2 * Freescale GPMI NAND Flash Driver
4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 #include <linux/delay.h>
22 #include <linux/clk.h>
23 #include <linux/slab.h>
25 #include "gpmi-nand.h"
26 #include "gpmi-regs.h"
29 static struct timing_threshod timing_default_threshold
= {
30 .max_data_setup_cycles
= (BM_GPMI_TIMING0_DATA_SETUP
>>
31 BP_GPMI_TIMING0_DATA_SETUP
),
32 .internal_data_setup_in_ns
= 0,
33 .max_sample_delay_factor
= (BM_GPMI_CTRL1_RDN_DELAY
>>
34 BP_GPMI_CTRL1_RDN_DELAY
),
35 .max_dll_clock_period_in_ns
= 32,
36 .max_dll_delay_in_ns
= 16,
39 #define MXS_SET_ADDR 0x4
40 #define MXS_CLR_ADDR 0x8
42 * Clear the bit and poll it cleared. This is usually called with
43 * a reset address and mask being either SFTRST(bit 31) or CLKGATE
46 static int clear_poll_bit(void __iomem
*addr
, u32 mask
)
51 writel(mask
, addr
+ MXS_CLR_ADDR
);
54 * SFTRST needs 3 GPMI clocks to settle, the reference manual
55 * recommends to wait 1us.
59 /* poll the bit becoming clear */
60 while ((readl(addr
) & mask
) && --timeout
)
66 #define MODULE_CLKGATE (1 << 30)
67 #define MODULE_SFTRST (1 << 31)
69 * The current mxs_reset_block() will do two things:
70 * [1] enable the module.
71 * [2] reset the module.
73 * In most of the cases, it's ok.
74 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
75 * If you try to soft reset the BCH block, it becomes unusable until
76 * the next hard reset. This case occurs in the NAND boot mode. When the board
77 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
78 * So If the driver tries to reset the BCH again, the BCH will not work anymore.
79 * You will see a DMA timeout in this case. The bug has been fixed
80 * in the following chips, such as MX28.
82 * To avoid this bug, just add a new parameter `just_enable` for
83 * the mxs_reset_block(), and rewrite it here.
85 static int gpmi_reset_block(void __iomem
*reset_addr
, bool just_enable
)
90 /* clear and poll SFTRST */
91 ret
= clear_poll_bit(reset_addr
, MODULE_SFTRST
);
96 writel(MODULE_CLKGATE
, reset_addr
+ MXS_CLR_ADDR
);
99 /* set SFTRST to reset the block */
100 writel(MODULE_SFTRST
, reset_addr
+ MXS_SET_ADDR
);
103 /* poll CLKGATE becoming set */
104 while ((!(readl(reset_addr
) & MODULE_CLKGATE
)) && --timeout
)
106 if (unlikely(!timeout
))
110 /* clear and poll SFTRST */
111 ret
= clear_poll_bit(reset_addr
, MODULE_SFTRST
);
115 /* clear and poll CLKGATE */
116 ret
= clear_poll_bit(reset_addr
, MODULE_CLKGATE
);
123 pr_err("%s(%p): module reset timeout\n", __func__
, reset_addr
);
127 static int __gpmi_enable_clk(struct gpmi_nand_data
*this, bool v
)
133 for (i
= 0; i
< GPMI_CLK_MAX
; i
++) {
134 clk
= this->resources
.clock
[i
];
139 ret
= clk_prepare_enable(clk
);
143 clk_disable_unprepare(clk
);
150 clk_disable_unprepare(this->resources
.clock
[i
- 1]);
154 #define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
155 #define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
157 int gpmi_init(struct gpmi_nand_data
*this)
159 struct resources
*r
= &this->resources
;
162 ret
= gpmi_enable_clk(this);
165 ret
= gpmi_reset_block(r
->gpmi_regs
, false);
170 * Reset BCH here, too. We got failures otherwise :(
171 * See later BCH reset for explanation of MX23 handling
173 ret
= gpmi_reset_block(r
->bch_regs
, GPMI_IS_MX23(this));
178 /* Choose NAND mode. */
179 writel(BM_GPMI_CTRL1_GPMI_MODE
, r
->gpmi_regs
+ HW_GPMI_CTRL1_CLR
);
181 /* Set the IRQ polarity. */
182 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY
,
183 r
->gpmi_regs
+ HW_GPMI_CTRL1_SET
);
185 /* Disable Write-Protection. */
186 writel(BM_GPMI_CTRL1_DEV_RESET
, r
->gpmi_regs
+ HW_GPMI_CTRL1_SET
);
188 /* Select BCH ECC. */
189 writel(BM_GPMI_CTRL1_BCH_MODE
, r
->gpmi_regs
+ HW_GPMI_CTRL1_SET
);
192 * Decouple the chip select from dma channel. We use dma0 for all
195 writel(BM_GPMI_CTRL1_DECOUPLE_CS
, r
->gpmi_regs
+ HW_GPMI_CTRL1_SET
);
197 gpmi_disable_clk(this);
203 /* This function is very useful. It is called only when the bug occur. */
204 void gpmi_dump_info(struct gpmi_nand_data
*this)
206 struct resources
*r
= &this->resources
;
207 struct bch_geometry
*geo
= &this->bch_geometry
;
211 dev_err(this->dev
, "Show GPMI registers :\n");
212 for (i
= 0; i
<= HW_GPMI_DEBUG
/ 0x10 + 1; i
++) {
213 reg
= readl(r
->gpmi_regs
+ i
* 0x10);
214 dev_err(this->dev
, "offset 0x%.3x : 0x%.8x\n", i
* 0x10, reg
);
217 /* start to print out the BCH info */
218 dev_err(this->dev
, "Show BCH registers :\n");
219 for (i
= 0; i
<= HW_BCH_VERSION
/ 0x10 + 1; i
++) {
220 reg
= readl(r
->bch_regs
+ i
* 0x10);
221 dev_err(this->dev
, "offset 0x%.3x : 0x%.8x\n", i
* 0x10, reg
);
223 dev_err(this->dev
, "BCH Geometry :\n"
225 "ECC Strength : %u\n"
226 "Page Size in Bytes : %u\n"
227 "Metadata Size in Bytes : %u\n"
228 "ECC Chunk Size in Bytes: %u\n"
229 "ECC Chunk Count : %u\n"
230 "Payload Size in Bytes : %u\n"
