1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2008-2013 Solarflare Communications Inc.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
10 #include <linux/delay.h>
11 #include <linux/moduleparam.h>
12 #include <linux/atomic.h>
13 #include "net_driver.h"
16 #include "farch_regs.h"
17 #include "mcdi_pcol.h"
20 /**************************************************************************
22 * Management-Controller-to-Driver Interface
24 **************************************************************************
27 #define MCDI_RPC_TIMEOUT (10 * HZ)
29 /* A reboot/assertion causes the MCDI status word to be set after the
30 * command word is set or a REBOOT event is sent. If we notice a reboot
31 * via these mechanisms then wait 250ms for the status word to be set.
33 #define MCDI_STATUS_DELAY_US 100
34 #define MCDI_STATUS_DELAY_COUNT 2500
35 #define MCDI_STATUS_SLEEP_MS \
36 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
39 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
41 struct efx_mcdi_async_param
{
42 struct list_head list
;
47 efx_mcdi_async_completer
*complete
;
49 /* followed by request/response buffer */
52 static void efx_mcdi_timeout_async(unsigned long context
);
53 static int efx_mcdi_drv_attach(struct efx_nic
*efx
, bool driver_operating
,
54 bool *was_attached_out
);
55 static bool efx_mcdi_poll_once(struct efx_nic
*efx
);
56 static void efx_mcdi_abandon(struct efx_nic
*efx
);
58 #ifdef CONFIG_SFC_MCDI_LOGGING
59 static bool mcdi_logging_default
;
60 module_param(mcdi_logging_default
, bool, 0644);
61 MODULE_PARM_DESC(mcdi_logging_default
,
62 "Enable MCDI logging on newly-probed functions");
65 int efx_mcdi_init(struct efx_nic
*efx
)
67 struct efx_mcdi_iface
*mcdi
;
68 bool already_attached
;
71 efx
->mcdi
= kzalloc(sizeof(*efx
->mcdi
), GFP_KERNEL
);
77 #ifdef CONFIG_SFC_MCDI_LOGGING
78 /* consuming code assumes buffer is page-sized */
79 mcdi
->logging_buffer
= (char *)__get_free_page(GFP_KERNEL
);
80 if (!mcdi
->logging_buffer
)
82 mcdi
->logging_enabled
= mcdi_logging_default
;
84 init_waitqueue_head(&mcdi
->wq
);
85 init_waitqueue_head(&mcdi
->proxy_rx_wq
);
86 spin_lock_init(&mcdi
->iface_lock
);
87 mcdi
->state
= MCDI_STATE_QUIESCENT
;
88 mcdi
->mode
= MCDI_MODE_POLL
;
89 spin_lock_init(&mcdi
->async_lock
);
90 INIT_LIST_HEAD(&mcdi
->async_list
);
91 setup_timer(&mcdi
->async_timer
, efx_mcdi_timeout_async
,
94 (void) efx_mcdi_poll_reboot(efx
);
95 mcdi
->new_epoch
= true;
97 /* Recover from a failed assertion before probing */
98 rc
= efx_mcdi_handle_assertion(efx
);
102 /* Let the MC (and BMC, if this is a LOM) know that the driver
103 * is loaded. We should do this before we reset the NIC.
105 rc
= efx_mcdi_drv_attach(efx
, true, &already_attached
);
107 netif_err(efx
, probe
, efx
->net_dev
,
108 "Unable to register driver with MCPU\n");
111 if (already_attached
)
112 /* Not a fatal error */
113 netif_err(efx
, probe
, efx
->net_dev
,
114 "Host already registered with MCPU\n");
116 if (efx
->mcdi
->fn_flags
&
117 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
))
122 #ifdef CONFIG_SFC_MCDI_LOGGING
123 free_page((unsigned long)mcdi
->logging_buffer
);
132 void efx_mcdi_fini(struct efx_nic
*efx
)
137 BUG_ON(efx
->mcdi
->iface
.state
!= MCDI_STATE_QUIESCENT
);
139 /* Relinquish the device (back to the BMC, if this is a LOM) */
140 efx_mcdi_drv_attach(efx
, false, NULL
);
142 #ifdef CONFIG_SFC_MCDI_LOGGING
143 free_page((unsigned long)efx
->mcdi
->iface
.logging_buffer
);
149 static void efx_mcdi_send_request(struct efx_nic
*efx
, unsigned cmd
,
150 const efx_dword_t
*inbuf
, size_t inlen
)
152 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
153 #ifdef CONFIG_SFC_MCDI_LOGGING
154 char *buf
= mcdi
->logging_buffer
; /* page-sized */
160 BUG_ON(mcdi
->state
== MCDI_STATE_QUIESCENT
);
