2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/sched.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/omap-dma.h>
24 #include <linux/slab.h>
26 #include <linux/of_device.h>
28 #include <linux/mtd/nand_bch.h>
29 #include <linux/platform_data/elm.h>
31 #include <linux/platform_data/mtd-nand-omap2.h>
33 #define DRIVER_NAME "omap2-nand"
34 #define OMAP_NAND_TIMEOUT_MS 5000
36 #define NAND_Ecc_P1e (1 << 0)
37 #define NAND_Ecc_P2e (1 << 1)
38 #define NAND_Ecc_P4e (1 << 2)
39 #define NAND_Ecc_P8e (1 << 3)
40 #define NAND_Ecc_P16e (1 << 4)
41 #define NAND_Ecc_P32e (1 << 5)
42 #define NAND_Ecc_P64e (1 << 6)
43 #define NAND_Ecc_P128e (1 << 7)
44 #define NAND_Ecc_P256e (1 << 8)
45 #define NAND_Ecc_P512e (1 << 9)
46 #define NAND_Ecc_P1024e (1 << 10)
47 #define NAND_Ecc_P2048e (1 << 11)
49 #define NAND_Ecc_P1o (1 << 16)
50 #define NAND_Ecc_P2o (1 << 17)
51 #define NAND_Ecc_P4o (1 << 18)
52 #define NAND_Ecc_P8o (1 << 19)
53 #define NAND_Ecc_P16o (1 << 20)
54 #define NAND_Ecc_P32o (1 << 21)
55 #define NAND_Ecc_P64o (1 << 22)
56 #define NAND_Ecc_P128o (1 << 23)
57 #define NAND_Ecc_P256o (1 << 24)
58 #define NAND_Ecc_P512o (1 << 25)
59 #define NAND_Ecc_P1024o (1 << 26)
60 #define NAND_Ecc_P2048o (1 << 27)
62 #define TF(value) (value ? 1 : 0)
64 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
65 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
66 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
67 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
68 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
69 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
70 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
71 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
73 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
74 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
75 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
76 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
77 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
78 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
79 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
80 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
82 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
83 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
84 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
85 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
86 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
87 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
88 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
89 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
91 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
92 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
93 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
94 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
95 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
96 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
97 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
98 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
100 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
101 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
103 #define PREFETCH_CONFIG1_CS_SHIFT 24
104 #define ECC_CONFIG_CS_SHIFT 1
106 #define ENABLE_PREFETCH (0x1 << 7)
107 #define DMA_MPU_MODE_SHIFT 2
108 #define ECCSIZE0_SHIFT 12
109 #define ECCSIZE1_SHIFT 22
110 #define ECC1RESULTSIZE 0x1
111 #define ECCCLEAR 0x100
113 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
114 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
115 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
116 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
117 #define STATUS_BUFF_EMPTY 0x00000001
119 #define OMAP24XX_DMA_GPMC 4
121 #define SECTOR_BYTES 512
122 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
123 #define BCH4_BIT_PAD 4
125 /* GPMC ecc engine settings for read */
126 #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
127 #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
128 #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
129 #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
130 #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
132 /* GPMC ecc engine settings for write */
133 #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
134 #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
135 #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
137 #define BADBLOCK_MARKER_LENGTH 2
139 static u_char bch16_vector
[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
140 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
141 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
143 static u_char bch8_vector
[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
144 0xac, 0x6b, 0xff, 0x99, 0x7b};
145 static u_char bch4_vector
[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
147 /* Shared among all NAND instances to synchronize access to the ECC Engine */
148 static struct nand_hw_control omap_gpmc_controller
= {
149 .lock
= __SPIN_LOCK_UNLOCKED(omap_gpmc_controller
.lock
),
150 .wq
= __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller
.wq
),
153 struct omap_nand_info
{
154 struct omap_nand_platform_data
*pdata
;
155 struct nand_chip nand
;
156 struct platform_device
*pdev
;
159 unsigned long phys_base
;
160 enum omap_ecc ecc_opt
;
161 struct completion comp
;
162 struct dma_chan
*dma
;
166 OMAP_NAND_IO_READ
= 0, /* read */
167 OMAP_NAND_IO_WRITE
, /* write */
171 struct gpmc_nand_regs reg
;
172 /* generated at runtime depending on ECC algorithm and layout selected */
173 struct nand_ecclayout oobinfo
;
174 /* fields specific for BCHx_HW ECC scheme */
175 struct device
*elm_dev
;
176 struct device_node
*of_node
;
179 static inline struct omap_nand_info
*mtd_to_omap(struct mtd_info
*mtd
)
181 return container_of(mtd_to_nand(mtd
), struct omap_nand_info
, nand
);
185 * omap_prefetch_enable - configures and starts prefetch transfer
186 * @cs: cs (chip select) number
187 * @fifo_th: fifo threshold to be used for read/ write
188 * @dma_mode: dma mode enable (1) or disable (0)
189 * @u32_count: number of bytes to be transferred
190 * @is_write: prefetch read(0) or write post(1) mode
192 static int omap_prefetch_enable(int cs
, int fifo_th
, int dma_mode
,
193 unsigned int u32_count
, int is_write
, struct omap_nand_info
*info
)
197 if (fifo_th
> PREFETCH_FIFOTHRESHOLD_MAX
)
200 if (readl(info
->reg
.gpmc_prefetch_control
))
203 /* Set the amount of bytes to be prefetched */
204 writel(u32_count
, info
->reg
.gpmc_prefetch_config2
);
206 /* Set dma/mpu mode, the prefetch read / post write and
207 * enable the engine. Set which cs is has requested for.
209 val
= ((cs
<< PREFETCH_CONFIG1_CS_SHIFT
) |
210 PREFETCH_FIFOTHRESHOLD(fifo_th
) | ENABLE_PREFETCH
|
211 (dma_mode
<< DMA_MPU_MODE_SHIFT
) | (0x1 & is_write
));
212 writel(val
, info
->reg
.gpmc_prefetch_config1
);
214 /* Start the prefetch engine */
215 writel(0x1, info
->reg
.gpmc_prefetch_control
);
221 * omap_prefetch_reset - disables and stops the prefetch engine
223 static int omap_prefetch_reset(int cs
, struct omap_nand_info
*info
)
227 /* check if the same module/cs is trying to reset */
228 config1
= readl(info
->reg
.gpmc_prefetch_config1
);
229 if (((config1
>> PREFETCH_CONFIG1_CS_SHIFT
) & CS_MASK
) != cs
)
232 /* Stop the PFPW engine */
233 writel(0x0, info
->reg
.gpmc_prefetch_control
);
235 /* Reset/disable the PFPW engine */
236 writel(0x0, info
->reg
.gpmc_prefetch_config1
);
242 * omap_hwcontrol - hardware specific access to control-lines
243 * @mtd: MTD device structure
244 * @cmd: command to device
246 * NAND_NCE: bit 0 -> don't care
247 * NAND_CLE: bit 1 -> Command Latch
248 * NAND_ALE: bit 2 -> Address Latch
250 * NOTE: boards may use different bits for these!!
