (FAIL
== get_onfi_nand_para(denali
))
531 } else if (maf_id
== 0xEC) { /* Samsung NAND */
532 get_samsung_nand_para(denali
, device_id
);
533 } else if (maf_id
== 0x98) { /* Toshiba NAND */
534 get_toshiba_nand_para(denali
);
535 } else if (maf_id
== 0xAD) { /* Hynix NAND */
536 get_hynix_nand_para(denali
, device_id
);
539 dev_info(denali
->dev
,
540 "Dump timing register values:\n"
541 "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
542 "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
543 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
544 ioread32(denali
->flash_reg
+ ACC_CLKS
),
545 ioread32(denali
->flash_reg
+ RE_2_WE
),
546 ioread32(denali
->flash_reg
+ RE_2_RE
),
547 ioread32(denali
->flash_reg
+ WE_2_RE
),
548 ioread32(denali
->flash_reg
+ ADDR_2_DATA
),
549 ioread32(denali
->flash_reg
+ RDWR_EN_LO_CNT
),
550 ioread32(denali
->flash_reg
+ RDWR_EN_HI_CNT
),
551 ioread32(denali
->flash_reg
+ CS_SETUP_CNT
));
553 find_valid_banks(denali
);
555 detect_partition_feature(denali
);
558 * If the user specified to override the default timings
559 * with a specific ONFI mode, we apply those changes here.
561 if (onfi_timing_mode
!= NAND_DEFAULT_TIMINGS
)
562 nand_onfi_timing_set(denali
, onfi_timing_mode
);
567 static void denali_set_intr_modes(struct denali_nand_info
*denali
,
570 dev_dbg(denali
->dev
, "%s, Line %d, Function: %s\n",
571 __FILE__
, __LINE__
, __func__
);
574 iowrite32(1, denali
->flash_reg
+ GLOBAL_INT_ENABLE
);
576 iowrite32(0, denali
->flash_reg
+ GLOBAL_INT_ENABLE
);
580 * validation function to verify that the controlling software is making
583 static inline bool is_flash_bank_valid(int flash_bank
)
585 return flash_bank
>= 0 && flash_bank
< 4;
588 static void denali_irq_init(struct denali_nand_info
*denali
)
593 /* Disable global interrupts */
594 denali_set_intr_modes(denali
, false);
596 int_mask
= DENALI_IRQ_ALL
;
598 /* Clear all status bits */
599 for (i
= 0; i
< denali
->max_banks
; ++i
)
600 iowrite32(0xFFFF, denali
->flash_reg
+ INTR_STATUS(i
));
602 denali_irq_enable(denali
, int_mask
);
605 static void denali_irq_cleanup(int irqnum
, struct denali_nand_info
*denali
)
607 denali_set_intr_modes(denali
, false);
608 free_irq(irqnum
, denali
);
611 static void denali_irq_enable(struct denali_nand_info
*denali
,
616 for (i
= 0; i
< denali
->max_banks
; ++i
)
617 iowrite32(int_mask
, denali
->flash_reg
+ INTR_EN(i
));
621 * This function only returns when an interrupt that this driver cares about
622 * occurs. This is to reduce the overhead of servicing interrupts
624 static inline uint32_t denali_irq_detected(struct denali_nand_info
*denali
)
626 return read_interrupt_status(denali
) & DENALI_IRQ_ALL
;
629 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
630 static inline void clear_interrupt(struct denali_nand_info
*denali
,
633 uint32_t intr_status_reg
;
635 intr_status_reg
= INTR_STATUS(denali
->flash_bank
);
637 iowrite32(irq_mask
, denali
->flash_reg
+ intr_status_reg
);
640 static void clear_interrupts(struct denali_nand_info
*denali
)
644 spin_lock_irq(&denali
->irq_lock
);
646 status
= read_interrupt_status(denali
);
647 clear_interrupt(denali
, status
);
649 denali
->irq_status
= 0x0;
650 spin_unlock_irq(&denali
->irq_lock
);
653 static uint32_t read_interrupt_status(struct denali_nand_info
*denali
)
655 uint32_t intr_status_reg
;
657 intr_status_reg
= INTR_STATUS(denali
->flash_bank
);
659 return ioread32(denali
->flash_reg
+ intr_status_reg
);
663 * This is the interrupt service routine. It handles all interrupts
664 * sent to this device. Note that on CE4100, this is a shared interrupt.
