3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
6 * Additional technical information is available on
7 * http://www.linux-mtd.infradead.org/doc/nand.html
9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
13 * David Woodhouse for adding multichip support
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
21 * if we have HW ECC support.
22 * BBT table is not serialized, has to be fixed
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
39 #include <linux/types.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand.h>
42 #include <linux/mtd/nand_ecc.h>
43 #include <linux/mtd/nand_bch.h>
44 #include <linux/interrupt.h>
45 #include <linux/bitops.h>
46 #include <linux/leds.h>
48 #include <linux/mtd/partitions.h>
49 #include <linux/of_mtd.h>
51 /* Define default oob placement schemes for large and small page devices */
52 static struct nand_ecclayout nand_oob_8
= {
62 static struct nand_ecclayout nand_oob_16
= {
64 .eccpos
= {0, 1, 2, 3, 6, 7},
70 static struct nand_ecclayout nand_oob_64
= {
73 40, 41, 42, 43, 44, 45, 46, 47,
74 48, 49, 50, 51, 52, 53, 54, 55,
75 56, 57, 58, 59, 60, 61, 62, 63},
81 static struct nand_ecclayout nand_oob_128
= {
84 80, 81, 82, 83, 84, 85, 86, 87,
85 88, 89, 90, 91, 92, 93, 94, 95,
86 96, 97, 98, 99, 100, 101, 102, 103,
87 104, 105, 106, 107, 108, 109, 110, 111,
88 112, 113, 114, 115, 116, 117, 118, 119,
89 120, 121, 122, 123, 124, 125, 126, 127},
95 static int nand_get_device(struct mtd_info
*mtd
, int new_state
);
97 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
98 struct mtd_oob_ops
*ops
);
101 * For devices which display every fart in the system on a separate LED. Is
102 * compiled away when LED support is disabled.
104 DEFINE_LED_TRIGGER(nand_led_trigger
);
106 static int check_offs_len(struct mtd_info
*mtd
,
107 loff_t ofs
, uint64_t len
)
109 struct nand_chip
*chip
= mtd_to_nand(mtd
);
112 /* Start address must align on block boundary */
113 if (ofs
& ((1ULL << chip
->phys_erase_shift
) - 1)) {
114 pr_debug("%s: unaligned address\n", __func__
);
118 /* Length must align on block boundary */
119 if (len
& ((1ULL << chip
->phys_erase_shift
) - 1)) {
120 pr_debug("%s: length not block aligned\n", __func__
);
128 * nand_release_device - [GENERIC] release chip
129 * @mtd: MTD device structure
131 * Release chip lock and wake up anyone waiting on the device.
133 static void nand_release_device(struct mtd_info
*mtd
)
135 struct nand_chip
*chip
= mtd_to_nand(mtd
);
137 /* Release the controller and the chip */
138 spin_lock(&chip
->controller
->lock
);
139 chip
->controller
->active
= NULL
;
140 chip
->state
= FL_READY
;
141 wake_up(&chip
->controller
->wq
);
142 spin_unlock(&chip
->controller
->lock
);
146 * nand_read_byte - [DEFAULT] read one byte from the chip
147 * @mtd: MTD device structure
149 * Default read function for 8bit buswidth
151 static uint8_t nand_read_byte(struct mtd_info
*mtd
)
153 struct nand_chip
*chip
= mtd_to_nand(mtd
);
154 return readb(chip
->IO_ADDR_R
);
158 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
159 * @mtd: MTD device structure
161 * Default read function for 16bit buswidth with endianness conversion.
164 static uint8_t nand_read_byte16(struct mtd_info
*mtd
)
166 struct nand_chip
*chip
= mtd_to_nand(mtd
);
167 return (uint8_t) cpu_to_le16(readw(chip
->IO_ADDR_R
));
171 * nand_read_word - [DEFAULT] read one word from the chip
172 * @mtd: MTD device structure
174 * Default read function for 16bit buswidth without endianness conversion.
176 static u16
nand_read_word(struct mtd_info
*mtd
)
178 struct nand_chip
*chip
= mtd_to_nand(mtd
);
179 return readw(chip
->IO_ADDR_R
);
183 * nand_select_chip - [DEFAULT] control CE line
184 * @mtd: MTD device structure
185 * @chipnr: chipnumber to select, -1 for deselect
187 * Default select function for 1 chip devices.
189 static void nand_select_chip(struct mtd_info
*mtd
, int chipnr
)
191 struct nand_chip
*chip
= mtd_to_nand(mtd
);
195 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
206 * nand_write_byte - [DEFAULT] write single byte to chip
207 * @mtd: MTD device structure
208 * @byte: value to write
210 * Default function to write a byte to I/O[7:0]
212 static void nand_write_byte(struct mtd_info
*mtd
, uint8_t byte
)
214 struct nand_chip
*chip
= mtd_to_nand(mtd
);
216 chip
->write_buf(mtd
, &byte
, 1);
220 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
221 * @mtd: MTD device structure
222 * @byte: value to write
224 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
226 static void nand_write_byte16(struct mtd_info
*mtd
, uint8_t byte
)
228 struct nand_chip
*chip
= mtd_to_nand(mtd
);
229 uint16_t word
= byte
;
232 * It's not entirely clear what should happen to I/O[15:8] when writing
233 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
235 * When the host supports a 16-bit bus width, only data is
236 * transferred at the 16-bit width. All address and command line
237 * transfers shall use only the lower 8-bits of the data bus. During
238 * command transfers, the host may place any value on the upper
239 * 8-bits of the data bus. During address transfers, the host shall
240 * set the upper 8-bits of the data bus to 00h.
242 * One user of the write_byte callback is nand_onfi_set_features. The
243 * four parameters are specified to be written to I/O[7:0], but this is
244 * neither an address nor a command transfer. Let's assume a 0 on the
245 * upper I/O lines is OK.
247 chip
->write_buf(mtd
, (uint8_t *)&word
, 2);
251 * nand_write_buf - [DEFAULT] write buffer to chip
252 * @mtd: MTD device structure
254 * @len: number of bytes to write
256 * Default write function for 8bit buswidth.
258 static void nand_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
260 struct nand_chip
*chip
= mtd_to_nand(mtd
);
262 iowrite8_rep(chip
->IO_ADDR_W
, buf
, len
);
266 * nand_read_buf - [DEFAULT] read chip data into buffer
267 * @mtd: MTD device structure
268 * @buf: buffer to store date
269 * @len: number of bytes to read
271 * Default read function for 8bit buswidth.
273 static void nand_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
275 struct nand_chip
*chip
= mtd_to_nand(mtd
);
277 ioread8_rep(chip
->IO_ADDR_R
, buf
, len
);
281 * nand_write_buf16 - [DEFAULT] write buffer to chip
282 * @mtd: MTD device structure
284 * @len: number of bytes to write
286 * Default write function for 16bit buswidth.
288 static void nand_write_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
290 struct nand_chip
*chip
= mtd_to_nand(mtd
);
291 u16
*p
= (u16
*) buf
;
293 iowrite16_rep(chip
->IO_ADDR_W
, p
, len
>> 1);
297 * nand_read_buf16 - [DEFAULT] read chip data into buffer
298 * @mtd: MTD device structure
299 * @buf: buffer to store date
300 * @len: number of bytes to read
302 * Default read function for 16bit buswidth.
304 static void nand_read_buf16(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
306 struct nand_chip
*chip
= mtd_to_nand(mtd
);
307 u16
*p
= (u16
*) buf
;
309 ioread16_rep(chip
->IO_ADDR_R
, p
, len
>> 1);
313 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
314 * @mtd: MTD device structure
315 * @ofs: offset from device start
317 * Check, if the block is bad.
319 static int nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
)
321 int page
, res
= 0, i
= 0;
322 struct nand_chip
*chip
= mtd_to_nand(mtd
);
325 if (chip
->bbt_options
& NAND_BBT_SCANLASTPAGE
)
326 ofs
+= mtd
->erasesize
- mtd
->writesize
;
328 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
331 if (chip
->options
& NAND_BUSWIDTH_16
) {
332 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
,
333 chip
->badblockpos
& 0xFE, page
);
334 bad
= cpu_to_le16(chip
->read_word(mtd
));
335 if (chip
->badblockpos
& 0x1)
340 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
,
342 bad
= chip
->read_byte(mtd
);
345 if (likely(chip
->badblockbits
== 8))
348 res
= hweight8(bad
) < chip
->badblockbits
;
349 ofs
+= mtd
->writesize
;
350 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
352 } while (!res
&& i
< 2 && (chip
->bbt_options
& NAND_BBT_SCAN2NDPAGE
));
358 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
359 * @mtd: MTD device structure
360 * @ofs: offset from device start
362 * This is the default implementation, which can be overridden by a hardware
363 * specific driver. It provides the details for writing a bad block marker to a
366 static int nand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
368 struct nand_chip
*chip
= mtd_to_nand(mtd
);
369 struct mtd_oob_ops ops
;
370 uint8_t buf
[2] = { 0, 0 };
371 int ret
= 0, res
, i
= 0;
373 memset(&ops
, 0, sizeof(ops
));
375 ops
.ooboffs
= chip
->badblockpos
;
376 if (chip
->options
& NAND_BUSWIDTH_16
) {
377 ops
.ooboffs
&= ~0x01;
378 ops
.len
= ops
.ooblen
= 2;
380 ops
.len
= ops
.ooblen
= 1;
382 ops
.mode
= MTD_OPS_PLACE_OOB
;
384 /* Write to first/last page(s) if necessary */
385 if (chip
->bbt_options
& NAND_BBT_SCANLASTPAGE
)
386 ofs
+= mtd
->erasesize
- mtd
->writesize
;
388 res
= nand_do_write_oob(mtd
, ofs
, &ops
);
393 ofs
+= mtd
->writesize
;
394 } while ((chip
->bbt_options
& NAND_BBT_SCAN2NDPAGE
) && i
< 2);
400 * nand_block_markbad_lowlevel - mark a block bad
401 * @mtd: MTD device structure
402 * @ofs: offset from device start
404 * This function performs the generic NAND bad block marking steps (i.e., bad
405 * block table(s) and/or marker(s)). We only allow the hardware driver to
406 * specify how to write bad block markers to OOB (chip->block_markbad).
408 * We try operations in the following order:
409 * (1) erase the affected block, to allow OOB marker to be written cleanly
410 * (2) write bad block marker to OOB area of affected block (unless flag
411 * NAND_BBT_NO_OOB_BBM is present)
413 * Note that we retain the first error encountered in (2) or (3), finish the
414 * procedures, and dump the error in the end.
416 static int nand_block_markbad_lowlevel(struct mtd_info
*mtd
, loff_t ofs
)
418 struct nand_chip
*chip
= mtd_to_nand(mtd
);
421 if (!(chip
->bbt_options
& NAND_BBT_NO_OOB_BBM
)) {
422 struct erase_info einfo
;
424 /* Attempt erase before marking OOB */
425 memset(&einfo
, 0, sizeof(einfo
));
428 einfo
.len
= 1ULL << chip
->phys_erase_shift
;
429 nand_erase_nand(mtd
, &einfo
, 0);
431 /* Write bad block marker to OOB */
432 nand_get_device(mtd
, FL_WRITING
);
433 ret
= chip
->block_markbad(mtd
, ofs
);
434 nand_release_device(mtd
);
437 /* Mark block bad in BBT */
439 res
= nand_markbad_bbt(mtd
, ofs
);
445 mtd
->ecc_stats
.badblocks
++;
451 * nand_check_wp - [GENERIC] check if the chip is write protected
452 * @mtd: MTD device structure
454 * Check, if the device is write protected. The function expects, that the
455 * device is already selected.
457 static int nand_check_wp(struct mtd_info
*mtd
)
459 struct nand_chip
*chip
= mtd_to_nand(mtd
);
461 /* Broken xD cards report WP despite being writable */
462 if (chip
->options
& NAND_BROKEN_XD
)
465 /* Check the WP bit */
466 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
467 return (chip
->read_byte(mtd
) & NAND_STATUS_WP
) ? 0 : 1;
471 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
472 * @mtd: MTD device structure
473 * @ofs: offset from device start
475 * Check if the block is marked as reserved.
477 static int nand_block_isreserved(struct mtd_info
*mtd
, loff_t ofs
)
479 struct nand_chip
*chip
= mtd_to_nand(mtd
);
483 /* Return info from the table */
484 return nand_isreserved_bbt(mtd
, ofs
);
488 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
489 * @mtd: MTD device structure
490 * @ofs: offset from device start
491 * @allowbbt: 1, if its allowed to access the bbt area
493 * Check, if the block is bad. Either by reading the bad block table or
494 * calling of the scan function.
496 static int nand_block_checkbad(struct mtd_info
*mtd
, loff_t ofs
, int allowbbt
)
498 struct nand_chip
*chip
= mtd_to_nand(mtd
);
501 return chip
->block_bad(mtd
, ofs
);
503 /* Return info from the table */
504 return nand_isbad_bbt(mtd
, ofs
, allowbbt
);
508 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
509 * @mtd: MTD device structure
512 * Helper function for nand_wait_ready used when needing to wait in interrupt
515 static void panic_nand_wait_ready(struct mtd_info
*mtd
, unsigned long timeo
)
517 struct nand_chip
*chip
= mtd_to_nand(mtd
);
520 /* Wait for the device to get ready */
521 for (i
= 0; i
< timeo
; i
++) {
522 if (chip
->dev_ready(mtd
))
524 touch_softlockup_watchdog();
530 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
531 * @mtd: MTD device structure
533 * Wait for the ready pin after a command, and warn if a timeout occurs.
535 void nand_wait_ready(struct mtd_info
*mtd
)
537 struct nand_chip
*chip
= mtd_to_nand(mtd
);
538 unsigned long timeo
= 400;
540 if (in_interrupt() || oops_in_progress
)
541 return panic_nand_wait_ready(mtd
, timeo
);
543 led_trigger_event(nand_led_trigger
, LED_FULL
);
544 /* Wait until command is processed or timeout occurs */
545 timeo
= jiffies
+ msecs_to_jiffies(timeo
);
547 if (chip
->dev_ready(mtd
))
550 } while (time_before(jiffies
, timeo
));
552 if (!chip
->dev_ready(mtd
))
553 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
555 led_trigger_event(nand_led_trigger
, LED_OFF
);
557 EXPORT_SYMBOL_GPL(nand_wait_ready
);
560 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
561 * @mtd: MTD device structure
562 * @timeo: Timeout in ms
564 * Wait for status ready (i.e. command done) or timeout.
566 static void nand_wait_status_ready(struct mtd_info
*mtd
, unsigned long timeo
)
568 register struct nand_chip
*chip
= mtd_to_nand(mtd
);
570 timeo
= jiffies
+ msecs_to_jiffies(timeo
);
572 if ((chip
->read_byte(mtd
) & NAND_STATUS_READY
))
574 touch_softlockup_watchdog();
575 } while (time_before(jiffies
, timeo
));
579 * nand_command - [DEFAULT] Send command to NAND device
580 * @mtd: MTD device structure
581 * @command: the command to be sent
582 * @column: the column address for this command, -1 if none
583 * @page_addr: the page address for this command, -1 if none
585 * Send command to NAND device. This function is used for small page devices
586 * (512 Bytes per page).
