2 * SuperH FLCTL nand controller
4 * Copyright (c) 2008 Renesas Solutions Corp.
5 * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
7 * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/completion.h>
27 #include <linux/delay.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/interrupt.h>
33 #include <linux/of_device.h>
34 #include <linux/of_mtd.h>
35 #include <linux/platform_device.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/sh_dma.h>
38 #include <linux/slab.h>
39 #include <linux/string.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/mtd/sh_flctl.h>
46 static struct nand_ecclayout flctl_4secc_oob_16
= {
48 .eccpos
= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
54 static struct nand_ecclayout flctl_4secc_oob_64
= {
57 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
58 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
59 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
60 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 },
62 {.offset
= 2, .length
= 4},
63 {.offset
= 16, .length
= 6},
64 {.offset
= 32, .length
= 6},
65 {.offset
= 48, .length
= 6} },
68 static uint8_t scan_ff_pattern
[] = { 0xff, 0xff };
70 static struct nand_bbt_descr flctl_4secc_smallpage
= {
71 .options
= NAND_BBT_SCAN2NDPAGE
,
74 .pattern
= scan_ff_pattern
,
77 static struct nand_bbt_descr flctl_4secc_largepage
= {
78 .options
= NAND_BBT_SCAN2NDPAGE
,
81 .pattern
= scan_ff_pattern
,
84 static void empty_fifo(struct sh_flctl
*flctl
)
86 writel(flctl
->flintdmacr_base
| AC1CLR
| AC0CLR
, FLINTDMACR(flctl
));
87 writel(flctl
->flintdmacr_base
, FLINTDMACR(flctl
));
90 static void start_translation(struct sh_flctl
*flctl
)
92 writeb(TRSTRT
, FLTRCR(flctl
));
95 static void timeout_error(struct sh_flctl
*flctl
, const char *str
)
97 dev_err(&flctl
->pdev
->dev
, "Timeout occurred in %s\n", str
);
100 static void wait_completion(struct sh_flctl
*flctl
)
102 uint32_t timeout
= LOOP_TIMEOUT_MAX
;
105 if (readb(FLTRCR(flctl
)) & TREND
) {
106 writeb(0x0, FLTRCR(flctl
));
112 timeout_error(flctl
, __func__
);
113 writeb(0x0, FLTRCR(flctl
));
116 static void flctl_dma_complete(void *param
)
118 struct sh_flctl
*flctl
= param
;
120 complete(&flctl
->dma_complete
);
123 static void flctl_release_dma(struct sh_flctl
*flctl
)
125 if (flctl
->chan_fifo0_rx
) {
126 dma_release_channel(flctl
->chan_fifo0_rx
);
127 flctl
->chan_fifo0_rx
= NULL
;
129 if (flctl
->chan_fifo0_tx
) {
130 dma_release_channel(flctl
->chan_fifo0_tx
);
131 flctl
->chan_fifo0_tx
= NULL
;
135 static void flctl_setup_dma(struct sh_flctl
*flctl
)
138 struct dma_slave_config cfg
;
139 struct platform_device
*pdev
= flctl
->pdev
;
140 struct sh_flctl_platform_data
*pdata
= dev_get_platdata(&pdev
->dev
);
146 if (pdata
->slave_id_fifo0_tx
<= 0 || pdata
->slave_id_fifo0_rx
<= 0)
149 /* We can only either use DMA for both Tx and Rx or not use it at all */
151 dma_cap_set(DMA_SLAVE
, mask
);
153 flctl
->chan_fifo0_tx
= dma_request_channel(mask
, shdma_chan_filter
,
154 (void *)(uintptr_t)pdata
->slave_id_fifo0_tx
);
155 dev_dbg(&pdev
->dev
, "%s: TX: got channel %p\n", __func__
,
156 flctl
->chan_fifo0_tx
);
158 if (!flctl
->chan_fifo0_tx
)
161 memset(&cfg
, 0, sizeof(cfg
));
162 cfg
.direction
= DMA_MEM_TO_DEV
;
163 cfg
.dst_addr
= flctl
->fifo
;
165 ret
= dmaengine_slave_config(flctl
->chan_fifo0_tx
