1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2012-2013 Solarflare Communications Inc.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
10 #include "net_driver.h"
11 #include "ef10_regs.h"
14 #include "mcdi_pcol.h"
16 #include "workarounds.h"
18 #include "ef10_sriov.h"
20 #include <linux/jhash.h>
21 #include <linux/wait.h>
22 #include <linux/workqueue.h>
24 /* Hardware control for EF10 architecture including 'Huntington'. */
26 #define EFX_EF10_DRVGEN_EV 7
32 /* The reserved RSS context value */
33 #define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff
34 /* The maximum size of a shared RSS context */
35 /* TODO: this should really be from the mcdi protocol export */
36 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
38 /* The filter table(s) are managed by firmware and we have write-only
39 * access. When removing filters we must identify them to the
40 * firmware by a 64-bit handle, but this is too wide for Linux kernel
41 * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
42 * be able to tell in advance whether a requested insertion will
43 * replace an existing filter. Therefore we maintain a software hash
44 * table, which should be at least as large as the hardware hash
47 * Huntington has a single 8K filter table shared between all filter
48 * types and both ports.
50 #define HUNT_FILTER_TBL_ROWS 8192
52 #define EFX_EF10_FILTER_ID_INVALID 0xffff
53 struct efx_ef10_dev_addr
{
58 struct efx_ef10_filter_table
{
59 /* The RX match field masks supported by this fw & hw, in order of priority */
60 enum efx_filter_match_flags rx_match_flags
[
61 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM
];
62 unsigned int rx_match_count
;
65 unsigned long spec
; /* pointer to spec plus flag bits */
66 /* BUSY flag indicates that an update is in progress. AUTO_OLD is
67 * used to mark and sweep MAC filters for the device address lists.
69 #define EFX_EF10_FILTER_FLAG_BUSY 1UL
70 #define EFX_EF10_FILTER_FLAG_AUTO_OLD 2UL
71 #define EFX_EF10_FILTER_FLAGS 3UL
72 u64 handle
; /* firmware handle */
74 wait_queue_head_t waitq
;
75 /* Shadow of net_device address lists, guarded by mac_lock */
76 #define EFX_EF10_FILTER_DEV_UC_MAX 32
77 #define EFX_EF10_FILTER_DEV_MC_MAX 256
78 struct efx_ef10_dev_addr dev_uc_list
[EFX_EF10_FILTER_DEV_UC_MAX
];
79 struct efx_ef10_dev_addr dev_mc_list
[EFX_EF10_FILTER_DEV_MC_MAX
];
82 /* Indices (like efx_ef10_dev_addr.id) for promisc/allmulti filters */
88 /* An arbitrary search limit for the software hash table */
89 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
91 static void efx_ef10_rx_free_indir_table(struct efx_nic
*efx
);
92 static void efx_ef10_filter_table_remove(struct efx_nic
*efx
);
94 static int efx_ef10_get_warm_boot_count(struct efx_nic
*efx
)
98 efx_readd(efx
, ®
, ER_DZ_BIU_MC_SFT_STATUS
);
99 return EFX_DWORD_FIELD(reg
, EFX_WORD_1
) == 0xb007 ?
100 EFX_DWORD_FIELD(reg
, EFX_WORD_0
) : -EIO
;
103 static unsigned int efx_ef10_mem_map_size(struct efx_nic
*efx
)
107 bar
= efx
->type
->mem_bar
;
108 return resource_size(&efx
->pci_dev
->resource
[bar
]);
111 static bool efx_ef10_is_vf(struct efx_nic
*efx
)
113 return efx
->type
->is_vf
;
116 static int efx_ef10_get_pf_index(struct efx_nic
*efx
)
118 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_FUNCTION_INFO_OUT_LEN
);
119 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
123 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_FUNCTION_INFO
, NULL
, 0, outbuf
,
124 sizeof(outbuf
), &outlen
);
127 if (outlen
< sizeof(outbuf
))
130 nic_data
->pf_index
= MCDI_DWORD(outbuf
, GET_FUNCTION_INFO_OUT_PF
);
134 #ifdef CONFIG_SFC_SRIOV
135 static int efx_ef10_get_vf_index(struct efx_nic
*efx
)
137 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_FUNCTION_INFO_OUT_LEN
);
138 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
142 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_FUNCTION_INFO
, NULL
, 0, outbuf
,
143 sizeof(outbuf
), &outlen
);
146 if (outlen
< sizeof(outbuf
))
149 nic_data
->vf_index
= MCDI_DWORD(outbuf
, GET_FUNCTION_INFO_OUT_VF
);
154 static int efx_ef10_init_datapath_caps(struct efx_nic
*efx
)
156 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_CAPABILITIES_OUT_LEN
);
157 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
161 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN
!= 0);
163 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_CAPABILITIES
, NULL
, 0,
164 outbuf
, sizeof(outbuf
), &outlen
);
167 if (outlen
< sizeof(outbuf
)) {
168 netif_err(efx
, drv
, efx
->net_dev
,
169 "unable to read datapath firmware capabilities\n");
173 nic_data
->datapath_caps
=
174 MCDI_DWORD(outbuf
, GET_CAPABILITIES_OUT_FLAGS1
);
176 /* record the DPCPU firmware IDs to determine VEB vswitching support.
178 nic_data
->rx_dpcpu_fw_id
=
179 MCDI_WORD(outbuf
, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID
);
180 nic_data
->tx_dpcpu_fw_id
=
181 MCDI_WORD(outbuf
, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID
);
183 if (!(nic_data
->datapath_caps
&
184 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN
))) {
185 netif_err(efx
, probe
, efx
->net_dev
,
186 "current firmware does not support an RX prefix\n");
193 static int efx_ef10_get_sysclk_freq(struct efx_nic
*efx
)
195 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_CLOCK_OUT_LEN
);
198 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_CLOCK
, NULL
, 0,
199 outbuf
, sizeof(outbuf
), NULL
);
202 rc
= MCDI_DWORD(outbuf
, GET_CLOCK_OUT_SYS_FREQ
);
203 return rc
> 0 ? rc
: -ERANGE
;
206 static int efx_ef10_get_mac_address_pf(struct efx_nic
*efx
, u8
*mac_address
)
208 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN
);
212 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN
!= 0);
214 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_MAC_ADDRESSES
, NULL
, 0,
215 outbuf
, sizeof(outbuf
), &outlen
);
218 if (outlen
< MC_CMD_GET_MAC_ADDRESSES_OUT_LEN
)
221 ether_addr_copy(mac_address
,
222 MCDI_PTR(outbuf
, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE
));
226 static int efx_ef10_get_mac_address_vf(struct efx_nic
*efx
, u8
*mac_address
)
228 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN
);
229 MCDI_DECLARE_BUF(outbuf
, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX
);
233 MCDI_SET_DWORD(inbuf
, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID
,
234 EVB_PORT_ID_ASSIGNED
);
235 rc
= efx_mcdi_rpc(efx
, MC_CMD_VPORT_GET_MAC_ADDRESSES
, inbuf
,
236 sizeof(inbuf
), outbuf
, sizeof(outbuf
), &outlen
);
240 if (outlen
< MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN
)
243 num_addrs
= MCDI_DWORD(outbuf
,
244 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT
);
246 WARN_ON(num_addrs
!= 1);
248 ether_addr_copy(mac_address
,
249 MCDI_PTR(outbuf
, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR
));
254 static ssize_t
efx_ef10_show_link_control_flag(struct device
*dev
,
255 struct device_attribute
*attr
,
258 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
260 return sprintf(buf
, "%d\n",
261 ((efx
->mcdi
->fn_flags
) &
262 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
))
266 static ssize_t
efx_ef10_show_primary_flag(struct device
*dev
,
267 struct device_attribute
*attr
,
270 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
272 return sprintf(buf
, "%d\n",
273 ((efx
->mcdi
->fn_flags
) &
274 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
))
278 static DEVICE_ATTR(link_control_flag
, 0444, efx_ef10_show_link_control_flag
,
280 static DEVICE_ATTR(primary_flag
, 0444, efx_ef10_show_primary_flag
, NULL
);
282 static int efx_ef10_probe(struct efx_nic
*efx
)
284 struct efx_ef10_nic_data
*nic_data
;
285 struct net_device
*net_dev
= efx
->net_dev
;
288 /* We can have one VI for each 8K region. However, until we
289 * use TX option descriptors we need two TX queues per channel.
291 efx
->max_channels
= min_t(unsigned int,
293 efx_ef10_mem_map_size(efx
) /
294 (EFX_VI_PAGE_SIZE
* EFX_TXQ_TYPES
));
295 efx
->max_tx_channels
= efx
->max_channels
;
296 if (WARN_ON(efx
->max_channels
== 0))
299 nic_data
= kzalloc(sizeof(*nic_data
), GFP_KERNEL
);
302 efx
->nic_data
= nic_data
;
304 /* we assume later that we can copy from this buffer in dwords */
305 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2
% 4);
307 rc
= efx_nic_alloc_buffer(efx
, &nic_data
->mcdi_buf
,
308 8 + MCDI_CTL_SDU_LEN_MAX_V2
, GFP_KERNEL
);
312 /* Get the MC's warm boot count. In case it's rebooting right
313 * now, be prepared to retry.
317 rc
= efx_ef10_get_warm_boot_count(efx
);
324 nic_data
->warm_boot_count
= rc
;
326 nic_data
->rx_rss_context
= EFX_EF10_RSS_CONTEXT_INVALID
;
328 nic_data
->vport_id
= EVB_PORT_ID_ASSIGNED
;
330 /* In case we're recovering from a crash (kexec), we want to
331 * cancel any outstanding request by the previous user of this
332 * function. We send a special message using the least
333 * significant bits of the 'high' (doorbell) register.
335 _efx_writed(efx
, cpu_to_le32(1), ER_DZ_MC_DB_HWRD
);
337 rc
= efx_mcdi_init(efx
);
341 /* Reset (most) configuration for this function */
342 rc
= efx_mcdi_reset(efx
, RESET_TYPE_ALL
);
346 /* Enable event logging */
347 rc
= efx_mcdi_log_ctrl(efx
, true, false, 0);
351 rc
= device_create_file(&efx
->pci_dev
->dev
,
352 &dev_attr_link_control_flag
);
356 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_primary_flag
);
360 rc
= efx_ef10_get_pf_index(efx
);
364 rc
= efx_ef10_init_datapath_caps(efx
);
368 efx
->rx_packet_len_offset
=
369 ES_DZ_RX_PREFIX_PKTLEN_OFST
- ES_DZ_RX_PREFIX_SIZE
;
371 rc
= efx_mcdi_port_get_number(efx
);
375 net_dev
->dev_port
= rc
;
377 rc
= efx
->type
->get_mac_address(efx
, efx
->net_dev
->perm_addr
);
381 rc
= efx_ef10_get_sysclk_freq(efx
);
384 efx
->timer_quantum_ns
= 1536000 / rc
; /* 1536 cycles */
386 /* Check whether firmware supports bug 35388 workaround.
387 * First try to enable it, then if we get EPERM, just
388 * ask if it's already enabled
390 rc
= efx_mcdi_set_workaround(efx
, MC_CMD_WORKAROUND_BUG35388
, true, NULL
);
392 nic_data
->workaround_35388
= true;
393 } else if (rc
== -EPERM
) {
394 unsigned int enabled
;
396 rc
= efx_mcdi_get_workarounds(efx
, NULL
, &enabled
);
399 nic_data
->workaround_35388
= enabled
&
400 MC_CMD_GET_WORKAROUNDS_OUT_BUG35388
;
401 } else if (rc
!= -ENOSYS
&& rc
!= -ENOENT
) {
404 netif_dbg(efx
, probe
, efx
->net_dev
,
405 "workaround for bug 35388 is %sabled\n",
406 nic_data
->workaround_35388
? "en" : "dis");
408 rc
= efx_mcdi_mon_probe(efx
);
409 if (rc
&& rc
!= -EPERM
)
412 efx_ptp_probe(efx
, NULL
);
414 #ifdef CONFIG_SFC_SRIOV
415 if ((efx
->pci_dev
->physfn
) && (!efx
->pci_dev
->is_physfn
)) {
416 struct pci_dev
*pci_dev_pf
= efx
->pci_dev
->physfn
;
417 struct efx_nic
*efx_pf
= pci_get_drvdata(pci_dev_pf
);
419 efx_pf
->type
->get_mac_address(efx_pf
, nic_data
->port_id
);
422 ether_addr_copy(nic_data
->port_id
, efx
->net_dev
->perm_addr
);
427 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_primary_flag
);
429 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_link_control_flag
);
433 efx_nic_free_buffer(efx
, &nic_data
->mcdi_buf
);
436 efx
->nic_data
= NULL
;
440 static int efx_ef10_free_vis(struct efx_nic
*efx
)
442 MCDI_DECLARE_BUF_ERR(outbuf
);
444 int rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FREE_VIS
, NULL
, 0,
445 outbuf
, sizeof(outbuf
), &outlen
);
447 /* -EALREADY means nothing to free, so ignore */
451 efx_mcdi_display_error(efx
, MC_CMD_FREE_VIS
, 0, outbuf
, outlen
,
458 static void efx_ef10_free_piobufs(struct efx_nic
*efx
)
460 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
461 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FREE_PIOBUF_IN_LEN
);
465 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN
!= 0);
467 for (i
= 0; i
< nic_data
->n_piobufs
; i
++) {
468 MCDI_SET_DWORD(inbuf
, FREE_PIOBUF_IN_PIOBUF_HANDLE
,
469 nic_data
->piobuf_handle
[i
]);
470 rc
= efx_mcdi_rpc(efx
, MC_CMD_FREE_PIOBUF
, inbuf
, sizeof(inbuf
),
475 nic_data
->n_piobufs
= 0;
478 static int efx_ef10_alloc_piobufs(struct efx_nic
*efx
, unsigned int n
)
480 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
481 MCDI_DECLARE_BUF(outbuf
, MC_CMD_ALLOC_PIOBUF_OUT_LEN
);
486 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN
!= 0);
488 for (i
= 0; i
< n
; i
++) {
489 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_ALLOC_PIOBUF
, NULL
, 0,
490 outbuf
, sizeof(outbuf
), &outlen
);
492 /* Don't display the MC error if we didn't have space
495 if (!(efx_ef10_is_vf(efx
) && rc
== -ENOSPC
))
496 efx_mcdi_display_error(efx
, MC_CMD_ALLOC_PIOBUF
,
497 0, outbuf
, outlen
, rc
);
500 if (outlen
< MC_CMD_ALLOC_PIOBUF_OUT_LEN
) {
504 nic_data
->piobuf_handle
[i
] =
505 MCDI_DWORD(outbuf
, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE
);
506 netif_dbg(efx
, probe
, efx
->net_dev
,
507 "allocated PIO buffer %u handle %x\n", i
,
508 nic_data
->piobuf_handle
[i
]);
511 nic_data
->n_piobufs
= i
;
513 efx_ef10_free_piobufs(efx
);
517 static int efx_ef10_link_piobufs(struct efx_nic
*efx
)
519 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
520 _MCDI_DECLARE_BUF(inbuf
,
521 max(MC_CMD_LINK_PIOBUF_IN_LEN
,
522 MC_CMD_UNLINK_PIOBUF_IN_LEN
));
523 struct efx_channel
*channel
;
524 struct efx_tx_queue
*tx_queue
;
525 unsigned int offset
, index
;
528 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN
!= 0);
529 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN
!= 0);
531 memset(inbuf
, 0, sizeof(inbuf
));
533 /* Link a buffer to each VI in the write-combining mapping */
534 for (index
= 0; index
< nic_data
->n_piobufs
; ++index
) {
535 MCDI_SET_DWORD(inbuf
, LINK_PIOBUF_IN_PIOBUF_HANDLE
,
536 nic_data
->piobuf_handle
[index
]);
537 MCDI_SET_DWORD(inbuf
, LINK_PIOBUF_IN_TXQ_INSTANCE
,
538 nic_data
->pio_write_vi_base
+ index
);
539 rc
= efx_mcdi_rpc(efx
, MC_CMD_LINK_PIOBUF
,
540 inbuf
, MC_CMD_LINK_PIOBUF_IN_LEN
,
543 netif_err(efx
, drv
, efx
->net_dev
,
544 "failed to link VI %u to PIO buffer %u (%d)\n",
545 nic_data
->pio_write_vi_base
+ index
, index
,
549 netif_dbg(efx
, probe
, efx
->net_dev
,
550 "linked VI %u to PIO buffer %u\n",
551 nic_data
->pio_write_vi_base
+ index
, index
);
554 /* Link a buffer to each TX queue */
555 efx_for_each_channel(channel
, efx
) {
556 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
557 /* We assign the PIO buffers to queues in
558 * reverse order to allow for the following
561 offset
= ((efx
->tx_channel_offset
+ efx
->n_tx_channels
-
562 tx_queue
->channel
->channel
- 1) *
564 index
= offset
/ ER_DZ_TX_PIOBUF_SIZE
;
565 offset
= offset
% ER_DZ_TX_PIOBUF_SIZE
;
567 /* When the host page size is 4K, the first
568 * host page in the WC mapping may be within
569 * the same VI page as the last TX queue. We
570 * can only link one buffer to each VI.
572 if (tx_queue
->queue
== nic_data
->pio_write_vi_base
) {
576 MCDI_SET_DWORD(inbuf
,
577 LINK_PIOBUF_IN_PIOBUF_HANDLE
,
578 nic_data
->piobuf_handle
[index
]);
579 MCDI_SET_DWORD(inbuf
,
580 LINK_PIOBUF_IN_TXQ_INSTANCE
,
582 rc
= efx_mcdi_rpc(efx
, MC_CMD_LINK_PIOBUF
,
583 inbuf
, MC_CMD_LINK_PIOBUF_IN_LEN
,
588 /* This is non-fatal; the TX path just
589 * won't use PIO for this queue
591 netif_err(efx
, drv
, efx
->net_dev
,
592 "failed to link VI %u to PIO buffer %u (%d)\n",
593 tx_queue
->queue
, index
, rc
);
594 tx_queue
->piobuf
= NULL
;
597 nic_data
->pio_write_base
+
598 index
* EFX_VI_PAGE_SIZE
+ offset
;
599 tx_queue
->piobuf_offset
= offset
;
600 netif_dbg(efx
, probe
, efx
->net_dev
,
601 "linked VI %u to PIO buffer %u offset %x addr %p\n",
602 tx_queue
->queue
, index
,
603 tx_queue
->piobuf_offset
,
613 MCDI_SET_DWORD(inbuf
, UNLINK_PIOBUF_IN_TXQ_INSTANCE
,
614 nic_data
->pio_write_vi_base
+ index
);
615 efx_mcdi_rpc(efx
, MC_CMD_UNLINK_PIOBUF
,
616 inbuf
, MC_CMD_UNLINK_PIOBUF_IN_LEN
,
622 #else /* !EFX_USE_PIO */
624 static int efx_ef10_alloc_piobufs(struct efx_nic
*efx
, unsigned int n
)
626 return n
== 0 ? 0 : -ENOBUFS
;
629 static int efx_ef10_link_piobufs(struct efx_nic
*efx
)
634 static void efx_ef10_free_piobufs(struct efx_nic
*efx
)
638 #endif /* EFX_USE_PIO */
640 static void efx_ef10_remove(struct efx_nic
*efx
)
642 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
645 #ifdef CONFIG_SFC_SRIOV
646 struct efx_ef10_nic_data
*nic_data_pf
;
647 struct pci_dev
*pci_dev_pf
;
648 struct efx_nic
*efx_pf
;
651 if (efx
->pci_dev
->is_virtfn
) {
652 pci_dev_pf
= efx
->pci_dev
->physfn
;
654 efx_pf
= pci_get_drvdata(pci_dev_pf
);
655 nic_data_pf
= efx_pf
->nic_data
;
656 vf
= nic_data_pf
->vf
+ nic_data
->vf_index
;
659 netif_info(efx
, drv
, efx
->net_dev
,
660 "Could not get the PF id from VF\n");
666 efx_mcdi_mon_remove(efx
);
668 efx_ef10_rx_free_indir_table(efx
);
670 if (nic_data
->wc_membase
)
671 iounmap(nic_data
->wc_membase
);
673 rc
= efx_ef10_free_vis(efx
);
676 if (!nic_data
->must_restore_piobufs
)
677 efx_ef10_free_piobufs(efx
);
679 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_primary_flag
);
680 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_link_control_flag
);
683 efx_nic_free_buffer(efx
, &nic_data
->mcdi_buf
);
687 static int efx_ef10_probe_pf(struct efx_nic
*efx
)
689 return efx_ef10_probe(efx
);
692 int efx_ef10_vadaptor_alloc(struct efx_nic
*efx
, unsigned int port_id
)
694 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VADAPTOR_ALLOC_IN_LEN
);
696 MCDI_SET_DWORD(inbuf
, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID
, port_id
);
697 return efx_mcdi_rpc(efx
, MC_CMD_VADAPTOR_ALLOC
, inbuf
, sizeof(inbuf
),
701 int efx_ef10_vadaptor_free(struct efx_nic
*efx
, unsigned int port_id
)
703 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VADAPTOR_FREE_IN_LEN
);
705 MCDI_SET_DWORD(inbuf
, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID
, port_id
);
706 return efx_mcdi_rpc(efx
, MC_CMD_VADAPTOR_FREE
, inbuf
, sizeof(inbuf
),
710 int efx_ef10_vport_add_mac(struct efx_nic
*efx
,
711 unsigned int port_id
, u8
*mac
)
713 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN
);
715 MCDI_SET_DWORD(inbuf
, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID
, port_id
);
716 ether_addr_copy(MCDI_PTR(inbuf
, VPORT_ADD_MAC_ADDRESS_IN_MACADDR
), mac
);
718 return efx_mcdi_rpc(efx
, MC_CMD_VPORT_ADD_MAC_ADDRESS
, inbuf
,
719 sizeof(inbuf
), NULL
, 0, NULL
);
722 int efx_ef10_vport_del_mac(struct efx_nic
*efx
,
723 unsigned int port_id
, u8
*mac
)
725 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN
);
727 MCDI_SET_DWORD(inbuf
, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID
, port_id
);
728 ether_addr_copy(MCDI_PTR(inbuf
, VPORT_DEL_MAC_ADDRESS_IN_MACADDR
), mac
);
730 return efx_mcdi_rpc(efx
, MC_CMD_VPORT_DEL_MAC_ADDRESS
, inbuf
,
731 sizeof(inbuf
), NULL
, 0, NULL
);
734 #ifdef CONFIG_SFC_SRIOV
735 static int efx_ef10_probe_vf(struct efx_nic
*efx
)
738 struct pci_dev
*pci_dev_pf
;
740 /* If the parent PF has no VF data structure, it doesn't know about this
741 * VF so fail probe. The VF needs to be re-created. This can happen
742 * if the PF driver is unloaded while the VF is assigned to a guest.