666 static irqreturn_t
denali_isr(int irq
, void *dev_id
)
668 struct denali_nand_info
*denali
= dev_id
;
670 irqreturn_t result
= IRQ_NONE
;
672 spin_lock(&denali
->irq_lock
);
674 /* check to see if a valid NAND chip has been selected. */
675 if (is_flash_bank_valid(denali
->flash_bank
)) {
677 * check to see if controller generated the interrupt,
678 * since this is a shared interrupt
680 irq_status
= denali_irq_detected(denali
);
681 if (irq_status
!= 0) {
682 /* handle interrupt */
683 /* first acknowledge it */
684 clear_interrupt(denali
, irq_status
);
686 * store the status in the device context for someone
689 denali
->irq_status
|= irq_status
;
690 /* notify anyone who cares that it happened */
691 complete(&denali
->complete
);
692 /* tell the OS that we've handled this */
693 result
= IRQ_HANDLED
;
696 spin_unlock(&denali
->irq_lock
);
699 #define BANK(x) ((x) << 24)
701 static uint32_t wait_for_irq(struct denali_nand_info
*denali
, uint32_t irq_mask
)
703 unsigned long comp_res
;
704 uint32_t intr_status
;
705 unsigned long timeout
= msecs_to_jiffies(1000);
709 wait_for_completion_timeout(&denali
->complete
, timeout
);
710 spin_lock_irq(&denali
->irq_lock
);
711 intr_status
= denali
->irq_status
;
713 if (intr_status
& irq_mask
) {
714 denali
->irq_status
&= ~irq_mask
;
715 spin_unlock_irq(&denali
->irq_lock
);
716 /* our interrupt was detected */
721 * these are not the interrupts you are looking for -
724 spin_unlock_irq(&denali
->irq_lock
);
725 } while (comp_res
!= 0);
729 pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
730 intr_status
, irq_mask
);
738 * This helper function setups the registers for ECC and whether or not
739 * the spare area will be transferred.
741 static void setup_ecc_for_xfer(struct denali_nand_info
*denali
, bool ecc_en
,
744 int ecc_en_flag
, transfer_spare_flag
;
746 /* set ECC, transfer spare bits if needed */
747 ecc_en_flag
= ecc_en
? ECC_ENABLE__FLAG
: 0;
748 transfer_spare_flag
= transfer_spare
? TRANSFER_SPARE_REG__FLAG
: 0;
750 /* Enable spare area/ECC per user's request. */
751 iowrite32(ecc_en_flag
, denali
->flash_reg
+ ECC_ENABLE
);
752 iowrite32(transfer_spare_flag
, denali
->flash_reg
+ TRANSFER_SPARE_REG
);
756 * sends a pipeline command operation to the controller. See the Denali NAND
757 * controller's user guide for more information (section 4.2.3.6).
759 static int denali_send_pipeline_cmd(struct denali_nand_info
*denali
,
760 bool ecc_en
, bool transfer_spare
,
761 int access_type
, int op
)
764 uint32_t page_count
= 1;
765 uint32_t addr
, cmd
, irq_status
, irq_mask
;
767 if (op
== DENALI_READ
)
768 irq_mask
= INTR_STATUS__LOAD_COMP
;
769 else if (op
== DENALI_WRITE
)
774 setup_ecc_for_xfer(denali
, ecc_en
, transfer_spare
);
776 clear_interrupts(denali
);
778 addr
= BANK(denali
->flash_bank
) | denali
->page
;
780 if (op
== DENALI_WRITE
&& access_type
!= SPARE_ACCESS
) {
781 cmd
= MODE_01
| addr
;
782 iowrite32(cmd
, denali
->flash_mem
);
783 } else if (op
== DENALI_WRITE
&& access_type
== SPARE_ACCESS
) {
784 /* read spare area */
785 cmd
= MODE_10
| addr
;
786 index_addr(denali
, cmd
, access_type
);
788 cmd
= MODE_01
| addr
;
789 iowrite32(cmd
, denali
->flash_mem
);
790 } else if (op
== DENALI_READ
) {
791 /* setup page read request for access type */
792 cmd
= MODE_10
| addr
;
793 index_addr(denali
, cmd
, access_type
);
796 * page 33 of the NAND controller spec indicates we should not
797 * use the pipeline commands in Spare area only mode.
800 if (access_type
== SPARE_ACCESS
) {
801 cmd
= MODE_01
| addr
;
802 iowrite32(cmd
, denali
->flash_mem
);
804 index_addr(denali
, cmd
,
805 PIPELINE_ACCESS
| op
| page_count
);
808 * wait for command to be accepted
809 * can always use status0 bit as the
810 * mask is identical for each bank.