252 static void omap_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int ctrl
)
254 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
256 if (cmd
!= NAND_CMD_NONE
) {
258 writeb(cmd
, info
->reg
.gpmc_nand_command
);
260 else if (ctrl
& NAND_ALE
)
261 writeb(cmd
, info
->reg
.gpmc_nand_address
);
264 writeb(cmd
, info
->reg
.gpmc_nand_data
);
269 * omap_read_buf8 - read data from NAND controller into buffer
270 * @mtd: MTD device structure
271 * @buf: buffer to store date
272 * @len: number of bytes to read
274 static void omap_read_buf8(struct mtd_info
*mtd
, u_char
*buf
, int len
)
276 struct nand_chip
*nand
= mtd_to_nand(mtd
);
278 ioread8_rep(nand
->IO_ADDR_R
, buf
, len
);
282 * omap_write_buf8 - write buffer to NAND controller
283 * @mtd: MTD device structure
285 * @len: number of bytes to write
287 static void omap_write_buf8(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
289 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
290 u_char
*p
= (u_char
*)buf
;
294 iowrite8(*p
++, info
->nand
.IO_ADDR_W
);
295 /* wait until buffer is available for write */
297 status
= readl(info
->reg
.gpmc_status
) &
304 * omap_read_buf16 - read data from NAND controller into buffer
305 * @mtd: MTD device structure
306 * @buf: buffer to store date
307 * @len: number of bytes to read
309 static void omap_read_buf16(struct mtd_info
*mtd
, u_char
*buf
, int len
)
311 struct nand_chip
*nand
= mtd_to_nand(mtd
);
313 ioread16_rep(nand
->IO_ADDR_R
, buf
, len
/ 2);
317 * omap_write_buf16 - write buffer to NAND controller
318 * @mtd: MTD device structure
320 * @len: number of bytes to write
322 static void omap_write_buf16(struct mtd_info
*mtd
, const u_char
* buf
, int len
)
324 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
325 u16
*p
= (u16
*) buf
;
327 /* FIXME try bursts of writesw() or DMA ... */
331 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
332 /* wait until buffer is available for write */
334 status
= readl(info
->reg
.gpmc_status
) &
341 * omap_read_buf_pref - read data from NAND controller into buffer
342 * @mtd: MTD device structure
343 * @buf: buffer to store date
344 * @len: number of bytes to read
346 static void omap_read_buf_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
348 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
349 uint32_t r_count
= 0;
353 /* take care of subpage reads */
355 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
356 omap_read_buf16(mtd
, buf
, len
% 4);
358 omap_read_buf8(mtd
, buf
, len
% 4);
359 p
= (u32
*) (buf
+ len
% 4);
363 /* configure and start prefetch transfer */
364 ret
= omap_prefetch_enable(info
->gpmc_cs
,
365 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x0, info
);
367 /* PFPW engine is busy, use cpu copy method */
368 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
369 omap_read_buf16(mtd
, (u_char
*)p
, len
);
371 omap_read_buf8(mtd
, (u_char
*)p
, len
);
374 r_count
= readl(info
->reg
.gpmc_prefetch_status
);
375 r_count
= PREFETCH_STATUS_FIFO_CNT(r_count
);
376 r_count
= r_count
>> 2;
377 ioread32_rep(info
->nand
.IO_ADDR_R
, p
, r_count
);
381 /* disable and stop the PFPW engine */
382 omap_prefetch_reset(info
->gpmc_cs
, info
);
387 * omap_write_buf_pref - write buffer to NAND controller
388 * @mtd: MTD device structure
390 * @len: number of bytes to write
392 static void omap_write_buf_pref(struct mtd_info
*mtd
,
393 const u_char
*buf
, int len
)
395 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
396 uint32_t w_count
= 0;
399 unsigned long tim
, limit
;
402 /* take care of subpage writes */
404 writeb(*buf
, info
->nand
.IO_ADDR_W
);
405 p
= (u16
*)(buf
+ 1);
409 /* configure and start prefetch transfer */
410 ret
= omap_prefetch_enable(info
->gpmc_cs
,
411 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x1, info
);
413 /* PFPW engine is busy, use cpu copy method */
414 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
415 omap_write_buf16(mtd
, (u_char
*)p
, len
);
417 omap_write_buf8(mtd
, (u_char
*)p
, len
);
420 w_count
= readl(info
->reg
.gpmc_prefetch_status
);
421 w_count
= PREFETCH_STATUS_FIFO_CNT(w_count
);
422 w_count
= w_count
>> 1;
423 for (i
= 0; (i
< w_count
) && len
; i
++, len
-= 2)
424 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
426 /* wait for data to flushed-out before reset the prefetch */
428 limit
= (loops_per_jiffy
*
429 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
432 val
= readl(info
->reg
.gpmc_prefetch_status
);
433 val
= PREFETCH_STATUS_COUNT(val
);
434 } while (val
&& (tim
++ < limit
));
436 /* disable and stop the PFPW engine */
437 omap_prefetch_reset(info
->gpmc_cs
, info
);
442 * omap_nand_dma_callback: callback on the completion of dma transfer
443 * @data: pointer to completion data structure
445 static void omap_nand_dma_callback(void *data
)
447 complete((struct completion
*) data
);
451 * omap_nand_dma_transfer: configure and start dma transfer
452 * @mtd: MTD device structure
453 * @addr: virtual address in RAM of source/destination
454 * @len: number of data bytes to be transferred
455 * @is_write: flag for read/write operation
457 static inline int omap_nand_dma_transfer(struct mtd_info
*mtd
, void *addr
,
458 unsigned int len
, int is_write
)
460 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
461 struct dma_async_tx_descriptor
*tx
;
462 enum dma_data_direction dir
= is_write
? DMA_TO_DEVICE
:
464 struct scatterlist sg
;
465 unsigned long tim
, limit
;
470 if (addr
>= high_memory
) {
473 if (((size_t)addr
& PAGE_MASK
) !=
474 ((size_t)(addr
+ len
- 1) & PAGE_MASK
))
476 p1
= vmalloc_to_page(addr
);
479 addr
= page_address(p1
) + ((size_t)addr
& ~PAGE_MASK
);
482 sg_init_one(&sg
, addr
, len
);
483 n
= dma_map_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
485 dev_err(&info
->pdev
->dev
,
486 "Couldn't DMA map a %d byte buffer\n", len
);
490 tx
= dmaengine_prep_slave_sg(info
->dma
, &sg
, n
,
491 is_write
? DMA_MEM_TO_DEV
: DMA_DEV_TO_MEM
,
492 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
496 tx
->callback
= omap_nand_dma_callback
;
497 tx
->callback_param
= &info
->comp
;
498 dmaengine_submit(tx
);
500 /* configure and start prefetch transfer */
501 ret
= omap_prefetch_enable(info
->gpmc_cs
,
502 PREFETCH_FIFOTHRESHOLD_MAX
, 0x1, len
, is_write
, info
);
504 /* PFPW engine is busy, use cpu copy method */
507 init_completion(&info
->comp
);
508 dma_async_issue_pending(info
->dma
);
510 /* setup and start DMA using dma_addr */
511 wait_for_completion(&info
->comp
);
513 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
517 val
= readl(info
->reg
.gpmc_prefetch_status
);
518 val
= PREFETCH_STATUS_COUNT(val
);
519 } while (val
&& (tim
++ < limit
));
521 /* disable and stop the PFPW engine */
522 omap_prefetch_reset(info
->gpmc_cs
, info
);
524 dma_unmap_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
528 dma_unmap_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
530 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
531 is_write
== 0 ? omap_read_buf16(mtd
, (u_char
*) addr
, len
)
532 : omap_write_buf16(mtd
, (u_char
*) addr
, len
);
534 is_write
== 0 ? omap_read_buf8(mtd
, (u_char
*) addr
, len
)
535 : omap_write_buf8(mtd
, (u_char
*) addr
, len
);
540 * omap_read_buf_dma_pref - read data from NAND controller into buffer
541 * @mtd: MTD device structure
542 * @buf: buffer to store date
543 * @len: number of bytes to read
545 static void omap_read_buf_dma_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
547 if (len
<= mtd
->oobsize
)
548 omap_read_buf_pref(mtd
, buf
, len
);
550 /* start transfer in DMA mode */
551 omap_nand_dma_transfer(mtd
, buf
, len
, 0x0);
555 * omap_write_buf_dma_pref - write buffer to NAND controller
556 * @mtd: MTD device structure
558 * @len: number of bytes to write
560 static void omap_write_buf_dma_pref(struct mtd_info
*mtd
,
561 const u_char
*buf
, int len
)
563 if (len
<= mtd
->oobsize
)
564 omap_write_buf_pref(mtd
, buf
, len
);
566 /* start transfer in DMA mode */
567 omap_nand_dma_transfer(mtd
, (u_char
*) buf
, len
, 0x1);
571 * omap_nand_irq - GPMC irq handler
572 * @this_irq: gpmc irq number
573 * @dev: omap_nand_info structure pointer is passed here
575 static irqreturn_t
omap_nand_irq(int this_irq
, void *dev
)
577 struct omap_nand_info
*info
= (struct omap_nand_info
