2 * NXP LPC32XX NAND SLC driver
5 * Kevin Wells <kevin.wells@nxp.com>
6 * Roland Stigge <stigge@antcom.de>
8 * Copyright © 2011 NXP Semiconductors
9 * Copyright © 2012 Roland Stigge
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
22 #include <linux/slab.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/mtd/nand.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/clk.h>
29 #include <linux/err.h>
30 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmaengine.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/gpio.h>
38 #include <linux/of_mtd.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mtd/lpc32xx_slc.h>
42 #define LPC32XX_MODNAME "lpc32xx-nand"
44 /**********************************************************************
45 * SLC NAND controller register offsets
46 **********************************************************************/
48 #define SLC_DATA(x) (x + 0x000)
49 #define SLC_ADDR(x) (x + 0x004)
50 #define SLC_CMD(x) (x + 0x008)
51 #define SLC_STOP(x) (x + 0x00C)
52 #define SLC_CTRL(x) (x + 0x010)
53 #define SLC_CFG(x) (x + 0x014)
54 #define SLC_STAT(x) (x + 0x018)
55 #define SLC_INT_STAT(x) (x + 0x01C)
56 #define SLC_IEN(x) (x + 0x020)
57 #define SLC_ISR(x) (x + 0x024)
58 #define SLC_ICR(x) (x + 0x028)
59 #define SLC_TAC(x) (x + 0x02C)
60 #define SLC_TC(x) (x + 0x030)
61 #define SLC_ECC(x) (x + 0x034)
62 #define SLC_DMA_DATA(x) (x + 0x038)
64 /**********************************************************************
65 * slc_ctrl register definitions
66 **********************************************************************/
67 #define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */
68 #define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */
69 #define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */
71 /**********************************************************************
72 * slc_cfg register definitions
73 **********************************************************************/
74 #define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */
75 #define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */
76 #define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */
77 #define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */
78 #define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */
79 #define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */
81 /**********************************************************************
82 * slc_stat register definitions
83 **********************************************************************/
84 #define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */
85 #define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */
86 #define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */
88 /**********************************************************************
89 * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
90 **********************************************************************/
91 #define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */
92 #define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */
94 /**********************************************************************
95 * slc_tac register definitions
96 **********************************************************************/
97 /* Computation of clock cycles on basis of controller and device clock rates */
98 #define SLCTAC_CLOCKS(c, n, s) (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
100 /* Clock setting for RDY write sample wait time in 2*n clocks */
101 #define SLCTAC_WDR(n) (((n) & 0xF) << 28)
102 /* Write pulse width in clock cycles, 1 to 16 clocks */
103 #define SLCTAC_WWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 24))
104 /* Write hold time of control and data signals, 1 to 16 clocks */
105 #define SLCTAC_WHOLD(c, n) (SLCTAC_CLOCKS(c, n, 20))
106 /* Write setup time of control and data signals, 1 to 16 clocks */
107 #define SLCTAC_WSETUP(c, n) (SLCTAC_CLOCKS(c, n, 16))
108 /* Clock setting for RDY read sample wait time in 2*n clocks */
109 #define SLCTAC_RDR(n) (((n) & 0xF) << 12)
110 /* Read pulse width in clock cycles, 1 to 16 clocks */
111 #define SLCTAC_RWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 8))
112 /* Read hold time of control and data signals, 1 to 16 clocks */
113 #define SLCTAC_RHOLD(c, n) (SLCTAC_CLOCKS(c, n, 4))
114 /* Read setup time of control and data signals, 1 to 16 clocks */
115 #define SLCTAC_RSETUP(c, n) (SLCTAC_CLOCKS(c, n, 0))
117 /**********************************************************************
118 * slc_ecc register definitions
119 **********************************************************************/
120 /* ECC line party fetch macro */
121 #define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF)
122 #define SLCECC_TO_COLPAR(n) ((n) & 0x3F)
125 * DMA requires storage space for the DMA local buffer and the hardware ECC
126 * storage area. The DMA local buffer is only used if DMA mapping fails
129 #define LPC32XX_DMA_DATA_SIZE 4096
130 #define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4)
132 /* Number of bytes used for ECC stored in NAND per 256 bytes */
133 #define LPC32XX_SLC_DEV_ECC_BYTES 3
136 * If the NAND base clock frequency can't be fetched, this frequency will be
137 * used instead as the base. This rate is used to setup the timing registers
138 * used for NAND accesses.