812 irq_status
= wait_for_irq(denali
, irq_mask
);
814 if (irq_status
== 0) {
816 "cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n",
817 cmd
, denali
->page
, addr
);
820 cmd
= MODE_01
| addr
;
821 iowrite32(cmd
, denali
->flash_mem
);
828 /* helper function that simply writes a buffer to the flash */
829 static int write_data_to_flash_mem(struct denali_nand_info
*denali
,
830 const uint8_t *buf
, int len
)
836 * verify that the len is a multiple of 4.
837 * see comment in read_data_from_flash_mem()
839 BUG_ON((len
% 4) != 0);
841 /* write the data to the flash memory */
842 buf32
= (uint32_t *)buf
;
843 for (i
= 0; i
< len
/ 4; i
++)
844 iowrite32(*buf32
++, denali
->flash_mem
+ 0x10);
845 return i
* 4; /* intent is to return the number of bytes read */
848 /* helper function that simply reads a buffer from the flash */
849 static int read_data_from_flash_mem(struct denali_nand_info
*denali
,
850 uint8_t *buf
, int len
)
856 * we assume that len will be a multiple of 4, if not it would be nice
857 * to know about it ASAP rather than have random failures...
858 * This assumption is based on the fact that this function is designed
859 * to be used to read flash pages, which are typically multiples of 4.
861 BUG_ON((len
% 4) != 0);
863 /* transfer the data from the flash */
864 buf32
= (uint32_t *)buf
;
865 for (i
= 0; i
< len
/ 4; i
++)
866 *buf32
++ = ioread32(denali
->flash_mem
+ 0x10);
867 return i
* 4; /* intent is to return the number of bytes read */
870 /* writes OOB data to the device */
871 static int write_oob_data(struct mtd_info
*mtd
, uint8_t *buf
, int page
)
873 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
875 uint32_t irq_mask
= INTR_STATUS__PROGRAM_COMP
|
876 INTR_STATUS__PROGRAM_FAIL
;
881 if (denali_send_pipeline_cmd(denali
, false, false, SPARE_ACCESS
,
882 DENALI_WRITE
) == PASS
) {
883 write_data_to_flash_mem(denali
, buf
, mtd
->oobsize
);
885 /* wait for operation to complete */
886 irq_status
= wait_for_irq(denali
, irq_mask
);
888 if (irq_status
== 0) {
889 dev_err(denali
->dev
, "OOB write failed\n");
893 dev_err(denali
->dev
, "unable to send pipeline command\n");
899 /* reads OOB data from the device */
900 static void read_oob_data(struct mtd_info
*mtd
, uint8_t *buf
, int page
)
902 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
903 uint32_t irq_mask
= INTR_STATUS__LOAD_COMP
;
904 uint32_t irq_status
, addr
, cmd
;
908 if (denali_send_pipeline_cmd(denali
, false, true, SPARE_ACCESS
,
909 DENALI_READ
) == PASS
) {
910 read_data_from_flash_mem(denali
, buf
, mtd
->oobsize
);
913 * wait for command to be accepted
914 * can always use status0 bit as the
915 * mask is identical for each bank.
917 irq_status
= wait_for_irq(denali
, irq_mask
);
920 dev_err(denali
->dev
, "page on OOB timeout %d\n",
924 * We set the device back to MAIN_ACCESS here as I observed
925 * instability with the controller if you do a block erase
926 * and the last transaction was a SPARE_ACCESS. Block erase
927 * is reliable (according to the MTD test infrastructure)
928 * if you are in MAIN_ACCESS.
930 addr
= BANK(denali
->flash_bank
) | denali
->page
;
931 cmd
= MODE_10
| addr
;
932 index_addr(denali
, cmd
, MAIN_ACCESS
);
937 * this function examines buffers to see if they contain data that
938 * indicate that the buffer is part of an erased region of flash.
940 static bool is_erased(uint8_t *buf
, int len
)
944 for (i
= 0; i
< len
; i
++)
949 #define ECC_SECTOR_SIZE 512
951 #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
952 #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
953 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
954 #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
955 #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
956 #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
958 static bool handle_ecc(struct denali_nand_info
*denali
, uint8_t *buf
,
959 uint32_t irq_status
, unsigned int *max_bitflips
)
961 bool check_erased_page
= false;
962 unsigned int bitflips
= 0;
964 if (irq_status
& INTR_STATUS__ECC_ERR
) {
965 /* read the ECC errors. we'll ignore them for now */
966 uint32_t err_address
, err_correction_info
, err_byte
,
967 err_sector
, err_device
, err_correction_value
;
968 denali_set_intr_modes(denali
, false);
971 err_address
= ioread32(denali
->flash_reg
+
973 err_sector
= ECC_SECTOR(err_address
);
974 err_byte
= ECC_BYTE(err_address
);
976 err_correction_info
= ioread32(denali
->flash_reg
+
977 ERR_CORRECTION_INFO
);
978 err_correction_value
=
979 ECC_CORRECTION_VALUE(err_correction_info
);
980 err_device
= ECC_ERR_DEVICE(err_correction_info
);
982 if (ECC_ERROR_CORRECTABLE(err_correction_info
)) {
984 * If err_byte is larger than ECC_SECTOR_SIZE,
985 * means error happened in OOB, so we ignore
986 * it. It's no need for us to correct it
987 * err_device is represented the NAND error
988 * bits are happened in if there are more
989 * than one NAND connected.