588 static void nand_command(struct mtd_info
*mtd
, unsigned int command
,
589 int column
, int page_addr
)
591 register struct nand_chip
*chip
= mtd_to_nand(mtd
);
592 int ctrl
= NAND_CTRL_CLE
| NAND_CTRL_CHANGE
;
594 /* Write out the command to the device */
595 if (command
== NAND_CMD_SEQIN
) {
598 if (column
>= mtd
->writesize
) {
600 column
-= mtd
->writesize
;
601 readcmd
= NAND_CMD_READOOB
;
602 } else if (column
< 256) {
603 /* First 256 bytes --> READ0 */
604 readcmd
= NAND_CMD_READ0
;
607 readcmd
= NAND_CMD_READ1
;
609 chip
->cmd_ctrl(mtd
, readcmd
, ctrl
);
610 ctrl
&= ~NAND_CTRL_CHANGE
;
612 chip
->cmd_ctrl(mtd
, command
, ctrl
);
614 /* Address cycle, when necessary */
615 ctrl
= NAND_CTRL_ALE
| NAND_CTRL_CHANGE
;
616 /* Serially input address */
618 /* Adjust columns for 16 bit buswidth */
619 if (chip
->options
& NAND_BUSWIDTH_16
&&
620 !nand_opcode_8bits(command
))
622 chip
->cmd_ctrl(mtd
, column
, ctrl
);
623 ctrl
&= ~NAND_CTRL_CHANGE
;
625 if (page_addr
!= -1) {
626 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
627 ctrl
&= ~NAND_CTRL_CHANGE
;
628 chip
->cmd_ctrl(mtd
, page_addr
>> 8, ctrl
);
629 /* One more address cycle for devices > 32MiB */
630 if (chip
->chipsize
> (32 << 20))
631 chip
->cmd_ctrl(mtd
, page_addr
>> 16, ctrl
);
633 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
636 * Program and erase have their own busy handlers status and sequential
641 case NAND_CMD_PAGEPROG
:
642 case NAND_CMD_ERASE1
:
643 case NAND_CMD_ERASE2
:
645 case NAND_CMD_STATUS
:
651 udelay(chip
->chip_delay
);
652 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
653 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
655 NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
656 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
657 nand_wait_status_ready(mtd
, 250);
660 /* This applies to read commands */
663 * If we don't have access to the busy pin, we apply the given
666 if (!chip
->dev_ready
) {
667 udelay(chip
->chip_delay
);
672 * Apply this short delay always to ensure that we do wait tWB in
673 * any case on any machine.
677 nand_wait_ready(mtd
);
681 * nand_command_lp - [DEFAULT] Send command to NAND large page device
682 * @mtd: MTD device structure
683 * @command: the command to be sent
684 * @column: the column address for this command, -1 if none
685 * @page_addr: the page address for this command, -1 if none
687 * Send command to NAND device. This is the version for the new large page
688 * devices. We don't have the separate regions as we have in the small page
689 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
691 static void nand_command_lp(struct mtd_info
*mtd
, unsigned int command
,
692 int column
, int page_addr
)
694 register struct nand_chip
*chip
= mtd_to_nand(mtd
);
696 /* Emulate NAND_CMD_READOOB */
697 if (command
== NAND_CMD_READOOB
) {
698 column
+= mtd
->writesize
;
699 command
= NAND_CMD_READ0
;
702 /* Command latch cycle */
703 chip
->cmd_ctrl(mtd
, command
, NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
705 if (column
!= -1 || page_addr
!= -1) {
706 int ctrl
= NAND_CTRL_CHANGE
| NAND_NCE
| NAND_ALE
;
708 /* Serially input address */
710 /* Adjust columns for 16 bit buswidth */
711 if (chip
->options
& NAND_BUSWIDTH_16
&&
712 !nand_opcode_8bits(command
))
714 chip
->cmd_ctrl(mtd
, column
, ctrl
);
715 ctrl
&= ~NAND_CTRL_CHANGE
;
716 chip
->cmd_ctrl(mtd
, column
>> 8, ctrl
);
718 if (page_addr
!= -1) {
719 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
720 chip
->cmd_ctrl(mtd
, page_addr
>> 8,
721 NAND_NCE
| NAND_ALE
);
722 /* One more address cycle for devices > 128MiB */
723 if (chip
->chipsize
> (128 << 20))
724 chip
->cmd_ctrl(mtd
, page_addr
>> 16,
725 NAND_NCE
| NAND_ALE
);
728 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
731 * Program and erase have their own busy handlers status, sequential
732 * in and status need no delay.
736 case NAND_CMD_CACHEDPROG
:
737 case NAND_CMD_PAGEPROG
:
738 case NAND_CMD_ERASE1
:
739 case NAND_CMD_ERASE2
:
742 case NAND_CMD_STATUS
:
748 udelay(chip
->chip_delay
);
749 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
750 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
751 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
752 NAND_NCE
| NAND_CTRL_CHANGE
);
753 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
754 nand_wait_status_ready(mtd
, 250);
757 case NAND_CMD_RNDOUT
:
758 /* No ready / busy check necessary */
759 chip
->cmd_ctrl(mtd
, NAND_CMD_RNDOUTSTART
,
760 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
761 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
762 NAND_NCE
| NAND_CTRL_CHANGE
);
766 chip
->cmd_ctrl(mtd
, NAND_CMD_READSTART
,
767 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
768 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
769 NAND_NCE
| NAND_CTRL_CHANGE
);
771 /* This applies to read commands */
774 * If we don't have access to the busy pin, we apply the given
777 if (!chip
->dev_ready
) {
778 udelay(chip
->chip_delay
);
784 * Apply this short delay always to ensure that we do wait tWB in
785 * any case on any machine.
789 nand_wait_ready(mtd
);
793 * panic_nand_get_device - [GENERIC] Get chip for selected access
794 * @chip: the nand chip descriptor
795 * @mtd: MTD device structure
796 * @new_state: the state which is requested
798 * Used when in panic, no locks are taken.
800 static void panic_nand_get_device(struct nand_chip
*chip
,
801 struct mtd_info
*mtd
, int new_state
)
803 /* Hardware controller shared among independent devices */
804 chip
->controller
->active
= chip
;
805 chip
->state
= new_state
;
809 * nand_get_device - [GENERIC] Get chip for selected access
810 * @mtd: MTD device structure
811 * @new_state: the state which is requested
813 * Get the device and lock it for exclusive access
816 nand_get_device(struct mtd_info
*mtd
, int new_state
)
818 struct nand_chip
*chip
= mtd_to_nand(mtd
);
819 spinlock_t
*lock
= &chip
->controller
->lock
;
820 wait_queue_head_t
*wq
= &chip
->controller
->wq
;
821 DECLARE_WAITQUEUE(wait
, current
);
825 /* Hardware controller shared among independent devices */
826 if (!chip
->controller
->active
)
827 chip
->controller
->active
= chip
;
829 if (chip
->controller
->active
== chip
&& chip
->state
== FL_READY
) {
830 chip
->state
= new_state
;
834 if (new_state
== FL_PM_SUSPENDED
) {
835 if (chip
->controller
->active
->state
== FL_PM_SUSPENDED
) {
836 chip
->state
= FL_PM_SUSPENDED
;
841 set_current_state(TASK_UNINTERRUPTIBLE
);
842 add_wait_queue(wq
, &wait
);
845 remove_wait_queue(wq
, &wait
);
850 * panic_nand_wait - [GENERIC] wait until the command is done
851 * @mtd: MTD device structure
852 * @chip: NAND chip structure
855 * Wait for command done. This is a helper function for nand_wait used when
856 * we are in interrupt context. May happen when in panic and trying to write
857 * an oops through mtdoops.
859 static void panic_nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
,
863 for (i
= 0; i
< timeo
; i
++) {
864 if (chip
->dev_ready
) {
865 if (chip
->dev_ready(mtd
))
868 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
876 * nand_wait - [DEFAULT] wait until the command is done
877 * @mtd: MTD device structure
878 * @chip: NAND chip structure
880 * Wait for command done. This applies to erase and program only.
882 static int nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
886 unsigned long timeo
= 400;
888 led_trigger_event(nand_led_trigger
, LED_FULL
);
891 * Apply this short delay always to ensure that we do wait tWB in any
892 * case on any machine.
896 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
898 if (in_interrupt() || oops_in_progress
)
899 panic_nand_wait(mtd
, chip
, timeo
);
901 timeo
= jiffies
+ msecs_to_jiffies(timeo
);
903 if (chip
->dev_ready
) {
904 if (chip
->dev_ready(mtd
))
907 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
911 } while (time_before(jiffies
, timeo
));
913 led_trigger_event(nand_led_trigger
, LED_OFF
);
915 status
= (int)chip
->read_byte(mtd
);
916 /* This can happen if in case of timeout or buggy dev_ready */
917 WARN_ON(!(status
& NAND_STATUS_READY
));
922 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
924 * @ofs: offset to start unlock from
925 * @len: length to unlock
926 * @invert: when = 0, unlock the range of blocks within the lower and
927 * upper boundary address
928 * when = 1, unlock the range of blocks outside the boundaries
929 * of the lower and upper boundary address
931 * Returs unlock status.
933 static int __nand_unlock(struct mtd_info
*mtd
, loff_t ofs
,
934 uint64_t len
, int invert
)
938 struct nand_chip
*chip
= mtd_to_nand(mtd
);
940 /* Submit address of first page to unlock */
941 page
= ofs
>> chip
->page_shift
;
942 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK1
, -1, page
& chip
->pagemask
);
944 /* Submit address of last page to unlock */
945 page
= (ofs
+ len
) >> chip
->page_shift
;
946 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK2
, -1,
947 (page
| invert
) & chip
->pagemask
);
949 /* Call wait ready function */
950 status
= chip
->waitfunc(mtd
, chip
);
951 /* See if device thinks it succeeded */
952 if (status
& NAND_STATUS_FAIL
) {
953 pr_debug("%s: error status = 0x%08x\n",
962 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
964 * @ofs: offset to start unlock from
965 * @len: length to unlock
967 * Returns unlock status.
969 int nand_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
973 struct nand_chip
*chip
= mtd_to_nand(mtd
);
975 pr_debug("%s: start = 0x%012llx, len = %llu\n",
976 __func__
, (unsigned long long)ofs
, len
);
978 if (check_offs_len(mtd
, ofs
, len
))
981 /* Align to last block address if size addresses end of the device */
982 if (ofs
+ len
== mtd
->size
)
983 len
-= mtd
->erasesize
;
985 nand_get_device(mtd
, FL_UNLOCKING
);
987 /* Shift to get chip number */
988 chipnr
= ofs
>> chip
->chip_shift
;
990 chip
->select_chip(mtd
, chipnr
);
994 * If we want to check the WP through READ STATUS and check the bit 7
995 * we must reset the chip
996 * some operation can also clear the bit 7 of status register
997 * eg. erase/program a locked block
999 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
1001 /* Check, if it is write protected */
1002 if (nand_check_wp(mtd
)) {
1003 pr_debug("%s: device is write protected!\n",
1009 ret
= __nand_unlock(mtd
, ofs
, len
, 0);
1012 chip
->select_chip(mtd
, -1);
1013 nand_release_device(mtd
);
1017 EXPORT_SYMBOL(nand_unlock
);
1020 * nand_lock - [REPLACEABLE] locks all blocks present in the device
1022 * @ofs: offset to start unlock from
1023 * @len: length to unlock
1025 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1026 * have this feature, but it allows only to lock all blocks, not for specified
1027 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1030 * Returns lock status.
1032 int nand_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1035 int chipnr
, status
, page
;
1036 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1038 pr_debug("%s: start = 0x%012llx, len = %llu\n",
1039 __func__
, (unsigned long long)ofs
, len
);
1041 if (check_offs_len(mtd
, ofs
, len
))
1044 nand_get_device(mtd
, FL_LOCKING
);
1046 /* Shift to get chip number */
1047 chipnr
= ofs
>> chip
->chip_shift
;
1049 chip
->select_chip(mtd
, chipnr
);
1053 * If we want to check the WP through READ STATUS and check the bit 7
1054 * we must reset the chip
1055 * some operation can also clear the bit 7 of status register
1056 * eg. erase/program a locked block
1058 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
1060 /* Check, if it is write protected */
1061 if (nand_check_wp(mtd
)) {
1062 pr_debug("%s: device is write protected!\n",
1064 status
= MTD_ERASE_FAILED
;
1069 /* Submit address of first page to lock */
1070 page
= ofs
>> chip
->page_shift
;
1071 chip
->cmdfunc(mtd
, NAND_CMD_LOCK
, -1, page
& chip
->pagemask
);
1073 /* Call wait ready function */
1074 status
= chip
->waitfunc(mtd
, chip
);
1075 /* See if device thinks it succeeded */
1076 if (status
& NAND_STATUS_FAIL
) {
1077 pr_debug("%s: error status = 0x%08x\n",
1083 ret
= __nand_unlock(mtd
, ofs
, len
, 0x1);
1086 chip
->select_chip(mtd
, -1);
1087 nand_release_device(mtd
);
1091 EXPORT_SYMBOL(nand_lock
);
1094 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1095 * @buf: buffer to test
1096 * @len: buffer length
1097 * @bitflips_threshold: maximum number of bitflips
1099 * Check if a buffer contains only 0xff, which means the underlying region
1100 * has been erased and is ready to be programmed.
1101 * The bitflips_threshold specify the maximum number of bitflips before
1102 * considering the region is not erased.
1103 * Note: The logic of this function has been extracted from the memweight
1104 * implementation, except that nand_check_erased_buf function exit before
1105 * testing the whole buffer if the number of bitflips exceed the
1106 * bitflips_threshold value.
1108 * Returns a positive number of bitflips less than or equal to
1109 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1112 static int nand_check_erased_buf(void *buf
, int len
, int bitflips_threshold
)
1114 const unsigned char *bitmap
= buf
;
1118 for (; len
&& ((uintptr_t)bitmap
) % sizeof(long);
1120 weight
= hweight8(*bitmap
);
1121 bitflips
+= BITS_PER_BYTE
- weight
;
1122 if (unlikely(bitflips
> bitflips_threshold
))
1126 for (; len
>= sizeof(long);
1127 len
-= sizeof(long), bitmap
+= sizeof(long)) {
1128 weight
= hweight_long(*((unsigned long *)bitmap
));
1129 bitflips
+= BITS_PER_LONG
- weight
;
1130 if (unlikely(bitflips
> bitflips_threshold
))
1134 for (; len
> 0; len
--, bitmap
++) {
1135 weight
= hweight8(*bitmap
);
1136 bitflips
+= BITS_PER_BYTE
- weight
;
1137 if (unlikely(bitflips
> bitflips_threshold
))
1145 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1147 * @data: data buffer to test
1148 * @datalen: data length
1150 * @ecclen: ECC length
1151 * @extraoob: extra OOB buffer
1152 * @extraooblen: extra OOB length
1153 * @bitflips_threshold: maximum number of bitflips
1155 * Check if a data buffer and its associated ECC and OOB data contains only
1156 * 0xff pattern, which means the underlying region has been erased and is
1157 * ready to be programmed.
1158 * The bitflips_threshold specify the maximum number of bitflips before
1159 * considering the region as not erased.
1162 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1163 * different from the NAND page size. When fixing bitflips, ECC engines will
1164 * report the number of errors per chunk, and the NAND core infrastructure
1165 * expect you to return the maximum number of bitflips for the whole page.
1166 * This is why you should always use this function on a single chunk and
1167 * not on the whole page. After checking each chunk you should update your
1168 * max_bitflips value accordingly.
1169 * 2/ When checking for bitflips in erased pages you should not only check
1170 * the payload data but also their associated ECC data, because a user might
1171 * have programmed almost all bits to 1 but a few. In this case, we
1172 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
1174 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1175 * data are protected by the ECC engine.
1176 * It could also be used if you support subpages and want to attach some
1177 * extra OOB data to an ECC chunk.
1179 * Returns a positive number of bitflips less than or equal to
1180 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1181 * threshold. In case of success, the passed buffers are filled with 0xff.