140 #define LPC32XX_DEF_BUS_RATE 133250000
142 /* Milliseconds for DMA FIFO timeout (unlikely anyway) */
143 #define LPC32XX_DMA_TIMEOUT 100
146 * NAND ECC Layout for small page NAND devices
147 * Note: For large and huge page devices, the default layouts are used
149 static struct nand_ecclayout lpc32xx_nand_oob_16
= {
151 .eccpos
= {10, 11, 12, 13, 14, 15},
153 { .offset
= 0, .length
= 4 },
154 { .offset
= 6, .length
= 4 },
158 static u8 bbt_pattern
[] = {'B', 'b', 't', '0' };
159 static u8 mirror_pattern
[] = {'1', 't', 'b', 'B' };
162 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
163 * Note: Large page devices used the default layout
165 static struct nand_bbt_descr bbt_smallpage_main_descr
= {
166 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
167 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
172 .pattern
= bbt_pattern
175 static struct nand_bbt_descr bbt_smallpage_mirror_descr
= {
176 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
177 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
182 .pattern
= mirror_pattern
186 * NAND platform configuration structure
188 struct lpc32xx_nand_cfg_slc
{
199 struct mtd_partition
*parts
;
203 struct lpc32xx_nand_host
{
204 struct nand_chip nand_chip
;
205 struct lpc32xx_slc_platform_data
*pdata
;
207 void __iomem
*io_base
;
208 struct lpc32xx_nand_cfg_slc
*ncfg
;
210 struct completion comp
;
211 struct dma_chan
*dma_chan
;
212 uint32_t dma_buf_len
;
213 struct dma_slave_config dma_slave_config
;
214 struct scatterlist sgl
;
217 * DMA and CPU addresses of ECC work area and data buffer
221 dma_addr_t io_base_dma
;
224 static void lpc32xx_nand_setup(struct lpc32xx_nand_host
*host
)
226 uint32_t clkrate
, tmp
;
228 /* Reset SLC controller */
229 writel(SLCCTRL_SW_RESET
, SLC_CTRL(host
->io_base
));
233 writel(0, SLC_CFG(host
->io_base
));
234 writel(0, SLC_IEN(host
->io_base
));
235 writel((SLCSTAT_INT_TC
| SLCSTAT_INT_RDY_EN
),
236 SLC_ICR(host
->io_base
));
238 /* Get base clock for SLC block */
239 clkrate
= clk_get_rate(host
->clk
);
241 clkrate
= LPC32XX_DEF_BUS_RATE
;
243 /* Compute clock setup values */
244 tmp
= SLCTAC_WDR(host
->ncfg
->wdr_clks
) |
245 SLCTAC_WWIDTH(clkrate
, host
->ncfg
->wwidth
) |
246 SLCTAC_WHOLD(clkrate
, host
->ncfg
->whold
) |
247 SLCTAC_WSETUP(clkrate
, host
->ncfg
->wsetup
) |
248 SLCTAC_RDR(host
->ncfg
->rdr_clks
) |
249 SLCTAC_RWIDTH(clkrate
, host
->ncfg
->rwidth
) |
250 SLCTAC_RHOLD(clkrate
, host
->ncfg
->rhold
) |
251 SLCTAC_RSETUP(clkrate
, host
->ncfg
->rsetup
);
252 writel(tmp
, SLC_TAC(host
->io_base
));
256 * Hardware specific access to control lines
258 static void lpc32xx_nand_cmd_ctrl(struct mtd_info
*mtd
, int cmd
,
262 struct nand_chip
*chip
= mtd_to_nand(mtd
);
263 struct lpc32xx_nand_host
*host
= nand_get_controller_data(chip
);
265 /* Does CE state need to be changed? */
266 tmp
= readl(SLC_CFG(host
->io_base
));
268 tmp
|= SLCCFG_CE_LOW
;
270 tmp
&= ~SLCCFG_CE_LOW
;
271 writel(tmp
, SLC_CFG(host
->io_base
));
273 if (cmd
!= NAND_CMD_NONE
) {
275 writel(cmd
, SLC_CMD(host
->io_base
));
277 writel(cmd
, SLC_ADDR(host
->io_base
));
282 * Read the Device Ready pin
284 static int lpc32xx_nand_device_ready(struct mtd_info
*mtd
)
286 struct nand_chip
*chip
= mtd_to_nand(mtd
);
287 struct lpc32xx_nand_host
*host
= nand_get_controller_data(chip
);