991 if (err_byte
< ECC_SECTOR_SIZE
) {
992 struct mtd_info
*mtd
=
993 nand_to_mtd(&denali
->nand
);
996 offset
= (err_sector
*
1001 /* correct the ECC error */
1002 buf
[offset
] ^= err_correction_value
;
1003 mtd
->ecc_stats
.corrected
++;
1008 * if the error is not correctable, need to
1009 * look at the page to see if it is an erased
1010 * page. if so, then it's not a real ECC error
1012 check_erased_page
= true;
1014 } while (!ECC_LAST_ERR(err_correction_info
));
1016 * Once handle all ecc errors, controller will triger
1017 * a ECC_TRANSACTION_DONE interrupt, so here just wait
1018 * for a while for this interrupt
1020 while (!(read_interrupt_status(denali
) &
1021 INTR_STATUS__ECC_TRANSACTION_DONE
))
1023 clear_interrupts(denali
);
1024 denali_set_intr_modes(denali
, true);
1026 *max_bitflips
= bitflips
;
1027 return check_erased_page
;
1030 /* programs the controller to either enable/disable DMA transfers */
1031 static void denali_enable_dma(struct denali_nand_info
*denali
, bool en
)
1033 iowrite32(en
? DMA_ENABLE__FLAG
: 0, denali
->flash_reg
+ DMA_ENABLE
);
1034 ioread32(denali
->flash_reg
+ DMA_ENABLE
);
1037 /* setups the HW to perform the data DMA */
1038 static void denali_setup_dma(struct denali_nand_info
*denali
, int op
)
1041 const int page_count
= 1;
1042 uint32_t addr
= denali
->buf
.dma_buf
;
1044 mode
= MODE_10
| BANK(denali
->flash_bank
);
1046 /* DMA is a four step process */
1048 /* 1. setup transfer type and # of pages */
1049 index_addr(denali
, mode
| denali
->page
, 0x2000 | op
| page_count
);
1051 /* 2. set memory high address bits 23:8 */
1052 index_addr(denali
, mode
| ((addr
>> 16) << 8), 0x2200);
1054 /* 3. set memory low address bits 23:8 */
1055 index_addr(denali
, mode
| ((addr
& 0xffff) << 8), 0x2300);
1057 /* 4. interrupt when complete, burst len = 64 bytes */
1058 index_addr(denali
, mode
| 0x14000, 0x2400);
1062 * writes a page. user specifies type, and this function handles the
1063 * configuration details.
1065 static int write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1066 const uint8_t *buf
, bool raw_xfer
)
1068 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1069 dma_addr_t addr
= denali
->buf
.dma_buf
;
1070 size_t size
= mtd
->writesize
+ mtd
->oobsize
;
1071 uint32_t irq_status
;
1072 uint32_t irq_mask
= INTR_STATUS__DMA_CMD_COMP
|
1073 INTR_STATUS__PROGRAM_FAIL
;
1076 * if it is a raw xfer, we want to disable ecc and send the spare area.
1077 * !raw_xfer - enable ecc
1078 * raw_xfer - transfer spare
1080 setup_ecc_for_xfer(denali
, !raw_xfer
, raw_xfer
);
1082 /* copy buffer into DMA buffer */
1083 memcpy(denali
->buf
.buf
, buf
, mtd
->writesize
);
1086 /* transfer the data to the spare area */
1087 memcpy(denali
->buf
.buf
+ mtd
->writesize
,
1092 dma_sync_single_for_device(denali
->dev
, addr
, size
, DMA_TO_DEVICE
);
1094 clear_interrupts(denali
);
1095 denali_enable_dma(denali
, true);
1097 denali_setup_dma(denali
, DENALI_WRITE
);
1099 /* wait for operation to complete */
1100 irq_status
= wait_for_irq(denali
, irq_mask
);
1102 if (irq_status
== 0) {
1103 dev_err(denali
->dev
, "timeout on write_page (type = %d)\n",
1105 denali
->status
= NAND_STATUS_FAIL
;
1108 denali_enable_dma(denali
, false);
1109 dma_sync_single_for_cpu(denali
->dev
, addr
, size
, DMA_TO_DEVICE
);
1114 /* NAND core entry points */
1117 * this is the callback that the NAND core calls to write a page. Since
1118 * writing a page with ECC or without is similar, all the work is done
1119 * by write_page above.
