Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
blob7869465435fa81e9c9ebd9e5ae780b01efb20087
1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #include <net/vxlan.h>
28 #include <linux/ip.h>
29 #include <net/ipv6.h>
30 #include <net/tcp.h>
31 #include <linux/if_ether.h>
32 #include <linux/if_vlan.h>
33 #include <linux/pkt_sched.h>
34 #include <linux/ethtool.h>
35 #include <linux/in.h>
36 #include <linux/random.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/bitops.h>
40 #include "qede.h"
42 static char version[] =
43 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
45 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
49 static uint debug;
50 module_param(debug, uint, 0);
51 MODULE_PARM_DESC(debug, " Default debug msglevel");
53 static const struct qed_eth_ops *qed_ops;
55 #define CHIP_NUM_57980S_40 0x1634
56 #define CHIP_NUM_57980S_10 0x1666
57 #define CHIP_NUM_57980S_MF 0x1636
58 #define CHIP_NUM_57980S_100 0x1644
59 #define CHIP_NUM_57980S_50 0x1654
60 #define CHIP_NUM_57980S_25 0x1656
62 #ifndef PCI_DEVICE_ID_NX2_57980E
63 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
64 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
65 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
66 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
67 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
68 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
69 #endif
71 static const struct pci_device_id qede_pci_tbl[] = {
72 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), 0 },
73 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), 0 },
74 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), 0 },
75 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), 0 },
76 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), 0 },
77 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), 0 },
78 { 0 }
81 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
83 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
85 #define TX_TIMEOUT (5 * HZ)
87 static void qede_remove(struct pci_dev *pdev);
88 static int qede_alloc_rx_buffer(struct qede_dev *edev,
89 struct qede_rx_queue *rxq);
90 static void qede_link_update(void *dev, struct qed_link_output *link);
92 static struct pci_driver qede_pci_driver = {
93 .name = "qede",
94 .id_table = qede_pci_tbl,
95 .probe = qede_probe,
96 .remove = qede_remove,
99 static struct qed_eth_cb_ops qede_ll_ops = {
101 .link_update = qede_link_update,
105 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
106 void *ptr)
108 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
109 struct ethtool_drvinfo drvinfo;
110 struct qede_dev *edev;
112 /* Currently only support name change */
113 if (event != NETDEV_CHANGENAME)
114 goto done;
116 /* Check whether this is a qede device */
117 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
118 goto done;
120 memset(&drvinfo, 0, sizeof(drvinfo));
121 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
122 if (strcmp(drvinfo.driver, "qede"))
123 goto done;
124 edev = netdev_priv(ndev);
126 /* Notify qed of the name change */
127 if (!edev->ops || !edev->ops->common)
128 goto done;
129 edev->ops->common->set_id(edev->cdev, edev->ndev->name,
130 "qede");
132 done:
133 return NOTIFY_DONE;
136 static struct notifier_block qede_netdev_notifier = {
137 .notifier_call = qede_netdev_event,
140 static
141 int __init qede_init(void)
143 int ret;
144 u32 qed_ver;
146 pr_notice("qede_init: %s\n", version);
148 qed_ver = qed_get_protocol_version(QED_PROTOCOL_ETH);
149 if (qed_ver != QEDE_ETH_INTERFACE_VERSION) {
150 pr_notice("Version mismatch [%08x != %08x]\n",
151 qed_ver,
152 QEDE_ETH_INTERFACE_VERSION);
153 return -EINVAL;
156 qed_ops = qed_get_eth_ops(QEDE_ETH_INTERFACE_VERSION);
157 if (!qed_ops) {
158 pr_notice("Failed to get qed ethtool operations\n");
159 return -EINVAL;
162 /* Must register notifier before pci ops, since we might miss
163 * interface rename after pci probe and netdev registeration.
165 ret = register_netdevice_notifier(&qede_netdev_notifier);
166 if (ret) {
167 pr_notice("Failed to register netdevice_notifier\n");
168 qed_put_eth_ops();
169 return -EINVAL;
172 ret = pci_register_driver(&qede_pci_driver);
173 if (ret) {
174 pr_notice("Failed to register driver\n");
175 unregister_netdevice_notifier(&qede_netdev_notifier);
176 qed_put_eth_ops();
177 return -EINVAL;
180 return 0;
183 static void __exit qede_cleanup(void)
185 pr_notice("qede_cleanup called\n");
187 unregister_netdevice_notifier(&qede_netdev_notifier);
188 pci_unregister_driver(&qede_pci_driver);
189 qed_put_eth_ops();
192 module_init(qede_init);
193 module_exit(qede_cleanup);
195 /* -------------------------------------------------------------------------
196 * START OF FAST-PATH
197 * -------------------------------------------------------------------------
200 /* Unmap the data and free skb */
201 static int qede_free_tx_pkt(struct qede_dev *edev,
202 struct qede_tx_queue *txq,
203 int *len)
205 u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
206 struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
207 struct eth_tx_1st_bd *first_bd;
208 struct eth_tx_bd *tx_data_bd;
209 int bds_consumed = 0;
210 int nbds;
211 bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
212 int i, split_bd_len = 0;
214 if (unlikely(!skb)) {
215 DP_ERR(edev,
216 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
217 idx, txq->sw_tx_cons, txq->sw_tx_prod);
218 return -1;
221 *len = skb->len;
223 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
225 bds_consumed++;
227 nbds = first_bd->data.nbds;
229 if (data_split) {
230 struct eth_tx_bd *split = (struct eth_tx_bd *)
231 qed_chain_consume(&txq->tx_pbl);
232 split_bd_len = BD_UNMAP_LEN(split);
233 bds_consumed++;
235 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
236 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
238 /* Unmap the data of the skb frags */
239 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
240 tx_data_bd = (struct eth_tx_bd *)
241 qed_chain_consume(&txq->tx_pbl);
242 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
243 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
246 while (bds_consumed++ < nbds)
247 qed_chain_consume(&txq->tx_pbl);
249 /* Free skb */
250 dev_kfree_skb_any(skb);
251 txq->sw_tx_ring[idx].skb = NULL;
252 txq->sw_tx_ring[idx].flags = 0;
254 return 0;
257 /* Unmap the data and free skb when mapping failed during start_xmit */
258 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
259 struct qede_tx_queue *txq,
260 struct eth_tx_1st_bd *first_bd,
261 int nbd,
262 bool data_split)
264 u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
265 struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
266 struct eth_tx_bd *tx_data_bd;
267 int i, split_bd_len = 0;
269 /* Return prod to its position before this skb was handled */
270 qed_chain_set_prod(&txq->tx_pbl,
271 le16_to_cpu(txq->tx_db.data.bd_prod),
272 first_bd);
274 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
276 if (data_split) {
277 struct eth_tx_bd *split = (struct eth_tx_bd *)
278 qed_chain_produce(&txq->tx_pbl);
279 split_bd_len = BD_UNMAP_LEN(split);
280 nbd--;
283 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
284 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
286 /* Unmap the data of the skb frags */
287 for (i = 0; i < nbd; i++) {
288 tx_data_bd = (struct eth_tx_bd *)
289 qed_chain_produce(&txq->tx_pbl);
290 if (tx_data_bd->nbytes)
291 dma_unmap_page(&edev->pdev->dev,
292 BD_UNMAP_ADDR(tx_data_bd),
293 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
296 /* Return again prod to its position before this skb was handled */
297 qed_chain_set_prod(&txq->tx_pbl,
298 le16_to_cpu(txq->tx_db.data.bd_prod),
299 first_bd);
301 /* Free skb */
302 dev_kfree_skb_any(skb);
303 txq->sw_tx_ring[idx].skb = NULL;
304 txq->sw_tx_ring[idx].flags = 0;
307 static u32 qede_xmit_type(struct qede_dev *edev,
308 struct sk_buff *skb,
309 int *ipv6_ext)
311 u32 rc = XMIT_L4_CSUM;
312 __be16 l3_proto;
314 if (skb->ip_summed != CHECKSUM_PARTIAL)
315 return XMIT_PLAIN;
317 l3_proto = vlan_get_protocol(skb);
318 if (l3_proto == htons(ETH_P_IPV6) &&
319 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
320 *ipv6_ext = 1;
322 if (skb_is_gso(skb))
323 rc |= XMIT_LSO;
325 return rc;
328 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
329 struct eth_tx_2nd_bd *second_bd,
330 struct eth_tx_3rd_bd *third_bd)
332 u8 l4_proto;
333 u16 bd2_bits1 = 0, bd2_bits2 = 0;
335 bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
337 bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
338 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
339 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
341 bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
342 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
344 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
345 l4_proto = ipv6_hdr(skb)->nexthdr;
346 else
347 l4_proto = ip_hdr(skb)->protocol;
349 if (l4_proto == IPPROTO_UDP)
350 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
352 if (third_bd)
353 third_bd->data.bitfields |=
354 cpu_to_le16(((tcp_hdrlen(skb) / 4) &
355 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
356 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
358 second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
359 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
362 static int map_frag_to_bd(struct qede_dev *edev,
363 skb_frag_t *frag,
364 struct eth_tx_bd *bd)
366 dma_addr_t mapping;
368 /* Map skb non-linear frag data for DMA */
369 mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
370 skb_frag_size(frag),
371 DMA_TO_DEVICE);
372 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
373 DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
374 return -ENOMEM;
377 /* Setup the data pointer of the frag data */
378 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
380 return 0;
383 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
384 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
385 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
386 u8 xmit_type)
388 int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
390 if (xmit_type & XMIT_LSO) {
391 int hlen;
393 hlen = skb_transport_header(skb) +
394 tcp_hdrlen(skb) - skb->data;
396 /* linear payload would require its own BD */
397 if (skb_headlen(skb) > hlen)
398 allowed_frags--;
401 return (skb_shinfo(skb)->nr_frags > allowed_frags);
403 #endif
405 /* Main transmit function */
406 static
407 netdev_tx_t qede_start_xmit(struct sk_buff *skb,
408 struct net_device *ndev)
410 struct qede_dev *edev = netdev_priv(ndev);
411 struct netdev_queue *netdev_txq;
412 struct qede_tx_queue *txq;
413 struct eth_tx_1st_bd *first_bd;
414 struct eth_tx_2nd_bd *second_bd = NULL;
415 struct eth_tx_3rd_bd *third_bd = NULL;
416 struct eth_tx_bd *tx_data_bd = NULL;
417 u16 txq_index;
418 u8 nbd = 0;
419 dma_addr_t mapping;
420 int rc, frag_idx = 0, ipv6_ext = 0;
421 u8 xmit_type;
422 u16 idx;
423 u16 hlen;
424 bool data_split;
426 /* Get tx-queue context and netdev index */
427 txq_index = skb_get_queue_mapping(skb);
428 WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
429 txq = QEDE_TX_QUEUE(edev, txq_index);
430 netdev_txq = netdev_get_tx_queue(ndev, txq_index);
432 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
433 (MAX_SKB_FRAGS + 1));
435 xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
437 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
438 if (qede_pkt_req_lin(edev, skb, xmit_type)) {
439 if (skb_linearize(skb)) {
440 DP_NOTICE(edev,
441 "SKB linearization failed - silently dropping this SKB\n");
442 dev_kfree_skb_any(skb);
443 return NETDEV_TX_OK;
446 #endif
448 /* Fill the entry in the SW ring and the BDs in the FW ring */
449 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
450 txq->sw_tx_ring[idx].skb = skb;
451 first_bd = (struct eth_tx_1st_bd *)
452 qed_chain_produce(&txq->tx_pbl);
453 memset(first_bd, 0, sizeof(*first_bd));
454 first_bd->data.bd_flags.bitfields =
455 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
457 /* Map skb linear data for DMA and set in the first BD */
458 mapping = dma_map_single(&edev->pdev->dev, skb->data,
459 skb_headlen(skb), DMA_TO_DEVICE);
460 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
461 DP_NOTICE(edev, "SKB mapping failed\n");
462 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
463 return NETDEV_TX_OK;
465 nbd++;
466 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
468 /* In case there is IPv6 with extension headers or LSO we need 2nd and
469 * 3rd BDs.
