2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
4 * Copyright (C) 2012 Marvell
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/platform_device.h>
32 #include <linux/skbuff.h>
34 #include "mvneta_bm.h"
40 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
41 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
42 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
43 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
44 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
45 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
46 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
47 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
48 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
49 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
50 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
51 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
52 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
53 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
54 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
55 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
56 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
57 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
59 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
60 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
61 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
62 #define MVNETA_PORT_RX_RESET 0x1cc0
63 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
64 #define MVNETA_PHY_ADDR 0x2000
65 #define MVNETA_PHY_ADDR_MASK 0x1f
66 #define MVNETA_MBUS_RETRY 0x2010
67 #define MVNETA_UNIT_INTR_CAUSE 0x2080
68 #define MVNETA_UNIT_CONTROL 0x20B0
69 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
70 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
71 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
72 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
73 #define MVNETA_BASE_ADDR_ENABLE 0x2290
74 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
75 #define MVNETA_PORT_CONFIG 0x2400
76 #define MVNETA_UNI_PROMISC_MODE BIT(0)
77 #define MVNETA_DEF_RXQ(q) ((q) << 1)
78 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
79 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
80 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
81 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
82 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
83 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
84 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
85 MVNETA_DEF_RXQ_ARP(q) | \
86 MVNETA_DEF_RXQ_TCP(q) | \
87 MVNETA_DEF_RXQ_UDP(q) | \
88 MVNETA_DEF_RXQ_BPDU(q) | \
89 MVNETA_TX_UNSET_ERR_SUM | \
90 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
91 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
92 #define MVNETA_MAC_ADDR_LOW 0x2414
93 #define MVNETA_MAC_ADDR_HIGH 0x2418
94 #define MVNETA_SDMA_CONFIG 0x241c
95 #define MVNETA_SDMA_BRST_SIZE_16 4
96 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
97 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
98 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
99 #define MVNETA_DESC_SWAP BIT(6)
100 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
101 #define MVNETA_PORT_STATUS 0x2444
102 #define MVNETA_TX_IN_PRGRS BIT(1)
103 #define MVNETA_TX_FIFO_EMPTY BIT(8)
104 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
105 #define MVNETA_SERDES_CFG 0x24A0
106 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
107 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
108 #define MVNETA_TYPE_PRIO 0x24bc
109 #define MVNETA_FORCE_UNI BIT(21)
110 #define MVNETA_TXQ_CMD_1 0x24e4
111 #define MVNETA_TXQ_CMD 0x2448
112 #define MVNETA_TXQ_DISABLE_SHIFT 8
113 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
114 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
115 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
116 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
117 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
118 #define MVNETA_ACC_MODE 0x2500
119 #define MVNETA_BM_ADDRESS 0x2504
120 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
121 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
122 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
123 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
124 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
125 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
127 /* Exception Interrupt Port/Queue Cause register
129 * Their behavior depend of the mapping done using the PCPX2Q
130 * registers. For a given CPU if the bit associated to a queue is not
131 * set, then for the register a read from this CPU will always return
132 * 0 and a write won't do anything
135 #define MVNETA_INTR_NEW_CAUSE 0x25a0
136 #define MVNETA_INTR_NEW_MASK 0x25a4
138 /* bits 0..7 = TXQ SENT, one bit per queue.
139 * bits 8..15 = RXQ OCCUP, one bit per queue.
140 * bits 16..23 = RXQ FREE, one bit per queue.
141 * bit 29 = OLD_REG_SUM, see old reg ?
142 * bit 30 = TX_ERR_SUM, one bit for 4 ports
143 * bit 31 = MISC_SUM, one bit for 4 ports
145 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
146 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
147 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
148 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
149 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
151 #define MVNETA_INTR_OLD_CAUSE 0x25a8
152 #define MVNETA_INTR_OLD_MASK 0x25ac
154 /* Data Path Port/Queue Cause Register */
155 #define MVNETA_INTR_MISC_CAUSE 0x25b0
156 #define MVNETA_INTR_MISC_MASK 0x25b4
158 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
159 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
160 #define MVNETA_CAUSE_PTP BIT(4)
162 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
163 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
164 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
165 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
166 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
167 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
168 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
169 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
171 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
175 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
176 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
177 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
179 #define MVNETA_INTR_ENABLE 0x25b8
180 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
181 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
183 #define MVNETA_RXQ_CMD 0x2680
184 #define MVNETA_RXQ_DISABLE_SHIFT 8
185 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
186 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
187 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
188 #define MVNETA_GMAC_CTRL_0 0x2c00
189 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
190 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
191 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
192 #define MVNETA_GMAC_CTRL_2 0x2c08
193 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
194 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
195 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
196 #define MVNETA_GMAC2_PORT_RESET BIT(6)
197 #define MVNETA_GMAC_STATUS 0x2c10
198 #define MVNETA_GMAC_LINK_UP BIT(0)
199 #define MVNETA_GMAC_SPEED_1000 BIT(1)
200 #define MVNETA_GMAC_SPEED_100 BIT(2)
201 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
202 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
203 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
204 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
205 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
206 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
207 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
208 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
209 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
210 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
211 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
212 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
213 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
214 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
215 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
216 #define MVNETA_MIB_COUNTERS_BASE 0x3000
217 #define MVNETA_MIB_LATE_COLLISION 0x7c
218 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
219 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
220 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
221 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
222 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
223 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
224 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
225 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
226 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
227 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
228 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
229 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
230 #define MVNETA_PORT_TX_RESET 0x3cf0
231 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
232 #define MVNETA_TX_MTU 0x3e0c
233 #define MVNETA_TX_TOKEN_SIZE 0x3e14
234 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
235 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
236 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
238 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
240 /* Descriptor ring Macros */
241 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
242 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
244 /* Various constants */
247 #define MVNETA_TXDONE_COAL_PKTS 1
248 #define MVNETA_RX_COAL_PKTS 32
249 #define MVNETA_RX_COAL_USEC 100
251 /* The two bytes Marvell header. Either contains a special value used
252 * by Marvell switches when a specific hardware mode is enabled (not
253 * supported by this driver) or is filled automatically by zeroes on
254 * the RX side. Those two bytes being at the front of the Ethernet
255 * header, they allow to have the IP header aligned on a 4 bytes
256 * boundary automatically: the hardware skips those two bytes on its
259 #define MVNETA_MH_SIZE 2
261 #define MVNETA_VLAN_TAG_LEN 4
263 #define MVNETA_TX_CSUM_DEF_SIZE 1600
264 #define MVNETA_TX_CSUM_MAX_SIZE 9800
265 #define MVNETA_ACC_MODE_EXT1 1
266 #define MVNETA_ACC_MODE_EXT2 2
268 #define MVNETA_MAX_DECODE_WIN 6
270 /* Timeout constants */
271 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
272 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
273 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
275 #define MVNETA_TX_MTU_MAX 0x3ffff
277 /* The RSS lookup table actually has 256 entries but we do not use
280 #define MVNETA_RSS_LU_TABLE_SIZE 1
282 /* TSO header size */
283 #define TSO_HEADER_SIZE 128
285 /* Max number of Rx descriptors */
286 #define MVNETA_MAX_RXD 128
288 /* Max number of Tx descriptors */
289 #define MVNETA_MAX_TXD 532
291 /* Max number of allowed TCP segments for software TSO */
292 #define MVNETA_MAX_TSO_SEGS 100
294 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
296 /* descriptor aligned size */
297 #define MVNETA_DESC_ALIGNED_SIZE 32
299 #define MVNETA_RX_PKT_SIZE(mtu) \
300 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
301 ETH_HLEN + ETH_FCS_LEN, \
304 #define IS_TSO_HEADER(txq, addr) \
305 ((addr >= txq->tso_hdrs_phys) && \
306 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
308 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
309 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
311 struct mvneta_statistic
{
312 unsigned short offset
;
314 const char name
[ETH_GSTRING_LEN
];
320 static const struct mvneta_statistic mvneta_statistics
[] = {
321 { 0x3000, T_REG_64
, "good_octets_received", },
322 { 0x3010, T_REG_32
, "good_frames_received", },
323 { 0x3008, T_REG_32
, "bad_octets_received", },
324 { 0x3014, T_REG_32
, "bad_frames_received", },
325 { 0x3018, T_REG_32
, "broadcast_frames_received", },
326 { 0x301c, T_REG_32
, "multicast_frames_received", },
327 { 0x3050, T_REG_32
, "unrec_mac_control_received", },
328 { 0x3058, T_REG_32
, "good_fc_received", },
329 { 0x305c, T_REG_32
, "bad_fc_received", },
330 { 0x3060, T_REG_32
, "undersize_received", },
331 { 0x3064, T_REG_32
, "fragments_received", },
332 { 0x3068, T_REG_32
, "oversize_received", },
333 { 0x306c, T_REG_32
, "jabber_received", },
334 { 0x3070, T_REG_32
, "mac_receive_error", },
335 { 0x3074, T_REG_32
, "bad_crc_event", },
336 { 0x3078, T_REG_32
, "collision", },
337 { 0x307c, T_REG_32
, "late_collision", },
338 { 0x2484, T_REG_32
, "rx_discard", },
339 { 0x2488, T_REG_32
, "rx_overrun", },
340 { 0x3020, T_REG_32
, "frames_64_octets", },
341 { 0x3024, T_REG_32
, "frames_65_to_127_octets", },
342 { 0x3028, T_REG_32
, "frames_128_to_255_octets", },
343 { 0x302c, T_REG_32
, "frames_256_to_511_octets", },
344 { 0x3030, T_REG_32
, "frames_512_to_1023_octets", },
345 { 0x3034, T_REG_32
, "frames_1024_to_max_octets", },
346 { 0x3038, T_REG_64
, "good_octets_sent", },
347 { 0x3040, T_REG_32
, "good_frames_sent", },
348 { 0x3044, T_REG_32
, "excessive_collision", },
349 { 0x3048, T_REG_32
, "multicast_frames_sent", },
350 { 0x304c, T_REG_32
, "broadcast_frames_sent", },
351 { 0x3054, T_REG_32
, "fc_sent", },
352 { 0x300c, T_REG_32
, "internal_mac_transmit_err", },
355 struct mvneta_pcpu_stats
{
356 struct u64_stats_sync syncp
;
363 struct mvneta_pcpu_port
{
364 /* Pointer to the shared port */
365 struct mvneta_port
*pp
;
367 /* Pointer to the CPU-local NAPI struct */
368 struct napi_struct napi
;
370 /* Cause of the previous interrupt */
376 struct mvneta_pcpu_port __percpu
*ports
;
377 struct mvneta_pcpu_stats __percpu
*stats
;
380 unsigned int frag_size
;
382 struct mvneta_rx_queue
*rxqs
;
383 struct mvneta_tx_queue
*txqs
;
384 struct net_device
*dev
;
385 struct notifier_block cpu_notifier
;
387 /* Protect the access to the percpu interrupt registers,
388 * ensuring that the configuration remains coherent.
401 struct mii_bus
*mii_bus
;
402 struct phy_device
*phy_dev
;
403 phy_interface_t phy_interface
;
404 struct device_node
*phy_node
;
408 unsigned int tx_csum_limit
;
409 unsigned int use_inband_status
:1;
411 struct mvneta_bm
*bm_priv
;
412 struct mvneta_bm_pool
*pool_long
;
413 struct mvneta_bm_pool
*pool_short
;
416 u64 ethtool_stats
[ARRAY_SIZE(mvneta_statistics
)];
418 u32 indir
[MVNETA_RSS_LU_TABLE_SIZE
];
421 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
422 * layout of the transmit and reception DMA descriptors, and their
423 * layout is therefore defined by the hardware design
426 #define MVNETA_TX_L3_OFF_SHIFT 0
427 #define MVNETA_TX_IP_HLEN_SHIFT 8
428 #define MVNETA_TX_L4_UDP BIT(16)
429 #define MVNETA_TX_L3_IP6 BIT(17)
430 #define MVNETA_TXD_IP_CSUM BIT(18)
431 #define MVNETA_TXD_Z_PAD BIT(19)
432 #define MVNETA_TXD_L_DESC BIT(20)
433 #define MVNETA_TXD_F_DESC BIT(21)
434 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
435 MVNETA_TXD_L_DESC | \
437 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
438 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
440 #define MVNETA_RXD_ERR_CRC 0x0
441 #define MVNETA_RXD_BM_POOL_SHIFT 13
442 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
443 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
444 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
445 #define MVNETA_RXD_ERR_LEN BIT(18)
446 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
447 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
448 #define MVNETA_RXD_L3_IP4 BIT(25)
449 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
450 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
452 #if defined(__LITTLE_ENDIAN)
453 struct mvneta_tx_desc
{
454 u32 command
; /* Options used by HW for packet transmitting.*/
455 u16 reserverd1
; /* csum_l4 (for future use) */
456 u16 data_size
; /* Data size of transmitted packet in bytes */
457 u32 buf_phys_addr
; /* Physical addr of transmitted buffer */
458 u32 reserved2
; /* hw_cmd - (for future use, PMT) */
459 u32 reserved3
[4]; /* Reserved - (for future use) */
462 struct mvneta_rx_desc
{
463 u32 status
; /* Info about received packet */
464 u16 reserved1
; /* pnc_info - (for future use, PnC) */
465 u16 data_size
; /* Size of received packet in bytes */
467 u32 buf_phys_addr
; /* Physical address of the buffer */
468 u32 reserved2
; /* pnc_flow_id (for future use, PnC) */
470 u32 buf_cookie
; /* cookie for access to RX buffer in rx path */
471 u16 reserved3
; /* prefetch_cmd, for future use */
472 u16 reserved4
; /* csum_l4 - (for future use, PnC) */
474 u32 reserved5
; /* pnc_extra PnC (for future use, PnC) */
475 u32 reserved6
; /* hw_cmd (for future use, PnC and HWF) */
478 struct mvneta_tx_desc
{
479 u16 data_size
; /* Data size of transmitted packet in bytes */
480 u16 reserverd1
; /* csum_l4 (for future use) */
481 u32 command
; /* Options used by HW for packet transmitting.*/
482 u32 reserved2
; /* hw_cmd - (for future use, PMT) */
483 u32 buf_phys_addr
; /* Physical addr of transmitted buffer */
484 u32 reserved3
[4]; /* Reserved - (for future use) */
487 struct mvneta_rx_desc
{
488 u16 data_size
; /* Size of received packet in bytes */
489 u16 reserved1
; /* pnc_info - (for future use, PnC) */
490 u32 status
; /* Info about received packet */
492 u32 reserved2
; /* pnc_flow_id (for future use, PnC) */
493 u32 buf_phys_addr
; /* Physical address of the buffer */
495 u16 reserved4
; /* csum_l4 - (for future use, PnC) */
496 u16 reserved3
; /* prefetch_cmd, for future use */
497 u32 buf_cookie
; /* cookie for access to RX buffer in rx path */
499 u32 reserved5
; /* pnc_extra PnC (for future use, PnC) */
500 u32 reserved6
; /* hw_cmd (for future use, PnC and HWF) */
504 struct mvneta_tx_queue
{
505 /* Number of this TX queue, in the range 0-7 */
508 /* Number of TX DMA descriptors in the descriptor ring */
511 /* Number of currently used TX DMA descriptor in the
515 int tx_stop_threshold
;
516 int tx_wake_threshold
;
518 /* Array of transmitted skb */
519 struct sk_buff
**tx_skb
;
521 /* Index of last TX DMA descriptor that was inserted */
524 /* Index of the TX DMA descriptor to be cleaned up */
529 /* Virtual address of the TX DMA descriptors array */
530 struct mvneta_tx_desc
*descs
;
532 /* DMA address of the TX DMA descriptors array */
533 dma_addr_t descs_phys
;
535 /* Index of the last TX DMA descriptor */
538 /* Index of the next TX DMA descriptor to process */
539 int next_desc_to_proc
;
541 /* DMA buffers for TSO headers */
544 /* DMA address of TSO headers */
545 dma_addr_t tso_hdrs_phys
;
547 /* Affinity mask for CPUs*/
548 cpumask_t affinity_mask
;
551 struct mvneta_rx_queue
{
552 /* rx queue number, in the range 0-7 */
555 /* num of rx descriptors in the rx descriptor ring */
558 /* counter of times when mvneta_refill() failed */
564 /* Virtual address of the RX DMA descriptors array */
565 struct mvneta_rx_desc
*descs
;
567 /* DMA address of the RX DMA descriptors array */
568 dma_addr_t descs_phys
;
570 /* Index of the last RX DMA descriptor */
573 /* Index of the next RX DMA descriptor to process */
574 int next_desc_to_proc
;
577 /* The hardware supports eight (8) rx queues, but we are only allowing
578 * the first one to be used. Therefore, let's just allocate one queue.