1121 static int denali_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1122 const uint8_t *buf
, int oob_required
, int page
)
1125 * for regular page writes, we let HW handle all the ECC
1126 * data written to the device.
1128 return write_page(mtd
, chip
, buf
, false);
1132 * This is the callback that the NAND core calls to write a page without ECC.
1133 * raw access is similar to ECC page writes, so all the work is done in the
1134 * write_page() function above.
1136 static int denali_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1137 const uint8_t *buf
, int oob_required
,
1141 * for raw page writes, we want to disable ECC and simply write
1142 * whatever data is in the buffer.
1144 return write_page(mtd
, chip
, buf
, true);
1147 static int denali_write_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1150 return write_oob_data(mtd
, chip
->oob_poi
, page
);
1153 static int denali_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1156 read_oob_data(mtd
, chip
->oob_poi
, page
);
1161 static int denali_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1162 uint8_t *buf
, int oob_required
, int page
)
1164 unsigned int max_bitflips
;
1165 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1167 dma_addr_t addr
= denali
->buf
.dma_buf
;
1168 size_t size
= mtd
->writesize
+ mtd
->oobsize
;
1170 uint32_t irq_status
;
1171 uint32_t irq_mask
= INTR_STATUS__ECC_TRANSACTION_DONE
|
1172 INTR_STATUS__ECC_ERR
;
1173 bool check_erased_page
= false;
1175 if (page
!= denali
->page
) {
1176 dev_err(denali
->dev
,
1177 "IN %s: page %d is not equal to denali->page %d",
1178 __func__
, page
, denali
->page
);
1182 setup_ecc_for_xfer(denali
, true, false);
1184 denali_enable_dma(denali
, true);
1185 dma_sync_single_for_device(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1187 clear_interrupts(denali
);
1188 denali_setup_dma(denali
, DENALI_READ
);
1190 /* wait for operation to complete */
1191 irq_status
= wait_for_irq(denali
, irq_mask
);
1193 dma_sync_single_for_cpu(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1195 memcpy(buf
, denali
->buf
.buf
, mtd
->writesize
);
1197 check_erased_page
= handle_ecc(denali
, buf
, irq_status
, &max_bitflips
);
1198 denali_enable_dma(denali
, false);
1200 if (check_erased_page
) {
1201 read_oob_data(mtd
, chip
->oob_poi
, denali
->page
);
1203 /* check ECC failures that may have occurred on erased pages */
1204 if (check_erased_page
) {
1205 if (!is_erased(buf
, mtd
->writesize
))
1206 mtd
->ecc_stats
.failed
++;
1207 if (!is_erased(buf
, mtd
->oobsize
))
1208 mtd
->ecc_stats
.failed
++;
1211 return max_bitflips
;
1214 static int denali_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1215 uint8_t *buf
, int oob_required
, int page
)
1217 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1218 dma_addr_t addr
= denali
->buf
.dma_buf
;
1219 size_t size
= mtd
->writesize
+ mtd
->oobsize
;
1220 uint32_t irq_mask
= INTR_STATUS__DMA_CMD_COMP
;
1222 if (page
!= denali
->page
) {
1223 dev_err(denali
->dev
,
1224 "IN %s: page %d is not equal to denali->page %d",
1225 __func__
, page
, denali
->page
);
1229 setup_ecc_for_xfer(denali
, false, true);
1230 denali_enable_dma(denali
, true);
1232 dma_sync_single_for_device(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1234 clear_interrupts(denali
);
1235 denali_setup_dma(denali
, DENALI_READ
);
1237 /* wait for operation to complete */
1238 wait_for_irq(denali
, irq_mask
);
1240 dma_sync_single_for_cpu(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1242 denali_enable_dma(denali
, false);
1244 memcpy(buf
, denali
->buf
.buf
, mtd
->writesize
);
1245 memcpy(chip
->oob_poi
, denali
->buf
.buf
+ mtd
->writesize
, mtd
->oobsize
);
1250 static uint8_t denali_read_byte(struct mtd_info
*mtd
)
1252 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1253 uint8_t result
= 0xff;
1255 if (denali
->buf
.head
< denali
->buf
.tail
)
1256 result
= denali
->buf
.buf
[denali
->buf
.head
++];
1261 static void denali_select_chip(struct mtd_info
*mtd
, int chip
)
1263 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1265 spin_lock_irq(&denali
->irq_lock
);
1266 denali
->flash_bank
= chip
;
1267 spin_unlock_irq(&denali
->irq_lock
);
1270 static int denali_waitfunc(struct mtd_info
*mtd
, struct nand_chip
*chip
)