1183 int nand_check_erased_ecc_chunk(void *data
, int datalen
,
1184 void *ecc
, int ecclen
,
1185 void *extraoob
, int extraooblen
,
1186 int bitflips_threshold
)
1188 int data_bitflips
= 0, ecc_bitflips
= 0, extraoob_bitflips
= 0;
1190 data_bitflips
= nand_check_erased_buf(data
, datalen
,
1191 bitflips_threshold
);
1192 if (data_bitflips
< 0)
1193 return data_bitflips
;
1195 bitflips_threshold
-= data_bitflips
;
1197 ecc_bitflips
= nand_check_erased_buf(ecc
, ecclen
, bitflips_threshold
);
1198 if (ecc_bitflips
< 0)
1199 return ecc_bitflips
;
1201 bitflips_threshold
-= ecc_bitflips
;
1203 extraoob_bitflips
= nand_check_erased_buf(extraoob
, extraooblen
,
1204 bitflips_threshold
);
1205 if (extraoob_bitflips
< 0)
1206 return extraoob_bitflips
;
1209 memset(data
, 0xff, datalen
);
1212 memset(ecc
, 0xff, ecclen
);
1214 if (extraoob_bitflips
)
1215 memset(extraoob
, 0xff, extraooblen
);
1217 return data_bitflips
+ ecc_bitflips
+ extraoob_bitflips
;
1219 EXPORT_SYMBOL(nand_check_erased_ecc_chunk
);
1222 * nand_read_page_raw - [INTERN] read raw page data without ecc
1223 * @mtd: mtd info structure
1224 * @chip: nand chip info structure
1225 * @buf: buffer to store read data
1226 * @oob_required: caller requires OOB data read to chip->oob_poi
1227 * @page: page number to read
1229 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1231 static int nand_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1232 uint8_t *buf
, int oob_required
, int page
)
1234 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
1236 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1241 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1242 * @mtd: mtd info structure
1243 * @chip: nand chip info structure
1244 * @buf: buffer to store read data
1245 * @oob_required: caller requires OOB data read to chip->oob_poi
1246 * @page: page number to read
1248 * We need a special oob layout and handling even when OOB isn't used.
1250 static int nand_read_page_raw_syndrome(struct mtd_info
*mtd
,
1251 struct nand_chip
*chip
, uint8_t *buf
,
1252 int oob_required
, int page
)
1254 int eccsize
= chip
->ecc
.size
;
1255 int eccbytes
= chip
->ecc
.bytes
;
1256 uint8_t *oob
= chip
->oob_poi
;
1259 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1260 chip
->read_buf(mtd
, buf
, eccsize
);
1263 if (chip
->ecc
.prepad
) {
1264 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1265 oob
+= chip
->ecc
.prepad
;
1268 chip
->read_buf(mtd
, oob
, eccbytes
);
1271 if (chip
->ecc
.postpad
) {
1272 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1273 oob
+= chip
->ecc
.postpad
;
1277 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1279 chip
->read_buf(mtd
, oob
, size
);
1285 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1286 * @mtd: mtd info structure
1287 * @chip: nand chip info structure
1288 * @buf: buffer to store read data
1289 * @oob_required: caller requires OOB data read to chip->oob_poi
1290 * @page: page number to read
1292 static int nand_read_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1293 uint8_t *buf
, int oob_required
, int page
)
1295 int i
, eccsize
= chip
->ecc
.size
;
1296 int eccbytes
= chip
->ecc
.bytes
;
1297 int eccsteps
= chip
->ecc
.steps
;
1299 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1300 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1301 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1302 unsigned int max_bitflips
= 0;
1304 chip
->ecc
.read_page_raw(mtd
, chip
, buf
, 1, page
);
1306 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1307 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1309 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1310 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1312 eccsteps
= chip
->ecc
.steps
;
1315 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1318 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1320 mtd
->ecc_stats
.failed
++;
1322 mtd
->ecc_stats
.corrected
+= stat
;
1323 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1326 return max_bitflips
;
1330 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1331 * @mtd: mtd info structure
1332 * @chip: nand chip info structure
1333 * @data_offs: offset of requested data within the page
1334 * @readlen: data length
1335 * @bufpoi: buffer to store read data
1336 * @page: page number to read
1338 static int nand_read_subpage(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1339 uint32_t data_offs
, uint32_t readlen
, uint8_t *bufpoi
,
1342 int start_step
, end_step
, num_steps
;
1343 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1345 int data_col_addr
, i
, gaps
= 0;
1346 int datafrag_len
, eccfrag_len
, aligned_len
, aligned_pos
;
1347 int busw
= (chip
->options
& NAND_BUSWIDTH_16
) ? 2 : 1;
1349 unsigned int max_bitflips
= 0;
1351 /* Column address within the page aligned to ECC size (256bytes) */
1352 start_step
= data_offs
/ chip
->ecc
.size
;
1353 end_step
= (data_offs
+ readlen
- 1) / chip
->ecc
.size
;
1354 num_steps
= end_step
- start_step
+ 1;
1355 index
= start_step
* chip
->ecc
.bytes
;
1357 /* Data size aligned to ECC ecc.size */
1358 datafrag_len
= num_steps
* chip
->ecc
.size
;
1359 eccfrag_len
= num_steps
* chip
->ecc
.bytes
;
1361 data_col_addr
= start_step
* chip
->ecc
.size
;
1362 /* If we read not a page aligned data */
1363 if (data_col_addr
!= 0)
1364 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, data_col_addr
, -1);
1366 p
= bufpoi
+ data_col_addr
;
1367 chip
->read_buf(mtd
, p
, datafrag_len
);
1370 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
)
1371 chip
->ecc
.calculate(mtd
, p
, &chip
->buffers
->ecccalc
[i
]);
1374 * The performance is faster if we position offsets according to
1375 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1377 for (i
= 0; i
< eccfrag_len
- 1; i
++) {
1378 if (eccpos
[i
+ index
] + 1 != eccpos
[i
+ index
+ 1]) {
1384 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
, -1);
1385 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1388 * Send the command to read the particular ECC bytes take care
1389 * about buswidth alignment in read_buf.
1391 aligned_pos
= eccpos
[index
] & ~(busw
- 1);
1392 aligned_len
= eccfrag_len
;
1393 if (eccpos
[index
] & (busw
- 1))
1395 if (eccpos
[index
+ (num_steps
* chip
->ecc
.bytes
)] & (busw
- 1))
1398 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
1399 mtd
->writesize
+ aligned_pos
, -1);
1400 chip
->read_buf(mtd
, &chip
->oob_poi
[aligned_pos
], aligned_len
);
1403 for (i
= 0; i
< eccfrag_len
; i
++)
1404 chip
->buffers
->ecccode
[i
] = chip
->oob_poi
[eccpos
[i
+ index
]];
1406 p
= bufpoi
+ data_col_addr
;
1407 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
) {
1410 stat
= chip
->ecc
.correct(mtd
, p
,
1411 &chip
->buffers
->ecccode
[i
], &chip
->buffers
->ecccalc
[i
]);
1412 if (stat
== -EBADMSG
&&
1413 (chip
->ecc
.options
& NAND_ECC_GENERIC_ERASED_CHECK
)) {
1414 /* check for empty pages with bitflips */
1415 stat
= nand_check_erased_ecc_chunk(p
, chip
->ecc
.size
,
1416 &chip
->buffers
->ecccode
[i
],
1419 chip
->ecc
.strength
);
1423 mtd
->ecc_stats
.failed
++;
1425 mtd
->ecc_stats
.corrected
+= stat
;
1426 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1429 return max_bitflips
;
1433 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1434 * @mtd: mtd info structure
1435 * @chip: nand chip info structure
1436 * @buf: buffer to store read data
1437 * @oob_required: caller requires OOB data read to chip->oob_poi
1438 * @page: page number to read
1440 * Not for syndrome calculating ECC controllers which need a special oob layout.
1442 static int nand_read_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1443 uint8_t *buf
, int oob_required
, int page
)
1445 int i
, eccsize
= chip
->ecc
.size
;
1446 int eccbytes
= chip
->ecc
.bytes
;
1447 int eccsteps
= chip
->ecc
.steps
;
1449 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1450 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1451 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1452 unsigned int max_bitflips
= 0;
1454 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1455 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1456 chip
->read_buf(mtd
, p
, eccsize
);
1457 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1459 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1461 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1462 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1464 eccsteps
= chip
->ecc
.steps
;
1467 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1470 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1471 if (stat
== -EBADMSG
&&
1472 (chip
->ecc
.options
& NAND_ECC_GENERIC_ERASED_CHECK
)) {
1473 /* check for empty pages with bitflips */
1474 stat
= nand_check_erased_ecc_chunk(p
, eccsize
,
1475 &ecc_code
[i
], eccbytes
,
1477 chip
->ecc
.strength
);
1481 mtd
->ecc_stats
.failed
++;
1483 mtd
->ecc_stats
.corrected
+= stat
;
1484 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1487 return max_bitflips
;
1491 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1492 * @mtd: mtd info structure
1493 * @chip: nand chip info structure
1494 * @buf: buffer to store read data
1495 * @oob_required: caller requires OOB data read to chip->oob_poi
1496 * @page: page number to read
1498 * Hardware ECC for large page chips, require OOB to be read first. For this
1499 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1500 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1501 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1502 * the data area, by overwriting the NAND manufacturer bad block markings.
1504 static int nand_read_page_hwecc_oob_first(struct mtd_info
*mtd
,
1505 struct nand_chip
*chip
, uint8_t *buf
, int oob_required
, int page
)
1507 int i
, eccsize
= chip
->ecc
.size
;
1508 int eccbytes
= chip
->ecc
.bytes
;
1509 int eccsteps
= chip
->ecc
.steps
;
1511 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1512 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1513 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1514 unsigned int max_bitflips
= 0;
1516 /* Read the OOB area first */
1517 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1518 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1519 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1521 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1522 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1524 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1527 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1528 chip
->read_buf(mtd
, p
, eccsize
);
1529 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1531 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], NULL
);
1532 if (stat
== -EBADMSG
&&
1533 (chip
->ecc
.options
& NAND_ECC_GENERIC_ERASED_CHECK
)) {
1534 /* check for empty pages with bitflips */
1535 stat
= nand_check_erased_ecc_chunk(p
, eccsize
,
1536 &ecc_code
[i
], eccbytes
,
1538 chip
->ecc
.strength
);
1542 mtd
->ecc_stats
.failed
++;
1544 mtd
->ecc_stats
.corrected
+= stat
;
1545 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1548 return max_bitflips
;
1552 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1553 * @mtd: mtd info structure
1554 * @chip: nand chip info structure
1555 * @buf: buffer to store read data
1556 * @oob_required: caller requires OOB data read to chip->oob_poi
1557 * @page: page number to read
1559 * The hw generator calculates the error syndrome automatically. Therefore we
1560 * need a special oob layout and handling.
1562 static int nand_read_page_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1563 uint8_t *buf
, int oob_required
, int page
)
1565 int i
, eccsize
= chip
->ecc
.size
;
1566 int eccbytes
= chip
->ecc
.bytes
;
1567 int eccsteps
= chip
->ecc
.steps
;
1568 int eccpadbytes
= eccbytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1570 uint8_t *oob
= chip
->oob_poi
;
1571 unsigned int max_bitflips
= 0;
1573 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1576 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1577 chip
->read_buf(mtd
, p
, eccsize
);
1579 if (chip
->ecc
.prepad
) {
1580 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1581 oob
+= chip
->ecc
.prepad
;
1584 chip
->ecc
.hwctl(mtd
, NAND_ECC_READSYN
);
1585 chip
->read_buf(mtd
, oob
, eccbytes
);
1586 stat
= chip
->ecc
.correct(mtd
, p
, oob
, NULL
);
1590 if (chip
->ecc
.postpad
) {
1591 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1592 oob
+= chip
->ecc
.postpad
;
1595 if (stat
== -EBADMSG
&&
1596 (chip
->ecc
.options
& NAND_ECC_GENERIC_ERASED_CHECK
)) {
1597 /* check for empty pages with bitflips */
1598 stat
= nand_check_erased_ecc_chunk(p
, chip
->ecc
.size
,
1602 chip
->ecc
.strength
);
1606 mtd
->ecc_stats
.failed
++;
1608 mtd
->ecc_stats
.corrected
+= stat
;
1609 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1613 /* Calculate remaining oob bytes */
1614 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1616 chip
->read_buf(mtd
, oob
, i
);
1618 return max_bitflips
;
1622 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1623 * @chip: nand chip structure
1624 * @oob: oob destination address
1625 * @ops: oob ops structure
1626 * @len: size of oob to transfer
1628 static uint8_t *nand_transfer_oob(struct nand_chip
*chip
, uint8_t *oob
,
1629 struct mtd_oob_ops
*ops
, size_t len
)
1631 switch (ops
->mode
) {
1633 case MTD_OPS_PLACE_OOB
:
1635 memcpy(oob
, chip
->oob_poi
+ ops
->ooboffs
, len
);
1638 case MTD_OPS_AUTO_OOB
: {
1639 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
1640 uint32_t boffs
= 0, roffs
= ops
->ooboffs
;
1643 for (; free
->length
&& len
; free
++, len
-= bytes
) {
1644 /* Read request not from offset 0? */
1645 if (unlikely(roffs
)) {
1646 if (roffs
>= free
->length
) {
1647 roffs
-= free
->length
;
1650 boffs
= free
->offset
+ roffs
;
1651 bytes
= min_t(size_t, len
,
1652 (free
->length
- roffs
));
1655 bytes
= min_t(size_t, len
, free
->length
);
1656 boffs
= free
->offset
;
1658 memcpy(oob
, chip
->oob_poi
+ boffs
, bytes
);
1670 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1671 * @mtd: MTD device structure
1672 * @retry_mode: the retry mode to use
1674 * Some vendors supply a special command to shift the Vt threshold, to be used
1675 * when there are too many bitflips in a page (i.e., ECC error). After setting
1676 * a new threshold, the host should retry reading the page.
1678 static int nand_setup_read_retry(struct mtd_info
*mtd
, int retry_mode
)
1680 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1682 pr_debug("setting READ RETRY mode %d\n", retry_mode
);
1684 if (retry_mode
>= chip
->read_retries
)
1687 if (!chip
->setup_read_retry
)
1690 return chip
->setup_read_retry(mtd
, retry_mode
);
1694 * nand_do_read_ops - [INTERN] Read data with ECC
1695 * @mtd: MTD device structure
1696 * @from: offset to read from
1697 * @ops: oob ops structure
1699 * Internal function. Called with chip held.
1701 static int nand_do_read_ops(struct mtd_info
*mtd
, loff_t from
,
1702 struct mtd_oob_ops
*ops
)
1704 int chipnr
, page
, realpage
, col
, bytes
, aligned
, oob_required
;
1705 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1707 uint32_t readlen
= ops
->len
;
1708 uint32_t oobreadlen
= ops
->ooblen
;
1709 uint32_t max_oobsize
= mtd_oobavail(mtd
, ops
);
1711 uint8_t *bufpoi
, *oob
, *buf
;
1713 unsigned int max_bitflips
= 0;
1715 bool ecc_fail
= false;
1717 chipnr
= (int)(from
>> chip
->chip_shift
);
1718 chip
->select_chip(mtd
, chipnr
);
1720 realpage
= (int)(from
>> chip
->page_shift
);
1721 page
= realpage
& chip
->pagemask
;
1723 col
= (int)(from
& (mtd
->writesize
- 1));
1727 oob_required
= oob
? 1 : 0;
1730 unsigned int ecc_failures
= mtd
->ecc_stats
.failed
;
1732 bytes
= min(mtd
->writesize
- col
, readlen
);
1733 aligned
= (bytes
== mtd
->writesize
);
1737 else if (chip
->options
& NAND_USE_BOUNCE_BUFFER
)
1738 use_bufpoi
= !virt_addr_valid(buf
);
1742 /* Is the current page in the buffer? */
1743 if (realpage
!= chip
->pagebuf
|| oob
) {
1744 bufpoi
= use_bufpoi
? chip
->buffers
->databuf
: buf
;
1746 if (use_bufpoi
&& aligned
)
1747 pr_debug("%s: using read bounce buffer for buf@%p\n",
1751 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0x00, page
);
1754 * Now read the page into the buffer. Absent an error,
1755 * the read methods return max bitflips per ecc step.
