1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
23 #include "farch_regs.h"
26 #include "workarounds.h"
30 /* Hardware control for SFC4000 (aka Falcon). */
32 /**************************************************************************
36 **************************************************************************
39 #define FALCON_MAC_STATS_SIZE 0x100
41 #define XgRxOctets_offset 0x0
42 #define XgRxOctets_WIDTH 48
43 #define XgRxOctetsOK_offset 0x8
44 #define XgRxOctetsOK_WIDTH 48
45 #define XgRxPkts_offset 0x10
46 #define XgRxPkts_WIDTH 32
47 #define XgRxPktsOK_offset 0x14
48 #define XgRxPktsOK_WIDTH 32
49 #define XgRxBroadcastPkts_offset 0x18
50 #define XgRxBroadcastPkts_WIDTH 32
51 #define XgRxMulticastPkts_offset 0x1C
52 #define XgRxMulticastPkts_WIDTH 32
53 #define XgRxUnicastPkts_offset 0x20
54 #define XgRxUnicastPkts_WIDTH 32
55 #define XgRxUndersizePkts_offset 0x24
56 #define XgRxUndersizePkts_WIDTH 32
57 #define XgRxOversizePkts_offset 0x28
58 #define XgRxOversizePkts_WIDTH 32
59 #define XgRxJabberPkts_offset 0x2C
60 #define XgRxJabberPkts_WIDTH 32
61 #define XgRxUndersizeFCSerrorPkts_offset 0x30
62 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
63 #define XgRxDropEvents_offset 0x34
64 #define XgRxDropEvents_WIDTH 32
65 #define XgRxFCSerrorPkts_offset 0x38
66 #define XgRxFCSerrorPkts_WIDTH 32
67 #define XgRxAlignError_offset 0x3C
68 #define XgRxAlignError_WIDTH 32
69 #define XgRxSymbolError_offset 0x40
70 #define XgRxSymbolError_WIDTH 32
71 #define XgRxInternalMACError_offset 0x44
72 #define XgRxInternalMACError_WIDTH 32
73 #define XgRxControlPkts_offset 0x48
74 #define XgRxControlPkts_WIDTH 32
75 #define XgRxPausePkts_offset 0x4C
76 #define XgRxPausePkts_WIDTH 32
77 #define XgRxPkts64Octets_offset 0x50
78 #define XgRxPkts64Octets_WIDTH 32
79 #define XgRxPkts65to127Octets_offset 0x54
80 #define XgRxPkts65to127Octets_WIDTH 32
81 #define XgRxPkts128to255Octets_offset 0x58
82 #define XgRxPkts128to255Octets_WIDTH 32
83 #define XgRxPkts256to511Octets_offset 0x5C
84 #define XgRxPkts256to511Octets_WIDTH 32
85 #define XgRxPkts512to1023Octets_offset 0x60
86 #define XgRxPkts512to1023Octets_WIDTH 32
87 #define XgRxPkts1024to15xxOctets_offset 0x64
88 #define XgRxPkts1024to15xxOctets_WIDTH 32
89 #define XgRxPkts15xxtoMaxOctets_offset 0x68
90 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
91 #define XgRxLengthError_offset 0x6C
92 #define XgRxLengthError_WIDTH 32
93 #define XgTxPkts_offset 0x80
94 #define XgTxPkts_WIDTH 32
95 #define XgTxOctets_offset 0x88
96 #define XgTxOctets_WIDTH 48
97 #define XgTxMulticastPkts_offset 0x90
98 #define XgTxMulticastPkts_WIDTH 32
99 #define XgTxBroadcastPkts_offset 0x94
100 #define XgTxBroadcastPkts_WIDTH 32
101 #define XgTxUnicastPkts_offset 0x98
102 #define XgTxUnicastPkts_WIDTH 32
103 #define XgTxControlPkts_offset 0x9C
104 #define XgTxControlPkts_WIDTH 32
105 #define XgTxPausePkts_offset 0xA0
106 #define XgTxPausePkts_WIDTH 32
107 #define XgTxPkts64Octets_offset 0xA4
108 #define XgTxPkts64Octets_WIDTH 32
109 #define XgTxPkts65to127Octets_offset 0xA8
110 #define XgTxPkts65to127Octets_WIDTH 32
111 #define XgTxPkts128to255Octets_offset 0xAC
112 #define XgTxPkts128to255Octets_WIDTH 32
113 #define XgTxPkts256to511Octets_offset 0xB0
114 #define XgTxPkts256to511Octets_WIDTH 32
115 #define XgTxPkts512to1023Octets_offset 0xB4
116 #define XgTxPkts512to1023Octets_WIDTH 32
117 #define XgTxPkts1024to15xxOctets_offset 0xB8
118 #define XgTxPkts1024to15xxOctets_WIDTH 32
119 #define XgTxPkts1519toMaxOctets_offset 0xBC
120 #define XgTxPkts1519toMaxOctets_WIDTH 32
121 #define XgTxUndersizePkts_offset 0xC0
122 #define XgTxUndersizePkts_WIDTH 32
123 #define XgTxOversizePkts_offset 0xC4
124 #define XgTxOversizePkts_WIDTH 32
125 #define XgTxNonTcpUdpPkt_offset 0xC8
126 #define XgTxNonTcpUdpPkt_WIDTH 16
127 #define XgTxMacSrcErrPkt_offset 0xCC
128 #define XgTxMacSrcErrPkt_WIDTH 16
129 #define XgTxIpSrcErrPkt_offset 0xD0
130 #define XgTxIpSrcErrPkt_WIDTH 16
131 #define XgDmaDone_offset 0xD4
132 #define XgDmaDone_WIDTH 32
134 #define FALCON_XMAC_STATS_DMA_FLAG(efx) \
135 (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
137 #define FALCON_DMA_STAT(ext_name, hw_name) \
138 [FALCON_STAT_ ## ext_name] = \
140 /* 48-bit stats are zero-padded to 64 on DMA */ \
141 hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH, \
142 hw_name ## _ ## offset }
143 #define FALCON_OTHER_STAT(ext_name) \
144 [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
145 #define GENERIC_SW_STAT(ext_name) \
146 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
148 static const struct efx_hw_stat_desc falcon_stat_desc
[FALCON_STAT_COUNT
] = {
149 FALCON_DMA_STAT(tx_bytes
, XgTxOctets
),
150 FALCON_DMA_STAT(tx_packets
, XgTxPkts
),
151 FALCON_DMA_STAT(tx_pause
, XgTxPausePkts
),
152 FALCON_DMA_STAT(tx_control
, XgTxControlPkts
),
153 FALCON_DMA_STAT(tx_unicast
, XgTxUnicastPkts
),
154 FALCON_DMA_STAT(tx_multicast
, XgTxMulticastPkts
),
155 FALCON_DMA_STAT(tx_broadcast
, XgTxBroadcastPkts
),
156 FALCON_DMA_STAT(tx_lt64
, XgTxUndersizePkts
),
157 FALCON_DMA_STAT(tx_64
, XgTxPkts64Octets
),
158 FALCON_DMA_STAT(tx_65_to_127
, XgTxPkts65to127Octets
),
159 FALCON_DMA_STAT(tx_128_to_255
, XgTxPkts128to255Octets
),
160 FALCON_DMA_STAT(tx_256_to_511
, XgTxPkts256to511Octets
),
161 FALCON_DMA_STAT(tx_512_to_1023
, XgTxPkts512to1023Octets
),
162 FALCON_DMA_STAT(tx_1024_to_15xx
, XgTxPkts1024to15xxOctets
),
163 FALCON_DMA_STAT(tx_15xx_to_jumbo
, XgTxPkts1519toMaxOctets
),
164 FALCON_DMA_STAT(tx_gtjumbo
, XgTxOversizePkts
),
165 FALCON_DMA_STAT(tx_non_tcpudp
, XgTxNonTcpUdpPkt
),
166 FALCON_DMA_STAT(tx_mac_src_error
, XgTxMacSrcErrPkt
),
167 FALCON_DMA_STAT(tx_ip_src_error
, XgTxIpSrcErrPkt
),
168 FALCON_DMA_STAT(rx_bytes
, XgRxOctets
),
169 FALCON_DMA_STAT(rx_good_bytes
, XgRxOctetsOK
),
170 FALCON_OTHER_STAT(rx_bad_bytes
),
171 FALCON_DMA_STAT(rx_packets
, XgRxPkts
),
172 FALCON_DMA_STAT(rx_good
, XgRxPktsOK
),
173 FALCON_DMA_STAT(rx_bad
, XgRxFCSerrorPkts
),
174 FALCON_DMA_STAT(rx_pause
, XgRxPausePkts
),
175 FALCON_DMA_STAT(rx_control
, XgRxControlPkts
),
176 FALCON_DMA_STAT(rx_unicast
, XgRxUnicastPkts
),
177 FALCON_DMA_STAT(rx_multicast
, XgRxMulticastPkts
),
178 FALCON_DMA_STAT(rx_broadcast
, XgRxBroadcastPkts
),
179 FALCON_DMA_STAT(rx_lt64
, XgRxUndersizePkts
),
180 FALCON_DMA_STAT(rx_64
, XgRxPkts64Octets
),
181 FALCON_DMA_STAT(rx_65_to_127
, XgRxPkts65to127Octets
),
182 FALCON_DMA_STAT(rx_128_to_255
, XgRxPkts128to255Octets
),
183 FALCON_DMA_STAT(rx_256_to_511
, XgRxPkts256to511Octets
),
184 FALCON_DMA_STAT(rx_512_to_1023
, XgRxPkts512to1023Octets
),
185 FALCON_DMA_STAT(rx_1024_to_15xx
, XgRxPkts1024to15xxOctets
),
186 FALCON_DMA_STAT(rx_15xx_to_jumbo
, XgRxPkts15xxtoMaxOctets
),
187 FALCON_DMA_STAT(rx_gtjumbo
, XgRxOversizePkts
),
188 FALCON_DMA_STAT(rx_bad_lt64
, XgRxUndersizeFCSerrorPkts
),
189 FALCON_DMA_STAT(rx_bad_gtjumbo
, XgRxJabberPkts
),
190 FALCON_DMA_STAT(rx_overflow
, XgRxDropEvents
),
191 FALCON_DMA_STAT(rx_symbol_error
, XgRxSymbolError
),
192 FALCON_DMA_STAT(rx_align_error
, XgRxAlignError
),
193 FALCON_DMA_STAT(rx_length_error
, XgRxLengthError
),
194 FALCON_DMA_STAT(rx_internal_error
, XgRxInternalMACError
),
195 FALCON_OTHER_STAT(rx_nodesc_drop_cnt
),
196 GENERIC_SW_STAT(rx_nodesc_trunc
),
197 GENERIC_SW_STAT(rx_noskb_drops
),
199 static const unsigned long falcon_stat_mask
[] = {
200 [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT
) - 1] = ~0UL,
203 /**************************************************************************
205 * Basic SPI command set and bit definitions
207 *************************************************************************/
209 #define SPI_WRSR 0x01 /* Write status register */
210 #define SPI_WRITE 0x02 /* Write data to memory array */
211 #define SPI_READ 0x03 /* Read data from memory array */
212 #define SPI_WRDI 0x04 /* Reset write enable latch */
213 #define SPI_RDSR 0x05 /* Read status register */
214 #define SPI_WREN 0x06 /* Set write enable latch */
215 #define SPI_SST_EWSR 0x50 /* SST: Enable write to status register */
217 #define SPI_STATUS_WPEN 0x80 /* Write-protect pin enabled */
218 #define SPI_STATUS_BP2 0x10 /* Block protection bit 2 */
219 #define SPI_STATUS_BP1 0x08 /* Block protection bit 1 */
220 #define SPI_STATUS_BP0 0x04 /* Block protection bit 0 */
221 #define SPI_STATUS_WEN 0x02 /* State of the write enable latch */
222 #define SPI_STATUS_NRDY 0x01 /* Device busy flag */
224 /**************************************************************************
226 * Non-volatile memory layout
228 **************************************************************************
231 /* SFC4000 flash is partitioned into:
232 * 0-0x400 chip and board config (see struct falcon_nvconfig)
233 * 0x400-0x8000 unused (or may contain VPD if EEPROM not present)
234 * 0x8000-end boot code (mapped to PCI expansion ROM)
235 * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
236 * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
237 * 0-0x400 chip and board config
239 * 0x800-0x1800 boot config
240 * Aside from the chip and board config, all of these are optional and may
241 * be absent or truncated depending on the devices used.