580 static int rxq_number
= 8;
581 static int txq_number
= 8;
585 static int rx_copybreak __read_mostly
= 256;
587 /* HW BM need that each port be identify by a unique ID */
588 static int global_port_id
;
590 #define MVNETA_DRIVER_NAME "mvneta"
591 #define MVNETA_DRIVER_VERSION "1.0"
593 /* Utility/helper methods */
595 /* Write helper method */
596 static void mvreg_write(struct mvneta_port
*pp
, u32 offset
, u32 data
)
598 writel(data
, pp
->base
+ offset
);
601 /* Read helper method */
602 static u32
mvreg_read(struct mvneta_port
*pp
, u32 offset
)
604 return readl(pp
->base
+ offset
);
607 /* Increment txq get counter */
608 static void mvneta_txq_inc_get(struct mvneta_tx_queue
*txq
)
610 txq
->txq_get_index
++;
611 if (txq
->txq_get_index
== txq
->size
)
612 txq
->txq_get_index
= 0;
615 /* Increment txq put counter */
616 static void mvneta_txq_inc_put(struct mvneta_tx_queue
*txq
)
618 txq
->txq_put_index
++;
619 if (txq
->txq_put_index
== txq
->size
)
620 txq
->txq_put_index
= 0;
624 /* Clear all MIB counters */
625 static void mvneta_mib_counters_clear(struct mvneta_port
*pp
)
630 /* Perform dummy reads from MIB counters */
631 for (i
= 0; i
< MVNETA_MIB_LATE_COLLISION
; i
+= 4)
632 dummy
= mvreg_read(pp
, (MVNETA_MIB_COUNTERS_BASE
+ i
));
633 dummy
= mvreg_read(pp
, MVNETA_RX_DISCARD_FRAME_COUNT
);
634 dummy
= mvreg_read(pp
, MVNETA_OVERRUN_FRAME_COUNT
);
637 /* Get System Network Statistics */
638 struct rtnl_link_stats64
*mvneta_get_stats64(struct net_device
*dev
,
639 struct rtnl_link_stats64
*stats
)
641 struct mvneta_port
*pp
= netdev_priv(dev
);
645 for_each_possible_cpu(cpu
) {
646 struct mvneta_pcpu_stats
*cpu_stats
;
652 cpu_stats
= per_cpu_ptr(pp
->stats
, cpu
);
654 start
= u64_stats_fetch_begin_irq(&cpu_stats
->syncp
);
655 rx_packets
= cpu_stats
->rx_packets
;
656 rx_bytes
= cpu_stats
->rx_bytes
;
657 tx_packets
= cpu_stats
->tx_packets
;
658 tx_bytes
= cpu_stats
->tx_bytes
;
659 } while (u64_stats_fetch_retry_irq(&cpu_stats
->syncp
, start
));
661 stats
->rx_packets
+= rx_packets
;
662 stats
->rx_bytes
+= rx_bytes
;
663 stats
->tx_packets
+= tx_packets
;
664 stats
->tx_bytes
+= tx_bytes
;
667 stats
->rx_errors
= dev
->stats
.rx_errors
;
668 stats
->rx_dropped
= dev
->stats
.rx_dropped
;
670 stats
->tx_dropped
= dev
->stats
.tx_dropped
;
675 /* Rx descriptors helper methods */
677 /* Checks whether the RX descriptor having this status is both the first
678 * and the last descriptor for the RX packet. Each RX packet is currently
679 * received through a single RX descriptor, so not having each RX
680 * descriptor with its first and last bits set is an error
682 static int mvneta_rxq_desc_is_first_last(u32 status
)
684 return (status
& MVNETA_RXD_FIRST_LAST_DESC
) ==
685 MVNETA_RXD_FIRST_LAST_DESC
;
688 /* Add number of descriptors ready to receive new packets */
689 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port
*pp
,
690 struct mvneta_rx_queue
*rxq
,
693 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
696 while (ndescs
> MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
) {
697 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
),
698 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
<<
699 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
));
700 ndescs
-= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
;
703 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
),
704 (ndescs
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
));
707 /* Get number of RX descriptors occupied by received packets */
708 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port
*pp
,
709 struct mvneta_rx_queue
*rxq
)
713 val
= mvreg_read(pp
, MVNETA_RXQ_STATUS_REG(rxq
->id
));
714 return val
& MVNETA_RXQ_OCCUPIED_ALL_MASK
;
717 /* Update num of rx desc called upon return from rx path or
718 * from mvneta_rxq_drop_pkts().
720 static void mvneta_rxq_desc_num_update(struct mvneta_port
*pp
,
721 struct mvneta_rx_queue
*rxq
,
722 int rx_done
, int rx_filled
)
726 if ((rx_done
<= 0xff) && (rx_filled
<= 0xff)) {
728 (rx_filled
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
);
729 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
), val
);
733 /* Only 255 descriptors can be added at once */
734 while ((rx_done
> 0) || (rx_filled
> 0)) {
735 if (rx_done
<= 0xff) {
742 if (rx_filled
<= 0xff) {
743 val
|= rx_filled
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
;
746 val
|= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
;
749 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
), val
);
753 /* Get pointer to next RX descriptor to be processed by SW */
754 static struct mvneta_rx_desc
*
755 mvneta_rxq_next_desc_get(struct mvneta_rx_queue
*rxq
)
757 int rx_desc
= rxq
->next_desc_to_proc
;
759 rxq
->next_desc_to_proc
= MVNETA_QUEUE_NEXT_DESC(rxq
, rx_desc
);
760 prefetch(rxq
->descs
+ rxq
->next_desc_to_proc
);
761 return rxq
->descs
+ rx_desc
;
764 /* Change maximum receive size of the port. */
765 static void mvneta_max_rx_size_set(struct mvneta_port
*pp
, int max_rx_size
)
769 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
770 val
&= ~MVNETA_GMAC_MAX_RX_SIZE_MASK
;
771 val
|= ((max_rx_size
- MVNETA_MH_SIZE
) / 2) <<
772 MVNETA_GMAC_MAX_RX_SIZE_SHIFT
;
773 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
777 /* Set rx queue offset */
778 static void mvneta_rxq_offset_set(struct mvneta_port
*pp
,
779 struct mvneta_rx_queue
*rxq
,
784 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
785 val
&= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK
;
788 val
|= MVNETA_RXQ_PKT_OFFSET_MASK(offset
>> 3);
789 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
793 /* Tx descriptors helper methods */
795 /* Update HW with number of TX descriptors to be sent */
796 static void mvneta_txq_pend_desc_add(struct mvneta_port
*pp
,
797 struct mvneta_tx_queue
*txq
,
802 /* Only 255 descriptors can be added at once ; Assume caller
803 * process TX desriptors in quanta less than 256
806 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
809 /* Get pointer to next TX descriptor to be processed (send) by HW */
810 static struct mvneta_tx_desc
*
811 mvneta_txq_next_desc_get(struct mvneta_tx_queue
*txq
)
813 int tx_desc
= txq
->next_desc_to_proc
;
815 txq
->next_desc_to_proc
= MVNETA_QUEUE_NEXT_DESC(txq
, tx_desc
);
816 return txq
->descs
+ tx_desc
;
819 /* Release the last allocated TX descriptor. Useful to handle DMA
820 * mapping failures in the TX path.
822 static void mvneta_txq_desc_put(struct mvneta_tx_queue
*txq
)
824 if (txq
->next_desc_to_proc
== 0)
825 txq
->next_desc_to_proc
= txq
->last_desc
- 1;
827 txq
->next_desc_to_proc
--;
830 /* Set rxq buf size */
831 static void mvneta_rxq_buf_size_set(struct mvneta_port
*pp
,
832 struct mvneta_rx_queue
*rxq
,
837 val
= mvreg_read(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
));
839 val
&= ~MVNETA_RXQ_BUF_SIZE_MASK
;
840 val
|= ((buf_size
>> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT
);
842 mvreg_write(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
), val
);
845 /* Disable buffer management (BM) */
846 static void mvneta_rxq_bm_disable(struct mvneta_port
*pp
,
847 struct mvneta_rx_queue
*rxq
)
851 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
852 val
&= ~MVNETA_RXQ_HW_BUF_ALLOC
;
853 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
856 /* Enable buffer management (BM) */
857 static void mvneta_rxq_bm_enable(struct mvneta_port
*pp
,
858 struct mvneta_rx_queue
*rxq
)
862 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
863 val
|= MVNETA_RXQ_HW_BUF_ALLOC
;
864 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
867 /* Notify HW about port's assignment of pool for bigger packets */
868 static void mvneta_rxq_long_pool_set(struct mvneta_port
*pp
,
869 struct mvneta_rx_queue
*rxq
)
873 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
874 val
&= ~MVNETA_RXQ_LONG_POOL_ID_MASK
;
875 val
|= (pp
->pool_long
->id
<< MVNETA_RXQ_LONG_POOL_ID_SHIFT
);
877 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
880 /* Notify HW about port's assignment of pool for smaller packets */
881 static void mvneta_rxq_short_pool_set(struct mvneta_port
*pp
,
882 struct mvneta_rx_queue
*rxq
)
886 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
887 val
&= ~MVNETA_RXQ_SHORT_POOL_ID_MASK
;
888 val
|= (pp
->pool_short
->id
<< MVNETA_RXQ_SHORT_POOL_ID_SHIFT
);
890 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
893 /* Set port's receive buffer size for assigned BM pool */
894 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port
*pp
,
900 if (!IS_ALIGNED(buf_size
, 8)) {
901 dev_warn(pp
->dev
->dev
.parent
,
902 "illegal buf_size value %d, round to %d\n",
903 buf_size
, ALIGN(buf_size
, 8));
904 buf_size
= ALIGN(buf_size
, 8);
907 val
= mvreg_read(pp
, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id
));
908 val
|= buf_size
& MVNETA_PORT_POOL_BUFFER_SZ_MASK
;
909 mvreg_write(pp
, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id
), val
);
912 /* Configure MBUS window in order to enable access BM internal SRAM */
913 static int mvneta_mbus_io_win_set(struct mvneta_port
*pp
, u32 base
, u32 wsize
,
916 u32 win_enable
, win_protect
;
919 win_enable
= mvreg_read(pp
, MVNETA_BASE_ADDR_ENABLE
);
921 if (pp
->bm_win_id
< 0) {
922 /* Find first not occupied window */
923 for (i
= 0; i
< MVNETA_MAX_DECODE_WIN
; i
++) {
924 if (win_enable
& (1 << i
)) {
929 if (i
== MVNETA_MAX_DECODE_WIN
)
935 mvreg_write(pp
, MVNETA_WIN_BASE(i
), 0);
936 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), 0);
939 mvreg_write(pp
, MVNETA_WIN_REMAP(i
), 0);
941 mvreg_write(pp
, MVNETA_WIN_BASE(i
), (base
& 0xffff0000) |
942 (attr
<< 8) | target
);
944 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), (wsize
- 1) & 0xffff0000);
946 win_protect
= mvreg_read(pp
, MVNETA_ACCESS_PROTECT_ENABLE
);
947 win_protect
|= 3 << (2 * i
);
948 mvreg_write(pp
, MVNETA_ACCESS_PROTECT_ENABLE
, win_protect
);
950 win_enable
&= ~(1 << i
);
951 mvreg_write(pp
, MVNETA_BASE_ADDR_ENABLE
, win_enable
);
956 /* Assign and initialize pools for port. In case of fail
957 * buffer manager will remain disabled for current port.
959 static int mvneta_bm_port_init(struct platform_device
*pdev
,
960 struct mvneta_port
*pp
)
962 struct device_node
*dn
= pdev
->dev
.of_node
;
963 u32 long_pool_id
, short_pool_id
, wsize
;
967 /* Get BM window information */
968 err
= mvebu_mbus_get_io_win_info(pp
->bm_priv
->bppi_phys_addr
, &wsize
,
975 /* Open NETA -> BM window */
976 err
= mvneta_mbus_io_win_set(pp
, pp
->bm_priv
->bppi_phys_addr
, wsize
,
979 netdev_info(pp
->dev
, "fail to configure mbus window to BM\n");
983 if (of_property_read_u32(dn
, "bm,pool-long", &long_pool_id
)) {
984 netdev_info(pp
->dev
, "missing long pool id\n");
988 /* Create port's long pool depending on mtu */
989 pp
->pool_long
= mvneta_bm_pool_use(pp
->bm_priv
, long_pool_id
,
990 MVNETA_BM_LONG
, pp
->id
,
991 MVNETA_RX_PKT_SIZE(pp
->dev
->mtu
));
992 if (!pp
->pool_long
) {
993 netdev_info(pp
->dev
, "fail to obtain long pool for port\n");
997 pp
->pool_long
->port_map
|= 1 << pp
->id
;
999 mvneta_bm_pool_bufsize_set(pp
, pp
->pool_long
->buf_size
,
1002 /* If short pool id is not defined, assume using single pool */
1003 if (of_property_read_u32(dn
, "bm,pool-short", &short_pool_id
))
1004 short_pool_id
= long_pool_id
;
1006 /* Create port's short pool */
1007 pp
->pool_short
= mvneta_bm_pool_use(pp
->bm_priv
, short_pool_id
,
1008 MVNETA_BM_SHORT
, pp
->id
,
1009 MVNETA_BM_SHORT_PKT_SIZE
);
1010 if (!pp
->pool_short
) {
1011 netdev_info(pp
->dev
, "fail to obtain short pool for port\n");
1012 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
1016 if (short_pool_id
!= long_pool_id
) {
1017 pp
->pool_short
->port_map
|= 1 << pp
->id
;
1018 mvneta_bm_pool_bufsize_set(pp
, pp
->pool_short
->buf_size
,
1019 pp
->pool_short
->id
);
1025 /* Update settings of a pool for bigger packets */
1026 static void mvneta_bm_update_mtu(struct mvneta_port
*pp
, int mtu
)
1028 struct mvneta_bm_pool
*bm_pool
= pp
->pool_long
;
1029 struct hwbm_pool
*hwbm_pool
= &bm_pool
->hwbm_pool
;
1032 /* Release all buffers from long pool */
1033 mvneta_bm_bufs_free(pp
->bm_priv
, bm_pool
, 1 << pp
->id
);
1034 if (hwbm_pool
->buf_num
) {
1035 WARN(1, "cannot free all buffers in pool %d\n",
1040 bm_pool
->pkt_size
= MVNETA_RX_PKT_SIZE(mtu
);
1041 bm_pool
->buf_size
= MVNETA_RX_BUF_SIZE(bm_pool
->pkt_size
);
1042 hwbm_pool
->frag_size
= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)) +
1043 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool
->pkt_size
));
1045 /* Fill entire long pool */
1046 num
= hwbm_pool_add(hwbm_pool
, hwbm_pool
->size
, GFP_ATOMIC
);
1047 if (num
!= hwbm_pool
->size
) {
1048 WARN(1, "pool %d: %d of %d allocated\n",
1049 bm_pool
->id
, num
, hwbm_pool
->size
);
1052 mvneta_bm_pool_bufsize_set(pp
, bm_pool
->buf_size
, bm_pool
->id
);
1057 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
1058 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_short
, 1 << pp
->id
);
1061 mvreg_write(pp
, MVNETA_ACC_MODE
, MVNETA_ACC_MODE_EXT1
);
1062 netdev_info(pp
->dev
, "fail to update MTU, fall back to software BM\n");
1065 /* Start the Ethernet port RX and TX activity */
1066 static void mvneta_port_up(struct mvneta_port
*pp
)
1071 /* Enable all initialized TXs. */
1073 for (queue
= 0; queue
< txq_number
; queue
++) {
1074 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
1075 if (txq
->descs
!= NULL
)
1076 q_map
|= (1 << queue
);
1078 mvreg_write(pp
, MVNETA_TXQ_CMD
, q_map
);
1080 /* Enable all initialized RXQs. */
1081 for (queue
= 0; queue
< rxq_number
; queue
++) {
1082 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
1084 if (rxq
->descs
!= NULL
)
1085 q_map
|= (1 << queue
);
1087 mvreg_write(pp
, MVNETA_RXQ_CMD
, q_map
);
1090 /* Stop the Ethernet port activity */
1091 static void mvneta_port_down(struct mvneta_port
*pp
)
1096 /* Stop Rx port activity. Check port Rx activity. */
1097 val
= mvreg_read(pp
, MVNETA_RXQ_CMD
) & MVNETA_RXQ_ENABLE_MASK
;