231 "Auxiliary Size in Bytes: %u\n"
232 "Auxiliary Status Offset: %u\n"
233 "Block Mark Byte Offset : %u\n"
234 "Block Mark Bit Offset : %u\n",
240 geo
->ecc_chunk_count
,
243 geo
->auxiliary_status_offset
,
244 geo
->block_mark_byte_offset
,
245 geo
->block_mark_bit_offset
);
248 /* Configures the geometry for BCH. */
249 int bch_set_geometry(struct gpmi_nand_data
*this)
251 struct resources
*r
= &this->resources
;
252 struct bch_geometry
*bch_geo
= &this->bch_geometry
;
253 unsigned int block_count
;
254 unsigned int block_size
;
255 unsigned int metadata_size
;
256 unsigned int ecc_strength
;
257 unsigned int page_size
;
261 if (common_nfc_set_geometry(this))
264 block_count
= bch_geo
->ecc_chunk_count
- 1;
265 block_size
= bch_geo
->ecc_chunk_size
;
266 metadata_size
= bch_geo
->metadata_size
;
267 ecc_strength
= bch_geo
->ecc_strength
>> 1;
268 page_size
= bch_geo
->page_size
;
269 gf_len
= bch_geo
->gf_len
;
271 ret
= gpmi_enable_clk(this);
276 * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
277 * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
278 * On the other hand, the MX28 needs the reset, because one case has been
279 * seen where the BCH produced ECC errors constantly after 10000
280 * consecutive reboots. The latter case has not been seen on the MX23
281 * yet, still we don't know if it could happen there as well.
283 ret
= gpmi_reset_block(r
->bch_regs
, GPMI_IS_MX23(this));
287 /* Configure layout 0. */
288 writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count
)
289 | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size
)
290 | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength
, this)
291 | BF_BCH_FLASH0LAYOUT0_GF(gf_len
, this)
292 | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size
, this),
293 r
->bch_regs
+ HW_BCH_FLASH0LAYOUT0
);
295 writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size
)
296 | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength
, this)
297 | BF_BCH_FLASH0LAYOUT1_GF(gf_len
, this)
298 | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size
, this),
299 r
->bch_regs
+ HW_BCH_FLASH0LAYOUT1
);
301 /* Set *all* chip selects to use layout 0. */
302 writel(0, r
->bch_regs
+ HW_BCH_LAYOUTSELECT
);
304 /* Enable interrupts. */
305 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN
,
306 r
->bch_regs
+ HW_BCH_CTRL_SET
);
308 gpmi_disable_clk(this);
314 /* Converts time in nanoseconds to cycles. */
315 static unsigned int ns_to_cycles(unsigned int time
,
316 unsigned int period
, unsigned int min
)
320 k
= (time
+ period
- 1) / period
;
324 #define DEF_MIN_PROP_DELAY 5
325 #define DEF_MAX_PROP_DELAY 9
326 /* Apply timing to current hardware conditions. */
327 static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data
*this,
328 struct gpmi_nfc_hardware_timing
*hw
)
330 struct timing_threshod
*nfc
= &timing_default_threshold
;
331 struct resources
*r
= &this->resources
;
332 struct nand_chip
*nand
= &this->nand
;
333 struct nand_timing target
= this->timing
;
334 bool improved_timing_is_available
;
335 unsigned long clock_frequency_in_hz
;
336 unsigned int clock_period_in_ns
;
337 bool dll_use_half_periods
;
338 unsigned int dll_delay_shift
;
339 unsigned int max_sample_delay_in_ns
;
340 unsigned int address_setup_in_cycles
;
341 unsigned int data_setup_in_ns
;
342 unsigned int data_setup_in_cycles
;
343 unsigned int data_hold_in_cycles
;
344 int ideal_sample_delay_in_ns
;
345 unsigned int sample_delay_factor
;
347 unsigned int min_prop_delay_in_ns
= DEF_MIN_PROP_DELAY
;
348 unsigned int max_prop_delay_in_ns
= DEF_MAX_PROP_DELAY
;
351 * If there are multiple chips, we need to relax the timings to allow
352 * for signal distortion due to higher capacitance.
354 if (nand
->numchips
> 2) {
355 target
.data_setup_in_ns
+= 10;
356 target
.data_hold_in_ns
+= 10;
357 target
.address_setup_in_ns
+= 10;
358 } else if (nand
->numchips
> 1) {
359 target
.data_setup_in_ns
+= 5;
360 target
.data_hold_in_ns
+= 5;
361 target
.address_setup_in_ns
+= 5;
364 /* Check if improved timing information is available. */
365 improved_timing_is_available
=
366 (target
.tREA_in_ns
>= 0) &&
367 (target
.tRLOH_in_ns
>= 0) &&
368 (target
.tRHOH_in_ns
>= 0);
370 /* Inspect the clock. */
371 nfc
->clock_frequency_in_hz
= clk_get_rate(r
->clock
[0]);
372 clock_frequency_in_hz
= nfc
->clock_frequency_in_hz
;
373 clock_period_in_ns
= NSEC_PER_SEC
/ clock_frequency_in_hz
;
376 * The NFC quantizes setup and hold parameters in terms of clock cycles.
377 * Here, we quantize the setup and hold timing parameters to the
378 * next-highest clock period to make sure we apply at least the
381 * For data setup and data hold, the hardware interprets a value of zero
382 * as the largest possible delay. This is not what's intended by a zero
383 * in the input parameter, so we impose a minimum of one cycle.