1272 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1273 int status
= denali
->status
;
1280 static int denali_erase(struct mtd_info
*mtd
, int page
)
1282 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1284 uint32_t cmd
, irq_status
;
1286 clear_interrupts(denali
);
1288 /* setup page read request for access type */
1289 cmd
= MODE_10
| BANK(denali
->flash_bank
) | page
;
1290 index_addr(denali
, cmd
, 0x1);
1292 /* wait for erase to complete or failure to occur */
1293 irq_status
= wait_for_irq(denali
, INTR_STATUS__ERASE_COMP
|
1294 INTR_STATUS__ERASE_FAIL
);
1296 return irq_status
& INTR_STATUS__ERASE_FAIL
? NAND_STATUS_FAIL
: PASS
;
1299 static void denali_cmdfunc(struct mtd_info
*mtd
, unsigned int cmd
, int col
,
1302 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1307 case NAND_CMD_PAGEPROG
:
1309 case NAND_CMD_STATUS
:
1310 read_status(denali
);
1312 case NAND_CMD_READID
:
1313 case NAND_CMD_PARAM
:
1316 * sometimes ManufactureId read from register is not right
1317 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1318 * So here we send READID cmd to NAND insteand
1320 addr
= MODE_11
| BANK(denali
->flash_bank
);
1321 index_addr(denali
, addr
| 0, 0x90);
1322 index_addr(denali
, addr
| 1, col
);
1323 for (i
= 0; i
< 8; i
++) {
1324 index_addr_read_data(denali
, addr
| 2, &id
);
1325 write_byte_to_buf(denali
, id
);
1328 case NAND_CMD_READ0
:
1329 case NAND_CMD_SEQIN
:
1330 denali
->page
= page
;
1332 case NAND_CMD_RESET
:
1335 case NAND_CMD_READOOB
:
1336 /* TODO: Read OOB data */
1339 pr_err(": unsupported command received 0x%x\n", cmd
);
1343 /* end NAND core entry points */
1345 /* Initialization code to bring the device up to a known good state */
1346 static void denali_hw_init(struct denali_nand_info
*denali
)
1349 * tell driver how many bit controller will skip before
1350 * writing ECC code in OOB, this register may be already
1351 * set by firmware. So we read this value out.
1352 * if this value is 0, just let it be.
1354 denali
->bbtskipbytes
= ioread32(denali
->flash_reg
+
1355 SPARE_AREA_SKIP_BYTES
);
1356 detect_max_banks(denali
);
1357 denali_nand_reset(denali
);
1358 iowrite32(0x0F, denali
->flash_reg
+ RB_PIN_ENABLED
);
1359 iowrite32(CHIP_EN_DONT_CARE__FLAG
,
1360 denali
->flash_reg
+ CHIP_ENABLE_DONT_CARE
);
1362 iowrite32(0xffff, denali
->flash_reg
+ SPARE_AREA_MARKER
);
1364 /* Should set value for these registers when init */
1365 iowrite32(0, denali
->flash_reg
+ TWO_ROW_ADDR_CYCLES
);
1366 iowrite32(1, denali
->flash_reg
+ ECC_ENABLE
);
1367 denali_nand_timing_set(denali
);
1368 denali_irq_init(denali
);
1372 * Althogh controller spec said SLC ECC is forceb to be 4bit,
1373 * but denali controller in MRST only support 15bit and 8bit ECC
1376 #define ECC_8BITS 14
1377 static struct nand_ecclayout nand_8bit_oob
= {
1381 #define ECC_15BITS 26
1382 static struct nand_ecclayout nand_15bit_oob
= {
1386 static uint8_t bbt_pattern
[] = {'B', 'b', 't', '0' };
1387 static uint8_t mirror_pattern
[] = {'1', 't', 'b', 'B' };
1389 static struct nand_bbt_descr bbt_main_descr
= {
1390 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
1391 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
1396 .pattern
= bbt_pattern
,
1399 static struct nand_bbt_descr bbt_mirror_descr
= {
1400 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
1401 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
1406 .pattern
= mirror_pattern
,
1409 /* initialize driver data structures */
1410 static void denali_drv_init(struct denali_nand_info
*denali
)
1414 /* setup interrupt handler */
1416 * the completion object will be used to notify
1417 * the callee that the interrupt is done
1419 init_completion(&denali
->complete
);
1422 * the spinlock will be used to synchronize the ISR with any
1423 * element that might be access shared data (interrupt status)
1425 spin_lock_init(&denali
->irq_lock
);
1427 /* indicate that MTD has not selected a valid bank yet */
1428 denali
->flash_bank
= CHIP_SELECT_INVALID
;
1430 /* initialize our irq_status variable to indicate no interrupts */
1431 denali
->irq_status
= 0;
1434 int denali_init(struct denali_nand_info
*denali
)
1436 struct mtd_info
*mtd
= nand_to_mtd(&denali
->nand
);
1439 if (denali
->platform
== INTEL_CE4100
) {
1441 * Due to a silicon limitation, we can only support
1442 * ONFI timing mode 1 and below.