1099 /* Issue stop command for active channels only */
1101 mvreg_write(pp
, MVNETA_RXQ_CMD
,
1102 val
<< MVNETA_RXQ_DISABLE_SHIFT
);
1104 /* Wait for all Rx activity to terminate. */
1107 if (count
++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC
) {
1108 netdev_warn(pp
->dev
,
1109 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1115 val
= mvreg_read(pp
, MVNETA_RXQ_CMD
);
1116 } while (val
& MVNETA_RXQ_ENABLE_MASK
);
1118 /* Stop Tx port activity. Check port Tx activity. Issue stop
1119 * command for active channels only
1121 val
= (mvreg_read(pp
, MVNETA_TXQ_CMD
)) & MVNETA_TXQ_ENABLE_MASK
;
1124 mvreg_write(pp
, MVNETA_TXQ_CMD
,
1125 (val
<< MVNETA_TXQ_DISABLE_SHIFT
));
1127 /* Wait for all Tx activity to terminate. */
1130 if (count
++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC
) {
1131 netdev_warn(pp
->dev
,
1132 "TIMEOUT for TX stopped status=0x%08x\n",
1138 /* Check TX Command reg that all Txqs are stopped */
1139 val
= mvreg_read(pp
, MVNETA_TXQ_CMD
);
1141 } while (val
& MVNETA_TXQ_ENABLE_MASK
);
1143 /* Double check to verify that TX FIFO is empty */
1146 if (count
++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT
) {
1147 netdev_warn(pp
->dev
,
1148 "TX FIFO empty timeout status=0x%08x\n",
1154 val
= mvreg_read(pp
, MVNETA_PORT_STATUS
);
1155 } while (!(val
& MVNETA_TX_FIFO_EMPTY
) &&
1156 (val
& MVNETA_TX_IN_PRGRS
));
1161 /* Enable the port by setting the port enable bit of the MAC control register */
1162 static void mvneta_port_enable(struct mvneta_port
*pp
)
1167 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
1168 val
|= MVNETA_GMAC0_PORT_ENABLE
;
1169 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
1172 /* Disable the port and wait for about 200 usec before retuning */
1173 static void mvneta_port_disable(struct mvneta_port
*pp
)
1177 /* Reset the Enable bit in the Serial Control Register */
1178 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
1179 val
&= ~MVNETA_GMAC0_PORT_ENABLE
;
1180 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
1185 /* Multicast tables methods */
1187 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1188 static void mvneta_set_ucast_table(struct mvneta_port
*pp
, int queue
)
1196 val
= 0x1 | (queue
<< 1);
1197 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
1200 for (offset
= 0; offset
<= 0xc; offset
+= 4)
1201 mvreg_write(pp
, MVNETA_DA_FILT_UCAST_BASE
+ offset
, val
);
1204 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1205 static void mvneta_set_special_mcast_table(struct mvneta_port
*pp
, int queue
)
1213 val
= 0x1 | (queue
<< 1);
1214 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
1217 for (offset
= 0; offset
<= 0xfc; offset
+= 4)
1218 mvreg_write(pp
, MVNETA_DA_FILT_SPEC_MCAST
+ offset
, val
);
1222 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1223 static void mvneta_set_other_mcast_table(struct mvneta_port
*pp
, int queue
)
1229 memset(pp
->mcast_count
, 0, sizeof(pp
->mcast_count
));
1232 memset(pp
->mcast_count
, 1, sizeof(pp
->mcast_count
));
1233 val
= 0x1 | (queue
<< 1);
1234 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
1237 for (offset
= 0; offset
<= 0xfc; offset
+= 4)
1238 mvreg_write(pp
, MVNETA_DA_FILT_OTH_MCAST
+ offset
, val
);
1241 static void mvneta_set_autoneg(struct mvneta_port
*pp
, int enable
)
1246 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
1247 val
&= ~(MVNETA_GMAC_FORCE_LINK_PASS
|
1248 MVNETA_GMAC_FORCE_LINK_DOWN
|
1249 MVNETA_GMAC_AN_FLOW_CTRL_EN
);
1250 val
|= MVNETA_GMAC_INBAND_AN_ENABLE
|
1251 MVNETA_GMAC_AN_SPEED_EN
|
1252 MVNETA_GMAC_AN_DUPLEX_EN
;
1253 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
1255 val
= mvreg_read(pp
, MVNETA_GMAC_CLOCK_DIVIDER
);
1256 val
|= MVNETA_GMAC_1MS_CLOCK_ENABLE
;
1257 mvreg_write(pp
, MVNETA_GMAC_CLOCK_DIVIDER
, val
);
1259 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_2
);
1260 val
|= MVNETA_GMAC2_INBAND_AN_ENABLE
;
1261 mvreg_write(pp
, MVNETA_GMAC_CTRL_2
, val
);
1263 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
1264 val
&= ~(MVNETA_GMAC_INBAND_AN_ENABLE
|
1265 MVNETA_GMAC_AN_SPEED_EN
|
1266 MVNETA_GMAC_AN_DUPLEX_EN
);
1267 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
1269 val
= mvreg_read(pp
, MVNETA_GMAC_CLOCK_DIVIDER
);
1270 val
&= ~MVNETA_GMAC_1MS_CLOCK_ENABLE
;
1271 mvreg_write(pp
, MVNETA_GMAC_CLOCK_DIVIDER
, val
);
1273 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_2
);
1274 val
&= ~MVNETA_GMAC2_INBAND_AN_ENABLE
;
1275 mvreg_write(pp
, MVNETA_GMAC_CTRL_2
, val
);
1279 static void mvneta_percpu_unmask_interrupt(void *arg
)
1281 struct mvneta_port
*pp
= arg
;
1283 /* All the queue are unmasked, but actually only the ones
1284 * mapped to this CPU will be unmasked
1286 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
,
1287 MVNETA_RX_INTR_MASK_ALL
|
1288 MVNETA_TX_INTR_MASK_ALL
|
1289 MVNETA_MISCINTR_INTR_MASK
);
1292 static void mvneta_percpu_mask_interrupt(void *arg
)
1294 struct mvneta_port
*pp
= arg
;
1296 /* All the queue are masked, but actually only the ones
1297 * mapped to this CPU will be masked
1299 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
, 0);
1300 mvreg_write(pp
, MVNETA_INTR_OLD_MASK
, 0);
1301 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
, 0);
1304 static void mvneta_percpu_clear_intr_cause(void *arg
)
1306 struct mvneta_port
*pp
= arg
;
1308 /* All the queue are cleared, but actually only the ones
1309 * mapped to this CPU will be cleared
1311 mvreg_write(pp
, MVNETA_INTR_NEW_CAUSE
, 0);
1312 mvreg_write(pp
, MVNETA_INTR_MISC_CAUSE
, 0);
1313 mvreg_write(pp
, MVNETA_INTR_OLD_CAUSE
, 0);
1316 /* This method sets defaults to the NETA port:
1317 * Clears interrupt Cause and Mask registers.
1318 * Clears all MAC tables.
1319 * Sets defaults to all registers.
1320 * Resets RX and TX descriptor rings.
1322 * This method can be called after mvneta_port_down() to return the port
1323 * settings to defaults.
1325 static void mvneta_defaults_set(struct mvneta_port
*pp
)
1330 int max_cpu
= num_present_cpus();
1332 /* Clear all Cause registers */
1333 on_each_cpu(mvneta_percpu_clear_intr_cause
, pp
, true);
1335 /* Mask all interrupts */
1336 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
1337 mvreg_write(pp
, MVNETA_INTR_ENABLE
, 0);
1339 /* Enable MBUS Retry bit16 */
1340 mvreg_write(pp
, MVNETA_MBUS_RETRY
, 0x20);
1342 /* Set CPU queue access map. CPUs are assigned to the RX and
1343 * TX queues modulo their number. If there is only one TX
1344 * queue then it is assigned to the CPU associated to the
1347 for_each_present_cpu(cpu
) {
1348 int rxq_map
= 0, txq_map
= 0;
1351 for (rxq
= 0; rxq
< rxq_number
; rxq
++)
1352 if ((rxq
% max_cpu
) == cpu
)
1353 rxq_map
|= MVNETA_CPU_RXQ_ACCESS(rxq
);
1355 for (txq
= 0; txq
< txq_number
; txq
++)
1356 if ((txq
% max_cpu
) == cpu
)
1357 txq_map
|= MVNETA_CPU_TXQ_ACCESS(txq
);
1359 /* With only one TX queue we configure a special case
1360 * which will allow to get all the irq on a single
1363 if (txq_number
== 1)
1364 txq_map
= (cpu
== pp
->rxq_def
) ?
1365 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1367 mvreg_write(pp
, MVNETA_CPU_MAP(cpu
), rxq_map
| txq_map
);
1370 /* Reset RX and TX DMAs */
1371 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, MVNETA_PORT_RX_DMA_RESET
);
1372 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, MVNETA_PORT_TX_DMA_RESET
);
1374 /* Disable Legacy WRR, Disable EJP, Release from reset */
1375 mvreg_write(pp
, MVNETA_TXQ_CMD_1
, 0);
1376 for (queue
= 0; queue
< txq_number
; queue
++) {
1377 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(queue
), 0);
1378 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(queue
), 0);
1381 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, 0);
1382 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, 0);
1384 /* Set Port Acceleration Mode */
1386 /* HW buffer management + legacy parser */
1387 val
= MVNETA_ACC_MODE_EXT2
;
1389 /* SW buffer management + legacy parser */
1390 val
= MVNETA_ACC_MODE_EXT1
;
1391 mvreg_write(pp
, MVNETA_ACC_MODE
, val
);
1394 mvreg_write(pp
, MVNETA_BM_ADDRESS
, pp
->bm_priv
->bppi_phys_addr
);
1396 /* Update val of portCfg register accordingly with all RxQueue types */
1397 val
= MVNETA_PORT_CONFIG_DEFL_VALUE(pp
->rxq_def
);
1398 mvreg_write(pp
, MVNETA_PORT_CONFIG
, val
);
1401 mvreg_write(pp
, MVNETA_PORT_CONFIG_EXTEND
, val
);
1402 mvreg_write(pp
, MVNETA_RX_MIN_FRAME_SIZE
, 64);
1404 /* Build PORT_SDMA_CONFIG_REG */
1407 /* Default burst size */
1408 val
|= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16
);
1409 val
|= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16
);
1410 val
|= MVNETA_RX_NO_DATA_SWAP
| MVNETA_TX_NO_DATA_SWAP
;
1412 #if defined(__BIG_ENDIAN)
1413 val
|= MVNETA_DESC_SWAP
;
1416 /* Assign port SDMA configuration */
1417 mvreg_write(pp
, MVNETA_SDMA_CONFIG
, val
);
1419 /* Disable PHY polling in hardware, since we're using the
1420 * kernel phylib to do this.
1422 val
= mvreg_read(pp
, MVNETA_UNIT_CONTROL
);
1423 val
&= ~MVNETA_PHY_POLLING_ENABLE
;
1424 mvreg_write(pp
, MVNETA_UNIT_CONTROL
, val
);
1426 mvneta_set_autoneg(pp
, pp
->use_inband_status
);
1427 mvneta_set_ucast_table(pp
, -1);
1428 mvneta_set_special_mcast_table(pp
, -1);
1429 mvneta_set_other_mcast_table(pp
, -1);
1431 /* Set port interrupt enable register - default enable all */
1432 mvreg_write(pp
, MVNETA_INTR_ENABLE
,
1433 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1434 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK
));
1436 mvneta_mib_counters_clear(pp
);
1439 /* Set max sizes for tx queues */
1440 static void mvneta_txq_max_tx_size_set(struct mvneta_port
*pp
, int max_tx_size
)
1446 mtu
= max_tx_size
* 8;
1447 if (mtu
> MVNETA_TX_MTU_MAX
)
1448 mtu
= MVNETA_TX_MTU_MAX
;
1451 val
= mvreg_read(pp
, MVNETA_TX_MTU
);
1452 val
&= ~MVNETA_TX_MTU_MAX
;
1454 mvreg_write(pp
, MVNETA_TX_MTU
, val
);
1456 /* TX token size and all TXQs token size must be larger that MTU */
1457 val
= mvreg_read(pp
, MVNETA_TX_TOKEN_SIZE
);
1459 size
= val
& MVNETA_TX_TOKEN_SIZE_MAX
;
1462 val
&= ~MVNETA_TX_TOKEN_SIZE_MAX
;
1464 mvreg_write(pp
, MVNETA_TX_TOKEN_SIZE
, val
);
1466 for (queue
= 0; queue
< txq_number
; queue
++) {
1467 val
= mvreg_read(pp
, MVNETA_TXQ_TOKEN_SIZE_REG(queue
));
1469 size
= val
& MVNETA_TXQ_TOKEN_SIZE_MAX
;
1472 val
&= ~MVNETA_TXQ_TOKEN_SIZE_MAX
;
1474 mvreg_write(pp
, MVNETA_TXQ_TOKEN_SIZE_REG(queue
), val
);
1479 /* Set unicast address */
1480 static void mvneta_set_ucast_addr(struct mvneta_port
*pp
, u8 last_nibble
,
1483 unsigned int unicast_reg
;
1484 unsigned int tbl_offset
;
1485 unsigned int reg_offset
;
1487 /* Locate the Unicast table entry */
1488 last_nibble
= (0xf & last_nibble
);
1490 /* offset from unicast tbl base */
1491 tbl_offset
= (last_nibble
/ 4) * 4;
1493 /* offset within the above reg */
1494 reg_offset
= last_nibble
% 4;
1496 unicast_reg
= mvreg_read(pp
, (MVNETA_DA_FILT_UCAST_BASE
+ tbl_offset
));
1499 /* Clear accepts frame bit at specified unicast DA tbl entry */
1500 unicast_reg
&= ~(0xff << (8 * reg_offset
));
1502 unicast_reg
&= ~(0xff << (8 * reg_offset
));
1503 unicast_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
1506 mvreg_write(pp
, (MVNETA_DA_FILT_UCAST_BASE
+ tbl_offset
), unicast_reg
);
1509 /* Set mac address */
1510 static void mvneta_mac_addr_set(struct mvneta_port
*pp
, unsigned char *addr
,
1517 mac_l
= (addr
[4] << 8) | (addr
[5]);
1518 mac_h
= (addr
[0] << 24) | (addr
[1] << 16) |
1519 (addr
[2] << 8) | (addr
[3] << 0);
1521 mvreg_write(pp
, MVNETA_MAC_ADDR_LOW
, mac_l
);
1522 mvreg_write(pp
, MVNETA_MAC_ADDR_HIGH
, mac_h
);
1525 /* Accept frames of this address */
1526 mvneta_set_ucast_addr(pp
, addr
[5], queue
);
1529 /* Set the number of packets that will be received before RX interrupt
1530 * will be generated by HW.
1532 static void mvneta_rx_pkts_coal_set(struct mvneta_port
*pp
,
1533 struct mvneta_rx_queue
*rxq
, u32 value
)
1535 mvreg_write(pp
, MVNETA_RXQ_THRESHOLD_REG(rxq
->id
),
1536 value
| MVNETA_RXQ_NON_OCCUPIED(0));
1537 rxq
->pkts_coal
= value
;
1540 /* Set the time delay in usec before RX interrupt will be generated by
1543 static void mvneta_rx_time_coal_set(struct mvneta_port
*pp
,
1544 struct mvneta_rx_queue
*rxq
, u32 value
)
1547 unsigned long clk_rate
;
1549 clk_rate
= clk_get_rate(pp
->clk
);
1550 val
= (clk_rate
/ 1000000) * value
;
1552 mvreg_write(pp
, MVNETA_RXQ_TIME_COAL_REG(rxq
->id
), val
);
1553 rxq
->time_coal
= value
;
1556 /* Set threshold for TX_DONE pkts coalescing */
1557 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port
*pp
,
1558 struct mvneta_tx_queue
*txq
, u32 value
)
1562 val
= mvreg_read(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
));
1564 val
&= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK
;
1565 val
|= MVNETA_TXQ_SENT_THRESH_MASK(value
);
1567 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), val
);
1569 txq
->done_pkts_coal
= value
;
1572 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1573 static void mvneta_rx_desc_fill(struct mvneta_rx_desc
*rx_desc
,
1574 u32 phys_addr
, u32 cookie
)
1576 rx_desc
->buf_cookie
= cookie
;
1577 rx_desc
->buf_phys_addr
= phys_addr
;
1580 /* Decrement sent descriptors counter */
1581 static void mvneta_txq_sent_desc_dec(struct mvneta_port
*pp
,
1582 struct mvneta_tx_queue
*txq
,
1587 /* Only 255 TX descriptors can be updated at once */
1588 while (sent_desc
> 0xff) {
1589 val
= 0xff << MVNETA_TXQ_DEC_SENT_SHIFT
;
1590 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
1591 sent_desc
= sent_desc
- 0xff;
1594 val
= sent_desc
<< MVNETA_TXQ_DEC_SENT_SHIFT
;
1595 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
1598 /* Get number of TX descriptors already sent by HW */
1599 static int mvneta_txq_sent_desc_num_get(struct mvneta_port
*pp
,
1600 struct mvneta_tx_queue
*txq
)
1605 val
= mvreg_read(pp
, MVNETA_TXQ_STATUS_REG(txq
->id
));
1606 sent_desc
= (val
& MVNETA_TXQ_SENT_DESC_MASK
) >>
1607 MVNETA_TXQ_SENT_DESC_SHIFT
;
1612 /* Get number of sent descriptors and decrement counter.
1613 * The number of sent descriptors is returned.