243 #define FALCON_NVCONFIG_END 0x400U
244 #define FALCON_FLASH_BOOTCODE_START 0x8000U
245 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
246 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
248 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
249 struct falcon_nvconfig_board_v2
{
255 __le16 asic_sub_revision
;
256 __le16 board_revision
;
259 /* Board configuration v3 extra information */
260 struct falcon_nvconfig_board_v3
{
261 __le32 spi_device_type
[2];
264 /* Bit numbers for spi_device_type */
265 #define SPI_DEV_TYPE_SIZE_LBN 0
266 #define SPI_DEV_TYPE_SIZE_WIDTH 5
267 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
268 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
269 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
270 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
271 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
272 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
273 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
274 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
275 #define SPI_DEV_TYPE_FIELD(type, field) \
276 (((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
278 #define FALCON_NVCONFIG_OFFSET 0x300
280 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
281 struct falcon_nvconfig
{
282 efx_oword_t ee_vpd_cfg_reg
; /* 0x300 */
283 u8 mac_address
[2][8]; /* 0x310 */
284 efx_oword_t pcie_sd_ctl0123_reg
; /* 0x320 */
285 efx_oword_t pcie_sd_ctl45_reg
; /* 0x330 */
286 efx_oword_t pcie_pcs_ctl_stat_reg
; /* 0x340 */
287 efx_oword_t hw_init_reg
; /* 0x350 */
288 efx_oword_t nic_stat_reg
; /* 0x360 */
289 efx_oword_t glb_ctl_reg
; /* 0x370 */
290 efx_oword_t srm_cfg_reg
; /* 0x380 */
291 efx_oword_t spare_reg
; /* 0x390 */
292 __le16 board_magic_num
; /* 0x3A0 */
293 __le16 board_struct_ver
;
294 __le16 board_checksum
;
295 struct falcon_nvconfig_board_v2 board_v2
;
296 efx_oword_t ee_base_page_reg
; /* 0x3B0 */
297 struct falcon_nvconfig_board_v3 board_v3
; /* 0x3C0 */
300 /*************************************************************************/
302 static int falcon_reset_hw(struct efx_nic
*efx
, enum reset_type method
);
303 static void falcon_reconfigure_mac_wrapper(struct efx_nic
*efx
);
305 static const unsigned int
306 /* "Large" EEPROM device: Atmel AT25640 or similar
307 * 8 KB, 16-bit address, 32 B write block */
308 large_eeprom_type
= ((13 << SPI_DEV_TYPE_SIZE_LBN
)
309 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN
)
310 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN
)),
311 /* Default flash device: Atmel AT25F1024
312 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
313 default_flash_type
= ((17 << SPI_DEV_TYPE_SIZE_LBN
)
314 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN
)
315 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN
)
316 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN
)
317 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN
));
319 /**************************************************************************
321 * I2C bus - this is a bit-bashing interface using GPIO pins
322 * Note that it uses the output enables to tristate the outputs
323 * SDA is the data pin and SCL is the clock
325 **************************************************************************
327 static void falcon_setsda(void *data
, int state
)
329 struct efx_nic
*efx
= (struct efx_nic
*)data
;
332 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
333 EFX_SET_OWORD_FIELD(reg
, FRF_AB_GPIO3_OEN
, !state
);
334 efx_writeo(efx
, ®
, FR_AB_GPIO_CTL
);
337 static void falcon_setscl(void *data
, int state
)
339 struct efx_nic
*efx
= (struct efx_nic
*)data
;
342 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
343 EFX_SET_OWORD_FIELD(reg
, FRF_AB_GPIO0_OEN
, !state
);
344 efx_writeo(efx
, ®
, FR_AB_GPIO_CTL
);
347 static int falcon_getsda(void *data
)
349 struct efx_nic
*efx
= (struct efx_nic
*)data
;
352 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
353 return EFX_OWORD_FIELD(reg
, FRF_AB_GPIO3_IN
);
356 static int falcon_getscl(void *data
)
358 struct efx_nic
*efx
= (struct efx_nic
*)data
;
361 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
362 return EFX_OWORD_FIELD(reg
, FRF_AB_GPIO0_IN
);
365 static const struct i2c_algo_bit_data falcon_i2c_bit_operations
= {
366 .setsda
= falcon_setsda
,
367 .setscl
= falcon_setscl
,
368 .getsda
= falcon_getsda
,
369 .getscl
= falcon_getscl
,
371 /* Wait up to 50 ms for slave to let us pull SCL high */
372 .timeout
= DIV_ROUND_UP(HZ
, 20),
375 static void falcon_push_irq_moderation(struct efx_channel
*channel
)
377 efx_dword_t timer_cmd
;
378 struct efx_nic
*efx
= channel
->efx
;
380 /* Set timer register */
381 if (channel
->irq_moderation
) {
382 EFX_POPULATE_DWORD_2(timer_cmd
,
383 FRF_AB_TC_TIMER_MODE
,
384 FFE_BB_TIMER_MODE_INT_HLDOFF
,
386 channel
->irq_moderation
- 1);
388 EFX_POPULATE_DWORD_2(timer_cmd
,
389 FRF_AB_TC_TIMER_MODE
,
390 FFE_BB_TIMER_MODE_DIS
,
391 FRF_AB_TC_TIMER_VAL
, 0);
393 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER
!= FR_BZ_TIMER_COMMAND_P0
);
394 efx_writed_page_locked(efx
, &timer_cmd
, FR_BZ_TIMER_COMMAND_P0
,
398 static void falcon_deconfigure_mac_wrapper(struct efx_nic
*efx
);
400 static void falcon_prepare_flush(struct efx_nic
*efx
)
402 falcon_deconfigure_mac_wrapper(efx
);
404 /* Wait for the tx and rx fifo's to get to the next packet boundary
405 * (~1ms without back-pressure), then to drain the remainder of the
406 * fifo's at data path speeds (negligible), with a healthy margin. */
410 /* Acknowledge a legacy interrupt from Falcon
412 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
414 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
415 * BIU. Interrupt acknowledge is read sensitive so must write instead
416 * (then read to ensure the BIU collector is flushed)
418 * NB most hardware supports MSI interrupts
420 static inline void falcon_irq_ack_a1(struct efx_nic
*efx
)
424 EFX_POPULATE_DWORD_1(reg
, FRF_AA_INT_ACK_KER_FIELD
, 0xb7eb7e);
425 efx_writed(efx
, ®
, FR_AA_INT_ACK_KER
);
426 efx_readd(efx
, ®
, FR_AA_WORK_AROUND_BROKEN_PCI_READS
);
429 static irqreturn_t
falcon_legacy_interrupt_a1(int irq
, void *dev_id
)
431 struct efx_nic
*efx
= dev_id
;
432 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
436 /* Check to see if this is our interrupt. If it isn't, we
437 * exit without having touched the hardware.
439 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker
))) {
440 netif_vdbg(efx
, intr
, efx
->net_dev
,
441 "IRQ %d on CPU %d not for me\n", irq
,
442 raw_smp_processor_id());
445 efx
->last_irq_cpu
= raw_smp_processor_id();
446 netif_vdbg(efx
, intr
, efx
->net_dev
,
447 "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
448 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
450 if (!likely(ACCESS_ONCE(efx
->irq_soft_enabled
)))
453 /* Check to see if we have a serious error condition */
454 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
455 if (unlikely(syserr
))
456 return efx_farch_fatal_interrupt(efx
);
458 /* Determine interrupting queues, clear interrupt status
459 * register and acknowledge the device interrupt.
461 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH
> EFX_MAX_CHANNELS
);
462 queues
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_INT_Q
);
463 EFX_ZERO_OWORD(*int_ker
);
464 wmb(); /* Ensure the vector is cleared before interrupt ack */
465 falcon_irq_ack_a1(efx
);
468 efx_schedule_channel_irq(efx_get_channel(efx
, 0));
470 efx_schedule_channel_irq(efx_get_channel(efx
, 1));
474 /**************************************************************************
478 **************************************************************************
480 static int dummy_rx_push_rss_config(struct efx_nic
*efx
, bool user
,
481 const u32
*rx_indir_table
)
485 (void) rx_indir_table
;
489 static int falcon_b0_rx_push_rss_config(struct efx_nic
*efx
, bool user
,
490 const u32
*rx_indir_table
)
495 /* Set hash key for IPv4 */
496 memcpy(&temp
, efx
->rx_hash_key
, sizeof(temp
));
497 efx_writeo(efx
, &temp
, FR_BZ_RX_RSS_TKEY
);
499 memcpy(efx
->rx_indir_table
, rx_indir_table
,
500 sizeof(efx
->rx_indir_table
));
501 efx_farch_rx_push_indir_table(efx
);
505 /**************************************************************************
509 **************************************************************************
512 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
514 static int falcon_spi_poll(struct efx_nic
*efx
)
517 efx_reado(efx
, ®
, FR_AB_EE_SPI_HCMD
);
518 return EFX_OWORD_FIELD(reg
, FRF_AB_EE_SPI_HCMD_CMD_EN
) ? -EBUSY
: 0;
521 /* Wait for SPI command completion */
522 static int falcon_spi_wait(struct efx_nic
*efx
)
524 /* Most commands will finish quickly, so we start polling at
525 * very short intervals. Sometimes the command may have to
526 * wait for VPD or expansion ROM access outside of our
527 * control, so we allow up to 100 ms. */
528 unsigned long timeout
= jiffies
+ 1 + DIV_ROUND_UP(HZ
, 10);
531 for (i
= 0; i
< 10; i
++) {
532 if (!falcon_spi_poll(efx
))
538 if (!falcon_spi_poll(efx
))
540 if (time_after_eq(jiffies
, timeout
)) {
541 netif_err(efx
, hw
, efx
->net_dev
,
542 "timed out waiting for SPI\n");
545 schedule_timeout_uninterruptible(1);
550 falcon_spi_cmd(struct efx_nic
*efx
, const struct falcon_spi_device
*spi
,
551 unsigned int command
, int address
,
552 const void *in
, void *out
, size_t len
)
554 bool addressed
= (address
>= 0);
555 bool reading
= (out
!= NULL
);
559 /* Input validation */
560 if (len
> FALCON_SPI_MAX_LEN
)
563 /* Check that previous command is not still running */
564 rc
= falcon_spi_poll(efx
);
568 /* Program address register, if we have an address */
570 EFX_POPULATE_OWORD_1(reg
, FRF_AB_EE_SPI_HADR_ADR
, address
);
571 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HADR
);
574 /* Program data register, if we have data */
576 memcpy(®
, in
, len
);
577 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HDATA
);
580 /* Issue read/write command */
581 EFX_POPULATE_OWORD_7(reg
,
582 FRF_AB_EE_SPI_HCMD_CMD_EN
, 1,
583 FRF_AB_EE_SPI_HCMD_SF_SEL
, spi
->device_id
,
584 FRF_AB_EE_SPI_HCMD_DABCNT
, len
,
585 FRF_AB_EE_SPI_HCMD_READ
, reading
,
586 FRF_AB_EE_SPI_HCMD_DUBCNT
, 0,
587 FRF_AB_EE_SPI_HCMD_ADBCNT
,
588 (addressed
? spi
->addr_len
: 0),
589 FRF_AB_EE_SPI_HCMD_ENC
, command
);
590 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HCMD
);
592 /* Wait for read/write to complete */
593 rc
= falcon_spi_wait(efx
);
599 efx_reado(efx
, ®
, FR_AB_EE_SPI_HDATA
);
600 memcpy(out
, ®
, len
);
607 falcon_spi_munge_command(const struct falcon_spi_device
*spi
,
608 const u8 command
, const unsigned int address
)
610 return command
| (((address
>> 8) & spi
->munge_address
) << 3);
614 falcon_spi_read(struct efx_nic
*efx
, const struct falcon_spi_device
*spi
,
615 loff_t start
, size_t len
, size_t *retlen
, u8
*buffer
)
617 size_t block_len
, pos
= 0;
618 unsigned int command
;
622 block_len
= min(len
- pos
, FALCON_SPI_MAX_LEN
);
624 command
= falcon_spi_munge_command(spi
, SPI_READ
, start
+ pos
);
625 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
, NULL
,
626 buffer
+ pos
, block_len
);
631 /* Avoid locking up the system */
633 if (signal_pending(current
)) {
644 #ifdef CONFIG_SFC_MTD
646 struct falcon_mtd_partition
{
647 struct efx_mtd_partition common
;
648 const struct falcon_spi_device
*spi
;
652 #define to_falcon_mtd_partition(mtd) \
653 container_of(mtd, struct falcon_mtd_partition, common.mtd)
656 falcon_spi_write_limit(const struct falcon_spi_device
*spi
, size_t start
)
658 return min(FALCON_SPI_MAX_LEN
,
659 (spi
->block_size
- (start
& (spi
->block_size
- 1))));
662 /* Wait up to 10 ms for buffered write completion */
664 falcon_spi_wait_write(struct efx_nic
*efx
, const struct falcon_spi_device
*spi
)
666 unsigned long timeout
= jiffies
+ 1 + DIV_ROUND_UP(HZ
, 100);
671 rc
= falcon_spi_cmd(efx
, spi
, SPI_RDSR
, -1, NULL
,
672 &status
, sizeof(status
));
675 if (!(status
& SPI_STATUS_NRDY
))
677 if (time_after_eq(jiffies
, timeout
)) {
678 netif_err(efx
, hw
, efx
->net_dev
,
679 "SPI write timeout on device %d"
680 " last status=0x%02x\n",
681 spi
->device_id
, status
);
684 schedule_timeout_uninterruptible(1);
689 falcon_spi_write(struct efx_nic
*efx
, const struct falcon_spi_device
*spi
,
690 loff_t start
, size_t len
, size_t *retlen
, const u8
*buffer
)
692 u8 verify_buffer
[FALCON_SPI_MAX_LEN
];
693 size_t block_len
, pos
= 0;
694 unsigned int command
;
698 rc
= falcon_spi_cmd(efx
, spi
, SPI_WREN
, -1, NULL
, NULL
, 0);
702 block_len
= min(len
- pos
,
703 falcon_spi_write_limit(spi
, start
+ pos
));
704 command
= falcon_spi_munge_command(spi
, SPI_WRITE
, start
+ pos
);
705 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
,
706 buffer
+ pos
, NULL
, block_len
);
710 rc
= falcon_spi_wait_write(efx
, spi
);
714 command
= falcon_spi_munge_command(spi
, SPI_READ
, start
+ pos
);
715 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
,
716 NULL
, verify_buffer
, block_len
);
717 if (memcmp(verify_buffer
, buffer
+ pos
, block_len
)) {
724 /* Avoid locking up the system */
726 if (signal_pending(current
)) {
738 falcon_spi_slow_wait(struct falcon_mtd_partition
*part
, bool uninterruptible
)
740 const struct falcon_spi_device
*spi
= part
->spi
;
741 struct efx_nic
*efx
= part
->common
.mtd
.priv
;
745 /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
746 for (i
= 0; i
< 40; i
++) {
747 __set_current_state(uninterruptible
?