744 pci_dev_pf
= efx
->pci_dev
->physfn
;
746 struct efx_nic
*efx_pf
= pci_get_drvdata(pci_dev_pf
);
747 struct efx_ef10_nic_data
*nic_data_pf
= efx_pf
->nic_data
;
749 if (!nic_data_pf
->vf
) {
750 netif_info(efx
, drv
, efx
->net_dev
,
751 "The VF cannot link to its parent PF; "
752 "please destroy and re-create the VF\n");
757 rc
= efx_ef10_probe(efx
);
761 rc
= efx_ef10_get_vf_index(efx
);
765 if (efx
->pci_dev
->is_virtfn
) {
766 if (efx
->pci_dev
->physfn
) {
767 struct efx_nic
*efx_pf
=
768 pci_get_drvdata(efx
->pci_dev
->physfn
);
769 struct efx_ef10_nic_data
*nic_data_p
= efx_pf
->nic_data
;
770 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
772 nic_data_p
->vf
[nic_data
->vf_index
].efx
= efx
;
773 nic_data_p
->vf
[nic_data
->vf_index
].pci_dev
=
776 netif_info(efx
, drv
, efx
->net_dev
,
777 "Could not get the PF id from VF\n");
783 efx_ef10_remove(efx
);
787 static int efx_ef10_probe_vf(struct efx_nic
*efx
__attribute__ ((unused
)))
793 static int efx_ef10_alloc_vis(struct efx_nic
*efx
,
794 unsigned int min_vis
, unsigned int max_vis
)
796 MCDI_DECLARE_BUF(inbuf
, MC_CMD_ALLOC_VIS_IN_LEN
);
797 MCDI_DECLARE_BUF(outbuf
, MC_CMD_ALLOC_VIS_OUT_LEN
);
798 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
802 MCDI_SET_DWORD(inbuf
, ALLOC_VIS_IN_MIN_VI_COUNT
, min_vis
);
803 MCDI_SET_DWORD(inbuf
, ALLOC_VIS_IN_MAX_VI_COUNT
, max_vis
);
804 rc
= efx_mcdi_rpc(efx
, MC_CMD_ALLOC_VIS
, inbuf
, sizeof(inbuf
),
805 outbuf
, sizeof(outbuf
), &outlen
);
809 if (outlen
< MC_CMD_ALLOC_VIS_OUT_LEN
)
812 netif_dbg(efx
, drv
, efx
->net_dev
, "base VI is A0x%03x\n",
813 MCDI_DWORD(outbuf
, ALLOC_VIS_OUT_VI_BASE
));
815 nic_data
->vi_base
= MCDI_DWORD(outbuf
, ALLOC_VIS_OUT_VI_BASE
);
816 nic_data
->n_allocated_vis
= MCDI_DWORD(outbuf
, ALLOC_VIS_OUT_VI_COUNT
);
820 /* Note that the failure path of this function does not free
821 * resources, as this will be done by efx_ef10_remove().
823 static int efx_ef10_dimension_resources(struct efx_nic
*efx
)
825 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
826 unsigned int uc_mem_map_size
, wc_mem_map_size
;
827 unsigned int min_vis
= max(EFX_TXQ_TYPES
,
828 efx_separate_tx_channels
? 2 : 1);
829 unsigned int channel_vis
, pio_write_vi_base
, max_vis
;
830 void __iomem
*membase
;
833 channel_vis
= max(efx
->n_channels
, efx
->n_tx_channels
* EFX_TXQ_TYPES
);
836 /* Try to allocate PIO buffers if wanted and if the full
837 * number of PIO buffers would be sufficient to allocate one
838 * copy-buffer per TX channel. Failure is non-fatal, as there
839 * are only a small number of PIO buffers shared between all
840 * functions of the controller.
842 if (efx_piobuf_size
!= 0 &&
843 ER_DZ_TX_PIOBUF_SIZE
/ efx_piobuf_size
* EF10_TX_PIOBUF_COUNT
>=
844 efx
->n_tx_channels
) {
845 unsigned int n_piobufs
=
846 DIV_ROUND_UP(efx
->n_tx_channels
,
847 ER_DZ_TX_PIOBUF_SIZE
/ efx_piobuf_size
);
849 rc
= efx_ef10_alloc_piobufs(efx
, n_piobufs
);
851 netif_err(efx
, probe
, efx
->net_dev
,
852 "failed to allocate PIO buffers (%d)\n", rc
);
854 netif_dbg(efx
, probe
, efx
->net_dev
,
855 "allocated %u PIO buffers\n", n_piobufs
);
858 nic_data
->n_piobufs
= 0;
861 /* PIO buffers should be mapped with write-combining enabled,
862 * and we want to make single UC and WC mappings rather than
863 * several of each (in fact that's the only option if host
864 * page size is >4K). So we may allocate some extra VIs just
865 * for writing PIO buffers through.
867 * The UC mapping contains (channel_vis - 1) complete VIs and the
868 * first half of the next VI. Then the WC mapping begins with
869 * the second half of this last VI.
871 uc_mem_map_size
= PAGE_ALIGN((channel_vis
- 1) * EFX_VI_PAGE_SIZE
+
873 if (nic_data
->n_piobufs
) {
874 /* pio_write_vi_base rounds down to give the number of complete
875 * VIs inside the UC mapping.
877 pio_write_vi_base
= uc_mem_map_size
/ EFX_VI_PAGE_SIZE
;
878 wc_mem_map_size
= (PAGE_ALIGN((pio_write_vi_base
+
879 nic_data
->n_piobufs
) *
882 max_vis
= pio_write_vi_base
+ nic_data
->n_piobufs
;
884 pio_write_vi_base
= 0;
886 max_vis
= channel_vis
;
889 /* In case the last attached driver failed to free VIs, do it now */
890 rc
= efx_ef10_free_vis(efx
);
894 rc
= efx_ef10_alloc_vis(efx
, min_vis
, max_vis
);
898 if (nic_data
->n_allocated_vis
< channel_vis
) {
899 netif_info(efx
, drv
, efx
->net_dev
,
900 "Could not allocate enough VIs to satisfy RSS"
901 " requirements. Performance may not be optimal.\n");
902 /* We didn't get the VIs to populate our channels.
903 * We could keep what we got but then we'd have more
904 * interrupts than we need.
905 * Instead calculate new max_channels and restart
907 efx
->max_channels
= nic_data
->n_allocated_vis
;
908 efx
->max_tx_channels
=
909 nic_data
->n_allocated_vis
/ EFX_TXQ_TYPES
;
911 efx_ef10_free_vis(efx
);
915 /* If we didn't get enough VIs to map all the PIO buffers, free the
918 if (nic_data
->n_piobufs
&&
919 nic_data
->n_allocated_vis
<
920 pio_write_vi_base
+ nic_data
->n_piobufs
) {
921 netif_dbg(efx
, probe
, efx
->net_dev
,
922 "%u VIs are not sufficient to map %u PIO buffers\n",
923 nic_data
->n_allocated_vis
, nic_data
->n_piobufs
);
924 efx_ef10_free_piobufs(efx
);
927 /* Shrink the original UC mapping of the memory BAR */
928 membase
= ioremap_nocache(efx
->membase_phys
, uc_mem_map_size
);
930 netif_err(efx
, probe
, efx
->net_dev
,
931 "could not shrink memory BAR to %x\n",
935 iounmap(efx
->membase
);
936 efx
->membase
= membase
;
938 /* Set up the WC mapping if needed */
939 if (wc_mem_map_size
) {
940 nic_data
->wc_membase
= ioremap_wc(efx
->membase_phys
+
943 if (!nic_data
->wc_membase
) {
944 netif_err(efx
, probe
, efx
->net_dev
,
945 "could not allocate WC mapping of size %x\n",
949 nic_data
->pio_write_vi_base
= pio_write_vi_base
;
950 nic_data
->pio_write_base
=
951 nic_data
->wc_membase
+
952 (pio_write_vi_base
* EFX_VI_PAGE_SIZE
+ ER_DZ_TX_PIOBUF
-
955 rc
= efx_ef10_link_piobufs(efx
);
957 efx_ef10_free_piobufs(efx
);
960 netif_dbg(efx
, probe
, efx
->net_dev
,
961 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
962 &efx
->membase_phys
, efx
->membase
, uc_mem_map_size
,
963 nic_data
->wc_membase
, wc_mem_map_size
);
968 static int efx_ef10_init_nic(struct efx_nic
*efx
)
970 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
973 if (nic_data
->must_check_datapath_caps
) {
974 rc
= efx_ef10_init_datapath_caps(efx
);
977 nic_data
->must_check_datapath_caps
= false;
980 if (nic_data
->must_realloc_vis
) {
981 /* We cannot let the number of VIs change now */
982 rc
= efx_ef10_alloc_vis(efx
, nic_data
->n_allocated_vis
,
983 nic_data
->n_allocated_vis
);
986 nic_data
->must_realloc_vis
= false;
989 if (nic_data
->must_restore_piobufs
&& nic_data
->n_piobufs
) {
990 rc
= efx_ef10_alloc_piobufs(efx
, nic_data
->n_piobufs
);
992 rc
= efx_ef10_link_piobufs(efx
);
994 efx_ef10_free_piobufs(efx
);
997 /* Log an error on failure, but this is non-fatal */
999 netif_err(efx
, drv
, efx
->net_dev
,
1000 "failed to restore PIO buffers (%d)\n", rc
);
1001 nic_data
->must_restore_piobufs
= false;
1004 /* don't fail init if RSS setup doesn't work */
1005 efx
->type
->rx_push_rss_config(efx
, false, efx
->rx_indir_table
);
1010 static void efx_ef10_reset_mc_allocations(struct efx_nic
*efx
)
1012 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1013 #ifdef CONFIG_SFC_SRIOV
1017 /* All our allocations have been reset */
1018 nic_data
->must_realloc_vis
= true;
1019 nic_data
->must_restore_filters
= true;
1020 nic_data
->must_restore_piobufs
= true;
1021 nic_data
->rx_rss_context
= EFX_EF10_RSS_CONTEXT_INVALID
;
1023 /* Driver-created vswitches and vports must be re-created */
1024 nic_data
->must_probe_vswitching
= true;
1025 nic_data
->vport_id
= EVB_PORT_ID_ASSIGNED
;
1026 #ifdef CONFIG_SFC_SRIOV
1028 for (i
= 0; i
< efx
->vf_count
; i
++)
1029 nic_data
->vf
[i
].vport_id
= 0;
1033 static enum reset_type
efx_ef10_map_reset_reason(enum reset_type reason
)
1035 if (reason
== RESET_TYPE_MC_FAILURE
)
1036 return RESET_TYPE_DATAPATH
;
1038 return efx_mcdi_map_reset_reason(reason
);
1041 static int efx_ef10_map_reset_flags(u32
*flags
)
1044 EF10_RESET_PORT
= ((ETH_RESET_MAC
| ETH_RESET_PHY
) <<
1045 ETH_RESET_SHARED_SHIFT
),
1046 EF10_RESET_MC
= ((ETH_RESET_DMA
| ETH_RESET_FILTER
|
1047 ETH_RESET_OFFLOAD
| ETH_RESET_MAC
|
1048 ETH_RESET_PHY
| ETH_RESET_MGMT
) <<
1049 ETH_RESET_SHARED_SHIFT
)
1052 /* We assume for now that our PCI function is permitted to
1056 if ((*flags
& EF10_RESET_MC
) == EF10_RESET_MC
) {
1057 *flags
&= ~EF10_RESET_MC
;
1058 return RESET_TYPE_WORLD
;
1061 if ((*flags
& EF10_RESET_PORT
) == EF10_RESET_PORT
) {
1062 *flags
&= ~EF10_RESET_PORT
;
1063 return RESET_TYPE_ALL
;
1066 /* no invisible reset implemented */
1071 static int efx_ef10_reset(struct efx_nic
*efx
, enum reset_type reset_type
)
1073 int rc
= efx_mcdi_reset(efx
, reset_type
);
1075 /* Unprivileged functions return -EPERM, but need to return success
1076 * here so that the datapath is brought back up.
1078 if (reset_type
== RESET_TYPE_WORLD
&& rc
== -EPERM
)
1081 /* If it was a port reset, trigger reallocation of MC resources.
1082 * Note that on an MC reset nothing needs to be done now because we'll
1083 * detect the MC reset later and handle it then.
1084 * For an FLR, we never get an MC reset event, but the MC has reset all
1085 * resources assigned to us, so we have to trigger reallocation now.
1087 if ((reset_type
== RESET_TYPE_ALL
||
1088 reset_type
== RESET_TYPE_MCDI_TIMEOUT
) && !rc
)
1089 efx_ef10_reset_mc_allocations(efx
);
1093 #define EF10_DMA_STAT(ext_name, mcdi_name) \
1094 [EF10_STAT_ ## ext_name] = \
1095 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1096 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
1097 [EF10_STAT_ ## int_name] = \
1098 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1099 #define EF10_OTHER_STAT(ext_name) \
1100 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1101 #define GENERIC_SW_STAT(ext_name) \
1102 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1104 static const struct efx_hw_stat_desc efx_ef10_stat_desc
[EF10_STAT_COUNT
] = {
1105 EF10_DMA_STAT(port_tx_bytes
, TX_BYTES
),
1106 EF10_DMA_STAT(port_tx_packets
, TX_PKTS
),
1107 EF10_DMA_STAT(port_tx_pause
, TX_PAUSE_PKTS
),
1108 EF10_DMA_STAT(port_tx_control
, TX_CONTROL_PKTS
),
1109 EF10_DMA_STAT(port_tx_unicast
, TX_UNICAST_PKTS
),
1110 EF10_DMA_STAT(port_tx_multicast
, TX_MULTICAST_PKTS
),
1111 EF10_DMA_STAT(port_tx_broadcast
, TX_BROADCAST_PKTS
),
1112 EF10_DMA_STAT(port_tx_lt64
, TX_LT64_PKTS
),
1113 EF10_DMA_STAT(port_tx_64
, TX_64_PKTS
),
1114 EF10_DMA_STAT(port_tx_65_to_127
, TX_65_TO_127_PKTS
),
1115 EF10_DMA_STAT(port_tx_128_to_255
, TX_128_TO_255_PKTS
),
1116 EF10_DMA_STAT(port_tx_256_to_511
, TX_256_TO_511_PKTS
),
1117 EF10_DMA_STAT(port_tx_512_to_1023
, TX_512_TO_1023_PKTS
),
1118 EF10_DMA_STAT(port_tx_1024_to_15xx
, TX_1024_TO_15XX_PKTS
),
1119 EF10_DMA_STAT(port_tx_15xx_to_jumbo
, TX_15XX_TO_JUMBO_PKTS
),
1120 EF10_DMA_STAT(port_rx_bytes
, RX_BYTES
),
1121 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes
, RX_BAD_BYTES
),
1122 EF10_OTHER_STAT(port_rx_good_bytes
),
1123 EF10_OTHER_STAT(port_rx_bad_bytes
),
1124 EF10_DMA_STAT(port_rx_packets
, RX_PKTS
),
1125 EF10_DMA_STAT(port_rx_good
, RX_GOOD_PKTS
),
1126 EF10_DMA_STAT(port_rx_bad
, RX_BAD_FCS_PKTS
),
1127 EF10_DMA_STAT(port_rx_pause
, RX_PAUSE_PKTS
),
1128 EF10_DMA_STAT(port_rx_control
, RX_CONTROL_PKTS
),
1129 EF10_DMA_STAT(port_rx_unicast
, RX_UNICAST_PKTS
),
1130 EF10_DMA_STAT(port_rx_multicast
, RX_MULTICAST_PKTS
),
1131 EF10_DMA_STAT(port_rx_broadcast
, RX_BROADCAST_PKTS
),
1132 EF10_DMA_STAT(port_rx_lt64
, RX_UNDERSIZE_PKTS
),
1133 EF10_DMA_STAT(port_rx_64
, RX_64_PKTS
),
1134 EF10_DMA_STAT(port_rx_65_to_127
, RX_65_TO_127_PKTS
),
1135 EF10_DMA_STAT(port_rx_128_to_255
, RX_128_TO_255_PKTS
),
1136 EF10_DMA_STAT(port_rx_256_to_511
, RX_256_TO_511_PKTS
),
1137 EF10_DMA_STAT(port_rx_512_to_1023
, RX_512_TO_1023_PKTS
),
1138 EF10_DMA_STAT(port_rx_1024_to_15xx
, RX_1024_TO_15XX_PKTS
),
1139 EF10_DMA_STAT(port_rx_15xx_to_jumbo
, RX_15XX_TO_JUMBO_PKTS
),
1140 EF10_DMA_STAT(port_rx_gtjumbo
, RX_GTJUMBO_PKTS
),
1141 EF10_DMA_STAT(port_rx_bad_gtjumbo
, RX_JABBER_PKTS
),
1142 EF10_DMA_STAT(port_rx_overflow
, RX_OVERFLOW_PKTS
),
1143 EF10_DMA_STAT(port_rx_align_error
, RX_ALIGN_ERROR_PKTS
),
1144 EF10_DMA_STAT(port_rx_length_error
, RX_LENGTH_ERROR_PKTS
),
1145 EF10_DMA_STAT(port_rx_nodesc_drops
, RX_NODESC_DROPS
),
1146 GENERIC_SW_STAT(rx_nodesc_trunc
),
1147 GENERIC_SW_STAT(rx_noskb_drops
),
1148 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow
, PM_TRUNC_BB_OVERFLOW
),
1149 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow
, PM_DISCARD_BB_OVERFLOW
),
1150 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full
, PM_TRUNC_VFIFO_FULL
),
1151 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full
, PM_DISCARD_VFIFO_FULL
),
1152 EF10_DMA_STAT(port_rx_pm_trunc_qbb
, PM_TRUNC_QBB
),
1153 EF10_DMA_STAT(port_rx_pm_discard_qbb
, PM_DISCARD_QBB
),
1154 EF10_DMA_STAT(port_rx_pm_discard_mapping
, PM_DISCARD_MAPPING
),
1155 EF10_DMA_STAT(port_rx_dp_q_disabled_packets
, RXDP_Q_DISABLED_PKTS
),
1156 EF10_DMA_STAT(port_rx_dp_di_dropped_packets
, RXDP_DI_DROPPED_PKTS
),
1157 EF10_DMA_STAT(port_rx_dp_streaming_packets
, RXDP_STREAMING_PKTS
),
1158 EF10_DMA_STAT(port_rx_dp_hlb_fetch
, RXDP_HLB_FETCH_CONDITIONS
),
1159 EF10_DMA_STAT(port_rx_dp_hlb_wait
, RXDP_HLB_WAIT_CONDITIONS
),
1160 EF10_DMA_STAT(rx_unicast
, VADAPTER_RX_UNICAST_PACKETS
),
1161 EF10_DMA_STAT(rx_unicast_bytes
, VADAPTER_RX_UNICAST_BYTES
),
1162 EF10_DMA_STAT(rx_multicast
, VADAPTER_RX_MULTICAST_PACKETS
),
1163 EF10_DMA_STAT(rx_multicast_bytes
, VADAPTER_RX_MULTICAST_BYTES
),
1164 EF10_DMA_STAT(rx_broadcast
, VADAPTER_RX_BROADCAST_PACKETS
),
1165 EF10_DMA_STAT(rx_broadcast_bytes
, VADAPTER_RX_BROADCAST_BYTES
),
1166 EF10_DMA_STAT(rx_bad
, VADAPTER_RX_BAD_PACKETS
),
1167 EF10_DMA_STAT(rx_bad_bytes
, VADAPTER_RX_BAD_BYTES
),
1168 EF10_DMA_STAT(rx_overflow
, VADAPTER_RX_OVERFLOW
),
1169 EF10_DMA_STAT(tx_unicast
, VADAPTER_TX_UNICAST_PACKETS
),
1170 EF10_DMA_STAT(tx_unicast_bytes
, VADAPTER_TX_UNICAST_BYTES
),
1171 EF10_DMA_STAT(tx_multicast
, VADAPTER_TX_MULTICAST_PACKETS
),
1172 EF10_DMA_STAT(tx_multicast_bytes
, VADAPTER_TX_MULTICAST_BYTES
),
1173 EF10_DMA_STAT(tx_broadcast
, VADAPTER_TX_BROADCAST_PACKETS
),
1174 EF10_DMA_STAT(tx_broadcast_bytes
, VADAPTER_TX_BROADCAST_BYTES
),
1175 EF10_DMA_STAT(tx_bad
, VADAPTER_TX_BAD_PACKETS
),
1176 EF10_DMA_STAT(tx_bad_bytes
, VADAPTER_TX_BAD_BYTES
),
1177 EF10_DMA_STAT(tx_overflow
, VADAPTER_TX_OVERFLOW
),
1180 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
1181 (1ULL << EF10_STAT_port_tx_packets) | \
1182 (1ULL << EF10_STAT_port_tx_pause) | \
1183 (1ULL << EF10_STAT_port_tx_unicast) | \
1184 (1ULL << EF10_STAT_port_tx_multicast) | \
1185 (1ULL << EF10_STAT_port_tx_broadcast) | \
1186 (1ULL << EF10_STAT_port_rx_bytes) | \
1188 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1189 (1ULL << EF10_STAT_port_rx_good_bytes) | \
1190 (1ULL << EF10_STAT_port_rx_bad_bytes) | \
1191 (1ULL << EF10_STAT_port_rx_packets) | \
1192 (1ULL << EF10_STAT_port_rx_good) | \
1193 (1ULL << EF10_STAT_port_rx_bad) | \
1194 (1ULL << EF10_STAT_port_rx_pause) | \
1195 (1ULL << EF10_STAT_port_rx_control) | \
1196 (1ULL << EF10_STAT_port_rx_unicast) | \
1197 (1ULL << EF10_STAT_port_rx_multicast) | \
1198 (1ULL << EF10_STAT_port_rx_broadcast) | \
1199 (1ULL << EF10_STAT_port_rx_lt64) | \
1200 (1ULL << EF10_STAT_port_rx_64) | \
1201 (1ULL << EF10_STAT_port_rx_65_to_127) | \
1202 (1ULL << EF10_STAT_port_rx_128_to_255) | \
1203 (1ULL << EF10_STAT_port_rx_256_to_511) | \
1204 (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1205 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1206 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1207 (1ULL << EF10_STAT_port_rx_gtjumbo) | \
1208 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1209 (1ULL << EF10_STAT_port_rx_overflow) | \
1210 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1211 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1212 (1ULL << GENERIC_STAT_rx_noskb_drops))
1214 /* These statistics are only provided by the 10G MAC. For a 10G/40G
1215 * switchable port we do not expose these because they might not
1216 * include all the packets they should.