290 if ((readl(SLC_STAT(host
->io_base
)) & SLCSTAT_NAND_READY
) != 0)
297 * Enable NAND write protect
299 static void lpc32xx_wp_enable(struct lpc32xx_nand_host
*host
)
301 if (gpio_is_valid(host
->ncfg
->wp_gpio
))
302 gpio_set_value(host
->ncfg
->wp_gpio
, 0);
306 * Disable NAND write protect
308 static void lpc32xx_wp_disable(struct lpc32xx_nand_host
*host
)
310 if (gpio_is_valid(host
->ncfg
->wp_gpio
))
311 gpio_set_value(host
->ncfg
->wp_gpio
, 1);
315 * Prepares SLC for transfers with H/W ECC enabled
317 static void lpc32xx_nand_ecc_enable(struct mtd_info
*mtd
, int mode
)
319 /* Hardware ECC is enabled automatically in hardware as needed */
323 * Calculates the ECC for the data
325 static int lpc32xx_nand_ecc_calculate(struct mtd_info
*mtd
,
326 const unsigned char *buf
,
330 * ECC is calculated automatically in hardware during syndrome read
331 * and write operations, so it doesn't need to be calculated here.
337 * Read a single byte from NAND device
339 static uint8_t lpc32xx_nand_read_byte(struct mtd_info
*mtd
)
341 struct nand_chip
*chip
= mtd_to_nand(mtd
);
342 struct lpc32xx_nand_host
*host
= nand_get_controller_data(chip
);
344 return (uint8_t)readl(SLC_DATA(host
->io_base
));
348 * Simple device read without ECC
350 static void lpc32xx_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
352 struct nand_chip
*chip
= mtd_to_nand(mtd
);
353 struct lpc32xx_nand_host
*host
= nand_get_controller_data(chip
);
355 /* Direct device read with no ECC */
357 *buf
++ = (uint8_t)readl(SLC_DATA(host
->io_base
));
361 * Simple device write without ECC
363 static void lpc32xx_nand_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
365 struct nand_chip
*chip
= mtd_to_nand(mtd
);
366 struct lpc32xx_nand_host
*host
= nand_get_controller_data(chip
);
368 /* Direct device write with no ECC */
370 writel((uint32_t)*buf
++, SLC_DATA(host
->io_base
));
374 * Read the OOB data from the device without ECC using FIFO method
376 static int lpc32xx_nand_read_oob_syndrome(struct mtd_info
*mtd
,
377 struct nand_chip
*chip
, int page
)
379 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
380 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
386 * Write the OOB data to the device without ECC using FIFO method
388 static int lpc32xx_nand_write_oob_syndrome(struct mtd_info
*mtd
,
389 struct nand_chip
*chip
, int page
)
393 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
394 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
396 /* Send command to program the OOB data */
397 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
399 status
= chip
->waitfunc(mtd
, chip
);
401 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
405 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
407 static void lpc32xx_slc_ecc_copy(uint8_t *spare
, const uint32_t *ecc
, int count
)
411 for (i
= 0; i
< (count
* 3); i
+= 3) {
412 uint32_t ce
= ecc
[i
/ 3];
413 ce
= ~(ce
<< 2) & 0xFFFFFF;
414 spare
[i
+ 2] = (uint8_t)(ce
& 0xFF);
416 spare
[i
+ 1] = (uint8_t)(ce
& 0xFF);
418 spare
[i
] = (uint8_t)(ce
& 0xFF);
422 static void lpc32xx_dma_complete_func(void *completion
)
424 complete(completion
);
427 static int lpc32xx_xmit_dma(struct mtd_info
*mtd
, dma_addr_t dma
,
428 void *mem
, int len
, enum dma_transfer_direction dir
)
430 struct nand_chip
*chip
= mtd_to_nand(mtd
);
431 struct lpc32xx_nand_host