, &cfg
);
169 flctl
->chan_fifo0_rx
= dma_request_channel(mask
, shdma_chan_filter
,
170 (void *)(uintptr_t)pdata
->slave_id_fifo0_rx
);
171 dev_dbg(&pdev
->dev
, "%s: RX: got channel %p\n", __func__
,
172 flctl
->chan_fifo0_rx
);
174 if (!flctl
->chan_fifo0_rx
)
177 cfg
.direction
= DMA_DEV_TO_MEM
;
179 cfg
.src_addr
= flctl
->fifo
;
180 ret
= dmaengine_slave_config(flctl
->chan_fifo0_rx
, &cfg
);
184 init_completion(&flctl
->dma_complete
);
189 flctl_release_dma(flctl
);
192 static void set_addr(struct mtd_info
*mtd
, int column
, int page_addr
)
194 struct sh_flctl
*flctl
= mtd_to_flctl(mtd
);
198 addr
= page_addr
; /* ERASE1 */
199 } else if (page_addr
!= -1) {
200 /* SEQIN, READ0, etc.. */
201 if (flctl
->chip
.options
& NAND_BUSWIDTH_16
)
203 if (flctl
->page_size
) {
204 addr
= column
& 0x0FFF;
205 addr
|= (page_addr
& 0xff) << 16;
206 addr
|= ((page_addr
>> 8) & 0xff) << 24;
208 if (flctl
->rw_ADRCNT
== ADRCNT2_E
) {
210 addr2
= (page_addr
>> 16) & 0xff;
211 writel(addr2
, FLADR2(flctl
));
215 addr
|= (page_addr
& 0xff) << 8;
216 addr
|= ((page_addr
>> 8) & 0xff) << 16;
217 addr
|= ((page_addr
>> 16) & 0xff) << 24;
220 writel(addr
, FLADR(flctl
));
223 static void wait_rfifo_ready(struct sh_flctl
*flctl
)
225 uint32_t timeout
= LOOP_TIMEOUT_MAX
;
230 val
= readl(FLDTCNTR(flctl
)) >> 16;
235 timeout_error(flctl
, __func__
);
238 static void wait_wfifo_ready(struct sh_flctl
*flctl
)
240 uint32_t len
, timeout
= LOOP_TIMEOUT_MAX
;
244 len
= (readl(FLDTCNTR(flctl
)) >> 16) & 0xFF;
249 timeout_error(flctl
, __func__
);
252 static enum flctl_ecc_res_t wait_recfifo_ready
253 (struct sh_flctl
*flctl
, int sector_number
)
255 uint32_t timeout
= LOOP_TIMEOUT_MAX
;
256 void __iomem
*ecc_reg
[4];
258 int state
= FL_SUCCESS
;
262 * First this loops checks in FLDTCNTR if we are ready to read out the
263 * oob data. This is the case if either all went fine without errors or
264 * if the bottom part of the loop corrected the errors or marked them as
265 * uncorrectable and the controller is given time to push the data into
269 /* check if all is ok and we can read out the OOB */
270 size
= readl(FLDTCNTR(flctl
)) >> 24;
271 if ((size
& 0xFF) == 4)
274 /* check if a correction code has been calculated */
275 if (!(readl(FL4ECCCR(flctl
)) & _4ECCEND
)) {
277 * either we wait for the fifo to be filled or a
278 * correction pattern is being generated
284 /* check for an uncorrectable error */
285 if (readl(FL4ECCCR(flctl
)) & _4ECCFA
) {
286 /* check if we face a non-empty page */
287 for (i
= 0; i
< 512; i
++) {
288 if (flctl
->done_buff
[i
] != 0xff) {
289 state
= FL_ERROR
; /* can't correct */
294 if (state
== FL_SUCCESS
)
295 dev_dbg(&flctl
->pdev
->dev
,
296 "reading empty sector %d, ecc error ignored\n",
299 writel(0, FL4ECCCR(flctl
));
303 /* start error correction */
304 ecc_reg
[0] = FL4ECCRESULT0(flctl
);
305 ecc_reg
[1] = FL4ECCRESULT1(flctl
);
306 ecc_reg
[2] = FL4ECCRESULT2(flctl
);
307 ecc_reg
[3] = FL4ECCRESULT3(flctl
);
309 for (i
= 0; i
< 3; i
++) {
313 data
= readl(ecc_reg
[i
]);
315 if (flctl
->page_size
)
316 index
= (512 * sector_number
) +
321 org
= flctl
->done_buff
[index
];
322 flctl
->done_buff
[index
] = org
^ (data
& 0xFF);
324 state
= FL_REPAIRABLE
;
325 writel(0, FL4ECCCR(flctl
));
328 timeout_error(flctl
, __func__
);
329 return FL_TIMEOUT
; /* timeout */