748 TASK_UNINTERRUPTIBLE
: TASK_INTERRUPTIBLE
);
749 schedule_timeout(HZ
/ 10);
750 rc
= falcon_spi_cmd(efx
, spi
, SPI_RDSR
, -1, NULL
,
751 &status
, sizeof(status
));
754 if (!(status
& SPI_STATUS_NRDY
))
756 if (signal_pending(current
))
759 pr_err("%s: timed out waiting for %s\n",
760 part
->common
.name
, part
->common
.dev_type_name
);
765 falcon_spi_unlock(struct efx_nic
*efx
, const struct falcon_spi_device
*spi
)
767 const u8 unlock_mask
= (SPI_STATUS_BP2
| SPI_STATUS_BP1
|
772 rc
= falcon_spi_cmd(efx
, spi
, SPI_RDSR
, -1, NULL
,
773 &status
, sizeof(status
));
777 if (!(status
& unlock_mask
))
778 return 0; /* already unlocked */
780 rc
= falcon_spi_cmd(efx
, spi
, SPI_WREN
, -1, NULL
, NULL
, 0);
783 rc
= falcon_spi_cmd(efx
, spi
, SPI_SST_EWSR
, -1, NULL
, NULL
, 0);
787 status
&= ~unlock_mask
;
788 rc
= falcon_spi_cmd(efx
, spi
, SPI_WRSR
, -1, &status
,
789 NULL
, sizeof(status
));
792 rc
= falcon_spi_wait_write(efx
, spi
);
799 #define FALCON_SPI_VERIFY_BUF_LEN 16
802 falcon_spi_erase(struct falcon_mtd_partition
*part
, loff_t start
, size_t len
)
804 const struct falcon_spi_device
*spi
= part
->spi
;
805 struct efx_nic
*efx
= part
->common
.mtd
.priv
;
806 unsigned pos
, block_len
;
807 u8 empty
[FALCON_SPI_VERIFY_BUF_LEN
];
808 u8 buffer
[FALCON_SPI_VERIFY_BUF_LEN
];
811 if (len
!= spi
->erase_size
)
814 if (spi
->erase_command
== 0)
817 rc
= falcon_spi_unlock(efx
, spi
);
820 rc
= falcon_spi_cmd(efx
, spi
, SPI_WREN
, -1, NULL
, NULL
, 0);
823 rc
= falcon_spi_cmd(efx
, spi
, spi
->erase_command
, start
, NULL
,
827 rc
= falcon_spi_slow_wait(part
, false);
829 /* Verify the entire region has been wiped */
830 memset(empty
, 0xff, sizeof(empty
));
831 for (pos
= 0; pos
< len
; pos
+= block_len
) {
832 block_len
= min(len
- pos
, sizeof(buffer
));
833 rc
= falcon_spi_read(efx
, spi
, start
+ pos
, block_len
,
837 if (memcmp(empty
, buffer
, block_len
))
840 /* Avoid locking up the system */
842 if (signal_pending(current
))
849 static void falcon_mtd_rename(struct efx_mtd_partition
*part
)
851 struct efx_nic
*efx
= part
->mtd
.priv
;
853 snprintf(part
->name
, sizeof(part
->name
), "%s %s",
854 efx
->name
, part
->type_name
);
857 static int falcon_mtd_read(struct mtd_info
*mtd
, loff_t start
,
858 size_t len
, size_t *retlen
, u8
*buffer
)
860 struct falcon_mtd_partition
*part
= to_falcon_mtd_partition(mtd
);
861 struct efx_nic
*efx
= mtd
->priv
;
862 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
865 rc
= mutex_lock_interruptible(&nic_data
->spi_lock
);
868 rc
= falcon_spi_read(efx
, part
->spi
, part
->offset
+ start
,
869 len
, retlen
, buffer
);
870 mutex_unlock(&nic_data
->spi_lock
);
874 static int falcon_mtd_erase(struct mtd_info
*mtd
, loff_t start
, size_t len
)
876 struct falcon_mtd_partition
*part
= to_falcon_mtd_partition(mtd
);
877 struct efx_nic
*efx
= mtd
->priv
;
878 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
881 rc
= mutex_lock_interruptible(&nic_data
->spi_lock
);
884 rc
= falcon_spi_erase(part
, part
->offset
+ start
, len
);
885 mutex_unlock(&nic_data
->spi_lock
);
889 static int falcon_mtd_write(struct mtd_info
*mtd
, loff_t start
,
890 size_t len
, size_t *retlen
, const u8
*buffer
)
892 struct falcon_mtd_partition
*part
= to_falcon_mtd_partition(mtd
);
893 struct efx_nic
*efx
= mtd
->priv
;
894 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
897 rc
= mutex_lock_interruptible(&nic_data
->spi_lock
);
900 rc
= falcon_spi_write(efx
, part
->spi
, part
->offset
+ start
,
901 len
, retlen
, buffer
);
902 mutex_unlock(&nic_data
->spi_lock
);
906 static int falcon_mtd_sync(struct mtd_info
*mtd
)
908 struct falcon_mtd_partition
*part
= to_falcon_mtd_partition(mtd
);
909 struct efx_nic
*efx
= mtd
->priv
;
910 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
913 mutex_lock(&nic_data
->spi_lock
);
914 rc
= falcon_spi_slow_wait(part
, true);
915 mutex_unlock(&nic_data
->spi_lock
);
919 static int falcon_mtd_probe(struct efx_nic
*efx
)
921 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
922 struct falcon_mtd_partition
*parts
;
923 struct falcon_spi_device
*spi
;
929 /* Allocate space for maximum number of partitions */
930 parts
= kcalloc(2, sizeof(*parts
), GFP_KERNEL
);
935 spi
= &nic_data
->spi_flash
;
936 if (falcon_spi_present(spi
) && spi
->size
> FALCON_FLASH_BOOTCODE_START
) {
937 parts
[n_parts
].spi
= spi
;
938 parts
[n_parts
].offset
= FALCON_FLASH_BOOTCODE_START
;
939 parts
[n_parts
].common
.dev_type_name
= "flash";
940 parts
[n_parts
].common
.type_name
= "sfc_flash_bootrom";
941 parts
[n_parts
].common
.mtd
.type
= MTD_NORFLASH
;
942 parts
[n_parts
].common
.mtd
.flags
= MTD_CAP_NORFLASH
;
943 parts
[n_parts
].common
.mtd
.size
= spi
->size
- FALCON_FLASH_BOOTCODE_START
;
944 parts
[n_parts
].common
.mtd
.erasesize
= spi
->erase_size
;
948 spi
= &nic_data
->spi_eeprom
;
949 if (falcon_spi_present(spi
) && spi
->size
> FALCON_EEPROM_BOOTCONFIG_START
) {
950 parts
[n_parts
].spi
= spi
;
951 parts
[n_parts
].offset
= FALCON_EEPROM_BOOTCONFIG_START
;
952 parts
[n_parts
].common
.dev_type_name
= "EEPROM";
953 parts
[n_parts
].common
.type_name
= "sfc_bootconfig";
954 parts
[n_parts
].common
.mtd
.type
= MTD_RAM
;
955 parts
[n_parts
].common
.mtd
.flags
= MTD_CAP_RAM
;
956 parts
[n_parts
].common
.mtd
.size
=
957 min(spi
->size
, FALCON_EEPROM_BOOTCONFIG_END
) -
958 FALCON_EEPROM_BOOTCONFIG_START
;
959 parts
[n_parts
].common
.mtd
.erasesize
= spi
->erase_size
;
963 rc
= efx_mtd_add(efx
, &parts
[0].common
, n_parts
, sizeof(*parts
));
969 #endif /* CONFIG_SFC_MTD */
971 /**************************************************************************
975 **************************************************************************
978 /* Configure the XAUI driver that is an output from Falcon */
979 static void falcon_setup_xaui(struct efx_nic
*efx
)
981 efx_oword_t sdctl
, txdrv
;
983 /* Move the XAUI into low power, unless there is no PHY, in
984 * which case the XAUI will have to drive a cable. */
985 if (efx
->phy_type
== PHY_TYPE_NONE
)
988 efx_reado(efx
, &sdctl
, FR_AB_XX_SD_CTL
);
989 EFX_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_HIDRVD
, FFE_AB_XX_SD_CTL_DRV_DEF
);
990 EFX_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_LODRVD
, FFE_AB_XX_SD_CTL_DRV_DEF
);
991 EFX_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_HIDRVC
, FFE_AB_XX_SD_CTL_DRV_DEF
);
992 EFX_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_LODRVC
, FFE_AB_XX_SD_CTL_DRV_DEF
);
993 EFX_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_HIDRVB
, FFE_AB_XX_SD_CTL_DRV_DEF
);
994 EFX_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_LODRVB
, FFE_AB_XX_SD_CTL_DRV_DEF
);
995 EFX_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_HIDRVA
, FFE_AB_XX_SD_CTL_DRV_DEF
);
996 EFX_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_LODRVA
, FFE_AB_XX_SD_CTL_DRV_DEF
);
997 efx_writeo(efx
, &sdctl
, FR_AB_XX_SD_CTL
);
999 EFX_POPULATE_OWORD_8(txdrv
,
1000 FRF_AB_XX_DEQD
, FFE_AB_XX_TXDRV_DEQ_DEF
,
1001 FRF_AB_XX_DEQC
, FFE_AB_XX_TXDRV_DEQ_DEF
,
1002 FRF_AB_XX_DEQB
, FFE_AB_XX_TXDRV_DEQ_DEF
,
1003 FRF_AB_XX_DEQA
, FFE_AB_XX_TXDRV_DEQ_DEF
,
1004 FRF_AB_XX_DTXD
, FFE_AB_XX_TXDRV_DTX_DEF
,
1005 FRF_AB_XX_DTXC
, FFE_AB_XX_TXDRV_DTX_DEF
,
1006 FRF_AB_XX_DTXB
, FFE_AB_XX_TXDRV_DTX_DEF
,
1007 FRF_AB_XX_DTXA
, FFE_AB_XX_TXDRV_DTX_DEF
);
1008 efx_writeo(efx
, &txdrv
, FR_AB_XX_TXDRV_CTL
);
1011 int falcon_reset_xaui(struct efx_nic
*efx
)
1013 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1017 /* Don't fetch MAC statistics over an XMAC reset */
1018 WARN_ON(nic_data
->stats_disable_count
== 0);
1020 /* Start reset sequence */
1021 EFX_POPULATE_OWORD_1(reg
, FRF_AB_XX_RST_XX_EN
, 1);
1022 efx_writeo(efx
, ®
, FR_AB_XX_PWR_RST
);
1024 /* Wait up to 10 ms for completion, then reinitialise */
1025 for (count
= 0; count
< 1000; count
++) {
1026 efx_reado(efx
, ®
, FR_AB_XX_PWR_RST
);
1027 if (EFX_OWORD_FIELD(reg
, FRF_AB_XX_RST_XX_EN
) == 0 &&
1028 EFX_OWORD_FIELD(reg
, FRF_AB_XX_SD_RST_ACT
) == 0) {
1029 falcon_setup_xaui(efx
);
1034 netif_err(efx
, hw
, efx
->net_dev
,
1035 "timed out waiting for XAUI/XGXS reset\n");
1039 static void falcon_ack_status_intr(struct efx_nic
*efx
)
1041 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1044 if ((efx_nic_rev(efx
) != EFX_REV_FALCON_B0
) || LOOPBACK_INTERNAL(efx
))
1047 /* We expect xgmii faults if the wireside link is down */
1048 if (!efx
->link_state
.up
)
1051 /* We can only use this interrupt to signal the negative edge of
1052 * xaui_align [we have to poll the positive edge]. */
1053 if (nic_data
->xmac_poll_required
)
1056 efx_reado(efx
, ®
, FR_AB_XM_MGT_INT_MSK
);
1059 static bool falcon_xgxs_link_ok(struct efx_nic
*efx
)
1062 bool align_done
, link_ok
= false;
1065 /* Read link status */
1066 efx_reado(efx
, ®
, FR_AB_XX_CORE_STAT
);
1068 align_done
= EFX_OWORD_FIELD(reg
, FRF_AB_XX_ALIGN_DONE
);
1069 sync_status
= EFX_OWORD_FIELD(reg
, FRF_AB_XX_SYNC_STAT
);
1070 if (align_done
&& (sync_status
== FFE_AB_XX_STAT_ALL_LANES
))
1073 /* Clear link status ready for next read */
1074 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_COMMA_DET
, FFE_AB_XX_STAT_ALL_LANES
);
1075 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_CHAR_ERR
, FFE_AB_XX_STAT_ALL_LANES
);
1076 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_DISPERR
, FFE_AB_XX_STAT_ALL_LANES
);
1077 efx_writeo(efx
, ®
, FR_AB_XX_CORE_STAT
);
1082 static bool falcon_xmac_link_ok(struct efx_nic
*efx
)
1085 * Check MAC's XGXS link status except when using XGMII loopback
1086 * which bypasses the XGXS block.