385 data_setup_in_cycles
= ns_to_cycles(target
.data_setup_in_ns
,
386 clock_period_in_ns
, 1);
387 data_hold_in_cycles
= ns_to_cycles(target
.data_hold_in_ns
,
388 clock_period_in_ns
, 1);
389 address_setup_in_cycles
= ns_to_cycles(target
.address_setup_in_ns
,
390 clock_period_in_ns
, 0);
393 * The clock's period affects the sample delay in a number of ways:
395 * (1) The NFC HAL tells us the maximum clock period the sample delay
396 * DLL can tolerate. If the clock period is greater than half that
397 * maximum, we must configure the DLL to be driven by half periods.
399 * (2) We need to convert from an ideal sample delay, in ns, to a
400 * "sample delay factor," which the NFC uses. This factor depends on
401 * whether we're driving the DLL with full or half periods.
402 * Paraphrasing the reference manual:
404 * AD = SDF x 0.125 x RP
408 * AD is the applied delay, in ns.
409 * SDF is the sample delay factor, which is dimensionless.
410 * RP is the reference period, in ns, which is a full clock period
411 * if the DLL is being driven by full periods, or half that if
412 * the DLL is being driven by half periods.
414 * Let's re-arrange this in a way that's more useful to us:
420 * The reference period is either the clock period or half that, so this
424 * SDF = AD x ----- = --------
429 * f is 1 or 1/2, depending on how we're driving the DLL.
430 * P is the clock period.
431 * DDF is the DLL Delay Factor, a dimensionless value that
432 * incorporates all the constants in the conversion.
434 * DDF will be either 8 or 16, both of which are powers of two. We can
435 * reduce the cost of this conversion by using bit shifts instead of
436 * multiplication or division. Thus:
444 * AD = (SDF >> DDS) x P
448 * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF.
450 if (clock_period_in_ns
> (nfc
->max_dll_clock_period_in_ns
>> 1)) {
451 dll_use_half_periods
= true;
452 dll_delay_shift
= 3 + 1;
454 dll_use_half_periods
= false;
459 * Compute the maximum sample delay the NFC allows, under current
460 * conditions. If the clock is running too slowly, no sample delay is
463 if (clock_period_in_ns
> nfc
->max_dll_clock_period_in_ns
)
464 max_sample_delay_in_ns
= 0;
467 * Compute the delay implied by the largest sample delay factor
470 max_sample_delay_in_ns
=
471 (nfc
->max_sample_delay_factor
* clock_period_in_ns
) >>
475 * Check if the implied sample delay larger than the NFC
478 if (max_sample_delay_in_ns
> nfc
->max_dll_delay_in_ns
)
479 max_sample_delay_in_ns
= nfc
->max_dll_delay_in_ns
;
483 * Check if improved timing information is available. If not, we have to
484 * use a less-sophisticated algorithm.
486 if (!improved_timing_is_available
) {
488 * Fold the read setup time required by the NFC into the ideal
491 ideal_sample_delay_in_ns
= target
.gpmi_sample_delay_in_ns
+
492 nfc
->internal_data_setup_in_ns
;
495 * The ideal sample delay may be greater than the maximum
496 * allowed by the NFC. If so, we can trade off sample delay time
497 * for more data setup time.
499 * In each iteration of the following loop, we add a cycle to
500 * the data setup time and subtract a corresponding amount from
501 * the sample delay until we've satisified the constraints or
502 * can't do any better.
504 while ((ideal_sample_delay_in_ns
> max_sample_delay_in_ns
) &&
505 (data_setup_in_cycles
< nfc
->max_data_setup_cycles
)) {
507 data_setup_in_cycles
++;
508 ideal_sample_delay_in_ns
-= clock_period_in_ns
;
510 if (ideal_sample_delay_in_ns
< 0)
511 ideal_sample_delay_in_ns
= 0;
516 * Compute the sample delay factor that corresponds most closely
517 * to the ideal sample delay. If the result is too large for the
518 * NFC, use the maximum value.
520 * Notice that we use the ns_to_cycles function to compute the
521 * sample delay factor. We do this because the form of the
522 * computation is the same as that for calculating cycles.
524 sample_delay_factor
=
526 ideal_sample_delay_in_ns
<< dll_delay_shift
,
527 clock_period_in_ns
, 0);
529 if (sample_delay_factor
> nfc
->max_sample_delay_factor
)
530 sample_delay_factor
= nfc
->max_sample_delay_factor
;
532 /* Skip to the part where we return our results. */
537 * If control arrives here, we have more detailed timing information,
538 * so we can use a better algorithm.
542 * Fold the read setup time required by the NFC into the maximum
545 max_prop_delay_in_ns
+= nfc
->internal_data_setup_in_ns
;
548 * Earlier, we computed the number of clock cycles required to satisfy
549 * the data setup time. Now, we need to know the actual nanoseconds.
551 data_setup_in_ns
= clock_period_in_ns
* data_setup_in_cycles
;
554 * Compute tEYE, the width of the data eye when reading from the NAND
555 * Flash. The eye width is fundamentally determined by the data setup
556 * time, perturbed by propagation delays and some characteristics of the
559 * start of the eye = max_prop_delay + tREA
560 * end of the eye = min_prop_delay + tRHOH + data_setup
562 tEYE
= (int)min_prop_delay_in_ns
+ (int)target
.tRHOH_in_ns
+
563 (int)data_setup_in_ns
;
565 tEYE
-= (int)max_prop_delay_in_ns
+ (int)target
.tREA_in_ns
;
568 * The eye must be open. If it's not, we can try to open it by
569 * increasing its main forcer, the data setup time.
571 * In each iteration of the following loop, we increase the data setup
572 * time by a single clock cycle. We do this until either the eye is
573 * open or we run into NFC limits.
575 while ((tEYE
<= 0) &&
576 (data_setup_in_cycles
< nfc
->max_data_setup_cycles
)) {
577 /* Give a cycle to data setup. */
578 data_setup_in_cycles
++;
579 /* Synchronize the data setup time with the cycles. */
580 data_setup_in_ns
+= clock_period_in_ns
;
581 /* Adjust tEYE accordingly. */
582 tEYE
+= clock_period_in_ns
;
586 * When control arrives here, the eye is open. The ideal time to sample
587 * the data is in the center of the eye:
589 * end of the eye + start of the eye
590 * --------------------------------- - data_setup
593 * After some algebra, this simplifies to the code immediately below.