*host
= nand_get_controller_data(chip
);
432 struct dma_async_tx_descriptor
*desc
;
433 int flags
= DMA_CTRL_ACK
| DMA_PREP_INTERRUPT
;
436 host
->dma_slave_config
.direction
= dir
;
437 host
->dma_slave_config
.src_addr
= dma
;
438 host
->dma_slave_config
.dst_addr
= dma
;
439 host
->dma_slave_config
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
440 host
->dma_slave_config
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
441 host
->dma_slave_config
.src_maxburst
= 4;
442 host
->dma_slave_config
.dst_maxburst
= 4;
443 /* DMA controller does flow control: */
444 host
->dma_slave_config
.device_fc
= false;
445 if (dmaengine_slave_config(host
->dma_chan
, &host
->dma_slave_config
)) {
446 dev_err(mtd
->dev
.parent
, "Failed to setup DMA slave\n");
450 sg_init_one(&host
->sgl
, mem
, len
);
452 res
= dma_map_sg(host
->dma_chan
->device
->dev
, &host
->sgl
, 1,
455 dev_err(mtd
->dev
.parent
, "Failed to map sg list\n");
458 desc
= dmaengine_prep_slave_sg(host
->dma_chan
, &host
->sgl
, 1, dir
,
461 dev_err(mtd
->dev
.parent
, "Failed to prepare slave sg\n");
465 init_completion(&host
->comp
);
466 desc
->callback
= lpc32xx_dma_complete_func
;
467 desc
->callback_param
= &host
->comp
;
469 dmaengine_submit(desc
);
470 dma_async_issue_pending(host
->dma_chan
);
472 wait_for_completion_timeout(&host
->comp
, msecs_to_jiffies(1000));
474 dma_unmap_sg(host
->dma_chan
->device
->dev
, &host
->sgl
, 1,
479 dma_unmap_sg(host
->dma_chan
->device
->dev
, &host
->sgl
, 1,
485 * DMA read/write transfers with ECC support
487 static int lpc32xx_xfer(struct mtd_info
*mtd
, uint8_t *buf
, int eccsubpages
,
490 struct nand_chip
*chip
= mtd_to_nand(mtd
);
491 struct lpc32xx_nand_host
*host
= nand_get_controller_data(chip
);
493 unsigned long timeout
;
495 enum dma_transfer_direction dir
=
496 read
? DMA_DEV_TO_MEM
: DMA_MEM_TO_DEV
;
500 if ((void *)buf
<= high_memory
) {
504 dma_buf
= host
->data_buf
;
507 memcpy(host
->data_buf
, buf
, mtd
->writesize
);
511 writel(readl(SLC_CFG(host
->io_base
)) |
512 SLCCFG_DMA_DIR
| SLCCFG_ECC_EN
| SLCCFG_DMA_ECC
|
513 SLCCFG_DMA_BURST
, SLC_CFG(host
->io_base
));
515 writel((readl(SLC_CFG(host
->io_base
)) |
516 SLCCFG_ECC_EN
| SLCCFG_DMA_ECC
| SLCCFG_DMA_BURST
) &
518 SLC_CFG(host
->io_base
));
521 /* Clear initial ECC */
522 writel(SLCCTRL_ECC_CLEAR
, SLC_CTRL(host
->io_base
));
524 /* Transfer size is data area only */
525 writel(mtd
->writesize
, SLC_TC(host
->io_base
));
527 /* Start transfer in the NAND controller */
528 writel(readl(SLC_CTRL(host
->io_base
)) | SLCCTRL_DMA_START
,
529 SLC_CTRL(host
->io_base
));
531 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
533 res
= lpc32xx_xmit_dma(mtd
, SLC_DMA_DATA(host
->io_base_dma
),
534 dma_buf
+ i
* chip
->ecc
.size
,
535 mtd
->writesize
/ chip
->ecc
.steps
, dir
);
539 /* Always _read_ ECC */
540 if (i
== chip
->ecc
.steps
- 1)
542 if (!read
) /* ECC availability delayed on write */
544 res
= lpc32xx_xmit_dma(mtd
, SLC_ECC(host
->io_base_dma
),
545 &host
->ecc_buf
[i
], 4, DMA_DEV_TO_MEM
);
551 * According to NXP, the DMA can be finished here, but the NAND
552 * controller may still have buffered data. After porting to using the
553 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
554 * appears to be always true, according to tests. Keeping the check for
555 * safety reasons for now.