1218 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
1219 (1ULL << EF10_STAT_port_tx_lt64) | \
1220 (1ULL << EF10_STAT_port_tx_64) | \
1221 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1222 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1223 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1224 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1225 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1226 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1228 /* These statistics are only provided by the 40G MAC. For a 10G/40G
1229 * switchable port we do expose these because the errors will otherwise
1232 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1233 (1ULL << EF10_STAT_port_rx_length_error))
1235 /* These statistics are only provided if the firmware supports the
1236 * capability PM_AND_RXDP_COUNTERS.
1238 #define HUNT_PM_AND_RXDP_STAT_MASK ( \
1239 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
1240 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
1241 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
1242 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
1243 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
1244 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
1245 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
1246 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
1247 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
1248 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
1249 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
1250 (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1252 static u64
efx_ef10_raw_stat_mask(struct efx_nic
*efx
)
1254 u64 raw_mask
= HUNT_COMMON_STAT_MASK
;
1255 u32 port_caps
= efx_mcdi_phy_get_caps(efx
);
1256 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1258 if (!(efx
->mcdi
->fn_flags
&
1259 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
))
1262 if (port_caps
& (1 << MC_CMD_PHY_CAP_40000FDX_LBN
))
1263 raw_mask
|= HUNT_40G_EXTRA_STAT_MASK
;
1265 raw_mask
|= HUNT_10G_ONLY_STAT_MASK
;
1267 if (nic_data
->datapath_caps
&
1268 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN
))
1269 raw_mask
|= HUNT_PM_AND_RXDP_STAT_MASK
;
1274 static void efx_ef10_get_stat_mask(struct efx_nic
*efx
, unsigned long *mask
)
1276 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1279 raw_mask
[0] = efx_ef10_raw_stat_mask(efx
);
1281 /* Only show vadaptor stats when EVB capability is present */
1282 if (nic_data
->datapath_caps
&
1283 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN
)) {
1284 raw_mask
[0] |= ~((1ULL << EF10_STAT_rx_unicast
) - 1);
1285 raw_mask
[1] = (1ULL << (EF10_STAT_COUNT
- 63)) - 1;
1290 #if BITS_PER_LONG == 64
1291 mask
[0] = raw_mask
[0];
1292 mask
[1] = raw_mask
[1];
1294 mask
[0] = raw_mask
[0] & 0xffffffff;
1295 mask
[1] = raw_mask
[0] >> 32;
1296 mask
[2] = raw_mask
[1] & 0xffffffff;
1297 mask
[3] = raw_mask
[1] >> 32;
1301 static size_t efx_ef10_describe_stats(struct efx_nic
*efx
, u8
*names
)
1303 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1305 efx_ef10_get_stat_mask(efx
, mask
);
1306 return efx_nic_describe_stats(efx_ef10_stat_desc
, EF10_STAT_COUNT
,
1310 static size_t efx_ef10_update_stats_common(struct efx_nic
*efx
, u64
*full_stats
,
1311 struct rtnl_link_stats64
*core_stats
)
1313 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1314 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1315 u64
*stats
= nic_data
->stats
;
1316 size_t stats_count
= 0, index
;
1318 efx_ef10_get_stat_mask(efx
, mask
);
1321 for_each_set_bit(index
, mask
, EF10_STAT_COUNT
) {
1322 if (efx_ef10_stat_desc
[index
].name
) {
1323 *full_stats
++ = stats
[index
];
1332 if (nic_data
->datapath_caps
&
1333 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN
) {
1334 /* Use vadaptor stats. */
1335 core_stats
->rx_packets
= stats
[EF10_STAT_rx_unicast
] +
1336 stats
[EF10_STAT_rx_multicast
] +
1337 stats
[EF10_STAT_rx_broadcast
];
1338 core_stats
->tx_packets
= stats
[EF10_STAT_tx_unicast
] +
1339 stats
[EF10_STAT_tx_multicast
] +
1340 stats
[EF10_STAT_tx_broadcast
];
1341 core_stats
->rx_bytes
= stats
[EF10_STAT_rx_unicast_bytes
] +
1342 stats
[EF10_STAT_rx_multicast_bytes
] +
1343 stats
[EF10_STAT_rx_broadcast_bytes
];
1344 core_stats
->tx_bytes
= stats
[EF10_STAT_tx_unicast_bytes
] +
1345 stats
[EF10_STAT_tx_multicast_bytes
] +
1346 stats
[EF10_STAT_tx_broadcast_bytes
];
1347 core_stats
->rx_dropped
= stats
[GENERIC_STAT_rx_nodesc_trunc
] +
1348 stats
[GENERIC_STAT_rx_noskb_drops
];
1349 core_stats
->multicast
= stats
[EF10_STAT_rx_multicast
];
1350 core_stats
->rx_crc_errors
= stats
[EF10_STAT_rx_bad
];
1351 core_stats
->rx_fifo_errors
= stats
[EF10_STAT_rx_overflow
];
1352 core_stats
->rx_errors
= core_stats
->rx_crc_errors
;
1353 core_stats
->tx_errors
= stats
[EF10_STAT_tx_bad
];
1355 /* Use port stats. */
1356 core_stats
->rx_packets
= stats
[EF10_STAT_port_rx_packets
];
1357 core_stats
->tx_packets
= stats
[EF10_STAT_port_tx_packets
];
1358 core_stats
->rx_bytes
= stats
[EF10_STAT_port_rx_bytes
];
1359 core_stats
->tx_bytes
= stats
[EF10_STAT_port_tx_bytes
];
1360 core_stats
->rx_dropped
= stats
[EF10_STAT_port_rx_nodesc_drops
] +
1361 stats
[GENERIC_STAT_rx_nodesc_trunc
] +
1362 stats
[GENERIC_STAT_rx_noskb_drops
];
1363 core_stats
->multicast
= stats
[EF10_STAT_port_rx_multicast
];
1364 core_stats
->rx_length_errors
=
1365 stats
[EF10_STAT_port_rx_gtjumbo
] +
1366 stats
[EF10_STAT_port_rx_length_error
];
1367 core_stats
->rx_crc_errors
= stats
[EF10_STAT_port_rx_bad
];
1368 core_stats
->rx_frame_errors
=
1369 stats
[EF10_STAT_port_rx_align_error
];
1370 core_stats
->rx_fifo_errors
= stats
[EF10_STAT_port_rx_overflow
];
1371 core_stats
->rx_errors
= (core_stats
->rx_length_errors
+
1372 core_stats
->rx_crc_errors
+
1373 core_stats
->rx_frame_errors
);
1379 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic
*efx
)
1381 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1382 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1383 __le64 generation_start
, generation_end
;
1384 u64
*stats
= nic_data
->stats
;
1387 efx_ef10_get_stat_mask(efx
, mask
);
1389 dma_stats
= efx
->stats_buffer
.addr
;
1390 nic_data
= efx
->nic_data
;
1392 generation_end
= dma_stats
[MC_CMD_MAC_GENERATION_END
];
1393 if (generation_end
== EFX_MC_STATS_GENERATION_INVALID
)
1396 efx_nic_update_stats(efx_ef10_stat_desc
, EF10_STAT_COUNT
, mask
,
1397 stats
, efx
->stats_buffer
.addr
, false);
1399 generation_start
= dma_stats
[MC_CMD_MAC_GENERATION_START
];
1400 if (generation_end
!= generation_start
)
1403 /* Update derived statistics */
1404 efx_nic_fix_nodesc_drop_stat(efx
,
1405 &stats
[EF10_STAT_port_rx_nodesc_drops
]);
1406 stats
[EF10_STAT_port_rx_good_bytes
] =
1407 stats
[EF10_STAT_port_rx_bytes
] -
1408 stats
[EF10_STAT_port_rx_bytes_minus_good_bytes
];
1409 efx_update_diff_stat(&stats
[EF10_STAT_port_rx_bad_bytes
],
1410 stats
[EF10_STAT_port_rx_bytes_minus_good_bytes
]);
1411 efx_update_sw_stats(efx
, stats
);
1416 static size_t efx_ef10_update_stats_pf(struct efx_nic
*efx
, u64
*full_stats
,
1417 struct rtnl_link_stats64
*core_stats
)
1421 /* If we're unlucky enough to read statistics during the DMA, wait
1422 * up to 10ms for it to finish (typically takes <500us)
1424 for (retry
= 0; retry
< 100; ++retry
) {
1425 if (efx_ef10_try_update_nic_stats_pf(efx
) == 0)
1430 return efx_ef10_update_stats_common(efx
, full_stats
, core_stats
);
1433 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic
*efx
)
1435 MCDI_DECLARE_BUF(inbuf
, MC_CMD_MAC_STATS_IN_LEN
);
1436 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1437 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1438 __le64 generation_start
, generation_end
;
1439 u64
*stats
= nic_data
->stats
;
1440 u32 dma_len
= MC_CMD_MAC_NSTATS
* sizeof(u64
);
1441 struct efx_buffer stats_buf
;
1445 spin_unlock_bh(&efx
->stats_lock
);
1447 if (in_interrupt()) {
1448 /* If in atomic context, cannot update stats. Just update the
1449 * software stats and return so the caller can continue.
1451 spin_lock_bh(&efx
->stats_lock
);
1452 efx_update_sw_stats(efx
, stats
);
1456 efx_ef10_get_stat_mask(efx
, mask
);
1458 rc
= efx_nic_alloc_buffer(efx
, &stats_buf
, dma_len
, GFP_ATOMIC
);
1460 spin_lock_bh(&efx
->stats_lock
);
1464 dma_stats
= stats_buf
.addr
;
1465 dma_stats
[MC_CMD_MAC_GENERATION_END
] = EFX_MC_STATS_GENERATION_INVALID
;
1467 MCDI_SET_QWORD(inbuf
, MAC_STATS_IN_DMA_ADDR
, stats_buf
.dma_addr
);
1468 MCDI_POPULATE_DWORD_1(inbuf
, MAC_STATS_IN_CMD
,
1469 MAC_STATS_IN_DMA
, 1);
1470 MCDI_SET_DWORD(inbuf
, MAC_STATS_IN_DMA_LEN
, dma_len
);
1471 MCDI_SET_DWORD(inbuf
, MAC_STATS_IN_PORT_ID
, EVB_PORT_ID_ASSIGNED
);
1473 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_MAC_STATS
, inbuf
, sizeof(inbuf
),
1475 spin_lock_bh(&efx
->stats_lock
);
1477 /* Expect ENOENT if DMA queues have not been set up */
1478 if (rc
!= -ENOENT
|| atomic_read(&efx
->active_queues
))
1479 efx_mcdi_display_error(efx
, MC_CMD_MAC_STATS
,
1480 sizeof(inbuf
), NULL
, 0, rc
);
1484 generation_end
= dma_stats
[MC_CMD_MAC_GENERATION_END
];
1485 if (generation_end
== EFX_MC_STATS_GENERATION_INVALID
) {
1490 efx_nic_update_stats(efx_ef10_stat_desc
, EF10_STAT_COUNT
, mask
,
1491 stats
, stats_buf
.addr
, false);
1493 generation_start
= dma_stats
[MC_CMD_MAC_GENERATION_START
];
1494 if (generation_end
!= generation_start
) {
1499 efx_update_sw_stats(efx
, stats
);
1501 efx_nic_free_buffer(efx
, &stats_buf
);
1505 static size_t efx_ef10_update_stats_vf(struct efx_nic
*efx
, u64
*full_stats
,
1506 struct rtnl_link_stats64
*core_stats
)
1508 if (efx_ef10_try_update_nic_stats_vf(efx
))
1511 return efx_ef10_update_stats_common(efx
, full_stats
, core_stats
);
1514 static void efx_ef10_push_irq_moderation(struct efx_channel
*channel
)
1516 struct efx_nic
*efx
= channel
->efx
;
1517 unsigned int mode
, value
;
1518 efx_dword_t timer_cmd
;
1520 if (channel
->irq_moderation
) {
1522 value
= channel
->irq_moderation
- 1;
1528 if (EFX_EF10_WORKAROUND_35388(efx
)) {
1529 EFX_POPULATE_DWORD_3(timer_cmd
, ERF_DD_EVQ_IND_TIMER_FLAGS
,
1530 EFE_DD_EVQ_IND_TIMER_FLAGS
,
1531 ERF_DD_EVQ_IND_TIMER_MODE
, mode
,
1532 ERF_DD_EVQ_IND_TIMER_VAL
, value
);
1533 efx_writed_page(efx
, &timer_cmd
, ER_DD_EVQ_INDIRECT
,
1536 EFX_POPULATE_DWORD_2(timer_cmd
, ERF_DZ_TC_TIMER_MODE
, mode
,
1537 ERF_DZ_TC_TIMER_VAL
, value
);
1538 efx_writed_page(efx
, &timer_cmd
, ER_DZ_EVQ_TMR
,
1543 static void efx_ef10_get_wol_vf(struct efx_nic
*efx
,
1544 struct ethtool_wolinfo
*wol
) {}
1546 static int efx_ef10_set_wol_vf(struct efx_nic
*efx
, u32 type
)
1551 static void efx_ef10_get_wol(struct efx_nic
*efx
, struct ethtool_wolinfo
*wol
)
1555 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
1558 static int efx_ef10_set_wol(struct efx_nic
*efx
, u32 type
)
1565 static void efx_ef10_mcdi_request(struct efx_nic
*efx
,
1566 const efx_dword_t
*hdr
, size_t hdr_len
,
1567 const efx_dword_t
*sdu
, size_t sdu_len
)
1569 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1570 u8
*pdu
= nic_data
->mcdi_buf
.addr
;
1572 memcpy(pdu
, hdr
, hdr_len
);
1573 memcpy(pdu
+ hdr_len
, sdu
, sdu_len
);
1576 /* The hardware provides 'low' and 'high' (doorbell) registers
1577 * for passing the 64-bit address of an MCDI request to
1578 * firmware. However the dwords are swapped by firmware. The
1579 * least significant bits of the doorbell are then 0 for all
1580 * MCDI requests due to alignment.
1582 _efx_writed(efx
, cpu_to_le32((u64
)nic_data
->mcdi_buf
.dma_addr
>> 32),
1584 _efx_writed(efx
, cpu_to_le32((u32
)nic_data
->mcdi_buf
.dma_addr
),
1588 static bool efx_ef10_mcdi_poll_response(struct efx_nic
*efx
)
1590 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1591 const efx_dword_t hdr
= *(const efx_dword_t
*)nic_data
->mcdi_buf
.addr
;
1594 return EFX_DWORD_FIELD(hdr
, MCDI_HEADER_RESPONSE
);
1598 efx_ef10_mcdi_read_response(struct efx_nic
*efx
, efx_dword_t
*outbuf
,
1599 size_t offset
, size_t outlen
)
1601 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1602 const u8
*pdu
= nic_data
->mcdi_buf
.addr
;
1604 memcpy(outbuf
, pdu
+ offset
, outlen
);
1607 static void efx_ef10_mcdi_reboot_detected(struct efx_nic
*efx
)
1609 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1611 /* All our allocations have been reset */
1612 efx_ef10_reset_mc_allocations(efx
);
1614 /* The datapath firmware might have been changed */
1615 nic_data
->must_check_datapath_caps
= true;
1617 /* MAC statistics have been cleared on the NIC; clear the local
1618 * statistic that we update with efx_update_diff_stat().
1620 nic_data
->stats
[EF10_STAT_port_rx_bad_bytes
] = 0;
1623 static int efx_ef10_mcdi_poll_reboot(struct efx_nic
*efx
)
1625 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1628 rc
= efx_ef10_get_warm_boot_count(efx
);
1630 /* The firmware is presumably in the process of
1631 * rebooting. However, we are supposed to report each
1632 * reboot just once, so we must only do that once we
1633 * can read and store the updated warm boot count.
1638 if (rc
== nic_data
->warm_boot_count
)
1641 nic_data
->warm_boot_count
= rc
;
1642 efx_ef10_mcdi_reboot_detected(efx
);
1647 /* Handle an MSI interrupt
1649 * Handle an MSI hardware interrupt. This routine schedules event
1650 * queue processing. No interrupt acknowledgement cycle is necessary.
1651 * Also, we never need to check that the interrupt is for us, since
1652 * MSI interrupts cannot be shared.
1654 static irqreturn_t
efx_ef10_msi_interrupt(int irq
, void *dev_id
)
1656 struct efx_msi_context
*context
= dev_id
;
1657 struct efx_nic
*efx
= context
->efx
;
1659 netif_vdbg(efx
, intr
, efx
->net_dev
,
1660 "IRQ %d on CPU %d\n", irq
, raw_smp_processor_id());
1662 if (likely(ACCESS_ONCE(efx
->irq_soft_enabled
))) {
1663 /* Note test interrupts */
1664 if (context
->index
== efx
->irq_level
)
1665 efx
->last_irq_cpu
= raw_smp_processor_id();
1667 /* Schedule processing of the channel */
1668 efx_schedule_channel_irq(efx
->channel
[context
->index
]);
1674 static irqreturn_t
efx_ef10_legacy_interrupt(int irq
, void *dev_id
)
1676 struct efx_nic
*efx
= dev_id
;
1677 bool soft_enabled
= ACCESS_ONCE(efx
->irq_soft_enabled
);
1678 struct efx_channel
*channel
;
1682 /* Read the ISR which also ACKs the interrupts */
1683 efx_readd(efx
, ®
, ER_DZ_BIU_INT_ISR
);
1684 queues
= EFX_DWORD_FIELD(reg
, ERF_DZ_ISR_REG
);
1689 if (likely(soft_enabled
)) {
1690 /* Note test interrupts */
1691 if (queues
& (1U << efx
->irq_level
))
1692 efx
->last_irq_cpu
= raw_smp_processor_id();
1694 efx_for_each_channel(channel
, efx
) {
1696 efx_schedule_channel_irq(channel
);
1701 netif_vdbg(efx
, intr
, efx
->net_dev
,
1702 "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
1703 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
1708 static void efx_ef10_irq_test_generate(struct efx_nic
*efx
)
1710 MCDI_DECLARE_BUF(inbuf
, MC_CMD_TRIGGER_INTERRUPT_IN_LEN
);
1712 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN
!= 0);
1714 MCDI_SET_DWORD(inbuf
, TRIGGER_INTERRUPT_IN_INTR_LEVEL
, efx
->irq_level
);
1715 (void) efx_mcdi_rpc(efx
, MC_CMD_TRIGGER_INTERRUPT
,
1716 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
1719 static int efx_ef10_tx_probe(struct efx_tx_queue
*tx_queue
)
1721 return efx_nic_alloc_buffer(tx_queue
->efx
, &tx_queue
->txd
.buf
,
1722 (tx_queue
->ptr_mask
+ 1) *
1723 sizeof(efx_qword_t
),
1727 /* This writes to the TX_DESC_WPTR and also pushes data */
1728 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue
*tx_queue
,
1729 const efx_qword_t
*txd
)
1731 unsigned int write_ptr
;
1734 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
1735 EFX_POPULATE_OWORD_1(reg
, ERF_DZ_TX_DESC_WPTR
, write_ptr
);
1736 reg
.qword
[0] = *txd
;
1737 efx_writeo_page(tx_queue
->efx
, ®
,
1738 ER_DZ_TX_DESC_UPD
, tx_queue
->queue
);
1741 static void efx_ef10_tx_init(struct efx_tx_queue
*tx_queue
)
1743 MCDI_DECLARE_BUF(inbuf
, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE
* 8 /
1745 bool csum_offload
= tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
;
1746 size_t entries
= tx_queue
->txd
.buf
.len
/ EFX_BUF_SIZE
;
1747 struct efx_channel
*channel
= tx_queue
->channel
;
1748 struct efx_nic
*efx
= tx_queue
->efx
;
1749 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1751 dma_addr_t dma_addr
;
1755 BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN
!= 0);
1757 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_SIZE
, tx_queue
->ptr_mask
+ 1);
1758 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_TARGET_EVQ
, channel
->channel
);
1759 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_LABEL
, tx_queue
->queue
);
1760 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_INSTANCE
, tx_queue
->queue
);
1761 MCDI_POPULATE_DWORD_2(inbuf
, INIT_TXQ_IN_FLAGS
,
1762 INIT_TXQ_IN_FLAG_IP_CSUM_DIS
, !csum_offload
,
1763 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS
, !csum_offload
);
1764 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_OWNER_ID
, 0);
1765 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_PORT_ID
, nic_data
->vport_id
);
1767 dma_addr
= tx_queue
->txd
.buf
.dma_addr
;
1769 netif_dbg(efx
, hw
, efx
->net_dev
, "pushing TXQ %d. %zu entries (%llx)\n",
1770 tx_queue
->queue
, entries
, (u64
)dma_addr
);
1772 for (i
= 0; i
< entries
; ++i
) {
1773 MCDI_SET_ARRAY_QWORD(inbuf
, INIT_TXQ_IN_DMA_ADDR
, i
, dma_addr
);
1774 dma_addr
+= EFX_BUF_SIZE
;
1777 inlen
= MC_CMD_INIT_TXQ_IN_LEN(entries
);
1779 rc
= efx_mcdi_rpc(efx
, MC_CMD_INIT_TXQ
, inbuf
, inlen
,
1784 /* A previous user of this TX queue might have set us up the
1785 * bomb by writing a descriptor to the TX push collector but
1786 * not the doorbell. (Each collector belongs to a port, not a
1787 * queue or function, so cannot easily be reset.) We must
1788 * attempt to push a no-op descriptor in its place.