1087 * If possible, check PHY's XGXS link status except when using
1090 return (efx
->loopback_mode
== LOOPBACK_XGMII
||
1091 falcon_xgxs_link_ok(efx
)) &&
1092 (!(efx
->mdio
.mmds
& (1 << MDIO_MMD_PHYXS
)) ||
1093 LOOPBACK_INTERNAL(efx
) ||
1094 efx_mdio_phyxgxs_lane_sync(efx
));
1097 static void falcon_reconfigure_xmac_core(struct efx_nic
*efx
)
1099 unsigned int max_frame_len
;
1101 bool rx_fc
= !!(efx
->link_state
.fc
& EFX_FC_RX
);
1102 bool tx_fc
= !!(efx
->link_state
.fc
& EFX_FC_TX
);
1104 /* Configure MAC - cut-thru mode is hard wired on */
1105 EFX_POPULATE_OWORD_3(reg
,
1106 FRF_AB_XM_RX_JUMBO_MODE
, 1,
1107 FRF_AB_XM_TX_STAT_EN
, 1,
1108 FRF_AB_XM_RX_STAT_EN
, 1);
1109 efx_writeo(efx
, ®
, FR_AB_XM_GLB_CFG
);
1112 EFX_POPULATE_OWORD_6(reg
,
1114 FRF_AB_XM_TX_PRMBL
, 1,
1115 FRF_AB_XM_AUTO_PAD
, 1,
1117 FRF_AB_XM_FCNTL
, tx_fc
,
1118 FRF_AB_XM_IPG
, 0x3);
1119 efx_writeo(efx
, ®
, FR_AB_XM_TX_CFG
);
1122 EFX_POPULATE_OWORD_5(reg
,
1124 FRF_AB_XM_AUTO_DEPAD
, 0,
1125 FRF_AB_XM_ACPT_ALL_MCAST
, 1,
1126 FRF_AB_XM_ACPT_ALL_UCAST
, !efx
->unicast_filter
,
1127 FRF_AB_XM_PASS_CRC_ERR
, 1);
1128 efx_writeo(efx
, ®
, FR_AB_XM_RX_CFG
);
1130 /* Set frame length */
1131 max_frame_len
= EFX_MAX_FRAME_LEN(efx
->net_dev
->mtu
);
1132 EFX_POPULATE_OWORD_1(reg
, FRF_AB_XM_MAX_RX_FRM_SIZE
, max_frame_len
);
1133 efx_writeo(efx
, ®
, FR_AB_XM_RX_PARAM
);
1134 EFX_POPULATE_OWORD_2(reg
,
1135 FRF_AB_XM_MAX_TX_FRM_SIZE
, max_frame_len
,
1136 FRF_AB_XM_TX_JUMBO_MODE
, 1);
1137 efx_writeo(efx
, ®
, FR_AB_XM_TX_PARAM
);
1139 EFX_POPULATE_OWORD_2(reg
,
1140 FRF_AB_XM_PAUSE_TIME
, 0xfffe, /* MAX PAUSE TIME */
1141 FRF_AB_XM_DIS_FCNTL
, !rx_fc
);
1142 efx_writeo(efx
, ®
, FR_AB_XM_FC
);
1144 /* Set MAC address */
1145 memcpy(®
, &efx
->net_dev
->dev_addr
[0], 4);
1146 efx_writeo(efx
, ®
, FR_AB_XM_ADR_LO
);
1147 memcpy(®
, &efx
->net_dev
->dev_addr
[4], 2);
1148 efx_writeo(efx
, ®
, FR_AB_XM_ADR_HI
);
1151 static void falcon_reconfigure_xgxs_core(struct efx_nic
*efx
)
1154 bool xgxs_loopback
= (efx
->loopback_mode
== LOOPBACK_XGXS
);
1155 bool xaui_loopback
= (efx
->loopback_mode
== LOOPBACK_XAUI
);
1156 bool xgmii_loopback
= (efx
->loopback_mode
== LOOPBACK_XGMII
);
1157 bool old_xgmii_loopback
, old_xgxs_loopback
, old_xaui_loopback
;
1159 /* XGXS block is flaky and will need to be reset if moving
1160 * into our out of XGMII, XGXS or XAUI loopbacks. */
1161 efx_reado(efx
, ®
, FR_AB_XX_CORE_STAT
);
1162 old_xgxs_loopback
= EFX_OWORD_FIELD(reg
, FRF_AB_XX_XGXS_LB_EN
);
1163 old_xgmii_loopback
= EFX_OWORD_FIELD(reg
, FRF_AB_XX_XGMII_LB_EN
);
1165 efx_reado(efx
, ®
, FR_AB_XX_SD_CTL
);
1166 old_xaui_loopback
= EFX_OWORD_FIELD(reg
, FRF_AB_XX_LPBKA
);
1168 /* The PHY driver may have turned XAUI off */
1169 if ((xgxs_loopback
!= old_xgxs_loopback
) ||
1170 (xaui_loopback
!= old_xaui_loopback
) ||
1171 (xgmii_loopback
!= old_xgmii_loopback
))
1172 falcon_reset_xaui(efx
);
1174 efx_reado(efx
, ®
, FR_AB_XX_CORE_STAT
);
1175 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_FORCE_SIG
,
1176 (xgxs_loopback
|| xaui_loopback
) ?
1177 FFE_AB_XX_FORCE_SIG_ALL_LANES
: 0);
1178 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_XGXS_LB_EN
, xgxs_loopback
);
1179 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_XGMII_LB_EN
, xgmii_loopback
);
1180 efx_writeo(efx
, ®
, FR_AB_XX_CORE_STAT
);
1182 efx_reado(efx
, ®
, FR_AB_XX_SD_CTL
);
1183 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_LPBKD
, xaui_loopback
);
1184 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_LPBKC
, xaui_loopback
);
1185 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_LPBKB
, xaui_loopback
);
1186 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_LPBKA
, xaui_loopback
);
1187 efx_writeo(efx
, ®
, FR_AB_XX_SD_CTL
);
1191 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1192 static bool falcon_xmac_link_ok_retry(struct efx_nic
*efx
, int tries
)
1194 bool mac_up
= falcon_xmac_link_ok(efx
);
1196 if (LOOPBACK_MASK(efx
) & LOOPBACKS_EXTERNAL(efx
) & LOOPBACKS_WS
||
1197 efx_phy_mode_disabled(efx
->phy_mode
))
1198 /* XAUI link is expected to be down */
1201 falcon_stop_nic_stats(efx
);
1203 while (!mac_up
&& tries
) {
1204 netif_dbg(efx
, hw
, efx
->net_dev
, "bashing xaui\n");
1205 falcon_reset_xaui(efx
);
1208 mac_up
= falcon_xmac_link_ok(efx
);
1212 falcon_start_nic_stats(efx
);
1217 static bool falcon_xmac_check_fault(struct efx_nic
*efx
)
1219 return !falcon_xmac_link_ok_retry(efx
, 5);
1222 static int falcon_reconfigure_xmac(struct efx_nic
*efx
)
1224 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1226 efx_farch_filter_sync_rx_mode(efx
);
1228 falcon_reconfigure_xgxs_core(efx
);
1229 falcon_reconfigure_xmac_core(efx
);
1231 falcon_reconfigure_mac_wrapper(efx
);
1233 nic_data
->xmac_poll_required
= !falcon_xmac_link_ok_retry(efx
, 5);
1234 falcon_ack_status_intr(efx
);
1239 static void falcon_poll_xmac(struct efx_nic
*efx
)
1241 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1243 /* We expect xgmii faults if the wireside link is down */
1244 if (!efx
->link_state
.up
|| !nic_data
->xmac_poll_required
)
1247 nic_data
->xmac_poll_required
= !falcon_xmac_link_ok_retry(efx
, 1);
1248 falcon_ack_status_intr(efx
);
1251 /**************************************************************************
1255 **************************************************************************
1258 static void falcon_push_multicast_hash(struct efx_nic
*efx
)
1260 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
1262 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
1264 efx_writeo(efx
, &mc_hash
->oword
[0], FR_AB_MAC_MC_HASH_REG0
);
1265 efx_writeo(efx
, &mc_hash
->oword
[1], FR_AB_MAC_MC_HASH_REG1
);
1268 static void falcon_reset_macs(struct efx_nic
*efx
)
1270 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1271 efx_oword_t reg
, mac_ctrl
;
1274 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) {
1275 /* It's not safe to use GLB_CTL_REG to reset the
1276 * macs, so instead use the internal MAC resets
1278 EFX_POPULATE_OWORD_1(reg
, FRF_AB_XM_CORE_RST
, 1);
1279 efx_writeo(efx
, ®
, FR_AB_XM_GLB_CFG
);
1281 for (count
= 0; count
< 10000; count
++) {
1282 efx_reado(efx
, ®
, FR_AB_XM_GLB_CFG
);
1283 if (EFX_OWORD_FIELD(reg
, FRF_AB_XM_CORE_RST
) ==
1289 netif_err(efx
, hw
, efx
->net_dev
,
1290 "timed out waiting for XMAC core reset\n");
1293 /* Mac stats will fail whist the TX fifo is draining */
1294 WARN_ON(nic_data
->stats_disable_count
== 0);
1296 efx_reado(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
1297 EFX_SET_OWORD_FIELD(mac_ctrl
, FRF_BB_TXFIFO_DRAIN_EN
, 1);
1298 efx_writeo(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
1300 efx_reado(efx
, ®
, FR_AB_GLB_CTL
);
1301 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_XGTX
, 1);
1302 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_XGRX
, 1);
1303 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_EM
, 1);
1304 efx_writeo(efx
, ®
, FR_AB_GLB_CTL
);
1308 efx_reado(efx
, ®
, FR_AB_GLB_CTL
);
1309 if (!EFX_OWORD_FIELD(reg
, FRF_AB_RST_XGTX
) &&
1310 !EFX_OWORD_FIELD(reg
, FRF_AB_RST_XGRX
) &&
1311 !EFX_OWORD_FIELD(reg
, FRF_AB_RST_EM
)) {
1312 netif_dbg(efx
, hw
, efx
->net_dev
,
1313 "Completed MAC reset after %d loops\n",
1318 netif_err(efx
, hw
, efx
->net_dev
, "MAC reset failed\n");
1325 /* Ensure the correct MAC is selected before statistics
1326 * are re-enabled by the caller */
1327 efx_writeo(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
1329 falcon_setup_xaui(efx
);
1332 static void falcon_drain_tx_fifo(struct efx_nic
*efx
)
1336 if ((efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) ||
1337 (efx
->loopback_mode
!= LOOPBACK_NONE
))
1340 efx_reado(efx
, ®
, FR_AB_MAC_CTRL
);
1341 /* There is no point in draining more than once */
1342 if (EFX_OWORD_FIELD(reg
, FRF_BB_TXFIFO_DRAIN_EN
))
1345 falcon_reset_macs(efx
);
1348 static void falcon_deconfigure_mac_wrapper(struct efx_nic
*efx
)
1352 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
)
1355 /* Isolate the MAC -> RX */
1356 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
1357 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 0);
1358 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
1360 /* Isolate TX -> MAC */
1361 falcon_drain_tx_fifo(efx
);
1364 static void falcon_reconfigure_mac_wrapper(struct efx_nic
*efx
)
1366 struct efx_link_state
*link_state
= &efx
->link_state
;
1368 int link_speed
, isolate
;
1370 isolate
= !!ACCESS_ONCE(efx
->reset_pending
);
1372 switch (link_state
->speed
) {
1373 case 10000: link_speed
= 3; break;
1374 case 1000: link_speed
= 2; break;
1375 case 100: link_speed
= 1; break;
1376 default: link_speed
= 0; break;
1379 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1380 * as advertised. Disable to ensure packets are not
1381 * indefinitely held and TX queue can be flushed at any point
1382 * while the link is down. */
1383 EFX_POPULATE_OWORD_5(reg
,
1384 FRF_AB_MAC_XOFF_VAL
, 0xffff /* max pause time */,
1385 FRF_AB_MAC_BCAD_ACPT
, 1,
1386 FRF_AB_MAC_UC_PROM
, !efx
->unicast_filter
,
1387 FRF_AB_MAC_LINK_STATUS
, 1, /* always set */
1388 FRF_AB_MAC_SPEED
, link_speed
);
1389 /* On B0, MAC backpressure can be disabled and packets get
1391 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
1392 EFX_SET_OWORD_FIELD(reg
, FRF_BB_TXFIFO_DRAIN_EN
,
1393 !link_state
->up
|| isolate
);
1396 efx_writeo(efx
, ®
, FR_AB_MAC_CTRL
);
1398 /* Restore the multicast hash registers. */
1399 falcon_push_multicast_hash(efx
);
1401 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
1402 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1403 * initialisation but it may read back as 0) */
1404 EFX_SET_OWORD_FIELD(reg
, FRF_AZ_RX_XOFF_MAC_EN
, 1);
1405 /* Unisolate the MAC -> RX */
1406 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1407 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, !isolate
);
1408 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
1411 static void falcon_stats_request(struct efx_nic
*efx
)
1413 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1416 WARN_ON(nic_data
->stats_pending
);
1417 WARN_ON(nic_data
->stats_disable_count
);
1419 FALCON_XMAC_STATS_DMA_FLAG(efx
) = 0;
1420 nic_data
->stats_pending
= true;
1421 wmb(); /* ensure done flag is clear */
1423 /* Initiate DMA transfer of stats */
1424 EFX_POPULATE_OWORD_2(reg
,
1425 FRF_AB_MAC_STAT_DMA_CMD
, 1,
1426 FRF_AB_MAC_STAT_DMA_ADR
,
1427 efx
->stats_buffer
.dma_addr
);
1428 efx_writeo(efx
, ®
, FR_AB_MAC_STAT_DMA
);
1430 mod_timer(&nic_data
->stats_timer
, round_jiffies_up(jiffies
+ HZ
/ 2));
1433 static void falcon_stats_complete(struct efx_nic
*efx
)
1435 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1437 if (!nic_data
->stats_pending
)
1440 nic_data
->stats_pending
= false;
1441 if (FALCON_XMAC_STATS_DMA_FLAG(efx
)) {
1442 rmb(); /* read the done flag before the stats */
1443 efx_nic_update_stats(falcon_stat_desc
, FALCON_STAT_COUNT
,
1444 falcon_stat_mask
, nic_data
->stats
,
1445 efx
->stats_buffer
.addr
, true);
1447 netif_err(efx
, hw
, efx
->net_dev
,
1448 "timed out waiting for statistics\n");
1452 static void falcon_stats_timer_func(unsigned long context
)
1454 struct efx_nic
*efx
= (struct efx_nic
*)context
;
1455 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1457 spin_lock(&efx
->stats_lock
);
1459 falcon_stats_complete(efx
);
1460 if (nic_data
->stats_disable_count
== 0)
1461 falcon_stats_request(efx
);
1463 spin_unlock(&efx
->stats_lock
);
1466 static bool falcon_loopback_link_poll(struct efx_nic
*efx
)
1468 struct efx_link_state old_state
= efx
->link_state
;
1470 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
1471 WARN_ON(!LOOPBACK_INTERNAL(efx
));
1473 efx
->link_state
.fd
= true;
1474 efx
->link_state
.fc
= efx
->wanted_fc
;
1475 efx
->link_state
.up
= true;
1476 efx
->link_state
.speed
= 10000;
1478 return !efx_link_state_equal(&efx
->link_state
, &old_state
);
1481 static int falcon_reconfigure_port(struct efx_nic
*efx
)
1485 WARN_ON(efx_nic_rev(efx
) > EFX_REV_FALCON_B0
);
1487 /* Poll the PHY link state *before* reconfiguring it. This means we
1488 * will pick up the correct speed (in loopback) to select the correct
1491 if (LOOPBACK_INTERNAL(efx
))
1492 falcon_loopback_link_poll(efx
);
1494 efx
->phy_op
->poll(efx
);
1496 falcon_stop_nic_stats(efx
);
1497 falcon_deconfigure_mac_wrapper(efx
);
1499 falcon_reset_macs(efx
);
1501 efx
->phy_op
->reconfigure(efx
);
1502 rc
= falcon_reconfigure_xmac(efx
);
1505 falcon_start_nic_stats(efx
);
1507 /* Synchronise efx->link_state with the kernel */
1508 efx_link_status_changed(efx
);
1513 /* TX flow control may automatically turn itself off if the link
1514 * partner (intermittently) stops responding to pause frames. There
1515 * isn't any indication that this has happened, so the best we do is
1516 * leave it up to the user to spot this and fix it by cycling transmit
1517 * flow control on this end.