595 ideal_sample_delay_in_ns
=
596 ((int)max_prop_delay_in_ns
+
597 (int)target
.tREA_in_ns
+
598 (int)min_prop_delay_in_ns
+
599 (int)target
.tRHOH_in_ns
-
600 (int)data_setup_in_ns
) >> 1;
603 * The following figure illustrates some aspects of a NAND Flash read:
606 * __ _____________________________________
607 * RDN \_________________/
610 * /-----------------\
611 * Read Data ----------------------------< >---------
612 * \-----------------/
615 * |<--Data Setup -->|<--Delay Time -->| |
618 * | |<-- Quantized Delay Time -->|
622 * We have some issues we must now address:
624 * (1) The *ideal* sample delay time must not be negative. If it is, we
627 * (2) The *ideal* sample delay time must not be greater than that
628 * allowed by the NFC. If it is, we can increase the data setup
629 * time, which will reduce the delay between the end of the data
630 * setup and the center of the eye. It will also make the eye
631 * larger, which might help with the next issue...
633 * (3) The *quantized* sample delay time must not fall either before the
634 * eye opens or after it closes (the latter is the problem
635 * illustrated in the above figure).
638 /* Jam a negative ideal sample delay to zero. */
639 if (ideal_sample_delay_in_ns
< 0)
640 ideal_sample_delay_in_ns
= 0;
643 * Extend the data setup as needed to reduce the ideal sample delay
644 * below the maximum permitted by the NFC.
646 while ((ideal_sample_delay_in_ns
> max_sample_delay_in_ns
) &&
647 (data_setup_in_cycles
< nfc
->max_data_setup_cycles
)) {
649 /* Give a cycle to data setup. */
650 data_setup_in_cycles
++;
651 /* Synchronize the data setup time with the cycles. */
652 data_setup_in_ns
+= clock_period_in_ns
;
653 /* Adjust tEYE accordingly. */
654 tEYE
+= clock_period_in_ns
;
657 * Decrease the ideal sample delay by one half cycle, to keep it
658 * in the middle of the eye.
660 ideal_sample_delay_in_ns
-= (clock_period_in_ns
>> 1);
662 /* Jam a negative ideal sample delay to zero. */
663 if (ideal_sample_delay_in_ns
< 0)
664 ideal_sample_delay_in_ns
= 0;
668 * Compute the sample delay factor that corresponds to the ideal sample
669 * delay. If the result is too large, then use the maximum allowed
672 * Notice that we use the ns_to_cycles function to compute the sample
673 * delay factor. We do this because the form of the computation is the
674 * same as that for calculating cycles.
676 sample_delay_factor
=
677 ns_to_cycles(ideal_sample_delay_in_ns
<< dll_delay_shift
,
678 clock_period_in_ns
, 0);
680 if (sample_delay_factor
> nfc
->max_sample_delay_factor
)
681 sample_delay_factor
= nfc
->max_sample_delay_factor
;
684 * These macros conveniently encapsulate a computation we'll use to
685 * continuously evaluate whether or not the data sample delay is inside
688 #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns)
690 #define QUANTIZED_DELAY \
691 ((int) ((sample_delay_factor * clock_period_in_ns) >> \
694 #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY))
696 #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1))
699 * While the quantized sample time falls outside the eye, reduce the
700 * sample delay or extend the data setup to move the sampling point back
701 * toward the eye. Do not allow the number of data setup cycles to
702 * exceed the maximum allowed by the NFC.
704 while (SAMPLE_IS_NOT_WITHIN_THE_EYE
&&
705 (data_setup_in_cycles
< nfc
->max_data_setup_cycles
)) {
707 * If control arrives here, the quantized sample delay falls
708 * outside the eye. Check if it's before the eye opens, or after
711 if (QUANTIZED_DELAY
> IDEAL_DELAY
) {
713 * If control arrives here, the quantized sample delay
714 * falls after the eye closes. Decrease the quantized
715 * delay time and then go back to re-evaluate.
717 if (sample_delay_factor
!= 0)
718 sample_delay_factor
--;
723 * If control arrives here, the quantized sample delay falls
724 * before the eye opens. Shift the sample point by increasing
725 * data setup time. This will also make the eye larger.
728 /* Give a cycle to data setup. */
729 data_setup_in_cycles
++;
730 /* Synchronize the data setup time with the cycles. */
731 data_setup_in_ns
+= clock_period_in_ns
;
732 /* Adjust tEYE accordingly. */
733 tEYE
+= clock_period_in_ns
;
736 * Decrease the ideal sample delay by one half cycle, to keep it
737 * in the middle of the eye.
739 ideal_sample_delay_in_ns
-= (clock_period_in_ns
>> 1);
741 /* ...and one less period for the delay time. */
742 ideal_sample_delay_in_ns
-= clock_period_in_ns
;
744 /* Jam a negative ideal sample delay to zero. */
745 if (ideal_sample_delay_in_ns
< 0)
746 ideal_sample_delay_in_ns
= 0;
749 * We have a new ideal sample delay, so re-compute the quantized
752 sample_delay_factor
=
754 ideal_sample_delay_in_ns
<< dll_delay_shift
,
755 clock_period_in_ns
, 0);
757 if (sample_delay_factor
> nfc
->max_sample_delay_factor
)
758 sample_delay_factor
= nfc
->max_sample_delay_factor
;
761 /* Control arrives here when we're ready to return our results. */
763 hw
->data_setup_in_cycles
= data_setup_in_cycles
;
764 hw
->data_hold_in_cycles
= data_hold_in_cycles
;
765 hw
->address_setup_in_cycles
= address_setup_in_cycles
;
766 hw
->use_half_periods
= dll_use_half_periods
;
767 hw
->sample_delay_factor
= sample_delay_factor
;
768 hw
->device_busy_timeout
= GPMI_DEFAULT_BUSY_TIMEOUT
;
769 hw
->wrn_dly_sel
= BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS
;
771 /* Return success. */
776 * <1> Firstly, we should know what's the GPMI-clock means.