*) dev
;
580 bytes
= readl(info
->reg
.gpmc_prefetch_status
);
581 bytes
= PREFETCH_STATUS_FIFO_CNT(bytes
);
582 bytes
= bytes
& 0xFFFC; /* io in multiple of 4 bytes */
583 if (info
->iomode
== OMAP_NAND_IO_WRITE
) { /* checks for write io */
584 if (this_irq
== info
->gpmc_irq_count
)
587 if (info
->buf_len
&& (info
->buf_len
< bytes
))
588 bytes
= info
->buf_len
;
589 else if (!info
->buf_len
)
591 iowrite32_rep(info
->nand
.IO_ADDR_W
,
592 (u32
*)info
->buf
, bytes
>> 2);
593 info
->buf
= info
->buf
+ bytes
;
594 info
->buf_len
-= bytes
;
597 ioread32_rep(info
->nand
.IO_ADDR_R
,
598 (u32
*)info
->buf
, bytes
>> 2);
599 info
->buf
= info
->buf
+ bytes
;
601 if (this_irq
== info
->gpmc_irq_count
)
608 complete(&info
->comp
);
610 disable_irq_nosync(info
->gpmc_irq_fifo
);
611 disable_irq_nosync(info
->gpmc_irq_count
);
617 * omap_read_buf_irq_pref - read data from NAND controller into buffer
618 * @mtd: MTD device structure
619 * @buf: buffer to store date
620 * @len: number of bytes to read
622 static void omap_read_buf_irq_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
624 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
627 if (len
<= mtd
->oobsize
) {
628 omap_read_buf_pref(mtd
, buf
, len
);
632 info
->iomode
= OMAP_NAND_IO_READ
;
634 init_completion(&info
->comp
);
636 /* configure and start prefetch transfer */
637 ret
= omap_prefetch_enable(info
->gpmc_cs
,
638 PREFETCH_FIFOTHRESHOLD_MAX
/2, 0x0, len
, 0x0, info
);
640 /* PFPW engine is busy, use cpu copy method */
645 enable_irq(info
->gpmc_irq_count
);
646 enable_irq(info
->gpmc_irq_fifo
);
648 /* waiting for read to complete */
649 wait_for_completion(&info
->comp
);
651 /* disable and stop the PFPW engine */
652 omap_prefetch_reset(info
->gpmc_cs
, info
);
656 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
657 omap_read_buf16(mtd
, buf
, len
);
659 omap_read_buf8(mtd
, buf
, len
);
663 * omap_write_buf_irq_pref - write buffer to NAND controller
664 * @mtd: MTD device structure
666 * @len: number of bytes to write
668 static void omap_write_buf_irq_pref(struct mtd_info
*mtd
,
669 const u_char
*buf
, int len
)
671 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
673 unsigned long tim
, limit
;
676 if (len
<= mtd
->oobsize
) {
677 omap_write_buf_pref(mtd
, buf
, len
);
681 info
->iomode
= OMAP_NAND_IO_WRITE
;
682 info
->buf
= (u_char
*) buf
;
683 init_completion(&info
->comp
);
685 /* configure and start prefetch transfer : size=24 */
686 ret
= omap_prefetch_enable(info
->gpmc_cs
,
687 (PREFETCH_FIFOTHRESHOLD_MAX
* 3) / 8, 0x0, len
, 0x1, info
);
689 /* PFPW engine is busy, use cpu copy method */
694 enable_irq(info
->gpmc_irq_count
);
695 enable_irq(info
->gpmc_irq_fifo
);
697 /* waiting for write to complete */
698 wait_for_completion(&info
->comp
);
700 /* wait for data to flushed-out before reset the prefetch */
702 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
704 val
= readl(info
->reg
.gpmc_prefetch_status
);
705 val
= PREFETCH_STATUS_COUNT(val
);
707 } while (val
&& (tim
++ < limit
));
709 /* disable and stop the PFPW engine */
710 omap_prefetch_reset(info
->gpmc_cs
, info
);
714 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
715 omap_write_buf16(mtd
, buf
, len
);
717 omap_write_buf8(mtd
, buf
, len
);
721 * gen_true_ecc - This function will generate true ECC value
722 * @ecc_buf: buffer to store ecc code
724 * This generated true ECC value can be used when correcting
725 * data read from NAND flash memory core
727 static void gen_true_ecc(u8
*ecc_buf
)
729 u32 tmp
= ecc_buf
[0] | (ecc_buf
[1] << 16) |
730 ((ecc_buf
[2] & 0xF0) << 20) | ((ecc_buf
[2] & 0x0F) << 8);
732 ecc_buf
[0] = ~(P64o(tmp
) | P64e(tmp
) | P32o(tmp
) | P32e(tmp
) |
733 P16o(tmp
) | P16e(tmp
) | P8o(tmp
) | P8e(tmp
));
734 ecc_buf
[1] = ~(P1024o(tmp
) | P1024e(tmp
) | P512o(tmp
) | P512e(tmp
) |
735 P256o(tmp
) | P256e(tmp
) | P128o(tmp
) | P128e(tmp
));
736 ecc_buf
[2] = ~(P4o(tmp
) | P4e(tmp
) | P2o(tmp
) | P2e(tmp
) | P1o(tmp
) |
737 P1e(tmp
) | P2048o(tmp
) | P2048e(tmp
));
741 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
742 * @ecc_data1: ecc code from nand spare area
743 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
744 * @page_data: page data
746 * This function compares two ECC's and indicates if there is an error.
747 * If the error can be corrected it will be corrected to the buffer.
748 * If there is no error, %0 is returned. If there is an error but it
749 * was corrected, %1 is returned. Otherwise, %-1 is returned.
751 static int omap_compare_ecc(u8
*ecc_data1
, /* read from NAND memory */
752 u8
*ecc_data2
, /* read from register */
756 u8 tmp0_bit
[8], tmp1_bit
[8], tmp2_bit
[8];
757 u8 comp0_bit
[8], comp1_bit
[8], comp2_bit
[8];
764 isEccFF
= ((*(u32
*)ecc_data1
& 0xFFFFFF) == 0xFFFFFF);
766 gen_true_ecc(ecc_data1
);
767 gen_true_ecc(ecc_data2
);
769 for (i
= 0; i
<= 2; i
++) {
770 *(ecc_data1
+ i
) = ~(*(ecc_data1
+ i
));
771 *(ecc_data2
+ i
) = ~(*(ecc_data2
+ i
));
774 for (i
= 0; i
< 8; i
++) {
775 tmp0_bit
[i
] = *ecc_data1
% 2;
776 *ecc_data1
= *ecc_data1
/ 2;
779 for (i
= 0; i
< 8; i
++) {
780 tmp1_bit
[i
] = *(ecc_data1
+ 1) % 2;
781 *(ecc_data1
+ 1) = *(ecc_data1
+ 1) / 2;
784 for (i
= 0; i
< 8; i
++) {
785 tmp2_bit
[i
] = *(ecc_data1
+ 2) % 2;
786 *(ecc_data1
+ 2) = *(ecc_data1
+ 2) / 2;
789 for (i
= 0; i
< 8; i
++) {
790 comp0_bit
[i
] = *ecc_data2
% 2;
791 *ecc_data2
= *ecc_data2
/ 2;
794 for (i
= 0; i
< 8; i
++) {
795 comp1_bit
[i
] = *(ecc_data2
+ 1) % 2;
796 *(ecc_data2
+ 1) = *(ecc_data2
+ 1) / 2;
799 for (i
= 0; i
< 8; i
++) {
800 comp2_bit
[i
] = *(ecc_data2
+ 2) % 2;
801 *(ecc_data2
+ 2) = *(ecc_data2
+ 2) / 2;
804 for (i
= 0; i
< 6; i
++)
805 ecc_bit
[i
] = tmp2_bit
[i
+ 2] ^ comp2_bit
[i
+ 2];
807 for (i
= 0; i
< 8; i
++)
808 ecc_bit
[i
+ 6] = tmp0_bit
[i
] ^ comp0_bit
[i
];
810 for (i
= 0; i
< 8; i
++)
811 ecc_bit
[i
+ 14] = tmp1_bit
[i
] ^ comp1_bit
[i
];
813 ecc_bit
[22] = tmp2_bit
[0] ^ comp2_bit
[0];
814 ecc_bit
[23] = tmp2_bit
[1] ^ comp2_bit
[1];
816 for (i
= 0; i
< 24; i
++)
817 ecc_sum
+= ecc_bit
[i
];
821 /* Not reached because this function is not called if
822 * ECC values are equal
827 /* Uncorrectable error */
828 pr_debug("ECC UNCORRECTED_ERROR 1\n");
832 /* UN-Correctable error */
833 pr_debug("ECC UNCORRECTED_ERROR B\n");
837 /* Correctable error */
838 find_byte
= (ecc_bit
[23] << 8) +
848 find_bit
= (ecc_bit
[5] << 2) + (ecc_bit
[3] << 1) + ecc_bit
[1];
850 pr_debug("Correcting single bit ECC error at offset: "
851 "%d, bit: %d\n", find_byte
, find_bit
);
853 page_data
[find_byte
] ^= (1 << find_bit
);
858 if (ecc_data2
[0] == 0 &&
863 pr_debug("UNCORRECTED_ERROR default\n");
869 * omap_correct_data - Compares the ECC read with HW generated ECC
870 * @mtd: MTD device structure
872 * @read_ecc: ecc read from nand flash
873 * @calc_ecc: ecc read from HW ECC registers
875 * Compares the ecc read from nand spare area with ECC registers values
876 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
877 * detection and correction. If there are no errors, %0 is returned. If
878 * there were errors and all of the errors were corrected, the number of
879 * corrected errors is returned. If uncorrectable errors exist, %-1 is
882 static int omap_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
883 u_char
*read_ecc
, u_char
*calc_ecc
)
885 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
886 int blockCnt
= 0, i
= 0, ret
= 0;
889 /* Ex NAND_ECC_HW12_2048 */
890 if ((info
->nand
.ecc
.mode
== NAND_ECC_HW
) &&
891 (info
->nand
.ecc
.size
== 2048))
896 for (i
= 0; i
< blockCnt
; i
++) {
897 if (memcmp(read_ecc
, calc_ecc
, 3) != 0) {
898 ret
= omap_compare_ecc(read_ecc
, calc_ecc
, dat
);
901 /* keep track of the number of corrected errors */
912 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
913 * @mtd: MTD device structure
914 * @dat: The pointer to data on which ecc is computed
915 * @ecc_code: The ecc_code buffer
917 * Using noninverted ECC can be considered ugly since writing a blank
918 * page ie. padding will clear the ECC bytes. This is no problem as long
919 * nobody is trying to write data on the seemingly unused page. Reading
920 * an erased page will produce an ECC mismatch between generated and read
921 * ECC bytes that has to be dealt with separately.