332 static void wait_wecfifo_ready(struct sh_flctl
*flctl
)
334 uint32_t timeout
= LOOP_TIMEOUT_MAX
;
339 len
= (readl(FLDTCNTR(flctl
)) >> 24) & 0xFF;
344 timeout_error(flctl
, __func__
);
347 static int flctl_dma_fifo0_transfer(struct sh_flctl
*flctl
, unsigned long *buf
,
348 int len
, enum dma_data_direction dir
)
350 struct dma_async_tx_descriptor
*desc
= NULL
;
351 struct dma_chan
*chan
;
352 enum dma_transfer_direction tr_dir
;
354 dma_cookie_t cookie
= -EINVAL
;
358 if (dir
== DMA_FROM_DEVICE
) {
359 chan
= flctl
->chan_fifo0_rx
;
360 tr_dir
= DMA_DEV_TO_MEM
;
362 chan
= flctl
->chan_fifo0_tx
;
363 tr_dir
= DMA_MEM_TO_DEV
;
366 dma_addr
= dma_map_single(chan
->device
->dev
, buf
, len
, dir
);
369 desc
= dmaengine_prep_slave_single(chan
, dma_addr
, len
,
370 tr_dir
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
373 reg
= readl(FLINTDMACR(flctl
));
375 writel(reg
, FLINTDMACR(flctl
));
377 desc
->callback
= flctl_dma_complete
;
378 desc
->callback_param
= flctl
;
379 cookie
= dmaengine_submit(desc
);
381 dma_async_issue_pending(chan
);
383 /* DMA failed, fall back to PIO */
384 flctl_release_dma(flctl
);
385 dev_warn(&flctl
->pdev
->dev
,
386 "DMA failed, falling back to PIO\n");
392 wait_for_completion_timeout(&flctl
->dma_complete
,
393 msecs_to_jiffies(3000));
396 dmaengine_terminate_all(chan
);
397 dev_err(&flctl
->pdev
->dev
, "wait_for_completion_timeout\n");
401 reg
= readl(FLINTDMACR(flctl
));
403 writel(reg
, FLINTDMACR(flctl
));
405 dma_unmap_single(chan
->device
->dev
, dma_addr
, len
, dir
);
407 /* ret > 0 is success */
411 static void read_datareg(struct sh_flctl
*flctl
, int offset
)
414 unsigned long *buf
= (unsigned long *)&flctl
->done_buff
[offset
];
416 wait_completion(flctl
);
418 data
= readl(FLDATAR(flctl
));
419 *buf
= le32_to_cpu(data
);
422 static void read_fiforeg(struct sh_flctl
*flctl
, int rlen
, int offset
)
425 unsigned long *buf
= (unsigned long *)&flctl
->done_buff
[offset
];
427 len_4align
= (rlen
+ 3) / 4;
429 /* initiate DMA transfer */
430 if (flctl
->chan_fifo0_rx
&& rlen
>= 32 &&
431 flctl_dma_fifo0_transfer(flctl
, buf
, rlen
, DMA_DEV_TO_MEM
) > 0)
432 goto convert
; /* DMA success */
434 /* do polling transfer */
435 for (i
= 0; i
< len_4align
; i
++) {
436 wait_rfifo_ready(flctl
);
437 buf
[i
] = readl(FLDTFIFO(flctl
));
441 for (i
= 0; i
< len_4align
; i
++)
442 buf
[i
] = be32_to_cpu(buf
[i
]);
445 static enum flctl_ecc_res_t read_ecfiforeg
446 (struct sh_flctl
*flctl
, uint8_t *buff
, int sector
)
449 enum flctl_ecc_res_t res
;
450 unsigned long *ecc_buf
= (unsigned long *)buff
;
452 res
= wait_recfifo_ready(flctl
, sector
);
454 if (res
!= FL_ERROR
) {
455 for (i
= 0; i
< 4; i
++) {
456 ecc_buf
[i
] = readl(FLECFIFO(flctl
));
457 ecc_buf
[i
] = be32_to_cpu(ecc_buf
[i
]);
464 static void write_fiforeg(struct sh_flctl
*flctl
, int rlen
,
468 unsigned long *buf
= (unsigned long *)&flctl
->done_buff
[offset
];
470 len_4align
= (rlen
+ 3) / 4;
471 for (i
= 0; i
< len_4align
; i
++) {
472 wait_wfifo_ready(flctl
);
473 writel(cpu_to_be32(buf
[i
]), FLDTFIFO(flctl
));
477 static void write_ec_fiforeg(struct sh_flctl
*flctl
, int rlen
,
481 unsigned long *buf
= (unsigned long *)&flctl
->done_buff
[offset
];
483 len_4align
= (rlen
+ 3) / 4;
485 for (i
= 0; i
< len_4align
; i
++)
486 buf
[i
] = cpu_to_be32(buf
[i
]);