777 * The GPMI-clock is the internal clock in the gpmi nand controller.
778 * If you set 100MHz to gpmi nand controller, the GPMI-clock's period
779 * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
781 * <2> Secondly, we should know what's the frequency on the nand chip pins.
782 * The frequency on the nand chip pins is derived from the GPMI-clock.
783 * We can get it from the following equation:
787 * F : the frequency on the nand chip pins.
788 * G : the GPMI clock, such as 100MHz.
789 * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
790 * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
792 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
793 * the nand EDO(extended Data Out) timing could be applied.
794 * The GPMI implements a feedback read strobe to sample the read data.
795 * The feedback read strobe can be delayed to support the nand EDO timing
796 * where the read strobe may deasserts before the read data is valid, and
797 * read data is valid for some time after read strobe.
799 * The following figure illustrates some aspects of a NAND Flash read:
806 * __ ___|__________________________________
810 * Read Data --------------< >---------
814 * FeedbackRDN ________ ____________
817 * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
820 * <4> Now, we begin to describe how to compute the right RDN_DELAY.
822 * 4.1) From the aspect of the nand chip pins:
823 * Delay = (tREA + C - tRP) {1}
825 * tREA : the maximum read access time. From the ONFI nand standards,
826 * we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4.
827 * Please check it in : www.onfi.org
828 * C : a constant for adjust the delay. default is 4.
829 * tRP : the read pulse width.
830 * Specified by the HW_GPMI_TIMING0:DATA_SETUP:
831 * tRP = (GPMI-clock-period) * DATA_SETUP
833 * 4.2) From the aspect of the GPMI nand controller:
834 * Delay = RDN_DELAY * 0.125 * RP {2}
836 * RP : the DLL reference period.
837 * if (GPMI-clock-period > DLL_THRETHOLD)
838 * RP = GPMI-clock-period / 2;
840 * RP = GPMI-clock-period;
842 * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
843 * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
844 * is 16ns, but in mx6q, we use 12ns.
846 * 4.3) since {1} equals {2}, we get:
848 * (tREA + 4 - tRP) * 8
849 * RDN_DELAY = --------------------- {3}
852 * 4.4) We only support the fastest asynchronous mode of ONFI nand.
853 * For some ONFI nand, the mode 4 is the fastest mode;
854 * while for some ONFI nand, the mode 5 is the fastest mode.
855 * So we only support the mode 4 and mode 5. It is no need to
856 * support other modes.
858 static void gpmi_compute_edo_timing(struct gpmi_nand_data
*this,
859 struct gpmi_nfc_hardware_timing
*hw
)
861 struct resources
*r
= &this->resources
;
862 unsigned long rate
= clk_get_rate(r
->clock
[0]);
863 int mode
= this->timing_mode
;
864 int dll_threshold
= this->devdata
->max_chain_delay
;
866 unsigned long clk_period
;
873 * [1] for GPMI_HW_GPMI_TIMING0:
874 * The async mode requires 40MHz for mode 4, 50MHz for mode 5.
875 * The GPMI can support 100MHz at most. So if we want to
876 * get the 40MHz or 50MHz, we have to set DS=1, DH=1.
877 * Set the ADDRESS_SETUP to 0 in mode 4.
879 hw
->data_setup_in_cycles
= 1;
880 hw
->data_hold_in_cycles
= 1;
881 hw
->address_setup_in_cycles
= ((mode
== 5) ? 1 : 0);
883 /* [2] for GPMI_HW_GPMI_TIMING1 */
884 hw
->device_busy_timeout
= 0x9000;
886 /* [3] for GPMI_HW_GPMI_CTRL1 */
887 hw
->wrn_dly_sel
= BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY
;
890 * Enlarge 10 times for the numerator and denominator in {3}.
891 * This make us to get more accurate result.
893 clk_period
= NSEC_PER_SEC
/ (rate
/ 10);
895 t_rea
= ((mode
== 5) ? 16 : 20) * 10;
898 t_rp
= clk_period
* 1; /* DATA_SETUP is 1 */
900 if (clk_period
> dll_threshold
) {
901 hw
->use_half_periods
= 1;
904 hw
->use_half_periods
= 0;
909 * Multiply the numerator with 10, we could do a round off:
910 * 7.8 round up to 8; 7.4 round down to 7.