923 static int omap_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
926 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
929 val
= readl(info
->reg
.gpmc_ecc_config
);
930 if (((val
>> ECC_CONFIG_CS_SHIFT
) & CS_MASK
) != info
->gpmc_cs
)
933 /* read ecc result */
934 val
= readl(info
->reg
.gpmc_ecc1_result
);
935 *ecc_code
++ = val
; /* P128e, ..., P1e */
936 *ecc_code
++ = val
>> 16; /* P128o, ..., P1o */
937 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
938 *ecc_code
++ = ((val
>> 8) & 0x0f) | ((val
>> 20) & 0xf0);
944 * omap_enable_hwecc - This function enables the hardware ecc functionality
945 * @mtd: MTD device structure
946 * @mode: Read/Write mode
948 static void omap_enable_hwecc(struct mtd_info
*mtd
, int mode
)
950 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
951 struct nand_chip
*chip
= mtd_to_nand(mtd
);
952 unsigned int dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
955 /* clear ecc and enable bits */
956 val
= ECCCLEAR
| ECC1
;
957 writel(val
, info
->reg
.gpmc_ecc_control
);
959 /* program ecc and result sizes */
960 val
= ((((info
->nand
.ecc
.size
>> 1) - 1) << ECCSIZE1_SHIFT
) |
962 writel(val
, info
->reg
.gpmc_ecc_size_config
);
967 writel(ECCCLEAR
| ECC1
, info
->reg
.gpmc_ecc_control
);
969 case NAND_ECC_READSYN
:
970 writel(ECCCLEAR
, info
->reg
.gpmc_ecc_control
);
973 dev_info(&info
->pdev
->dev
,
974 "error: unrecognized Mode[%d]!\n", mode
);
978 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
979 val
= (dev_width
<< 7) | (info
->gpmc_cs
<< 1) | (0x1);
980 writel(val
, info
->reg
.gpmc_ecc_config
);
984 * omap_wait - wait until the command is done
985 * @mtd: MTD device structure
986 * @chip: NAND Chip structure
988 * Wait function is called during Program and erase operations and
989 * the way it is called from MTD layer, we should wait till the NAND
990 * chip is ready after the programming/erase operation has completed.
992 * Erase can take up to 400ms and program up to 20ms according to
993 * general NAND and SmartMedia specs
995 static int omap_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
997 struct nand_chip
*this = mtd_to_nand(mtd
);
998 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
999 unsigned long timeo
= jiffies
;
1000 int status
, state
= this->state
;
1002 if (state
== FL_ERASING
)
1003 timeo
+= msecs_to_jiffies(400);
1005 timeo
+= msecs_to_jiffies(20);
1007 writeb(NAND_CMD_STATUS
& 0xFF, info
->reg
.gpmc_nand_command
);
1008 while (time_before(jiffies
, timeo
)) {
1009 status
= readb(info
->reg
.gpmc_nand_data
);
1010 if (status
& NAND_STATUS_READY
)
1015 status
= readb(info
->reg
.gpmc_nand_data
);
1020 * omap_dev_ready - calls the platform specific dev_ready function
1021 * @mtd: MTD device structure
1023 static int omap_dev_ready(struct mtd_info
*mtd
)
1025 unsigned int val
= 0;
1026 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1028 val
= readl(info
->reg
.gpmc_status
);
1030 if ((val
& 0x100) == 0x100) {
1038 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1039 * @mtd: MTD device structure
1040 * @mode: Read/Write mode
1042 * When using BCH with SW correction (i.e. no ELM), sector size is set
1043 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1044 * for both reading and writing with:
1045 * eccsize0 = 0 (no additional protected byte in spare area)
1046 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1048 static void __maybe_unused
omap_enable_hwecc_bch(struct mtd_info
*mtd
, int mode
)
1050 unsigned int bch_type
;
1051 unsigned int dev_width
, nsectors
;
1052 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1053 enum omap_ecc ecc_opt
= info
->ecc_opt
;
1054 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1056 unsigned int ecc_size1
, ecc_size0
;
1058 /* GPMC configurations for calculating ECC */
1060 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1063 wr_mode
= BCH_WRAPMODE_6
;
1064 ecc_size0
= BCH_ECC_SIZE0
;
1065 ecc_size1
= BCH_ECC_SIZE1
;
1067 case OMAP_ECC_BCH4_CODE_HW
:
1069 nsectors
= chip
->ecc
.steps
;
1070 if (mode
== NAND_ECC_READ
) {
1071 wr_mode
= BCH_WRAPMODE_1
;
1072 ecc_size0
= BCH4R_ECC_SIZE0
;
1073 ecc_size1
= BCH4R_ECC_SIZE1
;
1075 wr_mode
= BCH_WRAPMODE_6
;
1076 ecc_size0
= BCH_ECC_SIZE0
;
1077 ecc_size1
= BCH_ECC_SIZE1
;
1080 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1083 wr_mode
= BCH_WRAPMODE_6
;
1084 ecc_size0
= BCH_ECC_SIZE0
;
1085 ecc_size1
= BCH_ECC_SIZE1
;
1087 case OMAP_ECC_BCH8_CODE_HW
:
1089 nsectors
= chip
->ecc
.steps
;
1090 if (mode
== NAND_ECC_READ
) {
1091 wr_mode
= BCH_WRAPMODE_1
;
1092 ecc_size0
= BCH8R_ECC_SIZE0
;
1093 ecc_size1
= BCH8R_ECC_SIZE1
;
1095 wr_mode
= BCH_WRAPMODE_6
;
1096 ecc_size0
= BCH_ECC_SIZE0
;
1097 ecc_size1
= BCH_ECC_SIZE1
;
1100 case OMAP_ECC_BCH16_CODE_HW
:
1102 nsectors
= chip
->ecc
.steps
;
1103 if (mode
== NAND_ECC_READ
) {
1105 ecc_size0
= 52; /* ECC bits in nibbles per sector */
1106 ecc_size1
= 0; /* non-ECC bits in nibbles per sector */
1109 ecc_size0
= 0; /* extra bits in nibbles per sector */
1110 ecc_size1
= 52; /* OOB bits in nibbles per sector */
1117 writel(ECC1
, info
->reg
.gpmc_ecc_control
);
1119 /* Configure ecc size for BCH */
1120 val
= (ecc_size1
<< ECCSIZE1_SHIFT
) | (ecc_size0
<< ECCSIZE0_SHIFT
);
1121 writel(val
, info
->reg
.gpmc_ecc_size_config
);
1123 dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
1125 /* BCH configuration */
1126 val
= ((1 << 16) | /* enable BCH */
1127 (bch_type
<< 12) | /* BCH4/BCH8/BCH16 */
1128 (wr_mode
<< 8) | /* wrap mode */
1129 (dev_width
<< 7) | /* bus width */
1130 (((nsectors
-1) & 0x7) << 4) | /* number of sectors */
1131 (info
->gpmc_cs
<< 1) | /* ECC CS */
1132 (0x1)); /* enable ECC */
1134 writel(val
, info
->reg
.gpmc_ecc_config
);
1136 /* Clear ecc and enable bits */
1137 writel(ECCCLEAR
| ECC1
, info
->reg
.gpmc_ecc_control
);
1140 static u8 bch4_polynomial
[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1141 static u8 bch8_polynomial