488 /* initiate DMA transfer */
489 if (flctl
->chan_fifo0_tx
&& rlen
>= 32 &&
490 flctl_dma_fifo0_transfer(flctl
, buf
, rlen
, DMA_MEM_TO_DEV
) > 0)
491 return; /* DMA success */
493 /* do polling transfer */
494 for (i
= 0; i
< len_4align
; i
++) {
495 wait_wecfifo_ready(flctl
);
496 writel(buf
[i
], FLECFIFO(flctl
));
500 static void set_cmd_regs(struct mtd_info
*mtd
, uint32_t cmd
, uint32_t flcmcdr_val
)
502 struct sh_flctl
*flctl
= mtd_to_flctl(mtd
);
503 uint32_t flcmncr_val
= flctl
->flcmncr_base
& ~SEL_16BIT
;
504 uint32_t flcmdcr_val
, addr_len_bytes
= 0;
506 /* Set SNAND bit if page size is 2048byte */
507 if (flctl
->page_size
)
508 flcmncr_val
|= SNAND_E
;
510 flcmncr_val
&= ~SNAND_E
;
512 /* default FLCMDCR val */
513 flcmdcr_val
= DOCMD1_E
| DOADR_E
;
515 /* Set for FLCMDCR */
517 case NAND_CMD_ERASE1
:
518 addr_len_bytes
= flctl
->erase_ADRCNT
;
519 flcmdcr_val
|= DOCMD2_E
;
522 case NAND_CMD_READOOB
:
523 case NAND_CMD_RNDOUT
:
524 addr_len_bytes
= flctl
->rw_ADRCNT
;
525 flcmdcr_val
|= CDSRC_E
;
526 if (flctl
->chip
.options
& NAND_BUSWIDTH_16
)
527 flcmncr_val
|= SEL_16BIT
;
530 /* This case is that cmd is READ0 or READ1 or READ00 */
531 flcmdcr_val
&= ~DOADR_E
; /* ONLY execute 1st cmd */
533 case NAND_CMD_PAGEPROG
:
534 addr_len_bytes
= flctl
->rw_ADRCNT
;
535 flcmdcr_val
|= DOCMD2_E
| CDSRC_E
| SELRW
;
536 if (flctl
->chip
.options
& NAND_BUSWIDTH_16
)
537 flcmncr_val
|= SEL_16BIT
;
539 case NAND_CMD_READID
:
540 flcmncr_val
&= ~SNAND_E
;
541 flcmdcr_val
|= CDSRC_E
;
542 addr_len_bytes
= ADRCNT_1
;
544 case NAND_CMD_STATUS
:
546 flcmncr_val
&= ~SNAND_E
;
547 flcmdcr_val
&= ~(DOADR_E
| DOSR_E
);
553 /* Set address bytes parameter */
554 flcmdcr_val
|= addr_len_bytes
;
556 /* Now actually write */
557 writel(flcmncr_val
, FLCMNCR(flctl
));
558 writel(flcmdcr_val
, FLCMDCR(flctl
));
559 writel(flcmcdr_val
, FLCMCDR(flctl
));
562 static int flctl_read_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
563 uint8_t *buf
, int oob_required
, int page
)
565 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
567 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
571 static int flctl_write_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
572 const uint8_t *buf
, int oob_required
,
575 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
576 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
580 static void execmd_read_page_sector(struct mtd_info
*mtd
, int page_addr
)
582 struct sh_flctl
*flctl
= mtd_to_flctl(mtd
);
583 int sector
, page_sectors
;
584 enum flctl_ecc_res_t ecc_result
;
586 page_sectors
= flctl
->page_size
? 4 : 1;
588 set_cmd_regs(mtd
, NAND_CMD_READ0
,
589 (NAND_CMD_READSTART
<< 8) | NAND_CMD_READ0
);
591 writel(readl(FLCMNCR(flctl
)) | ACM_SACCES_MODE
| _4ECCCORRECT
,
593 writel(readl(FLCMDCR(flctl
)) | page_sectors
, FLCMDCR(flctl
));
594 writel(page_addr
<< 2, FLADR(flctl
));
597 start_translation(flctl
);
599 for (sector
= 0; sector
< page_sectors
; sector
++) {
600 read_fiforeg(flctl
, 512, 512 * sector
);
602 ecc_result
= read_ecfiforeg(flctl
,
603 &flctl
->done_buff
[mtd
->writesize
+ 16 * sector
],
606 switch (ecc_result
) {
608 dev_info(&flctl
->pdev
->dev
,
609 "applied ecc on page 0x%x", page_addr
);
610 mtd
->ecc_stats
.corrected
++;
613 dev_warn(&flctl
->pdev
->dev
,
614 "page 0x%x contains corrupted data\n",
616 mtd