1790 tx_queue
->buffer
[0].flags
= EFX_TX_BUF_OPTION
;
1791 tx_queue
->insert_count
= 1;
1792 txd
= efx_tx_desc(tx_queue
, 0);
1793 EFX_POPULATE_QWORD_4(*txd
,
1794 ESF_DZ_TX_DESC_IS_OPT
, true,
1795 ESF_DZ_TX_OPTION_TYPE
,
1796 ESE_DZ_TX_OPTION_DESC_CRC_CSUM
,
1797 ESF_DZ_TX_OPTION_UDP_TCP_CSUM
, csum_offload
,
1798 ESF_DZ_TX_OPTION_IP_CSUM
, csum_offload
);
1799 tx_queue
->write_count
= 1;
1801 if (nic_data
->datapath_caps
&
1802 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN
)) {
1803 tx_queue
->tso_version
= 1;
1807 efx_ef10_push_tx_desc(tx_queue
, txd
);
1812 netdev_WARN(efx
->net_dev
, "failed to initialise TXQ %d\n",
1816 static void efx_ef10_tx_fini(struct efx_tx_queue
*tx_queue
)
1818 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FINI_TXQ_IN_LEN
);
1819 MCDI_DECLARE_BUF_ERR(outbuf
);
1820 struct efx_nic
*efx
= tx_queue
->efx
;
1824 MCDI_SET_DWORD(inbuf
, FINI_TXQ_IN_INSTANCE
,
1827 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FINI_TXQ
, inbuf
, sizeof(inbuf
),
1828 outbuf
, sizeof(outbuf
), &outlen
);
1830 if (rc
&& rc
!= -EALREADY
)
1836 efx_mcdi_display_error(efx
, MC_CMD_FINI_TXQ
, MC_CMD_FINI_TXQ_IN_LEN
,
1837 outbuf
, outlen
, rc
);
1840 static void efx_ef10_tx_remove(struct efx_tx_queue
*tx_queue
)
1842 efx_nic_free_buffer(tx_queue
->efx
, &tx_queue
->txd
.buf
);
1845 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1846 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
1848 unsigned int write_ptr
;
1851 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
1852 EFX_POPULATE_DWORD_1(reg
, ERF_DZ_TX_DESC_WPTR_DWORD
, write_ptr
);
1853 efx_writed_page(tx_queue
->efx
, ®
,
1854 ER_DZ_TX_DESC_UPD_DWORD
, tx_queue
->queue
);
1857 static void efx_ef10_tx_write(struct efx_tx_queue
*tx_queue
)
1859 unsigned int old_write_count
= tx_queue
->write_count
;
1860 struct efx_tx_buffer
*buffer
;
1861 unsigned int write_ptr
;
1864 tx_queue
->xmit_more_available
= false;
1865 if (unlikely(tx_queue
->write_count
== tx_queue
->insert_count
))
1869 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
1870 buffer
= &tx_queue
->buffer
[write_ptr
];
1871 txd
= efx_tx_desc(tx_queue
, write_ptr
);
1872 ++tx_queue
->write_count
;
1874 /* Create TX descriptor ring entry */
1875 if (buffer
->flags
& EFX_TX_BUF_OPTION
) {
1876 *txd
= buffer
->option
;
1878 BUILD_BUG_ON(EFX_TX_BUF_CONT
!= 1);
1879 EFX_POPULATE_QWORD_3(
1882 buffer
->flags
& EFX_TX_BUF_CONT
,
1883 ESF_DZ_TX_KER_BYTE_CNT
, buffer
->len
,
1884 ESF_DZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
1886 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
1888 wmb(); /* Ensure descriptors are written before they are fetched */
1890 if (efx_nic_may_push_tx_desc(tx_queue
, old_write_count
)) {
1891 txd
= efx_tx_desc(tx_queue
,
1892 old_write_count
& tx_queue
->ptr_mask
);
1893 efx_ef10_push_tx_desc(tx_queue
, txd
);
1896 efx_ef10_notify_tx_desc(tx_queue
);
1900 static int efx_ef10_alloc_rss_context(struct efx_nic
*efx
, u32
*context
,
1901 bool exclusive
, unsigned *context_size
)
1903 MCDI_DECLARE_BUF(inbuf
, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN
);
1904 MCDI_DECLARE_BUF(outbuf
, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN
);
1905 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1908 u32 alloc_type
= exclusive
?
1909 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE
:
1910 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED
;
1911 unsigned rss_spread
= exclusive
?
1913 min(rounddown_pow_of_two(efx
->rss_spread
),
1914 EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE
);
1916 if (!exclusive
&& rss_spread
== 1) {
1917 *context
= EFX_EF10_RSS_CONTEXT_INVALID
;
1923 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID
,
1924 nic_data
->vport_id
);
1925 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_ALLOC_IN_TYPE
, alloc_type
);
1926 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES
, rss_spread
);
1928 rc
= efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_ALLOC
, inbuf
, sizeof(inbuf
),
1929 outbuf
, sizeof(outbuf
), &outlen
);
1933 if (outlen
< MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN
)
1936 *context
= MCDI_DWORD(outbuf
, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID
);
1939 *context_size
= rss_spread
;
1944 static void efx_ef10_free_rss_context(struct efx_nic
*efx
, u32 context
)
1946 MCDI_DECLARE_BUF(inbuf
, MC_CMD_RSS_CONTEXT_FREE_IN_LEN
);
1949 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID
,
1952 rc
= efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_FREE
, inbuf
, sizeof(inbuf
),
1957 static int efx_ef10_populate_rss_table(struct efx_nic
*efx
, u32 context
,
1958 const u32
*rx_indir_table
)
1960 MCDI_DECLARE_BUF(tablebuf
, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN
);
1961 MCDI_DECLARE_BUF(keybuf
, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN
);
1964 MCDI_SET_DWORD(tablebuf
, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID
,
1966 BUILD_BUG_ON(ARRAY_SIZE(efx
->rx_indir_table
) !=
1967 MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN
);
1969 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_indir_table
); ++i
)
1971 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE
)[i
] =
1972 (u8
) rx_indir_table
[i
];
1974 rc
= efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_SET_TABLE
, tablebuf
,
1975 sizeof(tablebuf
), NULL
, 0, NULL
);
1979 MCDI_SET_DWORD(keybuf
, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID
,
1981 BUILD_BUG_ON(ARRAY_SIZE(efx
->rx_hash_key
) !=
1982 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN
);
1983 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_hash_key
); ++i
)
1984 MCDI_PTR(keybuf
, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY
)[i
] =
1985 efx
->rx_hash_key
[i
];
1987 return efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_SET_KEY
, keybuf
,
1988 sizeof(keybuf
), NULL
, 0, NULL
);
1991 static void efx_ef10_rx_free_indir_table(struct efx_nic
*efx
)
1993 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1995 if (nic_data
->rx_rss_context
!= EFX_EF10_RSS_CONTEXT_INVALID
)
1996 efx_ef10_free_rss_context(efx
, nic_data
->rx_rss_context
);
1997 nic_data
->rx_rss_context
= EFX_EF10_RSS_CONTEXT_INVALID
;
2000 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic
*efx
,
2001 unsigned *context_size
)
2003 u32 new_rx_rss_context
;
2004 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2005 int rc
= efx_ef10_alloc_rss_context(efx
, &new_rx_rss_context
,
2006 false, context_size
);
2011 nic_data
->rx_rss_context
= new_rx_rss_context
;
2012 nic_data
->rx_rss_context_exclusive
= false;
2013 efx_set_default_rx_indir_table(efx
);
2017 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic
*efx
,
2018 const u32
*rx_indir_table
)
2020 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2022 u32 new_rx_rss_context
;
2024 if (nic_data
->rx_rss_context
== EFX_EF10_RSS_CONTEXT_INVALID
||
2025 !nic_data
->rx_rss_context_exclusive
) {
2026 rc
= efx_ef10_alloc_rss_context(efx
, &new_rx_rss_context
,
2028 if (rc
== -EOPNOTSUPP
)
2033 new_rx_rss_context
= nic_data
->rx_rss_context
;
2036 rc
= efx_ef10_populate_rss_table(efx
, new_rx_rss_context
,
2041 if (nic_data
->rx_rss_context
!= new_rx_rss_context
)
2042 efx_ef10_rx_free_indir_table(efx
);
2043 nic_data
->rx_rss_context
= new_rx_rss_context
;
2044 nic_data
->rx_rss_context_exclusive
= true;
2045 if (rx_indir_table
!= efx
->rx_indir_table
)
2046 memcpy(efx
->rx_indir_table
, rx_indir_table
,
2047 sizeof(efx
->rx_indir_table
));
2051 if (new_rx_rss_context
!= nic_data
->rx_rss_context
)
2052 efx_ef10_free_rss_context(efx
, new_rx_rss_context
);
2054 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
2058 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic
*efx
, bool user
,
2059 const u32
*rx_indir_table
)
2063 if (efx
->rss_spread
== 1)
2066 rc
= efx_ef10_rx_push_exclusive_rss_config(efx
, rx_indir_table
);
2068 if (rc
== -ENOBUFS
&& !user
) {
2069 unsigned context_size
;
2070 bool mismatch
= false;
2073 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_indir_table
) && !mismatch
;
2075 mismatch
= rx_indir_table
[i
] !=
2076 ethtool_rxfh_indir_default(i
, efx
->rss_spread
);
2078 rc
= efx_ef10_rx_push_shared_rss_config(efx
, &context_size
);
2080 if (context_size
!= efx
->rss_spread
)
2081 netif_warn(efx
, probe
, efx
->net_dev
,
2082 "Could not allocate an exclusive RSS"
2083 " context; allocated a shared one of"
2085 " Wanted %u, got %u.\n",
2086 efx
->rss_spread
, context_size
);
2088 netif_warn(efx
, probe
, efx
->net_dev
,
2089 "Could not allocate an exclusive RSS"
2090 " context; allocated a shared one but"
2091 " could not apply custom"
2094 netif_info(efx
, probe
, efx
->net_dev
,
2095 "Could not allocate an exclusive RSS"
2096 " context; allocated a shared one.\n");
2102 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic
*efx
, bool user
,
2103 const u32
*rx_indir_table
2104 __attribute__ ((unused
)))
2106 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2110 if (nic_data
->rx_rss_context
!= EFX_EF10_RSS_CONTEXT_INVALID
)
2112 return efx_ef10_rx_push_shared_rss_config(efx
, NULL
);
2115 static int efx_ef10_rx_probe(struct efx_rx_queue
*rx_queue
)
2117 return efx_nic_alloc_buffer(rx_queue
->efx
, &rx_queue
->rxd
.buf
,
2118 (rx_queue
->ptr_mask
+ 1) *
2119 sizeof(efx_qword_t
),
2123 static void efx_ef10_rx_init(struct efx_rx_queue
*rx_queue
)
2125 MCDI_DECLARE_BUF(inbuf
,
2126 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE
* 8 /
2128 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
2129 size_t entries
= rx_queue
->rxd
.buf
.len
/ EFX_BUF_SIZE
;
2130 struct efx_nic
*efx
= rx_queue
->efx
;
2131 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2133 dma_addr_t dma_addr
;
2136 BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN
!= 0);
2138 rx_queue
->scatter_n
= 0;
2139 rx_queue
->scatter_len
= 0;
2141 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_SIZE
, rx_queue
->ptr_mask
+ 1);
2142 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_TARGET_EVQ
, channel
->channel
);
2143 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_LABEL
, efx_rx_queue_index(rx_queue
));
2144 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_INSTANCE
,
2145 efx_rx_queue_index(rx_queue
));
2146 MCDI_POPULATE_DWORD_2(inbuf
, INIT_RXQ_IN_FLAGS
,
2147 INIT_RXQ_IN_FLAG_PREFIX
, 1,
2148 INIT_RXQ_IN_FLAG_TIMESTAMP
, 1);
2149 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_OWNER_ID
, 0);
2150 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_PORT_ID
, nic_data
->vport_id
);
2152 dma_addr
= rx_queue
->rxd
.buf
.dma_addr
;
2154 netif_dbg(efx
, hw
, efx
->net_dev
, "pushing RXQ %d. %zu entries (%llx)\n",
2155 efx_rx_queue_index(rx_queue
), entries
, (u64
)dma_addr
);
2157 for (i
= 0; i
< entries
; ++i
) {
2158 MCDI_SET_ARRAY_QWORD(inbuf
, INIT_RXQ_IN_DMA_ADDR
, i
, dma_addr
);
2159 dma_addr
+= EFX_BUF_SIZE
;
2162 inlen
= MC_CMD_INIT_RXQ_IN_LEN(entries
);
2164 rc
= efx_mcdi_rpc(efx
, MC_CMD_INIT_RXQ
, inbuf
, inlen
,
2167 netdev_WARN(efx
->net_dev
, "failed to initialise RXQ %d\n",
2168 efx_rx_queue_index(rx_queue
));
2171 static void efx_ef10_rx_fini(struct efx_rx_queue
*rx_queue
)
2173 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FINI_RXQ_IN_LEN
);
2174 MCDI_DECLARE_BUF_ERR(outbuf
);
2175 struct efx_nic
*efx
= rx_queue
->efx
;
2179 MCDI_SET_DWORD(inbuf
, FINI_RXQ_IN_INSTANCE
,
2180 efx_rx_queue_index(rx_queue
));
2182 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FINI_RXQ
, inbuf
, sizeof(inbuf
),
2183 outbuf
, sizeof(outbuf
), &outlen
);
2185 if (rc
&& rc
!= -EALREADY
)
2191 efx_mcdi_display_error(efx
, MC_CMD_FINI_RXQ
, MC_CMD_FINI_RXQ_IN_LEN
,
2192 outbuf
, outlen
, rc
);
2195 static void efx_ef10_rx_remove(struct efx_rx_queue
*rx_queue
)
2197 efx_nic_free_buffer(rx_queue
->efx
, &rx_queue
->rxd
.buf
);
2200 /* This creates an entry in the RX descriptor queue */
2202 efx_ef10_build_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned int index
)
2204 struct efx_rx_buffer
*rx_buf
;
2207 rxd
= efx_rx_desc(rx_queue
, index
);
2208 rx_buf
= efx_rx_buffer(rx_queue
, index
);
2209 EFX_POPULATE_QWORD_2(*rxd
,
2210 ESF_DZ_RX_KER_BYTE_CNT
, rx_buf
->len
,
2211 ESF_DZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
2214 static void efx_ef10_rx_write(struct efx_rx_queue
*rx_queue
)
2216 struct efx_nic
*efx
= rx_queue
->efx
;
2217 unsigned int write_count
;
2220 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2221 write_count
= rx_queue
->added_count
& ~7;
2222 if (rx_queue
->notified_count
== write_count
)
2226 efx_ef10_build_rx_desc(
2228 rx_queue
->notified_count
& rx_queue
->ptr_mask
);
2229 while (++rx_queue
->notified_count
!= write_count
);
2232 EFX_POPULATE_DWORD_1(reg
, ERF_DZ_RX_DESC_WPTR
,
2233 write_count
& rx_queue
->ptr_mask
);
2234 efx_writed_page(efx
, ®
, ER_DZ_RX_DESC_UPD
,
2235 efx_rx_queue_index(rx_queue
));
2238 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete
;
2240 static void efx_ef10_rx_defer_refill(struct efx_rx_queue
*rx_queue
)
2242 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
2243 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRIVER_EVENT_IN_LEN
);
2246 EFX_POPULATE_QWORD_2(event
,
2247 ESF_DZ_EV_CODE
, EFX_EF10_DRVGEN_EV
,
2248 ESF_DZ_EV_DATA
, EFX_EF10_REFILL
);
2250 MCDI_SET_DWORD(inbuf
, DRIVER_EVENT_IN_EVQ
, channel
->channel
);
2252 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2253 * already swapped the data to little-endian order.
2255 memcpy(MCDI_PTR(inbuf
, DRIVER_EVENT_IN_DATA
), &event
.u64
[0],
2256 sizeof(efx_qword_t
));
2258 efx_mcdi_rpc_async(channel
->efx
, MC_CMD_DRIVER_EVENT
,
2259 inbuf
, sizeof(inbuf
), 0,
2260 efx_ef10_rx_defer_refill_complete
, 0);
2264 efx_ef10_rx_defer_refill_complete(struct efx_nic
*efx
, unsigned long cookie
,
2265 int rc
, efx_dword_t
*outbuf
,
2266 size_t outlen_actual
)
2271 static int efx_ef10_ev_probe(struct efx_channel
*channel
)
2273 return efx_nic_alloc_buffer(channel
->efx
, &channel
->eventq
.buf
,
2274 (channel
->eventq_mask
+ 1) *
2275 sizeof(efx_qword_t
),
2279 static void efx_ef10_ev_fini(struct efx_channel
*channel
)
2281 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FINI_EVQ_IN_LEN
);
2282 MCDI_DECLARE_BUF_ERR(outbuf
);
2283 struct efx_nic
*efx
= channel
->efx
;
2287 MCDI_SET_DWORD(inbuf
, FINI_EVQ_IN_INSTANCE
, channel
->channel
);
2289 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FINI_EVQ
, inbuf
, sizeof(inbuf
),
2290 outbuf
, sizeof(outbuf
), &outlen
);
2292 if (rc
&& rc
!= -EALREADY
)
2298 efx_mcdi_display_error(efx
, MC_CMD_FINI_EVQ
, MC_CMD_FINI_EVQ_IN_LEN
,
2299 outbuf
, outlen
, rc
);
2302 static int efx_ef10_ev_init(struct efx_channel
*channel
)
2304 MCDI_DECLARE_BUF(inbuf
,
2305 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE
* 8 /
2307 MCDI_DECLARE_BUF(outbuf
, MC_CMD_INIT_EVQ_OUT_LEN
);
2308 size_t entries
= channel
->eventq
.buf
.len
/ EFX_BUF_SIZE
;
2309 struct efx_nic
*efx
= channel
->efx
;
2310 struct efx_ef10_nic_data
*nic_data
;
2311 bool supports_rx_merge
;
2312 size_t inlen
, outlen
;
2313 unsigned int enabled
, implemented
;
2314 dma_addr_t dma_addr
;
2318 nic_data
= efx
->nic_data
;
2320 !!(nic_data
->datapath_caps
&
2321 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN
);
2323 /* Fill event queue with all ones (i.e. empty events) */
2324 memset(channel
->eventq
.buf
.addr
, 0xff, channel
->eventq
.buf
.len
);
2326 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_SIZE
, channel
->eventq_mask
+ 1);
2327 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_INSTANCE
, channel
->channel
);
2328 /* INIT_EVQ expects index in vector table, not absolute */
2329 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_IRQ_NUM
, channel
->channel
);
2330 MCDI_POPULATE_DWORD_4(inbuf
, INIT_EVQ_IN_FLAGS
,
2331 INIT_EVQ_IN_FLAG_INTERRUPTING
, 1,
2332 INIT_EVQ_IN_FLAG_RX_MERGE
, 1,
2333 INIT_EVQ_IN_FLAG_TX_MERGE
, 1,
2334 INIT_EVQ_IN_FLAG_CUT_THRU
, !supports_rx_merge
);
2335 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_TMR_MODE
,
2336 MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS
);
2337 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_TMR_LOAD
, 0);
2338 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_TMR_RELOAD
, 0);
2339 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_COUNT_MODE
,
2340 MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS
);
2341 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_COUNT_THRSHLD
, 0);
2343 dma_addr
= channel
->eventq
.buf
.dma_addr
;
2344 for (i
= 0; i
< entries
; ++i
) {
2345 MCDI_SET_ARRAY_QWORD(inbuf
, INIT_EVQ_IN_DMA_ADDR
, i
, dma_addr
);
2346 dma_addr
+= EFX_BUF_SIZE
;
2349 inlen
= MC_CMD_INIT_EVQ_IN_LEN(entries
);
2351 rc
= efx_mcdi_rpc(efx
, MC_CMD_INIT_EVQ
, inbuf
, inlen
,
2352 outbuf
, sizeof(outbuf
), &outlen
);
2353 /* IRQ return is ignored */
2354 if (channel
->channel
|| rc
)
2357 /* Successfully created event queue on channel 0 */
2358 rc
= efx_mcdi_get_workarounds(efx
, &implemented
, &enabled
);
2359 if (rc
== -ENOSYS
) {
2360 /* GET_WORKAROUNDS was implemented before the bug26807
2361 * workaround, thus the latter must be unavailable in this fw
2363 nic_data
->workaround_26807
= false;
2368 nic_data
->workaround_26807
=
2369 !!(enabled
& MC_CMD_GET_WORKAROUNDS_OUT_BUG26807
);
2371 if (implemented
& MC_CMD_GET_WORKAROUNDS_OUT_BUG26807
&&
2372 !nic_data
->workaround_26807
) {
2375 rc
= efx_mcdi_set_workaround(efx
,
2376 MC_CMD_WORKAROUND_BUG26807
,
2381 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN
) {
2382 netif_info(efx
, drv
, efx
->net_dev
,
2383 "other functions on NIC have been reset\n");
2385 /* With MCFW v4.6.x and earlier, the
2386 * boot count will have incremented,
2387 * so re-read the warm_boot_count
2388 * value now to ensure this function
2389 * doesn't think it has changed next
2392 rc
= efx_ef10_get_warm_boot_count(efx
);
2394 nic_data
->warm_boot_count
= rc
;
2398 nic_data
->workaround_26807
= true;
2399 } else if (rc
== -EPERM
) {
2409 efx_ef10_ev_fini(channel
);
2413 static void efx_ef10_ev_remove(struct efx_channel
*channel
)
2415 efx_nic_free_buffer(channel
->efx
, &channel
->eventq
.buf
);
2418 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue
*rx_queue
,
2419 unsigned int rx_queue_label
)
2421 struct efx_nic
*efx
= rx_queue
->efx
;
2423 netif_info(efx
, hw
, efx
->net_dev
,
2424 "rx event arrived on queue %d labeled as queue %u\n",
2425 efx_rx_queue_index(rx_queue
), rx_queue_label
);
2427 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
2431 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue
*rx_queue
,
2432 unsigned int actual
, unsigned int expected
)
2434 unsigned int dropped
= (actual
- expected
) & rx_queue
->ptr_mask
;
2435 struct efx_nic
*efx
= rx_queue
->efx
;
2437 netif_info(efx
, hw
, efx
->net_dev
,
2438 "dropped %d events (index=%d expected=%d)\n",
2439 dropped
, actual
, expected
);
2441 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
2444 /* partially received RX was aborted. clean up. */
2445 static void efx_ef10_handle_rx_abort(struct efx_rx_queue
*rx_queue
)
2447 unsigned int rx_desc_ptr
;
2449 netif_dbg(rx_queue
->efx
, hw
, rx_queue
->efx
->net_dev
,
2450 "scattered RX aborted (dropping %u buffers)\n",
2451 rx_queue
->scatter_n
);
2453 rx_desc_ptr
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
2455 efx_rx_packet(rx_queue
, rx_desc_ptr
, rx_queue
->scatter_n
,
2456 0, EFX_RX_PKT_DISCARD
);
2458 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
2459 rx_queue
->scatter_n
= 0;
2460 rx_queue
->scatter_len
= 0;
2461 ++efx_rx_queue_channel(rx_queue
)->n_rx_nodesc_trunc
;
2464 static int efx_ef10_handle_rx_event(struct efx_channel
*channel
,
2465 const efx_qword_t
*event
)
2467 unsigned int rx_bytes
, next_ptr_lbits
, rx_queue_label
, rx_l4_class
;
2468 unsigned int n_descs
, n_packets
, i
;
2469 struct efx_nic
*efx
= channel
->efx
;
2470 struct efx_rx_queue
*rx_queue
;
2474 if (unlikely(ACCESS_ONCE(efx
->reset_pending
)))
2477 /* Basic packet information */
2478 rx_bytes
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_BYTES
);
2479 next_ptr_lbits
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_DSC_PTR_LBITS
);
2480 rx_queue_label
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_QLABEL
);
2481 rx_l4_class
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_L4_CLASS
);
2482 rx_cont
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_CONT
);
2484 if (EFX_QWORD_FIELD(*event
, ESF_DZ_RX_DROP_EVENT
))
2485 netdev_WARN(efx
->net_dev
, "saw RX_DROP_EVENT: event="
2487 EFX_QWORD_VAL(*event
));
2489 rx_queue
= efx_channel_get_rx_queue(channel
);
2491 if (unlikely(rx_queue_label
!= efx_rx_queue_index(rx_queue
)))
2492 efx_ef10_handle_rx_wrong_queue(rx_queue
, rx_queue_label
);
2494 n_descs
= ((next_ptr_lbits
- rx_queue
->removed_count
) &
2495 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH
) - 1));
2497 if (n_descs
!= rx_queue
->scatter_n
+ 1) {
2498 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2500 /* detect rx abort */
2501 if (unlikely(n_descs
== rx_queue
->scatter_n
)) {
2502 if (rx_queue
->scatter_n
== 0 || rx_bytes
!= 0)
2503 netdev_WARN(efx
->net_dev
,
2504 "invalid RX abort: scatter_n=%u event="
2506 rx_queue
->scatter_n
,
2507 EFX_QWORD_VAL(*event
));
2508 efx_ef10_handle_rx_abort(rx_queue
);
2512 /* Check that RX completion merging is valid, i.e.