[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1142 0x97, 0x79, 0xe5, 0x24, 0xb5};
1145 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1146 * @mtd: MTD device structure
1147 * @dat: The pointer to data on which ecc is computed
1148 * @ecc_code: The ecc_code buffer
1150 * Support calculating of BCH4/8 ecc vectors for the page
1152 static int __maybe_unused
omap_calculate_ecc_bch(struct mtd_info
*mtd
,
1153 const u_char
*dat
, u_char
*ecc_calc
)
1155 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1156 int eccbytes
= info
->nand
.ecc
.bytes
;
1157 struct gpmc_nand_regs
*gpmc_regs
= &info
->reg
;
1159 unsigned long nsectors
, bch_val1
, bch_val2
, bch_val3
, bch_val4
;
1163 nsectors
= ((readl(info
->reg
.gpmc_ecc_config
) >> 4) & 0x7) + 1;
1164 for (i
= 0; i
< nsectors
; i
++) {
1165 ecc_code
= ecc_calc
;
1166 switch (info
->ecc_opt
) {
1167 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1168 case OMAP_ECC_BCH8_CODE_HW
:
1169 bch_val1
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1170 bch_val2
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1171 bch_val3
= readl(gpmc_regs
->gpmc_bch_result2
[i
]);
1172 bch_val4
= readl(gpmc_regs
->gpmc_bch_result3
[i
]);
1173 *ecc_code
++ = (bch_val4
& 0xFF);
1174 *ecc_code
++ = ((bch_val3
>> 24) & 0xFF);
1175 *ecc_code
++ = ((bch_val3
>> 16) & 0xFF);
1176 *ecc_code
++ = ((bch_val3
>> 8) & 0xFF);
1177 *ecc_code
++ = (bch_val3
& 0xFF);
1178 *ecc_code
++ = ((bch_val2
>> 24) & 0xFF);
1179 *ecc_code
++ = ((bch_val2
>> 16) & 0xFF);
1180 *ecc_code
++ = ((bch_val2
>> 8) & 0xFF);
1181 *ecc_code
++ = (bch_val2
& 0xFF);
1182 *ecc_code
++ = ((bch_val1
>> 24) & 0xFF);
1183 *ecc_code
++ = ((bch_val1
>> 16) & 0xFF);
1184 *ecc_code
++ = ((bch_val1
>> 8) & 0xFF);
1185 *ecc_code
++ = (bch_val1
& 0xFF);
1187 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1188 case OMAP_ECC_BCH4_CODE_HW
:
1189 bch_val1
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1190 bch_val2
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1191 *ecc_code
++ = ((bch_val2
>> 12) & 0xFF);
1192 *ecc_code
++ = ((bch_val2
>> 4) & 0xFF);
1193 *ecc_code
++ = ((bch_val2
& 0xF) << 4) |
1194 ((bch_val1
>> 28) & 0xF);
1195 *ecc_code
++ = ((bch_val1
>> 20) & 0xFF);
1196 *ecc_code
++ = ((bch_val1
>> 12) & 0xFF);
1197 *ecc_code
++ = ((bch_val1
>> 4) & 0xFF);
1198 *ecc_code
++ = ((bch_val1
& 0xF) << 4);
1200 case OMAP_ECC_BCH16_CODE_HW
:
1201 val
= readl(gpmc_regs
->gpmc_bch_result6
[i
]);
1202 ecc_code
[0] = ((val
>> 8) & 0xFF);
1203 ecc_code
[1] = ((val
>> 0) & 0xFF);
1204 val
= readl(gpmc_regs
->gpmc_bch_result5
[i
]);
1205 ecc_code
[2] = ((val
>> 24) & 0xFF);
1206 ecc_code
[3] = ((val
>> 16) & 0xFF);
1207 ecc_code
[4] = ((val
>> 8) & 0xFF);
1208 ecc_code
[5] = ((val
>> 0) & 0xFF);
1209 val
= readl(gpmc_regs
->gpmc_bch_result4
[i
]);
1210 ecc_code
[6] = ((val
>> 24) & 0xFF);
1211 ecc_code
[7] = ((val
>> 16) & 0xFF);
1212 ecc_code
[8] = ((val
>> 8) & 0xFF);
1213 ecc_code
[9] = ((val
>> 0) & 0xFF);
1214 val
= readl(gpmc_regs
->gpmc_bch_result3
[i
]);
1215 ecc_code
[10] = ((val
>> 24) & 0xFF);
1216 ecc_code
[11] = ((val
>> 16) & 0xFF);
1217 ecc_code
[12] = ((val
>> 8) & 0xFF);
1218 ecc_code
[13] = ((val
>> 0) & 0xFF);
1219 val
= readl(gpmc_regs
->gpmc_bch_result2
[i
]);
1220 ecc_code
[14] = ((val
>> 24) & 0xFF);
1221 ecc_code
[15] = ((val
>> 16) & 0xFF);
1222 ecc_code
[16] = ((val
>> 8) & 0xFF);
1223 ecc_code
[17] = ((val
>> 0) & 0xFF);
1224 val
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1225 ecc_code
[18] = ((val
>> 24) & 0xFF);
1226 ecc_code
[19] = ((val
>> 16) & 0xFF);
1227 ecc_code
[20] = ((val
>> 8) & 0xFF);
1228 ecc_code
[21] = ((val
>> 0) & 0xFF);
1229 val
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1230 ecc_code
[22] = ((val
>> 24) & 0xFF);
1231 ecc_code
[23] = ((val
>> 16) & 0xFF);
1232 ecc_code
[24] = ((val
>> 8) & 0xFF);
1233 ecc_code
[25] = ((val
>> 0) & 0xFF);
1239 /* ECC scheme specific syndrome customizations */
1240 switch (info
->ecc_opt
) {
1241 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1242 /* Add constant polynomial to remainder, so that
1243 * ECC of blank pages results in 0x0 on reading back */
1244 for (j
= 0; j
< eccbytes
; j
++)
1245 ecc_calc
[j
] ^= bch4_polynomial
[j
];
1247 case OMAP_ECC_BCH4_CODE_HW
:
1248 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1249 ecc_calc
[eccbytes
- 1] = 0x0;
1251 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1252 /* Add constant polynomial to remainder, so that
1253 * ECC of blank pages results in 0x0 on reading back */
1254 for (j
= 0; j
< eccbytes
; j
++)
1255 ecc_calc
[j
] ^= bch8_polynomial
[j
];
1257 case OMAP_ECC_BCH8_CODE_HW
:
1258 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1259 ecc_calc
[eccbytes
- 1] = 0x0;
1261 case OMAP_ECC_BCH16_CODE_HW
:
1267 ecc_calc
+= eccbytes
;
1274 * erased_sector_bitflips - count bit flips
1275 * @data: data sector buffer
1277 * @info: omap_nand_info
1279 * Check the bit flips in erased page falls below correctable level.
1280 * If falls below, report the page as erased with correctable bit
1281 * flip, else report as uncorrectable page.
1283 static int erased_sector_bitflips(u_char
*data
, u_char
*oob
,
1284 struct omap_nand_info
*info
)
1286 int flip_bits
= 0, i
;
1288 for (i
= 0; i
< info
->nand
.ecc
.size
; i
++) {
1289 flip_bits
+= hweight8(~data
[i
]);
1290 if (flip_bits
> info
->nand
.ecc
.strength
)
1294 for (i
= 0; i
< info
->nand
.ecc
.bytes
- 1; i
++) {
1295 flip_bits
+= hweight8(~oob
[i
]);
1296 if (flip_bits
> info
->nand
.ecc
.strength
)
1301 * Bit flips falls in correctable level.
1302 * Fill data area with 0xFF
1305 memset(data
, 0xFF, info
->nand
.ecc
.size
);
1306 memset(oob
, 0xFF, info
->nand
.ecc
.bytes
);
1313 * omap_elm_correct_data - corrects page data area in case error reported
1314 * @mtd: MTD device structure
1316 * @read_ecc: ecc read from nand flash
1317 * @calc_ecc: ecc read from HW ECC registers
1319 * Calculated ecc vector reported as zero in case of non-error pages.