->ecc_stats
.failed
++;
623 wait_completion(flctl
);
625 writel(readl(FLCMNCR(flctl
)) & ~(ACM_SACCES_MODE
| _4ECCCORRECT
),
629 static void execmd_read_oob(struct mtd_info
*mtd
, int page_addr
)
631 struct sh_flctl
*flctl
= mtd_to_flctl(mtd
);
632 int page_sectors
= flctl
->page_size
? 4 : 1;
635 set_cmd_regs(mtd
, NAND_CMD_READ0
,
636 (NAND_CMD_READSTART
<< 8) | NAND_CMD_READ0
);
640 for (i
= 0; i
< page_sectors
; i
++) {
641 set_addr(mtd
, (512 + 16) * i
+ 512 , page_addr
);
642 writel(16, FLDTCNTR(flctl
));
644 start_translation(flctl
);
645 read_fiforeg(flctl
, 16, 16 * i
);
646 wait_completion(flctl
);
650 static void execmd_write_page_sector(struct mtd_info
*mtd
)
652 struct sh_flctl
*flctl
= mtd_to_flctl(mtd
);
653 int page_addr
= flctl
->seqin_page_addr
;
654 int sector
, page_sectors
;
656 page_sectors
= flctl
->page_size
? 4 : 1;
658 set_cmd_regs(mtd
, NAND_CMD_PAGEPROG
,
659 (NAND_CMD_PAGEPROG
<< 8) | NAND_CMD_SEQIN
);
662 writel(readl(FLCMNCR(flctl
)) | ACM_SACCES_MODE
, FLCMNCR(flctl
));
663 writel(readl(FLCMDCR(flctl
)) | page_sectors
, FLCMDCR(flctl
));
664 writel(page_addr
<< 2, FLADR(flctl
));
665 start_translation(flctl
);
667 for (sector
= 0; sector
< page_sectors
; sector
++) {
668 write_fiforeg(flctl
, 512, 512 * sector
);
669 write_ec_fiforeg(flctl
, 16, mtd
->writesize
+ 16 * sector
);
672 wait_completion(flctl
);
673 writel(readl(FLCMNCR(flctl
)) & ~ACM_SACCES_MODE
, FLCMNCR(flctl
));
676 static void execmd_write_oob(struct mtd_info
*mtd
)
678 struct sh_flctl
*flctl
= mtd_to_flctl(mtd
);
679 int page_addr
= flctl
->seqin_page_addr
;
680 int sector
, page_sectors
;
682 page_sectors
= flctl
->page_size
? 4 : 1;
684 set_cmd_regs(mtd
, NAND_CMD_PAGEPROG
,
685 (NAND_CMD_PAGEPROG
<< 8) | NAND_CMD_SEQIN
);
687 for (sector
= 0; sector
< page_sectors
; sector
++) {
689 set_addr(mtd
, sector
* 528 + 512, page_addr
);
690 writel(16, FLDTCNTR(flctl
)); /* set read size */
692 start_translation(flctl
);
693 write_fiforeg(flctl
, 16, 16 * sector
);
694 wait_completion(flctl
);
698 static void flctl_cmdfunc(struct mtd_info
*mtd
, unsigned int command
,
699 int column
, int page_addr
)
701 struct sh_flctl
*flctl
= mtd_to_flctl(mtd
);
702 uint32_t read_cmd
= 0;
704 pm_runtime_get_sync(&flctl
->pdev
->dev
);
706 flctl
->read_bytes
= 0;
707 if (command
!= NAND_CMD_PAGEPROG
)
714 /* read page with hwecc */
715 execmd_read_page_sector(mtd
, page_addr
);
718 if (flctl
->page_size
)
719 set_cmd_regs(mtd
, command
, (NAND_CMD_READSTART
<< 8)
722 set_cmd_regs(mtd
, command
, command
);
724 set_addr(mtd
, 0, page_addr
);
726 flctl
->read_bytes
= mtd
->writesize
+ mtd
->oobsize
;
727 if (flctl
->chip
.options
& NAND_BUSWIDTH_16
)
729 flctl
->index
+= column
;
730 goto read_normal_exit
;
732 case NAND_CMD_READOOB
:
734 /* read page with hwecc */
735 execmd_read_oob(mtd
, page_addr
);
739 if (flctl
->page_size
) {
740 set_cmd_regs(mtd
, command
, (NAND_CMD_READSTART
<< 8)
742 set_addr(mtd
, mtd
->writesize
, page_addr
);
744 set_cmd_regs(mtd
, command
, command
);
745 set_addr(mtd
, 0, page_addr
);
747 flctl
->read_bytes
= mtd
->oobsize
;
748 goto read_normal_exit
;
750 case NAND_CMD_RNDOUT
:
754 if (flctl
->page_size
)
755 set_cmd_regs(mtd
, command
, (NAND_CMD_RNDOUTSTART
<< 8)
758 set_cmd_regs(mtd
, command
, command
);
760 set_addr(mtd
, column
, 0);
762 flctl
->read_bytes