1444 if (onfi_timing_mode
< -1 || onfi_timing_mode
> 1) {
1445 pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
1450 /* allocate a temporary buffer for nand_scan_ident() */
1451 denali
->buf
.buf
= devm_kzalloc(denali
->dev
, PAGE_SIZE
,
1452 GFP_DMA
| GFP_KERNEL
);
1453 if (!denali
->buf
.buf
)
1456 mtd
->dev
.parent
= denali
->dev
;
1457 denali_hw_init(denali
);
1458 denali_drv_init(denali
);
1461 * denali_isr register is done after all the hardware
1462 * initilization is finished
1464 if (request_irq(denali
->irq
, denali_isr
, IRQF_SHARED
,
1465 DENALI_NAND_NAME
, denali
)) {
1466 pr_err("Spectra: Unable to allocate IRQ\n");
1470 /* now that our ISR is registered, we can enable interrupts */
1471 denali_set_intr_modes(denali
, true);
1472 mtd
->name
= "denali-nand";
1474 /* register the driver with the NAND core subsystem */
1475 denali
->nand
.select_chip
= denali_select_chip
;
1476 denali
->nand
.cmdfunc
= denali_cmdfunc
;
1477 denali
->nand
.read_byte
= denali_read_byte
;
1478 denali
->nand
.waitfunc
= denali_waitfunc
;
1481 * scan for NAND devices attached to the controller
1482 * this is the first stage in a two step process to register
1483 * with the nand subsystem
1485 if (nand_scan_ident(mtd
, denali
->max_banks
, NULL
)) {
1487 goto failed_req_irq
;
1490 /* allocate the right size buffer now */
1491 devm_kfree(denali
->dev
, denali
->buf
.buf
);
1492 denali
->buf
.buf
= devm_kzalloc(denali
->dev
,
1493 mtd
->writesize
+ mtd
->oobsize
,
1495 if (!denali
->buf
.buf
) {
1497 goto failed_req_irq
;
1500 /* Is 32-bit DMA supported? */
1501 ret
= dma_set_mask(denali
->dev
, DMA_BIT_MASK(32));
1503 pr_err("Spectra: no usable DMA configuration\n");
1504 goto failed_req_irq
;
1507 denali
->buf
.dma_buf
= dma_map_single(denali
->dev
, denali
->buf
.buf
,
1508 mtd
->writesize
+ mtd
->oobsize
,
1510 if (dma_mapping_error(denali
->dev
, denali
->buf
.dma_buf
)) {
1511 dev_err(denali
->dev
, "Spectra: failed to map DMA buffer\n");
1513 goto failed_req_irq
;
1517 * support for multi nand
1518 * MTD known nothing about multi nand, so we should tell it
1519 * the real pagesize and anything necessery
1521 denali
->devnum
= ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
);
1522 denali
->nand
.chipsize
<<= (denali
->devnum
- 1);
1523 denali
->nand
.page_shift
+= (denali
->devnum
- 1);
1524 denali
->nand
.pagemask
= (denali
->nand
.chipsize
>>
1525 denali
->nand
.page_shift
) - 1;
1526 denali
->nand
.bbt_erase_shift
+= (denali
->devnum
- 1);
1527 denali
->nand
.phys_erase_shift
= denali
->nand
.bbt_erase_shift
;
1528 denali
->nand
.chip_shift
+= (denali
->devnum
- 1);
1529 mtd
->writesize
<<= (denali
->devnum
- 1);
1530 mtd
->oobsize
<<= (denali
->devnum
- 1);
1531 mtd
->erasesize
<<= (denali
->devnum
- 1);
1532 mtd
->size
= denali
->nand
.numchips
* denali
->nand
.chipsize
;
1533 denali
->bbtskipbytes
*= denali
->devnum
;
1536 * second stage of the NAND scan
1537 * this stage requires information regarding ECC and
1538 * bad block management.