1320 * In case of non-zero ecc vector, first filter out erased-pages, and
1321 * then process data via ELM to detect bit-flips.
1323 static int omap_elm_correct_data(struct mtd_info
*mtd
, u_char
*data
,
1324 u_char
*read_ecc
, u_char
*calc_ecc
)
1326 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1327 struct nand_ecc_ctrl
*ecc
= &info
->nand
.ecc
;
1328 int eccsteps
= info
->nand
.ecc
.steps
;
1329 int i
, j
, stat
= 0;
1330 int eccflag
, actual_eccbytes
;
1331 struct elm_errorvec err_vec
[ERROR_VECTOR_MAX
];
1332 u_char
*ecc_vec
= calc_ecc
;
1333 u_char
*spare_ecc
= read_ecc
;
1334 u_char
*erased_ecc_vec
;
1337 bool is_error_reported
= false;
1338 u32 bit_pos
, byte_pos
, error_max
, pos
;
1341 switch (info
->ecc_opt
) {
1342 case OMAP_ECC_BCH4_CODE_HW
:
1343 /* omit 7th ECC byte reserved for ROM code compatibility */
1344 actual_eccbytes
= ecc
->bytes
- 1;
1345 erased_ecc_vec
= bch4_vector
;
1347 case OMAP_ECC_BCH8_CODE_HW
:
1348 /* omit 14th ECC byte reserved for ROM code compatibility */
1349 actual_eccbytes
= ecc
->bytes
- 1;
1350 erased_ecc_vec
= bch8_vector
;
1352 case OMAP_ECC_BCH16_CODE_HW
:
1353 actual_eccbytes
= ecc
->bytes
;
1354 erased_ecc_vec
= bch16_vector
;
1357 dev_err(&info
->pdev
->dev
, "invalid driver configuration\n");
1361 /* Initialize elm error vector to zero */
1362 memset(err_vec
, 0, sizeof(err_vec
));
1364 for (i
= 0; i
< eccsteps
; i
++) {
1365 eccflag
= 0; /* initialize eccflag */
1368 * Check any error reported,
1369 * In case of error, non zero ecc reported.
1371 for (j
= 0; j
< actual_eccbytes
; j
++) {
1372 if (calc_ecc
[j
] != 0) {
1373 eccflag
= 1; /* non zero ecc, error present */
1379 if (memcmp(calc_ecc
, erased_ecc_vec
,
1380 actual_eccbytes
) == 0) {
1382 * calc_ecc[] matches pattern for ECC(all 0xff)
1383 * so this is definitely an erased-page
1386 buf
= &data
[info
->nand
.ecc
.size
* i
];
1388 * count number of 0-bits in read_buf.
1389 * This check can be removed once a similar
1390 * check is introduced in generic NAND driver
1392 bitflip_count
= erased_sector_bitflips(
1393 buf
, read_ecc
, info
);
1394 if (bitflip_count
) {
1396 * number of 0-bits within ECC limits
1397 * So this may be an erased-page
1399 stat
+= bitflip_count
;
1402 * Too many 0-bits. It may be a
1403 * - programmed-page, OR
1404 * - erased-page with many bit-flips
1405 * So this page requires check by ELM
1407 err_vec
[i
].error_reported
= true;
1408 is_error_reported
= true;
1413 /* Update the ecc vector */
1414 calc_ecc
+= ecc
->bytes
;
1415 read_ecc
+= ecc
->bytes
;
1418 /* Check if any error reported */
1419 if (!is_error_reported
)
1422 /* Decode BCH error using ELM module */
1423 elm_decode_bch_error_page(info
->elm_dev
, ecc_vec
, err_vec
);
1426 for (i
= 0; i
< eccsteps
; i
++) {
1427 if (err_vec
[i
].error_uncorrectable
) {
1428 dev_err(&info
->pdev
->dev
,
1429 "uncorrectable bit-flips found\n");
1431 } else if (err_vec
[i
].error_reported
) {
1432 for (j
= 0; j
< err_vec
[i
].error_count
; j
++) {
1433 switch (info
->ecc_opt
) {
1434 case OMAP_ECC_BCH4_CODE_HW
:
1435 /* Add 4 bits to take care of padding */
1436 pos
= err_vec
[i
].error_loc
[j
] +
1439 case OMAP_ECC_BCH8_CODE_HW
:
1440 case OMAP_ECC_BCH16_CODE_HW
:
1441 pos
= err_vec
[i
].error_loc
[j
];
1446 error_max
= (ecc
->size
+ actual_eccbytes
) * 8;
1447 /* Calculate bit position of error */
1450 /* Calculate byte position of error */
1451 byte_pos
= (error_max
- pos
- 1) / 8;
1453 if (pos
< error_max
) {
1454 if (byte_pos
< 512) {
1455 pr_debug("bitflip@dat[%d]=%x\n",
1456 byte_pos
, data
[byte_pos
]);
1457 data
[byte_pos
] ^= 1 << bit_pos
;
1459 pr_debug("bitflip@oob[%d]=%x\n",
1461 spare_ecc
[byte_pos
- 512]);
1462 spare_ecc
[byte_pos
- 512] ^=
1466 dev_err(&info
->pdev
->dev
,
1467 "invalid bit-flip @ %d:%d\n",
1474 /* Update number of correctable errors */
1475 stat
+= err_vec
[i
].error_count
;
1477 /* Update page data with sector size */
1479 spare_ecc
+= ecc
->bytes
;
1482 return (err
) ? err
: stat
;
1486 * omap_write_page_bch - BCH ecc based write page function for entire page
1487 * @mtd: mtd info structure
1488 * @chip: nand chip info structure
1490 * @oob_required: must write chip->oob_poi to OOB
1493 * Custom write page method evolved to support multi sector writing in one shot
1495 static int omap_write_page_bch(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1496 const uint8_t *buf
, int oob_required
, int page
)
1499 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1500 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1502 /* Enable GPMC ecc engine */
1503 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1506 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1508 /* Update ecc vector from GPMC result registers */
1509 chip
->ecc
.calculate(mtd
, buf
, &ecc_calc
[0]);
1511 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1512 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1514 /* Write ecc vector to OOB area */
1515 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1520 * omap_read_page_bch - BCH ecc based page read function for entire page
1521 * @mtd: mtd info structure
1522 * @chip: nand chip info structure
1523 * @buf: buffer to store read data
1524 * @oob_required: caller requires OOB data read to chip->oob_poi
1525 * @page: page number to read
1527 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1528 * used for error correction.
1529 * Custom method evolved to support ELM error correction & multi sector
1530 * reading. On reading page data area is read along with OOB data with
1531 * ecc engine enabled. ecc vector updated after read of OOB data.
1532 * For non error pages ecc vector reported as zero.