1520 static void falcon_a1_prepare_enable_fc_tx(struct efx_nic
*efx
)
1522 /* Schedule a reset to recover */
1523 efx_schedule_reset(efx
, RESET_TYPE_INVISIBLE
);
1526 static void falcon_b0_prepare_enable_fc_tx(struct efx_nic
*efx
)
1528 /* Recover by resetting the EM block */
1529 falcon_stop_nic_stats(efx
);
1530 falcon_drain_tx_fifo(efx
);
1531 falcon_reconfigure_xmac(efx
);
1532 falcon_start_nic_stats(efx
);
1535 /**************************************************************************
1537 * PHY access via GMII
1539 **************************************************************************
1542 /* Wait for GMII access to complete */
1543 static int falcon_gmii_wait(struct efx_nic
*efx
)
1545 efx_oword_t md_stat
;
1548 /* wait up to 50ms - taken max from datasheet */
1549 for (count
= 0; count
< 5000; count
++) {
1550 efx_reado(efx
, &md_stat
, FR_AB_MD_STAT
);
1551 if (EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_BSY
) == 0) {
1552 if (EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_LNFL
) != 0 ||
1553 EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_BSERR
) != 0) {
1554 netif_err(efx
, hw
, efx
->net_dev
,
1555 "error from GMII access "
1557 EFX_OWORD_VAL(md_stat
));
1564 netif_err(efx
, hw
, efx
->net_dev
, "timed out waiting for GMII\n");
1568 /* Write an MDIO register of a PHY connected to Falcon. */
1569 static int falcon_mdio_write(struct net_device
*net_dev
,
1570 int prtad
, int devad
, u16 addr
, u16 value
)
1572 struct efx_nic
*efx
= netdev_priv(net_dev
);
1573 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1577 netif_vdbg(efx
, hw
, efx
->net_dev
,
1578 "writing MDIO %d register %d.%d with 0x%04x\n",
1579 prtad
, devad
, addr
, value
);
1581 mutex_lock(&nic_data
->mdio_lock
);
1583 /* Check MDIO not currently being accessed */
1584 rc
= falcon_gmii_wait(efx
);
1588 /* Write the address/ID register */
1589 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_PHY_ADR
, addr
);
1590 efx_writeo(efx
, ®
, FR_AB_MD_PHY_ADR
);
1592 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_PRT_ADR
, prtad
,
1593 FRF_AB_MD_DEV_ADR
, devad
);
1594 efx_writeo(efx
, ®
, FR_AB_MD_ID
);
1597 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_TXD
, value
);
1598 efx_writeo(efx
, ®
, FR_AB_MD_TXD
);
1600 EFX_POPULATE_OWORD_2(reg
,
1603 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
1605 /* Wait for data to be written */
1606 rc
= falcon_gmii_wait(efx
);
1608 /* Abort the write operation */
1609 EFX_POPULATE_OWORD_2(reg
,
1612 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
1617 mutex_unlock(&nic_data
->mdio_lock
);
1621 /* Read an MDIO register of a PHY connected to Falcon. */
1622 static int falcon_mdio_read(struct net_device
*net_dev
,
1623 int prtad
, int devad
, u16 addr
)
1625 struct efx_nic
*efx
= netdev_priv(net_dev
);
1626 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1630 mutex_lock(&nic_data
->mdio_lock
);
1632 /* Check MDIO not currently being accessed */
1633 rc
= falcon_gmii_wait(efx
);
1637 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_PHY_ADR
, addr
);
1638 efx_writeo(efx
, ®
, FR_AB_MD_PHY_ADR
);
1640 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_PRT_ADR
, prtad
,
1641 FRF_AB_MD_DEV_ADR
, devad
);
1642 efx_writeo(efx
, ®
, FR_AB_MD_ID
);
1644 /* Request data to be read */
1645 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_RDC
, 1, FRF_AB_MD_GC
, 0);
1646 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
1648 /* Wait for data to become available */
1649 rc
= falcon_gmii_wait(efx
);
1651 efx_reado(efx
, ®
, FR_AB_MD_RXD
);
1652 rc
= EFX_OWORD_FIELD(reg
, FRF_AB_MD_RXD
);
1653 netif_vdbg(efx
, hw
, efx
->net_dev
,
1654 "read from MDIO %d register %d.%d, got %04x\n",
1655 prtad
, devad
, addr
, rc
);
1657 /* Abort the read operation */
1658 EFX_POPULATE_OWORD_2(reg
,
1661 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
1663 netif_dbg(efx
, hw
, efx
->net_dev
,
1664 "read from MDIO %d register %d.%d, got error %d\n",
1665 prtad
, devad
, addr
, rc
);
1669 mutex_unlock(&nic_data
->mdio_lock
);
1673 /* This call is responsible for hooking in the MAC and PHY operations */
1674 static int falcon_probe_port(struct efx_nic
*efx
)
1676 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1679 switch (efx
->phy_type
) {
1680 case PHY_TYPE_SFX7101
:
1681 efx
->phy_op
= &falcon_sfx7101_phy_ops
;
1683 case PHY_TYPE_QT2022C2
:
1684 case PHY_TYPE_QT2025C
:
1685 efx
->phy_op
= &falcon_qt202x_phy_ops
;
1687 case PHY_TYPE_TXC43128
:
1688 efx
->phy_op
= &falcon_txc_phy_ops
;
1691 netif_err(efx
, probe
, efx
->net_dev
, "Unknown PHY type %d\n",
1696 /* Fill out MDIO structure and loopback modes */
1697 mutex_init(&nic_data
->mdio_lock
);
1698 efx
->mdio
.mdio_read
= falcon_mdio_read
;
1699 efx
->mdio
.mdio_write
= falcon_mdio_write
;
1700 rc
= efx
->phy_op
->probe(efx
);
1704 /* Initial assumption */
1705 efx
->link_state
.speed
= 10000;
1706 efx
->link_state
.fd
= true;
1708 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1709 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1710 efx
->wanted_fc
= EFX_FC_RX
| EFX_FC_TX
;
1712 efx
->wanted_fc
= EFX_FC_RX
;
1713 if (efx
->mdio
.mmds
& MDIO_DEVS_AN
)
1714 efx
->wanted_fc
|= EFX_FC_AUTO
;
1716 /* Allocate buffer for stats */
1717 rc
= efx_nic_alloc_buffer(efx
, &efx
->stats_buffer
,
1718 FALCON_MAC_STATS_SIZE
, GFP_KERNEL
);
1721 netif_dbg(efx
, probe
, efx
->net_dev
,
1722 "stats buffer at %llx (virt %p phys %llx)\n",
1723 (u64
)efx
->stats_buffer
.dma_addr
,
1724 efx
->stats_buffer
.addr
,
1725 (u64
)virt_to_phys(efx
->stats_buffer
.addr
));
1730 static void falcon_remove_port(struct efx_nic
*efx
)
1732 efx
->phy_op
->remove(efx
);
1733 efx_nic_free_buffer(efx
, &efx
->stats_buffer
);
1736 /* Global events are basically PHY events */
1738 falcon_handle_global_event(struct efx_channel
*channel
, efx_qword_t
*event
)
1740 struct efx_nic
*efx
= channel
->efx
;
1741 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1743 if (EFX_QWORD_FIELD(*event
, FSF_AB_GLB_EV_G_PHY0_INTR
) ||
1744 EFX_QWORD_FIELD(*event
, FSF_AB_GLB_EV_XG_PHY0_INTR
) ||
1745 EFX_QWORD_FIELD(*event
, FSF_AB_GLB_EV_XFP_PHY0_INTR
))
1749 if ((efx_nic_rev(efx
) == EFX_REV_FALCON_B0
) &&
1750 EFX_QWORD_FIELD(*event
, FSF_BB_GLB_EV_XG_MGT_INTR
)) {
1751 nic_data
->xmac_poll_required
= true;
1755 if (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
?
1756 EFX_QWORD_FIELD(*event
, FSF_AA_GLB_EV_RX_RECOVERY
) :
1757 EFX_QWORD_FIELD(*event
, FSF_BB_GLB_EV_RX_RECOVERY
)) {
1758 netif_err(efx
, rx_err
, efx
->net_dev
,
1759 "channel %d seen global RX_RESET event. Resetting.\n",
1762 atomic_inc(&efx
->rx_reset
);
1763 efx_schedule_reset(efx
, EFX_WORKAROUND_6555(efx
) ?
1764 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
1771 /**************************************************************************
1775 **************************************************************************/
1778 falcon_read_nvram(struct efx_nic
*efx
, struct falcon_nvconfig
*nvconfig_out
)
1780 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1781 struct falcon_nvconfig
*nvconfig
;
1782 struct falcon_spi_device
*spi
;
1784 int rc
, magic_num
, struct_ver
;
1785 __le16
*word
, *limit
;
1788 if (falcon_spi_present(&nic_data
->spi_flash
))
1789 spi
= &nic_data
->spi_flash
;
1790 else if (falcon_spi_present(&nic_data
->spi_eeprom
))
1791 spi
= &nic_data
->spi_eeprom
;
1795 region
= kmalloc(FALCON_NVCONFIG_END
, GFP_KERNEL
);
1798 nvconfig
= region
+ FALCON_NVCONFIG_OFFSET
;
1800 mutex_lock(&nic_data
->spi_lock
);
1801 rc
= falcon_spi_read(efx
, spi
, 0, FALCON_NVCONFIG_END
, NULL
, region
);
1802 mutex_unlock(&nic_data
->spi_lock
);
1804 netif_err(efx
, hw
, efx
->net_dev
, "Failed to read %s\n",
1805 falcon_spi_present(&nic_data
->spi_flash
) ?
1806 "flash" : "EEPROM");
1811 magic_num
= le16_to_cpu(nvconfig
->board_magic_num
);
1812 struct_ver
= le16_to_cpu(nvconfig
->board_struct_ver
);
1815 if (magic_num
!= FALCON_NVCONFIG_BOARD_MAGIC_NUM
) {
1816 netif_err(efx
, hw
, efx
->net_dev
,
1817 "NVRAM bad magic 0x%x\n", magic_num
);
1820 if (struct_ver
< 2) {
1821 netif_err(efx
, hw
, efx
->net_dev
,
1822 "NVRAM has ancient version 0x%x\n", struct_ver
);
1824 } else if (struct_ver
< 4) {
1825 word
= &nvconfig
->board_magic_num
;
1826 limit
= (__le16
*) (nvconfig
+ 1);
1829 limit
= region
+ FALCON_NVCONFIG_END
;
1831 for (csum
= 0; word
< limit
; ++word
)
1832 csum
+= le16_to_cpu(*word
);
1834 if (~csum
& 0xffff) {
1835 netif_err(efx
, hw
, efx
->net_dev
,
1836 "NVRAM has incorrect checksum\n");
1842 memcpy(nvconfig_out
, nvconfig
, sizeof(*nvconfig
));
1849 static int falcon_test_nvram(struct efx_nic
*efx
)
1851 return falcon_read_nvram(efx
, NULL
);
1854 static const struct efx_farch_register_test falcon_b0_register_tests
[] = {
1856 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1858 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1860 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1861 { FR_AZ_TX_RESERVED
,
1862 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1864 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1865 { FR_AZ_SRM_TX_DC_CFG
,
1866 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1868 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1869 { FR_AZ_RX_DC_PF_WM
,
1870 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1872 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1874 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1876 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1878 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1880 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1882 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1883 { FR_AB_XM_RX_PARAM
,
1884 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1886 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1888 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1890 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1894 falcon_b0_test_chip(struct efx_nic
*efx
, struct efx_self_tests
*tests
)
1896 enum reset_type reset_method
= RESET_TYPE_INVISIBLE
;
1899 mutex_lock(&efx
->mac_lock
);
1900 if (efx
->loopback_modes
) {
1901 /* We need the 312 clock from the PHY to test the XMAC
1902 * registers, so move into XGMII loopback if available */
1903 if (efx
->loopback_modes
& (1 << LOOPBACK_XGMII
))
1904 efx
->loopback_mode
= LOOPBACK_XGMII
;
1906 efx
->loopback_mode
= __ffs(efx
->loopback_modes
);
1908 __efx_reconfigure_port(efx
);
1909 mutex_unlock(&efx
->mac_lock
);
1911 efx_reset_down(efx
, reset_method
);
1914 efx_farch_test_registers(efx
, falcon_b0_register_tests
,
1915 ARRAY_SIZE(falcon_b0_register_tests
))
1918 rc
= falcon_reset_hw(efx
, reset_method
);
1919 rc2
= efx_reset_up(efx
, reset_method
, rc
== 0);
1920 return rc
? rc
: rc2
;
1923 /**************************************************************************
1927 **************************************************************************
1930 static enum reset_type
falcon_map_reset_reason(enum reset_type reason
)
1933 case RESET_TYPE_RX_RECOVERY
:
1934 case RESET_TYPE_DMA_ERROR
:
1935 case RESET_TYPE_TX_SKIP
:
1936 /* These can occasionally occur due to hardware bugs.