1615 static int mvneta_txq_sent_desc_proc(struct mvneta_port
*pp
,
1616 struct mvneta_tx_queue
*txq
)
1620 /* Get number of sent descriptors */
1621 sent_desc
= mvneta_txq_sent_desc_num_get(pp
, txq
);
1623 /* Decrement sent descriptors counter */
1625 mvneta_txq_sent_desc_dec(pp
, txq
, sent_desc
);
1630 /* Set TXQ descriptors fields relevant for CSUM calculation */
1631 static u32
mvneta_txq_desc_csum(int l3_offs
, int l3_proto
,
1632 int ip_hdr_len
, int l4_proto
)
1636 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1637 * G_L4_chk, L4_type; required only for checksum
1640 command
= l3_offs
<< MVNETA_TX_L3_OFF_SHIFT
;
1641 command
|= ip_hdr_len
<< MVNETA_TX_IP_HLEN_SHIFT
;
1643 if (l3_proto
== htons(ETH_P_IP
))
1644 command
|= MVNETA_TXD_IP_CSUM
;
1646 command
|= MVNETA_TX_L3_IP6
;
1648 if (l4_proto
== IPPROTO_TCP
)
1649 command
|= MVNETA_TX_L4_CSUM_FULL
;
1650 else if (l4_proto
== IPPROTO_UDP
)
1651 command
|= MVNETA_TX_L4_UDP
| MVNETA_TX_L4_CSUM_FULL
;
1653 command
|= MVNETA_TX_L4_CSUM_NOT
;
1659 /* Display more error info */
1660 static void mvneta_rx_error(struct mvneta_port
*pp
,
1661 struct mvneta_rx_desc
*rx_desc
)
1663 u32 status
= rx_desc
->status
;
1665 if (!mvneta_rxq_desc_is_first_last(status
)) {
1667 "bad rx status %08x (buffer oversize), size=%d\n",
1668 status
, rx_desc
->data_size
);
1672 switch (status
& MVNETA_RXD_ERR_CODE_MASK
) {
1673 case MVNETA_RXD_ERR_CRC
:
1674 netdev_err(pp
->dev
, "bad rx status %08x (crc error), size=%d\n",
1675 status
, rx_desc
->data_size
);
1677 case MVNETA_RXD_ERR_OVERRUN
:
1678 netdev_err(pp
->dev
, "bad rx status %08x (overrun error), size=%d\n",
1679 status
, rx_desc
->data_size
);
1681 case MVNETA_RXD_ERR_LEN
:
1682 netdev_err(pp
->dev
, "bad rx status %08x (max frame length error), size=%d\n",
1683 status
, rx_desc
->data_size
);
1685 case MVNETA_RXD_ERR_RESOURCE
:
1686 netdev_err(pp
->dev
, "bad rx status %08x (resource error), size=%d\n",
1687 status
, rx_desc
->data_size
);
1692 /* Handle RX checksum offload based on the descriptor's status */
1693 static void mvneta_rx_csum(struct mvneta_port
*pp
, u32 status
,
1694 struct sk_buff
*skb
)
1696 if ((status
& MVNETA_RXD_L3_IP4
) &&
1697 (status
& MVNETA_RXD_L4_CSUM_OK
)) {
1699 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1703 skb
->ip_summed
= CHECKSUM_NONE
;
1706 /* Return tx queue pointer (find last set bit) according to <cause> returned
1707 * form tx_done reg. <cause> must not be null. The return value is always a
1708 * valid queue for matching the first one found in <cause>.
1710 static struct mvneta_tx_queue
*mvneta_tx_done_policy(struct mvneta_port
*pp
,
1713 int queue
= fls(cause
) - 1;
1715 return &pp
->txqs
[queue
];
1718 /* Free tx queue skbuffs */
1719 static void mvneta_txq_bufs_free(struct mvneta_port
*pp
,
1720 struct mvneta_tx_queue
*txq
, int num
)
1724 for (i
= 0; i
< num
; i
++) {
1725 struct mvneta_tx_desc
*tx_desc
= txq
->descs
+
1727 struct sk_buff
*skb
= txq
->tx_skb
[txq
->txq_get_index
];
1729 mvneta_txq_inc_get(txq
);
1731 if (!IS_TSO_HEADER(txq
, tx_desc
->buf_phys_addr
))
1732 dma_unmap_single(pp
->dev
->dev
.parent
,
1733 tx_desc
->buf_phys_addr
,
1734 tx_desc
->data_size
, DMA_TO_DEVICE
);
1737 dev_kfree_skb_any(skb
);
1741 /* Handle end of transmission */
1742 static void mvneta_txq_done(struct mvneta_port
*pp
,
1743 struct mvneta_tx_queue
*txq
)
1745 struct netdev_queue
*nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
1748 tx_done
= mvneta_txq_sent_desc_proc(pp
, txq
);
1752 mvneta_txq_bufs_free(pp
, txq
, tx_done
);
1754 txq
->count
-= tx_done
;
1756 if (netif_tx_queue_stopped(nq
)) {
1757 if (txq
->count
<= txq
->tx_wake_threshold
)
1758 netif_tx_wake_queue(nq
);
1762 void *mvneta_frag_alloc(unsigned int frag_size
)
1764 if (likely(frag_size
<= PAGE_SIZE
))
1765 return netdev_alloc_frag(frag_size
);
1767 return kmalloc(frag_size
, GFP_ATOMIC
);
1769 EXPORT_SYMBOL_GPL(mvneta_frag_alloc
);
1771 void mvneta_frag_free(unsigned int frag_size
, void *data
)
1773 if (likely(frag_size
<= PAGE_SIZE
))
1774 skb_free_frag(data
);
1778 EXPORT_SYMBOL_GPL(mvneta_frag_free
);
1780 /* Refill processing for SW buffer management */
1781 static int mvneta_rx_refill(struct mvneta_port
*pp
,
1782 struct mvneta_rx_desc
*rx_desc
)
1785 dma_addr_t phys_addr
;
1788 data
= mvneta_frag_alloc(pp
->frag_size
);
1792 phys_addr
= dma_map_single(pp
->dev
->dev
.parent
, data
,
1793 MVNETA_RX_BUF_SIZE(pp
->pkt_size
),
1795 if (unlikely(dma_mapping_error(pp
->dev
->dev
.parent
, phys_addr
))) {
1796 mvneta_frag_free(pp
->frag_size
, data
);
1800 mvneta_rx_desc_fill(rx_desc
, phys_addr
, (u32
)data
);
1804 /* Handle tx checksum */
1805 static u32
mvneta_skb_tx_csum(struct mvneta_port
*pp
, struct sk_buff
*skb
)
1807 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1809 __be16 l3_proto
= vlan_get_protocol(skb
);
1812 if (l3_proto
== htons(ETH_P_IP
)) {
1813 struct iphdr
*ip4h
= ip_hdr(skb
);
1815 /* Calculate IPv4 checksum and L4 checksum */
1816 ip_hdr_len
= ip4h
->ihl
;
1817 l4_proto
= ip4h
->protocol
;
1818 } else if (l3_proto
== htons(ETH_P_IPV6
)) {
1819 struct ipv6hdr
*ip6h
= ipv6_hdr(skb
);
1821 /* Read l4_protocol from one of IPv6 extra headers */
1822 if (skb_network_header_len(skb
) > 0)
1823 ip_hdr_len
= (skb_network_header_len(skb
) >> 2);
1824 l4_proto
= ip6h
->nexthdr
;
1826 return MVNETA_TX_L4_CSUM_NOT
;
1828 return mvneta_txq_desc_csum(skb_network_offset(skb
),
1829 l3_proto
, ip_hdr_len
, l4_proto
);
1832 return MVNETA_TX_L4_CSUM_NOT
;
1835 /* Drop packets received by the RXQ and free buffers */
1836 static void mvneta_rxq_drop_pkts(struct mvneta_port
*pp
,
1837 struct mvneta_rx_queue
*rxq
)
1841 rx_done
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
1843 mvneta_rxq_desc_num_update(pp
, rxq
, rx_done
, rx_done
);
1846 for (i
= 0; i
< rx_done
; i
++) {
1847 struct mvneta_rx_desc
*rx_desc
=
1848 mvneta_rxq_next_desc_get(rxq
);
1849 u8 pool_id
= MVNETA_RX_GET_BM_POOL_ID(rx_desc
);
1850 struct mvneta_bm_pool
*bm_pool
;
1852 bm_pool
= &pp
->bm_priv
->bm_pools
[pool_id
];
1853 /* Return dropped buffer to the pool */
1854 mvneta_bm_pool_put_bp(pp
->bm_priv
, bm_pool
,
1855 rx_desc
->buf_phys_addr
);
1860 for (i
= 0; i
< rxq
->size
; i
++) {
1861 struct mvneta_rx_desc
*rx_desc
= rxq
->descs
+ i
;
1862 void *data
= (void *)rx_desc
->buf_cookie
;
1864 dma_unmap_single(pp
->dev
->dev
.parent
, rx_desc
->buf_phys_addr
,
1865 MVNETA_RX_BUF_SIZE(pp
->pkt_size
), DMA_FROM_DEVICE
);
1866 mvneta_frag_free(pp
->frag_size
, data
);
1870 /* Main rx processing when using software buffer management */
1871 static int mvneta_rx_swbm(struct mvneta_port
*pp
, int rx_todo
,
1872 struct mvneta_rx_queue
*rxq
)
1874 struct mvneta_pcpu_port
*port
= this_cpu_ptr(pp
->ports
);
1875 struct net_device
*dev
= pp
->dev
;
1880 /* Get number of received packets */
1881 rx_done
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
1883 if (rx_todo
> rx_done
)
1888 /* Fairness NAPI loop */
1889 while (rx_done
< rx_todo
) {
1890 struct mvneta_rx_desc
*rx_desc
= mvneta_rxq_next_desc_get(rxq
);
1891 struct sk_buff
*skb
;
1892 unsigned char *data
;
1893 dma_addr_t phys_addr
;
1894 u32 rx_status
, frag_size
;
1898 rx_status
= rx_desc
->status
;
1899 rx_bytes
= rx_desc
->data_size
- (ETH_FCS_LEN
+ MVNETA_MH_SIZE
);
1900 data
= (unsigned char *)rx_desc
->buf_cookie
;
1901 phys_addr
= rx_desc
->buf_phys_addr
;
1903 if (!mvneta_rxq_desc_is_first_last(rx_status
) ||
1904 (rx_status
& MVNETA_RXD_ERR_SUMMARY
)) {
1906 dev
->stats
.rx_errors
++;
1907 mvneta_rx_error(pp
, rx_desc
);
1908 /* leave the descriptor untouched */
1912 if (rx_bytes
<= rx_copybreak
) {
1913 /* better copy a small frame and not unmap the DMA region */
1914 skb
= netdev_alloc_skb_ip_align(dev
, rx_bytes
);
1916 goto err_drop_frame
;
1918 dma_sync_single_range_for_cpu(dev
->dev
.parent
,
1919 rx_desc
->buf_phys_addr
,
1920 MVNETA_MH_SIZE
+ NET_SKB_PAD
,
1923 memcpy(skb_put(skb
, rx_bytes
),
1924 data
+ MVNETA_MH_SIZE
+ NET_SKB_PAD
,
1927 skb
->protocol
= eth_type_trans(skb
, dev
);
1928 mvneta_rx_csum(pp
, rx_status
, skb
);
1929 napi_gro_receive(&port
->napi
, skb
);
1932 rcvd_bytes
+= rx_bytes
;
1934 /* leave the descriptor and buffer untouched */
1938 /* Refill processing */
1939 err
= mvneta_rx_refill(pp
, rx_desc
);
1941 netdev_err(dev
, "Linux processing - Can't refill\n");
1943 goto err_drop_frame
;
1946 frag_size
= pp
->frag_size
;
1948 skb
= build_skb(data
, frag_size
> PAGE_SIZE
? 0 : frag_size
);
1950 /* After refill old buffer has to be unmapped regardless
1951 * the skb is successfully built or not.
1953 dma_unmap_single(dev
->dev
.parent
, phys_addr
,
1954 MVNETA_RX_BUF_SIZE(pp
->pkt_size
),
1958 goto err_drop_frame
;
1961 rcvd_bytes
+= rx_bytes
;
1963 /* Linux processing */
1964 skb_reserve(skb
, MVNETA_MH_SIZE
+ NET_SKB_PAD
);
1965 skb_put(skb
, rx_bytes
);
1967 skb
->protocol
= eth_type_trans(skb
, dev
);
1969 mvneta_rx_csum(pp
, rx_status
, skb
);
1971 napi_gro_receive(&port
->napi
, skb
);
1975 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
1977 u64_stats_update_begin(&stats
->syncp
);
1978 stats
->rx_packets
+= rcvd_pkts
;
1979 stats
->rx_bytes
+= rcvd_bytes
;
1980 u64_stats_update_end(&stats
->syncp
);
1983 /* Update rxq management counters */
1984 mvneta_rxq_desc_num_update(pp
, rxq
, rx_done
, rx_done
);
1989 /* Main rx processing when using hardware buffer management */
1990 static int mvneta_rx_hwbm(struct mvneta_port
*pp
, int rx_todo
,
1991 struct mvneta_rx_queue
*rxq
)
1993 struct mvneta_pcpu_port
*port
= this_cpu_ptr(pp
->ports
);
1994 struct net_device
*dev
= pp
->dev
;
1999 /* Get number of received packets */
2000 rx_done
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
2002 if (rx_todo
> rx_done
)
2007 /* Fairness NAPI loop */
2008 while (rx_done
< rx_todo
) {
2009 struct mvneta_rx_desc
*rx_desc
= mvneta_rxq_next_desc_get(rxq
);
2010 struct mvneta_bm_pool
*bm_pool
= NULL
;
2011 struct sk_buff
*skb
;
2012 unsigned char *data
;
2013 dma_addr_t phys_addr
;
2014 u32 rx_status
, frag_size
;
2019 rx_status
= rx_desc
->status
;
2020 rx_bytes
= rx_desc
->data_size
- (ETH_FCS_LEN
+ MVNETA_MH_SIZE
);
2021 data
= (unsigned char *)rx_desc
->buf_cookie
;
2022 phys_addr
= rx_desc
->buf_phys_addr
;
2023 pool_id
= MVNETA_RX_GET_BM_POOL_ID(rx_desc
);
2024 bm_pool
= &pp
->bm_priv
->bm_pools
[pool_id
];
2026 if (!mvneta_rxq_desc_is_first_last(rx_status
) ||
2027 (rx_status
& MVNETA_RXD_ERR_SUMMARY
)) {
2028 err_drop_frame_ret_pool
:
2029 /* Return the buffer to the pool */
2030 mvneta_bm_pool_put_bp(pp
->bm_priv
, bm_pool
,
2031 rx_desc
->buf_phys_addr
);
2033 dev
->stats
.rx_errors
++;
2034 mvneta_rx_error(pp
, rx_desc
);
2035 /* leave the descriptor untouched */
2039 if (rx_bytes
<= rx_copybreak
) {
2040 /* better copy a small frame and not unmap the DMA region */
2041 skb
= netdev_alloc_skb_ip_align(dev
, rx_bytes
);
2043 goto err_drop_frame_ret_pool
;
2045 dma_sync_single_range_for_cpu(dev
->dev
.parent
,
2046 rx_desc
->buf_phys_addr
,
2047 MVNETA_MH_SIZE
+ NET_SKB_PAD
,
2050 memcpy(skb_put(skb
, rx_bytes
),
2051 data
+ MVNETA_MH_SIZE
+ NET_SKB_PAD
,
2054 skb
->protocol
= eth_type_trans(skb
, dev
);
2055 mvneta_rx_csum(pp
, rx_status
, skb
);
2056 napi_gro_receive(&port
->napi
, skb
);
2059 rcvd_bytes
+= rx_bytes
;
2061 /* Return the buffer to the pool */
2062 mvneta_bm_pool_put_bp(pp
->bm_priv
, bm_pool
,
2063 rx_desc
->buf_phys_addr
);
2065 /* leave the descriptor and buffer untouched */
2069 /* Refill processing */
2070 err
= hwbm_pool_refill(&bm_pool
->hwbm_pool
, GFP_ATOMIC
);
2072 netdev_err(dev
, "Linux processing - Can't refill\n");
2074 goto err_drop_frame_ret_pool
;
2077 frag_size
= bm_pool
->hwbm_pool
.frag_size
;
2079 skb
= build_skb(data
, frag_size
> PAGE_SIZE
? 0 : frag_size
);
2081 /* After refill old buffer has to be unmapped regardless
2082 * the skb is successfully built or not.