2513 * the current firmware supports it and this is a
2514 * non-scattered packet.
2516 if (!(nic_data
->datapath_caps
&
2517 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN
)) ||
2518 rx_queue
->scatter_n
!= 0 || rx_cont
) {
2519 efx_ef10_handle_rx_bad_lbits(
2520 rx_queue
, next_ptr_lbits
,
2521 (rx_queue
->removed_count
+
2522 rx_queue
->scatter_n
+ 1) &
2523 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH
) - 1));
2527 /* Merged completion for multiple non-scattered packets */
2528 rx_queue
->scatter_n
= 1;
2529 rx_queue
->scatter_len
= 0;
2530 n_packets
= n_descs
;
2531 ++channel
->n_rx_merge_events
;
2532 channel
->n_rx_merge_packets
+= n_packets
;
2533 flags
|= EFX_RX_PKT_PREFIX_LEN
;
2535 ++rx_queue
->scatter_n
;
2536 rx_queue
->scatter_len
+= rx_bytes
;
2542 if (unlikely(EFX_QWORD_FIELD(*event
, ESF_DZ_RX_ECRC_ERR
)))
2543 flags
|= EFX_RX_PKT_DISCARD
;
2545 if (unlikely(EFX_QWORD_FIELD(*event
, ESF_DZ_RX_IPCKSUM_ERR
))) {
2546 channel
->n_rx_ip_hdr_chksum_err
+= n_packets
;
2547 } else if (unlikely(EFX_QWORD_FIELD(*event
,
2548 ESF_DZ_RX_TCPUDP_CKSUM_ERR
))) {
2549 channel
->n_rx_tcp_udp_chksum_err
+= n_packets
;
2550 } else if (rx_l4_class
== ESE_DZ_L4_CLASS_TCP
||
2551 rx_l4_class
== ESE_DZ_L4_CLASS_UDP
) {
2552 flags
|= EFX_RX_PKT_CSUMMED
;
2555 if (rx_l4_class
== ESE_DZ_L4_CLASS_TCP
)
2556 flags
|= EFX_RX_PKT_TCP
;
2558 channel
->irq_mod_score
+= 2 * n_packets
;
2560 /* Handle received packet(s) */
2561 for (i
= 0; i
< n_packets
; i
++) {
2562 efx_rx_packet(rx_queue
,
2563 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
2564 rx_queue
->scatter_n
, rx_queue
->scatter_len
,
2566 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
2569 rx_queue
->scatter_n
= 0;
2570 rx_queue
->scatter_len
= 0;
2576 efx_ef10_handle_tx_event(struct efx_channel
*channel
, efx_qword_t
*event
)
2578 struct efx_nic
*efx
= channel
->efx
;
2579 struct efx_tx_queue
*tx_queue
;
2580 unsigned int tx_ev_desc_ptr
;
2581 unsigned int tx_ev_q_label
;
2584 if (unlikely(ACCESS_ONCE(efx
->reset_pending
)))
2587 if (unlikely(EFX_QWORD_FIELD(*event
, ESF_DZ_TX_DROP_EVENT
)))
2590 /* Transmit completion */
2591 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, ESF_DZ_TX_DESCR_INDX
);
2592 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, ESF_DZ_TX_QLABEL
);
2593 tx_queue
= efx_channel_get_tx_queue(channel
,
2594 tx_ev_q_label
% EFX_TXQ_TYPES
);
2595 tx_descs
= ((tx_ev_desc_ptr
+ 1 - tx_queue
->read_count
) &
2596 tx_queue
->ptr_mask
);
2597 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
& tx_queue
->ptr_mask
);
2603 efx_ef10_handle_driver_event(struct efx_channel
*channel
, efx_qword_t
*event
)
2605 struct efx_nic
*efx
= channel
->efx
;
2608 subcode
= EFX_QWORD_FIELD(*event
, ESF_DZ_DRV_SUB_CODE
);
2611 case ESE_DZ_DRV_TIMER_EV
:
2612 case ESE_DZ_DRV_WAKE_UP_EV
:
2614 case ESE_DZ_DRV_START_UP_EV
:
2615 /* event queue init complete. ok. */
2618 netif_err(efx
, hw
, efx
->net_dev
,
2619 "channel %d unknown driver event type %d"
2620 " (data " EFX_QWORD_FMT
")\n",
2621 channel
->channel
, subcode
,
2622 EFX_QWORD_VAL(*event
));
2627 static void efx_ef10_handle_driver_generated_event(struct efx_channel
*channel
,
2630 struct efx_nic
*efx
= channel
->efx
;
2633 subcode
= EFX_QWORD_FIELD(*event
, EFX_DWORD_0
);
2637 channel
->event_test_cpu
= raw_smp_processor_id();
2639 case EFX_EF10_REFILL
:
2640 /* The queue must be empty, so we won't receive any rx
2641 * events, so efx_process_channel() won't refill the
2642 * queue. Refill it here
2644 efx_fast_push_rx_descriptors(&channel
->rx_queue
, true);
2647 netif_err(efx
, hw
, efx
->net_dev
,
2648 "channel %d unknown driver event type %u"
2649 " (data " EFX_QWORD_FMT
")\n",
2650 channel
->channel
, (unsigned) subcode
,
2651 EFX_QWORD_VAL(*event
));
2655 static int efx_ef10_ev_process(struct efx_channel
*channel
, int quota
)
2657 struct efx_nic
*efx
= channel
->efx
;
2658 efx_qword_t event
, *p_event
;
2659 unsigned int read_ptr
;
2667 read_ptr
= channel
->eventq_read_ptr
;
2670 p_event
= efx_event(channel
, read_ptr
);
2673 if (!efx_event_present(&event
))
2676 EFX_SET_QWORD(*p_event
);
2680 ev_code
= EFX_QWORD_FIELD(event
, ESF_DZ_EV_CODE
);
2682 netif_vdbg(efx
, drv
, efx
->net_dev
,
2683 "processing event on %d " EFX_QWORD_FMT
"\n",
2684 channel
->channel
, EFX_QWORD_VAL(event
));
2687 case ESE_DZ_EV_CODE_MCDI_EV
:
2688 efx_mcdi_process_event(channel
, &event
);
2690 case ESE_DZ_EV_CODE_RX_EV
:
2691 spent
+= efx_ef10_handle_rx_event(channel
, &event
);
2692 if (spent
>= quota
) {
2693 /* XXX can we split a merged event to
2694 * avoid going over-quota?
2700 case ESE_DZ_EV_CODE_TX_EV
:
2701 tx_descs
+= efx_ef10_handle_tx_event(channel
, &event
);
2702 if (tx_descs
> efx
->txq_entries
) {
2705 } else if (++spent
== quota
) {
2709 case ESE_DZ_EV_CODE_DRIVER_EV
:
2710 efx_ef10_handle_driver_event(channel
, &event
);
2711 if (++spent
== quota
)
2714 case EFX_EF10_DRVGEN_EV
:
2715 efx_ef10_handle_driver_generated_event(channel
, &event
);
2718 netif_err(efx
, hw
, efx
->net_dev
,
2719 "channel %d unknown event type %d"
2720 " (data " EFX_QWORD_FMT
")\n",
2721 channel
->channel
, ev_code
,
2722 EFX_QWORD_VAL(event
));
2727 channel
->eventq_read_ptr
= read_ptr
;
2731 static void efx_ef10_ev_read_ack(struct efx_channel
*channel
)
2733 struct efx_nic
*efx
= channel
->efx
;
2736 if (EFX_EF10_WORKAROUND_35388(efx
)) {
2737 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE
<
2738 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH
));
2739 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE
>
2740 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH
));
2742 EFX_POPULATE_DWORD_2(rptr
, ERF_DD_EVQ_IND_RPTR_FLAGS
,
2743 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH
,
2744 ERF_DD_EVQ_IND_RPTR
,
2745 (channel
->eventq_read_ptr
&
2746 channel
->eventq_mask
) >>
2747 ERF_DD_EVQ_IND_RPTR_WIDTH
);
2748 efx_writed_page(efx
, &rptr
, ER_DD_EVQ_INDIRECT
,
2750 EFX_POPULATE_DWORD_2(rptr
, ERF_DD_EVQ_IND_RPTR_FLAGS
,
2751 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW
,
2752 ERF_DD_EVQ_IND_RPTR
,
2753 channel
->eventq_read_ptr
&
2754 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH
) - 1));
2755 efx_writed_page(efx
, &rptr
, ER_DD_EVQ_INDIRECT
,
2758 EFX_POPULATE_DWORD_1(rptr
, ERF_DZ_EVQ_RPTR
,
2759 channel
->eventq_read_ptr
&
2760 channel
->eventq_mask
);
2761 efx_writed_page(efx
, &rptr
, ER_DZ_EVQ_RPTR
, channel
->channel
);
2765 static void efx_ef10_ev_test_generate(struct efx_channel
*channel
)
2767 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRIVER_EVENT_IN_LEN
);
2768 struct efx_nic
*efx
= channel
->efx
;
2772 EFX_POPULATE_QWORD_2(event
,
2773 ESF_DZ_EV_CODE
, EFX_EF10_DRVGEN_EV
,
2774 ESF_DZ_EV_DATA
, EFX_EF10_TEST
);
2776 MCDI_SET_DWORD(inbuf
, DRIVER_EVENT_IN_EVQ
, channel
->channel
);
2778 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2779 * already swapped the data to little-endian order.
2781 memcpy(MCDI_PTR(inbuf
, DRIVER_EVENT_IN_DATA
), &event
.u64
[0],
2782 sizeof(efx_qword_t
));
2784 rc
= efx_mcdi_rpc(efx
, MC_CMD_DRIVER_EVENT
, inbuf
, sizeof(inbuf
),
2793 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
2796 void efx_ef10_handle_drain_event(struct efx_nic
*efx
)
2798 if (atomic_dec_and_test(&efx
->active_queues
))
2799 wake_up(&efx
->flush_wq
);
2801 WARN_ON(atomic_read(&efx
->active_queues
) < 0);
2804 static int efx_ef10_fini_dmaq(struct efx_nic
*efx
)
2806 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2807 struct efx_channel
*channel
;
2808 struct efx_tx_queue
*tx_queue
;
2809 struct efx_rx_queue
*rx_queue
;
2812 /* If the MC has just rebooted, the TX/RX queues will have already been
2813 * torn down, but efx->active_queues needs to be set to zero.
2815 if (nic_data
->must_realloc_vis
) {
2816 atomic_set(&efx
->active_queues
, 0);
2820 /* Do not attempt to write to the NIC during EEH recovery */
2821 if (efx
->state
!= STATE_RECOVERY
) {
2822 efx_for_each_channel(channel
, efx
) {
2823 efx_for_each_channel_rx_queue(rx_queue
, channel
)
2824 efx_ef10_rx_fini(rx_queue
);
2825 efx_for_each_channel_tx_queue(tx_queue
, channel
)
2826 efx_ef10_tx_fini(tx_queue
);
2829 wait_event_timeout(efx
->flush_wq
,
2830 atomic_read(&efx
->active_queues
) == 0,
2831 msecs_to_jiffies(EFX_MAX_FLUSH_TIME
));
2832 pending
= atomic_read(&efx
->active_queues
);
2834 netif_err(efx
, hw
, efx
->net_dev
, "failed to flush %d queues\n",
2843 static void efx_ef10_prepare_flr(struct efx_nic
*efx
)
2845 atomic_set(&efx
->active_queues
, 0);
2848 static bool efx_ef10_filter_equal(const struct efx_filter_spec
*left
,
2849 const struct efx_filter_spec
*right
)
2851 if ((left
->match_flags
^ right
->match_flags
) |
2852 ((left
->flags
^ right
->flags
) &
2853 (EFX_FILTER_FLAG_RX
| EFX_FILTER_FLAG_TX
)))
2856 return memcmp(&left
->outer_vid
, &right
->outer_vid
,
2857 sizeof(struct efx_filter_spec
) -
2858 offsetof(struct efx_filter_spec
, outer_vid
)) == 0;
2861 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec
*spec
)
2863 BUILD_BUG_ON(offsetof(struct efx_filter_spec
, outer_vid
) & 3);
2864 return jhash2((const u32
*)&spec
->outer_vid
,
2865 (sizeof(struct efx_filter_spec
) -
2866 offsetof(struct efx_filter_spec
, outer_vid
)) / 4,
2868 /* XXX should we randomise the initval? */
2871 /* Decide whether a filter should be exclusive or else should allow
2872 * delivery to additional recipients. Currently we decide that
2873 * filters for specific local unicast MAC and IP addresses are
2876 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec
*spec
)
2878 if (spec
->match_flags
& EFX_FILTER_MATCH_LOC_MAC
&&
2879 !is_multicast_ether_addr(spec
->loc_mac
))
2882 if ((spec
->match_flags
&
2883 (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_LOC_HOST
)) ==
2884 (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_LOC_HOST
)) {
2885 if (spec
->ether_type
== htons(ETH_P_IP
) &&
2886 !ipv4_is_multicast(spec
->loc_host
[0]))
2888 if (spec
->ether_type
== htons(ETH_P_IPV6
) &&
2889 ((const u8
*)spec
->loc_host
)[0] != 0xff)
2896 static struct efx_filter_spec
*
2897 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table
*table
,
2898 unsigned int filter_idx
)
2900 return (struct efx_filter_spec
*)(table
->entry
[filter_idx
].spec
&
2901 ~EFX_EF10_FILTER_FLAGS
);
2905 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table
*table
,
2906 unsigned int filter_idx
)
2908 return table
->entry
[filter_idx
].spec
& EFX_EF10_FILTER_FLAGS
;
2912 efx_ef10_filter_set_entry(struct efx_ef10_filter_table
*table
,
2913 unsigned int filter_idx
,
2914 const struct efx_filter_spec
*spec
,
2917 table
->entry
[filter_idx
].spec
= (unsigned long)spec
| flags
;
2920 static void efx_ef10_filter_push_prep(struct efx_nic
*efx
,
2921 const struct efx_filter_spec
*spec
,
2922 efx_dword_t
*inbuf
, u64 handle
,
2925 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2927 memset(inbuf
, 0, MC_CMD_FILTER_OP_IN_LEN
);
2930 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
2931 MC_CMD_FILTER_OP_IN_OP_REPLACE
);
2932 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
, handle
);
2934 u32 match_fields
= 0;
2936 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
2937 efx_ef10_filter_is_exclusive(spec
) ?
2938 MC_CMD_FILTER_OP_IN_OP_INSERT
:
2939 MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE
);
2941 /* Convert match flags and values. Unlike almost
2942 * everything else in MCDI, these fields are in
2943 * network byte order.
2945 if (spec
->match_flags
& EFX_FILTER_MATCH_LOC_MAC_IG
)
2947 is_multicast_ether_addr(spec
->loc_mac
) ?
2948 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN
:
2949 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN
;
2950 #define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
2951 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
2953 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
2954 mcdi_field ## _LBN; \
2956 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2957 sizeof(spec->gen_field)); \
2958 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
2959 &spec->gen_field, sizeof(spec->gen_field)); \
2961 COPY_FIELD(REM_HOST
, rem_host
, SRC_IP
);
2962 COPY_FIELD(LOC_HOST
, loc_host
, DST_IP
);
2963 COPY_FIELD(REM_MAC
, rem_mac
, SRC_MAC
);
2964 COPY_FIELD(REM_PORT
, rem_port
, SRC_PORT
);
2965 COPY_FIELD(LOC_MAC
, loc_mac
, DST_MAC
);
2966 COPY_FIELD(LOC_PORT
, loc_port
, DST_PORT
);
2967 COPY_FIELD(ETHER_TYPE
, ether_type
, ETHER_TYPE
);
2968 COPY_FIELD(INNER_VID
, inner_vid
, INNER_VLAN
);
2969 COPY_FIELD(OUTER_VID
, outer_vid
, OUTER_VLAN
);
2970 COPY_FIELD(IP_PROTO
, ip_proto
, IP_PROTO
);
2972 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_MATCH_FIELDS
,
2976 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_PORT_ID
, nic_data
->vport_id
);
2977 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_RX_DEST
,
2978 spec
->dmaq_id
== EFX_FILTER_RX_DMAQ_ID_DROP
?
2979 MC_CMD_FILTER_OP_IN_RX_DEST_DROP
:
2980 MC_CMD_FILTER_OP_IN_RX_DEST_HOST
);
2981 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_TX_DOMAIN
, 0);
2982 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_TX_DEST
,
2983 MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT
);
2984 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_RX_QUEUE
,
2985 spec
->dmaq_id
== EFX_FILTER_RX_DMAQ_ID_DROP
?
2987 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_RX_MODE
,
2988 (spec
->flags
& EFX_FILTER_FLAG_RX_RSS
) ?
2989 MC_CMD_FILTER_OP_IN_RX_MODE_RSS
:
2990 MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE
);
2991 if (spec
->flags
& EFX_FILTER_FLAG_RX_RSS
)
2992 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_RX_CONTEXT
,
2993 spec
->rss_context
!=
2994 EFX_FILTER_RSS_CONTEXT_DEFAULT
?
2995 spec
->rss_context
: nic_data
->rx_rss_context
);
2998 static int efx_ef10_filter_push(struct efx_nic
*efx
,
2999 const struct efx_filter_spec
*spec
,
3000 u64
*handle
, bool replacing
)
3002 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FILTER_OP_IN_LEN
);
3003 MCDI_DECLARE_BUF(outbuf
, MC_CMD_FILTER_OP_OUT_LEN
);
3006 efx_ef10_filter_push_prep(efx
, spec
, inbuf
, *handle
, replacing
);
3007 rc
= efx_mcdi_rpc(efx
, MC_CMD_FILTER_OP
, inbuf
, sizeof(inbuf
),
3008 outbuf
, sizeof(outbuf
), NULL
);
3010 *handle
= MCDI_QWORD(outbuf
, FILTER_OP_OUT_HANDLE
);
3012 rc
= -EBUSY
; /* to match efx_farch_filter_insert() */
3016 static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table
*table
,
3017 enum efx_filter_match_flags match_flags
)
3019 unsigned int match_pri
;
3022 match_pri
< table
->rx_match_count
;
3024 if (table
->rx_match_flags
[match_pri
] == match_flags
)
3027 return -EPROTONOSUPPORT
;
3030 static s32
efx_ef10_filter_insert(struct efx_nic
*efx
,
3031 struct efx_filter_spec
*spec
,
3034 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3035 DECLARE_BITMAP(mc_rem_map
, EFX_EF10_FILTER_SEARCH_LIMIT
);
3036 struct efx_filter_spec
*saved_spec
;
3037 unsigned int match_pri
, hash
;
3038 unsigned int priv_flags
;
3039 bool replacing
= false;
3045 /* For now, only support RX filters */
3046 if ((spec
->flags
& (EFX_FILTER_FLAG_RX
| EFX_FILTER_FLAG_TX
)) !=
3050 rc
= efx_ef10_filter_rx_match_pri(table
, spec
->match_flags
);
3055 hash
= efx_ef10_filter_hash(spec
);
3056 is_mc_recip
= efx_filter_is_mc_recipient(spec
);
3058 bitmap_zero(mc_rem_map
, EFX_EF10_FILTER_SEARCH_LIMIT
);
3060 /* Find any existing filters with the same match tuple or
3061 * else a free slot to insert at. If any of them are busy,
3062 * we have to wait and retry.
3065 unsigned int depth
= 1;
3068 spin_lock_bh(&efx
->filter_lock
);
3071 i
= (hash
+ depth
) & (HUNT_FILTER_TBL_ROWS
- 1);
3072 saved_spec
= efx_ef10_filter_entry_spec(table
, i
);
3077 } else if (efx_ef10_filter_equal(spec
, saved_spec
)) {
3078 if (table
->entry
[i
].spec
&
3079 EFX_EF10_FILTER_FLAG_BUSY
)
3081 if (spec
->priority
< saved_spec
->priority
&&
3082 spec
->priority
!= EFX_FILTER_PRI_AUTO
) {
3087 /* This is the only one */
3088 if (spec
->priority
==
3089 saved_spec
->priority
&&
3096 } else if (spec
->priority
>
3097 saved_spec
->priority
||
3099 saved_spec
->priority
&&
3104 __set_bit(depth
, mc_rem_map
);
3108 /* Once we reach the maximum search depth, use
3109 * the first suitable slot or return -EBUSY if
3112 if (depth
== EFX_EF10_FILTER_SEARCH_LIMIT
) {
3113 if (ins_index
< 0) {
3123 prepare_to_wait(&table
->waitq
, &wait
, TASK_UNINTERRUPTIBLE
);
3124 spin_unlock_bh(&efx
->filter_lock
);
3129 /* Create a software table entry if necessary, and mark it
3130 * busy. We might yet fail to insert, but any attempt to
3131 * insert a conflicting filter while we're waiting for the
3132 * firmware must find the busy entry.