1534 static int omap_read_page_bch(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1535 uint8_t *buf
, int oob_required
, int page
)
1537 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1538 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1539 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1540 uint8_t *oob
= &chip
->oob_poi
[eccpos
[0]];
1541 uint32_t oob_pos
= mtd
->writesize
+ chip
->ecc
.layout
->eccpos
[0];
1543 unsigned int max_bitflips
= 0;
1545 /* Enable GPMC ecc engine */
1546 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1549 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
1551 /* Read oob bytes */
1552 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, oob_pos
, -1);
1553 chip
->read_buf(mtd
, oob
, chip
->ecc
.total
);
1555 /* Calculate ecc bytes */
1556 chip
->ecc
.calculate(mtd
, buf
, ecc_calc
);
1558 memcpy(ecc_code
, &chip
->oob_poi
[eccpos
[0]], chip
->ecc
.total
);
1560 stat
= chip
->ecc
.correct(mtd
, buf
, ecc_code
, ecc_calc
);
1563 mtd
->ecc_stats
.failed
++;
1565 mtd
->ecc_stats
.corrected
+= stat
;
1566 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1569 return max_bitflips
;
1573 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1574 * @omap_nand_info: NAND device structure containing platform data
1576 static bool is_elm_present(struct omap_nand_info
*info
,
1577 struct device_node
*elm_node
)
1579 struct platform_device
*pdev
;
1581 /* check whether elm-id is passed via DT */
1583 dev_err(&info
->pdev
->dev
, "ELM devicetree node not found\n");
1586 pdev
= of_find_device_by_node(elm_node
);
1587 /* check whether ELM device is registered */
1589 dev_err(&info
->pdev
->dev
, "ELM device not found\n");
1592 /* ELM module available, now configure it */
1593 info
->elm_dev
= &pdev
->dev
;
1597 static bool omap2_nand_ecc_check(struct omap_nand_info
*info
,
1598 struct omap_nand_platform_data
*pdata
)
1600 bool ecc_needs_bch
, ecc_needs_omap_bch
, ecc_needs_elm
;
1602 switch (info
->ecc_opt
) {
1603 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1604 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1605 ecc_needs_omap_bch
= false;
1606 ecc_needs_bch
= true;
1607 ecc_needs_elm
= false;
1609 case OMAP_ECC_BCH4_CODE_HW
:
1610 case OMAP_ECC_BCH8_CODE_HW
:
1611 case OMAP_ECC_BCH16_CODE_HW
:
1612 ecc_needs_omap_bch
= true;
1613 ecc_needs_bch
= false;
1614 ecc_needs_elm
= true;
1617 ecc_needs_omap_bch
= false;
1618 ecc_needs_bch
= false;
1619 ecc_needs_elm
= false;
1623 if (ecc_needs_bch
&& !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH
)) {
1624 dev_err(&info
->pdev
->dev
,
1625 "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1628 if (ecc_needs_omap_bch
&& !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH
)) {
1629 dev_err(&info
->pdev
->dev
,
1630 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1633 if (ecc_needs_elm
&& !is_elm_present(info
, pdata
->elm_of_node
)) {
1634 dev_err(&info
->pdev
->dev
, "ELM not available\n");
1641 static int omap_nand_probe(struct platform_device
*pdev
)
1643 struct omap_nand_info
*info
;
1644 struct omap_nand_platform_data
*pdata
;
1645 struct mtd_info
*mtd
;
1646 struct nand_chip
*nand_chip
;
1647 struct nand_ecclayout
*ecclayout
;
1650 dma_cap_mask_t mask
;
1653 struct resource
*res
;
1655 pdata
= dev_get_platdata(&pdev
->dev
);
1656 if (pdata
== NULL
) {
1657 dev_err(&pdev
->dev
, "platform data missing\n");
1661 info
= devm_kzalloc(&pdev
->dev
, sizeof(struct omap_nand_info
),
1666 platform_set_drvdata(pdev
, info
);
1669 info
->gpmc_cs
= pdata
->cs
;
1670 info
->reg
= pdata
->reg
;
1671 info
->of_node
= pdata
->of_node
;
1672 info
->ecc_opt
= pdata
->ecc_opt
;
1673 nand_chip
= &info
->nand
;
1674 mtd
= nand_to_mtd(nand_chip
);
1675 mtd
->dev
.parent
= &pdev
->dev
;
1676 nand_chip
->ecc
.priv
= NULL
;
1677 nand_set_flash_node(nand_chip
, pdata
->of_node
);
1679 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1680 nand_chip
->IO_ADDR_R
= devm_ioremap_resource(&pdev
->dev
, res
);
1681 if (IS_ERR(nand_chip
->IO_ADDR_R
))
1682 return PTR_ERR(nand_chip
->IO_ADDR_R
);
1684 info
->phys_base
= res
->start
;
1686 nand_chip
->controller
= &omap_gpmc_controller
;
1688 nand_chip
->IO_ADDR_W
= nand_chip
->IO_ADDR_R
;
1689 nand_chip
->cmd_ctrl
= omap_hwcontrol
;
1692 * If RDY/BSY line is connected to OMAP then use the omap ready
1693 * function and the generic nand_wait function which reads the status
1694 * register after monitoring the RDY/BSY line. Otherwise use a standard
1695 * chip delay which is slightly more than tR (AC Timing) of the NAND
1696 * device and read status register until you get a failure or success
1698 if (pdata
->dev_ready
) {
1699 nand_chip
->dev_ready
= omap_dev_ready
;
1700 nand_chip
->chip_delay
= 0;
1702 nand_chip
->waitfunc
= omap_wait
;
1703 nand_chip
->chip_delay
= 50;
1706 if (pdata
->flash_bbt
)
1707 nand_chip
->bbt_options
|= NAND_BBT_USE_FLASH
| NAND_BBT_NO_OOB
;
1709 nand_chip
->options
|= NAND_SKIP_BBTSCAN
;
1711 /* scan NAND device connected to chip controller */
1712 nand_chip
->options
|= pdata
->devsize
& NAND_BUSWIDTH_16
;
1713 if (nand_scan_ident(mtd
, 1, NULL
)) {
1714 dev_err(&info
->pdev
->dev
, "scan failed, may be bus-width mismatch\n");
1719 /* re-populate low-level callbacks based on xfer modes */
1720 switch (pdata
->xfer_type
) {
1721 case NAND_OMAP_PREFETCH_POLLED
:
1722 nand_chip
->read_buf
= omap_read_buf_pref
;
1723 nand_chip
->write_buf
= omap_write_buf_pref
;
1726 case NAND_OMAP_POLLED
:
1727 /* Use nand_base defaults for {read,write}_buf */
1730 case NAND_OMAP_PREFETCH_DMA
:
1732 dma_cap_set(DMA_SLAVE
, mask
);
1733 sig
= OMAP24XX_DMA_GPMC
;
1734 info
->dma
= dma_request_channel(mask
, omap_dma_filter_fn
, &sig
);
1736 dev_err(&pdev
->dev
, "DMA engine request failed\n");
1740 struct dma_slave_config cfg
;
1742 memset(&cfg
, 0, sizeof(cfg
));
1743 cfg
.src_addr
= info
->phys_base
;
1744 cfg
.dst_addr
= info
->phys_base
;
1745 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1746 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1747 cfg
.src_maxburst
= 16;
1748 cfg
.dst_maxburst
= 16;
1749 err
= dmaengine_slave_config(info
->dma
, &cfg
);
1751 dev_err(&pdev
->dev
, "DMA engine slave config failed: %d\n",
1755 nand_chip
->read_buf
= omap_read_buf_dma_pref
;
1756 nand_chip
->write_buf
= omap_write_buf_dma_pref
;
1760 case NAND_OMAP_PREFETCH_IRQ
:
1761 info
->gpmc_irq_fifo
= platform_get_irq(pdev
, 0);
1762 if (info
->gpmc_irq_fifo
<= 0) {
1763 dev_err(&pdev
->dev
, "error getting fifo irq\n");
1767 err
= devm_request_irq(&pdev
->dev
, info
->gpmc_irq_fifo
,
1768 omap_nand_irq
, IRQF_SHARED
,
1769 "gpmc-nand-fifo", info
);
1771 dev_err(&pdev
->dev
, "requesting irq(%d) error:%d",
1772 info
->gpmc_irq_fifo
, err
);
1773 info
->gpmc_irq_fifo
= 0;
1777 info
->gpmc_irq_count
= platform_get_irq(pdev
, 1);
1778 if (info
->gpmc_irq_count
<= 0) {
1779 dev_err(&pdev
->dev
, "error getting count irq\n");
1783 err
= devm_request_irq(&pdev
->dev
, info
->gpmc_irq_count
,
1784 omap_nand_irq
, IRQF_SHARED
,
1785 "gpmc-nand-count", info
);
1787 dev_err(&pdev
->dev
, "requesting irq(%d) error:%d",
1788 info
->gpmc_irq_count
, err
);
1789 info
->gpmc_irq_count
= 0;
1793 nand_chip
->read_buf
= omap_read_buf_irq_pref
;
1794 nand_chip
->write_buf
= omap_write_buf_irq_pref
;
1800 "xfer_type(%d) not supported!\n", pdata
->xfer_type
);
1805 if (!omap2_nand_ecc_check(info
, pdata
)) {
1811 * Bail out earlier to let NAND_ECC_SOFT code create its own
1812 * ecclayout instead of using ours.