1757 if (unlikely(ops
->mode
== MTD_OPS_RAW
))
1758 ret
= chip
->ecc
.read_page_raw(mtd
, chip
, bufpoi
,
1761 else if (!aligned
&& NAND_HAS_SUBPAGE_READ(chip
) &&
1763 ret
= chip
->ecc
.read_subpage(mtd
, chip
,
1767 ret
= chip
->ecc
.read_page(mtd
, chip
, bufpoi
,
1768 oob_required
, page
);
1771 /* Invalidate page cache */
1776 max_bitflips
= max_t(unsigned int, max_bitflips
, ret
);
1778 /* Transfer not aligned data */
1780 if (!NAND_HAS_SUBPAGE_READ(chip
) && !oob
&&
1781 !(mtd
->ecc_stats
.failed
- ecc_failures
) &&
1782 (ops
->mode
!= MTD_OPS_RAW
)) {
1783 chip
->pagebuf
= realpage
;
1784 chip
->pagebuf_bitflips
= ret
;
1786 /* Invalidate page cache */
1789 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1792 if (unlikely(oob
)) {
1793 int toread
= min(oobreadlen
, max_oobsize
);
1796 oob
= nand_transfer_oob(chip
,
1798 oobreadlen
-= toread
;
1802 if (chip
->options
& NAND_NEED_READRDY
) {
1803 /* Apply delay or wait for ready/busy pin */
1804 if (!chip
->dev_ready
)
1805 udelay(chip
->chip_delay
);
1807 nand_wait_ready(mtd
);
1810 if (mtd
->ecc_stats
.failed
- ecc_failures
) {
1811 if (retry_mode
+ 1 < chip
->read_retries
) {
1813 ret
= nand_setup_read_retry(mtd
,
1818 /* Reset failures; retry */
1819 mtd
->ecc_stats
.failed
= ecc_failures
;
1822 /* No more retry modes; real failure */
1829 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1831 max_bitflips
= max_t(unsigned int, max_bitflips
,
1832 chip
->pagebuf_bitflips
);
1837 /* Reset to retry mode 0 */
1839 ret
= nand_setup_read_retry(mtd
, 0);
1848 /* For subsequent reads align to page boundary */
1850 /* Increment page address */
1853 page
= realpage
& chip
->pagemask
;
1854 /* Check, if we cross a chip boundary */
1857 chip
->select_chip(mtd
, -1);
1858 chip
->select_chip(mtd
, chipnr
);
1861 chip
->select_chip(mtd
, -1);
1863 ops
->retlen
= ops
->len
- (size_t) readlen
;
1865 ops
->oobretlen
= ops
->ooblen
- oobreadlen
;
1873 return max_bitflips
;
1877 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1878 * @mtd: MTD device structure
1879 * @from: offset to read from
1880 * @len: number of bytes to read
1881 * @retlen: pointer to variable to store the number of read bytes
1882 * @buf: the databuffer to put data
1884 * Get hold of the chip and call nand_do_read.
1886 static int nand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1887 size_t *retlen
, uint8_t *buf
)
1889 struct mtd_oob_ops ops
;
1892 nand_get_device(mtd
, FL_READING
);
1893 memset(&ops
, 0, sizeof(ops
));
1896 ops
.mode
= MTD_OPS_PLACE_OOB
;
1897 ret
= nand_do_read_ops(mtd
, from
, &ops
);
1898 *retlen
= ops
.retlen
;
1899 nand_release_device(mtd
);
1904 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1905 * @mtd: mtd info structure
1906 * @chip: nand chip info structure
1907 * @page: page number to read
1909 static int nand_read_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1912 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1913 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1918 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1920 * @mtd: mtd info structure
1921 * @chip: nand chip info structure
1922 * @page: page number to read
1924 static int nand_read_oob_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1927 int length
= mtd
->oobsize
;
1928 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1929 int eccsize
= chip
->ecc
.size
;
1930 uint8_t *bufpoi
= chip
->oob_poi
;
1931 int i
, toread
, sndrnd
= 0, pos
;
1933 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, chip
->ecc
.size
, page
);
1934 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
1936 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1937 if (mtd
->writesize
> 512)
1938 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, pos
, -1);
1940 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, pos
, page
);
1943 toread
= min_t(int, length
, chunk
);
1944 chip
->read_buf(mtd
, bufpoi
, toread
);
1949 chip
->read_buf(mtd
, bufpoi
, length
);
1955 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1956 * @mtd: mtd info structure
1957 * @chip: nand chip info structure
1958 * @page: page number to write
1960 static int nand_write_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1964 const uint8_t *buf
= chip
->oob_poi
;
1965 int length
= mtd
->oobsize
;
1967 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
1968 chip
->write_buf(mtd
, buf
, length
);
1969 /* Send command to program the OOB data */
1970 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1972 status
= chip
->waitfunc(mtd
, chip
);
1974 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1978 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1979 * with syndrome - only for large page flash
1980 * @mtd: mtd info structure
1981 * @chip: nand chip info structure
1982 * @page: page number to write
1984 static int nand_write_oob_syndrome(struct mtd_info
*mtd
,
1985 struct nand_chip
*chip
, int page
)
1987 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1988 int eccsize
= chip
->ecc
.size
, length
= mtd
->oobsize
;
1989 int i
, len
, pos
, status
= 0, sndcmd
= 0, steps
= chip
->ecc
.steps
;
1990 const uint8_t *bufpoi
= chip
->oob_poi
;
1993 * data-ecc-data-ecc ... ecc-oob
1995 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1997 if (!chip
->ecc
.prepad
&& !chip
->ecc
.postpad
) {
1998 pos
= steps
* (eccsize
+ chunk
);
2003 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, pos
, page
);
2004 for (i
= 0; i
< steps
; i
++) {
2006 if (mtd
->writesize
<= 512) {
2007 uint32_t fill
= 0xFFFFFFFF;
2011 int num
= min_t(int, len
, 4);
2012 chip
->write_buf(mtd
, (uint8_t *)&fill
,
2017 pos
= eccsize
+ i
* (eccsize
+ chunk
);
2018 chip
->cmdfunc(mtd
, NAND_CMD_RNDIN
, pos
, -1);
2022 len
= min_t(int, length
, chunk
);
2023 chip
->write_buf(mtd
, bufpoi
, len
);
2028 chip
->write_buf(mtd
, bufpoi
, length
);
2030 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
2031 status
= chip
->waitfunc(mtd
, chip
);
2033 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
2037 * nand_do_read_oob - [INTERN] NAND read out-of-band
2038 * @mtd: MTD device structure
2039 * @from: offset to read from
2040 * @ops: oob operations description structure
2042 * NAND read out-of-band data from the spare area.
2044 static int nand_do_read_oob(struct mtd_info
*mtd
, loff_t from
,
2045 struct mtd_oob_ops
*ops
)
2047 int page
, realpage
, chipnr
;
2048 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2049 struct mtd_ecc_stats stats
;
2050 int readlen
= ops
->ooblen
;
2052 uint8_t *buf
= ops
->oobbuf
;
2055 pr_debug("%s: from = 0x%08Lx, len = %i\n",
2056 __func__
, (unsigned long long)from
, readlen
);
2058 stats
= mtd
->ecc_stats
;
2060 len
= mtd_oobavail(mtd
, ops
);
2062 if (unlikely(ops
->ooboffs
>= len
)) {
2063 pr_debug("%s: attempt to start read outside oob\n",
2068 /* Do not allow reads past end of device */
2069 if (unlikely(from
>= mtd
->size
||
2070 ops
->ooboffs
+ readlen
> ((mtd
->size
>> chip
->page_shift
) -
2071 (from
>> chip
->page_shift
)) * len
)) {
2072 pr_debug("%s: attempt to read beyond end of device\n",
2077 chipnr
= (int)(from
>> chip
->chip_shift
);
2078 chip
->select_chip(mtd
, chipnr
);
2080 /* Shift to get page */
2081 realpage
= (int)(from
>> chip
->page_shift
);
2082 page
= realpage
& chip
->pagemask
;
2085 if (ops
->mode
== MTD_OPS_RAW
)
2086 ret
= chip
->ecc
.read_oob_raw(mtd
, chip
, page
);
2088 ret
= chip
->ecc
.read_oob(mtd
, chip
, page
);
2093 len
= min(len
, readlen
);
2094 buf
= nand_transfer_oob(chip
, buf
, ops
, len
);
2096 if (chip
->options
& NAND_NEED_READRDY
) {
2097 /* Apply delay or wait for ready/busy pin */
2098 if (!chip
->dev_ready
)
2099 udelay(chip
->chip_delay
);
2101 nand_wait_ready(mtd
);
2108 /* Increment page address */
2111 page
= realpage
& chip
->pagemask
;
2112 /* Check, if we cross a chip boundary */
2115 chip
->select_chip(mtd
, -1);
2116 chip
->select_chip(mtd
, chipnr
);
2119 chip
->select_chip(mtd
, -1);
2121 ops
->oobretlen
= ops
->ooblen
- readlen
;
2126 if (mtd
->ecc_stats
.failed
- stats
.failed
)
2129 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
2133 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2134 * @mtd: MTD device structure
2135 * @from: offset to read from
2136 * @ops: oob operation description structure
2138 * NAND read data and/or out-of-band data.
2140 static int nand_read_oob(struct mtd_info
*mtd
, loff_t from
,
2141 struct mtd_oob_ops
*ops
)
2143 int ret
= -ENOTSUPP
;
2147 /* Do not allow reads past end of device */
2148 if (ops
->datbuf
&& (from
+ ops
->len
) > mtd
->size
) {
2149 pr_debug("%s: attempt to read beyond end of device\n",
2154 nand_get_device(mtd
, FL_READING
);
2156 switch (ops
->mode
) {
2157 case MTD_OPS_PLACE_OOB
:
2158 case MTD_OPS_AUTO_OOB
:
2167 ret
= nand_do_read_oob(mtd
, from
, ops
);
2169 ret
= nand_do_read_ops(mtd
, from
, ops
);
2172 nand_release_device(mtd
);
2178 * nand_write_page_raw - [INTERN] raw page write function
2179 * @mtd: mtd info structure
2180 * @chip: nand chip info structure
2182 * @oob_required: must write chip->oob_poi to OOB
2183 * @page: page number to write
2185 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2187 static int nand_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2188 const uint8_t *buf
, int oob_required
, int page
)
2190 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
2192 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
2198 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2199 * @mtd: mtd info structure
2200 * @chip: nand chip info structure
2202 * @oob_required: must write chip->oob_poi to OOB
2203 * @page: page number to write
2205 * We need a special oob layout and handling even when ECC isn't checked.
2207 static int nand_write_page_raw_syndrome(struct mtd_info
*mtd
,
2208 struct nand_chip
*chip
,
2209 const uint8_t *buf
, int oob_required
,
2212 int eccsize
= chip
->ecc
.size
;
2213 int eccbytes
= chip
->ecc
.bytes
;
2214 uint8_t *oob
= chip
->oob_poi
;
2217 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
2218 chip
->write_buf(mtd
, buf
, eccsize
);
2221 if (chip
->ecc
.prepad
) {
2222 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
2223 oob
+= chip
->ecc
.prepad
;
2226 chip
->write_buf(mtd
, oob
, eccbytes
);
2229 if (chip
->ecc
.postpad
) {
2230 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
2231 oob
+= chip
->ecc
.postpad
;
2235 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
2237 chip
->write_buf(mtd
, oob
, size
);
2242 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2243 * @mtd: mtd info structure
2244 * @chip: nand chip info structure
2246 * @oob_required: must write chip->oob_poi to OOB
2247 * @page: page number to write
2249 static int nand_write_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2250 const uint8_t *buf
, int oob_required
,
2253 int i
, eccsize
= chip
->ecc
.size
;
2254 int eccbytes
= chip
->ecc
.bytes
;
2255 int eccsteps
= chip
->ecc
.steps
;
2256 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
2257 const uint8_t *p
= buf
;
2258 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
2260 /* Software ECC calculation */
2261 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
2262 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
2264 for (i
= 0; i
< chip
->ecc
.total
; i
++)
2265 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
2267 return chip
->ecc
.write_page_raw(mtd
, chip
, buf
, 1, page
);
2271 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2272 * @mtd: mtd info structure
2273 * @chip: nand chip info structure
2275 * @oob_required: must write chip->oob_poi to OOB
2276 * @page: page number to write
2278 static int nand_write_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2279 const uint8_t *buf
, int oob_required
,
2282 int i
, eccsize
= chip
->ecc
.size
;
2283 int eccbytes
= chip
->ecc
.bytes
;
2284 int eccsteps
= chip
->ecc
.steps
;
2285 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
2286 const uint8_t *p
= buf
;
2287 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
2289 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
2290 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2291 chip
->write_buf(mtd
, p
, eccsize
);
2292 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
2295 for (i
= 0; i
< chip
->ecc
.total
; i
++)
2296 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
2298 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
2305 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2306 * @mtd: mtd info structure
2307 * @chip: nand chip info structure
2308 * @offset: column address of subpage within the page
2309 * @data_len: data length
2311 * @oob_required: must write chip->oob_poi to OOB
2312 * @page: page number to write
2314 static int nand_write_subpage_hwecc(struct mtd_info
*mtd
,
2315 struct nand_chip
*chip
, uint32_t offset
,
2316 uint32_t data_len
, const uint8_t *buf
,
2317 int oob_required
, int page
)
2319 uint8_t *oob_buf
= chip
->oob_poi
;
2320 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
2321 int ecc_size
= chip
->ecc
.size
;
2322 int ecc_bytes
= chip
->ecc
.bytes
;
2323 int ecc_steps
= chip
->ecc
.steps
;
2324 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
2325 uint32_t start_step
= offset
/ ecc_size
;
2326 uint32_t end_step
= (offset
+ data_len
- 1) / ecc_size
;
2327 int oob_bytes
= mtd
->oobsize
/ ecc_steps
;
2330 for (step
= 0; step
< ecc_steps
; step
++) {
2331 /* configure controller for WRITE access */
2332 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2334 /* write data (untouched subpages already masked by 0xFF) */
2335 chip
->write_buf(mtd
, buf
, ecc_size
);
2337 /* mask ECC of un-touched subpages by padding 0xFF */
2338 if ((step
< start_step
) || (step
> end_step
))
2339 memset(ecc_calc
, 0xff, ecc_bytes
);
2341 chip
->ecc
.calculate(mtd
, buf
, ecc_calc
);
2343 /* mask OOB of un-touched subpages by padding 0xFF */
2344 /* if oob_required, preserve OOB metadata of written subpage */
2345 if (!oob_required
|| (step
< start_step
) || (step
> end_step
))
2346 memset(oob_buf
, 0xff, oob_bytes
);
2349 ecc_calc
+= ecc_bytes
;
2350 oob_buf
+= oob_bytes
;
2353 /* copy calculated ECC for whole page to chip->buffer->oob */
2354 /* this include masked-value(0xFF) for unwritten subpages */
2355 ecc_calc
= chip
->buffers
->ecccalc
;
2356 for (i
= 0; i
< chip
->ecc
.total
; i
++)
2357 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
2359 /* write OOB buffer to NAND device */
2360 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
2367 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2368 * @mtd: mtd info structure
2369 * @chip: nand chip info structure
2371 * @oob_required: must write chip->oob_poi to OOB
2372 * @page: page number to write
2374 * The hw generator calculates the error syndrome automatically. Therefore we
2375 * need a special oob layout and handling.