1937 * We try to reset without disrupting the link.
1939 return RESET_TYPE_INVISIBLE
;
1941 return RESET_TYPE_ALL
;
1945 static int falcon_map_reset_flags(u32
*flags
)
1948 FALCON_RESET_INVISIBLE
= (ETH_RESET_DMA
| ETH_RESET_FILTER
|
1949 ETH_RESET_OFFLOAD
| ETH_RESET_MAC
),
1950 FALCON_RESET_ALL
= FALCON_RESET_INVISIBLE
| ETH_RESET_PHY
,
1951 FALCON_RESET_WORLD
= FALCON_RESET_ALL
| ETH_RESET_IRQ
,
1954 if ((*flags
& FALCON_RESET_WORLD
) == FALCON_RESET_WORLD
) {
1955 *flags
&= ~FALCON_RESET_WORLD
;
1956 return RESET_TYPE_WORLD
;
1959 if ((*flags
& FALCON_RESET_ALL
) == FALCON_RESET_ALL
) {
1960 *flags
&= ~FALCON_RESET_ALL
;
1961 return RESET_TYPE_ALL
;
1964 if ((*flags
& FALCON_RESET_INVISIBLE
) == FALCON_RESET_INVISIBLE
) {
1965 *flags
&= ~FALCON_RESET_INVISIBLE
;
1966 return RESET_TYPE_INVISIBLE
;
1972 /* Resets NIC to known state. This routine must be called in process
1973 * context and is allowed to sleep. */
1974 static int __falcon_reset_hw(struct efx_nic
*efx
, enum reset_type method
)
1976 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1977 efx_oword_t glb_ctl_reg_ker
;
1980 netif_dbg(efx
, hw
, efx
->net_dev
, "performing %s hardware reset\n",
1981 RESET_TYPE(method
));
1983 /* Initiate device reset */
1984 if (method
== RESET_TYPE_WORLD
) {
1985 rc
= pci_save_state(efx
->pci_dev
);
1987 netif_err(efx
, drv
, efx
->net_dev
,
1988 "failed to backup PCI state of primary "
1989 "function prior to hardware reset\n");
1992 if (efx_nic_is_dual_func(efx
)) {
1993 rc
= pci_save_state(nic_data
->pci_dev2
);
1995 netif_err(efx
, drv
, efx
->net_dev
,
1996 "failed to backup PCI state of "
1997 "secondary function prior to "
1998 "hardware reset\n");
2003 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker
,
2004 FRF_AB_EXT_PHY_RST_DUR
,
2005 FFE_AB_EXT_PHY_RST_DUR_10240US
,
2008 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker
,
2009 /* exclude PHY from "invisible" reset */
2010 FRF_AB_EXT_PHY_RST_CTL
,
2011 method
== RESET_TYPE_INVISIBLE
,
2012 /* exclude EEPROM/flash and PCIe */
2013 FRF_AB_PCIE_CORE_RST_CTL
, 1,
2014 FRF_AB_PCIE_NSTKY_RST_CTL
, 1,
2015 FRF_AB_PCIE_SD_RST_CTL
, 1,
2016 FRF_AB_EE_RST_CTL
, 1,
2017 FRF_AB_EXT_PHY_RST_DUR
,
2018 FFE_AB_EXT_PHY_RST_DUR_10240US
,
2021 efx_writeo(efx
, &glb_ctl_reg_ker
, FR_AB_GLB_CTL
);
2023 netif_dbg(efx
, hw
, efx
->net_dev
, "waiting for hardware reset\n");
2024 schedule_timeout_uninterruptible(HZ
/ 20);
2026 /* Restore PCI configuration if needed */
2027 if (method
== RESET_TYPE_WORLD
) {
2028 if (efx_nic_is_dual_func(efx
))
2029 pci_restore_state(nic_data
->pci_dev2
);
2030 pci_restore_state(efx
->pci_dev
);
2031 netif_dbg(efx
, drv
, efx
->net_dev
,
2032 "successfully restored PCI config\n");
2035 /* Assert that reset complete */
2036 efx_reado(efx
, &glb_ctl_reg_ker
, FR_AB_GLB_CTL
);
2037 if (EFX_OWORD_FIELD(glb_ctl_reg_ker
, FRF_AB_SWRST
) != 0) {
2039 netif_err(efx
, hw
, efx
->net_dev
,
2040 "timed out waiting for hardware reset\n");
2043 netif_dbg(efx
, hw
, efx
->net_dev
, "hardware reset complete\n");
2047 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2049 pci_restore_state(efx
->pci_dev
);
2055 static int falcon_reset_hw(struct efx_nic
*efx
, enum reset_type method
)
2057 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2060 mutex_lock(&nic_data
->spi_lock
);
2061 rc
= __falcon_reset_hw(efx
, method
);
2062 mutex_unlock(&nic_data
->spi_lock
);
2067 static void falcon_monitor(struct efx_nic
*efx
)
2072 BUG_ON(!mutex_is_locked(&efx
->mac_lock
));
2074 rc
= falcon_board(efx
)->type
->monitor(efx
);
2076 netif_err(efx
, hw
, efx
->net_dev
,
2077 "Board sensor %s; shutting down PHY\n",
2078 (rc
== -ERANGE
) ? "reported fault" : "failed");
2079 efx
->phy_mode
|= PHY_MODE_LOW_POWER
;
2080 rc
= __efx_reconfigure_port(efx
);
2084 if (LOOPBACK_INTERNAL(efx
))
2085 link_changed
= falcon_loopback_link_poll(efx
);
2087 link_changed
= efx
->phy_op
->poll(efx
);
2090 falcon_stop_nic_stats(efx
);
2091 falcon_deconfigure_mac_wrapper(efx
);
2093 falcon_reset_macs(efx
);
2094 rc
= falcon_reconfigure_xmac(efx
);
2097 falcon_start_nic_stats(efx
);
2099 efx_link_status_changed(efx
);
2102 falcon_poll_xmac(efx
);
2105 /* Zeroes out the SRAM contents. This routine must be called in
2106 * process context and is allowed to sleep.
2108 static int falcon_reset_sram(struct efx_nic
*efx
)
2110 efx_oword_t srm_cfg_reg_ker
, gpio_cfg_reg_ker
;
2113 /* Set the SRAM wake/sleep GPIO appropriately. */
2114 efx_reado(efx
, &gpio_cfg_reg_ker
, FR_AB_GPIO_CTL
);
2115 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker
, FRF_AB_GPIO1_OEN
, 1);
2116 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker
, FRF_AB_GPIO1_OUT
, 1);
2117 efx_writeo(efx
, &gpio_cfg_reg_ker
, FR_AB_GPIO_CTL
);
2119 /* Initiate SRAM reset */
2120 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker
,
2121 FRF_AZ_SRM_INIT_EN
, 1,
2122 FRF_AZ_SRM_NB_SZ
, 0);
2123 efx_writeo(efx
, &srm_cfg_reg_ker
, FR_AZ_SRM_CFG
);
2125 /* Wait for SRAM reset to complete */
2128 netif_dbg(efx
, hw
, efx
->net_dev
,
2129 "waiting for SRAM reset (attempt %d)...\n", count
);
2131 /* SRAM reset is slow; expect around 16ms */
2132 schedule_timeout_uninterruptible(HZ
/ 50);
2134 /* Check for reset complete */
2135 efx_reado(efx
, &srm_cfg_reg_ker
, FR_AZ_SRM_CFG
);
2136 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker
, FRF_AZ_SRM_INIT_EN
)) {
2137 netif_dbg(efx
, hw
, efx
->net_dev
,
2138 "SRAM reset complete\n");
2142 } while (++count
< 20); /* wait up to 0.4 sec */
2144 netif_err(efx
, hw
, efx
->net_dev
, "timed out waiting for SRAM reset\n");
2148 static void falcon_spi_device_init(struct efx_nic
*efx
,
2149 struct falcon_spi_device
*spi_device
,
2150 unsigned int device_id
, u32 device_type
)
2152 if (device_type
!= 0) {
2153 spi_device
->device_id
= device_id
;
2155 1 << SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_SIZE
);
2156 spi_device
->addr_len
=
2157 SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_ADDR_LEN
);
2158 spi_device
->munge_address
= (spi_device
->size
== 1 << 9 &&
2159 spi_device
->addr_len
== 1);
2160 spi_device
->erase_command
=
2161 SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_ERASE_CMD
);
2162 spi_device
->erase_size
=
2163 1 << SPI_DEV_TYPE_FIELD(device_type
,
2164 SPI_DEV_TYPE_ERASE_SIZE
);
2165 spi_device
->block_size
=
2166 1 << SPI_DEV_TYPE_FIELD(device_type
,
2167 SPI_DEV_TYPE_BLOCK_SIZE
);
2169 spi_device
->size
= 0;
2173 /* Extract non-volatile configuration */
2174 static int falcon_probe_nvconfig(struct efx_nic
*efx
)
2176 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2177 struct falcon_nvconfig
*nvconfig
;
2180 nvconfig
= kmalloc(sizeof(*nvconfig
), GFP_KERNEL
);
2184 rc
= falcon_read_nvram(efx
, nvconfig
);
2188 efx
->phy_type
= nvconfig
->board_v2
.port0_phy_type
;
2189 efx
->mdio
.prtad
= nvconfig
->board_v2
.port0_phy_addr
;
2191 if (le16_to_cpu(nvconfig
->board_struct_ver
) >= 3) {
2192 falcon_spi_device_init(
2193 efx
, &nic_data
->spi_flash
, FFE_AB_SPI_DEVICE_FLASH
,
2194 le32_to_cpu(nvconfig
->board_v3
2195 .spi_device_type
[FFE_AB_SPI_DEVICE_FLASH
]));
2196 falcon_spi_device_init(
2197 efx
, &nic_data
->spi_eeprom
, FFE_AB_SPI_DEVICE_EEPROM
,
2198 le32_to_cpu(nvconfig
->board_v3
2199 .spi_device_type
[FFE_AB_SPI_DEVICE_EEPROM
]));
2202 /* Read the MAC addresses */
2203 ether_addr_copy(efx
->net_dev
->perm_addr
, nvconfig
->mac_address
[0]);
2205 netif_dbg(efx
, probe
, efx
->net_dev
, "PHY is %d phy_id %d\n",
2206 efx
->phy_type
, efx
->mdio
.prtad
);
2208 rc
= falcon_probe_board(efx
,
2209 le16_to_cpu(nvconfig
->board_v2
.board_revision
));
2215 static int falcon_dimension_resources(struct efx_nic
*efx
)
2217 efx
->rx_dc_base
= 0x20000;
2218 efx
->tx_dc_base
= 0x26000;
2222 /* Probe all SPI devices on the NIC */
2223 static void falcon_probe_spi_devices(struct efx_nic
*efx
)
2225 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2226 efx_oword_t nic_stat
, gpio_ctl
, ee_vpd_cfg
;
2229 efx_reado(efx
, &gpio_ctl
, FR_AB_GPIO_CTL
);
2230 efx_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
2231 efx_reado(efx
, &ee_vpd_cfg
, FR_AB_EE_VPD_CFG0
);
2233 if (EFX_OWORD_FIELD(gpio_ctl
, FRF_AB_GPIO3_PWRUP_VALUE
)) {
2234 boot_dev
= (EFX_OWORD_FIELD(nic_stat
, FRF_AB_SF_PRST
) ?
2235 FFE_AB_SPI_DEVICE_FLASH
: FFE_AB_SPI_DEVICE_EEPROM
);
2236 netif_dbg(efx
, probe
, efx
->net_dev
, "Booted from %s\n",
2237 boot_dev
== FFE_AB_SPI_DEVICE_FLASH
?
2238 "flash" : "EEPROM");
2240 /* Disable VPD and set clock dividers to safe
2241 * values for initial programming. */
2243 netif_dbg(efx
, probe
, efx
->net_dev
,
2244 "Booted from internal ASIC settings;"
2245 " setting SPI config\n");
2246 EFX_POPULATE_OWORD_3(ee_vpd_cfg
, FRF_AB_EE_VPD_EN
, 0,
2247 /* 125 MHz / 7 ~= 20 MHz */
2248 FRF_AB_EE_SF_CLOCK_DIV
, 7,
2249 /* 125 MHz / 63 ~= 2 MHz */
2250 FRF_AB_EE_EE_CLOCK_DIV
, 63);
2251 efx_writeo(efx
, &ee_vpd_cfg
, FR_AB_EE_VPD_CFG0
);
2254 mutex_init(&nic_data
->spi_lock
);
2256 if (boot_dev
== FFE_AB_SPI_DEVICE_FLASH
)
2257 falcon_spi_device_init(efx
, &nic_data
->spi_flash
,
2258 FFE_AB_SPI_DEVICE_FLASH
,
2259 default_flash_type
);
2260 if (boot_dev
== FFE_AB_SPI_DEVICE_EEPROM
)
2261 falcon_spi_device_init(efx
, &nic_data
->spi_eeprom
,
2262 FFE_AB_SPI_DEVICE_EEPROM
,
2266 static unsigned int falcon_a1_mem_map_size(struct efx_nic
*efx
)
2271 static unsigned int falcon_b0_mem_map_size(struct efx_nic
*efx
)
2273 /* Map everything up to and including the RSS indirection table.
2274 * The PCI core takes care of mapping the MSI-X tables.