471 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
472 second_bd = (struct eth_tx_2nd_bd *)
473 qed_chain_produce(&txq->tx_pbl);
474 memset(second_bd, 0, sizeof(*second_bd));
476 nbd++;
477 third_bd = (struct eth_tx_3rd_bd *)
478 qed_chain_produce(&txq->tx_pbl);
479 memset(third_bd, 0, sizeof(*third_bd));
481 nbd++;
482 /* We need to fill in additional data in second_bd... */
483 tx_data_bd = (struct eth_tx_bd *)second_bd;
486 if (skb_vlan_tag_present(skb)) {
487 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
488 first_bd->data.bd_flags.bitfields |=
489 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
492 /* Fill the parsing flags & params according to the requested offload */
493 if (xmit_type & XMIT_L4_CSUM) {
494 u16 temp = 1 << ETH_TX_DATA_1ST_BD_TUNN_CFG_OVERRIDE_SHIFT;
496 /* We don't re-calculate IP checksum as it is already done by
497 * the upper stack
499 first_bd->data.bd_flags.bitfields |=
500 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
502 first_bd->data.bitfields |= cpu_to_le16(temp);
504 /* If the packet is IPv6 with extension header, indicate that
505 * to FW and pass few params, since the device cracker doesn't
506 * support parsing IPv6 with extension header/s.
508 if (unlikely(ipv6_ext))
509 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
512 if (xmit_type & XMIT_LSO) {
513 first_bd->data.bd_flags.bitfields |=
514 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
515 third_bd->data.lso_mss =
516 cpu_to_le16(skb_shinfo(skb)->gso_size);
518 first_bd->data.bd_flags.bitfields |=
519 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
520 hlen = skb_transport_header(skb) +
521 tcp_hdrlen(skb) - skb->data;
523 /* @@@TBD - if will not be removed need to check */
524 third_bd->data.bitfields |=
525 cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
527 /* Make life easier for FW guys who can't deal with header and
528 * data on same BD. If we need to split, use the second bd...
530 if (unlikely(skb_headlen(skb) > hlen)) {
531 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
532 "TSO split header size is %d (%x:%x)\n",
533 first_bd->nbytes, first_bd->addr.hi,
534 first_bd->addr.lo);
536 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
537 le32_to_cpu(first_bd->addr.lo)) +
538 hlen;
540 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
541 le16_to_cpu(first_bd->nbytes) -
542 hlen);
544 /* this marks the BD as one that has no
545 * individual mapping
547 txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
549 first_bd->nbytes = cpu_to_le16(hlen);
551 tx_data_bd = (struct eth_tx_bd *)third_bd;
552 data_split = true;
556 /* Handle fragmented skb */
557 /* special handle for frags inside 2nd and 3rd bds.. */
558 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
559 rc = map_frag_to_bd(edev,
560 &skb_shinfo(skb)->frags[frag_idx],
561 tx_data_bd);
562 if (rc) {
563 qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
564 data_split);
565 return NETDEV_TX_OK;
568 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
569 tx_data_bd = (struct eth_tx_bd *)third_bd;
570 else
571 tx_data_bd = NULL;
573 frag_idx++;
576 /* map last frags into 4th, 5th .... */
577 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
578 tx_data_bd = (struct eth_tx_bd *)
579 qed_chain_produce(&txq->tx_pbl);
581 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
583 rc = map_frag_to_bd(edev,
584 &skb_shinfo(skb)->frags[frag_idx],
585 tx_data_bd);
586 if (rc) {
587 qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
588 data_split);
589 return NETDEV_TX_OK;
593 /* update the first BD with the actual num BDs */
594 first_bd->data.nbds = nbd;
596 netdev_tx_sent_queue(netdev_txq, skb->len);
598 skb_tx_timestamp(skb);
600 /* Advance packet producer only before sending the packet since mapping
601 * of pages may fail.
603 txq->sw_tx_prod++;
605 /* 'next page' entries are counted in the producer value */
606 txq->tx_db.data.bd_prod =
607 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
609 /* wmb makes sure that the BDs data is updated before updating the
610 * producer, otherwise FW may read old data from the BDs.
612 wmb();
613 barrier();
614 writel(txq->tx_db.raw, txq->doorbell_addr);
616 /* mmiowb is needed to synchronize doorbell writes from more than one
617 * processor. It guarantees that the write arrives to the device before
618 * the queue lock is released and another start_xmit is called (possibly
619 * on another CPU). Without this barrier, the next doorbell can bypass
620 * this doorbell. This is applicable to IA64/Altix systems.
622 mmiowb();
624 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
625 < (MAX_SKB_FRAGS + 1))) {
626 netif_tx_stop_queue(netdev_txq);
627 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
628 "Stop queue was called\n");
629 /* paired memory barrier is in qede_tx_int(), we have to keep
630 * ordering of set_bit() in netif_tx_stop_queue() and read of
631 * fp->bd_tx_cons
633 smp_mb();
635 if (qed_chain_get_elem_left(&txq->tx_pbl)
636 >= (MAX_SKB_FRAGS + 1) &&
637 (edev->state == QEDE_STATE_OPEN)) {
638 netif_tx_wake_queue(netdev_txq);
639 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
640 "Wake queue was called\n");
644 return NETDEV_TX_OK;
647 static int qede_txq_has_work(struct qede_tx_queue *txq)
649 u16 hw_bd_cons;
651 /* Tell compiler that consumer and producer can change */
652 barrier();
653 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
654 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
655 return 0;
657 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
660 static int qede_tx_int(struct qede_dev *edev,
661 struct qede_tx_queue *txq)
663 struct netdev_queue *netdev_txq;
664 u16 hw_bd_cons;
665 unsigned int pkts_compl = 0, bytes_compl = 0;
666 int rc;
668 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
670 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
671 barrier();
673 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
674 int len = 0;
676 rc = qede_free_tx_pkt(edev, txq, &len);
677 if (rc) {
678 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
679 hw_bd_cons,
680 qed_chain_get_cons_idx(&txq->tx_pbl));
681 break;
684 bytes_compl += len;
685 pkts_compl++;
686 txq->sw_tx_cons++;
689 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
691 /* Need to make the tx_bd_cons update visible to start_xmit()
692 * before checking for netif_tx_queue_stopped(). Without the
693 * memory barrier, there is a small possibility that
694 * start_xmit() will miss it and cause the queue to be stopped
695 * forever.
696 * On the other hand we need an rmb() here to ensure the proper
697 * ordering of bit testing in the following
698 * netif_tx_queue_stopped(txq) call.
700 smp_mb();
702 if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
703 /* Taking tx_lock is needed to prevent reenabling the queue
704 * while it's empty. This could have happen if rx_action() gets
705 * suspended in qede_tx_int() after the condition before
706 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
708 * stops the queue->sees fresh tx_bd_cons->releases the queue->
709 * sends some packets consuming the whole queue again->
710 * stops the queue
713 __netif_tx_lock(netdev_txq, smp_processor_id());
715 if ((netif_tx_queue_stopped(netdev_txq)) &&
716 (edev->state == QEDE_STATE_OPEN) &&
717 (qed_chain_get_elem_left(&txq->tx_pbl)
718 >= (MAX_SKB_FRAGS + 1))) {
719 netif_tx_wake_queue(netdev_txq);
720 DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
721 "Wake queue was called\n");
724 __netif_tx_unlock(netdev_txq);
727 return 0;
730 static bool qede_has_rx_work(struct qede_rx_queue *rxq)
732 u16 hw_comp_cons, sw_comp_cons;
734 /* Tell compiler that status block fields can change */
735 barrier();
737 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
738 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
740 return hw_comp_cons != sw_comp_cons;
743 static bool qede_has_tx_work(struct qede_fastpath *fp)
745 u8 tc;
747 for (tc = 0; tc < fp->edev->num_tc; tc++)
748 if (qede_txq_has_work(&fp->txqs[tc]))
749 return true;
750 return false;
753 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
755 qed_chain_consume(&rxq->rx_bd_ring);
756 rxq->sw_rx_cons++;
759 /* This function reuses the buffer(from an offset) from
760 * consumer index to producer index in the bd ring
762 static inline void qede_reuse_page(struct qede_dev *edev,
763 struct qede_rx_queue *rxq,
764 struct sw_rx_data *curr_cons)
766 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
767 struct sw_rx_data *curr_prod;
768 dma_addr_t new_mapping;
770 curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
771 *curr_prod = *curr_cons;
773 new_mapping = curr_prod->mapping + curr_prod->page_offset;
775 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
776 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
778 rxq->sw_rx_prod++;
779 curr_cons->data = NULL;
782 /* In case of allocation failures reuse buffers
783 * from consumer index to produce buffers for firmware
785 static void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
786 struct qede_dev *edev, u8 count)
788 struct sw_rx_data *curr_cons;
790 for (; count > 0; count--) {
791 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
792 qede_reuse_page(edev, rxq, curr_cons);
793 qede_rx_bd_ring_consume(rxq);
797 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
798 struct qede_rx_queue *rxq,
799 struct sw_rx_data *curr_cons)
801 /* Move to the next segment in the page */
802 curr_cons->page_offset += rxq->rx_buf_seg_size;
804 if (curr_cons->page_offset == PAGE_SIZE) {
805 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
806 /* Since we failed to allocate new buffer
807 * current buffer can be used again.
809 curr_cons->page_offset -= rxq->rx_buf_seg_size;
811 return -ENOMEM;
814 dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
815 PAGE_SIZE, DMA_FROM_DEVICE);
816 } else {
817 /* Increment refcount of the page as we don't want
818 * network stack to take the ownership of the page
819 * which can be recycled multiple times by the driver.
821 atomic_inc(&curr_cons->data->_count);
822 qede_reuse_page(edev, rxq, curr_cons);
825 return 0;
828 static inline void qede_update_rx_prod(struct qede_dev *edev,
829 struct qede_rx_queue *rxq)
831 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
832 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
833 struct eth_rx_prod_data rx_prods = {0};
835 /* Update producers */
836 rx_prods.bd_prod = cpu_to_le16(bd_prod);
837 rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
839 /* Make sure that the BD and SGE data is updated before updating the
840 * producers since FW might read the BD/SGE right after the producer
841 * is updated.
843 wmb();
845 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
846 (u32 *)&rx_prods);
848 /* mmiowb is needed to synchronize doorbell writes from more than one
849 * processor. It guarantees that the write arrives to the device before
850 * the napi lock is released and another qede_poll is called (possibly
851 * on another CPU). Without this barrier, the next doorbell can bypass
852 * this doorbell. This is applicable to IA64/Altix systems.
854 mmiowb();
857 static u32 qede_get_rxhash(struct qede_dev *edev,
858 u8 bitfields,
859 __le32 rss_hash,
860 enum pkt_hash_types *rxhash_type)
862 enum rss_hash_type htype;
864 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
866 if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
867 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
868 (htype == RSS_HASH_TYPE_IPV6)) ?
869 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
870 return le32_to_cpu(rss_hash);
872 *rxhash_type = PKT_HASH_TYPE_NONE;
873 return 0;
876 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
878 skb_checksum_none_assert(skb);
880 if (csum_flag & QEDE_CSUM_UNNECESSARY)
881 skb->ip_summed = CHECKSUM_UNNECESSARY;
884 static inline void qede_skb_receive(struct qede_dev *edev,
885 struct qede_fastpath *fp,
886 struct sk_buff *skb,
887 u16 vlan_tag)
889 if (vlan_tag)
890 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
891 vlan_tag);
893 napi_gro_receive(&fp->napi, skb);
896 static void qede_set_gro_params(struct qede_dev *edev,
897 struct sk_buff *skb,
898 struct eth_fast_path_rx_tpa_start_cqe *cqe)
900 u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
902 if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
903 PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
904 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
905 else
906 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
908 skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
909 cqe->header_len;
912 static int qede_fill_frag_skb(struct qede_dev *edev,
913 struct qede_rx_queue *rxq,
914 u8 tpa_agg_index,
915 u16 len_on_bd)
917 struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
918 NUM_RX_BDS_MAX];
919 struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
920 struct sk_buff *skb = tpa_info->skb;
922 if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
923 goto out;
925 /* Add one frag and update the appropriate fields in the skb */
926 skb_fill_page_desc(skb, tpa_info->frag_id++,
927 current_bd->data, current_bd->page_offset,
928 len_on_bd);
930 if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
931 /* Incr page ref count to reuse on allocation failure
932 * so that it doesn't get freed while freeing SKB.