2084 dma_unmap_single(&pp
->bm_priv
->pdev
->dev
, phys_addr
,
2085 bm_pool
->buf_size
, DMA_FROM_DEVICE
);
2087 goto err_drop_frame
;
2090 rcvd_bytes
+= rx_bytes
;
2092 /* Linux processing */
2093 skb_reserve(skb
, MVNETA_MH_SIZE
+ NET_SKB_PAD
);
2094 skb_put(skb
, rx_bytes
);
2096 skb
->protocol
= eth_type_trans(skb
, dev
);
2098 mvneta_rx_csum(pp
, rx_status
, skb
);
2100 napi_gro_receive(&port
->napi
, skb
);
2104 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
2106 u64_stats_update_begin(&stats
->syncp
);
2107 stats
->rx_packets
+= rcvd_pkts
;
2108 stats
->rx_bytes
+= rcvd_bytes
;
2109 u64_stats_update_end(&stats
->syncp
);
2112 /* Update rxq management counters */
2113 mvneta_rxq_desc_num_update(pp
, rxq
, rx_done
, rx_done
);
2119 mvneta_tso_put_hdr(struct sk_buff
*skb
,
2120 struct mvneta_port
*pp
, struct mvneta_tx_queue
*txq
)
2122 struct mvneta_tx_desc
*tx_desc
;
2123 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2125 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2126 tx_desc
= mvneta_txq_next_desc_get(txq
);
2127 tx_desc
->data_size
= hdr_len
;
2128 tx_desc
->command
= mvneta_skb_tx_csum(pp
, skb
);
2129 tx_desc
->command
|= MVNETA_TXD_F_DESC
;
2130 tx_desc
->buf_phys_addr
= txq
->tso_hdrs_phys
+
2131 txq
->txq_put_index
* TSO_HEADER_SIZE
;
2132 mvneta_txq_inc_put(txq
);
2136 mvneta_tso_put_data(struct net_device
*dev
, struct mvneta_tx_queue
*txq
,
2137 struct sk_buff
*skb
, char *data
, int size
,
2138 bool last_tcp
, bool is_last
)
2140 struct mvneta_tx_desc
*tx_desc
;
2142 tx_desc
= mvneta_txq_next_desc_get(txq
);
2143 tx_desc
->data_size
= size
;
2144 tx_desc
->buf_phys_addr
= dma_map_single(dev
->dev
.parent
, data
,
2145 size
, DMA_TO_DEVICE
);
2146 if (unlikely(dma_mapping_error(dev
->dev
.parent
,
2147 tx_desc
->buf_phys_addr
))) {
2148 mvneta_txq_desc_put(txq
);
2152 tx_desc
->command
= 0;
2153 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2156 /* last descriptor in the TCP packet */
2157 tx_desc
->command
= MVNETA_TXD_L_DESC
;
2159 /* last descriptor in SKB */
2161 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
2163 mvneta_txq_inc_put(txq
);
2167 static int mvneta_tx_tso(struct sk_buff
*skb
, struct net_device
*dev
,
2168 struct mvneta_tx_queue
*txq
)
2170 int total_len
, data_left
;
2172 struct mvneta_port
*pp
= netdev_priv(dev
);
2174 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2177 /* Count needed descriptors */
2178 if ((txq
->count
+ tso_count_descs(skb
)) >= txq
->size
)
2181 if (skb_headlen(skb
) < (skb_transport_offset(skb
) + tcp_hdrlen(skb
))) {
2182 pr_info("*** Is this even possible???!?!?\n");
2186 /* Initialize the TSO handler, and prepare the first payload */
2187 tso_start(skb
, &tso
);
2189 total_len
= skb
->len
- hdr_len
;
2190 while (total_len
> 0) {
2193 data_left
= min_t(int, skb_shinfo(skb
)->gso_size
, total_len
);
2194 total_len
-= data_left
;
2197 /* prepare packet headers: MAC + IP + TCP */
2198 hdr
= txq
->tso_hdrs
+ txq
->txq_put_index
* TSO_HEADER_SIZE
;
2199 tso_build_hdr(skb
, hdr
, &tso
, data_left
, total_len
== 0);
2201 mvneta_tso_put_hdr(skb
, pp
, txq
);
2203 while (data_left
> 0) {
2207 size
= min_t(int, tso
.size
, data_left
);
2209 if (mvneta_tso_put_data(dev
, txq
, skb
,
2216 tso_build_data(skb
, &tso
, size
);
2223 /* Release all used data descriptors; header descriptors must not
2226 for (i
= desc_count
- 1; i
>= 0; i
--) {
2227 struct mvneta_tx_desc
*tx_desc
= txq
->descs
+ i
;
2228 if (!IS_TSO_HEADER(txq
, tx_desc
->buf_phys_addr
))
2229 dma_unmap_single(pp
->dev
->dev
.parent
,
2230 tx_desc
->buf_phys_addr
,
2233 mvneta_txq_desc_put(txq
);
2238 /* Handle tx fragmentation processing */
2239 static int mvneta_tx_frag_process(struct mvneta_port
*pp
, struct sk_buff
*skb
,
2240 struct mvneta_tx_queue
*txq
)
2242 struct mvneta_tx_desc
*tx_desc
;
2243 int i
, nr_frags
= skb_shinfo(skb
)->nr_frags
;
2245 for (i
= 0; i
< nr_frags
; i
++) {
2246 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2247 void *addr
= page_address(frag
->page
.p
) + frag
->page_offset
;
2249 tx_desc
= mvneta_txq_next_desc_get(txq
);
2250 tx_desc
->data_size
= frag
->size
;
2252 tx_desc
->buf_phys_addr
=
2253 dma_map_single(pp
->dev
->dev
.parent
, addr
,
2254 tx_desc
->data_size
, DMA_TO_DEVICE
);
2256 if (dma_mapping_error(pp
->dev
->dev
.parent
,
2257 tx_desc
->buf_phys_addr
)) {
2258 mvneta_txq_desc_put(txq
);
2262 if (i
== nr_frags
- 1) {
2263 /* Last descriptor */
2264 tx_desc
->command
= MVNETA_TXD_L_DESC
| MVNETA_TXD_Z_PAD
;
2265 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
2267 /* Descriptor in the middle: Not First, Not Last */
2268 tx_desc
->command
= 0;
2269 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2271 mvneta_txq_inc_put(txq
);
2277 /* Release all descriptors that were used to map fragments of
2278 * this packet, as well as the corresponding DMA mappings
2280 for (i
= i
- 1; i
>= 0; i
--) {
2281 tx_desc
= txq
->descs
+ i
;
2282 dma_unmap_single(pp
->dev
->dev
.parent
,
2283 tx_desc
->buf_phys_addr
,
2286 mvneta_txq_desc_put(txq
);
2292 /* Main tx processing */
2293 static int mvneta_tx(struct sk_buff
*skb
, struct net_device
*dev
)
2295 struct mvneta_port
*pp
= netdev_priv(dev
);
2296 u16 txq_id
= skb_get_queue_mapping(skb
);
2297 struct mvneta_tx_queue
*txq
= &pp
->txqs
[txq_id
];
2298 struct mvneta_tx_desc
*tx_desc
;
2303 if (!netif_running(dev
))
2306 if (skb_is_gso(skb
)) {
2307 frags
= mvneta_tx_tso(skb
, dev
, txq
);
2311 frags
= skb_shinfo(skb
)->nr_frags
+ 1;
2313 /* Get a descriptor for the first part of the packet */
2314 tx_desc
= mvneta_txq_next_desc_get(txq
);
2316 tx_cmd
= mvneta_skb_tx_csum(pp
, skb
);
2318 tx_desc
->data_size
= skb_headlen(skb
);
2320 tx_desc
->buf_phys_addr
= dma_map_single(dev
->dev
.parent
, skb
->data
,
2323 if (unlikely(dma_mapping_error(dev
->dev
.parent
,
2324 tx_desc
->buf_phys_addr
))) {
2325 mvneta_txq_desc_put(txq
);
2331 /* First and Last descriptor */
2332 tx_cmd
|= MVNETA_TXD_FLZ_DESC
;
2333 tx_desc
->command
= tx_cmd
;
2334 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
2335 mvneta_txq_inc_put(txq
);
2337 /* First but not Last */
2338 tx_cmd
|= MVNETA_TXD_F_DESC
;
2339 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2340 mvneta_txq_inc_put(txq
);
2341 tx_desc
->command
= tx_cmd
;
2342 /* Continue with other skb fragments */
2343 if (mvneta_tx_frag_process(pp
, skb
, txq
)) {
2344 dma_unmap_single(dev
->dev
.parent
,
2345 tx_desc
->buf_phys_addr
,
2348 mvneta_txq_desc_put(txq
);
2356 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
2357 struct netdev_queue
*nq
= netdev_get_tx_queue(dev
, txq_id
);
2359 txq
->count
+= frags
;
2360 mvneta_txq_pend_desc_add(pp
, txq
, frags
);
2362 if (txq
->count
>= txq
->tx_stop_threshold
)
2363 netif_tx_stop_queue(nq
);
2365 u64_stats_update_begin(&stats
->syncp
);
2366 stats
->tx_packets
++;
2367 stats
->tx_bytes
+= len
;
2368 u64_stats_update_end(&stats
->syncp
);
2370 dev
->stats
.tx_dropped
++;
2371 dev_kfree_skb_any(skb
);
2374 return NETDEV_TX_OK
;
2378 /* Free tx resources, when resetting a port */
2379 static void mvneta_txq_done_force(struct mvneta_port
*pp
,
2380 struct mvneta_tx_queue
*txq
)
2383 int tx_done
= txq
->count
;
2385 mvneta_txq_bufs_free(pp
, txq
, tx_done
);
2389 txq
->txq_put_index
= 0;
2390 txq
->txq_get_index
= 0;
2393 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2394 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2396 static void mvneta_tx_done_gbe(struct mvneta_port
*pp
, u32 cause_tx_done
)
2398 struct mvneta_tx_queue
*txq
;
2399 struct netdev_queue
*nq
;
2401 while (cause_tx_done
) {
2402 txq
= mvneta_tx_done_policy(pp
, cause_tx_done
);
2404 nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
2405 __netif_tx_lock(nq
, smp_processor_id());
2408 mvneta_txq_done(pp
, txq
);
2410 __netif_tx_unlock(nq
);
2411 cause_tx_done
&= ~((1 << txq
->id
));
2415 /* Compute crc8 of the specified address, using a unique algorithm ,
2416 * according to hw spec, different than generic crc8 algorithm
2418 static int mvneta_addr_crc(unsigned char *addr
)
2423 for (i
= 0; i
< ETH_ALEN
; i
++) {
2426 crc
= (crc
^ addr
[i
]) << 8;
2427 for (j
= 7; j
>= 0; j
--) {
2428 if (crc
& (0x100 << j
))
2436 /* This method controls the net device special MAC multicast support.
2437 * The Special Multicast Table for MAC addresses supports MAC of the form
2438 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2439 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2440 * Table entries in the DA-Filter table. This method set the Special
2441 * Multicast Table appropriate entry.
2443 static void mvneta_set_special_mcast_addr(struct mvneta_port
*pp
,
2444 unsigned char last_byte
,
2447 unsigned int smc_table_reg
;
2448 unsigned int tbl_offset
;
2449 unsigned int reg_offset
;
2451 /* Register offset from SMC table base */
2452 tbl_offset
= (last_byte
/ 4);
2453 /* Entry offset within the above reg */
2454 reg_offset
= last_byte
% 4;
2456 smc_table_reg
= mvreg_read(pp
, (MVNETA_DA_FILT_SPEC_MCAST
2460 smc_table_reg
&= ~(0xff << (8 * reg_offset
));
2462 smc_table_reg
&= ~(0xff << (8 * reg_offset
));
2463 smc_table_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
2466 mvreg_write(pp
, MVNETA_DA_FILT_SPEC_MCAST
+ tbl_offset
* 4,
2470 /* This method controls the network device Other MAC multicast support.
2471 * The Other Multicast Table is used for multicast of another type.
2472 * A CRC-8 is used as an index to the Other Multicast Table entries
2473 * in the DA-Filter table.
2474 * The method gets the CRC-8 value from the calling routine and
2475 * sets the Other Multicast Table appropriate entry according to the
2478 static void mvneta_set_other_mcast_addr(struct mvneta_port
*pp
,
2482 unsigned int omc_table_reg
;
2483 unsigned int tbl_offset
;
2484 unsigned int reg_offset
;
2486 tbl_offset
= (crc8
/ 4) * 4; /* Register offset from OMC table base */
2487 reg_offset
= crc8
% 4; /* Entry offset within the above reg */
2489 omc_table_reg
= mvreg_read(pp
, MVNETA_DA_FILT_OTH_MCAST
+ tbl_offset
);
2492 /* Clear accepts frame bit at specified Other DA table entry */
2493 omc_table_reg
&= ~(0xff << (8 * reg_offset
));
2495 omc_table_reg
&= ~(0xff << (8 * reg_offset
));
2496 omc_table_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
2499 mvreg_write(pp
, MVNETA_DA_FILT_OTH_MCAST
+ tbl_offset
, omc_table_reg
);
2502 /* The network device supports multicast using two tables:
2503 * 1) Special Multicast Table for MAC addresses of the form
2504 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2505 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2506 * Table entries in the DA-Filter table.
2507 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2508 * is used as an index to the Other Multicast Table entries in the
2511 static int mvneta_mcast_addr_set(struct mvneta_port
*pp
, unsigned char *p_addr
,
2514 unsigned char crc_result
= 0;
2516 if (memcmp(p_addr
, "\x01\x00\x5e\x00\x00", 5) == 0) {
2517 mvneta_set_special_mcast_addr(pp
, p_addr
[5], queue
);
2521 crc_result
= mvneta_addr_crc(p_addr
);
2523 if (pp
->mcast_count
[crc_result
] == 0) {
2524 netdev_info(pp
->dev
, "No valid Mcast for crc8=0x%02x\n",
2529 pp
->mcast_count
[crc_result
]--;
2530 if (pp
->mcast_count
[crc_result
] != 0) {
2531 netdev_info(pp
->dev
,
2532 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2533 pp
->mcast_count
[crc_result
], crc_result
);
2537 pp
->mcast_count
[crc_result
]++;
2539 mvneta_set_other_mcast_addr(pp
, crc_result
, queue
);
2544 /* Configure Fitering mode of Ethernet port */
2545 static void mvneta_rx_unicast_promisc_set(struct mvneta_port
*pp
,
2548 u32 port_cfg_reg
, val
;
2550 port_cfg_reg
= mvreg_read(pp
, MVNETA_PORT_CONFIG
);
2552 val
= mvreg_read(pp
, MVNETA_TYPE_PRIO
);
2554 /* Set / Clear UPM bit in port configuration register */
2556 /* Accept all Unicast addresses */
2557 port_cfg_reg
|= MVNETA_UNI_PROMISC_MODE
;
2558 val
|= MVNETA_FORCE_UNI
;
2559 mvreg_write(pp
, MVNETA_MAC_ADDR_LOW
, 0xffff);
2560 mvreg_write(pp
, MVNETA_MAC_ADDR_HIGH
, 0xffffffff);
2562 /* Reject all Unicast addresses */
2563 port_cfg_reg
&= ~MVNETA_UNI_PROMISC_MODE
;
2564 val
&= ~MVNETA_FORCE_UNI
;
2567 mvreg_write(pp
, MVNETA_PORT_CONFIG
, port_cfg_reg
);
2568 mvreg_write(pp
, MVNETA_TYPE_PRIO
, val
);
2571 /* register unicast and multicast addresses */
2572 static void mvneta_set_rx_mode(struct net_device
*dev
)
2574 struct mvneta_port
*pp
= netdev_priv(dev
);
2575 struct netdev_hw_addr
*ha
;
2577 if (dev
->flags
& IFF_PROMISC
) {
2578 /* Accept all: Multicast + Unicast */
2579 mvneta_rx_unicast_promisc_set(pp
, 1);
2580 mvneta_set_ucast_table(pp
, pp
->rxq_def
);
2581 mvneta_set_special_mcast_table(pp
, pp
->rxq_def
);
2582 mvneta_set_other_mcast_table(pp
, pp
->rxq_def
);
2584 /* Accept single Unicast */
2585 mvneta_rx_unicast_promisc_set(pp
, 0);
2586 mvneta_set_ucast_table(pp
, -1);
2587 mvneta_mac_addr_set(pp
, dev
->dev_addr
, pp
->rxq_def
);
2589 if (dev
->flags
& IFF_ALLMULTI
) {
2590 /* Accept all multicast */
2591 mvneta_set_special_mcast_table(pp
, pp
->rxq_def
);
2592 mvneta_set_other_mcast_table(pp
, pp
->rxq_def
);
2594 /* Accept only initialized multicast */
2595 mvneta_set_special_mcast_table(pp
, -1);
2596 mvneta_set_other_mcast_table(pp
, -1);
2598 if (!netdev_mc_empty(dev
)) {
2599 netdev_for_each_mc_addr(ha
, dev
) {
2600 mvneta_mcast_addr_set(pp
, ha
->addr
,
2608 /* Interrupt handling - the callback for request_irq() */
2609 static irqreturn_t
mvneta_isr(int irq
, void *dev_id
)
2611 struct mvneta_pcpu_port
*port
= (struct mvneta_pcpu_port
*)dev_id
;
2613 disable_percpu_irq(port
->pp
->dev
->irq
);
2614 napi_schedule(&port
->napi
);
2619 static int mvneta_fixed_link_update(struct mvneta_port
*pp
,
2620 struct phy_device
*phy
)
2622 struct fixed_phy_status status
;
2623 struct fixed_phy_status changed
= {};
2624 u32 gmac_stat
= mvreg_read(pp
, MVNETA_GMAC_STATUS
);
2626 status
.link
= !!(gmac_stat
& MVNETA_GMAC_LINK_UP
);
2627 if (gmac_stat
& MVNETA_GMAC_SPEED_1000
)
2628 status
.speed
= SPEED_1000
;
2629 else if (gmac_stat
& MVNETA_GMAC_SPEED_100
)
2630 status
.speed
= SPEED_100
;
2632 status
.speed
= SPEED_10
;
2633 status
.duplex
= !!(gmac_stat
& MVNETA_GMAC_FULL_DUPLEX
);
2637 fixed_phy_update_state(phy
, &status
, &changed
);
2642 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2643 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2644 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2645 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2646 * Each CPU has its own causeRxTx register
2648 static int mvneta_poll(struct napi_struct
*napi
, int budget
)
2653 struct mvneta_port
*pp
= netdev_priv(napi
->dev
);
2654 struct mvneta_pcpu_port
*port
= this_cpu_ptr(pp
->ports
);
2656 if (!netif_running(pp
->dev
)) {
2657 napi_complete(&port
->napi
);
2661 /* Read cause register */
2662 cause_rx_tx
= mvreg_read(pp
, MVNETA_INTR_NEW_CAUSE
);
2663 if (cause_rx_tx
& MVNETA_MISCINTR_INTR_MASK
) {
2664 u32 cause_misc
= mvreg_read(pp
, MVNETA_INTR_MISC_CAUSE
);
2666 mvreg_write(pp
, MVNETA_INTR_MISC_CAUSE
, 0);
2667 if (pp
->use_inband_status
&& (cause_misc
&
2668 (MVNETA_CAUSE_PHY_STATUS_CHANGE
|
2669 MVNETA_CAUSE_LINK_CHANGE
|
2670 MVNETA_CAUSE_PSC_SYNC_CHANGE
))) {
2671 mvneta_fixed_link_update(pp
, pp
->phy_dev
);
2675 /* Release Tx descriptors */
2676 if (cause_rx_tx
& MVNETA_TX_INTR_MASK_ALL
) {
2677 mvneta_tx_done_gbe(pp
, (cause_rx_tx
& MVNETA_TX_INTR_MASK_ALL
));
2678 cause_rx_tx
&= ~MVNETA_TX_INTR_MASK_ALL
;
2681 /* For the case where the last mvneta_poll did not process all
2684 rx_queue
= fls(((cause_rx_tx
>> 8) & 0xff));
2686 cause_rx_tx
|= port
->cause_rx_tx
;
2689 rx_queue
= rx_queue
- 1;
2691 rx_done
= mvneta_rx_hwbm(pp
, budget
, &pp
->rxqs
[rx_queue
]);
2693 rx_done
= mvneta_rx_swbm(pp
, budget
, &pp
->rxqs
[rx_queue
]);
2700 napi_complete(&port
->napi
);
2701 enable_percpu_irq(pp
->dev
->irq
, 0);
2704 port
->cause_rx_tx
= cause_rx_tx
;
2708 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2709 static int mvneta_rxq_fill(struct mvneta_port
*pp
, struct mvneta_rx_queue
*rxq
,
2714 for (i
= 0; i
< num
; i
++) {
2715 memset(rxq
->descs
+ i
, 0, sizeof(struct mvneta_rx_desc
));
2716 if (mvneta_rx_refill(pp
, rxq
->descs
+ i
) != 0) {
2717 netdev_err(pp
->dev
, "%s:rxq %d, %d of %d buffs filled\n",
2718 __func__
, rxq
->id
, i
, num
);
2723 /* Add this number of RX descriptors as non occupied (ready to
2726 mvneta_rxq_non_occup_desc_add(pp
, rxq
, i
);
2731 /* Free all packets pending transmit from all TXQs and reset TX port */
2732 static void mvneta_tx_reset(struct mvneta_port
*pp
)
2736 /* free the skb's in the tx ring */
2737 for (queue
= 0; queue
< txq_number
; queue
++)
2738 mvneta_txq_done_force(pp
, &pp
->txqs
[queue
]);
2740 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, MVNETA_PORT_TX_DMA_RESET
);
2741 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, 0);
2744 static void mvneta_rx_reset(struct mvneta_port
*pp
)
2746 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, MVNETA_PORT_RX_DMA_RESET
);
2747 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, 0);
2750 /* Rx/Tx queue initialization/cleanup methods */
2752 /* Create a specified RX queue */
2753 static int mvneta_rxq_init(struct mvneta_port
*pp
,
2754 struct mvneta_rx_queue
*rxq
)
2757 rxq
->size
= pp
->rx_ring_size
;
2759 /* Allocate memory for RX descriptors */
2760 rxq
->descs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2761 rxq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2762 &rxq
->descs_phys
, GFP_KERNEL
);
2763 if (rxq
->descs
== NULL
)
2766 rxq
->last_desc
= rxq
->size
- 1;
2768 /* Set Rx descriptors queue starting address */
2769 mvreg_write(pp
, MVNETA_RXQ_BASE_ADDR_REG(rxq
->id
), rxq
->descs_phys
);
2770 mvreg_write(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
), rxq
->size
);
2773 mvneta_rxq_offset_set(pp
, rxq
, NET_SKB_PAD
);
2775 /* Set coalescing pkts and time */
2776 mvneta_rx_pkts_coal_set(pp
, rxq
, rxq
->pkts_coal
);
2777 mvneta_rx_time_coal_set(pp
, rxq
, rxq
->time_coal
);
2780 /* Fill RXQ with buffers from RX pool */
2781 mvneta_rxq_buf_size_set(pp
, rxq
,
2782 MVNETA_RX_BUF_SIZE(pp
->pkt_size
));
2783 mvneta_rxq_bm_disable(pp
, rxq
);
2785 mvneta_rxq_bm_enable(pp
, rxq
);
2786 mvneta_rxq_long_pool_set(pp
, rxq
);
2787 mvneta_rxq_short_pool_set(pp
, rxq
);
2790 mvneta_rxq_fill(pp
, rxq
, rxq
->size
);
2795 /* Cleanup Rx queue */
2796 static void mvneta_rxq_deinit(struct mvneta_port
*pp
,
2797 struct mvneta_rx_queue
*rxq
)
2799 mvneta_rxq_drop_pkts(pp
, rxq
);
2802 dma_free_coherent(pp
->dev
->dev
.parent
,
2803 rxq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2809 rxq
->next_desc_to_proc
= 0;
2810 rxq
->descs_phys
= 0;
2813 /* Create and initialize a tx queue */
2814 static int mvneta_txq_init(struct mvneta_port
*pp
,
2815 struct mvneta_tx_queue
*txq
)
2819 txq
->size
= pp
->tx_ring_size
;
2821 /* A queue must always have room for at least one skb.