1541 /* Bad block management */
1542 denali
->nand
.bbt_td
= &bbt_main_descr
;
1543 denali
->nand
.bbt_md
= &bbt_mirror_descr
;
1545 /* skip the scan for now until we have OOB read and write support */
1546 denali
->nand
.bbt_options
|= NAND_BBT_USE_FLASH
;
1547 denali
->nand
.options
|= NAND_SKIP_BBTSCAN
;
1548 denali
->nand
.ecc
.mode
= NAND_ECC_HW_SYNDROME
;
1550 /* no subpage writes on denali */
1551 denali
->nand
.options
|= NAND_NO_SUBPAGE_WRITE
;
1554 * Denali Controller only support 15bit and 8bit ECC in MRST,
1555 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1558 if (!nand_is_slc(&denali
->nand
) &&
1559 (mtd
->oobsize
> (denali
->bbtskipbytes
+
1560 ECC_15BITS
* (mtd
->writesize
/
1561 ECC_SECTOR_SIZE
)))) {
1562 /* if MLC OOB size is large enough, use 15bit ECC*/
1563 denali
->nand
.ecc
.strength
= 15;
1564 denali
->nand
.ecc
.layout
= &nand_15bit_oob
;
1565 denali
->nand
.ecc
.bytes
= ECC_15BITS
;
1566 iowrite32(15, denali
->flash_reg
+ ECC_CORRECTION
);
1567 } else if (mtd
->oobsize
< (denali
->bbtskipbytes
+
1568 ECC_8BITS
* (mtd
->writesize
/
1569 ECC_SECTOR_SIZE
))) {
1570 pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
1571 goto failed_req_irq
;
1573 denali
->nand
.ecc
.strength
= 8;
1574 denali
->nand
.ecc
.layout
= &nand_8bit_oob
;
1575 denali
->nand
.ecc
.bytes
= ECC_8BITS
;
1576 iowrite32(8, denali
->flash_reg
+ ECC_CORRECTION
);
1579 denali
->nand
.ecc
.bytes
*= denali
->devnum
;
1580 denali
->nand
.ecc
.strength
*= denali
->devnum
;
1581 denali
->nand
.ecc
.layout
->eccbytes
*=
1582 mtd
->writesize
/ ECC_SECTOR_SIZE
;
1583 denali
->nand
.ecc
.layout
->oobfree
[0].offset
=
1584 denali
->bbtskipbytes
+ denali
->nand
.ecc
.layout
->eccbytes
;
1585 denali
->nand
.ecc
.layout
->oobfree
[0].length
=
1586 mtd
->oobsize
- denali
->nand
.ecc
.layout
->eccbytes
-
1587 denali
->bbtskipbytes
;
1590 * Let driver know the total blocks number and how many blocks
1591 * contained by each nand chip. blksperchip will help driver to
1592 * know how many blocks is taken by FW.
1594 denali
->totalblks
= mtd
->size
>> denali
->nand
.phys_erase_shift
;
1595 denali
->blksperchip
= denali
->totalblks
/ denali
->nand
.numchips
;
1597 /* override the default read operations */
1598 denali
->nand
.ecc
.size
= ECC_SECTOR_SIZE
* denali
->devnum
;
1599 denali
->nand
.ecc
.read_page
= denali_read_page
;
1600 denali
->nand
.ecc
.read_page_raw
= denali_read_page_raw
;
1601 denali
->nand
.ecc
.write_page
= denali_write_page
;
1602 denali
->nand
.ecc
.write_page_raw
= denali_write_page_raw
;
1603 denali
->nand
.ecc
.read_oob
= denali_read_oob
;
1604 denali
->nand
.ecc
.write_oob
= denali_write_oob
;
1605 denali
->nand
.erase
= denali_erase
;
1607 if (nand_scan_tail(mtd
)) {
1609 goto failed_req_irq
;
1612 ret
= mtd_device_register(mtd
, NULL
, 0);
1614 dev_err(denali
->dev
, "Spectra: Failed to register MTD: %d\n",
1616 goto failed_req_irq
;
1621 denali_irq_cleanup(denali
->irq
, denali
);
1625 EXPORT_SYMBOL(denali_init
);
1627 /* driver exit point */
1628 void denali_remove(struct denali_nand_info
*denali
)
1630 struct mtd_info
*mtd
= nand_to_mtd(&denali
->nand
);
1632 * Pre-compute DMA buffer size to avoid any problems in case
1633 * nand_release() ever changes in a way that mtd->writesize and
1634 * mtd->oobsize are not reliable after this call.
1636 int bufsize
= mtd
->writesize
+ mtd
->oobsize
;
1639 denali_irq_cleanup(denali
->irq
, denali
);
1640 dma_unmap_single(denali
->dev
, denali
->buf
.dma_buf
, bufsize
,
1643 EXPORT_SYMBOL(denali_remove
);