2377 static int nand_write_page_syndrome(struct mtd_info
*mtd
,
2378 struct nand_chip
*chip
,
2379 const uint8_t *buf
, int oob_required
,
2382 int i
, eccsize
= chip
->ecc
.size
;
2383 int eccbytes
= chip
->ecc
.bytes
;
2384 int eccsteps
= chip
->ecc
.steps
;
2385 const uint8_t *p
= buf
;
2386 uint8_t *oob
= chip
->oob_poi
;
2388 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
2390 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2391 chip
->write_buf(mtd
, p
, eccsize
);
2393 if (chip
->ecc
.prepad
) {
2394 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
2395 oob
+= chip
->ecc
.prepad
;
2398 chip
->ecc
.calculate(mtd
, p
, oob
);
2399 chip
->write_buf(mtd
, oob
, eccbytes
);
2402 if (chip
->ecc
.postpad
) {
2403 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
2404 oob
+= chip
->ecc
.postpad
;
2408 /* Calculate remaining oob bytes */
2409 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
2411 chip
->write_buf(mtd
, oob
, i
);
2417 * nand_write_page - [REPLACEABLE] write one page
2418 * @mtd: MTD device structure
2419 * @chip: NAND chip descriptor
2420 * @offset: address offset within the page
2421 * @data_len: length of actual data to be written
2422 * @buf: the data to write
2423 * @oob_required: must write chip->oob_poi to OOB
2424 * @page: page number to write
2425 * @cached: cached programming
2426 * @raw: use _raw version of write_page
2428 static int nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2429 uint32_t offset
, int data_len
, const uint8_t *buf
,
2430 int oob_required
, int page
, int cached
, int raw
)
2432 int status
, subpage
;
2434 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) &&
2435 chip
->ecc
.write_subpage
)
2436 subpage
= offset
|| (data_len
< mtd
->writesize
);
2440 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
2443 status
= chip
->ecc
.write_page_raw(mtd
, chip
, buf
,
2444 oob_required
, page
);
2446 status
= chip
->ecc
.write_subpage(mtd
, chip
, offset
, data_len
,
2447 buf
, oob_required
, page
);
2449 status
= chip
->ecc
.write_page(mtd
, chip
, buf
, oob_required
,
2456 * Cached progamming disabled for now. Not sure if it's worth the
2457 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2461 if (!cached
|| !NAND_HAS_CACHEPROG(chip
)) {
2463 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
2464 status
= chip
->waitfunc(mtd
, chip
);
2466 * See if operation failed and additional status checks are
2469 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2470 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
2473 if (status
& NAND_STATUS_FAIL
)
2476 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
2477 status
= chip
->waitfunc(mtd
, chip
);
2484 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2485 * @mtd: MTD device structure
2486 * @oob: oob data buffer
2487 * @len: oob data write length
2488 * @ops: oob ops structure
2490 static uint8_t *nand_fill_oob(struct mtd_info
*mtd
, uint8_t *oob
, size_t len
,
2491 struct mtd_oob_ops
*ops
)
2493 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2496 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2497 * data from a previous OOB read.
2499 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2501 switch (ops
->mode
) {
2503 case MTD_OPS_PLACE_OOB
:
2505 memcpy(chip
->oob_poi
+ ops
->ooboffs
, oob
, len
);
2508 case MTD_OPS_AUTO_OOB
: {
2509 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
2510 uint32_t boffs
= 0, woffs
= ops
->ooboffs
;
2513 for (; free
->length
&& len
; free
++, len
-= bytes
) {
2514 /* Write request not from offset 0? */
2515 if (unlikely(woffs
)) {
2516 if (woffs
>= free
->length
) {
2517 woffs
-= free
->length
;
2520 boffs
= free
->offset
+ woffs
;
2521 bytes
= min_t(size_t, len
,
2522 (free
->length
- woffs
));
2525 bytes
= min_t(size_t, len
, free
->length
);
2526 boffs
= free
->offset
;
2528 memcpy(chip
->oob_poi
+ boffs
, oob
, bytes
);
2539 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2542 * nand_do_write_ops - [INTERN] NAND write with ECC
2543 * @mtd: MTD device structure
2544 * @to: offset to write to
2545 * @ops: oob operations description structure
2547 * NAND write with ECC.
2549 static int nand_do_write_ops(struct mtd_info
*mtd
, loff_t to
,
2550 struct mtd_oob_ops
*ops
)
2552 int chipnr
, realpage
, page
, blockmask
, column
;
2553 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2554 uint32_t writelen
= ops
->len
;
2556 uint32_t oobwritelen
= ops
->ooblen
;
2557 uint32_t oobmaxlen
= mtd_oobavail(mtd
, ops
);
2559 uint8_t *oob
= ops
->oobbuf
;
2560 uint8_t *buf
= ops
->datbuf
;
2562 int oob_required
= oob
? 1 : 0;
2568 /* Reject writes, which are not page aligned */
2569 if (NOTALIGNED(to
) || NOTALIGNED(ops
->len
)) {
2570 pr_notice("%s: attempt to write non page aligned data\n",
2575 column
= to
& (mtd
->writesize
- 1);
2577 chipnr
= (int)(to
>> chip
->chip_shift
);
2578 chip
->select_chip(mtd
, chipnr
);
2580 /* Check, if it is write protected */
2581 if (nand_check_wp(mtd
)) {
2586 realpage
= (int)(to
>> chip
->page_shift
);
2587 page
= realpage
& chip
->pagemask
;
2588 blockmask
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
2590 /* Invalidate the page cache, when we write to the cached page */
2591 if (to
<= ((loff_t
)chip
->pagebuf
<< chip
->page_shift
) &&
2592 ((loff_t
)chip
->pagebuf
<< chip
->page_shift
) < (to
+ ops
->len
))
2595 /* Don't allow multipage oob writes with offset */
2596 if (oob
&& ops
->ooboffs
&& (ops
->ooboffs
+ ops
->ooblen
> oobmaxlen
)) {
2602 int bytes
= mtd
->writesize
;
2603 int cached
= writelen
> bytes
&& page
!= blockmask
;
2604 uint8_t *wbuf
= buf
;
2606 int part_pagewr
= (column
|| writelen
< (mtd
->writesize
- 1));
2610 else if (chip
->options
& NAND_USE_BOUNCE_BUFFER
)
2611 use_bufpoi
= !virt_addr_valid(buf
);
2615 /* Partial page write?, or need to use bounce buffer */
2617 pr_debug("%s: using write bounce buffer for buf@%p\n",
2621 bytes
= min_t(int, bytes
- column
, writelen
);
2623 memset(chip
->buffers
->databuf
, 0xff, mtd
->writesize
);
2624 memcpy(&chip
->buffers
->databuf
[column
], buf
, bytes
);
2625 wbuf
= chip
->buffers
->databuf
;
2628 if (unlikely(oob
)) {
2629 size_t len
= min(oobwritelen
, oobmaxlen
);
2630 oob
= nand_fill_oob(mtd
, oob
, len
, ops
);
2633 /* We still need to erase leftover OOB data */
2634 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2636 ret
= chip
->write_page(mtd
, chip
, column
, bytes
, wbuf
,
2637 oob_required
, page
, cached
,
2638 (ops
->mode
== MTD_OPS_RAW
));
2650 page
= realpage
& chip
->pagemask
;
2651 /* Check, if we cross a chip boundary */
2654 chip
->select_chip(mtd
, -1);
2655 chip
->select_chip(mtd
, chipnr
);
2659 ops
->retlen
= ops
->len
- writelen
;
2661 ops
->oobretlen
= ops
->ooblen
;
2664 chip
->select_chip(mtd
, -1);
2669 * panic_nand_write - [MTD Interface] NAND write with ECC
2670 * @mtd: MTD device structure
2671 * @to: offset to write to
2672 * @len: number of bytes to write
2673 * @retlen: pointer to variable to store the number of written bytes
2674 * @buf: the data to write
2676 * NAND write with ECC. Used when performing writes in interrupt context, this
2677 * may for example be called by mtdoops when writing an oops while in panic.
2679 static int panic_nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2680 size_t *retlen
, const uint8_t *buf
)
2682 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2683 struct mtd_oob_ops ops
;
2686 /* Wait for the device to get ready */
2687 panic_nand_wait(mtd
, chip
, 400);
2689 /* Grab the device */
2690 panic_nand_get_device(chip
, mtd
, FL_WRITING
);
2692 memset(&ops
, 0, sizeof(ops
));
2694 ops
.datbuf
= (uint8_t *)buf
;
2695 ops
.mode
= MTD_OPS_PLACE_OOB
;
2697 ret
= nand_do_write_ops(mtd
, to
, &ops
);
2699 *retlen
= ops
.retlen
;
2704 * nand_write - [MTD Interface] NAND write with ECC
2705 * @mtd: MTD device structure
2706 * @to: offset to write to
2707 * @len: number of bytes to write
2708 * @retlen: pointer to variable to store the number of written bytes
2709 * @buf: the data to write
2711 * NAND write with ECC.
2713 static int nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2714 size_t *retlen
, const uint8_t *buf
)
2716 struct mtd_oob_ops ops
;
2719 nand_get_device(mtd
, FL_WRITING
);
2720 memset(&ops
, 0, sizeof(ops
));
2722 ops
.datbuf
= (uint8_t *)buf
;
2723 ops
.mode
= MTD_OPS_PLACE_OOB
;
2724 ret
= nand_do_write_ops(mtd
, to
, &ops
);
2725 *retlen
= ops
.retlen
;
2726 nand_release_device(mtd
);
2731 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2732 * @mtd: MTD device structure
2733 * @to: offset to write to
2734 * @ops: oob operation description structure
2736 * NAND write out-of-band.
2738 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
2739 struct mtd_oob_ops
*ops
)
2741 int chipnr
, page
, status
, len
;
2742 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2744 pr_debug("%s: to = 0x%08x, len = %i\n",
2745 __func__
, (unsigned int)to
, (int)ops
->ooblen
);
2747 len
= mtd_oobavail(mtd
, ops
);
2749 /* Do not allow write past end of page */
2750 if ((ops
->ooboffs
+ ops
->ooblen
) > len
) {
2751 pr_debug("%s: attempt to write past end of page\n",
2756 if (unlikely(ops
->ooboffs
>= len
)) {
2757 pr_debug("%s: attempt to start write outside oob\n",
2762 /* Do not allow write past end of device */
2763 if (unlikely(to
>= mtd
->size
||
2764 ops
->ooboffs
+ ops
->ooblen
>
2765 ((mtd
->size
>> chip
->page_shift
) -
2766 (to
>> chip
->page_shift
)) * len
)) {
2767 pr_debug("%s: attempt to write beyond end of device\n",
2772 chipnr
= (int)(to
>> chip
->chip_shift
);
2773 chip
->select_chip(mtd
, chipnr
);
2775 /* Shift to get page */
2776 page
= (int)(to
>> chip
->page_shift
);
2779 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2780 * of my DiskOnChip 2000 test units) will clear the whole data page too
2781 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2782 * it in the doc2000 driver in August 1999. dwmw2.
2784 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2786 /* Check, if it is write protected */
2787 if (nand_check_wp(mtd
)) {
2788 chip
->select_chip(mtd
, -1);
2792 /* Invalidate the page cache, if we write to the cached page */
2793 if (page
== chip
->pagebuf
)
2796 nand_fill_oob(mtd
, ops
->oobbuf
, ops
->ooblen
, ops
);
2798 if (ops
->mode
== MTD_OPS_RAW
)
2799 status
= chip
->ecc
.write_oob_raw(mtd
, chip
, page
& chip
->pagemask
);
2801 status
= chip
->ecc
.write_oob(mtd
, chip
, page
& chip
->pagemask
);
2803 chip
->select_chip(mtd
, -1);
2808 ops
->oobretlen
= ops
->ooblen
;
2814 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2815 * @mtd: MTD device structure
2816 * @to: offset to write to
2817 * @ops: oob operation description structure
2819 static int nand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2820 struct mtd_oob_ops
*ops
)
2822 int ret
= -ENOTSUPP
;
2826 /* Do not allow writes past end of device */
2827 if (ops
->datbuf
&& (to
+ ops
->len
) > mtd
->size
) {
2828 pr_debug("%s: attempt to write beyond end of device\n",
2833 nand_get_device(mtd
, FL_WRITING
);
2835 switch (ops
->mode
) {
2836 case MTD_OPS_PLACE_OOB
:
2837 case MTD_OPS_AUTO_OOB
:
2846 ret
= nand_do_write_oob(mtd
, to
, ops
);
2848 ret
= nand_do_write_ops(mtd
, to
, ops
);
2851 nand_release_device(mtd
);
2856 * single_erase - [GENERIC] NAND standard block erase command function
2857 * @mtd: MTD device structure
2858 * @page: the page address of the block which will be erased
2860 * Standard erase command for NAND chips. Returns NAND status.
2862 static int single_erase(struct mtd_info
*mtd
, int page
)
2864 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2865 /* Send commands to erase a block */
2866 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2867 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2869 return chip
->waitfunc(mtd
, chip
);
2873 * nand_erase - [MTD Interface] erase block(s)
2874 * @mtd: MTD device structure
2875 * @instr: erase instruction
2877 * Erase one ore more blocks.
2879 static int nand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2881 return nand_erase_nand(mtd
, instr
, 0);
2885 * nand_erase_nand - [INTERN] erase block(s)
2886 * @mtd: MTD device structure
2887 * @instr: erase instruction
2888 * @allowbbt: allow erasing the bbt area
2890 * Erase one ore more blocks.
2892 int nand_erase_nand(struct mtd_info
*mtd
, struct erase_info
*instr
,
2895 int page
, status
, pages_per_block
, ret
, chipnr
;
2896 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2899 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2900 __func__
, (unsigned long long)instr
->addr
,
2901 (unsigned long long)instr
->len
);
2903 if (check_offs_len(mtd
, instr
->addr
, instr
->len
))
2906 /* Grab the lock and see if the device is available */
2907 nand_get_device(mtd
, FL_ERASING
);
2909 /* Shift to get first page */
2910 page
= (int)(instr
->addr
>> chip
->page_shift
);
2911 chipnr
= (int)(instr
->addr
>> chip
->chip_shift
);
2913 /* Calculate pages in each block */
2914 pages_per_block
= 1 << (chip
->phys_erase_shift
- chip
->page_shift
);
2916 /* Select the NAND device */
2917 chip
->select_chip(mtd
, chipnr
);
2919 /* Check, if it is write protected */
2920 if (nand_check_wp(mtd
)) {
2921 pr_debug("%s: device is write protected!\n",
2923 instr
->state
= MTD_ERASE_FAILED
;
2927 /* Loop through the pages */
2930 instr
->state
= MTD_ERASING
;
2933 /* Check if we have a bad block, we do not erase bad blocks! */
2934 if (nand_block_checkbad(mtd
, ((loff_t
) page
) <<
2935 chip
->page_shift
, allowbbt
)) {
2936 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2938 instr
->state
= MTD_ERASE_FAILED
;
2943 * Invalidate the page cache, if we erase the block which
2944 * contains the current cached page.
2946 if (page
<= chip
->pagebuf
&& chip
->pagebuf
<
2947 (page
+ pages_per_block
))
2950 status
= chip
->erase(mtd
, page
& chip
->pagemask
);
2953 * See if operation failed and additional status checks are
2956 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2957 status
= chip
->errstat(mtd
, chip
, FL_ERASING
,
2960 /* See if block erase succeeded */
2961 if (status
& NAND_STATUS_FAIL
) {
2962 pr_debug("%s: failed erase, page 0x%08x\n",
2964 instr
->state
= MTD_ERASE_FAILED
;
2966 ((loff_t
)page
<< chip
->page_shift
);
2970 /* Increment page address and decrement length */
2971 len
-= (1ULL << chip
->phys_erase_shift
);
2972 page
+= pages_per_block
;
2974 /* Check, if we cross a chip boundary */
2975 if (len
&& !(page
& chip
->pagemask
)) {
2977 chip
->select_chip(mtd
, -1);
2978 chip
->select_chip(mtd
, chipnr
);
2981 instr
->state
= MTD_ERASE_DONE
;
2985 ret
= instr
->state
== MTD_ERASE_DONE
? 0 : -EIO
;
2987 /* Deselect and wake up anyone waiting on the device */
2988 chip
->select_chip(mtd
, -1);
2989 nand_release_device(mtd
);
2991 /* Do call back function */
2993 mtd_erase_callback(instr
);
2995 /* Return more or less happy */
3000 * nand_sync - [MTD Interface] sync
3001 * @mtd: MTD device structure
3003 * Sync is actually a wait for chip ready function.