162 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
163 spin_lock_bh(&mcdi
->iface_lock
);
165 spin_unlock_bh(&mcdi
->iface_lock
);
167 seqno
= mcdi
->seqno
& SEQ_MASK
;
169 if (mcdi
->mode
== MCDI_MODE_EVENTS
)
170 xflags
|= MCDI_HEADER_XFLAGS_EVREQ
;
172 if (efx
->type
->mcdi_max_ver
== 1) {
174 EFX_POPULATE_DWORD_7(hdr
[0],
175 MCDI_HEADER_RESPONSE
, 0,
176 MCDI_HEADER_RESYNC
, 1,
177 MCDI_HEADER_CODE
, cmd
,
178 MCDI_HEADER_DATALEN
, inlen
,
179 MCDI_HEADER_SEQ
, seqno
,
180 MCDI_HEADER_XFLAGS
, xflags
,
181 MCDI_HEADER_NOT_EPOCH
, !mcdi
->new_epoch
);
185 BUG_ON(inlen
> MCDI_CTL_SDU_LEN_MAX_V2
);
186 EFX_POPULATE_DWORD_7(hdr
[0],
187 MCDI_HEADER_RESPONSE
, 0,
188 MCDI_HEADER_RESYNC
, 1,
189 MCDI_HEADER_CODE
, MC_CMD_V2_EXTN
,
190 MCDI_HEADER_DATALEN
, 0,
191 MCDI_HEADER_SEQ
, seqno
,
192 MCDI_HEADER_XFLAGS
, xflags
,
193 MCDI_HEADER_NOT_EPOCH
, !mcdi
->new_epoch
);
194 EFX_POPULATE_DWORD_2(hdr
[1],
195 MC_CMD_V2_EXTN_IN_EXTENDED_CMD
, cmd
,
196 MC_CMD_V2_EXTN_IN_ACTUAL_LEN
, inlen
);
200 #ifdef CONFIG_SFC_MCDI_LOGGING
201 if (mcdi
->logging_enabled
&& !WARN_ON_ONCE(!buf
)) {
204 /* Lengths should always be a whole number of dwords, so scream
207 WARN_ON_ONCE(hdr_len
% 4);
208 WARN_ON_ONCE(inlen
% 4);
210 /* We own the logging buffer, as only one MCDI can be in
211 * progress on a NIC at any one time. So no need for locking.
213 for (i
= 0; i
< hdr_len
/ 4 && bytes
< PAGE_SIZE
; i
++)
214 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
215 " %08x", le32_to_cpu(hdr
[i
].u32
[0]));
217 for (i
= 0; i
< inlen
/ 4 && bytes
< PAGE_SIZE
; i
++)
218 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
219 " %08x", le32_to_cpu(inbuf
[i
].u32
[0]));
221 netif_info(efx
, hw
, efx
->net_dev
, "MCDI RPC REQ:%s\n", buf
);
225 efx
->type
->mcdi_request(efx
, hdr
, hdr_len
, inbuf
, inlen
);
227 mcdi
->new_epoch
= false;
230 static int efx_mcdi_errno(unsigned int mcdi_err
)
235 #define TRANSLATE_ERROR(name) \
236 case MC_CMD_ERR_ ## name: \
238 TRANSLATE_ERROR(EPERM
);
239 TRANSLATE_ERROR(ENOENT
);
240 TRANSLATE_ERROR(EINTR
);
241 TRANSLATE_ERROR(EAGAIN
);
242 TRANSLATE_ERROR(EACCES
);
243 TRANSLATE_ERROR(EBUSY
);
244 TRANSLATE_ERROR(EINVAL
);
245 TRANSLATE_ERROR(EDEADLK
);
246 TRANSLATE_ERROR(ENOSYS
);
247 TRANSLATE_ERROR(ETIME
);
248 TRANSLATE_ERROR(EALREADY
);
249 TRANSLATE_ERROR(ENOSPC
);
250 #undef TRANSLATE_ERROR
251 case MC_CMD_ERR_ENOTSUP
:
253 case MC_CMD_ERR_ALLOC_FAIL
:
255 case MC_CMD_ERR_MAC_EXIST
:
262 static void efx_mcdi_read_response_header(struct efx_nic
*efx
)
264 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
265 unsigned int respseq
, respcmd
, error
;
266 #ifdef CONFIG_SFC_MCDI_LOGGING
267 char *buf
= mcdi
->logging_buffer
; /* page-sized */
271 efx
->type
->mcdi_read_response(efx
, &hdr
, 0, 4);
272 respseq
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_SEQ
);
273 respcmd
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_CODE
);
274 error
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_ERROR
);
276 if (respcmd
!= MC_CMD_V2_EXTN
) {
277 mcdi
->resp_hdr_len
= 4;
278 mcdi
->resp_data_len
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_DATALEN
);
280 efx
->type
->mcdi_read_response(efx
, &hdr
, 4, 4);
281 mcdi
->resp_hdr_len
= 8;
282 mcdi
->resp_data_len
=
283 EFX_DWORD_FIELD(hdr
, MC_CMD_V2_EXTN_IN_ACTUAL_LEN
);
286 #ifdef CONFIG_SFC_MCDI_LOGGING
287 if (mcdi
->logging_enabled
&& !WARN_ON_ONCE(!buf
)) {
288 size_t hdr_len
, data_len
;
292 WARN_ON_ONCE(mcdi
->resp_hdr_len
% 4);
293 hdr_len
= mcdi
->resp_hdr_len
/ 4;
294 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
295 * to dword size, and the MCDI buffer is always dword size
297 data_len
= DIV_ROUND_UP(mcdi
->resp_data_len
, 4);
299 /* We own the logging buffer, as only one MCDI can be in
300 * progress on a NIC at any one time. So no need for locking.