557 if (readl(SLC_STAT(host
->io_base
)) & SLCSTAT_DMA_FIFO
) {
558 dev_warn(mtd
->dev
.parent
, "FIFO not empty!\n");
559 timeout
= jiffies
+ msecs_to_jiffies(LPC32XX_DMA_TIMEOUT
);
560 while ((readl(SLC_STAT(host
->io_base
)) & SLCSTAT_DMA_FIFO
) &&
561 time_before(jiffies
, timeout
))
563 if (!time_before(jiffies
, timeout
)) {
564 dev_err(mtd
->dev
.parent
, "FIFO held data too long\n");
569 /* Read last calculated ECC value */
572 host
->ecc_buf
[chip
->ecc
.steps
- 1] =
573 readl(SLC_ECC(host
->io_base
));
576 dmaengine_terminate_all(host
->dma_chan
);
578 if (readl(SLC_STAT(host
->io_base
)) & SLCSTAT_DMA_FIFO
||
579 readl(SLC_TC(host
->io_base
))) {
580 /* Something is left in the FIFO, something is wrong */
581 dev_err(mtd
->dev
.parent
, "DMA FIFO failure\n");
585 /* Stop DMA & HW ECC */
586 writel(readl(SLC_CTRL(host
->io_base
)) & ~SLCCTRL_DMA_START
,
587 SLC_CTRL(host
->io_base
));
588 writel(readl(SLC_CFG(host
->io_base
)) &
589 ~(SLCCFG_DMA_DIR
| SLCCFG_ECC_EN
| SLCCFG_DMA_ECC
|
590 SLCCFG_DMA_BURST
), SLC_CFG(host
->io_base
));
592 if (!dma_mapped
&& read
)
593 memcpy(buf
, host
->data_buf
, mtd
->writesize
);
599 * Read the data and OOB data from the device, use ECC correction with the
600 * data, disable ECC for the OOB data
602 static int lpc32xx_nand_read_page_syndrome(struct mtd_info
*mtd
,
603 struct nand_chip
*chip
, uint8_t *buf
,
604 int oob_required
, int page
)
606 struct lpc32xx_nand_host
*host
= nand_get_controller_data(chip
);
608 uint8_t *oobecc
, tmpecc
[LPC32XX_ECC_SAVE_SIZE
];
610 /* Issue read command */
611 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
613 /* Read data and oob, calculate ECC */
614 status
= lpc32xx_xfer(mtd
, buf
, chip
->ecc
.steps
, 1);
617 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
619 /* Convert to stored ECC format */
620 lpc32xx_slc_ecc_copy(tmpecc
, (uint32_t *) host
->ecc_buf
, chip
->ecc
.steps
);
622 /* Pointer to ECC data retrieved from NAND spare area */
623 oobecc
= chip
->oob_poi
+ chip
->ecc
.layout
->eccpos
[0];
625 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
626 stat
= chip
->ecc
.correct(mtd
, buf
, oobecc
,
627 &tmpecc
[i
* chip
->ecc
.bytes
]);
629 mtd
->ecc_stats
.failed
++;
631 mtd
->ecc_stats
.corrected
+= stat
;
633 buf
+= chip
->ecc
.size
;
634 oobecc
+= chip
->ecc
.bytes
;
641 * Read the data and OOB data from the device, no ECC correction with the
644 static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info
*mtd
,
645 struct nand_chip
*chip
,
646 uint8_t *buf
, int oob_required
,
649 /* Issue read command */
650 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
652 /* Raw reads can just use the FIFO interface */
653 chip
->read_buf(mtd
, buf
, chip
->ecc
.size
* chip
->ecc
.steps
);
654 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
660 * Write the data and OOB data to the device, use ECC with the data,
661 * disable ECC for the OOB data
663 static int lpc32xx_nand_write_page_syndrome(struct mtd_info
*mtd
,
664 struct nand_chip