934 atomic_inc(&current_bd->data->_count);
935 goto out;
938 qed_chain_consume(&rxq->rx_bd_ring);
939 rxq->sw_rx_cons++;
941 skb->data_len += len_on_bd;
942 skb->truesize += rxq->rx_buf_seg_size;
943 skb->len += len_on_bd;
945 return 0;
947 out:
948 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
949 qede_recycle_rx_bd_ring(rxq, edev, 1);
950 return -ENOMEM;
953 static void qede_tpa_start(struct qede_dev *edev,
954 struct qede_rx_queue *rxq,
955 struct eth_fast_path_rx_tpa_start_cqe *cqe)
957 struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
958 struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
959 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
960 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
961 dma_addr_t mapping = tpa_info->replace_buf_mapping;
962 struct sw_rx_data *sw_rx_data_cons;
963 struct sw_rx_data *sw_rx_data_prod;
964 enum pkt_hash_types rxhash_type;
965 u32 rxhash;
967 sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
968 sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
970 /* Use pre-allocated replacement buffer - we can't release the agg.
971 * start until its over and we don't want to risk allocation failing
972 * here, so re-allocate when aggregation will be over.
974 dma_unmap_addr_set(sw_rx_data_prod, mapping,
975 dma_unmap_addr(replace_buf, mapping));
977 sw_rx_data_prod->data = replace_buf->data;
978 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
979 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
980 sw_rx_data_prod->page_offset = replace_buf->page_offset;
982 rxq->sw_rx_prod++;
984 /* move partial skb from cons to pool (don't unmap yet)
985 * save mapping, incase we drop the packet later on.
987 tpa_info->start_buf = *sw_rx_data_cons;
988 mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
989 le32_to_cpu(rx_bd_cons->addr.lo));
991 tpa_info->start_buf_mapping = mapping;
992 rxq->sw_rx_cons++;
994 /* set tpa state to start only if we are able to allocate skb
995 * for this aggregation, otherwise mark as error and aggregation will
996 * be dropped
998 tpa_info->skb = netdev_alloc_skb(edev->ndev,
999 le16_to_cpu(cqe->len_on_first_bd));
1000 if (unlikely(!tpa_info->skb)) {
1001 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1002 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1003 goto cons_buf;
1006 skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1007 memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1009 /* Start filling in the aggregation info */
1010 tpa_info->frag_id = 0;
1011 tpa_info->agg_state = QEDE_AGG_STATE_START;
1013 rxhash = qede_get_rxhash(edev, cqe->bitfields,
1014 cqe->rss_hash, &rxhash_type);
1015 skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1016 if ((le16_to_cpu(cqe->pars_flags.flags) >>
1017 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1018 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1019 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1020 else
1021 tpa_info->vlan_tag = 0;
1023 /* This is needed in order to enable forwarding support */
1024 qede_set_gro_params(edev, tpa_info->skb, cqe);
1026 cons_buf: /* We still need to handle bd_len_list to consume buffers */
1027 if (likely(cqe->ext_bd_len_list[0]))
1028 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1029 le16_to_cpu(cqe->ext_bd_len_list[0]));
1031 if (unlikely(cqe->ext_bd_len_list[1])) {
1032 DP_ERR(edev,
1033 "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1034 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1038 #ifdef CONFIG_INET
1039 static void qede_gro_ip_csum(struct sk_buff *skb)
1041 const struct iphdr *iph = ip_hdr(skb);
1042 struct tcphdr *th;
1044 skb_set_transport_header(skb, sizeof(struct iphdr));
1045 th = tcp_hdr(skb);
1047 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1048 iph->saddr, iph->daddr, 0);
1050 tcp_gro_complete(skb);
1053 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1055 struct ipv6hdr *iph = ipv6_hdr(skb);
1056 struct tcphdr *th;
1058 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1059 th = tcp_hdr(skb);
1061 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1062 &iph->saddr, &iph->daddr, 0);
1063 tcp_gro_complete(skb);
1065 #endif
1067 static void qede_gro_receive(struct qede_dev *edev,
1068 struct qede_fastpath *fp,
1069 struct sk_buff *skb,
1070 u16 vlan_tag)
1072 /* FW can send a single MTU sized packet from gro flow
1073 * due to aggregation timeout/last segment etc. which
1074 * is not expected to be a gro packet. If a skb has zero
1075 * frags then simply push it in the stack as non gso skb.
1077 if (unlikely(!skb->data_len)) {
1078 skb_shinfo(skb)->gso_type = 0;
1079 skb_shinfo(skb)->gso_size = 0;
1080 goto send_skb;
1083 #ifdef CONFIG_INET
1084 if (skb_shinfo(skb)->gso_size) {
1085 skb_set_network_header(skb, 0);
1087 switch (skb->protocol) {
1088 case htons(ETH_P_IP):
1089 qede_gro_ip_csum(skb);
1090 break;
1091 case htons(ETH_P_IPV6):
1092 qede_gro_ipv6_csum(skb);
1093 break;
1094 default:
1095 DP_ERR(edev,
1096 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1097 ntohs(skb->protocol));
1100 #endif
1102 send_skb:
1103 skb_record_rx_queue(skb, fp->rss_id);
1104 qede_skb_receive(edev, fp, skb, vlan_tag);
1107 static inline void qede_tpa_cont(struct qede_dev *edev,
1108 struct qede_rx_queue *rxq,
1109 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1111 int i;
1113 for (i = 0; cqe->len_list[i]; i++)
1114 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1115 le16_to_cpu(cqe->len_list[i]));
1117 if (unlikely(i > 1))
1118 DP_ERR(edev,
1119 "Strange - TPA cont with more than a single len_list entry\n");
1122 static void qede_tpa_end(struct qede_dev *edev,
1123 struct qede_fastpath *fp,
1124 struct eth_fast_path_rx_tpa_end_cqe *cqe)
1126 struct qede_rx_queue *rxq = fp->rxq;
1127 struct qede_agg_info *tpa_info;
1128 struct sk_buff *skb;
1129 int i;
1131 tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1132 skb = tpa_info->skb;
1134 for (i = 0; cqe->len_list[i]; i++)
1135 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1136 le16_to_cpu(cqe->len_list[i]));
1137 if (unlikely(i > 1))
1138 DP_ERR(edev,
1139 "Strange - TPA emd with more than a single len_list entry\n");
1141 if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1142 goto err;
1144 /* Sanity */
1145 if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1146 DP_ERR(edev,
1147 "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1148 cqe->num_of_bds, tpa_info->frag_id);
1149 if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1150 DP_ERR(edev,
1151 "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1152 le16_to_cpu(cqe->total_packet_len), skb->len);
1154 memcpy(skb->data,
1155 page_address(tpa_info->start_buf.data) +
1156 tpa_info->start_cqe.placement_offset +
1157 tpa_info->start_buf.page_offset,
1158 le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1160 /* Recycle [mapped] start buffer for the next replacement */
1161 tpa_info->replace_buf = tpa_info->start_buf;
1162 tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1164 /* Finalize the SKB */
1165 skb->protocol = eth_type_trans(skb, edev->ndev);
1166 skb->ip_summed = CHECKSUM_UNNECESSARY;
1168 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1169 * to skb_shinfo(skb)->gso_segs
1171 NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1173 qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1175 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1177 return;
1178 err:
1179 /* The BD starting the aggregation is still mapped; Re-use it for
1180 * future aggregations [as replacement buffer]
1182 memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1183 sizeof(struct sw_rx_data));
1184 tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1185 tpa_info->start_buf.data = NULL;
1186 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1187 dev_kfree_skb_any(tpa_info->skb);
1188 tpa_info->skb = NULL;
1191 static u8 qede_check_csum(u16 flag)
1193 u16 csum_flag = 0;
1194 u8 csum = 0;
1196 if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1197 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) {
1198 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1199 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1200 csum = QEDE_CSUM_UNNECESSARY;
1203 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1204 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1206 if (csum_flag & flag)
1207 return QEDE_CSUM_ERROR;
1209 return csum;
1212 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1214 struct qede_dev *edev = fp->edev;
1215 struct qede_rx_queue *rxq = fp->rxq;
1217 u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1218 int rx_pkt = 0;
1219 u8 csum_flag;
1221 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1222 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1224 /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1225 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1226 * read before it is written by FW, then FW writes CQE and SB, and then
1227 * the CPU reads the hw_comp_cons, it will use an old CQE.
1229 rmb();
1231 /* Loop to complete all indicated BDs */
1232 while (sw_comp_cons != hw_comp_cons) {
1233 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1234 enum pkt_hash_types rxhash_type;
1235 enum eth_rx_cqe_type cqe_type;
1236 struct sw_rx_data *sw_rx_data;
1237 union eth_rx_cqe *cqe;
1238 struct sk_buff *skb;
1239 struct page *data;
1240 __le16 flags;
1241 u16 len, pad;
1242 u32 rx_hash;
1244 /* Get the CQE from the completion ring */
1245 cqe = (union eth_rx_cqe *)
1246 qed_chain_consume(&rxq->rx_comp_ring);
1247 cqe_type = cqe->fast_path_regular.type;
1249 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1250 edev->ops->eth_cqe_completion(
1251 edev->cdev, fp->rss_id,
1252 (struct eth_slow_path_rx_cqe *)cqe);
1253 goto next_cqe;
1256 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1257 switch (cqe_type) {
1258 case ETH_RX_CQE_TYPE_TPA_START:
1259 qede_tpa_start(edev, rxq,
1260 &cqe->fast_path_tpa_start);
1261 goto next_cqe;
1262 case ETH_RX_CQE_TYPE_TPA_CONT:
1263 qede_tpa_cont(edev, rxq,
1264 &cqe->fast_path_tpa_cont);
1265 goto next_cqe;
1266 case ETH_RX_CQE_TYPE_TPA_END:
1267 qede_tpa_end(edev, fp,
1268 &cqe->fast_path_tpa_end);
1269 goto next_rx_only;
1270 default:
1271 break;
1275 /* Get the data from the SW ring */
1276 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1277 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1278 data = sw_rx_data->data;
1280 fp_cqe = &cqe->fast_path_regular;
1281 len = le16_to_cpu(fp_cqe->len_on_first_bd);
1282 pad = fp_cqe->placement_offset;
1283 flags = cqe->fast_path_regular.pars_flags.flags;
1285 /* If this is an error packet then drop it */
1286 parse_flag = le16_to_cpu(flags);
1288 csum_flag = qede_check_csum(parse_flag);
1289 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1290 DP_NOTICE(edev,
1291 "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1292 sw_comp_cons, parse_flag);
1293 rxq->rx_hw_errors++;
1294 qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1295 goto next_cqe;
1298 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1299 if (unlikely(!skb)) {
1300 DP_NOTICE(edev,
1301 "Build_skb failed, dropping incoming packet\n");
1302 qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1303 rxq->rx_alloc_errors++;
1304 goto next_cqe;
1307 /* Copy data into SKB */
1308 if (len + pad <= QEDE_RX_HDR_SIZE) {
1309 memcpy(skb_put(skb, len),
1310 page_address(data) + pad +
1311 sw_rx_data->page_offset, len);
1312 qede_reuse_page(edev, rxq, sw_rx_data);
1313 } else {
1314 struct skb_frag_struct *frag;
1315 unsigned int pull_len;
1316 unsigned char *va;
1318 frag = &skb_shinfo(skb)->frags[0];
1320 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1321 pad + sw_rx_data->page_offset,
1322 len, rxq->rx_buf_seg_size);
1324 va = skb_frag_address(frag);
1325 pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1327 /* Align the pull_len to optimize memcpy */
1328 memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1330 skb_frag_size_sub(frag, pull_len);
1331 frag->page_offset += pull_len;
1332 skb->data_len -= pull_len;
1333 skb->tail += pull_len;
1335 if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1336 sw_rx_data))) {
1337 DP_ERR(edev, "Failed to allocate rx buffer\n");
1338 /* Incr page ref count to reuse on allocation
1339 * failure so that it doesn't get freed while
1340 * freeing SKB.