2822 * Therefore, stop the queue when the free entries reaches
2823 * the maximum number of descriptors per skb.
2825 txq
->tx_stop_threshold
= txq
->size
- MVNETA_MAX_SKB_DESCS
;
2826 txq
->tx_wake_threshold
= txq
->tx_stop_threshold
/ 2;
2829 /* Allocate memory for TX descriptors */
2830 txq
->descs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2831 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2832 &txq
->descs_phys
, GFP_KERNEL
);
2833 if (txq
->descs
== NULL
)
2836 txq
->last_desc
= txq
->size
- 1;
2838 /* Set maximum bandwidth for enabled TXQs */
2839 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(txq
->id
), 0x03ffffff);
2840 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(txq
->id
), 0x3fffffff);
2842 /* Set Tx descriptors queue starting address */
2843 mvreg_write(pp
, MVNETA_TXQ_BASE_ADDR_REG(txq
->id
), txq
->descs_phys
);
2844 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), txq
->size
);
2846 txq
->tx_skb
= kmalloc(txq
->size
* sizeof(*txq
->tx_skb
), GFP_KERNEL
);
2847 if (txq
->tx_skb
== NULL
) {
2848 dma_free_coherent(pp
->dev
->dev
.parent
,
2849 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2850 txq
->descs
, txq
->descs_phys
);
2854 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2855 txq
->tso_hdrs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2856 txq
->size
* TSO_HEADER_SIZE
,
2857 &txq
->tso_hdrs_phys
, GFP_KERNEL
);
2858 if (txq
->tso_hdrs
== NULL
) {
2860 dma_free_coherent(pp
->dev
->dev
.parent
,
2861 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2862 txq
->descs
, txq
->descs_phys
);
2865 mvneta_tx_done_pkts_coal_set(pp
, txq
, txq
->done_pkts_coal
);
2867 /* Setup XPS mapping */
2869 cpu
= txq
->id
% num_present_cpus();
2871 cpu
= pp
->rxq_def
% num_present_cpus();
2872 cpumask_set_cpu(cpu
, &txq
->affinity_mask
);
2873 netif_set_xps_queue(pp
->dev
, &txq
->affinity_mask
, txq
->id
);
2878 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2879 static void mvneta_txq_deinit(struct mvneta_port
*pp
,
2880 struct mvneta_tx_queue
*txq
)
2885 dma_free_coherent(pp
->dev
->dev
.parent
,
2886 txq
->size
* TSO_HEADER_SIZE
,
2887 txq
->tso_hdrs
, txq
->tso_hdrs_phys
);
2889 dma_free_coherent(pp
->dev
->dev
.parent
,
2890 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2891 txq
->descs
, txq
->descs_phys
);
2895 txq
->next_desc_to_proc
= 0;
2896 txq
->descs_phys
= 0;
2898 /* Set minimum bandwidth for disabled TXQs */
2899 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(txq
->id
), 0);
2900 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(txq
->id
), 0);
2902 /* Set Tx descriptors queue starting address and size */
2903 mvreg_write(pp
, MVNETA_TXQ_BASE_ADDR_REG(txq
->id
), 0);
2904 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), 0);
2907 /* Cleanup all Tx queues */
2908 static void mvneta_cleanup_txqs(struct mvneta_port
*pp
)
2912 for (queue
= 0; queue
< txq_number
; queue
++)
2913 mvneta_txq_deinit(pp
, &pp
->txqs
[queue
]);
2916 /* Cleanup all Rx queues */
2917 static void mvneta_cleanup_rxqs(struct mvneta_port
*pp
)
2921 for (queue
= 0; queue
< txq_number
; queue
++)
2922 mvneta_rxq_deinit(pp
, &pp
->rxqs
[queue
]);
2926 /* Init all Rx queues */
2927 static int mvneta_setup_rxqs(struct mvneta_port
*pp
)
2931 for (queue
= 0; queue
< rxq_number
; queue
++) {
2932 int err
= mvneta_rxq_init(pp
, &pp
->rxqs
[queue
]);
2935 netdev_err(pp
->dev
, "%s: can't create rxq=%d\n",
2937 mvneta_cleanup_rxqs(pp
);
2945 /* Init all tx queues */
2946 static int mvneta_setup_txqs(struct mvneta_port
*pp
)
2950 for (queue
= 0; queue
< txq_number
; queue
++) {
2951 int err
= mvneta_txq_init(pp
, &pp
->txqs
[queue
]);
2953 netdev_err(pp
->dev
, "%s: can't create txq=%d\n",
2955 mvneta_cleanup_txqs(pp
);
2963 static void mvneta_start_dev(struct mvneta_port
*pp
)
2967 mvneta_max_rx_size_set(pp
, pp
->pkt_size
);
2968 mvneta_txq_max_tx_size_set(pp
, pp
->pkt_size
);
2970 /* start the Rx/Tx activity */
2971 mvneta_port_enable(pp
);
2973 /* Enable polling on the port */
2974 for_each_online_cpu(cpu
) {
2975 struct mvneta_pcpu_port
*port
= per_cpu_ptr(pp
->ports
, cpu
);
2977 napi_enable(&port
->napi
);
2980 /* Unmask interrupts. It has to be done from each CPU */
2981 on_each_cpu(mvneta_percpu_unmask_interrupt
, pp
, true);
2983 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
,
2984 MVNETA_CAUSE_PHY_STATUS_CHANGE
|
2985 MVNETA_CAUSE_LINK_CHANGE
|
2986 MVNETA_CAUSE_PSC_SYNC_CHANGE
);
2988 phy_start(pp
->phy_dev
);
2989 netif_tx_start_all_queues(pp
->dev
);
2992 static void mvneta_stop_dev(struct mvneta_port
*pp
)
2996 phy_stop(pp
->phy_dev
);
2998 for_each_online_cpu(cpu
) {
2999 struct mvneta_pcpu_port
*port
= per_cpu_ptr(pp
->ports
, cpu
);
3001 napi_disable(&port
->napi
);
3004 netif_carrier_off(pp
->dev
);
3006 mvneta_port_down(pp
);
3007 netif_tx_stop_all_queues(pp
->dev
);
3009 /* Stop the port activity */
3010 mvneta_port_disable(pp
);
3012 /* Clear all ethernet port interrupts */
3013 on_each_cpu(mvneta_percpu_clear_intr_cause
, pp
, true);
3015 /* Mask all ethernet port interrupts */
3016 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3018 mvneta_tx_reset(pp
);
3019 mvneta_rx_reset(pp
);
3022 /* Return positive if MTU is valid */
3023 static int mvneta_check_mtu_valid(struct net_device
*dev
, int mtu
)
3026 netdev_err(dev
, "cannot change mtu to less than 68\n");
3030 /* 9676 == 9700 - 20 and rounding to 8 */
3032 netdev_info(dev
, "Illegal MTU value %d, round to 9676\n", mtu
);
3036 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu
), 8)) {
3037 netdev_info(dev
, "Illegal MTU value %d, rounding to %d\n",
3038 mtu
, ALIGN(MVNETA_RX_PKT_SIZE(mtu
), 8));
3039 mtu
= ALIGN(MVNETA_RX_PKT_SIZE(mtu
), 8);
3045 static void mvneta_percpu_enable(void *arg
)
3047 struct mvneta_port
*pp
= arg
;
3049 enable_percpu_irq(pp
->dev
->irq
, IRQ_TYPE_NONE
);
3052 static void mvneta_percpu_disable(void *arg
)
3054 struct mvneta_port
*pp
= arg
;
3056 disable_percpu_irq(pp
->dev
->irq
);
3059 /* Change the device mtu */
3060 static int mvneta_change_mtu(struct net_device
*dev
, int mtu
)
3062 struct mvneta_port
*pp
= netdev_priv(dev
);
3065 mtu
= mvneta_check_mtu_valid(dev
, mtu
);
3071 if (!netif_running(dev
)) {
3073 mvneta_bm_update_mtu(pp
, mtu
);
3075 netdev_update_features(dev
);
3079 /* The interface is running, so we have to force a
3080 * reallocation of the queues
3082 mvneta_stop_dev(pp
);
3083 on_each_cpu(mvneta_percpu_disable
, pp
, true);
3085 mvneta_cleanup_txqs(pp
);
3086 mvneta_cleanup_rxqs(pp
);
3089 mvneta_bm_update_mtu(pp
, mtu
);
3091 pp
->pkt_size
= MVNETA_RX_PKT_SIZE(dev
->mtu
);
3092 pp
->frag_size
= SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp
->pkt_size
)) +
3093 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
3095 ret
= mvneta_setup_rxqs(pp
);
3097 netdev_err(dev
, "unable to setup rxqs after MTU change\n");
3101 ret
= mvneta_setup_txqs(pp
);
3103 netdev_err(dev
, "unable to setup txqs after MTU change\n");
3107 on_each_cpu(mvneta_percpu_enable
, pp
, true);
3108 mvneta_start_dev(pp
);
3111 netdev_update_features(dev
);
3116 static netdev_features_t
mvneta_fix_features(struct net_device
*dev
,
3117 netdev_features_t features
)
3119 struct mvneta_port
*pp
= netdev_priv(dev
);
3121 if (pp
->tx_csum_limit
&& dev
->mtu
> pp
->tx_csum_limit
) {
3122 features
&= ~(NETIF_F_IP_CSUM
| NETIF_F_TSO
);
3124 "Disable IP checksum for MTU greater than %dB\n",
3131 /* Get mac address */
3132 static void mvneta_get_mac_addr(struct mvneta_port
*pp
, unsigned char *addr
)
3134 u32 mac_addr_l
, mac_addr_h
;
3136 mac_addr_l
= mvreg_read(pp
, MVNETA_MAC_ADDR_LOW
);
3137 mac_addr_h
= mvreg_read(pp
, MVNETA_MAC_ADDR_HIGH
);
3138 addr
[0] = (mac_addr_h
>> 24) & 0xFF;
3139 addr
[1] = (mac_addr_h
>> 16) & 0xFF;
3140 addr
[2] = (mac_addr_h
>> 8) & 0xFF;
3141 addr
[3] = mac_addr_h
& 0xFF;
3142 addr
[4] = (mac_addr_l
>> 8) & 0xFF;
3143 addr
[5] = mac_addr_l
& 0xFF;
3146 /* Handle setting mac address */
3147 static int mvneta_set_mac_addr(struct net_device
*dev
, void *addr
)
3149 struct mvneta_port
*pp
= netdev_priv(dev
);
3150 struct sockaddr
*sockaddr
= addr
;
3153 ret
= eth_prepare_mac_addr_change(dev
, addr
);
3156 /* Remove previous address table entry */
3157 mvneta_mac_addr_set(pp
, dev
->dev_addr
, -1);
3159 /* Set new addr in hw */
3160 mvneta_mac_addr_set(pp
, sockaddr
->sa_data
, pp
->rxq_def
);
3162 eth_commit_mac_addr_change(dev
, addr
);
3166 static void mvneta_adjust_link(struct net_device
*ndev
)
3168 struct mvneta_port
*pp
= netdev_priv(ndev
);
3169 struct phy_device
*phydev
= pp
->phy_dev
;
3170 int status_change
= 0;
3173 if ((pp
->speed
!= phydev
->speed
) ||
3174 (pp
->duplex
!= phydev
->duplex
)) {
3177 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
3178 val
&= ~(MVNETA_GMAC_CONFIG_MII_SPEED
|
3179 MVNETA_GMAC_CONFIG_GMII_SPEED
|
3180 MVNETA_GMAC_CONFIG_FULL_DUPLEX
);
3183 val
|= MVNETA_GMAC_CONFIG_FULL_DUPLEX
;
3185 if (phydev
->speed
== SPEED_1000
)
3186 val
|= MVNETA_GMAC_CONFIG_GMII_SPEED
;
3187 else if (phydev
->speed
== SPEED_100
)
3188 val
|= MVNETA_GMAC_CONFIG_MII_SPEED
;
3190 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
3192 pp
->duplex
= phydev
->duplex
;
3193 pp
->speed
= phydev
->speed
;
3197 if (phydev
->link
!= pp
->link
) {
3198 if (!phydev
->link
) {
3203 pp
->link
= phydev
->link
;
3207 if (status_change
) {
3209 if (!pp
->use_inband_status
) {
3210 u32 val
= mvreg_read(pp
,
3211 MVNETA_GMAC_AUTONEG_CONFIG
);
3212 val
&= ~MVNETA_GMAC_FORCE_LINK_DOWN
;
3213 val
|= MVNETA_GMAC_FORCE_LINK_PASS
;
3214 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
,
3219 if (!pp
->use_inband_status
) {
3220 u32 val
= mvreg_read(pp
,
3221 MVNETA_GMAC_AUTONEG_CONFIG
);
3222 val
&= ~MVNETA_GMAC_FORCE_LINK_PASS
;
3223 val
|= MVNETA_GMAC_FORCE_LINK_DOWN
;
3224 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
,
3227 mvneta_port_down(pp
);
3229 phy_print_status(phydev
);
3233 static int mvneta_mdio_probe(struct mvneta_port
*pp
)
3235 struct phy_device
*phy_dev
;
3237 phy_dev
= of_phy_connect(pp
->dev
, pp
->phy_node
, mvneta_adjust_link
, 0,
3240 netdev_err(pp
->dev
, "could not find the PHY\n");
3244 phy_dev
->supported
&= PHY_GBIT_FEATURES
;
3245 phy_dev
->advertising
= phy_dev
->supported
;
3247 pp
->phy_dev
= phy_dev
;
3255 static void mvneta_mdio_remove(struct mvneta_port
*pp
)
3257 phy_disconnect(pp
->phy_dev
);
3261 /* Electing a CPU must be done in an atomic way: it should be done
3262 * after or before the removal/insertion of a CPU and this function is
3265 static void mvneta_percpu_elect(struct mvneta_port
*pp
)
3267 int elected_cpu
= 0, max_cpu
, cpu
, i
= 0;
3269 /* Use the cpu associated to the rxq when it is online, in all
3270 * the other cases, use the cpu 0 which can't be offline.