*chip
,
666 int oob_required
, int page
)
668 struct lpc32xx_nand_host
*host
= nand_get_controller_data(chip
);
669 uint8_t *pb
= chip
->oob_poi
+ chip
->ecc
.layout
->eccpos
[0];
672 /* Write data, calculate ECC on outbound data */
673 error
= lpc32xx_xfer(mtd
, (uint8_t *)buf
, chip
->ecc
.steps
, 0);
678 * The calculated ECC needs some manual work done to it before
679 * committing it to NAND. Process the calculated ECC and place
680 * the resultant values directly into the OOB buffer. */
681 lpc32xx_slc_ecc_copy(pb
, (uint32_t *)host
->ecc_buf
, chip
->ecc
.steps
);
683 /* Write ECC data to device */
684 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
689 * Write the data and OOB data to the device, no ECC correction with the
692 static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info
*mtd
,
693 struct nand_chip
*chip
,
695 int oob_required
, int page
)
697 /* Raw writes can just use the FIFO interface */
698 chip
->write_buf(mtd
, buf
, chip
->ecc
.size
* chip
->ecc
.steps
);
699 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
703 static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host
*host
)
705 struct mtd_info
*mtd
= nand_to_mtd(&host
->nand_chip
);
708 if (!host
->pdata
|| !host
->pdata
->dma_filter
) {
709 dev_err(mtd
->dev
.parent
, "no DMA platform data\n");
714 dma_cap_set(DMA_SLAVE
, mask
);
715 host
->dma_chan
= dma_request_channel(mask
, host
->pdata
->dma_filter
,
717 if (!host
->dma_chan
) {
718 dev_err(mtd
->dev
.parent
, "Failed to request DMA channel\n");
725 static struct lpc32xx_nand_cfg_slc
*lpc32xx_parse_dt(struct device
*dev
)
727 struct lpc32xx_nand_cfg_slc
*ncfg
;
728 struct device_node
*np
= dev
->of_node
;
730 ncfg
= devm_kzalloc(dev
, sizeof(*ncfg
), GFP_KERNEL
);
734 of_property_read_u32(np
, "nxp,wdr-clks", &ncfg
->wdr_clks
);
735 of_property_read_u32(np
, "nxp,wwidth", &ncfg
->wwidth
);
736 of_property_read_u32(np
, "nxp,whold", &ncfg
->whold
);
737 of_property_read_u32(np
, "nxp,wsetup", &ncfg
->wsetup
);
738 of_property_read_u32(np
, "nxp,rdr-clks", &ncfg
->rdr_clks
);
739 of_property_read_u32(np
, "nxp,rwidth", &ncfg
->rwidth
);
740 of_property_read_u32(np
, "nxp,rhold", &ncfg
->rhold
);
741 of_property_read_u32(np
, "nxp,rsetup", &ncfg
->rsetup
);
743 if (!ncfg
->wdr_clks
|| !ncfg
->wwidth
|| !ncfg
->whold
||
744 !ncfg
->wsetup
|| !ncfg
->rdr_clks
|| !ncfg
->rwidth
||
745 !ncfg
->rhold
|| !ncfg
->rsetup
) {
746 dev_err(dev
, "chip parameters not specified correctly\n");
750 ncfg
->use_bbt
= of_get_nand_on_flash_bbt(np
);
751 ncfg
->wp_gpio
= of_get_named_gpio(np
, "gpios", 0);
757 * Probe for NAND controller
759 static int lpc32xx_nand_probe(struct platform_device
*pdev
)
761 struct lpc32xx_nand_host
*host
;
762 struct mtd_info
*mtd
;
763 struct nand_chip
*chip
;
767 rc
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
769 dev_err(&pdev
->dev
, "No memory resource found for device\n");
773 /* Allocate memory for the device structure (and zero it) */
774 host
= devm_kzalloc(&pdev