1343 atomic_inc(&sw_rx_data->data->_count);
1344 rxq->rx_alloc_errors++;
1345 qede_recycle_rx_bd_ring(rxq, edev,
1346 fp_cqe->bd_num);
1347 dev_kfree_skb_any(skb);
1348 goto next_cqe;
1352 qede_rx_bd_ring_consume(rxq);
1354 if (fp_cqe->bd_num != 1) {
1355 u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1356 u8 num_frags;
1358 pkt_len -= len;
1360 for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1361 num_frags--) {
1362 u16 cur_size = pkt_len > rxq->rx_buf_size ?
1363 rxq->rx_buf_size : pkt_len;
1364 if (unlikely(!cur_size)) {
1365 DP_ERR(edev,
1366 "Still got %d BDs for mapping jumbo, but length became 0\n",
1367 num_frags);
1368 qede_recycle_rx_bd_ring(rxq, edev,
1369 num_frags);
1370 dev_kfree_skb_any(skb);
1371 goto next_cqe;
1374 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1375 qede_recycle_rx_bd_ring(rxq, edev,
1376 num_frags);
1377 dev_kfree_skb_any(skb);
1378 goto next_cqe;
1381 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1382 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1383 qede_rx_bd_ring_consume(rxq);
1385 dma_unmap_page(&edev->pdev->dev,
1386 sw_rx_data->mapping,
1387 PAGE_SIZE, DMA_FROM_DEVICE);
1389 skb_fill_page_desc(skb,
1390 skb_shinfo(skb)->nr_frags++,
1391 sw_rx_data->data, 0,
1392 cur_size);
1394 skb->truesize += PAGE_SIZE;
1395 skb->data_len += cur_size;
1396 skb->len += cur_size;
1397 pkt_len -= cur_size;
1400 if (unlikely(pkt_len))
1401 DP_ERR(edev,
1402 "Mapped all BDs of jumbo, but still have %d bytes\n",
1403 pkt_len);
1406 skb->protocol = eth_type_trans(skb, edev->ndev);
1408 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1409 fp_cqe->rss_hash,
1410 &rxhash_type);
1412 skb_set_hash(skb, rx_hash, rxhash_type);
1414 qede_set_skb_csum(skb, csum_flag);
1416 skb_record_rx_queue(skb, fp->rss_id);
1418 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1419 next_rx_only:
1420 rx_pkt++;
1422 next_cqe: /* don't consume bd rx buffer */
1423 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1424 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1425 /* CR TPA - revisit how to handle budget in TPA perhaps
1426 * increase on "end"
1428 if (rx_pkt == budget)
1429 break;
1430 } /* repeat while sw_comp_cons != hw_comp_cons... */
1432 /* Update producers */
1433 qede_update_rx_prod(edev, rxq);
1435 return rx_pkt;
1438 static int qede_poll(struct napi_struct *napi, int budget)
1440 int work_done = 0;
1441 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1442 napi);
1443 struct qede_dev *edev = fp->edev;
1445 while (1) {
1446 u8 tc;
1448 for (tc = 0; tc < edev->num_tc; tc++)
1449 if (qede_txq_has_work(&fp->txqs[tc]))
1450 qede_tx_int(edev, &fp->txqs[tc]);
1452 if (qede_has_rx_work(fp->rxq)) {
1453 work_done += qede_rx_int(fp, budget - work_done);
1455 /* must not complete if we consumed full budget */
1456 if (work_done >= budget)
1457 break;
1460 /* Fall out from the NAPI loop if needed */
1461 if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
1462 qed_sb_update_sb_idx(fp->sb_info);
1463 /* *_has_*_work() reads the status block,
1464 * thus we need to ensure that status block indices
1465 * have been actually read (qed_sb_update_sb_idx)
1466 * prior to this check (*_has_*_work) so that
1467 * we won't write the "newer" value of the status block
1468 * to HW (if there was a DMA right after
1469 * qede_has_rx_work and if there is no rmb, the memory
1470 * reading (qed_sb_update_sb_idx) may be postponed
1471 * to right before *_ack_sb). In this case there
1472 * will never be another interrupt until there is
1473 * another update of the status block, while there
1474 * is still unhandled work.
1476 rmb();
1478 if (!(qede_has_rx_work(fp->rxq) ||
1479 qede_has_tx_work(fp))) {
1480 napi_complete(napi);
1481 /* Update and reenable interrupts */
1482 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1483 1 /*update*/);
1484 break;
1489 return work_done;
1492 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1494 struct qede_fastpath *fp = fp_cookie;
1496 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1498 napi_schedule_irqoff(&fp->napi);
1499 return IRQ_HANDLED;
1502 /* -------------------------------------------------------------------------
1503 * END OF FAST-PATH
1504 * -------------------------------------------------------------------------
1507 static int qede_open(struct net_device *ndev);
1508 static int qede_close(struct net_device *ndev);
1509 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1510 static void qede_set_rx_mode(struct net_device *ndev);
1511 static void qede_config_rx_mode(struct net_device *ndev);
1513 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1514 enum qed_filter_xcast_params_type opcode,
1515 unsigned char mac[ETH_ALEN])
1517 struct qed_filter_params filter_cmd;
1519 memset(&filter_cmd, 0, sizeof(filter_cmd));
1520 filter_cmd.type = QED_FILTER_TYPE_UCAST;
1521 filter_cmd.filter.ucast.type = opcode;
1522 filter_cmd.filter.ucast.mac_valid = 1;
1523 ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1525 return edev->ops->filter_config(edev->cdev, &filter_cmd);
1528 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1529 enum qed_filter_xcast_params_type opcode,
1530 u16 vid)
1532 struct qed_filter_params filter_cmd;
1534 memset(&filter_cmd, 0, sizeof(filter_cmd));
1535 filter_cmd.type = QED_FILTER_TYPE_UCAST;
1536 filter_cmd.filter.ucast.type = opcode;
1537 filter_cmd.filter.ucast.vlan_valid = 1;
1538 filter_cmd.filter.ucast.vlan = vid;
1540 return edev->ops->filter_config(edev->cdev, &filter_cmd);
1543 void qede_fill_by_demand_stats(struct qede_dev *edev)
1545 struct qed_eth_stats stats;
1547 edev->ops->get_vport_stats(edev->cdev, &stats);
1548 edev->stats.no_buff_discards = stats.no_buff_discards;
1549 edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1550 edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1551 edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1552 edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1553 edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1554 edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1555 edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1556 edev->stats.mac_filter_discards = stats.mac_filter_discards;
1558 edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1559 edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1560 edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1561 edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1562 edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1563 edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1564 edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1565 edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1566 edev->stats.coalesced_events = stats.tpa_coalesced_events;
1567 edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1568 edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1569 edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1571 edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1572 edev->stats.rx_127_byte_packets = stats.rx_127_byte_packets;
1573 edev->stats.rx_255_byte_packets = stats.rx_255_byte_packets;
1574 edev->stats.rx_511_byte_packets = stats.rx_511_byte_packets;
1575 edev->stats.rx_1023_byte_packets = stats.rx_1023_byte_packets;
1576 edev->stats.rx_1518_byte_packets = stats.rx_1518_byte_packets;
1577 edev->stats.rx_1522_byte_packets = stats.rx_1522_byte_packets;
1578 edev->stats.rx_2047_byte_packets = stats.rx_2047_byte_packets;
1579 edev->stats.rx_4095_byte_packets = stats.rx_4095_byte_packets;
1580 edev->stats.rx_9216_byte_packets = stats.rx_9216_byte_packets;
1581 edev->stats.rx_16383_byte_packets = stats.rx_16383_byte_packets;
1582 edev->stats.rx_crc_errors = stats.rx_crc_errors;
1583 edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1584 edev->stats.rx_pause_frames = stats.rx_pause_frames;
1585 edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1586 edev->stats.rx_align_errors = stats.rx_align_errors;
1587 edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1588 edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1589 edev->stats.rx_jabbers = stats.rx_jabbers;
1590 edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1591 edev->stats.rx_fragments = stats.rx_fragments;
1592 edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1593 edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1594 edev->stats.tx_128_to_255_byte_packets =
1595 stats.tx_128_to_255_byte_packets;
1596 edev->stats.tx_256_to_511_byte_packets =
1597 stats.tx_256_to_511_byte_packets;
1598 edev->stats.tx_512_to_1023_byte_packets =
1599 stats.tx_512_to_1023_byte_packets;
1600 edev->stats.tx_1024_to_1518_byte_packets =
1601 stats.tx_1024_to_1518_byte_packets;
1602 edev->stats.tx_1519_to_2047_byte_packets =
1603 stats.tx_1519_to_2047_byte_packets;
1604 edev->stats.tx_2048_to_4095_byte_packets =
1605 stats.tx_2048_to_4095_byte_packets;
1606 edev->stats.tx_4096_to_9216_byte_packets =
1607 stats.tx_4096_to_9216_byte_packets;
1608 edev->stats.tx_9217_to_16383_byte_packets =
1609 stats.tx_9217_to_16383_byte_packets;
1610 edev->stats.tx_pause_frames = stats.tx_pause_frames;
1611 edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1612 edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1613 edev->stats.tx_total_collisions = stats.tx_total_collisions;
1614 edev->stats.brb_truncates = stats.brb_truncates;
1615 edev->stats.brb_discards = stats.brb_discards;
1616 edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1619 static struct rtnl_link_stats64 *qede_get_stats64(
1620 struct net_device *dev,
1621 struct rtnl_link_stats64 *stats)
1623 struct qede_dev *edev = netdev_priv(dev);
1625 qede_fill_by_demand_stats(edev);
1627 stats->rx_packets = edev->stats.rx_ucast_pkts +
1628 edev->stats.rx_mcast_pkts +
1629 edev->stats.rx_bcast_pkts;
1630 stats->tx_packets = edev->stats.tx_ucast_pkts +
1631 edev->stats.tx_mcast_pkts +
1632 edev->stats.tx_bcast_pkts;
1634 stats->rx_bytes = edev->stats.rx_ucast_bytes +
1635 edev->stats.rx_mcast_bytes +
1636 edev->stats.rx_bcast_bytes;
1638 stats->tx_bytes = edev->stats.tx_ucast_bytes +
1639 edev->stats.tx_mcast_bytes +
1640 edev->stats.tx_bcast_bytes;
1642 stats->tx_errors = edev->stats.tx_err_drop_pkts;
1643 stats->multicast = edev->stats.rx_mcast_pkts +
1644 edev->stats.rx_bcast_pkts;
1646 stats->rx_fifo_errors = edev->stats.no_buff_discards;
1648 stats->collisions = edev->stats.tx_total_collisions;
1649 stats->rx_crc_errors = edev->stats.rx_crc_errors;
1650 stats->rx_frame_errors = edev->stats.rx_align_errors;
1652 return stats;
1655 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1657 struct qed_update_vport_params params;
1658 int rc;
1660 /* Proceed only if action actually needs to be performed */
1661 if (edev->accept_any_vlan == action)
1662 return;
1664 memset(&params, 0, sizeof(params));
1666 params.vport_id = 0;
1667 params.accept_any_vlan = action;
1668 params.update_accept_any_vlan_flg = 1;
1670 rc = edev->ops->vport_update(edev->cdev, &params);
1671 if (rc) {
1672 DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1673 action ? "enable" : "disable");
1674 } else {
1675 DP_INFO(edev, "%s accept-any-vlan\n",
1676 action ? "enabled" : "disabled");
1677 edev->accept_any_vlan = action;
1681 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1683 struct qede_dev *edev = netdev_priv(dev);
1684 struct qede_vlan *vlan, *tmp;
1685 int rc;
1687 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1689 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1690 if (!vlan) {
1691 DP_INFO(edev, "Failed to allocate struct for vlan\n");
1692 return -ENOMEM;
1694 INIT_LIST_HEAD(&vlan->list);
1695 vlan->vid = vid;
1696 vlan->configured = false;
1698 /* Verify vlan isn't already configured */
1699 list_for_each_entry(tmp, &edev->vlan_list, list) {
1700 if (tmp->vid == vlan->vid) {
1701 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1702 "vlan already configured\n");
1703 kfree(vlan);
1704 return -EEXIST;
1708 /* If interface is down, cache this VLAN ID and return */
1709 if (edev->state != QEDE_STATE_OPEN) {
1710 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1711 "Interface is down, VLAN %d will be configured when interface is up\n",
1712 vid);
1713 if (vid != 0)
1714 edev->non_configured_vlans++;
1715 list_add(&vlan->list, &edev->vlan_list);
1717 return 0;
1720 /* Check for the filter limit.