3272 if (cpu_online(pp
->rxq_def
))
3273 elected_cpu
= pp
->rxq_def
;
3275 max_cpu
= num_present_cpus();
3277 for_each_online_cpu(cpu
) {
3278 int rxq_map
= 0, txq_map
= 0;
3281 for (rxq
= 0; rxq
< rxq_number
; rxq
++)
3282 if ((rxq
% max_cpu
) == cpu
)
3283 rxq_map
|= MVNETA_CPU_RXQ_ACCESS(rxq
);
3285 if (cpu
== elected_cpu
)
3286 /* Map the default receive queue queue to the
3289 rxq_map
|= MVNETA_CPU_RXQ_ACCESS(pp
->rxq_def
);
3291 /* We update the TX queue map only if we have one
3292 * queue. In this case we associate the TX queue to
3293 * the CPU bound to the default RX queue
3295 if (txq_number
== 1)
3296 txq_map
= (cpu
== elected_cpu
) ?
3297 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3299 txq_map
= mvreg_read(pp
, MVNETA_CPU_MAP(cpu
)) &
3300 MVNETA_CPU_TXQ_ACCESS_ALL_MASK
;
3302 mvreg_write(pp
, MVNETA_CPU_MAP(cpu
), rxq_map
| txq_map
);
3304 /* Update the interrupt mask on each CPU according the
3307 smp_call_function_single(cpu
, mvneta_percpu_unmask_interrupt
,
3314 static int mvneta_percpu_notifier(struct notifier_block
*nfb
,
3315 unsigned long action
, void *hcpu
)
3317 struct mvneta_port
*pp
= container_of(nfb
, struct mvneta_port
,
3319 int cpu
= (unsigned long)hcpu
, other_cpu
;
3320 struct mvneta_pcpu_port
*port
= per_cpu_ptr(pp
->ports
, cpu
);
3324 case CPU_ONLINE_FROZEN
:
3325 case CPU_DOWN_FAILED
:
3326 case CPU_DOWN_FAILED_FROZEN
:
3327 spin_lock(&pp
->lock
);
3328 /* Configuring the driver for a new CPU while the
3329 * driver is stopping is racy, so just avoid it.
3331 if (pp
->is_stopped
) {
3332 spin_unlock(&pp
->lock
);
3335 netif_tx_stop_all_queues(pp
->dev
);
3337 /* We have to synchronise on tha napi of each CPU
3338 * except the one just being waked up
3340 for_each_online_cpu(other_cpu
) {
3341 if (other_cpu
!= cpu
) {
3342 struct mvneta_pcpu_port
*other_port
=
3343 per_cpu_ptr(pp
->ports
, other_cpu
);
3345 napi_synchronize(&other_port
->napi
);
3349 /* Mask all ethernet port interrupts */
3350 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3351 napi_enable(&port
->napi
);
3354 /* Enable per-CPU interrupts on the CPU that is
3357 smp_call_function_single(cpu
, mvneta_percpu_enable
,
3360 /* Enable per-CPU interrupt on the one CPU we care
3363 mvneta_percpu_elect(pp
);
3365 /* Unmask all ethernet port interrupts */
3366 on_each_cpu(mvneta_percpu_unmask_interrupt
, pp
, true);
3367 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
,
3368 MVNETA_CAUSE_PHY_STATUS_CHANGE
|
3369 MVNETA_CAUSE_LINK_CHANGE
|
3370 MVNETA_CAUSE_PSC_SYNC_CHANGE
);
3371 netif_tx_start_all_queues(pp
->dev
);
3372 spin_unlock(&pp
->lock
);
3374 case CPU_DOWN_PREPARE
:
3375 case CPU_DOWN_PREPARE_FROZEN
:
3376 netif_tx_stop_all_queues(pp
->dev
);
3377 /* Thanks to this lock we are sure that any pending
3378 * cpu election is done
3380 spin_lock(&pp
->lock
);
3381 /* Mask all ethernet port interrupts */
3382 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3383 spin_unlock(&pp
->lock
);
3385 napi_synchronize(&port
->napi
);
3386 napi_disable(&port
->napi
);
3387 /* Disable per-CPU interrupts on the CPU that is
3390 smp_call_function_single(cpu
, mvneta_percpu_disable
,
3395 case CPU_DEAD_FROZEN
:
3396 /* Check if a new CPU must be elected now this on is down */
3397 spin_lock(&pp
->lock
);
3398 mvneta_percpu_elect(pp
);
3399 spin_unlock(&pp
->lock
);
3400 /* Unmask all ethernet port interrupts */
3401 on_each_cpu(mvneta_percpu_unmask_interrupt
, pp
, true);
3402 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
,
3403 MVNETA_CAUSE_PHY_STATUS_CHANGE
|
3404 MVNETA_CAUSE_LINK_CHANGE
|
3405 MVNETA_CAUSE_PSC_SYNC_CHANGE
);
3406 netif_tx_start_all_queues(pp
->dev
);
3413 static int mvneta_open(struct net_device
*dev
)
3415 struct mvneta_port
*pp
= netdev_priv(dev
);
3418 pp
->pkt_size
= MVNETA_RX_PKT_SIZE(pp
->dev
->mtu
);
3419 pp
->frag_size
= SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp
->pkt_size
)) +
3420 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
3422 ret
= mvneta_setup_rxqs(pp
);
3426 ret
= mvneta_setup_txqs(pp
);
3428 goto err_cleanup_rxqs
;
3430 /* Connect to port interrupt line */
3431 ret
= request_percpu_irq(pp
->dev
->irq
, mvneta_isr
,
3432 MVNETA_DRIVER_NAME
, pp
->ports
);
3434 netdev_err(pp
->dev
, "cannot request irq %d\n", pp
->dev
->irq
);
3435 goto err_cleanup_txqs
;
3438 /* Enable per-CPU interrupt on all the CPU to handle our RX
3441 on_each_cpu(mvneta_percpu_enable
, pp
, true);
3443 pp
->is_stopped
= false;
3444 /* Register a CPU notifier to handle the case where our CPU
3445 * might be taken offline.
3447 register_cpu_notifier(&pp
->cpu_notifier
);
3449 /* In default link is down */
3450 netif_carrier_off(pp
->dev
);
3452 ret
= mvneta_mdio_probe(pp
);
3454 netdev_err(dev
, "cannot probe MDIO bus\n");
3458 mvneta_start_dev(pp
);
3463 free_percpu_irq(pp
->dev
->irq
, pp
->ports
);
3465 mvneta_cleanup_txqs(pp
);
3467 mvneta_cleanup_rxqs(pp
);
3471 /* Stop the port, free port interrupt line */
3472 static int mvneta_stop(struct net_device
*dev
)
3474 struct mvneta_port
*pp
= netdev_priv(dev
);
3476 /* Inform that we are stopping so we don't want to setup the
3477 * driver for new CPUs in the notifiers. The code of the
3478 * notifier for CPU online is protected by the same spinlock,
3479 * so when we get the lock, the notifer work is done.
3481 spin_lock(&pp
->lock
);
3482 pp
->is_stopped
= true;
3483 spin_unlock(&pp
->lock
);
3485 mvneta_stop_dev(pp
);
3486 mvneta_mdio_remove(pp
);
3487 unregister_cpu_notifier(&pp
->cpu_notifier
);
3488 on_each_cpu(mvneta_percpu_disable
, pp
, true);
3489 free_percpu_irq(dev
->irq
, pp
->ports
);
3490 mvneta_cleanup_rxqs(pp
);
3491 mvneta_cleanup_txqs(pp
);
3496 static int mvneta_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
3498 struct mvneta_port
*pp
= netdev_priv(dev
);
3503 return phy_mii_ioctl(pp
->phy_dev
, ifr
, cmd
);
3506 /* Ethtool methods */
3508 /* Get settings (phy address, speed) for ethtools */
3509 int mvneta_ethtool_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
3511 struct mvneta_port
*pp
= netdev_priv(dev
);
3516 return phy_ethtool_gset(pp
->phy_dev
, cmd
);
3519 /* Set settings (phy address, speed) for ethtools */
3520 int mvneta_ethtool_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
3522 struct mvneta_port
*pp
= netdev_priv(dev
);
3523 struct phy_device
*phydev
= pp
->phy_dev
;
3528 if ((cmd
->autoneg
== AUTONEG_ENABLE
) != pp
->use_inband_status
) {
3531 mvneta_set_autoneg(pp
, cmd
->autoneg
== AUTONEG_ENABLE
);
3533 if (cmd
->autoneg
== AUTONEG_DISABLE
) {
3534 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
3535 val
&= ~(MVNETA_GMAC_CONFIG_MII_SPEED
|
3536 MVNETA_GMAC_CONFIG_GMII_SPEED
|
3537 MVNETA_GMAC_CONFIG_FULL_DUPLEX
);
3540 val
|= MVNETA_GMAC_CONFIG_FULL_DUPLEX
;
3542 if (phydev
->speed
== SPEED_1000
)
3543 val
|= MVNETA_GMAC_CONFIG_GMII_SPEED
;
3544 else if (phydev
->speed
== SPEED_100
)
3545 val
|= MVNETA_GMAC_CONFIG_MII_SPEED
;
3547 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
3550 pp
->use_inband_status
= (cmd
->autoneg
== AUTONEG_ENABLE
);
3551 netdev_info(pp
->dev
, "autoneg status set to %i\n",
3552 pp
->use_inband_status
);
3554 if (netif_running(dev
)) {
3555 mvneta_port_down(pp
);
3560 return phy_ethtool_sset(pp
->phy_dev
, cmd
);
3563 /* Set interrupt coalescing for ethtools */
3564 static int mvneta_ethtool_set_coalesce(struct net_device
*dev
,
3565 struct ethtool_coalesce
*c
)
3567 struct mvneta_port
*pp
= netdev_priv(dev
);
3570 for (queue
= 0; queue
< rxq_number
; queue
++) {
3571 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
3572 rxq
->time_coal
= c
->rx_coalesce_usecs
;
3573 rxq
->pkts_coal
= c
->rx_max_coalesced_frames
;
3574 mvneta_rx_pkts_coal_set(pp
, rxq
, rxq
->pkts_coal
);
3575 mvneta_rx_time_coal_set(pp
, rxq
, rxq
->time_coal
);
3578 for (queue
= 0; queue
< txq_number
; queue
++) {
3579 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
3580 txq
->done_pkts_coal
= c
->tx_max_coalesced_frames
;
3581 mvneta_tx_done_pkts_coal_set(pp
, txq
, txq
->done_pkts_coal
);
3587 /* get coalescing for ethtools */
3588 static int mvneta_ethtool_get_coalesce(struct net_device
*dev
,
3589 struct ethtool_coalesce
*c
)
3591 struct mvneta_port
*pp
= netdev_priv(dev
);
3593 c
->rx_coalesce_usecs
= pp
->rxqs
[0].time_coal
;
3594 c
->rx_max_coalesced_frames
= pp
->rxqs
[0].pkts_coal
;
3596 c
->tx_max_coalesced_frames
= pp
->txqs
[0].done_pkts_coal
;
3601 static void mvneta_ethtool_get_drvinfo(struct net_device
*dev
,
3602 struct ethtool_drvinfo
*drvinfo
)
3604 strlcpy(drvinfo
->driver
, MVNETA_DRIVER_NAME
,
3605 sizeof(drvinfo
->driver
));
3606 strlcpy(drvinfo
->version
, MVNETA_DRIVER_VERSION
,
3607 sizeof(drvinfo
->version
));
3608 strlcpy(drvinfo
->bus_info
, dev_name(&dev
->dev
),
3609 sizeof(drvinfo
->bus_info
));
3613 static void mvneta_ethtool_get_ringparam(struct net_device
*netdev
,
3614 struct ethtool_ringparam
*ring
)
3616 struct mvneta_port
*pp
= netdev_priv(netdev
);
3618 ring
->rx_max_pending
= MVNETA_MAX_RXD
;
3619 ring
->tx_max_pending
= MVNETA_MAX_TXD
;
3620 ring
->rx_pending
= pp
->rx_ring_size
;
3621 ring
->tx_pending
= pp
->tx_ring_size
;
3624 static int mvneta_ethtool_set_ringparam(struct net_device
*dev
,
3625 struct ethtool_ringparam
*ring
)
3627 struct mvneta_port
*pp
= netdev_priv(dev
);
3629 if ((ring
->rx_pending
== 0) || (ring
->tx_pending
== 0))
3631 pp
->rx_ring_size
= ring
->rx_pending
< MVNETA_MAX_RXD
?