->dev
, sizeof(*host
), GFP_KERNEL
);
777 host
->io_base_dma
= rc
->start
;
779 host
->io_base
= devm_ioremap_resource(&pdev
->dev
, rc
);
780 if (IS_ERR(host
->io_base
))
781 return PTR_ERR(host
->io_base
);
783 if (pdev
->dev
.of_node
)
784 host
->ncfg
= lpc32xx_parse_dt(&pdev
->dev
);
787 "Missing or bad NAND config from device tree\n");
790 if (host
->ncfg
->wp_gpio
== -EPROBE_DEFER
)
791 return -EPROBE_DEFER
;
792 if (gpio_is_valid(host
->ncfg
->wp_gpio
) && devm_gpio_request(&pdev
->dev
,
793 host
->ncfg
->wp_gpio
, "NAND WP")) {
794 dev_err(&pdev
->dev
, "GPIO not available\n");
797 lpc32xx_wp_disable(host
);
799 host
->pdata
= dev_get_platdata(&pdev
->dev
);
801 chip
= &host
->nand_chip
;
802 mtd
= nand_to_mtd(chip
);
803 nand_set_controller_data(chip
, host
);
804 nand_set_flash_node(chip
, pdev
->dev
.of_node
);
805 mtd
->owner
= THIS_MODULE
;
806 mtd
->dev
.parent
= &pdev
->dev
;
809 host
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
810 if (IS_ERR(host
->clk
)) {
811 dev_err(&pdev
->dev
, "Clock failure\n");
815 clk_prepare_enable(host
->clk
);
817 /* Set NAND IO addresses and command/ready functions */
818 chip
->IO_ADDR_R
= SLC_DATA(host
->io_base
);
819 chip
->IO_ADDR_W
= SLC_DATA(host
->io_base
);
820 chip
->cmd_ctrl
= lpc32xx_nand_cmd_ctrl
;
821 chip
->dev_ready
= lpc32xx_nand_device_ready
;
822 chip
->chip_delay
= 20; /* 20us command delay time */
824 /* Init NAND controller */
825 lpc32xx_nand_setup(host
);
827 platform_set_drvdata(pdev
, host
);
829 /* NAND callbacks for LPC32xx SLC hardware */
830 chip
->ecc
.mode
= NAND_ECC_HW_SYNDROME
;
831 chip
->read_byte
= lpc32xx_nand_read_byte
;
832 chip
->read_buf
= lpc32xx_nand_read_buf
;
833 chip
->write_buf
= lpc32xx_nand_write_buf
;
834 chip
->ecc
.read_page_raw
= lpc32xx_nand_read_page_raw_syndrome
;
835 chip
->ecc
.read_page
= lpc32xx_nand_read_page_syndrome
;
836 chip
->ecc
.write_page_raw
= lpc32xx_nand_write_page_raw_syndrome
;
837 chip
->ecc
.write_page
= lpc32xx_nand_write_page_syndrome
;
838 chip
->ecc
.write_oob
= lpc32xx_nand_write_oob_syndrome
;
839 chip
->ecc
.read_oob
= lpc32xx_nand_read_oob_syndrome
;
840 chip
->ecc
.calculate
= lpc32xx_nand_ecc_calculate
;
841 chip
->ecc
.correct
= nand_correct_data
;
842 chip
->ecc
.strength
= 1;
843 chip
->ecc
.hwctl
= lpc32xx_nand_ecc_enable
;
846 * Allocate a large enough buffer for a single huge page plus
847 * extra space for the spare area and ECC storage area
849 host
->dma_buf_len
= LPC32XX_DMA_DATA_SIZE
+ LPC32XX_ECC_SAVE_SIZE
;
850 host
->data_buf
= devm_kzalloc(&pdev
->dev
, host
->dma_buf_len
,
852 if (host
->data_buf
== NULL
) {
857 res
= lpc32xx_nand_dma_setup(host
);
863 /* Find NAND device */
864 if (nand_scan_ident(mtd
, 1, NULL
)) {
869 /* OOB and ECC CPU and DMA work areas */
870 host
->ecc_buf
= (uint32_t *)(host
->data_buf
+ LPC32XX_DMA_DATA_SIZE
);
873 * Small page FLASH has a unique OOB layout, but large and huge
874 * page FLASH use the standard layout. Small page FLASH uses a
875 * custom BBT marker layout.