1721 * Note - vlan0 has a reserved filter and can be added without
1722 * worrying about quota
1724 if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1725 (vlan->vid == 0)) {
1726 rc = qede_set_ucast_rx_vlan(edev,
1727 QED_FILTER_XCAST_TYPE_ADD,
1728 vlan->vid);
1729 if (rc) {
1730 DP_ERR(edev, "Failed to configure VLAN %d\n",
1731 vlan->vid);
1732 kfree(vlan);
1733 return -EINVAL;
1735 vlan->configured = true;
1737 /* vlan0 filter isn't consuming out of our quota */
1738 if (vlan->vid != 0)
1739 edev->configured_vlans++;
1740 } else {
1741 /* Out of quota; Activate accept-any-VLAN mode */
1742 if (!edev->non_configured_vlans)
1743 qede_config_accept_any_vlan(edev, true);
1745 edev->non_configured_vlans++;
1748 list_add(&vlan->list, &edev->vlan_list);
1750 return 0;
1753 static void qede_del_vlan_from_list(struct qede_dev *edev,
1754 struct qede_vlan *vlan)
1756 /* vlan0 filter isn't consuming out of our quota */
1757 if (vlan->vid != 0) {
1758 if (vlan->configured)
1759 edev->configured_vlans--;
1760 else
1761 edev->non_configured_vlans--;
1764 list_del(&vlan->list);
1765 kfree(vlan);
1768 static int qede_configure_vlan_filters(struct qede_dev *edev)
1770 int rc = 0, real_rc = 0, accept_any_vlan = 0;
1771 struct qed_dev_eth_info *dev_info;
1772 struct qede_vlan *vlan = NULL;
1774 if (list_empty(&edev->vlan_list))
1775 return 0;
1777 dev_info = &edev->dev_info;
1779 /* Configure non-configured vlans */
1780 list_for_each_entry(vlan, &edev->vlan_list, list) {
1781 if (vlan->configured)
1782 continue;
1784 /* We have used all our credits, now enable accept_any_vlan */
1785 if ((vlan->vid != 0) &&
1786 (edev->configured_vlans == dev_info->num_vlan_filters)) {
1787 accept_any_vlan = 1;
1788 continue;
1791 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
1793 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
1794 vlan->vid);
1795 if (rc) {
1796 DP_ERR(edev, "Failed to configure VLAN %u\n",
1797 vlan->vid);
1798 real_rc = rc;
1799 continue;
1802 vlan->configured = true;
1803 /* vlan0 filter doesn't consume our VLAN filter's quota */
1804 if (vlan->vid != 0) {
1805 edev->non_configured_vlans--;
1806 edev->configured_vlans++;
1810 /* enable accept_any_vlan mode if we have more VLANs than credits,
1811 * or remove accept_any_vlan mode if we've actually removed
1812 * a non-configured vlan, and all remaining vlans are truly configured.
1815 if (accept_any_vlan)
1816 qede_config_accept_any_vlan(edev, true);
1817 else if (!edev->non_configured_vlans)
1818 qede_config_accept_any_vlan(edev, false);
1820 return real_rc;
1823 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
1825 struct qede_dev *edev = netdev_priv(dev);
1826 struct qede_vlan *vlan = NULL;
1827 int rc;
1829 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
1831 /* Find whether entry exists */
1832 list_for_each_entry(vlan, &edev->vlan_list, list)
1833 if (vlan->vid == vid)
1834 break;
1836 if (!vlan || (vlan->vid != vid)) {
1837 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1838 "Vlan isn't configured\n");
1839 return 0;
1842 if (edev->state != QEDE_STATE_OPEN) {
1843 /* As interface is already down, we don't have a VPORT
1844 * instance to remove vlan filter. So just update vlan list
1846 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1847 "Interface is down, removing VLAN from list only\n");
1848 qede_del_vlan_from_list(edev, vlan);
1849 return 0;
1852 /* Remove vlan */
1853 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid);
1854 if (rc) {
1855 DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
1856 return -EINVAL;
1859 qede_del_vlan_from_list(edev, vlan);
1861 /* We have removed a VLAN - try to see if we can
1862 * configure non-configured VLAN from the list.
1864 rc = qede_configure_vlan_filters(edev);
1866 return rc;
1869 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
1871 struct qede_vlan *vlan = NULL;
1873 if (list_empty(&edev->vlan_list))
1874 return;
1876 list_for_each_entry(vlan, &edev->vlan_list, list) {
1877 if (!vlan->configured)
1878 continue;
1880 vlan->configured = false;
1882 /* vlan0 filter isn't consuming out of our quota */
1883 if (vlan->vid != 0) {
1884 edev->non_configured_vlans++;
1885 edev->configured_vlans--;
1888 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1889 "marked vlan %d as non-configured\n",
1890 vlan->vid);
1893 edev->accept_any_vlan = false;
1896 static const struct net_device_ops qede_netdev_ops = {
1897 .ndo_open = qede_open,
1898 .ndo_stop = qede_close,
1899 .ndo_start_xmit = qede_start_xmit,
1900 .ndo_set_rx_mode = qede_set_rx_mode,
1901 .ndo_set_mac_address = qede_set_mac_addr,
1902 .ndo_validate_addr = eth_validate_addr,
1903 .ndo_change_mtu = qede_change_mtu,
1904 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
1905 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
1906 .ndo_get_stats64 = qede_get_stats64,
1909 /* -------------------------------------------------------------------------
1910 * START OF PROBE / REMOVE
1911 * -------------------------------------------------------------------------
1914 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
1915 struct pci_dev *pdev,
1916 struct qed_dev_eth_info *info,
1917 u32 dp_module,
1918 u8 dp_level)
1920 struct net_device *ndev;
1921 struct qede_dev *edev;
1923 ndev = alloc_etherdev_mqs(sizeof(*edev),
1924 info->num_queues,
1925 info->num_queues);
1926 if (!ndev) {
1927 pr_err("etherdev allocation failed\n");
1928 return NULL;
1931 edev = netdev_priv(ndev);
1932 edev->ndev = ndev;
1933 edev->cdev = cdev;
1934 edev->pdev = pdev;
1935 edev->dp_module = dp_module;
1936 edev->dp_level = dp_level;
1937 edev->ops = qed_ops;
1938 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
1939 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
1941 DP_INFO(edev, "Allocated netdev with 64 tx queues and 64 rx queues\n");
1943 SET_NETDEV_DEV(ndev, &pdev->dev);
1945 memset(&edev->stats, 0, sizeof(edev->stats));
1946 memcpy(&edev->dev_info, info, sizeof(*info));
1948 edev->num_tc = edev->dev_info.num_tc;
1950 INIT_LIST_HEAD(&edev->vlan_list);
1952 return edev;
1955 static void qede_init_ndev(struct qede_dev *edev)
1957 struct net_device *ndev = edev->ndev;
1958 struct pci_dev *pdev = edev->pdev;
1959 u32 hw_features;
1961 pci_set_drvdata(pdev, ndev);
1963 ndev->mem_start = edev->dev_info.common.pci_mem_start;
1964 ndev->base_addr = ndev->mem_start;
1965 ndev->mem_end = edev->dev_info.common.pci_mem_end;
1966 ndev->irq = edev->dev_info.common.pci_irq;
1968 ndev->watchdog_timeo = TX_TIMEOUT;
1970 ndev->netdev_ops = &qede_netdev_ops;
1972 qede_set_ethtool_ops(ndev);
1974 /* user-changeble features */
1975 hw_features = NETIF_F_GRO | NETIF_F_SG |
1976 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1977 NETIF_F_TSO | NETIF_F_TSO6;
1979 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
1980 NETIF_F_HIGHDMA;
1981 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
1982 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
1983 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
1985 ndev->hw_features = hw_features;
1987 /* Set network device HW mac */
1988 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
1991 /* This function converts from 32b param to two params of level and module
1992 * Input 32b decoding:
1993 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
1994 * 'happy' flow, e.g. memory allocation failed.
1995 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
1996 * and provide important parameters.
1997 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
1998 * module. VERBOSE prints are for tracking the specific flow in low level.
2000 * Notice that the level should be that of the lowest required logs.