3134 saved_spec
= efx_ef10_filter_entry_spec(table
, ins_index
);
3136 if (spec
->priority
== EFX_FILTER_PRI_AUTO
&&
3137 saved_spec
->priority
>= EFX_FILTER_PRI_AUTO
) {
3138 /* Just make sure it won't be removed */
3139 if (saved_spec
->priority
> EFX_FILTER_PRI_AUTO
)
3140 saved_spec
->flags
|= EFX_FILTER_FLAG_RX_OVER_AUTO
;
3141 table
->entry
[ins_index
].spec
&=
3142 ~EFX_EF10_FILTER_FLAG_AUTO_OLD
;
3147 priv_flags
= efx_ef10_filter_entry_flags(table
, ins_index
);
3149 saved_spec
= kmalloc(sizeof(*spec
), GFP_ATOMIC
);
3154 *saved_spec
= *spec
;
3157 efx_ef10_filter_set_entry(table
, ins_index
, saved_spec
,
3158 priv_flags
| EFX_EF10_FILTER_FLAG_BUSY
);
3160 /* Mark lower-priority multicast recipients busy prior to removal */
3162 unsigned int depth
, i
;
3164 for (depth
= 0; depth
< EFX_EF10_FILTER_SEARCH_LIMIT
; depth
++) {
3165 i
= (hash
+ depth
) & (HUNT_FILTER_TBL_ROWS
- 1);
3166 if (test_bit(depth
, mc_rem_map
))
3167 table
->entry
[i
].spec
|=
3168 EFX_EF10_FILTER_FLAG_BUSY
;
3172 spin_unlock_bh(&efx
->filter_lock
);
3174 rc
= efx_ef10_filter_push(efx
, spec
, &table
->entry
[ins_index
].handle
,
3177 /* Finalise the software table entry */
3178 spin_lock_bh(&efx
->filter_lock
);
3181 /* Update the fields that may differ */
3182 if (saved_spec
->priority
== EFX_FILTER_PRI_AUTO
)
3183 saved_spec
->flags
|=
3184 EFX_FILTER_FLAG_RX_OVER_AUTO
;
3185 saved_spec
->priority
= spec
->priority
;
3186 saved_spec
->flags
&= EFX_FILTER_FLAG_RX_OVER_AUTO
;
3187 saved_spec
->flags
|= spec
->flags
;
3188 saved_spec
->rss_context
= spec
->rss_context
;
3189 saved_spec
->dmaq_id
= spec
->dmaq_id
;
3191 } else if (!replacing
) {
3195 efx_ef10_filter_set_entry(table
, ins_index
, saved_spec
, priv_flags
);
3197 /* Remove and finalise entries for lower-priority multicast
3201 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FILTER_OP_IN_LEN
);
3202 unsigned int depth
, i
;
3204 memset(inbuf
, 0, sizeof(inbuf
));
3206 for (depth
= 0; depth
< EFX_EF10_FILTER_SEARCH_LIMIT
; depth
++) {
3207 if (!test_bit(depth
, mc_rem_map
))
3210 i
= (hash
+ depth
) & (HUNT_FILTER_TBL_ROWS
- 1);
3211 saved_spec
= efx_ef10_filter_entry_spec(table
, i
);
3212 priv_flags
= efx_ef10_filter_entry_flags(table
, i
);
3215 spin_unlock_bh(&efx
->filter_lock
);
3216 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
3217 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE
);
3218 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
,
3219 table
->entry
[i
].handle
);
3220 rc
= efx_mcdi_rpc(efx
, MC_CMD_FILTER_OP
,
3221 inbuf
, sizeof(inbuf
),
3223 spin_lock_bh(&efx
->filter_lock
);
3231 priv_flags
&= ~EFX_EF10_FILTER_FLAG_BUSY
;
3233 efx_ef10_filter_set_entry(table
, i
, saved_spec
,
3238 /* If successful, return the inserted filter ID */
3240 rc
= match_pri
* HUNT_FILTER_TBL_ROWS
+ ins_index
;
3242 wake_up_all(&table
->waitq
);
3244 spin_unlock_bh(&efx
->filter_lock
);
3245 finish_wait(&table
->waitq
, &wait
);
3249 static void efx_ef10_filter_update_rx_scatter(struct efx_nic
*efx
)
3251 /* no need to do anything here on EF10 */
3255 * If !by_index, remove by ID
3256 * If by_index, remove by index
3257 * Filter ID may come from userland and must be range-checked.
3259 static int efx_ef10_filter_remove_internal(struct efx_nic
*efx
,
3260 unsigned int priority_mask
,
3261 u32 filter_id
, bool by_index
)
3263 unsigned int filter_idx
= filter_id
% HUNT_FILTER_TBL_ROWS
;
3264 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3265 MCDI_DECLARE_BUF(inbuf
,
3266 MC_CMD_FILTER_OP_IN_HANDLE_OFST
+
3267 MC_CMD_FILTER_OP_IN_HANDLE_LEN
);
3268 struct efx_filter_spec
*spec
;
3272 /* Find the software table entry and mark it busy. Don't
3273 * remove it yet; any attempt to update while we're waiting
3274 * for the firmware must find the busy entry.
3277 spin_lock_bh(&efx
->filter_lock
);
3278 if (!(table
->entry
[filter_idx
].spec
&
3279 EFX_EF10_FILTER_FLAG_BUSY
))
3281 prepare_to_wait(&table
->waitq
, &wait
, TASK_UNINTERRUPTIBLE
);
3282 spin_unlock_bh(&efx
->filter_lock
);
3286 spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
3289 efx_ef10_filter_rx_match_pri(table
, spec
->match_flags
) !=
3290 filter_id
/ HUNT_FILTER_TBL_ROWS
)) {
3295 if (spec
->flags
& EFX_FILTER_FLAG_RX_OVER_AUTO
&&
3296 priority_mask
== (1U << EFX_FILTER_PRI_AUTO
)) {
3297 /* Just remove flags */
3298 spec
->flags
&= ~EFX_FILTER_FLAG_RX_OVER_AUTO
;
3299 table
->entry
[filter_idx
].spec
&= ~EFX_EF10_FILTER_FLAG_AUTO_OLD
;
3304 if (!(priority_mask
& (1U << spec
->priority
))) {
3309 table
->entry
[filter_idx
].spec
|= EFX_EF10_FILTER_FLAG_BUSY
;
3310 spin_unlock_bh(&efx
->filter_lock
);
3312 if (spec
->flags
& EFX_FILTER_FLAG_RX_OVER_AUTO
) {
3313 /* Reset to an automatic filter */
3315 struct efx_filter_spec new_spec
= *spec
;
3317 new_spec
.priority
= EFX_FILTER_PRI_AUTO
;
3318 new_spec
.flags
= (EFX_FILTER_FLAG_RX
|
3319 (efx_rss_enabled(efx
) ?
3320 EFX_FILTER_FLAG_RX_RSS
: 0));
3321 new_spec
.dmaq_id
= 0;
3322 new_spec
.rss_context
= EFX_FILTER_RSS_CONTEXT_DEFAULT
;
3323 rc
= efx_ef10_filter_push(efx
, &new_spec
,
3324 &table
->entry
[filter_idx
].handle
,
3327 spin_lock_bh(&efx
->filter_lock
);
3331 /* Really remove the filter */
3333 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
3334 efx_ef10_filter_is_exclusive(spec
) ?
3335 MC_CMD_FILTER_OP_IN_OP_REMOVE
:
3336 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE
);
3337 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
,
3338 table
->entry
[filter_idx
].handle
);
3339 rc
= efx_mcdi_rpc(efx
, MC_CMD_FILTER_OP
,
3340 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
3342 spin_lock_bh(&efx
->filter_lock
);
3345 efx_ef10_filter_set_entry(table
, filter_idx
, NULL
, 0);
3349 table
->entry
[filter_idx
].spec
&= ~EFX_EF10_FILTER_FLAG_BUSY
;
3350 wake_up_all(&table
->waitq
);
3352 spin_unlock_bh(&efx
->filter_lock
);
3353 finish_wait(&table
->waitq
, &wait
);
3357 static int efx_ef10_filter_remove_safe(struct efx_nic
*efx
,
3358 enum efx_filter_priority priority
,
3361 return efx_ef10_filter_remove_internal(efx
, 1U << priority
,
3365 static u32
efx_ef10_filter_get_unsafe_id(struct efx_nic
*efx
, u32 filter_id
)
3367 return filter_id
% HUNT_FILTER_TBL_ROWS
;
3370 static int efx_ef10_filter_remove_unsafe(struct efx_nic
*efx
,
3371 enum efx_filter_priority priority
,
3374 return efx_ef10_filter_remove_internal(efx
, 1U << priority
,
3378 static int efx_ef10_filter_get_safe(struct efx_nic
*efx
,
3379 enum efx_filter_priority priority
,
3380 u32 filter_id
, struct efx_filter_spec
*spec
)
3382 unsigned int filter_idx
= filter_id
% HUNT_FILTER_TBL_ROWS
;
3383 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3384 const struct efx_filter_spec
*saved_spec
;
3387 spin_lock_bh(&efx
->filter_lock
);
3388 saved_spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
3389 if (saved_spec
&& saved_spec
->priority
== priority
&&
3390 efx_ef10_filter_rx_match_pri(table
, saved_spec
->match_flags
) ==
3391 filter_id
/ HUNT_FILTER_TBL_ROWS
) {
3392 *spec
= *saved_spec
;
3397 spin_unlock_bh(&efx
->filter_lock
);
3401 static int efx_ef10_filter_clear_rx(struct efx_nic
*efx
,
3402 enum efx_filter_priority priority
)
3404 unsigned int priority_mask
;
3408 priority_mask
= (((1U << (priority
+ 1)) - 1) &
3409 ~(1U << EFX_FILTER_PRI_AUTO
));
3411 for (i
= 0; i
< HUNT_FILTER_TBL_ROWS
; i
++) {
3412 rc
= efx_ef10_filter_remove_internal(efx
, priority_mask
,
3414 if (rc
&& rc
!= -ENOENT
)
3421 static u32
efx_ef10_filter_count_rx_used(struct efx_nic
*efx
,
3422 enum efx_filter_priority priority
)
3424 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3425 unsigned int filter_idx
;
3428 spin_lock_bh(&efx
->filter_lock
);
3429 for (filter_idx
= 0; filter_idx
< HUNT_FILTER_TBL_ROWS
; filter_idx
++) {
3430 if (table
->entry
[filter_idx
].spec
&&
3431 efx_ef10_filter_entry_spec(table
, filter_idx
)->priority
==
3435 spin_unlock_bh(&efx
->filter_lock
);
3439 static u32
efx_ef10_filter_get_rx_id_limit(struct efx_nic
*efx
)
3441 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3443 return table
->rx_match_count
* HUNT_FILTER_TBL_ROWS
;
3446 static s32
efx_ef10_filter_get_rx_ids(struct efx_nic
*efx
,
3447 enum efx_filter_priority priority
,
3450 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3451 struct efx_filter_spec
*spec
;
3452 unsigned int filter_idx
;
3455 spin_lock_bh(&efx
->filter_lock
);
3456 for (filter_idx
= 0; filter_idx
< HUNT_FILTER_TBL_ROWS
; filter_idx
++) {
3457 spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
3458 if (spec
&& spec
->priority
== priority
) {
3459 if (count
== size
) {
3463 buf
[count
++] = (efx_ef10_filter_rx_match_pri(
3464 table
, spec
->match_flags
) *
3465 HUNT_FILTER_TBL_ROWS
+
3469 spin_unlock_bh(&efx
->filter_lock
);
3473 #ifdef CONFIG_RFS_ACCEL
3475 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete
;
3477 static s32
efx_ef10_filter_rfs_insert(struct efx_nic
*efx
,
3478 struct efx_filter_spec
*spec
)
3480 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3481 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FILTER_OP_IN_LEN
);
3482 struct efx_filter_spec
*saved_spec
;
3483 unsigned int hash
, i
, depth
= 1;
3484 bool replacing
= false;
3489 /* Must be an RX filter without RSS and not for a multicast
3490 * destination address (RFS only works for connected sockets).
3491 * These restrictions allow us to pass only a tiny amount of
3492 * data through to the completion function.
3494 EFX_WARN_ON_PARANOID(spec
->flags
!=
3495 (EFX_FILTER_FLAG_RX
| EFX_FILTER_FLAG_RX_SCATTER
));
3496 EFX_WARN_ON_PARANOID(spec
->priority
!= EFX_FILTER_PRI_HINT
);
3497 EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec
));
3499 hash
= efx_ef10_filter_hash(spec
);
3501 spin_lock_bh(&efx
->filter_lock
);
3503 /* Find any existing filter with the same match tuple or else
3504 * a free slot to insert at. If an existing filter is busy,
3505 * we have to give up.
3508 i
= (hash
+ depth
) & (HUNT_FILTER_TBL_ROWS
- 1);
3509 saved_spec
= efx_ef10_filter_entry_spec(table
, i
);
3514 } else if (efx_ef10_filter_equal(spec
, saved_spec
)) {
3515 if (table
->entry
[i
].spec
& EFX_EF10_FILTER_FLAG_BUSY
) {
3519 if (spec
->priority
< saved_spec
->priority
) {
3527 /* Once we reach the maximum search depth, use the
3528 * first suitable slot or return -EBUSY if there was
3531 if (depth
== EFX_EF10_FILTER_SEARCH_LIMIT
) {
3532 if (ins_index
< 0) {
3542 /* Create a software table entry if necessary, and mark it
3543 * busy. We might yet fail to insert, but any attempt to
3544 * insert a conflicting filter while we're waiting for the
3545 * firmware must find the busy entry.
3547 saved_spec
= efx_ef10_filter_entry_spec(table
, ins_index
);
3551 saved_spec
= kmalloc(sizeof(*spec
), GFP_ATOMIC
);
3556 *saved_spec
= *spec
;
3558 efx_ef10_filter_set_entry(table
, ins_index
, saved_spec
,
3559 EFX_EF10_FILTER_FLAG_BUSY
);
3561 spin_unlock_bh(&efx
->filter_lock
);
3563 /* Pack up the variables needed on completion */
3564 cookie
= replacing
<< 31 | ins_index
<< 16 | spec
->dmaq_id
;
3566 efx_ef10_filter_push_prep(efx
, spec
, inbuf
,
3567 table
->entry
[ins_index
].handle
, replacing
);
3568 efx_mcdi_rpc_async(efx
, MC_CMD_FILTER_OP
, inbuf
, sizeof(inbuf
),
3569 MC_CMD_FILTER_OP_OUT_LEN
,
3570 efx_ef10_filter_rfs_insert_complete
, cookie
);
3575 spin_unlock_bh(&efx
->filter_lock
);
3580 efx_ef10_filter_rfs_insert_complete(struct efx_nic
*efx
, unsigned long cookie
,
3581 int rc
, efx_dword_t
*outbuf
,
3582 size_t outlen_actual
)
3584 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3585 unsigned int ins_index
, dmaq_id
;
3586 struct efx_filter_spec
*spec
;
3589 /* Unpack the cookie */
3590 replacing
= cookie
>> 31;
3591 ins_index
= (cookie
>> 16) & (HUNT_FILTER_TBL_ROWS
- 1);
3592 dmaq_id
= cookie
& 0xffff;
3594 spin_lock_bh(&efx
->filter_lock
);
3595 spec
= efx_ef10_filter_entry_spec(table
, ins_index
);
3597 table
->entry
[ins_index
].handle
=
3598 MCDI_QWORD(outbuf
, FILTER_OP_OUT_HANDLE
);
3600 spec
->dmaq_id
= dmaq_id
;
3601 } else if (!replacing
) {
3605 efx_ef10_filter_set_entry(table
, ins_index
, spec
, 0);
3606 spin_unlock_bh(&efx
->filter_lock
);
3608 wake_up_all(&table
->waitq
);
3612 efx_ef10_filter_rfs_expire_complete(struct efx_nic
*efx
,
3613 unsigned long filter_idx
,
3614 int rc
, efx_dword_t
*outbuf
,
3615 size_t outlen_actual
);
3617 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic
*efx
, u32 flow_id
,
3618 unsigned int filter_idx
)
3620 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3621 struct efx_filter_spec
*spec
=
3622 efx_ef10_filter_entry_spec(table
, filter_idx
);
3623 MCDI_DECLARE_BUF(inbuf
,
3624 MC_CMD_FILTER_OP_IN_HANDLE_OFST
+
3625 MC_CMD_FILTER_OP_IN_HANDLE_LEN
);
3628 (table
->entry
[filter_idx
].spec
& EFX_EF10_FILTER_FLAG_BUSY
) ||
3629 spec
->priority
!= EFX_FILTER_PRI_HINT
||
3630 !rps_may_expire_flow(efx
->net_dev
, spec
->dmaq_id
,
3631 flow_id
, filter_idx
))
3634 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
3635 MC_CMD_FILTER_OP_IN_OP_REMOVE
);
3636 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
,
3637 table
->entry
[filter_idx
].handle
);
3638 if (efx_mcdi_rpc_async(efx
, MC_CMD_FILTER_OP
, inbuf
, sizeof(inbuf
), 0,
3639 efx_ef10_filter_rfs_expire_complete
, filter_idx
))
3642 table
->entry
[filter_idx
].spec
|= EFX_EF10_FILTER_FLAG_BUSY
;
3647 efx_ef10_filter_rfs_expire_complete(struct efx_nic
*efx
,
3648 unsigned long filter_idx
,
3649 int rc
, efx_dword_t
*outbuf
,
3650 size_t outlen_actual
)
3652 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3653 struct efx_filter_spec
*spec
=
3654 efx_ef10_filter_entry_spec(table
, filter_idx
);
3656 spin_lock_bh(&efx
->filter_lock
);
3659 efx_ef10_filter_set_entry(table
, filter_idx
, NULL
, 0);
3661 table
->entry
[filter_idx
].spec
&= ~EFX_EF10_FILTER_FLAG_BUSY
;
3662 wake_up_all(&table
->waitq
);
3663 spin_unlock_bh(&efx
->filter_lock
);
3666 #endif /* CONFIG_RFS_ACCEL */
3668 static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags
)
3670 int match_flags
= 0;
3672 #define MAP_FLAG(gen_flag, mcdi_field) { \
3673 u32 old_mcdi_flags = mcdi_flags; \
3674 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
3675 mcdi_field ## _LBN); \
3676 if (mcdi_flags != old_mcdi_flags) \
3677 match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
3679 MAP_FLAG(LOC_MAC_IG
, UNKNOWN_UCAST_DST
);
3680 MAP_FLAG(LOC_MAC_IG
, UNKNOWN_MCAST_DST
);
3681 MAP_FLAG(REM_HOST
, SRC_IP
);
3682 MAP_FLAG(LOC_HOST
, DST_IP
);
3683 MAP_FLAG(REM_MAC
, SRC_MAC
);
3684 MAP_FLAG(REM_PORT
, SRC_PORT
);
3685 MAP_FLAG(LOC_MAC
, DST_MAC
);
3686 MAP_FLAG(LOC_PORT
, DST_PORT
);
3687 MAP_FLAG(ETHER_TYPE
, ETHER_TYPE
);
3688 MAP_FLAG(INNER_VID
, INNER_VLAN
);
3689 MAP_FLAG(OUTER_VID
, OUTER_VLAN
);
3690 MAP_FLAG(IP_PROTO
, IP_PROTO
);
3693 /* Did we map them all? */
3700 static int efx_ef10_filter_table_probe(struct efx_nic
*efx
)
3702 MCDI_DECLARE_BUF(inbuf
, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN
);
3703 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX
);
3704 unsigned int pd_match_pri
, pd_match_count
;
3705 struct efx_ef10_filter_table
*table
;
3709 table
= kzalloc(sizeof(*table
), GFP_KERNEL
);
3713 /* Find out which RX filter types are supported, and their priorities */
3714 MCDI_SET_DWORD(inbuf
, GET_PARSER_DISP_INFO_IN_OP
,
3715 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES
);
3716 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_PARSER_DISP_INFO
,
3717 inbuf
, sizeof(inbuf
), outbuf
, sizeof(outbuf
),
3721 pd_match_count
= MCDI_VAR_ARRAY_LEN(
3722 outlen
, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES
);
3723 table
->rx_match_count
= 0;
3725 for (pd_match_pri
= 0; pd_match_pri
< pd_match_count
; pd_match_pri
++) {
3729 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES
,
3731 rc
= efx_ef10_filter_match_flags_from_mcdi(mcdi_flags
);
3733 netif_dbg(efx
, probe
, efx
->net_dev
,
3734 "%s: fw flags %#x pri %u not supported in driver\n",
3735 __func__
, mcdi_flags
, pd_match_pri
);
3737 netif_dbg(efx
, probe
, efx
->net_dev
,
3738 "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3739 __func__
, mcdi_flags
, pd_match_pri
,
3740 rc
, table
->rx_match_count
);
3741 table
->rx_match_flags
[table
->rx_match_count
++] = rc
;
3745 table
->entry
= vzalloc(HUNT_FILTER_TBL_ROWS
* sizeof(*table
->entry
));
3746 if (!table
->entry
) {
3751 table
->ucdef_id
= EFX_EF10_FILTER_ID_INVALID
;
3752 table
->bcast_id
= EFX_EF10_FILTER_ID_INVALID
;
3753 table
->mcdef_id
= EFX_EF10_FILTER_ID_INVALID
;
3755 efx
->filter_state
= table
;
3756 init_waitqueue_head(&table
->waitq
);
3764 /* Caller must hold efx->filter_sem for read if race against
3765 * efx_ef10_filter_table_remove() is possible
3767 static void efx_ef10_filter_table_restore(struct efx_nic
*efx
)
3769 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3770 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3771 struct efx_filter_spec
*spec
;
3772 unsigned int filter_idx
;
3773 bool failed
= false;
3776 WARN_ON(!rwsem_is_locked(&efx
->filter_sem
));
3778 if (!nic_data
->must_restore_filters
)
3784 spin_lock_bh(&efx
->filter_lock
);
3786 for (filter_idx
= 0; filter_idx
< HUNT_FILTER_TBL_ROWS
; filter_idx
++) {
3787 spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
3791 table
->entry
[filter_idx
].spec
|= EFX_EF10_FILTER_FLAG_BUSY
;
3792 spin_unlock_bh(&efx
->filter_lock
);
3794 rc
= efx_ef10_filter_push(efx
, spec
,
3795 &table
->entry
[filter_idx
].handle
,
3800 spin_lock_bh(&efx
->filter_lock
);
3803 efx_ef10_filter_set_entry(table
, filter_idx
, NULL
, 0);
3805 table
->entry
[filter_idx
].spec
&=
3806 ~EFX_EF10_FILTER_FLAG_BUSY
;
3810 spin_unlock_bh(&efx
->filter_lock
);
3813 netif_err(efx
, hw
, efx
->net_dev
,
3814 "unable to restore all filters\n");
3816 nic_data
->must_restore_filters
= false;
3819 /* Caller must hold efx->filter_sem for write */
3820 static void efx_ef10_filter_table_remove(struct efx_nic
*efx
)
3822 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3823 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FILTER_OP_IN_LEN
);
3824 struct efx_filter_spec
*spec
;
3825 unsigned int filter_idx
;
3828 efx
->filter_state
= NULL
;
3832 for (filter_idx
= 0; filter_idx
< HUNT_FILTER_TBL_ROWS
; filter_idx
++) {
3833 spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
3837 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
3838 efx_ef10_filter_is_exclusive(spec
) ?