877 if (mtd
->writesize
<= 512)
878 chip
->ecc
.layout
= &lpc32xx_nand_oob_16
;
880 /* These sizes remain the same regardless of page size */
881 chip
->ecc
.size
= 256;
882 chip
->ecc
.bytes
= LPC32XX_SLC_DEV_ECC_BYTES
;
883 chip
->ecc
.prepad
= chip
->ecc
.postpad
= 0;
885 /* Avoid extra scan if using BBT, setup BBT support */
886 if (host
->ncfg
->use_bbt
) {
887 chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
890 * Use a custom BBT marker setup for small page FLASH that
891 * won't interfere with the ECC layout. Large and huge page
892 * FLASH use the standard layout.
894 if (mtd
->writesize
<= 512) {
895 chip
->bbt_td
= &bbt_smallpage_main_descr
;
896 chip
->bbt_md
= &bbt_smallpage_mirror_descr
;
901 * Fills out all the uninitialized function pointers with the defaults
903 if (nand_scan_tail(mtd
)) {
908 mtd
->name
= "nxp_lpc3220_slc";
909 res
= mtd_device_register(mtd
, host
->ncfg
->parts
,
910 host
->ncfg
->num_parts
);
917 dma_release_channel(host
->dma_chan
);
919 clk_disable_unprepare(host
->clk
);
921 lpc32xx_wp_enable(host
);
927 * Remove NAND device.
929 static int lpc32xx_nand_remove(struct platform_device
*pdev
)
932 struct lpc32xx_nand_host
*host
= platform_get_drvdata(pdev
);
933 struct mtd_info
*mtd
= nand_to_mtd(&host
->nand_chip
);
936 dma_release_channel(host
->dma_chan
);
939 tmp
= readl(SLC_CTRL(host
->io_base
));
940 tmp
&= ~SLCCFG_CE_LOW
;
941 writel(tmp
, SLC_CTRL(host
->io_base
));
943 clk_disable_unprepare(host
->clk
);
944 lpc32xx_wp_enable(host
);
950 static int lpc32xx_nand_resume(struct platform_device
*pdev
)
952 struct lpc32xx_nand_host
*host
= platform_get_drvdata(pdev
);
954 /* Re-enable NAND clock */
955 clk_prepare_enable(host
->clk
);
957 /* Fresh init of NAND controller */
958 lpc32xx_nand_setup(host
);
960 /* Disable write protect */
961 lpc32xx_wp_disable(host
);
966 static int lpc32xx_nand_suspend(struct platform_device
*pdev
, pm_message_t pm
)
969 struct lpc32xx_nand_host
*host
= platform_get_drvdata(pdev
);
972 tmp
= readl(SLC_CTRL(host
->io_base
));
973 tmp
&= ~SLCCFG_CE_LOW
;
974 writel(tmp
, SLC_CTRL(host
->io_base
));
976 /* Enable write protect for safety */
977 lpc32xx_wp_enable(host
);
980 clk_disable_unprepare(host
->clk
);
986 #define lpc32xx_nand_resume NULL
987 #define lpc32xx_nand_suspend NULL
990 static const struct of_device_id lpc32xx_nand_match
[] = {
991 { .compatible
= "nxp,lpc3220-slc" },
994 MODULE_DEVICE_TABLE(of
, lpc32xx_nand_match
);
996 static struct platform_driver lpc32xx_nand_driver
= {
997 .probe
= lpc32xx_nand_probe
,
998 .remove
= lpc32xx_nand_remove
,
999 .resume
= lpc32xx_nand_resume
,
1000 .suspend
= lpc32xx_nand_suspend
,
1002 .name
= LPC32XX_MODNAME
,
1003 .of_match_table
= lpc32xx_nand_match
,
1007 module_platform_driver(lpc32xx_nand_driver
);
1009 MODULE_LICENSE("GPL");
1010 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1011 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1012 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");