912 delay
= (((t_rea
+ c
- t_rp
) * 8) * 10) / rp
;
913 delay
= (delay
+ 5) / 10;
915 hw
->sample_delay_factor
= delay
;
918 static int enable_edo_mode(struct gpmi_nand_data
*this, int mode
)
920 struct resources
*r
= &this->resources
;
921 struct nand_chip
*nand
= &this->nand
;
922 struct mtd_info
*mtd
= nand_to_mtd(nand
);
927 feature
= kzalloc(ONFI_SUBFEATURE_PARAM_LEN
, GFP_KERNEL
);
931 nand
->select_chip(mtd
, 0);
933 /* [1] send SET FEATURE commond to NAND */
935 ret
= nand
->onfi_set_features(mtd
, nand
,
936 ONFI_FEATURE_ADDR_TIMING_MODE
, feature
);
940 /* [2] send GET FEATURE command to double-check the timing mode */
941 memset(feature
, 0, ONFI_SUBFEATURE_PARAM_LEN
);
942 ret
= nand
->onfi_get_features(mtd
, nand
,
943 ONFI_FEATURE_ADDR_TIMING_MODE
, feature
);
944 if (ret
|| feature
[0] != mode
)
947 nand
->select_chip(mtd
, -1);
949 /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */
950 rate
= (mode
== 5) ? 100000000 : 80000000;
951 clk_set_rate(r
->clock
[0], rate
);
953 /* Let the gpmi_begin() re-compute the timing again. */
954 this->flags
&= ~GPMI_TIMING_INIT_OK
;
956 this->flags
|= GPMI_ASYNC_EDO_ENABLED
;
957 this->timing_mode
= mode
;
959 dev_info(this->dev
, "enable the asynchronous EDO mode %d\n", mode
);
963 nand
->select_chip(mtd
, -1);
965 dev_err(this->dev
, "mode:%d ,failed in set feature.\n", mode
);
969 int gpmi_extra_init(struct gpmi_nand_data
*this)
971 struct nand_chip
*chip
= &this->nand
;
973 /* Enable the asynchronous EDO feature. */
974 if (GPMI_IS_MX6(this) && chip
->onfi_version
) {
975 int mode
= onfi_get_async_timing_mode(chip
);
977 /* We only support the timing mode 4 and mode 5. */
978 if (mode
& ONFI_TIMING_MODE_5
)
980 else if (mode
& ONFI_TIMING_MODE_4
)
985 return enable_edo_mode(this, mode
);
991 void gpmi_begin(struct gpmi_nand_data
*this)
993 struct resources
*r
= &this->resources
;
994 void __iomem
*gpmi_regs
= r
->gpmi_regs
;
995 unsigned int clock_period_in_ns
;
997 unsigned int dll_wait_time_in_us
;
998 struct gpmi_nfc_hardware_timing hw
;
1001 /* Enable the clock. */
1002 ret
= gpmi_enable_clk(this);
1004 dev_err(this->dev
, "We failed in enable the clk\n");
1008 /* Only initialize the timing once */
1009 if (this->flags
& GPMI_TIMING_INIT_OK
)
1011 this->flags
|= GPMI_TIMING_INIT_OK
;
1013 if (this->flags
& GPMI_ASYNC_EDO_ENABLED
)
1014 gpmi_compute_edo_timing(this, &hw
);
1016 gpmi_nfc_compute_hardware_timing(this, &hw
);
1018 /* [1] Set HW_GPMI_TIMING0 */
1019 reg
= BF_GPMI_TIMING0_ADDRESS_SETUP(hw
.address_setup_in_cycles
) |
1020 BF_GPMI_TIMING0_DATA_HOLD(hw
.data_hold_in_cycles
) |
1021 BF_GPMI_TIMING0_DATA_SETUP(hw
.data_setup_in_cycles
);
1023 writel(reg
, gpmi_regs
+ HW_GPMI_TIMING0
);
1025 /* [2] Set HW_GPMI_TIMING1 */
1026 writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw
.device_busy_timeout
),
1027 gpmi_regs
+ HW_GPMI_TIMING1
);
1029 /* [3] The following code is to set the HW_GPMI_CTRL1. */
1031 /* Set the WRN_DLY_SEL */
1032 writel(BM_GPMI_CTRL1_WRN_DLY_SEL
, gpmi_regs
+ HW_GPMI_CTRL1_CLR
);
1033 writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw
.wrn_dly_sel
),
1034 gpmi_regs
+ HW_GPMI_CTRL1_SET
);
1036 /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */
1037 writel(BM_GPMI_CTRL1_DLL_ENABLE
, gpmi_regs
+ HW_GPMI_CTRL1_CLR
);
1039 /* Clear out the DLL control fields. */
1040 reg
= BM_GPMI_CTRL1_RDN_DELAY
| BM_GPMI_CTRL1_HALF_PERIOD
;
1041 writel(reg
, gpmi_regs
+ HW_GPMI_CTRL1_CLR
);
1043 /* If no sample delay is called for, return immediately. */
1044 if (!hw
.sample_delay_factor
)
1047 /* Set RDN_DELAY or HALF_PERIOD. */
1048 reg
= ((hw
.use_half_periods
) ? BM_GPMI_CTRL1_HALF_PERIOD
: 0)
1049 | BF_GPMI_CTRL1_RDN_DELAY(hw
.sample_delay_factor
);
1051 writel(reg
, gpmi_regs
+ HW_GPMI_CTRL1_SET
);
1053 /* At last, we enable the DLL. */
1054 writel(BM_GPMI_CTRL1_DLL_ENABLE
, gpmi_regs
+ HW_GPMI_CTRL1_SET
);
1057 * After we enable the GPMI DLL, we have to wait 64 clock cycles before
1058 * we can use the GPMI. Calculate the amount of time we need to wait,
1061 clock_period_in_ns
= NSEC_PER_SEC
/ clk_get_rate(r
->clock
[0]);
1062 dll_wait_time_in_us
= (clock_period_in_ns
* 64) / 1000;
1064 if (!dll_wait_time_in_us
)
1065 dll_wait_time_in_us
= 1;
1067 /* Wait for the DLL to settle. */
1068 udelay(dll_wait_time_in_us
);
1074 void gpmi_end(struct gpmi_nand_data
*this)
1076 gpmi_disable_clk(this);
1079 /* Clears a BCH interrupt. */
1080 void gpmi_clear_bch(struct gpmi_nand_data
*this)
1082 struct resources
*r
= &this->resources
;
1083 writel(BM_BCH_CTRL_COMPLETE_IRQ
, r
->bch_regs
+ HW_BCH_CTRL_CLR
);
1086 /* Returns the Ready/Busy status of the given chip. */
1087 int gpmi_is_ready(struct gpmi_nand_data
*this, unsigned chip
)
1089 struct resources
*r
= &this->resources
;
1093 if (GPMI_IS_MX23(this)) {
1094 mask
= MX23_BM_GPMI_DEBUG_READY0
<< chip
;
1095 reg
= readl(r
->gpmi_regs
+ HW_GPMI_DEBUG
);
1096 } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
1098 * In the imx6, all the ready/busy pins are bound
1099 * together. So we only need to check chip 0.