3839 MC_CMD_FILTER_OP_IN_OP_REMOVE
:
3840 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE
);
3841 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
,
3842 table
->entry
[filter_idx
].handle
);
3843 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FILTER_OP
, inbuf
,
3844 sizeof(inbuf
), NULL
, 0, NULL
);
3846 netif_info(efx
, drv
, efx
->net_dev
,
3847 "%s: filter %04x remove failed\n",
3848 __func__
, filter_idx
);
3852 vfree(table
->entry
);
3856 #define EFX_EF10_FILTER_DO_MARK_OLD(id) \
3857 if (id != EFX_EF10_FILTER_ID_INVALID) { \
3858 filter_idx = efx_ef10_filter_get_unsafe_id(efx, id); \
3859 if (!table->entry[filter_idx].spec) \
3860 netif_dbg(efx, drv, efx->net_dev, \
3861 "%s: marked null spec old %04x:%04x\n", \
3862 __func__, id, filter_idx); \
3863 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;\
3865 static void efx_ef10_filter_mark_old(struct efx_nic
*efx
)
3867 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3868 unsigned int filter_idx
, i
;
3873 /* Mark old filters that may need to be removed */
3874 spin_lock_bh(&efx
->filter_lock
);
3875 for (i
= 0; i
< table
->dev_uc_count
; i
++)
3876 EFX_EF10_FILTER_DO_MARK_OLD(table
->dev_uc_list
[i
].id
);
3877 for (i
= 0; i
< table
->dev_mc_count
; i
++)
3878 EFX_EF10_FILTER_DO_MARK_OLD(table
->dev_mc_list
[i
].id
);
3879 EFX_EF10_FILTER_DO_MARK_OLD(table
->ucdef_id
);
3880 EFX_EF10_FILTER_DO_MARK_OLD(table
->bcast_id
);
3881 EFX_EF10_FILTER_DO_MARK_OLD(table
->mcdef_id
);
3882 spin_unlock_bh(&efx
->filter_lock
);
3884 #undef EFX_EF10_FILTER_DO_MARK_OLD
3886 static void efx_ef10_filter_uc_addr_list(struct efx_nic
*efx
, bool *promisc
)
3888 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3889 struct net_device
*net_dev
= efx
->net_dev
;
3890 struct netdev_hw_addr
*uc
;
3894 table
->ucdef_id
= EFX_EF10_FILTER_ID_INVALID
;
3895 addr_count
= netdev_uc_count(net_dev
);
3896 if (net_dev
->flags
& IFF_PROMISC
)
3898 table
->dev_uc_count
= 1 + addr_count
;
3899 ether_addr_copy(table
->dev_uc_list
[0].addr
, net_dev
->dev_addr
);
3901 netdev_for_each_uc_addr(uc
, net_dev
) {
3902 if (i
>= EFX_EF10_FILTER_DEV_UC_MAX
) {
3906 ether_addr_copy(table
->dev_uc_list
[i
].addr
, uc
->addr
);
3907 table
->dev_uc_list
[i
].id
= EFX_EF10_FILTER_ID_INVALID
;
3912 static void efx_ef10_filter_mc_addr_list(struct efx_nic
*efx
, bool *promisc
)
3914 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3915 struct net_device
*net_dev
= efx
->net_dev
;
3916 struct netdev_hw_addr
*mc
;
3917 unsigned int i
, addr_count
;
3919 table
->mcdef_id
= EFX_EF10_FILTER_ID_INVALID
;
3920 table
->bcast_id
= EFX_EF10_FILTER_ID_INVALID
;
3921 if (net_dev
->flags
& (IFF_PROMISC
| IFF_ALLMULTI
))
3924 addr_count
= netdev_mc_count(net_dev
);
3926 netdev_for_each_mc_addr(mc
, net_dev
) {
3927 if (i
>= EFX_EF10_FILTER_DEV_MC_MAX
) {
3931 ether_addr_copy(table
->dev_mc_list
[i
].addr
, mc
->addr
);
3932 table
->dev_mc_list
[i
].id
= EFX_EF10_FILTER_ID_INVALID
;
3936 table
->dev_mc_count
= i
;
3939 static int efx_ef10_filter_insert_addr_list(struct efx_nic
*efx
,
3940 bool multicast
, bool rollback
)
3942 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3943 struct efx_ef10_dev_addr
*addr_list
;
3944 enum efx_filter_flags filter_flags
;
3945 struct efx_filter_spec spec
;
3952 addr_list
= table
->dev_mc_list
;
3953 addr_count
= table
->dev_mc_count
;
3955 addr_list
= table
->dev_uc_list
;
3956 addr_count
= table
->dev_uc_count
;
3959 filter_flags
= efx_rss_enabled(efx
) ? EFX_FILTER_FLAG_RX_RSS
: 0;
3961 /* Insert/renew filters */
3962 for (i
= 0; i
< addr_count
; i
++) {
3963 efx_filter_init_rx(&spec
, EFX_FILTER_PRI_AUTO
, filter_flags
, 0);
3964 efx_filter_set_eth_local(&spec
, EFX_FILTER_VID_UNSPEC
,
3966 rc
= efx_ef10_filter_insert(efx
, &spec
, true);
3969 netif_info(efx
, drv
, efx
->net_dev
,
3970 "efx_ef10_filter_insert failed rc=%d\n",
3972 /* Fall back to promiscuous */
3973 for (j
= 0; j
< i
; j
++) {
3974 if (addr_list
[j
].id
== EFX_EF10_FILTER_ID_INVALID
)
3976 efx_ef10_filter_remove_unsafe(
3977 efx
, EFX_FILTER_PRI_AUTO
,
3979 addr_list
[j
].id
= EFX_EF10_FILTER_ID_INVALID
;
3983 /* mark as not inserted, and carry on */
3984 rc
= EFX_EF10_FILTER_ID_INVALID
;
3987 addr_list
[i
].id
= efx_ef10_filter_get_unsafe_id(efx
, rc
);
3990 if (multicast
&& rollback
) {
3991 /* Also need an Ethernet broadcast filter */
3992 efx_filter_init_rx(&spec
, EFX_FILTER_PRI_AUTO
, filter_flags
, 0);
3993 eth_broadcast_addr(baddr
);
3994 efx_filter_set_eth_local(&spec
, EFX_FILTER_VID_UNSPEC
, baddr
);
3995 rc
= efx_ef10_filter_insert(efx
, &spec
, true);
3997 netif_warn(efx
, drv
, efx
->net_dev
,
3998 "Broadcast filter insert failed rc=%d\n", rc
);
3999 /* Fall back to promiscuous */
4000 for (j
= 0; j
< i
; j
++) {
4001 if (addr_list
[j
].id
== EFX_EF10_FILTER_ID_INVALID
)
4003 efx_ef10_filter_remove_unsafe(
4004 efx
, EFX_FILTER_PRI_AUTO
,
4006 addr_list
[j
].id
= EFX_EF10_FILTER_ID_INVALID
;
4010 table
->bcast_id
= efx_ef10_filter_get_unsafe_id(efx
, rc
);
4017 static int efx_ef10_filter_insert_def(struct efx_nic
*efx
, bool multicast
,
4020 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
4021 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
4022 enum efx_filter_flags filter_flags
;
4023 struct efx_filter_spec spec
;
4027 filter_flags
= efx_rss_enabled(efx
) ? EFX_FILTER_FLAG_RX_RSS
: 0;
4029 efx_filter_init_rx(&spec
, EFX_FILTER_PRI_AUTO
, filter_flags
, 0);
4032 efx_filter_set_mc_def(&spec
);
4034 efx_filter_set_uc_def(&spec
);
4036 rc
= efx_ef10_filter_insert(efx
, &spec
, true);
4038 netif_printk(efx
, drv
, rc
== -EPERM
? KERN_DEBUG
: KERN_WARNING
,
4040 "%scast mismatch filter insert failed rc=%d\n",
4041 multicast
? "Multi" : "Uni", rc
);
4042 } else if (multicast
) {
4043 table
->mcdef_id
= efx_ef10_filter_get_unsafe_id(efx
, rc
);
4044 if (!nic_data
->workaround_26807
) {
4045 /* Also need an Ethernet broadcast filter */
4046 efx_filter_init_rx(&spec
, EFX_FILTER_PRI_AUTO
,
4048 eth_broadcast_addr(baddr
);
4049 efx_filter_set_eth_local(&spec
, EFX_FILTER_VID_UNSPEC
,
4051 rc
= efx_ef10_filter_insert(efx
, &spec
, true);
4053 netif_warn(efx
, drv
, efx
->net_dev
,
4054 "Broadcast filter insert failed rc=%d\n",
4057 /* Roll back the mc_def filter */
4058 efx_ef10_filter_remove_unsafe(
4059 efx
, EFX_FILTER_PRI_AUTO
,
4061 table
->mcdef_id
= EFX_EF10_FILTER_ID_INVALID
;
4065 table
->bcast_id
= efx_ef10_filter_get_unsafe_id(efx
, rc
);
4070 table
->ucdef_id
= rc
;
4076 /* Remove filters that weren't renewed. Since nothing else changes the AUTO_OLD
4077 * flag or removes these filters, we don't need to hold the filter_lock while
4078 * scanning for these filters.
4080 static void efx_ef10_filter_remove_old(struct efx_nic
*efx
)
4082 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
4083 int remove_failed
= 0;
4084 int remove_noent
= 0;
4088 for (i
= 0; i
< HUNT_FILTER_TBL_ROWS
; i
++) {
4089 if (ACCESS_ONCE(table
->entry
[i
].spec
) &
4090 EFX_EF10_FILTER_FLAG_AUTO_OLD
) {
4091 rc
= efx_ef10_filter_remove_internal(efx
,
4092 1U << EFX_FILTER_PRI_AUTO
, i
, true);
4101 netif_info(efx
, drv
, efx
->net_dev
,
4102 "%s: failed to remove %d filters\n",
4103 __func__
, remove_failed
);
4105 netif_info(efx
, drv
, efx
->net_dev
,
4106 "%s: failed to remove %d non-existent filters\n",
4107 __func__
, remove_noent
);
4110 static int efx_ef10_vport_set_mac_address(struct efx_nic
*efx
)
4112 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
4113 u8 mac_old
[ETH_ALEN
];
4116 /* Only reconfigure a PF-created vport */
4117 if (is_zero_ether_addr(nic_data
->vport_mac
))
4120 efx_device_detach_sync(efx
);
4121 efx_net_stop(efx
->net_dev
);
4122 down_write(&efx
->filter_sem
);
4123 efx_ef10_filter_table_remove(efx
);
4124 up_write(&efx
->filter_sem
);
4126 rc
= efx_ef10_vadaptor_free(efx
, nic_data
->vport_id
);
4128 goto restore_filters
;
4130 ether_addr_copy(mac_old
, nic_data
->vport_mac
);
4131 rc
= efx_ef10_vport_del_mac(efx
, nic_data
->vport_id
,
4132 nic_data
->vport_mac
);
4134 goto restore_vadaptor
;
4136 rc
= efx_ef10_vport_add_mac(efx
, nic_data
->vport_id
,
4137 efx
->net_dev
->dev_addr
);
4139 ether_addr_copy(nic_data
->vport_mac
, efx
->net_dev
->dev_addr
);
4141 rc2
= efx_ef10_vport_add_mac(efx
, nic_data
->vport_id
, mac_old
);
4143 /* Failed to add original MAC, so clear vport_mac */
4144 eth_zero_addr(nic_data
->vport_mac
);
4150 rc2
= efx_ef10_vadaptor_alloc(efx
, nic_data
->vport_id
);
4154 down_write(&efx
->filter_sem
);
4155 rc2
= efx_ef10_filter_table_probe(efx
);
4156 up_write(&efx
->filter_sem
);
4160 rc2
= efx_net_open(efx
->net_dev
);
4164 netif_device_attach(efx
->net_dev
);
4169 netif_err(efx
, drv
, efx
->net_dev
,
4170 "Failed to restore when changing MAC address - scheduling reset\n");
4171 efx_schedule_reset(efx
, RESET_TYPE_DATAPATH
);
4173 return rc
? rc
: rc2
;
4176 /* Caller must hold efx->filter_sem for read if race against
4177 * efx_ef10_filter_table_remove() is possible
4179 static void efx_ef10_filter_sync_rx_mode(struct efx_nic
*efx
)
4181 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
4182 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
4183 struct net_device
*net_dev
= efx
->net_dev
;
4184 bool uc_promisc
= false, mc_promisc
= false;
4186 if (!efx_dev_registered(efx
))
4192 efx_ef10_filter_mark_old(efx
);
4194 /* Copy/convert the address lists; add the primary station
4195 * address and broadcast address
4197 netif_addr_lock_bh(net_dev
);
4198 efx_ef10_filter_uc_addr_list(efx
, &uc_promisc
);
4199 efx_ef10_filter_mc_addr_list(efx
, &mc_promisc
);
4200 netif_addr_unlock_bh(net_dev
);
4202 /* Insert/renew unicast filters */
4204 efx_ef10_filter_insert_def(efx
, false, false);
4205 efx_ef10_filter_insert_addr_list(efx
, false, false);
4207 /* If any of the filters failed to insert, fall back to
4208 * promiscuous mode - add in the uc_def filter. But keep
4209 * our individual unicast filters.
4211 if (efx_ef10_filter_insert_addr_list(efx
, false, false))
4212 efx_ef10_filter_insert_def(efx
, false, false);
4215 /* Insert/renew multicast filters */
4216 /* If changing promiscuous state with cascaded multicast filters, remove
4217 * old filters first, so that packets are dropped rather than duplicated
4219 if (nic_data
->workaround_26807
&& efx
->mc_promisc
!= mc_promisc
)
4220 efx_ef10_filter_remove_old(efx
);
4222 if (nic_data
->workaround_26807
) {
4223 /* If we failed to insert promiscuous filters, rollback
4224 * and fall back to individual multicast filters
4226 if (efx_ef10_filter_insert_def(efx
, true, true)) {
4227 /* Changing promisc state, so remove old filters */
4228 efx_ef10_filter_remove_old(efx
);
4229 efx_ef10_filter_insert_addr_list(efx
, true, false);
4232 /* If we failed to insert promiscuous filters, don't
4233 * rollback. Regardless, also insert the mc_list
4235 efx_ef10_filter_insert_def(efx
, true, false);
4236 efx_ef10_filter_insert_addr_list(efx
, true, false);
4239 /* If any filters failed to insert, rollback and fall back to
4240 * promiscuous mode - mc_def filter and maybe broadcast. If
4241 * that fails, roll back again and insert as many of our
4242 * individual multicast filters as we can.
4244 if (efx_ef10_filter_insert_addr_list(efx
, true, true)) {
4245 /* Changing promisc state, so remove old filters */
4246 if (nic_data
->workaround_26807
)
4247 efx_ef10_filter_remove_old(efx
);
4248 if (efx_ef10_filter_insert_def(efx
, true, true))
4249 efx_ef10_filter_insert_addr_list(efx
, true, false);
4253 efx_ef10_filter_remove_old(efx
);
4254 efx
->mc_promisc
= mc_promisc
;
4257 static int efx_ef10_set_mac_address(struct efx_nic
*efx
)
4259 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VADAPTOR_SET_MAC_IN_LEN
);
4260 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
4261 bool was_enabled
= efx
->port_enabled
;
4264 efx_device_detach_sync(efx
);
4265 efx_net_stop(efx
->net_dev
);
4266 down_write(&efx
->filter_sem
);
4267 efx_ef10_filter_table_remove(efx
);
4269 ether_addr_copy(MCDI_PTR(inbuf
, VADAPTOR_SET_MAC_IN_MACADDR
),
4270 efx
->net_dev
->dev_addr
);
4271 MCDI_SET_DWORD(inbuf
, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID
,
4272 nic_data
->vport_id
);
4273 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_VADAPTOR_SET_MAC
, inbuf
,
4274 sizeof(inbuf
), NULL
, 0, NULL
);
4276 efx_ef10_filter_table_probe(efx
);
4277 up_write(&efx
->filter_sem
);
4279 efx_net_open(efx
->net_dev
);
4280 netif_device_attach(efx
->net_dev
);
4282 #ifdef CONFIG_SFC_SRIOV
4283 if (efx
->pci_dev
->is_virtfn
&& efx
->pci_dev
->physfn
) {
4284 struct pci_dev
*pci_dev_pf
= efx
->pci_dev
->physfn
;
4287 struct efx_nic
*efx_pf
;
4289 /* Switch to PF and change MAC address on vport */
4290 efx_pf
= pci_get_drvdata(pci_dev_pf
);
4292 rc
= efx_ef10_sriov_set_vf_mac(efx_pf
,
4294 efx
->net_dev
->dev_addr
);
4296 struct efx_nic
*efx_pf
= pci_get_drvdata(pci_dev_pf
);
4297 struct efx_ef10_nic_data
*nic_data
= efx_pf
->nic_data
;
4300 /* MAC address successfully changed by VF (with MAC
4301 * spoofing) so update the parent PF if possible.
4303 for (i
= 0; i
< efx_pf
->vf_count
; ++i
) {
4304 struct ef10_vf
*vf
= nic_data
->vf
+ i
;
4306 if (vf
->efx
== efx
) {
4307 ether_addr_copy(vf
->mac
,
4308 efx
->net_dev
->dev_addr
);
4316 netif_err(efx
, drv
, efx
->net_dev
,
4317 "Cannot change MAC address; use sfboot to enable"
4318 " mac-spoofing on this interface\n");
4319 } else if (rc
== -ENOSYS
&& !efx_ef10_is_vf(efx
)) {
4320 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
4321 * fall-back to the method of changing the MAC address on the
4322 * vport. This only applies to PFs because such versions of
4323 * MCFW do not support VFs.
4325 rc
= efx_ef10_vport_set_mac_address(efx
);
4327 efx_mcdi_display_error(efx
, MC_CMD_VADAPTOR_SET_MAC
,
4328 sizeof(inbuf
), NULL
, 0, rc
);
4334 static int efx_ef10_mac_reconfigure(struct efx_nic
*efx
)
4336 efx_ef10_filter_sync_rx_mode(efx
);
4338 return efx_mcdi_set_mac(efx
);
4341 static int efx_ef10_mac_reconfigure_vf(struct efx_nic
*efx
)
4343 efx_ef10_filter_sync_rx_mode(efx
);
4348 static int efx_ef10_start_bist(struct efx_nic
*efx
, u32 bist_type
)
4350 MCDI_DECLARE_BUF(inbuf
, MC_CMD_START_BIST_IN_LEN
);
4352 MCDI_SET_DWORD(inbuf
, START_BIST_IN_TYPE
, bist_type
);
4353 return efx_mcdi_rpc(efx
, MC_CMD_START_BIST
, inbuf
, sizeof(inbuf
),
4357 /* MC BISTs follow a different poll mechanism to phy BISTs.
4358 * The BIST is done in the poll handler on the MC, and the MCDI command
4359 * will block until the BIST is done.