= mtd
->writesize
+ mtd
->oobsize
- column
;
763 goto read_normal_exit
;
765 case NAND_CMD_READID
:
766 set_cmd_regs(mtd
, command
, command
);
768 /* READID is always performed using an 8-bit bus */
769 if (flctl
->chip
.options
& NAND_BUSWIDTH_16
)
771 set_addr(mtd
, column
, 0);
773 flctl
->read_bytes
= 8;
774 writel(flctl
->read_bytes
, FLDTCNTR(flctl
)); /* set read size */
776 start_translation(flctl
);
777 read_fiforeg(flctl
, flctl
->read_bytes
, 0);
778 wait_completion(flctl
);
781 case NAND_CMD_ERASE1
:
782 flctl
->erase1_page_addr
= page_addr
;
785 case NAND_CMD_ERASE2
:
786 set_cmd_regs(mtd
, NAND_CMD_ERASE1
,
787 (command
<< 8) | NAND_CMD_ERASE1
);
788 set_addr(mtd
, -1, flctl
->erase1_page_addr
);
789 start_translation(flctl
);
790 wait_completion(flctl
);
794 if (!flctl
->page_size
) {
795 /* output read command */
796 if (column
>= mtd
->writesize
) {
797 column
-= mtd
->writesize
;
798 read_cmd
= NAND_CMD_READOOB
;
799 } else if (column
< 256) {
800 read_cmd
= NAND_CMD_READ0
;
803 read_cmd
= NAND_CMD_READ1
;
806 flctl
->seqin_column
= column
;
807 flctl
->seqin_page_addr
= page_addr
;
808 flctl
->seqin_read_cmd
= read_cmd
;
811 case NAND_CMD_PAGEPROG
:
813 if (!flctl
->page_size
) {
814 set_cmd_regs(mtd
, NAND_CMD_SEQIN
,
815 flctl
->seqin_read_cmd
);
816 set_addr(mtd
, -1, -1);
817 writel(0, FLDTCNTR(flctl
)); /* set 0 size */
818 start_translation(flctl
);
819 wait_completion(flctl
);
822 /* write page with hwecc */
823 if (flctl
->seqin_column
== mtd
->writesize
)
824 execmd_write_oob(mtd
);
825 else if (!flctl
->seqin_column
)
826 execmd_write_page_sector(mtd
);
828 printk(KERN_ERR
"Invalid address !?\n");
831 set_cmd_regs(mtd
, command
, (command
<< 8) | NAND_CMD_SEQIN
);
832 set_addr(mtd
, flctl
->seqin_column
, flctl
->seqin_page_addr
);
833 writel(flctl
->index
, FLDTCNTR(flctl
)); /* set write size */
834 start_translation(flctl
);
835 write_fiforeg(flctl
, flctl
->index
, 0);
836 wait_completion(flctl
);
839 case NAND_CMD_STATUS
:
840 set_cmd_regs(mtd
, command
, command
);
841 set_addr(mtd
, -1, -1);
843 flctl
->read_bytes
= 1;
844 writel(flctl
->read_bytes
, FLDTCNTR(flctl
)); /* set read size */
845 start_translation(flctl
);
846 read_datareg(flctl
, 0); /* read and end */
850 set_cmd_regs(mtd
, command
, command
);
851 set_addr(mtd
, -1, -1);
853 writel(0, FLDTCNTR(flctl
)); /* set 0 size */
854 start_translation(flctl
);
855 wait_completion(flctl
);
864 writel(flctl
->read_bytes
, FLDTCNTR(flctl
)); /* set read size */
866 start_translation(flctl
);
867 read_fiforeg(flctl
, flctl
->read_bytes
, 0);
868 wait_completion(flctl
);
870 pm_runtime_put_sync(&flctl
->pdev
->dev
);
874 static void flctl_select_chip(struct mtd_info
*mtd
, int chipnr
)
876 struct sh_flctl
*flctl
= mtd_to_flctl(mtd
);
881 flctl
->flcmncr_base
&= ~CE0_ENABLE
;
883 pm_runtime_get_sync(&flctl
->pdev
->dev
);
884 writel(flctl
->flcmncr_base
, FLCMNCR(flctl
));
886 if (flctl
->qos_request
) {
887 dev_pm_qos_remove_request(&flctl
->pm_qos
);
888 flctl
->qos_request
= 0;
891 pm_runtime_put_sync(&flctl
->pdev
->dev
);
894 flctl
->flcmncr_base
|= CE0_ENABLE
;
896 if (!flctl
->qos_request
) {
897 ret
= dev_pm_qos_add_request(&flctl
->pdev
->dev
,
899 DEV_PM_QOS_RESUME_LATENCY
,
902 dev_err(&flctl
->pdev
->dev
,
903 "PM QoS request failed: %d\n", ret
);
904 flctl
->qos_request