3632 ring
->rx_pending
: MVNETA_MAX_RXD
;
3634 pp
->tx_ring_size
= clamp_t(u16
, ring
->tx_pending
,
3635 MVNETA_MAX_SKB_DESCS
* 2, MVNETA_MAX_TXD
);
3636 if (pp
->tx_ring_size
!= ring
->tx_pending
)
3637 netdev_warn(dev
, "TX queue size set to %u (requested %u)\n",
3638 pp
->tx_ring_size
, ring
->tx_pending
);
3640 if (netif_running(dev
)) {
3642 if (mvneta_open(dev
)) {
3644 "error on opening device after ring param change\n");
3652 static void mvneta_ethtool_get_strings(struct net_device
*netdev
, u32 sset
,
3655 if (sset
== ETH_SS_STATS
) {
3658 for (i
= 0; i
< ARRAY_SIZE(mvneta_statistics
); i
++)
3659 memcpy(data
+ i
* ETH_GSTRING_LEN
,
3660 mvneta_statistics
[i
].name
, ETH_GSTRING_LEN
);
3664 static void mvneta_ethtool_update_stats(struct mvneta_port
*pp
)
3666 const struct mvneta_statistic
*s
;
3667 void __iomem
*base
= pp
->base
;
3672 for (i
= 0, s
= mvneta_statistics
;
3673 s
< mvneta_statistics
+ ARRAY_SIZE(mvneta_statistics
);
3677 val
= readl_relaxed(base
+ s
->offset
);
3678 pp
->ethtool_stats
[i
] += val
;
3681 /* Docs say to read low 32-bit then high */
3682 low
= readl_relaxed(base
+ s
->offset
);
3683 high
= readl_relaxed(base
+ s
->offset
+ 4);
3684 val64
= (u64
)high
<< 32 | low
;
3685 pp
->ethtool_stats
[i
] += val64
;
3691 static void mvneta_ethtool_get_stats(struct net_device
*dev
,
3692 struct ethtool_stats
*stats
, u64
*data
)
3694 struct mvneta_port
*pp
= netdev_priv(dev
);
3697 mvneta_ethtool_update_stats(pp
);
3699 for (i
= 0; i
< ARRAY_SIZE(mvneta_statistics
); i
++)
3700 *data
++ = pp
->ethtool_stats
[i
];
3703 static int mvneta_ethtool_get_sset_count(struct net_device
*dev
, int sset
)
3705 if (sset
== ETH_SS_STATS
)
3706 return ARRAY_SIZE(mvneta_statistics
);
3710 static u32
mvneta_ethtool_get_rxfh_indir_size(struct net_device
*dev
)
3712 return MVNETA_RSS_LU_TABLE_SIZE
;
3715 static int mvneta_ethtool_get_rxnfc(struct net_device
*dev
,
3716 struct ethtool_rxnfc
*info
,
3717 u32
*rules __always_unused
)
3719 switch (info
->cmd
) {
3720 case ETHTOOL_GRXRINGS
:
3721 info
->data
= rxq_number
;
3730 static int mvneta_config_rss(struct mvneta_port
*pp
)
3735 netif_tx_stop_all_queues(pp
->dev
);
3737 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3739 /* We have to synchronise on the napi of each CPU */
3740 for_each_online_cpu(cpu
) {
3741 struct mvneta_pcpu_port
*pcpu_port
=
3742 per_cpu_ptr(pp
->ports
, cpu
);
3744 napi_synchronize(&pcpu_port
->napi
);
3745 napi_disable(&pcpu_port
->napi
);
3748 pp
->rxq_def
= pp
->indir
[0];
3750 /* Update unicast mapping */
3751 mvneta_set_rx_mode(pp
->dev
);
3753 /* Update val of portCfg register accordingly with all RxQueue types */
3754 val
= MVNETA_PORT_CONFIG_DEFL_VALUE(pp
->rxq_def
);
3755 mvreg_write(pp
, MVNETA_PORT_CONFIG
, val
);
3757 /* Update the elected CPU matching the new rxq_def */
3758 spin_lock(&pp
->lock
);
3759 mvneta_percpu_elect(pp
);
3760 spin_unlock(&pp
->lock
);
3762 /* We have to synchronise on the napi of each CPU */
3763 for_each_online_cpu(cpu
) {
3764 struct mvneta_pcpu_port
*pcpu_port
=
3765 per_cpu_ptr(pp
->ports
, cpu
);
3767 napi_enable(&pcpu_port
->napi
);
3770 netif_tx_start_all_queues(pp
->dev
);
3775 static int mvneta_ethtool_set_rxfh(struct net_device
*dev
, const u32
*indir
,
3776 const u8
*key
, const u8 hfunc
)
3778 struct mvneta_port
*pp
= netdev_priv(dev
);
3779 /* We require at least one supported parameter to be changed
3780 * and no change in any of the unsupported parameters
3783 (hfunc
!= ETH_RSS_HASH_NO_CHANGE
&& hfunc
!= ETH_RSS_HASH_TOP
))
3789 memcpy(pp
->indir
, indir
, MVNETA_RSS_LU_TABLE_SIZE
);
3791 return mvneta_config_rss(pp
);
3794 static int mvneta_ethtool_get_rxfh(struct net_device
*dev
, u32
*indir
, u8
*key
,
3797 struct mvneta_port
*pp
= netdev_priv(dev
);
3800 *hfunc
= ETH_RSS_HASH_TOP
;
3805 memcpy(indir
, pp
->indir
, MVNETA_RSS_LU_TABLE_SIZE
);
3810 static const struct net_device_ops mvneta_netdev_ops
= {
3811 .ndo_open
= mvneta_open
,
3812 .ndo_stop
= mvneta_stop
,
3813 .ndo_start_xmit
= mvneta_tx
,
3814 .ndo_set_rx_mode
= mvneta_set_rx_mode
,
3815 .ndo_set_mac_address
= mvneta_set_mac_addr
,
3816 .ndo_change_mtu
= mvneta_change_mtu
,
3817 .ndo_fix_features
= mvneta_fix_features
,
3818 .ndo_get_stats64
= mvneta_get_stats64
,
3819 .ndo_do_ioctl
= mvneta_ioctl
,
3822 const struct ethtool_ops mvneta_eth_tool_ops
= {
3823 .get_link
= ethtool_op_get_link
,
3824 .get_settings
= mvneta_ethtool_get_settings
,
3825 .set_settings
= mvneta_ethtool_set_settings
,
3826 .set_coalesce
= mvneta_ethtool_set_coalesce
,
3827 .get_coalesce
= mvneta_ethtool_get_coalesce
,
3828 .get_drvinfo
= mvneta_ethtool_get_drvinfo
,
3829 .get_ringparam
= mvneta_ethtool_get_ringparam
,
3830 .set_ringparam
= mvneta_ethtool_set_ringparam
,
3831 .get_strings
= mvneta_ethtool_get_strings
,
3832 .get_ethtool_stats
= mvneta_ethtool_get_stats
,
3833 .get_sset_count
= mvneta_ethtool_get_sset_count
,
3834 .get_rxfh_indir_size
= mvneta_ethtool_get_rxfh_indir_size
,
3835 .get_rxnfc
= mvneta_ethtool_get_rxnfc
,
3836 .get_rxfh
= mvneta_ethtool_get_rxfh
,
3837 .set_rxfh
= mvneta_ethtool_set_rxfh
,
3841 static int mvneta_init(struct device
*dev
, struct mvneta_port
*pp
)
3846 mvneta_port_disable(pp
);
3848 /* Set port default values */
3849 mvneta_defaults_set(pp
);
3851 pp
->txqs
= devm_kcalloc(dev
, txq_number
, sizeof(struct mvneta_tx_queue
),
3856 /* Initialize TX descriptor rings */
3857 for (queue
= 0; queue
< txq_number
; queue
++) {
3858 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
3860 txq
->size
= pp
->tx_ring_size
;
3861 txq
->done_pkts_coal
= MVNETA_TXDONE_COAL_PKTS
;
3864 pp
->rxqs
= devm_kcalloc(dev
, rxq_number
, sizeof(struct mvneta_rx_queue
),
3869 /* Create Rx descriptor rings */
3870 for (queue
= 0; queue
< rxq_number
; queue
++) {
3871 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
3873 rxq
->size
= pp
->rx_ring_size
;
3874 rxq
->pkts_coal
= MVNETA_RX_COAL_PKTS
;
3875 rxq
->time_coal
= MVNETA_RX_COAL_USEC
;
3881 /* platform glue : initialize decoding windows */
3882 static void mvneta_conf_mbus_windows(struct mvneta_port
*pp
,
3883 const struct mbus_dram_target_info
*dram
)
3889 for (i
= 0; i
< 6; i
++) {
3890 mvreg_write(pp
, MVNETA_WIN_BASE(i
), 0);
3891 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), 0);
3894 mvreg_write(pp
, MVNETA_WIN_REMAP(i
), 0);
3900 for (i
= 0; i
< dram
->num_cs
; i
++) {
3901 const struct mbus_dram_window
*cs
= dram
->cs
+ i
;
3902 mvreg_write(pp
, MVNETA_WIN_BASE(i
), (cs
->base
& 0xffff0000) |
3903 (cs
->mbus_attr
<< 8) | dram
->mbus_dram_target_id
);
3905 mvreg_write(pp
, MVNETA_WIN_SIZE(i
),
3906 (cs
->size
- 1) & 0xffff0000);
3908 win_enable
&= ~(1 << i
);
3909 win_protect
|= 3 << (2 * i
);
3912 mvreg_write(pp
, MVNETA_BASE_ADDR_ENABLE
, win_enable
);
3913 mvreg_write(pp
, MVNETA_ACCESS_PROTECT_ENABLE
, win_protect
);
3916 /* Power up the port */
3917 static int mvneta_port_power_up(struct mvneta_port
*pp
, int phy_mode
)
3921 /* MAC Cause register should be cleared */
3922 mvreg_write(pp
, MVNETA_UNIT_INTR_CAUSE
, 0);
3924 ctrl
= mvreg_read(pp
, MVNETA_GMAC_CTRL_2
);
3926 /* Even though it might look weird, when we're configured in
3927 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3930 case PHY_INTERFACE_MODE_QSGMII
:
3931 mvreg_write(pp
, MVNETA_SERDES_CFG
, MVNETA_QSGMII_SERDES_PROTO
);
3932 ctrl
|= MVNETA_GMAC2_PCS_ENABLE
| MVNETA_GMAC2_PORT_RGMII
;
3934 case PHY_INTERFACE_MODE_SGMII
:
3935 mvreg_write(pp
, MVNETA_SERDES_CFG
, MVNETA_SGMII_SERDES_PROTO
);
3936 ctrl
|= MVNETA_GMAC2_PCS_ENABLE
| MVNETA_GMAC2_PORT_RGMII
;
3938 case PHY_INTERFACE_MODE_RGMII
:
3939 case PHY_INTERFACE_MODE_RGMII_ID
:
3940 ctrl
|= MVNETA_GMAC2_PORT_RGMII
;
3946 /* Cancel Port Reset */
3947 ctrl
&= ~MVNETA_GMAC2_PORT_RESET
;
3948 mvreg_write(pp
, MVNETA_GMAC_CTRL_2
, ctrl
);
3950 while ((mvreg_read(pp
, MVNETA_GMAC_CTRL_2
) &
3951 MVNETA_GMAC2_PORT_RESET
) != 0)
3957 /* Device initialization routine */
3958 static int mvneta_probe(struct platform_device
*pdev
)
3960 const struct mbus_dram_target_info
*dram_target_info
;
3961 struct resource
*res
;
3962 struct device_node
*dn
= pdev
->dev
.of_node
;
3963 struct device_node
*phy_node
;
3964 struct device_node
*bm_node
;
3965 struct mvneta_port
*pp
;
3966 struct net_device
*dev
;
3967 const char *dt_mac_addr
;
3968 char hw_mac_addr
[ETH_ALEN
];
3969 const char *mac_from
;
3970 const char *managed
;
3976 dev
= alloc_etherdev_mqs(sizeof(struct mvneta_port
), txq_number
, rxq_number
);
3980 dev
->irq
= irq_of_parse_and_map(dn
, 0);
3981 if (dev
->irq
== 0) {
3983 goto err_free_netdev
;
3986 phy_node
= of_parse_phandle(dn
, "phy", 0);
3988 if (!of_phy_is_fixed_link(dn
)) {
3989 dev_err(&pdev
->dev
, "no PHY specified\n");
3994 err
= of_phy_register_fixed_link(dn
);
3996 dev_err(&pdev
->dev
, "cannot register fixed PHY\n");
4000 /* In the case of a fixed PHY, the DT node associated
4001 * to the PHY is the Ethernet MAC DT node.
4003 phy_node
= of_node_get(dn
);
4006 phy_mode
= of_get_phy_mode(dn
);
4008 dev_err(&pdev
->dev
, "incorrect phy-mode\n");
4010 goto err_put_phy_node
;
4013 dev
->tx_queue_len
= MVNETA_MAX_TXD
;
4014 dev
->watchdog_timeo
= 5 * HZ
;
4015 dev
->netdev_ops
= &mvneta_netdev_ops
;
4017 dev
->ethtool_ops
= &mvneta_eth_tool_ops
;
4019 pp
= netdev_priv(dev
);
4020 spin_lock_init(&pp
->lock
);
4021 pp
->phy_node
= phy_node
;
4022 pp
->phy_interface
= phy_mode
;
4024 err
= of_property_read_string(dn
, "managed", &managed
);
4025 pp
->use_inband_status
= (err
== 0 &&
4026 strcmp(managed
, "in-band-status") == 0);
4027 pp
->cpu_notifier
.notifier_call
= mvneta_percpu_notifier
;
4029 pp
->rxq_def
= rxq_def
;
4031 pp
->indir
[0] = rxq_def
;
4033 pp
->clk
= devm_clk_get(&pdev
->dev
, "core");
4034 if (IS_ERR(pp
->clk
))
4035 pp
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
4036 if (IS_ERR(pp
->clk
)) {
4037 err
= PTR_ERR(pp
->clk
);
4038 goto err_put_phy_node
;
4041 clk_prepare_enable(pp
->clk
);
4043 pp
->clk_bus
= devm_clk_get(&pdev
->dev
, "bus");
4044 if (!IS_ERR(pp
->clk_bus
))
4045 clk_prepare_enable(pp
->clk_bus
);
4047 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
4048 pp
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
4049 if (IS_ERR(pp
->base
)) {
4050 err
= PTR_ERR(pp
->base
);
4054 /* Alloc per-cpu port structure */
4055 pp
->ports
= alloc_percpu(struct mvneta_pcpu_port
);
4061 /* Alloc per-cpu stats */
4062 pp
->stats
= netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats
);
4065 goto err_free_ports
;
4068 dt_mac_addr
= of_get_mac_address(dn
);
4070 mac_from
= "device tree";
4071 memcpy(dev
->dev_addr
, dt_mac_addr
, ETH_ALEN
);
4073 mvneta_get_mac_addr(pp
, hw_mac_addr
);
4074 if (is_valid_ether_addr(hw_mac_addr
)) {
4075 mac_from
= "hardware";
4076 memcpy(dev
->dev_addr
, hw_mac_addr
, ETH_ALEN
);
4078 mac_from
= "random";
4079 eth_hw_addr_random(dev
);
4083 if (!of_property_read_u32(dn
, "tx-csum-limit", &tx_csum_limit
)) {
4084 if (tx_csum_limit
< 0 ||
4085 tx_csum_limit
> MVNETA_TX_CSUM_MAX_SIZE
) {
4086 tx_csum_limit
= MVNETA_TX_CSUM_DEF_SIZE
;
4087 dev_info(&pdev
->dev
,
4088 "Wrong TX csum limit in DT, set to %dB\n",
4089 MVNETA_TX_CSUM_DEF_SIZE
);
4091 } else if (of_device_is_compatible(dn
, "marvell,armada-370-neta")) {
4092 tx_csum_limit
= MVNETA_TX_CSUM_DEF_SIZE
;
4094 tx_csum_limit
= MVNETA_TX_CSUM_MAX_SIZE
;
4097 pp
->tx_csum_limit
= tx_csum_limit
;
4099 dram_target_info
= mv_mbus_dram_info();
4100 if (dram_target_info
)
4101 mvneta_conf_mbus_windows(pp
, dram_target_info
);
4103 pp
->tx_ring_size
= MVNETA_MAX_TXD
;
4104 pp
->rx_ring_size
= MVNETA_MAX_RXD
;
4107 SET_NETDEV_DEV(dev
, &pdev
->dev
);
4109 pp
->id
= global_port_id
++;
4111 /* Obtain access to BM resources if enabled and already initialized */
4112 bm_node
= of_parse_phandle(dn
, "buffer-manager", 0);
4113 if (bm_node
&& bm_node
->data
) {
4114 pp
->bm_priv
= bm_node
->data
;
4115 err
= mvneta_bm_port_init(pdev
, pp
);
4117 dev_info(&pdev
->dev
, "use SW buffer management\n");
4122 err
= mvneta_init(&pdev
->dev
, pp
);
4126 err
= mvneta_port_power_up(pp
, phy_mode
);
4128 dev_err(&pdev
->dev
, "can't power up port\n");
4132 for_each_present_cpu(cpu
) {
4133 struct mvneta_pcpu_port
*port
= per_cpu_ptr(pp
->ports
, cpu
);
4135 netif_napi_add(dev
, &port
->napi
, mvneta_poll
, NAPI_POLL_WEIGHT
);
4139 dev
->features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_TSO
;
4140 dev
->hw_features
|= dev
->features
;
4141 dev
->vlan_features
|= dev
->features
;
4142 dev
->priv_flags
|= IFF_UNICAST_FLT
| IFF_LIVE_ADDR_CHANGE
;
4143 dev
->gso_max_segs
= MVNETA_MAX_TSO_SEGS
;
4145 err
= register_netdev(dev
);
4147 dev_err(&pdev
->dev
, "failed to register\n");
4148 goto err_free_stats
;
4151 netdev_info(dev
, "Using %s mac address %pM\n", mac_from
,
4154 platform_set_drvdata(pdev
, pp
->dev
);
4156 if (pp
->use_inband_status
) {
4157 struct phy_device
*phy
= of_phy_find_device(dn
);
4159 mvneta_fixed_link_update(pp
, phy
);
4161 put_device(&phy
->mdio
.dev
);
4167 unregister_netdev(dev
);
4169 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
4170 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_short
,
4174 free_percpu(pp
->stats
);
4176 free_percpu(pp
->ports
);
4178 clk_disable_unprepare(pp
->clk_bus
);
4179 clk_disable_unprepare(pp
->clk
);
4181 of_node_put(phy_node
);
4183 irq_dispose_mapping(dev
->irq
);
4189 /* Device removal routine */
4190 static int mvneta_remove(struct platform_device
*pdev
)
4192 struct net_device
*dev
= platform_get_drvdata(pdev
);
4193 struct mvneta_port
*pp
= netdev_priv(dev
);
4195 unregister_netdev(dev
);
4196 clk_disable_unprepare(pp
->clk_bus
);
4197 clk_disable_unprepare(pp
->clk
);
4198 free_percpu(pp
->ports
);
4199 free_percpu(pp
->stats
);
4200 irq_dispose_mapping(dev
->irq
);
4201 of_node_put(pp
->phy_node
);
4205 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
4206 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_short
,
4213 static const struct of_device_id mvneta_match
[] = {
4214 { .compatible
= "marvell,armada-370-neta" },
4215 { .compatible
= "marvell,armada-xp-neta" },
4218 MODULE_DEVICE_TABLE(of
, mvneta_match
);
4220 static struct platform_driver mvneta_driver
= {
4221 .probe
= mvneta_probe
,
4222 .remove
= mvneta_remove
,
4224 .name
= MVNETA_DRIVER_NAME
,
4225 .of_match_table
= mvneta_match
,
4229 module_platform_driver(mvneta_driver
);
4231 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4232 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4233 MODULE_LICENSE("GPL");
4235 module_param(rxq_number
, int, S_IRUGO
);
4236 module_param(txq_number
, int, S_IRUGO
);
4238 module_param(rxq_def
, int, S_IRUGO
);
4239 module_param(rx_copybreak
, int, S_IRUGO
| S_IWUSR
);