1101 if (GPMI_IS_MX6(this))
1104 /* MX28 shares the same R/B register as MX6Q. */
1105 mask
= MX28_BF_GPMI_STAT_READY_BUSY(1 << chip
);
1106 reg
= readl(r
->gpmi_regs
+ HW_GPMI_STAT
);
1108 dev_err(this->dev
, "unknown arch.\n");
1112 static inline void set_dma_type(struct gpmi_nand_data
*this,
1113 enum dma_ops_type type
)
1115 this->last_dma_type
= this->dma_type
;
1116 this->dma_type
= type
;
1119 int gpmi_send_command(struct gpmi_nand_data
*this)
1121 struct dma_chan
*channel
= get_dma_chan(this);
1122 struct dma_async_tx_descriptor
*desc
;
1123 struct scatterlist
*sgl
;
1124 int chip
= this->current_chip
;
1127 /* [1] send out the PIO words */
1128 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE
)
1129 | BM_GPMI_CTRL0_WORD_LENGTH
1130 | BF_GPMI_CTRL0_CS(chip
, this)
1131 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1132 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE
)
1133 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
1134 | BF_GPMI_CTRL0_XFER_COUNT(this->command_length
);
1135 pio
[1] = pio
[2] = 0;
1136 desc
= dmaengine_prep_slave_sg(channel
,
1137 (struct scatterlist
*)pio
,
1138 ARRAY_SIZE(pio
), DMA_TRANS_NONE
, 0);
1142 /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
1143 sgl
= &this->cmd_sgl
;
1145 sg_init_one(sgl
, this->cmd_buffer
, this->command_length
);
1146 dma_map_sg(this->dev
, sgl
, 1, DMA_TO_DEVICE
);
1147 desc
= dmaengine_prep_slave_sg(channel
,
1148 sgl
, 1, DMA_MEM_TO_DEV
,
1149 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1153 /* [3] submit the DMA */
1154 set_dma_type(this, DMA_FOR_COMMAND
);
1155 return start_dma_without_bch_irq(this, desc
);
1158 int gpmi_send_data(struct gpmi_nand_data
*this)
1160 struct dma_async_tx_descriptor
*desc
;
1161 struct dma_chan
*channel
= get_dma_chan(this);
1162 int chip
= this->current_chip
;
1163 uint32_t command_mode
;
1168 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__WRITE
;
1169 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
1171 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
1172 | BM_GPMI_CTRL0_WORD_LENGTH
1173 | BF_GPMI_CTRL0_CS(chip
, this)
1174 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1175 | BF_GPMI_CTRL0_ADDRESS(address
)
1176 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len
);
1178 desc
= dmaengine_prep_slave_sg(channel
, (struct scatterlist
*)pio
,
1179 ARRAY_SIZE(pio
), DMA_TRANS_NONE
, 0);
1183 /* [2] send DMA request */
1184 prepare_data_dma(this, DMA_TO_DEVICE
);
1185 desc
= dmaengine_prep_slave_sg(channel
, &this->data_sgl
,
1187 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1191 /* [3] submit the DMA */
1192 set_dma_type(this, DMA_FOR_WRITE_DATA
);
1193 return start_dma_without_bch_irq(this, desc
);
1196 int gpmi_read_data(struct gpmi_nand_data
*this)
1198 struct dma_async_tx_descriptor
*desc
;
1199 struct dma_chan
*channel
= get_dma_chan(this);
1200 int chip
= this->current_chip
;
1203 /* [1] : send PIO */
1204 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ
)
1205 | BM_GPMI_CTRL0_WORD_LENGTH
1206 | BF_GPMI_CTRL0_CS(chip
, this)
1207 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1208 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA
)
1209 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len
);
1211 desc
= dmaengine_prep_slave_sg(channel
,
1212 (struct scatterlist
*)pio
,
1213 ARRAY_SIZE(pio
), DMA_TRANS_NONE
, 0);
1217 /* [2] : send DMA request */
1218 prepare_data_dma(this, DMA_FROM_DEVICE
);
1219 desc
= dmaengine_prep_slave_sg(channel
, &this->data_sgl
,
1221 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1225 /* [3] : submit the DMA */
1226 set_dma_type(this, DMA_FOR_READ_DATA
);
1227 return start_dma_without_bch_irq(this, desc
);
1230 int gpmi_send_page(struct gpmi_nand_data
*this,
1231 dma_addr_t payload
, dma_addr_t auxiliary
)
1233 struct bch_geometry
*geo
= &this->bch_geometry
;
1234 uint32_t command_mode
;
1236 uint32_t ecc_command
;
1237 uint32_t buffer_mask
;
1238 struct dma_async_tx_descriptor
*desc
;
1239 struct dma_chan
*channel
= get_dma_chan(this);
1240 int chip
= this->current_chip
;
1243 /* A DMA descriptor that does an ECC page read. */
1244 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__WRITE
;
1245 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
1246 ecc_command
= BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE
;
1247 buffer_mask
= BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
|
1248 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY
;
1250 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
1251 | BM_GPMI_CTRL0_WORD_LENGTH
1252 | BF_GPMI_CTRL0_CS(chip
, this)
1253 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1254 | BF_GPMI_CTRL0_ADDRESS(address
)
1255 | BF_GPMI_CTRL0_XFER_COUNT(0);
1257 pio
[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1258 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command
)
1259 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask
);
1260 pio
[3] = geo
->page_size
;
1264 desc
= dmaengine_prep_slave_sg(channel
,
1265 (struct scatterlist
*)pio
,
1266 ARRAY_SIZE(pio
), DMA_TRANS_NONE
,
1271 set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE
);
1272 return start_dma_with_bch_irq(this, desc
);
1275 int gpmi_read_page(struct gpmi_nand_data
*this,
1276 dma_addr_t payload
, dma_addr_t auxiliary
)
1278 struct bch_geometry
*geo
= &this->bch_geometry
;
1279 uint32_t command_mode
;
1281 uint32_t ecc_command
;
1282 uint32_t buffer_mask
;
1283 struct dma_async_tx_descriptor
*desc
;
1284 struct dma_chan
*channel
= get_dma_chan(this);
1285 int chip
= this->current_chip
;
1288 /* [1] Wait for the chip to report ready. */