3005 static void nand_sync(struct mtd_info
*mtd
)
3007 pr_debug("%s: called\n", __func__
);
3009 /* Grab the lock and see if the device is available */
3010 nand_get_device(mtd
, FL_SYNCING
);
3011 /* Release it and go back */
3012 nand_release_device(mtd
);
3016 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3017 * @mtd: MTD device structure
3018 * @offs: offset relative to mtd start
3020 static int nand_block_isbad(struct mtd_info
*mtd
, loff_t offs
)
3022 struct nand_chip
*chip
= mtd_to_nand(mtd
);
3023 int chipnr
= (int)(offs
>> chip
->chip_shift
);
3026 /* Select the NAND device */
3027 nand_get_device(mtd
, FL_READING
);
3028 chip
->select_chip(mtd
, chipnr
);
3030 ret
= nand_block_checkbad(mtd
, offs
, 0);
3032 chip
->select_chip(mtd
, -1);
3033 nand_release_device(mtd
);
3039 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3040 * @mtd: MTD device structure
3041 * @ofs: offset relative to mtd start
3043 static int nand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
3047 ret
= nand_block_isbad(mtd
, ofs
);
3049 /* If it was bad already, return success and do nothing */
3055 return nand_block_markbad_lowlevel(mtd
, ofs
);
3059 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3060 * @mtd: MTD device structure
3061 * @chip: nand chip info structure
3062 * @addr: feature address.
3063 * @subfeature_param: the subfeature parameters, a four bytes array.
3065 static int nand_onfi_set_features(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3066 int addr
, uint8_t *subfeature_param
)
3071 if (!chip
->onfi_version
||
3072 !(le16_to_cpu(chip
->onfi_params
.opt_cmd
)
3073 & ONFI_OPT_CMD_SET_GET_FEATURES
))
3076 chip
->cmdfunc(mtd
, NAND_CMD_SET_FEATURES
, addr
, -1);
3077 for (i
= 0; i
< ONFI_SUBFEATURE_PARAM_LEN
; ++i
)
3078 chip
->write_byte(mtd
, subfeature_param
[i
]);
3080 status
= chip
->waitfunc(mtd
, chip
);
3081 if (status
& NAND_STATUS_FAIL
)
3087 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3088 * @mtd: MTD device structure
3089 * @chip: nand chip info structure
3090 * @addr: feature address.
3091 * @subfeature_param: the subfeature parameters, a four bytes array.
3093 static int nand_onfi_get_features(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3094 int addr
, uint8_t *subfeature_param
)
3098 if (!chip
->onfi_version
||
3099 !(le16_to_cpu(chip
->onfi_params
.opt_cmd
)
3100 & ONFI_OPT_CMD_SET_GET_FEATURES
))
3103 chip
->cmdfunc(mtd
, NAND_CMD_GET_FEATURES
, addr
, -1);
3104 for (i
= 0; i
< ONFI_SUBFEATURE_PARAM_LEN
; ++i
)
3105 *subfeature_param
++ = chip
->read_byte(mtd
);
3110 * nand_suspend - [MTD Interface] Suspend the NAND flash
3111 * @mtd: MTD device structure
3113 static int nand_suspend(struct mtd_info
*mtd
)
3115 return nand_get_device(mtd
, FL_PM_SUSPENDED
);
3119 * nand_resume - [MTD Interface] Resume the NAND flash
3120 * @mtd: MTD device structure
3122 static void nand_resume(struct mtd_info
*mtd
)
3124 struct nand_chip
*chip
= mtd_to_nand(mtd
);
3126 if (chip
->state
== FL_PM_SUSPENDED
)
3127 nand_release_device(mtd
);
3129 pr_err("%s called for a chip which is not in suspended state\n",
3134 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3135 * prevent further operations
3136 * @mtd: MTD device structure
3138 static void nand_shutdown(struct mtd_info
*mtd
)
3140 nand_get_device(mtd
, FL_PM_SUSPENDED
);
3143 /* Set default functions */
3144 static void nand_set_defaults(struct nand_chip
*chip
, int busw
)
3146 /* check for proper chip_delay setup, set 20us if not */
3147 if (!chip
->chip_delay
)
3148 chip
->chip_delay
= 20;
3150 /* check, if a user supplied command function given */
3151 if (chip
->cmdfunc
== NULL
)
3152 chip
->cmdfunc
= nand_command
;
3154 /* check, if a user supplied wait function given */
3155 if (chip
->waitfunc
== NULL
)
3156 chip
->waitfunc
= nand_wait
;
3158 if (!chip
->select_chip
)
3159 chip
->select_chip
= nand_select_chip
;
3161 /* set for ONFI nand */
3162 if (!chip
->onfi_set_features
)
3163 chip
->onfi_set_features
= nand_onfi_set_features
;
3164 if (!chip
->onfi_get_features
)
3165 chip
->onfi_get_features
= nand_onfi_get_features
;
3167 /* If called twice, pointers that depend on busw may need to be reset */
3168 if (!chip
->read_byte
|| chip
->read_byte
== nand_read_byte
)
3169 chip
->read_byte
= busw
? nand_read_byte16
: nand_read_byte
;
3170 if (!chip
->read_word
)
3171 chip
->read_word
= nand_read_word
;
3172 if (!chip
->block_bad
)
3173 chip
->block_bad
= nand_block_bad
;
3174 if (!chip
->block_markbad
)
3175 chip
->block_markbad
= nand_default_block_markbad
;
3176 if (!chip
->write_buf
|| chip
->write_buf
== nand_write_buf
)
3177 chip
->write_buf
= busw
? nand_write_buf16
: nand_write_buf
;
3178 if (!chip
->write_byte
|| chip
->write_byte
== nand_write_byte
)
3179 chip
->write_byte
= busw
? nand_write_byte16
: nand_write_byte
;
3180 if (!chip
->read_buf
|| chip
->read_buf
== nand_read_buf
)
3181 chip
->read_buf
= busw
? nand_read_buf16
: nand_read_buf
;
3182 if (!chip
->scan_bbt
)
3183 chip
->scan_bbt
= nand_default_bbt
;
3185 if (!chip
->controller
) {
3186 chip
->controller
= &chip
->hwcontrol
;
3187 spin_lock_init(&chip
->controller
->lock
);
3188 init_waitqueue_head(&chip
->controller
->wq
);
3193 /* Sanitize ONFI strings so we can safely print them */
3194 static void sanitize_string(uint8_t *s
, size_t len
)
3198 /* Null terminate */
3201 /* Remove non printable chars */
3202 for (i
= 0; i
< len
- 1; i
++) {
3203 if (s
[i
] < ' ' || s
[i
] > 127)
3207 /* Remove trailing spaces */
3211 static u16
onfi_crc16(u16 crc
, u8
const *p
, size_t len
)
3216 for (i
= 0; i
< 8; i
++)
3217 crc
= (crc
<< 1) ^ ((crc
& 0x8000) ? 0x8005 : 0);
3223 /* Parse the Extended Parameter Page. */
3224 static int nand_flash_detect_ext_param_page(struct mtd_info
*mtd
,
3225 struct nand_chip
*chip
, struct nand_onfi_params
*p
)
3227 struct onfi_ext_param_page
*ep
;
3228 struct onfi_ext_section
*s
;
3229 struct onfi_ext_ecc_info
*ecc
;
3235 len
= le16_to_cpu(p
->ext_param_page_length
) * 16;
3236 ep
= kmalloc(len
, GFP_KERNEL
);
3240 /* Send our own NAND_CMD_PARAM. */
3241 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0, -1);
3243 /* Use the Change Read Column command to skip the ONFI param pages. */
3244 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
3245 sizeof(*p
) * p
->num_of_param_pages
, -1);
3247 /* Read out the Extended Parameter Page. */
3248 chip
->read_buf(mtd
, (uint8_t *)ep
, len
);
3249 if ((onfi_crc16(ONFI_CRC_BASE
, ((uint8_t *)ep
) + 2, len
- 2)
3250 != le16_to_cpu(ep
->crc
))) {
3251 pr_debug("fail in the CRC.\n");
3256 * Check the signature.
3257 * Do not strictly follow the ONFI spec, maybe changed in future.
3259 if (strncmp(ep
->sig
, "EPPS", 4)) {
3260 pr_debug("The signature is invalid.\n");
3264 /* find the ECC section. */
3265 cursor
= (uint8_t *)(ep
+ 1);
3266 for (i
= 0; i
< ONFI_EXT_SECTION_MAX
; i
++) {
3267 s
= ep
->sections
+ i
;
3268 if (s
->type
== ONFI_SECTION_TYPE_2
)
3270 cursor
+= s
->length
* 16;
3272 if (i
== ONFI_EXT_SECTION_MAX
) {
3273 pr_debug("We can not find the ECC section.\n");
3277 /* get the info we want. */
3278 ecc
= (struct onfi_ext_ecc_info
*)cursor
;
3280 if (!ecc
->codeword_size
) {
3281 pr_debug("Invalid codeword size\n");
3285 chip
->ecc_strength_ds
= ecc
->ecc_bits
;
3286 chip
->ecc_step_ds
= 1 << ecc
->codeword_size
;
3294 static int nand_setup_read_retry_micron(struct mtd_info
*mtd
, int retry_mode
)
3296 struct nand_chip
*chip
= mtd_to_nand(mtd
);
3297 uint8_t feature
[ONFI_SUBFEATURE_PARAM_LEN
] = {retry_mode
};
3299 return chip
->onfi_set_features(mtd
, chip
, ONFI_FEATURE_ADDR_READ_RETRY
,
3304 * Configure chip properties from Micron vendor-specific ONFI table
3306 static void nand_onfi_detect_micron(struct nand_chip
*chip
,
3307 struct nand_onfi_params
*p
)
3309 struct nand_onfi_vendor_micron
*micron
= (void *)p
->vendor
;
3311 if (le16_to_cpu(p
->vendor_revision
) < 1)
3314 chip
->read_retries
= micron
->read_retry_options
;
3315 chip
->setup_read_retry
= nand_setup_read_retry_micron
;
3319 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3321 static int nand_flash_detect_onfi(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3324 struct nand_onfi_params
*p
= &chip
->onfi_params
;
3328 /* Try ONFI for unknown chip or LP */
3329 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x20, -1);
3330 if (chip
->read_byte(mtd
) != 'O' || chip
->read_byte(mtd
) != 'N' ||
3331 chip
->read_byte(mtd
) != 'F' || chip
->read_byte(mtd
) != 'I')
3334 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0, -1);
3335 for (i
= 0; i
< 3; i
++) {
3336 for (j
= 0; j
< sizeof(*p
); j
++)
3337 ((uint8_t *)p
)[j
] = chip
->read_byte(mtd
);
3338 if (onfi_crc16(ONFI_CRC_BASE
, (uint8_t *)p
, 254) ==
3339 le16_to_cpu(p
->crc
)) {
3345 pr_err("Could not find valid ONFI parameter page; aborting\n");
3350 val
= le16_to_cpu(p
->revision
);
3352 chip
->onfi_version
= 23;
3353 else if (val
& (1 << 4))
3354 chip
->onfi_version
= 22;
3355 else if (val
& (1 << 3))
3356 chip
->onfi_version
= 21;
3357 else if (val
& (1 << 2))
3358 chip
->onfi_version
= 20;
3359 else if (val
& (1 << 1))
3360 chip
->onfi_version
= 10;
3362 if (!chip
->onfi_version
) {
3363 pr_info("unsupported ONFI version: %d\n", val
);
3367 sanitize_string(p
->manufacturer
, sizeof(p
->manufacturer
));
3368 sanitize_string(p
->model
, sizeof(p
->model
));
3370 mtd
->name
= p
->model
;
3372 mtd
->writesize
= le32_to_cpu(p
->byte_per_page
);
3375 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3376 * (don't ask me who thought of this...). MTD assumes that these
3377 * dimensions will be power-of-2, so just truncate the remaining area.
3379 mtd
->erasesize
= 1 << (fls(le32_to_cpu(p
->pages_per_block
)) - 1);
3380 mtd
->erasesize
*= mtd
->writesize
;
3382 mtd
->oobsize
= le16_to_cpu(p
->spare_bytes_per_page
);
3384 /* See erasesize comment */
3385 chip
->chipsize
= 1 << (fls(le32_to_cpu(p
->blocks_per_lun
)) - 1);
3386 chip
->chipsize
*= (uint64_t)mtd
->erasesize
* p
->lun_count
;
3387 chip
->bits_per_cell
= p
->bits_per_cell
;
3389 if (onfi_feature(chip
) & ONFI_FEATURE_16_BIT_BUS
)
3390 *busw
= NAND_BUSWIDTH_16
;
3394 if (p
->ecc_bits
!= 0xff) {
3395 chip
->ecc_strength_ds
= p
->ecc_bits
;
3396 chip
->ecc_step_ds
= 512;
3397 } else if (chip
->onfi_version
>= 21 &&
3398 (onfi_feature(chip
) & ONFI_FEATURE_EXT_PARAM_PAGE
)) {
3401 * The nand_flash_detect_ext_param_page() uses the
3402 * Change Read Column command which maybe not supported
3403 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3404 * now. We do not replace user supplied command function.
3406 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
3407 chip
->cmdfunc
= nand_command_lp
;
3409 /* The Extended Parameter Page is supported since ONFI 2.1. */
3410 if (nand_flash_detect_ext_param_page(mtd
, chip
, p
))
3411 pr_warn("Failed to detect ONFI extended param page\n");
3413 pr_warn("Could not retrieve ONFI ECC requirements\n");
3416 if (p
->jedec_id
== NAND_MFR_MICRON
)
3417 nand_onfi_detect_micron(chip
, p
);
3423 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3425 static int nand_flash_detect_jedec(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3428 struct nand_jedec_params
*p
= &chip
->jedec_params
;
3429 struct jedec_ecc_info
*ecc
;
3433 /* Try JEDEC for unknown chip or LP */
3434 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x40, -1);
3435 if (chip
->read_byte(mtd
) != 'J' || chip
->read_byte(mtd
) != 'E' ||
3436 chip
->read_byte(mtd
) != 'D' || chip
->read_byte(mtd
) != 'E' ||
3437 chip
->read_byte(mtd
) != 'C')
3440 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0x40, -1);
3441 for (i
= 0; i
< 3; i
++) {
3442 for (j
= 0; j
< sizeof(*p
); j
++)
3443 ((uint8_t *)p
)[j
] = chip
->read_byte(mtd
);
3445 if (onfi_crc16(ONFI_CRC_BASE
, (uint8_t *)p
, 510) ==
3446 le16_to_cpu(p
->crc
))
3451 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3456 val
= le16_to_cpu(p
->revision
);
3458 chip
->jedec_version
= 10;
3459 else if (val
& (1 << 1))
3460 chip
->jedec_version
= 1; /* vendor specific version */
3462 if (!chip
->jedec_version
) {
3463 pr_info("unsupported JEDEC version: %d\n", val
);
3467 sanitize_string(p
->manufacturer
, sizeof(p
->manufacturer
));
3468 sanitize_string(p
->model
, sizeof(p
->model
));
3470 mtd
->name
= p
->model
;
3472 mtd
->writesize
= le32_to_cpu(p
->byte_per_page
);
3474 /* Please reference to the comment for nand_flash_detect_onfi. */
3475 mtd
->erasesize
= 1 << (fls(le32_to_cpu(p
->pages_per_block
)) - 1);
3476 mtd
->erasesize
*= mtd
->writesize
;
3478 mtd
->oobsize
= le16_to_cpu(p
->spare_bytes_per_page
);
3480 /* Please reference to the comment for nand_flash_detect_onfi. */
3481 chip
->chipsize
= 1 << (fls(le32_to_cpu(p
->blocks_per_lun
)) - 1);
3482 chip
->chipsize
*= (uint64_t)mtd
->erasesize
* p
->lun_count
;
3483 chip
->bits_per_cell
= p
->bits_per_cell
;
3485 if (jedec_feature(chip
) & JEDEC_FEATURE_16_BIT_BUS
)
3486 *busw
= NAND_BUSWIDTH_16
;
3491 ecc
= &p
->ecc_info
[0];
3493 if (ecc
->codeword_size
>= 9) {
3494 chip
->ecc_strength_ds
= ecc
->ecc_bits
;
3495 chip
->ecc_step_ds
= 1 << ecc
->codeword_size
;
3497 pr_warn("Invalid codeword size\n");
3504 * nand_id_has_period - Check if an ID string has a given wraparound period
3505 * @id_data: the ID string
3506 * @arrlen: the length of the @id_data array
3507 * @period: the period of repitition
3509 * Check if an ID string is repeated within a given sequence of bytes at
3510 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3511 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3512 * if the repetition has a period of @period; otherwise, returns zero.