4361 static int efx_ef10_poll_bist(struct efx_nic
*efx
)
4364 MCDI_DECLARE_BUF(outbuf
, MC_CMD_POLL_BIST_OUT_LEN
);
4368 rc
= efx_mcdi_rpc(efx
, MC_CMD_POLL_BIST
, NULL
, 0,
4369 outbuf
, sizeof(outbuf
), &outlen
);
4373 if (outlen
< MC_CMD_POLL_BIST_OUT_LEN
)
4376 result
= MCDI_DWORD(outbuf
, POLL_BIST_OUT_RESULT
);
4378 case MC_CMD_POLL_BIST_PASSED
:
4379 netif_dbg(efx
, hw
, efx
->net_dev
, "BIST passed.\n");
4381 case MC_CMD_POLL_BIST_TIMEOUT
:
4382 netif_err(efx
, hw
, efx
->net_dev
, "BIST timed out\n");
4384 case MC_CMD_POLL_BIST_FAILED
:
4385 netif_err(efx
, hw
, efx
->net_dev
, "BIST failed.\n");
4388 netif_err(efx
, hw
, efx
->net_dev
,
4389 "BIST returned unknown result %u", result
);
4394 static int efx_ef10_run_bist(struct efx_nic
*efx
, u32 bist_type
)
4398 netif_dbg(efx
, drv
, efx
->net_dev
, "starting BIST type %u\n", bist_type
);
4400 rc
= efx_ef10_start_bist(efx
, bist_type
);
4404 return efx_ef10_poll_bist(efx
);
4408 efx_ef10_test_chip(struct efx_nic
*efx
, struct efx_self_tests
*tests
)
4412 efx_reset_down(efx
, RESET_TYPE_WORLD
);
4414 rc
= efx_mcdi_rpc(efx
, MC_CMD_ENABLE_OFFLINE_BIST
,
4415 NULL
, 0, NULL
, 0, NULL
);
4419 tests
->memory
= efx_ef10_run_bist(efx
, MC_CMD_MC_MEM_BIST
) ? -1 : 1;
4420 tests
->registers
= efx_ef10_run_bist(efx
, MC_CMD_REG_BIST
) ? -1 : 1;
4422 rc
= efx_mcdi_reset(efx
, RESET_TYPE_WORLD
);
4427 rc2
= efx_reset_up(efx
, RESET_TYPE_WORLD
, rc
== 0);
4428 return rc
? rc
: rc2
;
4431 #ifdef CONFIG_SFC_MTD
4433 struct efx_ef10_nvram_type_info
{
4434 u16 type
, type_mask
;
4439 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types
[] = {
4440 { NVRAM_PARTITION_TYPE_MC_FIRMWARE
, 0, 0, "sfc_mcfw" },
4441 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP
, 0, 0, "sfc_mcfw_backup" },
4442 { NVRAM_PARTITION_TYPE_EXPANSION_ROM
, 0, 0, "sfc_exp_rom" },
4443 { NVRAM_PARTITION_TYPE_STATIC_CONFIG
, 0, 0, "sfc_static_cfg" },
4444 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG
, 0, 0, "sfc_dynamic_cfg" },
4445 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0
, 0, 0, "sfc_exp_rom_cfg" },
4446 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1
, 0, 1, "sfc_exp_rom_cfg" },
4447 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2
, 0, 2, "sfc_exp_rom_cfg" },
4448 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3
, 0, 3, "sfc_exp_rom_cfg" },
4449 { NVRAM_PARTITION_TYPE_LICENSE
, 0, 0, "sfc_license" },
4450 { NVRAM_PARTITION_TYPE_PHY_MIN
, 0xff, 0, "sfc_phy_fw" },
4453 static int efx_ef10_mtd_probe_partition(struct efx_nic
*efx
,
4454 struct efx_mcdi_mtd_partition
*part
,
4457 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_METADATA_IN_LEN
);
4458 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_METADATA_OUT_LENMAX
);
4459 const struct efx_ef10_nvram_type_info
*info
;
4460 size_t size
, erase_size
, outlen
;
4464 for (info
= efx_ef10_nvram_types
; ; info
++) {
4466 efx_ef10_nvram_types
+ ARRAY_SIZE(efx_ef10_nvram_types
))
4468 if ((type
& ~info
->type_mask
) == info
->type
)
4471 if (info
->port
!= efx_port_num(efx
))
4474 rc
= efx_mcdi_nvram_info(efx
, type
, &size
, &erase_size
, &protected);
4478 return -ENODEV
; /* hide it */
4480 part
->nvram_type
= type
;
4482 MCDI_SET_DWORD(inbuf
, NVRAM_METADATA_IN_TYPE
, type
);
4483 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_METADATA
, inbuf
, sizeof(inbuf
),
4484 outbuf
, sizeof(outbuf
), &outlen
);
4487 if (outlen
< MC_CMD_NVRAM_METADATA_OUT_LENMIN
)
4489 if (MCDI_DWORD(outbuf
, NVRAM_METADATA_OUT_FLAGS
) &
4490 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN
))
4491 part
->fw_subtype
= MCDI_DWORD(outbuf
,
4492 NVRAM_METADATA_OUT_SUBTYPE
);
4494 part
->common
.dev_type_name
= "EF10 NVRAM manager";
4495 part
->common
.type_name
= info
->name
;
4497 part
->common
.mtd
.type
= MTD_NORFLASH
;
4498 part
->common
.mtd
.flags
= MTD_CAP_NORFLASH
;
4499 part
->common
.mtd
.size
= size
;
4500 part
->common
.mtd
.erasesize
= erase_size
;
4505 static int efx_ef10_mtd_probe(struct efx_nic
*efx
)
4507 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX
);
4508 struct efx_mcdi_mtd_partition
*parts
;
4509 size_t outlen
, n_parts_total
, i
, n_parts
;
4515 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN
!= 0);
4516 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_PARTITIONS
, NULL
, 0,
4517 outbuf
, sizeof(outbuf
), &outlen
);
4520 if (outlen
< MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN
)
4523 n_parts_total
= MCDI_DWORD(outbuf
, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS
);
4525 MCDI_VAR_ARRAY_LEN(outlen
, NVRAM_PARTITIONS_OUT_TYPE_ID
))
4528 parts
= kcalloc(n_parts_total
, sizeof(*parts
), GFP_KERNEL
);
4533 for (i
= 0; i
< n_parts_total
; i
++) {
4534 type
= MCDI_ARRAY_DWORD(outbuf
, NVRAM_PARTITIONS_OUT_TYPE_ID
,
4536 rc
= efx_ef10_mtd_probe_partition(efx
, &parts
[n_parts
], type
);
4539 else if (rc
!= -ENODEV
)
4543 rc
= efx_mtd_add(efx
, &parts
[0].common
, n_parts
, sizeof(*parts
));
4550 #endif /* CONFIG_SFC_MTD */
4552 static void efx_ef10_ptp_write_host_time(struct efx_nic
*efx
, u32 host_time
)
4554 _efx_writed(efx
, cpu_to_le32(host_time
), ER_DZ_MC_DB_LWRD
);
4557 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic
*efx
,
4560 static int efx_ef10_rx_enable_timestamping(struct efx_channel
*channel
,
4563 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN
);
4566 if (channel
->sync_events_state
== SYNC_EVENTS_REQUESTED
||
4567 channel
->sync_events_state
== SYNC_EVENTS_VALID
||
4568 (temp
&& channel
->sync_events_state
== SYNC_EVENTS_DISABLED
))
4570 channel
->sync_events_state
= SYNC_EVENTS_REQUESTED
;
4572 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE
);
4573 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
4574 MCDI_SET_DWORD(inbuf
, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE
,
4577 rc
= efx_mcdi_rpc(channel
->efx
, MC_CMD_PTP
,
4578 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
4581 channel
->sync_events_state
= temp
? SYNC_EVENTS_QUIESCENT
:
4582 SYNC_EVENTS_DISABLED
;
4587 static int efx_ef10_rx_disable_timestamping(struct efx_channel
*channel
,
4590 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN
);
4593 if (channel
->sync_events_state
== SYNC_EVENTS_DISABLED
||
4594 (temp
&& channel
->sync_events_state
== SYNC_EVENTS_QUIESCENT
))
4596 if (channel
->sync_events_state
== SYNC_EVENTS_QUIESCENT
) {
4597 channel
->sync_events_state
= SYNC_EVENTS_DISABLED
;
4600 channel
->sync_events_state
= temp
? SYNC_EVENTS_QUIESCENT
:
4601 SYNC_EVENTS_DISABLED
;
4603 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE
);
4604 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
4605 MCDI_SET_DWORD(inbuf
, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL
,
4606 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE
);
4607 MCDI_SET_DWORD(inbuf
, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE
,
4610 rc
= efx_mcdi_rpc(channel
->efx
, MC_CMD_PTP
,
4611 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
4616 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic
*efx
, bool en
,
4619 int (*set
)(struct efx_channel
*channel
, bool temp
);
4620 struct efx_channel
*channel
;
4623 efx_ef10_rx_enable_timestamping
:
4624 efx_ef10_rx_disable_timestamping
;
4626 efx_for_each_channel(channel
, efx
) {
4627 int rc
= set(channel
, temp
);
4628 if (en
&& rc
!= 0) {
4629 efx_ef10_ptp_set_ts_sync_events(efx
, false, temp
);
4637 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic
*efx
,
4638 struct hwtstamp_config
*init
)
4643 static int efx_ef10_ptp_set_ts_config(struct efx_nic
*efx
,
4644 struct hwtstamp_config
*init
)
4648 switch (init
->rx_filter
) {
4649 case HWTSTAMP_FILTER_NONE
:
4650 efx_ef10_ptp_set_ts_sync_events(efx
, false, false);
4651 /* if TX timestamping is still requested then leave PTP on */
4652 return efx_ptp_change_mode(efx
,
4653 init
->tx_type
!= HWTSTAMP_TX_OFF
, 0);
4654 case HWTSTAMP_FILTER_ALL
:
4655 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
4656 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
4657 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
4658 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
4659 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
4660 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
4661 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
4662 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
4663 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
4664 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
4665 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
4666 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
4667 init
->rx_filter
= HWTSTAMP_FILTER_ALL
;
4668 rc
= efx_ptp_change_mode(efx
, true, 0);
4670 rc
= efx_ef10_ptp_set_ts_sync_events(efx
, true, false);
4672 efx_ptp_change_mode(efx
, false, 0);
4679 const struct efx_nic_type efx_hunt_a0_vf_nic_type
= {
4681 .mem_bar
= EFX_MEM_VF_BAR
,
4682 .mem_map_size
= efx_ef10_mem_map_size
,
4683 .probe
= efx_ef10_probe_vf
,
4684 .remove
= efx_ef10_remove
,
4685 .dimension_resources
= efx_ef10_dimension_resources
,
4686 .init
= efx_ef10_init_nic
,
4687 .fini
= efx_port_dummy_op_void
,
4688 .map_reset_reason
= efx_ef10_map_reset_reason
,
4689 .map_reset_flags
= efx_ef10_map_reset_flags
,
4690 .reset
= efx_ef10_reset
,
4691 .probe_port
= efx_mcdi_port_probe
,
4692 .remove_port
= efx_mcdi_port_remove
,
4693 .fini_dmaq
= efx_ef10_fini_dmaq
,
4694 .prepare_flr
= efx_ef10_prepare_flr
,
4695 .finish_flr
= efx_port_dummy_op_void
,
4696 .describe_stats
= efx_ef10_describe_stats
,
4697 .update_stats
= efx_ef10_update_stats_vf
,
4698 .start_stats
= efx_port_dummy_op_void
,
4699 .pull_stats
= efx_port_dummy_op_void
,
4700 .stop_stats
= efx_port_dummy_op_void
,
4701 .set_id_led
= efx_mcdi_set_id_led
,
4702 .push_irq_moderation
= efx_ef10_push_irq_moderation
,
4703 .reconfigure_mac
= efx_ef10_mac_reconfigure_vf
,
4704 .check_mac_fault
= efx_mcdi_mac_check_fault
,
4705 .reconfigure_port
= efx_mcdi_port_reconfigure
,
4706 .get_wol
= efx_ef10_get_wol_vf
,
4707 .set_wol
= efx_ef10_set_wol_vf
,
4708 .resume_wol
= efx_port_dummy_op_void
,
4709 .mcdi_request
= efx_ef10_mcdi_request
,
4710 .mcdi_poll_response
= efx_ef10_mcdi_poll_response
,
4711 .mcdi_read_response
= efx_ef10_mcdi_read_response
,
4712 .mcdi_poll_reboot
= efx_ef10_mcdi_poll_reboot
,
4713 .mcdi_reboot_detected
= efx_ef10_mcdi_reboot_detected
,
4714 .irq_enable_master
= efx_port_dummy_op_void
,
4715 .irq_test_generate
= efx_ef10_irq_test_generate
,
4716 .irq_disable_non_ev
= efx_port_dummy_op_void
,
4717 .irq_handle_msi
= efx_ef10_msi_interrupt
,
4718 .irq_handle_legacy
= efx_ef10_legacy_interrupt
,
4719 .tx_probe
= efx_ef10_tx_probe
,
4720 .tx_init
= efx_ef10_tx_init
,
4721 .tx_remove
= efx_ef10_tx_remove
,
4722 .tx_write
= efx_ef10_tx_write
,
4723 .rx_push_rss_config
= efx_ef10_vf_rx_push_rss_config
,
4724 .rx_probe
= efx_ef10_rx_probe
,
4725 .rx_init
= efx_ef10_rx_init
,
4726 .rx_remove
= efx_ef10_rx_remove
,
4727 .rx_write
= efx_ef10_rx_write
,
4728 .rx_defer_refill
= efx_ef10_rx_defer_refill
,
4729 .ev_probe
= efx_ef10_ev_probe
,
4730 .ev_init
= efx_ef10_ev_init
,
4731 .ev_fini
= efx_ef10_ev_fini
,
4732 .ev_remove
= efx_ef10_ev_remove
,
4733 .ev_process
= efx_ef10_ev_process
,
4734 .ev_read_ack
= efx_ef10_ev_read_ack
,
4735 .ev_test_generate
= efx_ef10_ev_test_generate
,
4736 .filter_table_probe
= efx_ef10_filter_table_probe
,
4737 .filter_table_restore
= efx_ef10_filter_table_restore
,
4738 .filter_table_remove
= efx_ef10_filter_table_remove
,
4739 .filter_update_rx_scatter
= efx_ef10_filter_update_rx_scatter
,
4740 .filter_insert
= efx_ef10_filter_insert
,
4741 .filter_remove_safe
= efx_ef10_filter_remove_safe
,
4742 .filter_get_safe
= efx_ef10_filter_get_safe
,
4743 .filter_clear_rx
= efx_ef10_filter_clear_rx
,
4744 .filter_count_rx_used
= efx_ef10_filter_count_rx_used
,
4745 .filter_get_rx_id_limit
= efx_ef10_filter_get_rx_id_limit
,
4746 .filter_get_rx_ids
= efx_ef10_filter_get_rx_ids
,
4747 #ifdef CONFIG_RFS_ACCEL
4748 .filter_rfs_insert
= efx_ef10_filter_rfs_insert
,
4749 .filter_rfs_expire_one
= efx_ef10_filter_rfs_expire_one
,
4751 #ifdef CONFIG_SFC_MTD
4752 .mtd_probe
= efx_port_dummy_op_int
,
4754 .ptp_write_host_time
= efx_ef10_ptp_write_host_time_vf
,
4755 .ptp_set_ts_config
= efx_ef10_ptp_set_ts_config_vf
,
4756 #ifdef CONFIG_SFC_SRIOV
4757 .vswitching_probe
= efx_ef10_vswitching_probe_vf
,
4758 .vswitching_restore
= efx_ef10_vswitching_restore_vf
,
4759 .vswitching_remove
= efx_ef10_vswitching_remove_vf
,
4760 .sriov_get_phys_port_id
= efx_ef10_sriov_get_phys_port_id
,
4762 .get_mac_address
= efx_ef10_get_mac_address_vf
,
4763 .set_mac_address
= efx_ef10_set_mac_address
,
4765 .revision
= EFX_REV_HUNT_A0
,
4766 .max_dma_mask
= DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH
),
4767 .rx_prefix_size
= ES_DZ_RX_PREFIX_SIZE
,
4768 .rx_hash_offset
= ES_DZ_RX_PREFIX_HASH_OFST
,
4769 .rx_ts_offset
= ES_DZ_RX_PREFIX_TSTAMP_OFST
,
4770 .can_rx_scatter
= true,
4771 .always_rx_scatter
= true,
4772 .max_interrupt_mode
= EFX_INT_MODE_MSIX
,
4773 .timer_period_max
= 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH
,
4774 .offload_features
= (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
4775 NETIF_F_RXHASH
| NETIF_F_NTUPLE
),
4777 .max_rx_ip_filters
= HUNT_FILTER_TBL_ROWS
,
4778 .hwtstamp_filters
= 1 << HWTSTAMP_FILTER_NONE
|
4779 1 << HWTSTAMP_FILTER_ALL
,
4782 const struct efx_nic_type efx_hunt_a0_nic_type
= {
4784 .mem_bar
= EFX_MEM_BAR
,
4785 .mem_map_size
= efx_ef10_mem_map_size
,
4786 .probe
= efx_ef10_probe_pf
,
4787 .remove
= efx_ef10_remove
,
4788 .dimension_resources
= efx_ef10_dimension_resources
,
4789 .init
= efx_ef10_init_nic
,
4790 .fini
= efx_port_dummy_op_void
,
4791 .map_reset_reason
= efx_ef10_map_reset_reason
,
4792 .map_reset_flags
= efx_ef10_map_reset_flags
,
4793 .reset
= efx_ef10_reset
,
4794 .probe_port
= efx_mcdi_port_probe
,
4795 .remove_port
= efx_mcdi_port_remove
,
4796 .fini_dmaq
= efx_ef10_fini_dmaq
,
4797 .prepare_flr
= efx_ef10_prepare_flr
,
4798 .finish_flr
= efx_port_dummy_op_void
,
4799 .describe_stats
= efx_ef10_describe_stats
,
4800 .update_stats
= efx_ef10_update_stats_pf
,
4801 .start_stats
= efx_mcdi_mac_start_stats
,
4802 .pull_stats
= efx_mcdi_mac_pull_stats
,
4803 .stop_stats
= efx_mcdi_mac_stop_stats
,
4804 .set_id_led
= efx_mcdi_set_id_led
,
4805 .push_irq_moderation
= efx_ef10_push_irq_moderation
,
4806 .reconfigure_mac
= efx_ef10_mac_reconfigure
,
4807 .check_mac_fault
= efx_mcdi_mac_check_fault
,
4808 .reconfigure_port
= efx_mcdi_port_reconfigure
,
4809 .get_wol
= efx_ef10_get_wol
,
4810 .set_wol
= efx_ef10_set_wol
,
4811 .resume_wol
= efx_port_dummy_op_void
,
4812 .test_chip
= efx_ef10_test_chip
,
4813 .test_nvram
= efx_mcdi_nvram_test_all
,
4814 .mcdi_request
= efx_ef10_mcdi_request
,
4815 .mcdi_poll_response
= efx_ef10_mcdi_poll_response
,
4816 .mcdi_read_response
= efx_ef10_mcdi_read_response
,
4817 .mcdi_poll_reboot
= efx_ef10_mcdi_poll_reboot
,
4818 .mcdi_reboot_detected
= efx_ef10_mcdi_reboot_detected
,
4819 .irq_enable_master
= efx_port_dummy_op_void
,
4820 .irq_test_generate
= efx_ef10_irq_test_generate
,
4821 .irq_disable_non_ev
= efx_port_dummy_op_void
,
4822 .irq_handle_msi
= efx_ef10_msi_interrupt
,
4823 .irq_handle_legacy
= efx_ef10_legacy_interrupt
,
4824 .tx_probe
= efx_ef10_tx_probe
,
4825 .tx_init
= efx_ef10_tx_init
,
4826 .tx_remove
= efx_ef10_tx_remove
,
4827 .tx_write
= efx_ef10_tx_write
,
4828 .rx_push_rss_config
= efx_ef10_pf_rx_push_rss_config
,
4829 .rx_probe
= efx_ef10_rx_probe
,
4830 .rx_init
= efx_ef10_rx_init
,
4831 .rx_remove
= efx_ef10_rx_remove
,
4832 .rx_write
= efx_ef10_rx_write
,
4833 .rx_defer_refill
= efx_ef10_rx_defer_refill
,
4834 .ev_probe
= efx_ef10_ev_probe
,
4835 .ev_init
= efx_ef10_ev_init
,
4836 .ev_fini
= efx_ef10_ev_fini
,
4837 .ev_remove
= efx_ef10_ev_remove
,
4838 .ev_process
= efx_ef10_ev_process
,
4839 .ev_read_ack
= efx_ef10_ev_read_ack
,
4840 .ev_test_generate
= efx_ef10_ev_test_generate
,
4841 .filter_table_probe
= efx_ef10_filter_table_probe
,
4842 .filter_table_restore
= efx_ef10_filter_table_restore
,
4843 .filter_table_remove
= efx_ef10_filter_table_remove
,
4844 .filter_update_rx_scatter
= efx_ef10_filter_update_rx_scatter
,
4845 .filter_insert
= efx_ef10_filter_insert
,
4846 .filter_remove_safe
= efx_ef10_filter_remove_safe
,
4847 .filter_get_safe
= efx_ef10_filter_get_safe
,
4848 .filter_clear_rx
= efx_ef10_filter_clear_rx
,
4849 .filter_count_rx_used
= efx_ef10_filter_count_rx_used
,
4850 .filter_get_rx_id_limit
= efx_ef10_filter_get_rx_id_limit
,
4851 .filter_get_rx_ids
= efx_ef10_filter_get_rx_ids
,
4852 #ifdef CONFIG_RFS_ACCEL
4853 .filter_rfs_insert
= efx_ef10_filter_rfs_insert
,
4854 .filter_rfs_expire_one
= efx_ef10_filter_rfs_expire_one
,
4856 #ifdef CONFIG_SFC_MTD
4857 .mtd_probe
= efx_ef10_mtd_probe
,
4858 .mtd_rename
= efx_mcdi_mtd_rename
,
4859 .mtd_read
= efx_mcdi_mtd_read
,
4860 .mtd_erase
= efx_mcdi_mtd_erase
,
4861 .mtd_write
= efx_mcdi_mtd_write
,
4862 .mtd_sync
= efx_mcdi_mtd_sync
,
4864 .ptp_write_host_time
= efx_ef10_ptp_write_host_time
,
4865 .ptp_set_ts_sync_events
= efx_ef10_ptp_set_ts_sync_events
,
4866 .ptp_set_ts_config
= efx_ef10_ptp_set_ts_config
,
4867 #ifdef CONFIG_SFC_SRIOV
4868 .sriov_configure
= efx_ef10_sriov_configure
,
4869 .sriov_init
= efx_ef10_sriov_init
,
4870 .sriov_fini
= efx_ef10_sriov_fini
,
4871 .sriov_wanted
= efx_ef10_sriov_wanted
,
4872 .sriov_reset
= efx_ef10_sriov_reset
,
4873 .sriov_flr
= efx_ef10_sriov_flr
,
4874 .sriov_set_vf_mac
= efx_ef10_sriov_set_vf_mac
,
4875 .sriov_set_vf_vlan
= efx_ef10_sriov_set_vf_vlan
,
4876 .sriov_set_vf_spoofchk
= efx_ef10_sriov_set_vf_spoofchk
,
4877 .sriov_get_vf_config
= efx_ef10_sriov_get_vf_config
,
4878 .sriov_set_vf_link_state
= efx_ef10_sriov_set_vf_link_state
,
4879 .vswitching_probe
= efx_ef10_vswitching_probe_pf
,
4880 .vswitching_restore
= efx_ef10_vswitching_restore_pf
,
4881 .vswitching_remove
= efx_ef10_vswitching_remove_pf
,
4883 .get_mac_address
= efx_ef10_get_mac_address_pf
,
4884 .set_mac_address
= efx_ef10_set_mac_address
,
4886 .revision
= EFX_REV_HUNT_A0
,
4887 .max_dma_mask
= DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH
),
4888 .rx_prefix_size
= ES_DZ_RX_PREFIX_SIZE
,
4889 .rx_hash_offset
= ES_DZ_RX_PREFIX_HASH_OFST
,
4890 .rx_ts_offset
= ES_DZ_RX_PREFIX_TSTAMP_OFST
,
4891 .can_rx_scatter
= true,
4892 .always_rx_scatter
= true,
4893 .max_interrupt_mode
= EFX_INT_MODE_MSIX
,
4894 .timer_period_max
= 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH
,
4895 .offload_features
= (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
4896 NETIF_F_RXHASH
| NETIF_F_NTUPLE
),
4898 .max_rx_ip_filters
= HUNT_FILTER_TBL_ROWS
,
4899 .hwtstamp_filters
= 1 << HWTSTAMP_FILTER_NONE
|
4900 1 << HWTSTAMP_FILTER_ALL
,