2002 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2004 *p_dp_level = QED_LEVEL_NOTICE;
2005 *p_dp_module = 0;
2007 if (debug & QED_LOG_VERBOSE_MASK) {
2008 *p_dp_level = QED_LEVEL_VERBOSE;
2009 *p_dp_module = (debug & 0x3FFFFFFF);
2010 } else if (debug & QED_LOG_INFO_MASK) {
2011 *p_dp_level = QED_LEVEL_INFO;
2012 } else if (debug & QED_LOG_NOTICE_MASK) {
2013 *p_dp_level = QED_LEVEL_NOTICE;
2017 static void qede_free_fp_array(struct qede_dev *edev)
2019 if (edev->fp_array) {
2020 struct qede_fastpath *fp;
2021 int i;
2023 for_each_rss(i) {
2024 fp = &edev->fp_array[i];
2026 kfree(fp->sb_info);
2027 kfree(fp->rxq);
2028 kfree(fp->txqs);
2030 kfree(edev->fp_array);
2032 edev->num_rss = 0;
2035 static int qede_alloc_fp_array(struct qede_dev *edev)
2037 struct qede_fastpath *fp;
2038 int i;
2040 edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
2041 sizeof(*edev->fp_array), GFP_KERNEL);
2042 if (!edev->fp_array) {
2043 DP_NOTICE(edev, "fp array allocation failed\n");
2044 goto err;
2047 for_each_rss(i) {
2048 fp = &edev->fp_array[i];
2050 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2051 if (!fp->sb_info) {
2052 DP_NOTICE(edev, "sb info struct allocation failed\n");
2053 goto err;
2056 fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2057 if (!fp->rxq) {
2058 DP_NOTICE(edev, "RXQ struct allocation failed\n");
2059 goto err;
2062 fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
2063 if (!fp->txqs) {
2064 DP_NOTICE(edev, "TXQ array allocation failed\n");
2065 goto err;
2069 return 0;
2070 err:
2071 qede_free_fp_array(edev);
2072 return -ENOMEM;
2075 static void qede_sp_task(struct work_struct *work)
2077 struct qede_dev *edev = container_of(work, struct qede_dev,
2078 sp_task.work);
2079 mutex_lock(&edev->qede_lock);
2081 if (edev->state == QEDE_STATE_OPEN) {
2082 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2083 qede_config_rx_mode(edev->ndev);
2086 mutex_unlock(&edev->qede_lock);
2089 static void qede_update_pf_params(struct qed_dev *cdev)
2091 struct qed_pf_params pf_params;
2093 /* 16 rx + 16 tx */
2094 memset(&pf_params, 0, sizeof(struct qed_pf_params));
2095 pf_params.eth_pf_params.num_cons = 32;
2096 qed_ops->common->update_pf_params(cdev, &pf_params);
2099 enum qede_probe_mode {
2100 QEDE_PROBE_NORMAL,
2103 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2104 enum qede_probe_mode mode)
2106 struct qed_slowpath_params params;
2107 struct qed_dev_eth_info dev_info;
2108 struct qede_dev *edev;
2109 struct qed_dev *cdev;
2110 int rc;
2112 if (unlikely(dp_level & QED_LEVEL_INFO))
2113 pr_notice("Starting qede probe\n");
2115 cdev = qed_ops->common->probe(pdev, QED_PROTOCOL_ETH,
2116 dp_module, dp_level);
2117 if (!cdev) {
2118 rc = -ENODEV;
2119 goto err0;
2122 qede_update_pf_params(cdev);
2124 /* Start the Slowpath-process */
2125 memset(&params, 0, sizeof(struct qed_slowpath_params));
2126 params.int_mode = QED_INT_MODE_MSIX;
2127 params.drv_major = QEDE_MAJOR_VERSION;
2128 params.drv_minor = QEDE_MINOR_VERSION;
2129 params.drv_rev = QEDE_REVISION_VERSION;
2130 params.drv_eng = QEDE_ENGINEERING_VERSION;
2131 strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2132 rc = qed_ops->common->slowpath_start(cdev, &params);
2133 if (rc) {
2134 pr_notice("Cannot start slowpath\n");
2135 goto err1;
2138 /* Learn information crucial for qede to progress */
2139 rc = qed_ops->fill_dev_info(cdev, &dev_info);
2140 if (rc)
2141 goto err2;
2143 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2144 dp_level);
2145 if (!edev) {
2146 rc = -ENOMEM;
2147 goto err2;
2150 qede_init_ndev(edev);
2152 rc = register_netdev(edev->ndev);
2153 if (rc) {
2154 DP_NOTICE(edev, "Cannot register net-device\n");
2155 goto err3;
2158 edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2160 edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2162 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2163 mutex_init(&edev->qede_lock);
2165 DP_INFO(edev, "Ending successfully qede probe\n");
2167 return 0;
2169 err3:
2170 free_netdev(edev->ndev);
2171 err2:
2172 qed_ops->common->slowpath_stop(cdev);
2173 err1:
2174 qed_ops->common->remove(cdev);
2175 err0:
2176 return rc;
2179 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2181 u32 dp_module = 0;
2182 u8 dp_level = 0;
2184 qede_config_debug(debug, &dp_module, &dp_level);
2186 return __qede_probe(pdev, dp_module, dp_level,
2187 QEDE_PROBE_NORMAL);
2190 enum qede_remove_mode {
2191 QEDE_REMOVE_NORMAL,
2194 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2196 struct net_device *ndev = pci_get_drvdata(pdev);
2197 struct qede_dev *edev = netdev_priv(ndev);
2198 struct qed_dev *cdev = edev->cdev;
2200 DP_INFO(edev, "Starting qede_remove\n");
2202 cancel_delayed_work_sync(&edev->sp_task);
2203 unregister_netdev(ndev);
2205 edev->ops->common->set_power_state(cdev, PCI_D0);
2207 pci_set_drvdata(pdev, NULL);
2209 free_netdev(ndev);
2211 /* Use global ops since we've freed edev */
2212 qed_ops->common->slowpath_stop(cdev);
2213 qed_ops->common->remove(cdev);
2215 pr_notice("Ending successfully qede_remove\n");
2218 static void qede_remove(struct pci_dev *pdev)
2220 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
2223 /* -------------------------------------------------------------------------
2224 * START OF LOAD / UNLOAD
2225 * -------------------------------------------------------------------------
2228 static int qede_set_num_queues(struct qede_dev *edev)
2230 int rc;
2231 u16 rss_num;
2233 /* Setup queues according to possible resources*/
2234 if (edev->req_rss)
2235 rss_num = edev->req_rss;
2236 else
2237 rss_num = netif_get_num_default_rss_queues() *
2238 edev->dev_info.common.num_hwfns;
2240 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2242 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2243 if (rc > 0) {
2244 /* Managed to request interrupts for our queues */
2245 edev->num_rss = rc;
2246 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2247 QEDE_RSS_CNT(edev), rss_num);
2248 rc = 0;
2250 return rc;
2253 static void qede_free_mem_sb(struct qede_dev *edev,
2254 struct qed_sb_info *sb_info)
2256 if (sb_info->sb_virt)
2257 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2258 (void *)sb_info->sb_virt, sb_info->sb_phys);
2261 /* This function allocates fast-path status block memory */
2262 static int qede_alloc_mem_sb(struct qede_dev *edev,
2263 struct qed_sb_info *sb_info,
2264 u16 sb_id)
2266 struct status_block *sb_virt;
2267 dma_addr_t sb_phys;
2268 int rc;
2270 sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2271 sizeof(*sb_virt),
2272 &sb_phys, GFP_KERNEL);
2273 if (!sb_virt) {
2274 DP_ERR(edev, "Status block allocation failed\n");
2275 return -ENOMEM;
2278 rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2279 sb_virt, sb_phys, sb_id,
2280 QED_SB_TYPE_L2_QUEUE);
2281 if (rc) {
2282 DP_ERR(edev, "Status block initialization failed\n");
2283 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2284 sb_virt, sb_phys);
2285 return rc;
2288 return 0;
2291 static void qede_free_rx_buffers(struct qede_dev *edev,
2292 struct qede_rx_queue *rxq)
2294 u16 i;
2296 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2297 struct sw_rx_data *rx_buf;
2298 struct page *data;
2300 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2301 data = rx_buf->data;
2303 dma_unmap_page(&edev->pdev->dev,
2304 rx_buf->mapping,
2305 PAGE_SIZE, DMA_FROM_DEVICE);
2307 rx_buf->data = NULL;
2308 __free_page(data);
2312 static void qede_free_sge_mem(struct qede_dev *edev,
2313 struct qede_rx_queue *rxq) {
2314 int i;
2316 if (edev->gro_disable)
2317 return;
2319 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2320 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2321 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2323 if (replace_buf->data) {
2324 dma_unmap_page(&edev->pdev->dev,
2325 dma_unmap_addr(replace_buf, mapping),
2326 PAGE_SIZE, DMA_FROM_DEVICE);
2327 __free_page(replace_buf->data);
2332 static void qede_free_mem_rxq(struct qede_dev *edev,
2333 struct qede_rx_queue *rxq)
2335 qede_free_sge_mem(edev, rxq);
2337 /* Free rx buffers */
2338 qede_free_rx_buffers(edev, rxq);
2340 /* Free the parallel SW ring */
2341 kfree(rxq->sw_rx_ring);
2343 /* Free the real RQ ring used by FW */
2344 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2345 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2348 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2349 struct qede_rx_queue *rxq)
2351 struct sw_rx_data *sw_rx_data;
2352 struct eth_rx_bd *rx_bd;
2353 dma_addr_t mapping;
2354 struct page *data;
2355 u16 rx_buf_size;
2357 rx_buf_size = rxq->rx_buf_size;
2359 data = alloc_pages(GFP_ATOMIC, 0);
2360 if (unlikely(!data)) {
2361 DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2362 return -ENOMEM;
2365 /* Map the entire page as it would be used
2366 * for multiple RX buffer segment size mapping.
2368 mapping = dma_map_page(&edev->pdev->dev, data, 0,
2369 PAGE_SIZE, DMA_FROM_DEVICE);
2370 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2371 __free_page(data);
2372 DP_NOTICE(edev, "Failed to map Rx buffer\n");
2373 return -ENOMEM;
2376 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2377 sw_rx_data->page_offset = 0;
2378 sw_rx_data->data = data;
2379 sw_rx_data->mapping = mapping;
2381 /* Advance PROD and get BD pointer */
2382 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2383 WARN_ON(!rx_bd);
2384 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2385 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2387 rxq->sw_rx_prod++;
2389 return 0;
2392 static int qede_alloc_sge_mem(struct qede_dev *edev,
2393 struct qede_rx_queue *rxq)
2395 dma_addr_t mapping;
2396 int i;
2398 if (edev->gro_disable)
2399 return 0;
2401 if (edev->ndev->mtu > PAGE_SIZE) {
2402 edev->gro_disable = 1;
2403 return 0;
2406 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2407 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2408 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2410 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2411 if (unlikely(!replace_buf->data)) {
2412 DP_NOTICE(edev,
2413 "Failed to allocate TPA skb pool [replacement buffer]\n");
2414 goto err;
2417 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2418 rxq->rx_buf_size, DMA_FROM_DEVICE);
2419 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2420 DP_NOTICE(edev,
2421 "Failed to map TPA replacement buffer\n");
2422 goto err;
2425 dma_unmap_addr_set(replace_buf, mapping, mapping);
2426 tpa_info->replace_buf.page_offset = 0;
2428 tpa_info->replace_buf_mapping = mapping;
2429 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2432 return 0;
2433 err:
2434 qede_free_sge_mem(edev, rxq);
2435 edev->gro_disable = 1;
2436 return -ENOMEM;
2439 /* This function allocates all memory needed per Rx queue */
2440 static int qede_alloc_mem_rxq(struct qede_dev *edev,
2441 struct qede_rx_queue *rxq)
2443 int i, rc, size;
2445 rxq->num_rx_buffers = edev->q_num_rx_buffers;
2447 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
2448 edev->ndev->mtu;
2449 if (rxq->rx_buf_size > PAGE_SIZE)
2450 rxq->rx_buf_size = PAGE_SIZE;
2452 /* Segment size to spilt a page in multiple equal parts */
2453 rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2455 /* Allocate the parallel driver ring for Rx buffers */
2456 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2457 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2458 if (!rxq->sw_rx_ring) {
2459 DP_ERR(edev, "Rx buffers ring allocation failed\n");
2460 rc = -ENOMEM;
2461 goto err;
2464 /* Allocate FW Rx ring */
2465 rc = edev->ops->common->chain_alloc(edev->cdev,
2466 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2467 QED_CHAIN_MODE_NEXT_PTR,
2468 RX_RING_SIZE,
2469 sizeof(struct eth_rx_bd),
2470 &rxq->rx_bd_ring);
2472 if (rc)
2473 goto err;
2475 /* Allocate FW completion ring */
2476 rc = edev->ops->common->chain_alloc(edev->cdev,
2477 QED_CHAIN_USE_TO_CONSUME,
2478 QED_CHAIN_MODE_PBL,
2479 RX_RING_SIZE,
2480 sizeof(union eth_rx_cqe),
2481 &rxq->rx_comp_ring);
2482 if (rc)
2483 goto err;
2485 /* Allocate buffers for the Rx ring */
2486 for (i = 0; i < rxq->num_rx_buffers; i++) {
2487 rc = qede_alloc_rx_buffer(edev, rxq);
2488 if (rc) {
2489 DP_ERR(edev,
2490 "Rx buffers allocation failed at index %d\n", i);
2491 goto err;
2495 rc = qede_alloc_sge_mem(edev, rxq);
2496 err:
2497 return rc;
2500 static void qede_free_mem_txq(struct qede_dev *edev,
2501 struct qede_tx_queue *txq)
2503 /* Free the parallel SW ring */
2504 kfree(txq->sw_tx_ring);
2506 /* Free the real RQ ring used by FW */
2507 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2510 /* This function allocates all memory needed per Tx queue */
2511 static int qede_alloc_mem_txq(struct qede_dev *edev,
2512 struct qede_tx_queue *txq)
2514 int size, rc;
2515 union eth_tx_bd_types *p_virt;
2517 txq->num_tx_buffers = edev->q_num_tx_buffers;
2519 /* Allocate the parallel driver ring for Tx buffers */
2520 size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2521 txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2522 if (!txq->sw_tx_ring) {
2523 DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2524 goto err;
2527 rc = edev->ops->common->chain_alloc(edev->cdev,
2528 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2529 QED_CHAIN_MODE_PBL,
2530 NUM_TX_BDS_MAX,
2531 sizeof(*p_virt),
2532 &txq->tx_pbl);
2533 if (rc)
2534 goto err;
2536 return 0;
2538 err:
2539 qede_free_mem_txq(edev, txq);
2540 return -ENOMEM;
2543 /* This function frees all memory of a single fp */
2544 static void qede_free_mem_fp(struct qede_dev *edev,
2545 struct qede_fastpath *fp)
2547 int tc;
2549 qede_free_mem_sb(edev, fp->sb_info);
2551 qede_free_mem_rxq(edev, fp->rxq);
2553 for (tc = 0; tc < edev->num_tc; tc++)
2554 qede_free_mem_txq(edev, &fp->txqs[tc]);
2557 /* This function allocates all memory needed for a single fp (i.e. an entity
2558 * which contains status block, one rx queue and multiple per-TC tx queues.