3514 static int nand_id_has_period(u8
*id_data
, int arrlen
, int period
)
3517 for (i
= 0; i
< period
; i
++)
3518 for (j
= i
+ period
; j
< arrlen
; j
+= period
)
3519 if (id_data
[i
] != id_data
[j
])
3525 * nand_id_len - Get the length of an ID string returned by CMD_READID
3526 * @id_data: the ID string
3527 * @arrlen: the length of the @id_data array
3529 * Returns the length of the ID string, according to known wraparound/trailing
3530 * zero patterns. If no pattern exists, returns the length of the array.
3532 static int nand_id_len(u8
*id_data
, int arrlen
)
3534 int last_nonzero
, period
;
3536 /* Find last non-zero byte */
3537 for (last_nonzero
= arrlen
- 1; last_nonzero
>= 0; last_nonzero
--)
3538 if (id_data
[last_nonzero
])
3542 if (last_nonzero
< 0)
3545 /* Calculate wraparound period */
3546 for (period
= 1; period
< arrlen
; period
++)
3547 if (nand_id_has_period(id_data
, arrlen
, period
))
3550 /* There's a repeated pattern */
3551 if (period
< arrlen
)
3554 /* There are trailing zeros */
3555 if (last_nonzero
< arrlen
- 1)
3556 return last_nonzero
+ 1;
3558 /* No pattern detected */
3562 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3563 static int nand_get_bits_per_cell(u8 cellinfo
)
3567 bits
= cellinfo
& NAND_CI_CELLTYPE_MSK
;
3568 bits
>>= NAND_CI_CELLTYPE_SHIFT
;
3573 * Many new NAND share similar device ID codes, which represent the size of the
3574 * chip. The rest of the parameters must be decoded according to generic or
3575 * manufacturer-specific "extended ID" decoding patterns.
3577 static void nand_decode_ext_id(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3578 u8 id_data
[8], int *busw
)
3581 /* The 3rd id byte holds MLC / multichip data */
3582 chip
->bits_per_cell
= nand_get_bits_per_cell(id_data
[2]);
3583 /* The 4th id byte is the important one */
3586 id_len
= nand_id_len(id_data
, 8);
3589 * Field definitions are in the following datasheets:
3590 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3591 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3592 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3594 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3595 * ID to decide what to do.
3597 if (id_len
== 6 && id_data
[0] == NAND_MFR_SAMSUNG
&&
3598 !nand_is_slc(chip
) && id_data
[5] != 0x00) {
3600 mtd
->writesize
= 2048 << (extid
& 0x03);
3603 switch (((extid
>> 2) & 0x04) | (extid
& 0x03)) {
3623 default: /* Other cases are "reserved" (unknown) */
3624 mtd
->oobsize
= 1024;
3628 /* Calc blocksize */
3629 mtd
->erasesize
= (128 * 1024) <<
3630 (((extid
>> 1) & 0x04) | (extid
& 0x03));
3632 } else if (id_len
== 6 && id_data
[0] == NAND_MFR_HYNIX
&&
3633 !nand_is_slc(chip
)) {
3637 mtd
->writesize
= 2048 << (extid
& 0x03);
3640 switch (((extid
>> 2) & 0x04) | (extid
& 0x03)) {
3664 /* Calc blocksize */
3665 tmp
= ((extid
>> 1) & 0x04) | (extid
& 0x03);
3667 mtd
->erasesize
= (128 * 1024) << tmp
;
3668 else if (tmp
== 0x03)
3669 mtd
->erasesize
= 768 * 1024;
3671 mtd
->erasesize
= (64 * 1024) << tmp
;
3675 mtd
->writesize
= 1024 << (extid
& 0x03);
3678 mtd
->oobsize
= (8 << (extid
& 0x01)) *
3679 (mtd
->writesize
>> 9);
3681 /* Calc blocksize. Blocksize is multiples of 64KiB */
3682 mtd
->erasesize
= (64 * 1024) << (extid
& 0x03);
3684 /* Get buswidth information */
3685 *busw
= (extid
& 0x01) ? NAND_BUSWIDTH_16
: 0;
3688 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3689 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3691 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3693 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3695 if (id_len
>= 6 && id_data
[0] == NAND_MFR_TOSHIBA
&&
3696 nand_is_slc(chip
) &&
3697 (id_data
[5] & 0x7) == 0x6 /* 24nm */ &&
3698 !(id_data
[4] & 0x80) /* !BENAND */) {
3699 mtd
->oobsize
= 32 * mtd
->writesize
>> 9;
3706 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3707 * decodes a matching ID table entry and assigns the MTD size parameters for
3710 static void nand_decode_id(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3711 struct nand_flash_dev
*type
, u8 id_data
[8],
3714 int maf_id
= id_data
[0];
3716 mtd
->erasesize
= type
->erasesize
;
3717 mtd
->writesize
= type
->pagesize
;
3718 mtd
->oobsize
= mtd
->writesize
/ 32;
3719 *busw
= type
->options
& NAND_BUSWIDTH_16
;
3721 /* All legacy ID NAND are small-page, SLC */
3722 chip
->bits_per_cell
= 1;
3725 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3726 * some Spansion chips have erasesize that conflicts with size
3727 * listed in nand_ids table.
3728 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3730 if (maf_id
== NAND_MFR_AMD
&& id_data
[4] != 0x00 && id_data
[5] == 0x00
3731 && id_data
[6] == 0x00 && id_data
[7] == 0x00
3732 && mtd
->writesize
== 512) {
3733 mtd
->erasesize
= 128 * 1024;
3734 mtd
->erasesize
<<= ((id_data
[3] & 0x03) << 1);
3739 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3740 * heuristic patterns using various detected parameters (e.g., manufacturer,
3741 * page size, cell-type information).
3743 static void nand_decode_bbm_options(struct mtd_info
*mtd
,
3744 struct nand_chip
*chip
, u8 id_data
[8])
3746 int maf_id
= id_data
[0];
3748 /* Set the bad block position */
3749 if (mtd
->writesize
> 512 || (chip
->options
& NAND_BUSWIDTH_16
))
3750 chip
->badblockpos
= NAND_LARGE_BADBLOCK_POS
;
3752 chip
->badblockpos
= NAND_SMALL_BADBLOCK_POS
;
3755 * Bad block marker is stored in the last page of each block on Samsung
3756 * and Hynix MLC devices; stored in first two pages of each block on
3757 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3758 * AMD/Spansion, and Macronix. All others scan only the first page.
3760 if (!nand_is_slc(chip
) &&
3761 (maf_id
== NAND_MFR_SAMSUNG
||
3762 maf_id
== NAND_MFR_HYNIX
))
3763 chip
->bbt_options
|= NAND_BBT_SCANLASTPAGE
;
3764 else if ((nand_is_slc(chip
) &&
3765 (maf_id
== NAND_MFR_SAMSUNG
||
3766 maf_id
== NAND_MFR_HYNIX
||
3767 maf_id
== NAND_MFR_TOSHIBA
||
3768 maf_id
== NAND_MFR_AMD
||
3769 maf_id
== NAND_MFR_MACRONIX
)) ||
3770 (mtd
->writesize
== 2048 &&
3771 maf_id
== NAND_MFR_MICRON
))
3772 chip
->bbt_options
|= NAND_BBT_SCAN2NDPAGE
;
3775 static inline bool is_full_id_nand(struct nand_flash_dev
*type
)
3777 return type
->id_len
;
3780 static bool find_full_id_nand(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3781 struct nand_flash_dev
*type
, u8
*id_data
, int *busw
)
3783 if (!strncmp(type
->id
, id_data
, type
->id_len
)) {
3784 mtd
->writesize
= type
->pagesize
;
3785 mtd
->erasesize
= type
->erasesize
;
3786 mtd
->oobsize
= type
->oobsize
;
3788 chip
->bits_per_cell
= nand_get_bits_per_cell(id_data
[2]);
3789 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
3790 chip
->options
|= type
->options
;
3791 chip
->ecc_strength_ds
= NAND_ECC_STRENGTH(type
);
3792 chip
->ecc_step_ds
= NAND_ECC_STEP(type
);
3793 chip
->onfi_timing_mode_default
=
3794 type
->onfi_timing_mode_default
;
3796 *busw
= type
->options
& NAND_BUSWIDTH_16
;
3799 mtd
->name
= type
->name
;
3807 * Get the flash and manufacturer id and lookup if the type is supported.
3809 static struct nand_flash_dev
*nand_get_flash_type(struct mtd_info
*mtd
,
3810 struct nand_chip
*chip
,
3811 int *maf_id
, int *dev_id
,
3812 struct nand_flash_dev
*type
)
3818 /* Select the device */
3819 chip
->select_chip(mtd
, 0);
3822 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3825 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
3827 /* Send the command for reading device ID */
3828 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
3830 /* Read manufacturer and device IDs */
3831 *maf_id
= chip
->read_byte(mtd
);
3832 *dev_id
= chip
->read_byte(mtd
);
3835 * Try again to make sure, as some systems the bus-hold or other
3836 * interface concerns can cause random data which looks like a
3837 * possibly credible NAND flash to appear. If the two results do
3838 * not match, ignore the device completely.
3841 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
3843 /* Read entire ID string */
3844 for (i
= 0; i
< 8; i
++)
3845 id_data
[i
] = chip
->read_byte(mtd
);
3847 if (id_data
[0] != *maf_id
|| id_data
[1] != *dev_id
) {
3848 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3849 *maf_id
, *dev_id
, id_data
[0], id_data
[1]);
3850 return ERR_PTR(-ENODEV
);
3854 type
= nand_flash_ids
;
3856 for (; type
->name
!= NULL
; type
++) {
3857 if (is_full_id_nand(type
)) {
3858 if (find_full_id_nand(mtd
, chip
, type
, id_data
, &busw
))
3860 } else if (*dev_id
== type
->dev_id
) {
3865 chip
->onfi_version
= 0;
3866 if (!type
->name
|| !type
->pagesize
) {
3867 /* Check if the chip is ONFI compliant */
3868 if (nand_flash_detect_onfi(mtd
, chip
, &busw
))
3871 /* Check if the chip is JEDEC compliant */
3872 if (nand_flash_detect_jedec(mtd
, chip
, &busw
))
3877 return ERR_PTR(-ENODEV
);
3880 mtd
->name
= type
->name
;
3882 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
3884 if (!type
->pagesize
) {
3885 /* Decode parameters from extended ID */
3886 nand_decode_ext_id(mtd
, chip
, id_data
, &busw
);
3888 nand_decode_id(mtd
, chip
, type
, id_data
, &busw
);
3890 /* Get chip options */
3891 chip
->options
|= type
->options
;
3894 * Check if chip is not a Samsung device. Do not clear the
3895 * options for chips which do not have an extended id.
3897 if (*maf_id
!= NAND_MFR_SAMSUNG
&& !type
->pagesize
)
3898 chip
->options
&= ~NAND_SAMSUNG_LP_OPTIONS
;
3901 /* Try to identify manufacturer */
3902 for (maf_idx
= 0; nand_manuf_ids
[maf_idx
].id
!= 0x0; maf_idx
++) {
3903 if (nand_manuf_ids
[maf_idx
].id
== *maf_id
)
3907 if (chip
->options
& NAND_BUSWIDTH_AUTO
) {
3908 WARN_ON(chip
->options
& NAND_BUSWIDTH_16
);
3909 chip
->options
|= busw
;
3910 nand_set_defaults(chip
, busw
);
3911 } else if (busw
!= (chip
->options
& NAND_BUSWIDTH_16
)) {
3913 * Check, if buswidth is correct. Hardware drivers should set
3916 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3918 pr_info("%s %s\n", nand_manuf_ids
[maf_idx
].name
, mtd
->name
);
3919 pr_warn("bus width %d instead %d bit\n",
3920 (chip
->options
& NAND_BUSWIDTH_16
) ? 16 : 8,
3922 return ERR_PTR(-EINVAL
);
3925 nand_decode_bbm_options(mtd
, chip
, id_data
);
3927 /* Calculate the address shift from the page size */
3928 chip
->page_shift
= ffs(mtd
->writesize
) - 1;
3929 /* Convert chipsize to number of pages per chip -1 */
3930 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
3932 chip
->bbt_erase_shift
= chip
->phys_erase_shift
=
3933 ffs(mtd
->erasesize
) - 1;
3934 if (chip
->chipsize
& 0xffffffff)
3935 chip
->chip_shift
= ffs((unsigned)chip
->chipsize
) - 1;
3937 chip
->chip_shift
= ffs((unsigned)(chip
->chipsize
>> 32));
3938 chip
->chip_shift
+= 32 - 1;
3941 chip
->badblockbits
= 8;
3942 chip
->erase
= single_erase
;
3944 /* Do not replace user supplied command function! */
3945 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
3946 chip
->cmdfunc
= nand_command_lp
;
3948 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3951 if (chip
->onfi_version
)
3952 pr_info("%s %s\n", nand_manuf_ids
[maf_idx
].name
,
3953 chip
->onfi_params
.model
);
3954 else if (chip
->jedec_version
)
3955 pr_info("%s %s\n", nand_manuf_ids
[maf_idx
].name
,
3956 chip
->jedec_params
.model
);
3958 pr_info("%s %s\n", nand_manuf_ids
[maf_idx
].name
,
3961 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3962 (int)(chip
->chipsize
>> 20), nand_is_slc(chip
) ? "SLC" : "MLC",
3963 mtd
->erasesize
>> 10, mtd
->writesize
, mtd
->oobsize
);
3967 static int nand_dt_init(struct nand_chip
*chip
)
3969 struct device_node
*dn
= nand_get_flash_node(chip
);
3970 int ecc_mode
, ecc_strength
, ecc_step
;
3975 if (of_get_nand_bus_width(dn
) == 16)
3976 chip
->options
|= NAND_BUSWIDTH_16
;
3978 if (of_get_nand_on_flash_bbt(dn
))
3979 chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
3981 ecc_mode
= of_get_nand_ecc_mode(dn
);
3982 ecc_strength
= of_get_nand_ecc_strength(dn
);
3983 ecc_step
= of_get_nand_ecc_step_size(dn
);
3985 if ((ecc_step
>= 0 && !(ecc_strength
>= 0)) ||
3986 (!(ecc_step
>= 0) && ecc_strength
>= 0)) {
3987 pr_err("must set both strength and step size in DT\n");
3992 chip
->ecc
.mode
= ecc_mode
;
3994 if (ecc_strength
>= 0)
3995 chip
->ecc
.strength
= ecc_strength
;
3998 chip
->ecc
.size
= ecc_step
;
4004 * nand_scan_ident - [NAND Interface] Scan for the NAND device
4005 * @mtd: MTD device structure
4006 * @maxchips: number of chips to scan for
4007 * @table: alternative NAND ID table
4009 * This is the first phase of the normal nand_scan() function. It reads the
4010 * flash ID and sets up MTD fields accordingly.