= 1;
908 pm_runtime_get_sync(&flctl
->pdev
->dev
);
909 writel(HOLDEN
, FLHOLDCR(flctl
));
910 pm_runtime_put_sync(&flctl
->pdev
->dev
);
918 static void flctl_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
920 struct sh_flctl
*flctl
= mtd_to_flctl(mtd
);
922 memcpy(&flctl
->done_buff
[flctl
->index
], buf
, len
);
926 static uint8_t flctl_read_byte(struct mtd_info
*mtd
)
928 struct sh_flctl
*flctl
= mtd_to_flctl(mtd
);
931 data
= flctl
->done_buff
[flctl
->index
];
936 static uint16_t flctl_read_word(struct mtd_info
*mtd
)
938 struct sh_flctl
*flctl
= mtd_to_flctl(mtd
);
939 uint16_t *buf
= (uint16_t *)&flctl
->done_buff
[flctl
->index
];
945 static void flctl_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
947 struct sh_flctl
*flctl
= mtd_to_flctl(mtd
);
949 memcpy(buf
, &flctl
->done_buff
[flctl
->index
], len
);
953 static int flctl_chip_init_tail(struct mtd_info
*mtd
)
955 struct sh_flctl
*flctl
= mtd_to_flctl(mtd
);
956 struct nand_chip
*chip
= &flctl
->chip
;
958 if (mtd
->writesize
== 512) {
959 flctl
->page_size
= 0;
960 if (chip
->chipsize
> (32 << 20)) {
962 flctl
->rw_ADRCNT
= ADRCNT_4
;
963 flctl
->erase_ADRCNT
= ADRCNT_3
;
964 } else if (chip
->chipsize
> (2 << 16)) {
966 flctl
->rw_ADRCNT
= ADRCNT_3
;
967 flctl
->erase_ADRCNT
= ADRCNT_2
;
969 flctl
->rw_ADRCNT
= ADRCNT_2
;
970 flctl
->erase_ADRCNT
= ADRCNT_1
;
973 flctl
->page_size
= 1;
974 if (chip
->chipsize
> (128 << 20)) {
976 flctl
->rw_ADRCNT
= ADRCNT2_E
;
977 flctl
->erase_ADRCNT
= ADRCNT_3
;
978 } else if (chip
->chipsize
> (8 << 16)) {
980 flctl
->rw_ADRCNT
= ADRCNT_4
;
981 flctl
->erase_ADRCNT
= ADRCNT_2
;
983 flctl
->rw_ADRCNT
= ADRCNT_3
;
984 flctl
->erase_ADRCNT
= ADRCNT_1
;
989 if (mtd
->writesize
== 512) {
990 chip
->ecc
.layout
= &flctl_4secc_oob_16
;
991 chip
->badblock_pattern
= &flctl_4secc_smallpage
;
993 chip
->ecc
.layout
= &flctl_4secc_oob_64
;
994 chip
->badblock_pattern
= &flctl_4secc_largepage
;
997 chip
->ecc
.size
= 512;
998 chip
->ecc
.bytes
= 10;
999 chip
->ecc
.strength
= 4;
1000 chip
->ecc
.read_page
= flctl_read_page_hwecc
;
1001 chip
->ecc
.write_page
= flctl_write_page_hwecc
;
1002 chip
->ecc
.mode
= NAND_ECC_HW
;
1004 /* 4 symbols ECC enabled */
1005 flctl
->flcmncr_base
|= _4ECCEN
;
1007 chip
->ecc
.mode
= NAND_ECC_SOFT
;
1013 static irqreturn_t
flctl_handle_flste(int irq
, void *dev_id
)
1015 struct sh_flctl
*flctl
= dev_id
;
1017 dev_err(&flctl
->pdev
->dev
, "flste irq: %x\n", readl(FLINTDMACR(flctl
)));
1018 writel(flctl
->flintdmacr_base
, FLINTDMACR(flctl
));
1023 struct flctl_soc_config
{
1024 unsigned long flcmncr_val
;
1025 unsigned has_hwecc
:1;
1026 unsigned use_holden
:1;
1029 static struct flctl_soc_config flctl_sh7372_config
= {
1030 .flcmncr_val
= CLK_16B_12L_4H
| TYPESEL_SET
| SHBUSSEL
,
1035 static const struct of_device_id of_flctl_match
[] = {
1036 { .compatible
= "renesas,shmobile-flctl-sh7372",
1037 .data
= &flctl_sh7372_config
},
1040 MODULE_DEVICE_TABLE(of
, of_flctl_match
);
1042 static struct sh_flctl_platform_data
*flctl_parse_dt(struct device
*dev
)
1044 const struct of_device_id
*match
;
1045 struct flctl_soc_config
*config
;
1046 struct sh_flctl_platform_data
*pdata
;
1047 struct device_node
*dn
= dev
->of_node
;
1050 match
= of_match_device(of_flctl_match
, dev
);
1052 config
= (struct flctl_soc_config
*)match
->data
;
1054 dev_err(dev