2560 static int qede_alloc_mem_fp(struct qede_dev *edev,
2561 struct qede_fastpath *fp)
2563 int rc, tc;
2565 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2566 if (rc)
2567 goto err;
2569 rc = qede_alloc_mem_rxq(edev, fp->rxq);
2570 if (rc)
2571 goto err;
2573 for (tc = 0; tc < edev->num_tc; tc++) {
2574 rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2575 if (rc)
2576 goto err;
2579 return 0;
2580 err:
2581 return rc;
2584 static void qede_free_mem_load(struct qede_dev *edev)
2586 int i;
2588 for_each_rss(i) {
2589 struct qede_fastpath *fp = &edev->fp_array[i];
2591 qede_free_mem_fp(edev, fp);
2595 /* This function allocates all qede memory at NIC load. */
2596 static int qede_alloc_mem_load(struct qede_dev *edev)
2598 int rc = 0, rss_id;
2600 for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2601 struct qede_fastpath *fp = &edev->fp_array[rss_id];
2603 rc = qede_alloc_mem_fp(edev, fp);
2604 if (rc) {
2605 DP_ERR(edev,
2606 "Failed to allocate memory for fastpath - rss id = %d\n",
2607 rss_id);
2608 qede_free_mem_load(edev);
2609 return rc;
2613 return 0;
2616 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
2617 static void qede_init_fp(struct qede_dev *edev)
2619 int rss_id, txq_index, tc;
2620 struct qede_fastpath *fp;
2622 for_each_rss(rss_id) {
2623 fp = &edev->fp_array[rss_id];
2625 fp->edev = edev;
2626 fp->rss_id = rss_id;
2628 memset((void *)&fp->napi, 0, sizeof(fp->napi));
2630 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
2632 memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
2633 fp->rxq->rxq_id = rss_id;
2635 memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
2636 for (tc = 0; tc < edev->num_tc; tc++) {
2637 txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
2638 fp->txqs[tc].index = txq_index;
2641 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
2642 edev->ndev->name, rss_id);
2645 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
2648 static int qede_set_real_num_queues(struct qede_dev *edev)
2650 int rc = 0;
2652 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
2653 if (rc) {
2654 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
2655 return rc;
2657 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
2658 if (rc) {
2659 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
2660 return rc;
2663 return 0;
2666 static void qede_napi_disable_remove(struct qede_dev *edev)
2668 int i;
2670 for_each_rss(i) {
2671 napi_disable(&edev->fp_array[i].napi);
2673 netif_napi_del(&edev->fp_array[i].napi);
2677 static void qede_napi_add_enable(struct qede_dev *edev)
2679 int i;
2681 /* Add NAPI objects */
2682 for_each_rss(i) {
2683 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
2684 qede_poll, NAPI_POLL_WEIGHT);
2685 napi_enable(&edev->fp_array[i].napi);
2689 static void qede_sync_free_irqs(struct qede_dev *edev)
2691 int i;
2693 for (i = 0; i < edev->int_info.used_cnt; i++) {
2694 if (edev->int_info.msix_cnt) {
2695 synchronize_irq(edev->int_info.msix[i].vector);
2696 free_irq(edev->int_info.msix[i].vector,
2697 &edev->fp_array[i]);
2698 } else {
2699 edev->ops->common->simd_handler_clean(edev->cdev, i);
2703 edev->int_info.used_cnt = 0;
2706 static int qede_req_msix_irqs(struct qede_dev *edev)
2708 int i, rc;
2710 /* Sanitize number of interrupts == number of prepared RSS queues */
2711 if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
2712 DP_ERR(edev,
2713 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
2714 QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
2715 return -EINVAL;
2718 for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
2719 rc = request_irq(edev->int_info.msix[i].vector,
2720 qede_msix_fp_int, 0, edev->fp_array[i].name,
2721 &edev->fp_array[i]);
2722 if (rc) {
2723 DP_ERR(edev, "Request fp %d irq failed\n", i);
2724 qede_sync_free_irqs(edev);
2725 return rc;
2727 DP_VERBOSE(edev, NETIF_MSG_INTR,
2728 "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
2729 edev->fp_array[i].name, i,
2730 &edev->fp_array[i]);
2731 edev->int_info.used_cnt++;
2734 return 0;
2737 static void qede_simd_fp_handler(void *cookie)
2739 struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
2741 napi_schedule_irqoff(&fp->napi);
2744 static int qede_setup_irqs(struct qede_dev *edev)
2746 int i, rc = 0;
2748 /* Learn Interrupt configuration */
2749 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
2750 if (rc)
2751 return rc;
2753 if (edev->int_info.msix_cnt) {
2754 rc = qede_req_msix_irqs(edev);
2755 if (rc)
2756 return rc;
2757 edev->ndev->irq = edev->int_info.msix[0].vector;
2758 } else {
2759 const struct qed_common_ops *ops;
2761 /* qed should learn receive the RSS ids and callbacks */
2762 ops = edev->ops->common;
2763 for (i = 0; i < QEDE_RSS_CNT(edev); i++)
2764 ops->simd_handler_config(edev->cdev,
2765 &edev->fp_array[i], i,
2766 qede_simd_fp_handler);
2767 edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
2769 return 0;
2772 static int qede_drain_txq(struct qede_dev *edev,
2773 struct qede_tx_queue *txq,
2774 bool allow_drain)
2776 int rc, cnt = 1000;
2778 while (txq->sw_tx_cons != txq->sw_tx_prod) {
2779 if (!cnt) {
2780 if (allow_drain) {
2781 DP_NOTICE(edev,
2782 "Tx queue[%d] is stuck, requesting MCP to drain\n",
2783 txq->index);
2784 rc = edev->ops->common->drain(edev->cdev);
2785 if (rc)
2786 return rc;
2787 return qede_drain_txq(edev, txq, false);
2789 DP_NOTICE(edev,
2790 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2791 txq->index, txq->sw_tx_prod,
2792 txq->sw_tx_cons);
2793 return -ENODEV;
2795 cnt--;
2796 usleep_range(1000, 2000);
2797 barrier();
2800 /* FW finished processing, wait for HW to transmit all tx packets */
2801 usleep_range(1000, 2000);
2803 return 0;
2806 static int qede_stop_queues(struct qede_dev *edev)
2808 struct qed_update_vport_params vport_update_params;
2809 struct qed_dev *cdev = edev->cdev;
2810 int rc, tc, i;
2812 /* Disable the vport */
2813 memset(&vport_update_params, 0, sizeof(vport_update_params));
2814 vport_update_params.vport_id = 0;
2815 vport_update_params.update_vport_active_flg = 1;
2816 vport_update_params.vport_active_flg = 0;
2817 vport_update_params.update_rss_flg = 0;
2819 rc = edev->ops->vport_update(cdev, &vport_update_params);
2820 if (rc) {
2821 DP_ERR(edev, "Failed to update vport\n");
2822 return rc;
2825 /* Flush Tx queues. If needed, request drain from MCP */
2826 for_each_rss(i) {
2827 struct qede_fastpath *fp = &edev->fp_array[i];
2829 for (tc = 0; tc < edev->num_tc; tc++) {
2830 struct qede_tx_queue *txq = &fp->txqs[tc];
2832 rc = qede_drain_txq(edev, txq, true);
2833 if (rc)
2834 return rc;
2838 /* Stop all Queues in reverse order*/
2839 for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
2840 struct qed_stop_rxq_params rx_params;
2842 /* Stop the Tx Queue(s)*/
2843 for (tc = 0; tc < edev->num_tc; tc++) {
2844 struct qed_stop_txq_params tx_params;
2846 tx_params.rss_id = i;
2847 tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
2848 rc = edev->ops->q_tx_stop(cdev, &tx_params);
2849 if (rc) {
2850 DP_ERR(edev, "Failed to stop TXQ #%d\n",
2851 tx_params.tx_queue_id);
2852 return rc;
2856 /* Stop the Rx Queue*/
2857 memset(&rx_params, 0, sizeof(rx_params));
2858 rx_params.rss_id = i;
2859 rx_params.rx_queue_id = i;
2861 rc = edev->ops->q_rx_stop(cdev, &rx_params);
2862 if (rc) {
2863 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2864 return rc;
2868 /* Stop the vport */
2869 rc = edev->ops->vport_stop(cdev, 0);
2870 if (rc)
2871 DP_ERR(edev, "Failed to stop VPORT\n");
2873 return rc;
2876 static int qede_start_queues(struct qede_dev *edev)
2878 int rc, tc, i;
2879 int vlan_removal_en = 1;
2880 struct qed_dev *cdev = edev->cdev;
2881 struct qed_update_vport_rss_params *rss_params = &edev->rss_params;
2882 struct qed_update_vport_params vport_update_params;
2883 struct qed_queue_start_common_params q_params;
2884 struct qed_start_vport_params start = {0};
2886 if (!edev->num_rss) {
2887 DP_ERR(edev,
2888 "Cannot update V-VPORT as active as there are no Rx queues\n");
2889 return -EINVAL;
2892 start.gro_enable = !edev->gro_disable;
2893 start.mtu = edev->ndev->mtu;
2894 start.vport_id = 0;
2895 start.drop_ttl0 = true;
2896 start.remove_inner_vlan = vlan_removal_en;
2898 rc = edev->ops->vport_start(cdev, &start);
2900 if (rc) {
2901 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2902 return rc;
2905 DP_VERBOSE(edev, NETIF_MSG_IFUP,
2906 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2907 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2909 for_each_rss(i) {
2910 struct qede_fastpath *fp = &edev->fp_array[i];
2911 dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
2913 memset(&q_params, 0, sizeof(q_params));
2914 q_params.rss_id = i;
2915 q_params.queue_id = i;
2916 q_params.vport_id = 0;
2917 q_params.sb = fp->sb_info->igu_sb_id;
2918 q_params.sb_idx = RX_PI;
2920 rc = edev->ops->q_rx_start(cdev, &q_params,
2921 fp->rxq->rx_buf_size,
2922 fp->rxq->rx_bd_ring.p_phys_addr,
2923 phys_table,
2924 fp->rxq->rx_comp_ring.page_cnt,
2925 &fp->rxq->hw_rxq_prod_addr);
2926 if (rc) {
2927 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
2928 return rc;
2931 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
2933 qede_update_rx_prod(edev, fp->rxq);
2935 for (tc = 0; tc < edev->num_tc; tc++) {
2936 struct qede_tx_queue *txq = &fp->txqs[tc];
2937 int txq_index = tc * QEDE_RSS_CNT(edev) + i;
2939 memset(&q_params, 0, sizeof(q_params));
2940 q_params.rss_id = i;
2941 q_params.queue_id = txq_index;
2942 q_params.vport_id = 0;
2943 q_params.sb = fp->sb_info->igu_sb_id;
2944 q_params.sb_idx = TX_PI(tc);
2946 rc = edev->ops->q_tx_start(cdev, &q_params,
2947 txq->tx_pbl.pbl.p_phys_table,
2948 txq->tx_pbl.page_cnt,
2949 &txq->doorbell_addr);
2950 if (rc) {
2951 DP_ERR(edev, "Start TXQ #%d failed %d\n",
2952 txq_index, rc);
2953 return rc;
2956 txq->hw_cons_ptr =
2957 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
2958 SET_FIELD(txq->tx_db.data.params,
2959 ETH_DB_DATA_DEST, DB_DEST_XCM);
2960 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
2961 DB_AGG_CMD_SET);
2962 SET_FIELD(txq->tx_db.data.params,
2963 ETH_DB_DATA_AGG_VAL_SEL,
2964 DQ_XCM_ETH_TX_BD_PROD_CMD);
2966 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2970 /* Prepare and send the vport enable */
2971 memset(&vport_update_params, 0, sizeof(vport_update_params));
2972 vport_update_params.vport_id = start.vport_id;
2973 vport_update_params.update_vport_active_flg = 1;
2974 vport_update_params.vport_active_flg = 1;
2976 /* Fill struct with RSS params */
2977 if (QEDE_RSS_CNT(edev) > 1) {