2276 return FR_BZ_RX_INDIRECTION_TBL
+
2277 FR_BZ_RX_INDIRECTION_TBL_STEP
* FR_BZ_RX_INDIRECTION_TBL_ROWS
;
2280 static int falcon_probe_nic(struct efx_nic
*efx
)
2282 struct falcon_nic_data
*nic_data
;
2283 struct falcon_board
*board
;
2286 efx
->primary
= efx
; /* only one usable function per controller */
2288 /* Allocate storage for hardware specific data */
2289 nic_data
= kzalloc(sizeof(*nic_data
), GFP_KERNEL
);
2292 efx
->nic_data
= nic_data
;
2296 if (efx_farch_fpga_ver(efx
) != 0) {
2297 netif_err(efx
, probe
, efx
->net_dev
,
2298 "Falcon FPGA not supported\n");
2302 if (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
) {
2303 efx_oword_t nic_stat
;
2304 struct pci_dev
*dev
;
2305 u8 pci_rev
= efx
->pci_dev
->revision
;
2307 if ((pci_rev
== 0xff) || (pci_rev
== 0)) {
2308 netif_err(efx
, probe
, efx
->net_dev
,
2309 "Falcon rev A0 not supported\n");
2312 efx_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
2313 if (EFX_OWORD_FIELD(nic_stat
, FRF_AB_STRAP_10G
) == 0) {
2314 netif_err(efx
, probe
, efx
->net_dev
,
2315 "Falcon rev A1 1G not supported\n");
2318 if (EFX_OWORD_FIELD(nic_stat
, FRF_AA_STRAP_PCIE
) == 0) {
2319 netif_err(efx
, probe
, efx
->net_dev
,
2320 "Falcon rev A1 PCI-X not supported\n");
2324 dev
= pci_dev_get(efx
->pci_dev
);
2325 while ((dev
= pci_get_device(PCI_VENDOR_ID_SOLARFLARE
,
2326 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1
,
2328 if (dev
->bus
== efx
->pci_dev
->bus
&&
2329 dev
->devfn
== efx
->pci_dev
->devfn
+ 1) {
2330 nic_data
->pci_dev2
= dev
;
2334 if (!nic_data
->pci_dev2
) {
2335 netif_err(efx
, probe
, efx
->net_dev
,
2336 "failed to find secondary function\n");
2342 /* Now we can reset the NIC */
2343 rc
= __falcon_reset_hw(efx
, RESET_TYPE_ALL
);
2345 netif_err(efx
, probe
, efx
->net_dev
, "failed to reset NIC\n");
2349 /* Allocate memory for INT_KER */
2350 rc
= efx_nic_alloc_buffer(efx
, &efx
->irq_status
, sizeof(efx_oword_t
),
2354 BUG_ON(efx
->irq_status
.dma_addr
& 0x0f);
2356 netif_dbg(efx
, probe
, efx
->net_dev
,
2357 "INT_KER at %llx (virt %p phys %llx)\n",
2358 (u64
)efx
->irq_status
.dma_addr
,
2359 efx
->irq_status
.addr
,
2360 (u64
)virt_to_phys(efx
->irq_status
.addr
));
2362 falcon_probe_spi_devices(efx
);
2364 /* Read in the non-volatile configuration */
2365 rc
= falcon_probe_nvconfig(efx
);
2368 netif_err(efx
, probe
, efx
->net_dev
, "NVRAM is invalid\n");
2372 efx
->max_channels
= (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
? 4 :
2374 efx
->max_tx_channels
= efx
->max_channels
;
2375 efx
->timer_quantum_ns
= 4968; /* 621 cycles */
2377 /* Initialise I2C adapter */
2378 board
= falcon_board(efx
);
2379 board
->i2c_adap
.owner
= THIS_MODULE
;
2380 board
->i2c_data
= falcon_i2c_bit_operations
;
2381 board
->i2c_data
.data
= efx
;
2382 board
->i2c_adap
.algo_data
= &board
->i2c_data
;
2383 board
->i2c_adap
.dev
.parent
= &efx
->pci_dev
->dev
;
2384 strlcpy(board
->i2c_adap
.name
, "SFC4000 GPIO",
2385 sizeof(board
->i2c_adap
.name
));
2386 rc
= i2c_bit_add_bus(&board
->i2c_adap
);
2390 rc
= falcon_board(efx
)->type
->init(efx
);
2392 netif_err(efx
, probe
, efx
->net_dev
,
2393 "failed to initialise board\n");
2397 nic_data
->stats_disable_count
= 1;
2398 setup_timer(&nic_data
->stats_timer
, &falcon_stats_timer_func
,
2399 (unsigned long)efx
);
2404 i2c_del_adapter(&board
->i2c_adap
);
2405 memset(&board
->i2c_adap
, 0, sizeof(board
->i2c_adap
));
2407 efx_nic_free_buffer(efx
, &efx
->irq_status
);
2410 if (nic_data
->pci_dev2
) {
2411 pci_dev_put(nic_data
->pci_dev2
);
2412 nic_data
->pci_dev2
= NULL
;
2416 kfree(efx
->nic_data
);
2420 static void falcon_init_rx_cfg(struct efx_nic
*efx
)
2422 /* RX control FIFO thresholds (32 entries) */
2423 const unsigned ctrl_xon_thr
= 20;
2424 const unsigned ctrl_xoff_thr
= 25;
2427 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
2428 if (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
) {
2429 /* Data FIFO size is 5.5K. The RX DMA engine only
2430 * supports scattering for user-mode queues, but will
2431 * split DMA writes at intervals of RX_USR_BUF_SIZE
2432 * (32-byte units) even for kernel-mode queues. We
2433 * set it to be so large that that never happens.
2435 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_DESC_PUSH_EN
, 0);
2436 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_USR_BUF_SIZE
,
2438 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XON_MAC_TH
, 512 >> 8);
2439 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XOFF_MAC_TH
, 2048 >> 8);
2440 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XON_TX_TH
, ctrl_xon_thr
);
2441 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XOFF_TX_TH
, ctrl_xoff_thr
);
2443 /* Data FIFO size is 80K; register fields moved */
2444 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_DESC_PUSH_EN
, 0);
2445 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_USR_BUF_SIZE
,
2446 EFX_RX_USR_BUF_SIZE
>> 5);
2447 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2448 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XON_MAC_TH
, 27648 >> 8);
2449 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XOFF_MAC_TH
, 54272 >> 8);
2450 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XON_TX_TH
, ctrl_xon_thr
);
2451 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XOFF_TX_TH
, ctrl_xoff_thr
);
2452 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 1);
2454 /* Enable hash insertion. This is broken for the
2455 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2457 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_HASH_INSRT_HDR
, 1);
2458 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_HASH_ALG
, 1);
2459 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_IP_HASH
, 1);
2461 /* Always enable XOFF signal from RX FIFO. We enable
2462 * or disable transmission of pause frames at the MAC. */
2463 EFX_SET_OWORD_FIELD(reg
, FRF_AZ_RX_XOFF_MAC_EN
, 1);
2464 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
2467 /* This call performs hardware-specific global initialisation, such as
2468 * defining the descriptor cache sizes and number of RSS channels.
2469 * It does not set up any buffers, descriptor rings or event queues.
2471 static int falcon_init_nic(struct efx_nic
*efx
)
2476 /* Use on-chip SRAM */
2477 efx_reado(efx
, &temp
, FR_AB_NIC_STAT
);
2478 EFX_SET_OWORD_FIELD(temp
, FRF_AB_ONCHIP_SRAM
, 1);
2479 efx_writeo(efx
, &temp
, FR_AB_NIC_STAT
);
2481 rc
= falcon_reset_sram(efx
);
2485 /* Clear the parity enables on the TX data fifos as
2486 * they produce false parity errors because of timing issues
2488 if (EFX_WORKAROUND_5129(efx
)) {
2489 efx_reado(efx
, &temp
, FR_AZ_CSR_SPARE
);
2490 EFX_SET_OWORD_FIELD(temp
, FRF_AB_MEM_PERR_EN_TX_DATA
, 0);
2491 efx_writeo(efx
, &temp
, FR_AZ_CSR_SPARE
);
2494 if (EFX_WORKAROUND_7244(efx
)) {
2495 efx_reado(efx
, &temp
, FR_BZ_RX_FILTER_CTL
);
2496 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_UDP_FULL_SRCH_LIMIT
, 8);
2497 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_UDP_WILD_SRCH_LIMIT
, 8);
2498 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TCP_FULL_SRCH_LIMIT
, 8);
2499 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TCP_WILD_SRCH_LIMIT
, 8);
2500 efx_writeo(efx
, &temp
, FR_BZ_RX_FILTER_CTL
);
2503 /* XXX This is documented only for Falcon A0/A1 */
2504 /* Setup RX. Wait for descriptor is broken and must
2505 * be disabled. RXDP recovery shouldn't be needed, but is.
2507 efx_reado(efx
, &temp
, FR_AA_RX_SELF_RST
);
2508 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_NODESC_WAIT_DIS
, 1);
2509 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_SELF_RST_EN
, 1);
2510 if (EFX_WORKAROUND_5583(efx
))
2511 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_ISCSI_DIS
, 1);
2512 efx_writeo(efx
, &temp
, FR_AA_RX_SELF_RST
);
2514 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2515 * descriptors (which is bad).
2517 efx_reado(efx
, &temp
, FR_AZ_TX_CFG
);
2518 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_NO_EOP_DISC_EN
, 0);
2519 efx_writeo(efx
, &temp
, FR_AZ_TX_CFG
);
2521 falcon_init_rx_cfg(efx
);
2523 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
2524 falcon_b0_rx_push_rss_config(efx
, false, efx
->rx_indir_table
);
2526 /* Set destination of both TX and RX Flush events */
2527 EFX_POPULATE_OWORD_1(temp
, FRF_BZ_FLS_EVQ_ID
, 0);
2528 efx_writeo(efx
, &temp
, FR_BZ_DP_CTRL
);
2531 efx_farch_init_common(efx
);
2536 static void falcon_remove_nic(struct efx_nic
*efx
)
2538 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2539 struct falcon_board
*board
= falcon_board(efx
);
2541 board
->type
->fini(efx
);
2543 /* Remove I2C adapter and clear it in preparation for a retry */
2544 i2c_del_adapter(&board
->i2c_adap
);
2545 memset(&board
->i2c_adap
, 0, sizeof(board
->i2c_adap
));
2547 efx_nic_free_buffer(efx
, &efx
->irq_status
);
2549 __falcon_reset_hw(efx
, RESET_TYPE_ALL
);
2551 /* Release the second function after the reset */
2552 if (nic_data
->pci_dev2
) {
2553 pci_dev_put(nic_data
->pci_dev2
);
2554 nic_data
->pci_dev2
= NULL
;
2557 /* Tear down the private nic state */
2558 kfree(efx
->nic_data
);
2559 efx
->nic_data
= NULL
;
2562 static size_t falcon_describe_nic_stats(struct efx_nic
*efx
, u8
*names
)
2564 return efx_nic_describe_stats(falcon_stat_desc
, FALCON_STAT_COUNT
,
2565 falcon_stat_mask
, names
);
2568 static size_t falcon_update_nic_stats(struct efx_nic
*efx
, u64
*full_stats
,
2569 struct rtnl_link_stats64
*core_stats
)
2571 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2572 u64
*stats
= nic_data
->stats
;
2575 if (!nic_data
->stats_disable_count
) {
2576 efx_reado(efx
, &cnt
, FR_AZ_RX_NODESC_DROP
);
2577 stats
[FALCON_STAT_rx_nodesc_drop_cnt
] +=
2578 EFX_OWORD_FIELD(cnt
, FRF_AB_RX_NODESC_DROP_CNT
);
2580 if (nic_data
->stats_pending
&&
2581 FALCON_XMAC_STATS_DMA_FLAG(efx
)) {
2582 nic_data
->stats_pending
= false;
2583 rmb(); /* read the done flag before the stats */
2584 efx_nic_update_stats(
2585 falcon_stat_desc
, FALCON_STAT_COUNT
,
2587 stats
, efx
->stats_buffer
.addr
, true);
2590 /* Update derived statistic */
2591 efx_update_diff_stat(&stats
[FALCON_STAT_rx_bad_bytes
],
2592 stats
[FALCON_STAT_rx_bytes
] -
2593 stats
[FALCON_STAT_rx_good_bytes
] -
2594 stats
[FALCON_STAT_rx_control
] * 64);
2595 efx_update_sw_stats(efx
, stats
);
2599 memcpy(full_stats
, stats
, sizeof(u64
) * FALCON_STAT_COUNT
);
2602 core_stats
->rx_packets
= stats
[FALCON_STAT_rx_packets
];
2603 core_stats
->tx_packets
= stats
[FALCON_STAT_tx_packets
];
2604 core_stats
->rx_bytes
= stats
[FALCON_STAT_rx_bytes
];
2605 core_stats
->tx_bytes
= stats
[FALCON_STAT_tx_bytes
];
2606 core_stats
->rx_dropped
= stats
[FALCON_STAT_rx_nodesc_drop_cnt
] +
2607 stats
[GENERIC_STAT_rx_nodesc_trunc
] +
2608 stats