4013 int nand_scan_ident(struct mtd_info
*mtd
, int maxchips
,
4014 struct nand_flash_dev
*table
)
4016 int i
, nand_maf_id
, nand_dev_id
;
4017 struct nand_chip
*chip
= mtd_to_nand(mtd
);
4018 struct nand_flash_dev
*type
;
4021 ret
= nand_dt_init(chip
);
4025 if (!mtd
->name
&& mtd
->dev
.parent
)
4026 mtd
->name
= dev_name(mtd
->dev
.parent
);
4028 /* Set the default functions */
4029 nand_set_defaults(chip
, chip
->options
& NAND_BUSWIDTH_16
);
4031 /* Read the flash type */
4032 type
= nand_get_flash_type(mtd
, chip
, &nand_maf_id
,
4033 &nand_dev_id
, table
);
4036 if (!(chip
->options
& NAND_SCAN_SILENT_NODEV
))
4037 pr_warn("No NAND device found\n");
4038 chip
->select_chip(mtd
, -1);
4039 return PTR_ERR(type
);
4042 chip
->select_chip(mtd
, -1);
4044 /* Check for a chip array */
4045 for (i
= 1; i
< maxchips
; i
++) {
4046 chip
->select_chip(mtd
, i
);
4047 /* See comment in nand_get_flash_type for reset */
4048 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
4049 /* Send the command for reading device ID */
4050 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
4051 /* Read manufacturer and device IDs */
4052 if (nand_maf_id
!= chip
->read_byte(mtd
) ||
4053 nand_dev_id
!= chip
->read_byte(mtd
)) {
4054 chip
->select_chip(mtd
, -1);
4057 chip
->select_chip(mtd
, -1);
4060 pr_info("%d chips detected\n", i
);
4062 /* Store the number of chips and calc total size for mtd */
4064 mtd
->size
= i
* chip
->chipsize
;
4068 EXPORT_SYMBOL(nand_scan_ident
);
4071 * Check if the chip configuration meet the datasheet requirements.
4073 * If our configuration corrects A bits per B bytes and the minimum
4074 * required correction level is X bits per Y bytes, then we must ensure
4075 * both of the following are true:
4077 * (1) A / B >= X / Y
4080 * Requirement (1) ensures we can correct for the required bitflip density.
4081 * Requirement (2) ensures we can correct even when all bitflips are clumped
4082 * in the same sector.
4084 static bool nand_ecc_strength_good(struct mtd_info
*mtd
)
4086 struct nand_chip
*chip
= mtd_to_nand(mtd
);
4087 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
4090 if (ecc
->size
== 0 || chip
->ecc_step_ds
== 0)
4091 /* Not enough information */
4095 * We get the number of corrected bits per page to compare
4096 * the correction density.
4098 corr
= (mtd
->writesize
* ecc
->strength
) / ecc
->size
;
4099 ds_corr
= (mtd
->writesize
* chip
->ecc_strength_ds
) / chip
->ecc_step_ds
;
4101 return corr
>= ds_corr
&& ecc
->strength
>= chip
->ecc_strength_ds
;
4105 * nand_scan_tail - [NAND Interface] Scan for the NAND device
4106 * @mtd: MTD device structure
4108 * This is the second phase of the normal nand_scan() function. It fills out
4109 * all the uninitialized function pointers with the defaults and scans for a
4110 * bad block table if appropriate.
4112 int nand_scan_tail(struct mtd_info
*mtd
)
4115 struct nand_chip
*chip
= mtd_to_nand(mtd
);
4116 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
4117 struct nand_buffers
*nbuf
;
4119 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
4120 BUG_ON((chip
->bbt_options
& NAND_BBT_NO_OOB_BBM
) &&
4121 !(chip
->bbt_options
& NAND_BBT_USE_FLASH
));
4123 if (!(chip
->options
& NAND_OWN_BUFFERS
)) {
4124 nbuf
= kzalloc(sizeof(*nbuf
) + mtd
->writesize
4125 + mtd
->oobsize
* 3, GFP_KERNEL
);
4128 nbuf
->ecccalc
= (uint8_t *)(nbuf
+ 1);
4129 nbuf
->ecccode
= nbuf
->ecccalc
+ mtd
->oobsize
;
4130 nbuf
->databuf
= nbuf
->ecccode
+ mtd
->oobsize
;
4132 chip
->buffers
= nbuf
;
4138 /* Set the internal oob buffer location, just after the page data */
4139 chip
->oob_poi
= chip
->buffers
->databuf
+ mtd
->writesize
;
4142 * If no default placement scheme is given, select an appropriate one.
4144 if (!ecc
->layout
&& (ecc
->mode
!= NAND_ECC_SOFT_BCH
)) {
4145 switch (mtd
->oobsize
) {
4147 ecc
->layout
= &nand_oob_8
;
4150 ecc
->layout
= &nand_oob_16
;
4153 ecc
->layout
= &nand_oob_64
;
4156 ecc
->layout
= &nand_oob_128
;
4159 pr_warn("No oob scheme defined for oobsize %d\n",
4165 if (!chip
->write_page
)
4166 chip
->write_page
= nand_write_page
;
4169 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
4170 * selected and we have 256 byte pagesize fallback to software ECC
4173 switch (ecc
->mode
) {
4174 case NAND_ECC_HW_OOB_FIRST
:
4175 /* Similar to NAND_ECC_HW, but a separate read_page handle */
4176 if (!ecc
->calculate
|| !ecc
->correct
|| !ecc
->hwctl
) {
4177 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4180 if (!ecc
->read_page
)
4181 ecc
->read_page
= nand_read_page_hwecc_oob_first
;
4184 /* Use standard hwecc read page function? */
4185 if (!ecc
->read_page
)
4186 ecc
->read_page
= nand_read_page_hwecc
;
4187 if (!ecc
->write_page
)
4188 ecc
->write_page
= nand_write_page_hwecc
;
4189 if (!ecc
->read_page_raw
)
4190 ecc
->read_page_raw
= nand_read_page_raw
;
4191 if (!ecc
->write_page_raw
)
4192 ecc
->write_page_raw
= nand_write_page_raw
;
4194 ecc
->read_oob
= nand_read_oob_std
;
4195 if (!ecc
->write_oob
)
4196 ecc
->write_oob
= nand_write_oob_std
;
4197 if (!ecc
->read_subpage
)
4198 ecc
->read_subpage
= nand_read_subpage
;
4199 if (!ecc
->write_subpage
&& ecc
->hwctl
&& ecc
->calculate
)
4200 ecc
->write_subpage
= nand_write_subpage_hwecc
;
4202 case NAND_ECC_HW_SYNDROME
:
4203 if ((!ecc
->calculate
|| !ecc
->correct
|| !ecc
->hwctl
) &&
4205 ecc
->read_page
== nand_read_page_hwecc
||
4207 ecc
->write_page
== nand_write_page_hwecc
)) {
4208 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4211 /* Use standard syndrome read/write page function? */
4212 if (!ecc
->read_page
)
4213 ecc
->read_page
= nand_read_page_syndrome
;
4214 if (!ecc
->write_page
)
4215 ecc
->write_page
= nand_write_page_syndrome
;
4216 if (!ecc
->read_page_raw
)
4217 ecc
->read_page_raw
= nand_read_page_raw_syndrome
;
4218 if (!ecc
->write_page_raw
)
4219 ecc
->write_page_raw
= nand_write_page_raw_syndrome
;
4221 ecc
->read_oob
= nand_read_oob_syndrome
;
4222 if (!ecc
->write_oob
)
4223 ecc
->write_oob
= nand_write_oob_syndrome
;
4225 if (mtd
->writesize
>= ecc
->size
) {
4226 if (!ecc
->strength
) {
4227 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4232 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4233 ecc
->size
, mtd
->writesize
);
4234 ecc
->mode
= NAND_ECC_SOFT
;
4237 ecc
->calculate
= nand_calculate_ecc
;
4238 ecc
->correct
= nand_correct_data
;
4239 ecc
->read_page
= nand_read_page_swecc
;
4240 ecc
->read_subpage
= nand_read_subpage
;
4241 ecc
->write_page
= nand_write_page_swecc
;
4242 ecc
->read_page_raw
= nand_read_page_raw
;
4243 ecc
->write_page_raw
= nand_write_page_raw
;
4244 ecc
->read_oob
= nand_read_oob_std
;
4245 ecc
->write_oob
= nand_write_oob_std
;
4252 case NAND_ECC_SOFT_BCH
:
4253 if (!mtd_nand_has_bch()) {
4254 pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4257 ecc
->calculate
= nand_bch_calculate_ecc
;
4258 ecc
->correct
= nand_bch_correct_data
;
4259 ecc
->read_page
= nand_read_page_swecc
;
4260 ecc
->read_subpage
= nand_read_subpage
;
4261 ecc
->write_page
= nand_write_page_swecc
;
4262 ecc
->read_page_raw
= nand_read_page_raw
;
4263 ecc
->write_page_raw
= nand_write_page_raw
;
4264 ecc
->read_oob
= nand_read_oob_std
;
4265 ecc
->write_oob
= nand_write_oob_std
;
4267 * Board driver should supply ecc.size and ecc.strength values
4268 * to select how many bits are correctable. Otherwise, default
4269 * to 4 bits for large page devices.
4271 if (!ecc
->size
&& (mtd
->oobsize
>= 64)) {
4276 /* See nand_bch_init() for details. */
4278 ecc
->priv
= nand_bch_init(mtd
);
4280 pr_warn("BCH ECC initialization failed!\n");
4286 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4287 ecc
->read_page
= nand_read_page_raw
;
4288 ecc
->write_page
= nand_write_page_raw
;
4289 ecc
->read_oob
= nand_read_oob_std
;
4290 ecc
->read_page_raw
= nand_read_page_raw
;
4291 ecc
->write_page_raw
= nand_write_page_raw
;
4292 ecc
->write_oob
= nand_write_oob_std
;
4293 ecc
->size
= mtd
->writesize
;
4299 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc
->mode
);
4303 /* For many systems, the standard OOB write also works for raw */
4304 if (!ecc
->read_oob_raw
)
4305 ecc
->read_oob_raw
= ecc
->read_oob
;
4306 if (!ecc
->write_oob_raw
)
4307 ecc
->write_oob_raw
= ecc
->write_oob
;
4310 * The number of bytes available for a client to place data into
4311 * the out of band area.
4315 for (i
= 0; ecc
->layout
->oobfree
[i
].length
; i
++)
4316 mtd
->oobavail
+= ecc
->layout
->oobfree
[i
].length
;
4319 /* ECC sanity check: warn if it's too weak */
4320 if (!nand_ecc_strength_good(mtd
))
4321 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4325 * Set the number of read / write steps for one page depending on ECC
4328 ecc
->steps
= mtd
->writesize
/ ecc
->size
;
4329 if (ecc
->steps
* ecc
->size
!= mtd
->writesize
) {
4330 pr_warn("Invalid ECC parameters\n");
4333 ecc
->total
= ecc
->steps
* ecc
->bytes
;
4335 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4336 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) && nand_is_slc(chip
)) {
4337 switch (ecc
->steps
) {
4339 mtd
->subpage_sft
= 1;
4344 mtd
->subpage_sft
= 2;
4348 chip
->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
4350 /* Initialize state */
4351 chip
->state
= FL_READY
;
4353 /* Invalidate the pagebuffer reference */
4356 /* Large page NAND with SOFT_ECC should support subpage reads */
4357 switch (ecc
->mode
) {
4359 case NAND_ECC_SOFT_BCH
:
4360 if (chip
->page_shift
> 9)
4361 chip
->options
|= NAND_SUBPAGE_READ
;
4368 /* Fill in remaining MTD driver data */
4369 mtd
->type
= nand_is_slc(chip
) ? MTD_NANDFLASH
: MTD_MLCNANDFLASH
;
4370 mtd
->flags
= (chip
->options
& NAND_ROM
) ? MTD_CAP_ROM
:
4372 mtd
->_erase
= nand_erase
;
4374 mtd
->_unpoint
= NULL
;
4375 mtd
->_read
= nand_read
;
4376 mtd
->_write
= nand_write
;
4377 mtd
->_panic_write
= panic_nand_write
;
4378 mtd
->_read_oob
= nand_read_oob
;
4379 mtd
->_write_oob
= nand_write_oob
;
4380 mtd
->_sync
= nand_sync
;
4382 mtd
->_unlock
= NULL
;
4383 mtd
->_suspend
= nand_suspend
;
4384 mtd
->_resume
= nand_resume
;
4385 mtd
->_reboot
= nand_shutdown
;
4386 mtd
->_block_isreserved
= nand_block_isreserved
;
4387 mtd
->_block_isbad
= nand_block_isbad
;
4388 mtd
->_block_markbad
= nand_block_markbad
;
4389 mtd
->writebufsize
= mtd
->writesize
;
4391 /* propagate ecc info to mtd_info */
4392 mtd
->ecclayout
= ecc
->layout
;
4393 mtd
->ecc_strength
= ecc
->strength
;
4394 mtd
->ecc_step_size
= ecc
->size
;
4396 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4397 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4400 if (!mtd
->bitflip_threshold
)
4401 mtd
->bitflip_threshold
= DIV_ROUND_UP(mtd
->ecc_strength
* 3, 4);
4403 /* Check, if we should skip the bad block table scan */
4404 if (chip
->options
& NAND_SKIP_BBTSCAN
)
4407 /* Build bad block table */
4408 return chip
->scan_bbt(mtd
);
4410 EXPORT_SYMBOL(nand_scan_tail
);
4413 * is_module_text_address() isn't exported, and it's mostly a pointless
4414 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4415 * to call us from in-kernel code if the core NAND support is modular.
4418 #define caller_is_module() (1)
4420 #define caller_is_module() \
4421 is_module_text_address((unsigned long)__builtin_return_address(0))
4425 * nand_scan - [NAND Interface] Scan for the NAND device
4426 * @mtd: MTD device structure
4427 * @maxchips: number of chips to scan for
4429 * This fills out all the uninitialized function pointers with the defaults.
4430 * The flash ID is read and the mtd/chip structures are filled with the
4431 * appropriate values.
4433 int nand_scan(struct mtd_info
*mtd
, int maxchips
)
4437 ret
= nand_scan_ident(mtd
, maxchips
, NULL
);
4439 ret
= nand_scan_tail(mtd
);
4442 EXPORT_SYMBOL(nand_scan
);
4445 * nand_release - [NAND Interface] Free resources held by the NAND device
4446 * @mtd: MTD device structure
4448 void nand_release(struct mtd_info
*mtd
)
4450 struct nand_chip
*chip
= mtd_to_nand(mtd
);
4452 if (chip
->ecc
.mode
== NAND_ECC_SOFT_BCH
)
4453 nand_bch_free((struct nand_bch_control
*)chip
->ecc
.priv
);
4455 mtd_device_unregister(mtd
);
4457 /* Free bad block table memory */
4459 if (!(chip
->options
& NAND_OWN_BUFFERS
))
4460 kfree(chip
->buffers
);
4462 /* Free bad block descriptor memory */
4463 if (chip
->badblock_pattern
&& chip
->badblock_pattern
->options
4464 & NAND_BBT_DYNAMICSTRUCT
)
4465 kfree(chip
->badblock_pattern
);
4467 EXPORT_SYMBOL_GPL(nand_release
);
4469 static int __init
nand_base_init(void)
4471 led_trigger_register_simple("nand-disk", &nand_led_trigger
);
4475 static void __exit
nand_base_exit(void)
4477 led_trigger_unregister_simple(nand_led_trigger
);
4480 module_init(nand_base_init
);
4481 module_exit(nand_base_exit
);
4483 MODULE_LICENSE("GPL");
4484 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4485 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4486 MODULE_DESCRIPTION("Generic NAND flash driver code");