2978 vport_update_params.update_rss_flg = 1;
2979 for (i = 0; i < 128; i++)
2980 rss_params->rss_ind_table[i] =
2981 ethtool_rxfh_indir_default(i, QEDE_RSS_CNT(edev));
2982 netdev_rss_key_fill(rss_params->rss_key,
2983 sizeof(rss_params->rss_key));
2984 } else {
2985 memset(rss_params, 0, sizeof(*rss_params));
2987 memcpy(&vport_update_params.rss_params, rss_params,
2988 sizeof(*rss_params));
2990 rc = edev->ops->vport_update(cdev, &vport_update_params);
2991 if (rc) {
2992 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2993 return rc;
2996 return 0;
2999 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3000 enum qed_filter_xcast_params_type opcode,
3001 unsigned char *mac, int num_macs)
3003 struct qed_filter_params filter_cmd;
3004 int i;
3006 memset(&filter_cmd, 0, sizeof(filter_cmd));
3007 filter_cmd.type = QED_FILTER_TYPE_MCAST;
3008 filter_cmd.filter.mcast.type = opcode;
3009 filter_cmd.filter.mcast.num = num_macs;
3011 for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3012 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3014 return edev->ops->filter_config(edev->cdev, &filter_cmd);
3017 enum qede_unload_mode {
3018 QEDE_UNLOAD_NORMAL,
3021 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
3023 struct qed_link_params link_params;
3024 int rc;
3026 DP_INFO(edev, "Starting qede unload\n");
3028 mutex_lock(&edev->qede_lock);
3029 edev->state = QEDE_STATE_CLOSED;
3031 /* Close OS Tx */
3032 netif_tx_disable(edev->ndev);
3033 netif_carrier_off(edev->ndev);
3035 /* Reset the link */
3036 memset(&link_params, 0, sizeof(link_params));
3037 link_params.link_up = false;
3038 edev->ops->common->set_link(edev->cdev, &link_params);
3039 rc = qede_stop_queues(edev);
3040 if (rc) {
3041 qede_sync_free_irqs(edev);
3042 goto out;
3045 DP_INFO(edev, "Stopped Queues\n");
3047 qede_vlan_mark_nonconfigured(edev);
3048 edev->ops->fastpath_stop(edev->cdev);
3050 /* Release the interrupts */
3051 qede_sync_free_irqs(edev);
3052 edev->ops->common->set_fp_int(edev->cdev, 0);
3054 qede_napi_disable_remove(edev);
3056 qede_free_mem_load(edev);
3057 qede_free_fp_array(edev);
3059 out:
3060 mutex_unlock(&edev->qede_lock);
3061 DP_INFO(edev, "Ending qede unload\n");
3064 enum qede_load_mode {
3065 QEDE_LOAD_NORMAL,
3068 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3070 struct qed_link_params link_params;
3071 struct qed_link_output link_output;
3072 int rc;
3074 DP_INFO(edev, "Starting qede load\n");
3076 rc = qede_set_num_queues(edev);
3077 if (rc)
3078 goto err0;
3080 rc = qede_alloc_fp_array(edev);
3081 if (rc)
3082 goto err0;
3084 qede_init_fp(edev);
3086 rc = qede_alloc_mem_load(edev);
3087 if (rc)
3088 goto err1;
3089 DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3090 QEDE_RSS_CNT(edev), edev->num_tc);
3092 rc = qede_set_real_num_queues(edev);
3093 if (rc)
3094 goto err2;
3096 qede_napi_add_enable(edev);
3097 DP_INFO(edev, "Napi added and enabled\n");
3099 rc = qede_setup_irqs(edev);
3100 if (rc)
3101 goto err3;
3102 DP_INFO(edev, "Setup IRQs succeeded\n");
3104 rc = qede_start_queues(edev);
3105 if (rc)
3106 goto err4;
3107 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3109 /* Add primary mac and set Rx filters */
3110 ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3112 mutex_lock(&edev->qede_lock);
3113 edev->state = QEDE_STATE_OPEN;
3114 mutex_unlock(&edev->qede_lock);
3116 /* Program un-configured VLANs */
3117 qede_configure_vlan_filters(edev);
3119 /* Ask for link-up using current configuration */
3120 memset(&link_params, 0, sizeof(link_params));
3121 link_params.link_up = true;
3122 edev->ops->common->set_link(edev->cdev, &link_params);
3124 /* Query whether link is already-up */
3125 memset(&link_output, 0, sizeof(link_output));
3126 edev->ops->common->get_link(edev->cdev, &link_output);
3127 qede_link_update(edev, &link_output);
3129 DP_INFO(edev, "Ending successfully qede load\n");
3131 return 0;
3133 err4:
3134 qede_sync_free_irqs(edev);
3135 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3136 err3:
3137 qede_napi_disable_remove(edev);
3138 err2:
3139 qede_free_mem_load(edev);
3140 err1:
3141 edev->ops->common->set_fp_int(edev->cdev, 0);
3142 qede_free_fp_array(edev);
3143 edev->num_rss = 0;
3144 err0:
3145 return rc;
3148 void qede_reload(struct qede_dev *edev,
3149 void (*func)(struct qede_dev *, union qede_reload_args *),
3150 union qede_reload_args *args)
3152 qede_unload(edev, QEDE_UNLOAD_NORMAL);
3153 /* Call function handler to update parameters
3154 * needed for function load.
3156 if (func)
3157 func(edev, args);
3159 qede_load(edev, QEDE_LOAD_NORMAL);
3161 mutex_lock(&edev->qede_lock);
3162 qede_config_rx_mode(edev->ndev);
3163 mutex_unlock(&edev->qede_lock);
3166 /* called with rtnl_lock */
3167 static int qede_open(struct net_device *ndev)
3169 struct qede_dev *edev = netdev_priv(ndev);
3171 netif_carrier_off(ndev);
3173 edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3175 return qede_load(edev, QEDE_LOAD_NORMAL);
3178 static int qede_close(struct net_device *ndev)
3180 struct qede_dev *edev = netdev_priv(ndev);
3182 qede_unload(edev, QEDE_UNLOAD_NORMAL);
3184 return 0;
3187 static void qede_link_update(void *dev, struct qed_link_output *link)
3189 struct qede_dev *edev = dev;
3191 if (!netif_running(edev->ndev)) {
3192 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3193 return;
3196 if (link->link_up) {
3197 if (!netif_carrier_ok(edev->ndev)) {
3198 DP_NOTICE(edev, "Link is up\n");
3199 netif_tx_start_all_queues(edev->ndev);
3200 netif_carrier_on(edev->ndev);
3202 } else {
3203 if (netif_carrier_ok(edev->ndev)) {
3204 DP_NOTICE(edev, "Link is down\n");
3205 netif_tx_disable(edev->ndev);
3206 netif_carrier_off(edev->ndev);
3211 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3213 struct qede_dev *edev = netdev_priv(ndev);
3214 struct sockaddr *addr = p;
3215 int rc;
3217 ASSERT_RTNL(); /* @@@TBD To be removed */
3219 DP_INFO(edev, "Set_mac_addr called\n");
3221 if (!is_valid_ether_addr(addr->sa_data)) {
3222 DP_NOTICE(edev, "The MAC address is not valid\n");
3223 return -EFAULT;
3226 ether_addr_copy(ndev->dev_addr, addr->sa_data);
3228 if (!netif_running(ndev)) {
3229 DP_NOTICE(edev, "The device is currently down\n");
3230 return 0;
3233 /* Remove the previous primary mac */
3234 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3235 edev->primary_mac);
3236 if (rc)
3237 return rc;
3239 /* Add MAC filter according to the new unicast HW MAC address */
3240 ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3241 return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3242 edev->primary_mac);
3245 static int
3246 qede_configure_mcast_filtering(struct net_device *ndev,
3247 enum qed_filter_rx_mode_type *accept_flags)
3249 struct qede_dev *edev = netdev_priv(ndev);
3250 unsigned char *mc_macs, *temp;
3251 struct netdev_hw_addr *ha;
3252 int rc = 0, mc_count;
3253 size_t size;
3255 size = 64 * ETH_ALEN;
3257 mc_macs = kzalloc(size, GFP_KERNEL);
3258 if (!mc_macs) {
3259 DP_NOTICE(edev,
3260 "Failed to allocate memory for multicast MACs\n");
3261 rc = -ENOMEM;
3262 goto exit;
3265 temp = mc_macs;
3267 /* Remove all previously configured MAC filters */
3268 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3269 mc_macs, 1);
3270 if (rc)
3271 goto exit;
3273 netif_addr_lock_bh(ndev);
3275 mc_count = netdev_mc_count(ndev);
3276 if (mc_count < 64) {
3277 netdev_for_each_mc_addr(ha, ndev) {
3278 ether_addr_copy(temp, ha->addr);
3279 temp += ETH_ALEN;
3283 netif_addr_unlock_bh(ndev);
3285 /* Check for all multicast @@@TBD resource allocation */
3286 if ((ndev->flags & IFF_ALLMULTI) ||
3287 (mc_count > 64)) {
3288 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3289 *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3290 } else {
3291 /* Add all multicast MAC filters */
3292 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3293 mc_macs, mc_count);
3296 exit:
3297 kfree(mc_macs);
3298 return rc;
3301 static void qede_set_rx_mode(struct net_device *ndev)
3303 struct qede_dev *edev = netdev_priv(ndev);
3305 DP_INFO(edev, "qede_set_rx_mode called\n");
3307 if (edev->state != QEDE_STATE_OPEN) {
3308 DP_INFO(edev,
3309 "qede_set_rx_mode called while interface is down\n");
3310 } else {
3311 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3312 schedule_delayed_work(&edev->sp_task, 0);
3316 /* Must be called with qede_lock held */
3317 static void qede_config_rx_mode(struct net_device *ndev)
3319 enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3320 struct qede_dev *edev = netdev_priv(ndev);
3321 struct qed_filter_params rx_mode;
3322 unsigned char *uc_macs, *temp;
3323 struct netdev_hw_addr *ha;
3324 int rc, uc_count;
3325 size_t size;
3327 netif_addr_lock_bh(ndev);
3329 uc_count = netdev_uc_count(ndev);
3330 size = uc_count * ETH_ALEN;
3332 uc_macs = kzalloc(size, GFP_ATOMIC);
3333 if (!uc_macs) {
3334 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3335 netif_addr_unlock_bh(ndev);
3336 return;
3339 temp = uc_macs;
3340 netdev_for_each_uc_addr(ha, ndev) {
3341 ether_addr_copy(temp, ha->addr);
3342 temp += ETH_ALEN;
3345 netif_addr_unlock_bh(ndev);
3347 /* Configure the struct for the Rx mode */
3348 memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3349 rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3351 /* Remove all previous unicast secondary macs and multicast macs
3352 * (configrue / leave the primary mac)
3354 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3355 edev->primary_mac);
3356 if (rc)
3357 goto out;
3359 /* Check for promiscuous */
3360 if ((ndev->flags & IFF_PROMISC) ||
3361 (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3362 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3363 } else {
3364 /* Add MAC filters according to the unicast secondary macs */
3365 int i;
3367 temp = uc_macs;
3368 for (i = 0; i < uc_count; i++) {
3369 rc = qede_set_ucast_rx_mac(edev,
3370 QED_FILTER_XCAST_TYPE_ADD,
3371 temp);
3372 if (rc)
3373 goto out;
3375 temp += ETH_ALEN;
3378 rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3379 if (rc)
3380 goto out;
3383 /* take care of VLAN mode */
3384 if (ndev->flags & IFF_PROMISC) {
3385 qede_config_accept_any_vlan(edev, true);
3386 } else if (!edev->non_configured_vlans) {
3387 /* It's possible that accept_any_vlan mode is set due to a
3388 * previous setting of IFF_PROMISC. If vlan credits are
3389 * sufficient, disable accept_any_vlan.
3391 qede_config_accept_any_vlan(edev, false);
3394 rx_mode.filter.accept_flags = accept_flags;
3395 edev->ops->filter_config(edev->cdev, &rx_mode);
3396 out:
3397 kfree(uc_macs);