[GENERIC_STAT_rx_noskb_drops
];
2609 core_stats
->multicast
= stats
[FALCON_STAT_rx_multicast
];
2610 core_stats
->rx_length_errors
=
2611 stats
[FALCON_STAT_rx_gtjumbo
] +
2612 stats
[FALCON_STAT_rx_length_error
];
2613 core_stats
->rx_crc_errors
= stats
[FALCON_STAT_rx_bad
];
2614 core_stats
->rx_frame_errors
= stats
[FALCON_STAT_rx_align_error
];
2615 core_stats
->rx_fifo_errors
= stats
[FALCON_STAT_rx_overflow
];
2617 core_stats
->rx_errors
= (core_stats
->rx_length_errors
+
2618 core_stats
->rx_crc_errors
+
2619 core_stats
->rx_frame_errors
+
2620 stats
[FALCON_STAT_rx_symbol_error
]);
2623 return FALCON_STAT_COUNT
;
2626 void falcon_start_nic_stats(struct efx_nic
*efx
)
2628 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2630 spin_lock_bh(&efx
->stats_lock
);
2631 if (--nic_data
->stats_disable_count
== 0)
2632 falcon_stats_request(efx
);
2633 spin_unlock_bh(&efx
->stats_lock
);
2636 /* We don't acutally pull stats on falcon. Wait 10ms so that
2637 * they arrive when we call this just after start_stats
2639 static void falcon_pull_nic_stats(struct efx_nic
*efx
)
2644 void falcon_stop_nic_stats(struct efx_nic
*efx
)
2646 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2651 spin_lock_bh(&efx
->stats_lock
);
2652 ++nic_data
->stats_disable_count
;
2653 spin_unlock_bh(&efx
->stats_lock
);
2655 del_timer_sync(&nic_data
->stats_timer
);
2657 /* Wait enough time for the most recent transfer to
2659 for (i
= 0; i
< 4 && nic_data
->stats_pending
; i
++) {
2660 if (FALCON_XMAC_STATS_DMA_FLAG(efx
))
2665 spin_lock_bh(&efx
->stats_lock
);
2666 falcon_stats_complete(efx
);
2667 spin_unlock_bh(&efx
->stats_lock
);
2670 static void falcon_set_id_led(struct efx_nic
*efx
, enum efx_led_mode mode
)
2672 falcon_board(efx
)->type
->set_id_led(efx
, mode
);
2675 /**************************************************************************
2679 **************************************************************************
2682 static void falcon_get_wol(struct efx_nic
*efx
, struct ethtool_wolinfo
*wol
)
2686 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
2689 static int falcon_set_wol(struct efx_nic
*efx
, u32 type
)
2696 /**************************************************************************
2698 * Revision-dependent attributes used by efx.c and nic.c
2700 **************************************************************************
2703 const struct efx_nic_type falcon_a1_nic_type
= {
2705 .mem_bar
= EFX_MEM_BAR
,
2706 .mem_map_size
= falcon_a1_mem_map_size
,
2707 .probe
= falcon_probe_nic
,
2708 .remove
= falcon_remove_nic
,
2709 .init
= falcon_init_nic
,
2710 .dimension_resources
= falcon_dimension_resources
,
2711 .fini
= falcon_irq_ack_a1
,
2712 .monitor
= falcon_monitor
,
2713 .map_reset_reason
= falcon_map_reset_reason
,
2714 .map_reset_flags
= falcon_map_reset_flags
,
2715 .reset
= falcon_reset_hw
,
2716 .probe_port
= falcon_probe_port
,
2717 .remove_port
= falcon_remove_port
,
2718 .handle_global_event
= falcon_handle_global_event
,
2719 .fini_dmaq
= efx_farch_fini_dmaq
,
2720 .prepare_flush
= falcon_prepare_flush
,
2721 .finish_flush
= efx_port_dummy_op_void
,
2722 .prepare_flr
= efx_port_dummy_op_void
,
2723 .finish_flr
= efx_farch_finish_flr
,
2724 .describe_stats
= falcon_describe_nic_stats
,
2725 .update_stats
= falcon_update_nic_stats
,
2726 .start_stats
= falcon_start_nic_stats
,
2727 .pull_stats
= falcon_pull_nic_stats
,
2728 .stop_stats
= falcon_stop_nic_stats
,
2729 .set_id_led
= falcon_set_id_led
,
2730 .push_irq_moderation
= falcon_push_irq_moderation
,
2731 .reconfigure_port
= falcon_reconfigure_port
,
2732 .prepare_enable_fc_tx
= falcon_a1_prepare_enable_fc_tx
,
2733 .reconfigure_mac
= falcon_reconfigure_xmac
,
2734 .check_mac_fault
= falcon_xmac_check_fault
,
2735 .get_wol
= falcon_get_wol
,
2736 .set_wol
= falcon_set_wol
,
2737 .resume_wol
= efx_port_dummy_op_void
,
2738 .test_nvram
= falcon_test_nvram
,
2739 .irq_enable_master
= efx_farch_irq_enable_master
,
2740 .irq_test_generate
= efx_farch_irq_test_generate
,
2741 .irq_disable_non_ev
= efx_farch_irq_disable_master
,
2742 .irq_handle_msi
= efx_farch_msi_interrupt
,
2743 .irq_handle_legacy
= falcon_legacy_interrupt_a1
,
2744 .tx_probe
= efx_farch_tx_probe
,
2745 .tx_init
= efx_farch_tx_init
,
2746 .tx_remove
= efx_farch_tx_remove
,
2747 .tx_write
= efx_farch_tx_write
,
2748 .rx_push_rss_config
= dummy_rx_push_rss_config
,
2749 .rx_probe
= efx_farch_rx_probe
,
2750 .rx_init
= efx_farch_rx_init
,
2751 .rx_remove
= efx_farch_rx_remove
,
2752 .rx_write
= efx_farch_rx_write
,
2753 .rx_defer_refill
= efx_farch_rx_defer_refill
,
2754 .ev_probe
= efx_farch_ev_probe
,
2755 .ev_init
= efx_farch_ev_init
,
2756 .ev_fini
= efx_farch_ev_fini
,
2757 .ev_remove
= efx_farch_ev_remove
,
2758 .ev_process
= efx_farch_ev_process
,
2759 .ev_read_ack
= efx_farch_ev_read_ack
,
2760 .ev_test_generate
= efx_farch_ev_test_generate
,
2762 /* We don't expose the filter table on Falcon A1 as it is not
2763 * mapped into function 0, but these implementations still
2764 * work with a degenerate case of all tables set to size 0.
2766 .filter_table_probe
= efx_farch_filter_table_probe
,
2767 .filter_table_restore
= efx_farch_filter_table_restore
,
2768 .filter_table_remove
= efx_farch_filter_table_remove
,
2769 .filter_insert
= efx_farch_filter_insert
,
2770 .filter_remove_safe
= efx_farch_filter_remove_safe
,
2771 .filter_get_safe
= efx_farch_filter_get_safe
,
2772 .filter_clear_rx
= efx_farch_filter_clear_rx
,
2773 .filter_count_rx_used
= efx_farch_filter_count_rx_used
,
2774 .filter_get_rx_id_limit
= efx_farch_filter_get_rx_id_limit
,
2775 .filter_get_rx_ids
= efx_farch_filter_get_rx_ids
,
2777 #ifdef CONFIG_SFC_MTD
2778 .mtd_probe
= falcon_mtd_probe
,
2779 .mtd_rename
= falcon_mtd_rename
,
2780 .mtd_read
= falcon_mtd_read
,
2781 .mtd_erase
= falcon_mtd_erase
,
2782 .mtd_write
= falcon_mtd_write
,
2783 .mtd_sync
= falcon_mtd_sync
,
2786 .revision
= EFX_REV_FALCON_A1
,
2787 .txd_ptr_tbl_base
= FR_AA_TX_DESC_PTR_TBL_KER
,
2788 .rxd_ptr_tbl_base
= FR_AA_RX_DESC_PTR_TBL_KER
,
2789 .buf_tbl_base
= FR_AA_BUF_FULL_TBL_KER
,
2790 .evq_ptr_tbl_base
= FR_AA_EVQ_PTR_TBL_KER
,
2791 .evq_rptr_tbl_base
= FR_AA_EVQ_RPTR_KER
,
2792 .max_dma_mask
= DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH
),
2793 .rx_buffer_padding
= 0x24,
2794 .can_rx_scatter
= false,
2795 .max_interrupt_mode
= EFX_INT_MODE_MSI
,
2796 .timer_period_max
= 1 << FRF_AB_TC_TIMER_VAL_WIDTH
,
2797 .offload_features
= NETIF_F_IP_CSUM
,
2801 const struct efx_nic_type falcon_b0_nic_type
= {
2803 .mem_bar
= EFX_MEM_BAR
,
2804 .mem_map_size
= falcon_b0_mem_map_size
,
2805 .probe
= falcon_probe_nic
,
2806 .remove
= falcon_remove_nic
,
2807 .init
= falcon_init_nic
,
2808 .dimension_resources
= falcon_dimension_resources
,
2809 .fini
= efx_port_dummy_op_void
,
2810 .monitor
= falcon_monitor
,
2811 .map_reset_reason
= falcon_map_reset_reason
,
2812 .map_reset_flags
= falcon_map_reset_flags
,
2813 .reset
= falcon_reset_hw
,
2814 .probe_port
= falcon_probe_port
,
2815 .remove_port
= falcon_remove_port
,
2816 .handle_global_event
= falcon_handle_global_event
,
2817 .fini_dmaq
= efx_farch_fini_dmaq
,
2818 .prepare_flush
= falcon_prepare_flush
,
2819 .finish_flush
= efx_port_dummy_op_void
,
2820 .prepare_flr
= efx_port_dummy_op_void
,
2821 .finish_flr
= efx_farch_finish_flr
,
2822 .describe_stats
= falcon_describe_nic_stats
,
2823 .update_stats
= falcon_update_nic_stats
,
2824 .start_stats
= falcon_start_nic_stats
,
2825 .pull_stats
= falcon_pull_nic_stats
,
2826 .stop_stats
= falcon_stop_nic_stats
,
2827 .set_id_led
= falcon_set_id_led
,
2828 .push_irq_moderation
= falcon_push_irq_moderation
,
2829 .reconfigure_port
= falcon_reconfigure_port
,
2830 .prepare_enable_fc_tx
= falcon_b0_prepare_enable_fc_tx
,
2831 .reconfigure_mac
= falcon_reconfigure_xmac
,
2832 .check_mac_fault
= falcon_xmac_check_fault
,
2833 .get_wol
= falcon_get_wol
,
2834 .set_wol
= falcon_set_wol
,
2835 .resume_wol
= efx_port_dummy_op_void
,
2836 .test_chip
= falcon_b0_test_chip
,
2837 .test_nvram
= falcon_test_nvram
,
2838 .irq_enable_master
= efx_farch_irq_enable_master
,
2839 .irq_test_generate
= efx_farch_irq_test_generate
,
2840 .irq_disable_non_ev
= efx_farch_irq_disable_master
,
2841 .irq_handle_msi
= efx_farch_msi_interrupt
,
2842 .irq_handle_legacy
= efx_farch_legacy_interrupt
,
2843 .tx_probe
= efx_farch_tx_probe
,
2844 .tx_init
= efx_farch_tx_init
,
2845 .tx_remove
= efx_farch_tx_remove
,
2846 .tx_write
= efx_farch_tx_write
,
2847 .rx_push_rss_config
= falcon_b0_rx_push_rss_config
,
2848 .rx_probe
= efx_farch_rx_probe
,
2849 .rx_init
= efx_farch_rx_init
,
2850 .rx_remove
= efx_farch_rx_remove
,
2851 .rx_write
= efx_farch_rx_write
,
2852 .rx_defer_refill
= efx_farch_rx_defer_refill
,
2853 .ev_probe
= efx_farch_ev_probe
,
2854 .ev_init
= efx_farch_ev_init
,
2855 .ev_fini
= efx_farch_ev_fini
,
2856 .ev_remove
= efx_farch_ev_remove
,
2857 .ev_process
= efx_farch_ev_process
,
2858 .ev_read_ack
= efx_farch_ev_read_ack
,
2859 .ev_test_generate
= efx_farch_ev_test_generate
,
2860 .filter_table_probe
= efx_farch_filter_table_probe
,
2861 .filter_table_restore
= efx_farch_filter_table_restore
,
2862 .filter_table_remove
= efx_farch_filter_table_remove
,
2863 .filter_update_rx_scatter
= efx_farch_filter_update_rx_scatter
,
2864 .filter_insert
= efx_farch_filter_insert
,
2865 .filter_remove_safe
= efx_farch_filter_remove_safe
,
2866 .filter_get_safe
= efx_farch_filter_get_safe
,
2867 .filter_clear_rx
= efx_farch_filter_clear_rx
,
2868 .filter_count_rx_used
= efx_farch_filter_count_rx_used
,
2869 .filter_get_rx_id_limit
= efx_farch_filter_get_rx_id_limit
,
2870 .filter_get_rx_ids
= efx_farch_filter_get_rx_ids
,
2871 #ifdef CONFIG_RFS_ACCEL
2872 .filter_rfs_insert
= efx_farch_filter_rfs_insert
,
2873 .filter_rfs_expire_one
= efx_farch_filter_rfs_expire_one
,
2875 #ifdef CONFIG_SFC_MTD
2876 .mtd_probe
= falcon_mtd_probe
,
2877 .mtd_rename
= falcon_mtd_rename
,
2878 .mtd_read
= falcon_mtd_read
,
2879 .mtd_erase
= falcon_mtd_erase
,
2880 .mtd_write
= falcon_mtd_write
,
2881 .mtd_sync
= falcon_mtd_sync
,
2884 .revision
= EFX_REV_FALCON_B0
,
2885 .txd_ptr_tbl_base
= FR_BZ_TX_DESC_PTR_TBL
,
2886 .rxd_ptr_tbl_base
= FR_BZ_RX_DESC_PTR_TBL
,
2887 .buf_tbl_base
= FR_BZ_BUF_FULL_TBL
,
2888 .evq_ptr_tbl_base
= FR_BZ_EVQ_PTR_TBL
,
2889 .evq_rptr_tbl_base
= FR_BZ_EVQ_RPTR
,
2890 .max_dma_mask
= DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH
),
2891 .rx_prefix_size
= FS_BZ_RX_PREFIX_SIZE
,
2892 .rx_hash_offset
= FS_BZ_RX_PREFIX_HASH_OFST
,
2893 .rx_buffer_padding
= 0,
2894 .can_rx_scatter
= true,
2895 .max_interrupt_mode
= EFX_INT_MODE_MSIX
,
2896 .timer_period_max
= 1 << FRF_AB_TC_TIMER_VAL_WIDTH
,
2897 .offload_features
= NETIF_F_IP_CSUM
| NETIF_F_RXHASH
| NETIF_F_NTUPLE
,
2899 .max_rx_ip_filters
= FR_BZ_RX_FILTER_TBL0_ROWS
,