1289 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY
;
1290 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
1292 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
1293 | BM_GPMI_CTRL0_WORD_LENGTH
1294 | BF_GPMI_CTRL0_CS(chip
, this)
1295 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1296 | BF_GPMI_CTRL0_ADDRESS(address
)
1297 | BF_GPMI_CTRL0_XFER_COUNT(0);
1299 desc
= dmaengine_prep_slave_sg(channel
,
1300 (struct scatterlist
*)pio
, 2,
1305 /* [2] Enable the BCH block and read. */
1306 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__READ
;
1307 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
1308 ecc_command
= BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE
;
1309 buffer_mask
= BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
1310 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY
;
1312 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
1313 | BM_GPMI_CTRL0_WORD_LENGTH
1314 | BF_GPMI_CTRL0_CS(chip
, this)
1315 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1316 | BF_GPMI_CTRL0_ADDRESS(address
)
1317 | BF_GPMI_CTRL0_XFER_COUNT(geo
->page_size
);
1320 pio
[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1321 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command
)
1322 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask
);
1323 pio
[3] = geo
->page_size
;
1326 desc
= dmaengine_prep_slave_sg(channel
,
1327 (struct scatterlist
*)pio
,
1328 ARRAY_SIZE(pio
), DMA_TRANS_NONE
,
1329 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1333 /* [3] Disable the BCH block */
1334 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY
;
1335 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
1337 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
1338 | BM_GPMI_CTRL0_WORD_LENGTH
1339 | BF_GPMI_CTRL0_CS(chip
, this)
1340 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1341 | BF_GPMI_CTRL0_ADDRESS(address
)
1342 | BF_GPMI_CTRL0_XFER_COUNT(geo
->page_size
);
1344 pio
[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
1345 desc
= dmaengine_prep_slave_sg(channel
,
1346 (struct scatterlist
*)pio
, 3,
1348 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1352 /* [4] submit the DMA */
1353 set_dma_type(this, DMA_FOR_READ_ECC_PAGE
);
1354 return start_dma_with_bch_irq(this, desc
);
1358 * gpmi_copy_bits - copy bits from one memory region to another
1359 * @dst: destination buffer
1360 * @dst_bit_off: bit offset we're starting to write at
1361 * @src: source buffer
1362 * @src_bit_off: bit offset we're starting to read from
1363 * @nbits: number of bits to copy
1365 * This functions copies bits from one memory region to another, and is used by
1366 * the GPMI driver to copy ECC sections which are not guaranteed to be byte
1369 * src and dst should not overlap.
1372 void gpmi_copy_bits(u8
*dst
, size_t dst_bit_off
,
1373 const u8
*src
, size_t src_bit_off
,
1379 size_t bits_in_src_buffer
= 0;
1385 * Move src and dst pointers to the closest byte pointer and store bit
1386 * offsets within a byte.
1388 src
+= src_bit_off
/ 8;
1391 dst
+= dst_bit_off
/ 8;
1395 * Initialize the src_buffer value with bits available in the first
1396 * byte of data so that we end up with a byte aligned src pointer.
1399 src_buffer
= src
[0] >> src_bit_off
;
1400 if (nbits
>= (8 - src_bit_off
)) {
1401 bits_in_src_buffer
+= 8 - src_bit_off
;
1403 src_buffer
&= GENMASK(nbits
- 1, 0);
1404 bits_in_src_buffer
+= nbits
;
1406 nbits
-= bits_in_src_buffer
;
1410 /* Calculate the number of bytes that can be copied from src to dst. */
1413 /* Try to align dst to a byte boundary. */
1415 if (bits_in_src_buffer
< (8 - dst_bit_off
) && nbytes
) {
1416 src_buffer
|= src
[0] << bits_in_src_buffer
;
1417 bits_in_src_buffer
+= 8;
1422 if (bits_in_src_buffer
>= (8 - dst_bit_off
)) {
1423 dst
[0] &= GENMASK(dst_bit_off
- 1, 0);
1424 dst
[0] |= src_buffer
<< dst_bit_off
;
1425 src_buffer
>>= (8 - dst_bit_off
);
1426 bits_in_src_buffer
-= (8 - dst_bit_off
);
1429 if (bits_in_src_buffer
> 7) {
1430 bits_in_src_buffer
-= 8;
1431 dst
[0] = src_buffer
;
1438 if (!bits_in_src_buffer
&& !dst_bit_off
) {
1440 * Both src and dst pointers are byte aligned, thus we can
1441 * just use the optimized memcpy function.
1444 memcpy(dst
, src
, nbytes
);
1447 * src buffer is not byte aligned, hence we have to copy each
1448 * src byte to the src_buffer variable before extracting a byte
1451 for (i
= 0; i
< nbytes
; i
++) {
1452 src_buffer
|= src
[i
] << bits_in_src_buffer
;
1453 dst
[i
] = src_buffer
;
1457 /* Update dst and src pointers */
1462 * nbits is the number of remaining bits. It should not exceed 8 as
1463 * we've already copied as much bytes as possible.
1468 * If there's no more bits to copy to the destination and src buffer
1469 * was already byte aligned, then we're done.
1471 if (!nbits
&& !bits_in_src_buffer
)
1474 /* Copy the remaining bits to src_buffer */
1476 src_buffer
|= (*src
& GENMASK(nbits
- 1, 0)) <<
1478 bits_in_src_buffer
+= nbits
;
1481 * In case there were not enough bits to get a byte aligned dst buffer
1482 * prepare the src_buffer variable to match the dst organization (shift
1483 * src_buffer by dst_bit_off and retrieve the least significant bits
1487 src_buffer
= (src_buffer
<< dst_bit_off
) |
1488 (*dst
& GENMASK(dst_bit_off
- 1, 0));
1489 bits_in_src_buffer
+= dst_bit_off
;
1492 * Keep most significant bits from dst if we end up with an unaligned
1495 nbytes
= bits_in_src_buffer
/ 8;
1496 if (bits_in_src_buffer
% 8) {
1497 src_buffer
|= (dst
[nbytes
] &
1498 GENMASK(7, bits_in_src_buffer
% 8)) <<
1503 /* Copy the remaining bytes to dst */
1504 for (i
= 0; i
< nbytes
; i
++) {
1505 dst
[i
] = src_buffer
;