1814 if (info
->ecc_opt
== OMAP_ECC_HAM1_CODE_SW
) {
1815 nand_chip
->ecc
.mode
= NAND_ECC_SOFT
;
1819 /* populate MTD interface based on ECC scheme */
1820 ecclayout
= &info
->oobinfo
;
1821 nand_chip
->ecc
.layout
= ecclayout
;
1822 switch (info
->ecc_opt
) {
1823 case OMAP_ECC_HAM1_CODE_HW
:
1824 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
1825 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1826 nand_chip
->ecc
.bytes
= 3;
1827 nand_chip
->ecc
.size
= 512;
1828 nand_chip
->ecc
.strength
= 1;
1829 nand_chip
->ecc
.calculate
= omap_calculate_ecc
;
1830 nand_chip
->ecc
.hwctl
= omap_enable_hwecc
;
1831 nand_chip
->ecc
.correct
= omap_correct_data
;
1832 /* define ECC layout */
1833 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1835 nand_chip
->ecc
.size
);
1836 if (nand_chip
->options
& NAND_BUSWIDTH_16
)
1837 oob_index
= BADBLOCK_MARKER_LENGTH
;
1840 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++)
1841 ecclayout
->eccpos
[i
] = oob_index
;
1842 /* no reserved-marker in ecclayout for this ecc-scheme */
1843 ecclayout
->oobfree
->offset
=
1844 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1847 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1848 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1849 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1850 nand_chip
->ecc
.size
= 512;
1851 nand_chip
->ecc
.bytes
= 7;
1852 nand_chip
->ecc
.strength
= 4;
1853 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1854 nand_chip
->ecc
.correct
= nand_bch_correct_data
;
1855 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1856 /* define ECC layout */
1857 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1859 nand_chip
->ecc
.size
);
1860 oob_index
= BADBLOCK_MARKER_LENGTH
;
1861 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++) {
1862 ecclayout
->eccpos
[i
] = oob_index
;
1863 if (((i
+ 1) % nand_chip
->ecc
.bytes
) == 0)
1866 /* include reserved-marker in ecclayout->oobfree calculation */
1867 ecclayout
->oobfree
->offset
= 1 +
1868 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1869 /* software bch library is used for locating errors */
1870 nand_chip
->ecc
.priv
= nand_bch_init(mtd
);
1871 if (!nand_chip
->ecc
.priv
) {
1872 dev_err(&info
->pdev
->dev
, "unable to use BCH library\n");
1878 case OMAP_ECC_BCH4_CODE_HW
:
1879 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1880 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1881 nand_chip
->ecc
.size
= 512;
1882 /* 14th bit is kept reserved for ROM-code compatibility */
1883 nand_chip
->ecc
.bytes
= 7 + 1;
1884 nand_chip
->ecc
.strength
= 4;
1885 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1886 nand_chip
->ecc
.correct
= omap_elm_correct_data
;
1887 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1888 nand_chip
->ecc
.read_page
= omap_read_page_bch
;
1889 nand_chip
->ecc
.write_page
= omap_write_page_bch
;
1890 /* define ECC layout */
1891 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1893 nand_chip
->ecc
.size
);
1894 oob_index
= BADBLOCK_MARKER_LENGTH
;
1895 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++)
1896 ecclayout
->eccpos
[i
] = oob_index
;
1897 /* reserved marker already included in ecclayout->eccbytes */
1898 ecclayout
->oobfree
->offset
=
1899 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1901 err
= elm_config(info
->elm_dev
, BCH4_ECC
,
1902 mtd
->writesize
/ nand_chip
->ecc
.size
,
1903 nand_chip
->ecc
.size
, nand_chip
->ecc
.bytes
);
1908 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1909 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
1910 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1911 nand_chip
->ecc
.size
= 512;
1912 nand_chip
->ecc
.bytes
= 13;
1913 nand_chip
->ecc
.strength
= 8;
1914 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1915 nand_chip
->ecc
.correct
= nand_bch_correct_data
;
1916 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1917 /* define ECC layout */
1918 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1920 nand_chip
->ecc
.size
);
1921 oob_index
= BADBLOCK_MARKER_LENGTH
;
1922 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++) {
1923 ecclayout
->eccpos
[i
] = oob_index
;
1924 if (((i
+ 1) % nand_chip
->ecc
.bytes
) == 0)
1927 /* include reserved-marker in ecclayout->oobfree calculation */
1928 ecclayout
->oobfree
->offset
= 1 +
1929 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1930 /* software bch library is used for locating errors */
1931 nand_chip
->ecc
.priv
= nand_bch_init(mtd
);
1932 if (!nand_chip
->ecc
.priv
) {
1933 dev_err(&info
->pdev
->dev
, "unable to use BCH library\n");
1939 case OMAP_ECC_BCH8_CODE_HW
:
1940 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
1941 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1942 nand_chip
->ecc
.size
= 512;
1943 /* 14th bit is kept reserved for ROM-code compatibility */
1944 nand_chip
->ecc
.bytes
= 13 + 1;
1945 nand_chip
->ecc
.strength
= 8;
1946 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1947 nand_chip
->ecc
.correct
= omap_elm_correct_data
;
1948 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1949 nand_chip
->ecc
.read_page
= omap_read_page_bch
;
1950 nand_chip
->ecc
.write_page
= omap_write_page_bch
;
1952 err
= elm_config(info
->elm_dev
, BCH8_ECC
,
1953 mtd
->writesize
/ nand_chip
->ecc
.size
,
1954 nand_chip
->ecc
.size
, nand_chip
->ecc
.bytes
);
1958 /* define ECC layout */
1959 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1961 nand_chip
->ecc
.size
);
1962 oob_index
= BADBLOCK_MARKER_LENGTH
;
1963 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++)
1964 ecclayout
->eccpos
[i
] = oob_index
;
1965 /* reserved marker already included in ecclayout->eccbytes */
1966 ecclayout
->oobfree
->offset
=
1967 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1970 case OMAP_ECC_BCH16_CODE_HW
:
1971 pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
1972 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1973 nand_chip
->ecc
.size
= 512;
1974 nand_chip
->ecc
.bytes
= 26;
1975 nand_chip
->ecc
.strength
= 16;
1976 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1977 nand_chip
->ecc
.correct
= omap_elm_correct_data
;
1978 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1979 nand_chip
->ecc
.read_page
= omap_read_page_bch
;
1980 nand_chip
->ecc
.write_page
= omap_write_page_bch
;
1982 err
= elm_config(info
->elm_dev
, BCH16_ECC
,
1983 mtd
->writesize
/ nand_chip
->ecc
.size
,
1984 nand_chip
->ecc
.size
, nand_chip
->ecc
.bytes
);
1988 /* define ECC layout */
1989 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1991 nand_chip
->ecc
.size
);
1992 oob_index
= BADBLOCK_MARKER_LENGTH
;
1993 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++)
1994 ecclayout
->eccpos
[i
] = oob_index
;
1995 /* reserved marker already included in ecclayout->eccbytes */
1996 ecclayout
->oobfree
->offset
=
1997 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
2000 dev_err(&info
->pdev
->dev
, "invalid or unsupported ECC scheme\n");
2005 /* all OOB bytes from oobfree->offset till end off OOB are free */
2006 ecclayout
->oobfree
->length
= mtd
->oobsize
- ecclayout
->oobfree
->offset
;
2007 /* check if NAND device's OOB is enough to store ECC signatures */
2008 if (mtd
->oobsize
< (ecclayout
->eccbytes
+ BADBLOCK_MARKER_LENGTH
)) {
2009 dev_err(&info
->pdev
->dev
,
2010 "not enough OOB bytes required = %d, available=%d\n",
2011 ecclayout
->eccbytes
, mtd
->oobsize
);
2017 /* second phase scan */
2018 if (nand_scan_tail(mtd
)) {
2023 mtd_device_register(mtd
, pdata
->parts
, pdata
->nr_parts
);
2025 platform_set_drvdata(pdev
, mtd
);
2031 dma_release_channel(info
->dma
);
2032 if (nand_chip
->ecc
.priv
) {
2033 nand_bch_free(nand_chip
->ecc
.priv
);
2034 nand_chip
->ecc
.priv
= NULL
;
2039 static int omap_nand_remove(struct platform_device
*pdev
)
2041 struct mtd_info
*mtd
= platform_get_drvdata(pdev
);
2042 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
2043 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
2044 if (nand_chip
->ecc
.priv
) {
2045 nand_bch_free(nand_chip
->ecc
.priv
);
2046 nand_chip
->ecc
.priv
= NULL
;
2049 dma_release_channel(info
->dma
);
2054 static struct platform_driver omap_nand_driver
= {
2055 .probe
= omap_nand_probe
,
2056 .remove
= omap_nand_remove
,
2058 .name
= DRIVER_NAME
,
2062 module_platform_driver(omap_nand_driver
);
2064 MODULE_ALIAS("platform:" DRIVER_NAME
);
2065 MODULE_LICENSE("GPL");
2066 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");