, "%s: no OF configuration attached\n", __func__
);
1058 pdata
= devm_kzalloc(dev
, sizeof(struct sh_flctl_platform_data
),
1063 /* set SoC specific options */
1064 pdata
->flcmncr_val
= config
->flcmncr_val
;
1065 pdata
->has_hwecc
= config
->has_hwecc
;
1066 pdata
->use_holden
= config
->use_holden
;
1068 /* parse user defined options */
1069 ret
= of_get_nand_bus_width(dn
);
1071 pdata
->flcmncr_val
|= SEL_16BIT
;
1072 else if (ret
!= 8) {
1073 dev_err(dev
, "%s: invalid bus width\n", __func__
);
1080 static int flctl_probe(struct platform_device
*pdev
)
1082 struct resource
*res
;
1083 struct sh_flctl
*flctl
;
1084 struct mtd_info
*flctl_mtd
;
1085 struct nand_chip
*nand
;
1086 struct sh_flctl_platform_data
*pdata
;
1090 flctl
= devm_kzalloc(&pdev
->dev
, sizeof(struct sh_flctl
), GFP_KERNEL
);
1094 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1095 flctl
->reg
= devm_ioremap_resource(&pdev
->dev
, res
);
1096 if (IS_ERR(flctl
->reg
))
1097 return PTR_ERR(flctl
->reg
);
1098 flctl
->fifo
= res
->start
+ 0x24; /* FLDTFIFO */
1100 irq
= platform_get_irq(pdev
, 0);
1102 dev_err(&pdev
->dev
, "failed to get flste irq data\n");
1106 ret
= devm_request_irq(&pdev
->dev
, irq
, flctl_handle_flste
, IRQF_SHARED
,
1109 dev_err(&pdev
->dev
, "request interrupt failed.\n");
1113 if (pdev
->dev
.of_node
)
1114 pdata
= flctl_parse_dt(&pdev
->dev
);
1116 pdata
= dev_get_platdata(&pdev
->dev
);
1119 dev_err(&pdev
->dev
, "no setup data defined\n");
1123 platform_set_drvdata(pdev
, flctl
);
1124 nand
= &flctl
->chip
;
1125 flctl_mtd
= nand_to_mtd(nand
);
1126 nand_set_flash_node(nand
, pdev
->dev
.of_node
);
1127 flctl_mtd
->dev
.parent
= &pdev
->dev
;
1129 flctl
->hwecc
= pdata
->has_hwecc
;
1130 flctl
->holden
= pdata
->use_holden
;
1131 flctl
->flcmncr_base
= pdata
->flcmncr_val
;
1132 flctl
->flintdmacr_base
= flctl
->hwecc
? (STERINTE
| ECERB
) : STERINTE
;
1134 /* Set address of hardware control function */
1135 /* 20 us command delay time */
1136 nand
->chip_delay
= 20;
1138 nand
->read_byte
= flctl_read_byte
;
1139 nand
->write_buf
= flctl_write_buf
;
1140 nand
->read_buf
= flctl_read_buf
;
1141 nand
->select_chip
= flctl_select_chip
;
1142 nand
->cmdfunc
= flctl_cmdfunc
;
1144 if (pdata
->flcmncr_val
& SEL_16BIT
) {
1145 nand
->options
|= NAND_BUSWIDTH_16
;
1146 nand
->read_word
= flctl_read_word
;
1149 pm_runtime_enable(&pdev
->dev
);
1150 pm_runtime_resume(&pdev
->dev
);
1152 flctl_setup_dma(flctl
);
1154 ret
= nand_scan_ident(flctl_mtd
, 1, NULL
);
1158 ret
= flctl_chip_init_tail(flctl_mtd
);
1162 ret
= nand_scan_tail(flctl_mtd
);
1166 ret
= mtd_device_register(flctl_mtd
, pdata
->parts
, pdata
->nr_parts
);
1171 flctl_release_dma(flctl
);
1172 pm_runtime_disable(&pdev
->dev
);
1176 static int flctl_remove(struct platform_device
*pdev
)
1178 struct sh_flctl
*flctl
= platform_get_drvdata(pdev
);
1180 flctl_release_dma(flctl
);
1181 nand_release(nand_to_mtd(&flctl
->chip
));
1182 pm_runtime_disable(&pdev
->dev
);
1187 static struct platform_driver flctl_driver
= {
1188 .remove
= flctl_remove
,
1191 .of_match_table
= of_match_ptr(of_flctl_match
),
1195 module_platform_driver_probe(flctl_driver
, flctl_probe
);
1197 MODULE_LICENSE("GPL");
1198 MODULE_AUTHOR("Yoshihiro Shimoda");
1199 MODULE_DESCRIPTION("SuperH FLCTL driver");
1200 MODULE_ALIAS("platform:sh_flctl");