302 for (i
= 0; i
< hdr_len
&& bytes
< PAGE_SIZE
; i
++) {
303 efx
->type
->mcdi_read_response(efx
, &hdr
, (i
* 4), 4);
304 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
305 " %08x", le32_to_cpu(hdr
.u32
[0]));
308 for (i
= 0; i
< data_len
&& bytes
< PAGE_SIZE
; i
++) {
309 efx
->type
->mcdi_read_response(efx
, &hdr
,
310 mcdi
->resp_hdr_len
+ (i
* 4), 4);
311 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
312 " %08x", le32_to_cpu(hdr
.u32
[0]));
315 netif_info(efx
, hw
, efx
->net_dev
, "MCDI RPC RESP:%s\n", buf
);
319 mcdi
->resprc_raw
= 0;
320 if (error
&& mcdi
->resp_data_len
== 0) {
321 netif_err(efx
, hw
, efx
->net_dev
, "MC rebooted\n");
323 } else if ((respseq
^ mcdi
->seqno
) & SEQ_MASK
) {
324 netif_err(efx
, hw
, efx
->net_dev
,
325 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
326 respseq
, mcdi
->seqno
);
329 efx
->type
->mcdi_read_response(efx
, &hdr
, mcdi
->resp_hdr_len
, 4);
330 mcdi
->resprc_raw
= EFX_DWORD_FIELD(hdr
, EFX_DWORD_0
);
331 mcdi
->resprc
= efx_mcdi_errno(mcdi
->resprc_raw
);
337 static bool efx_mcdi_poll_once(struct efx_nic
*efx
)
339 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
342 if (!efx
->type
->mcdi_poll_response(efx
))
345 spin_lock_bh(&mcdi
->iface_lock
);
346 efx_mcdi_read_response_header(efx
);
347 spin_unlock_bh(&mcdi
->iface_lock
);
352 static int efx_mcdi_poll(struct efx_nic
*efx
)
354 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
355 unsigned long time
, finish
;
359 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
360 rc
= efx_mcdi_poll_reboot(efx
);
362 spin_lock_bh(&mcdi
->iface_lock
);
364 mcdi
->resp_hdr_len
= 0;
365 mcdi
->resp_data_len
= 0;
366 spin_unlock_bh(&mcdi
->iface_lock
);
370 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
371 * because generally mcdi responses are fast. After that, back off
372 * and poll once a jiffy (approximately)
375 finish
= jiffies
+ MCDI_RPC_TIMEOUT
;
382 schedule_timeout_uninterruptible(1);
387 if (efx_mcdi_poll_once(efx
))
390 if (time_after(time
, finish
))
394 /* Return rc=0 like wait_event_timeout() */
398 /* Test and clear MC-rebooted flag for this port/function; reset
399 * software state as necessary.
401 int efx_mcdi_poll_reboot(struct efx_nic
*efx
)
406 return efx
->type
->mcdi_poll_reboot(efx
);
409 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface
*mcdi
)
411 return cmpxchg(&mcdi
->state
,
412 MCDI_STATE_QUIESCENT
, MCDI_STATE_RUNNING_ASYNC
) ==
413 MCDI_STATE_QUIESCENT
;
416 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface
*mcdi
)
418 /* Wait until the interface becomes QUIESCENT and we win the race
419 * to mark it RUNNING_SYNC.
422 cmpxchg(&mcdi
->state
,
423 MCDI_STATE_QUIESCENT
, MCDI_STATE_RUNNING_SYNC
) ==
424 MCDI_STATE_QUIESCENT
);
427 static int efx_mcdi_await_completion(struct efx_nic
*efx
)
429 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
431 if (wait_event_timeout(mcdi
->wq
, mcdi
->state
== MCDI_STATE_COMPLETED
,
432 MCDI_RPC_TIMEOUT
) == 0)
435 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
436 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
437 * completed the request first, then we'll just end up completing the
438 * request again, which is safe.
440 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
441 * wait_event_timeout() implicitly provides.
443 if (mcdi
->mode
== MCDI_MODE_POLL
)
444 return efx_mcdi_poll(efx
);
449 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
450 * requester. Return whether this was done. Does not take any locks.
452 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface
*mcdi
)
454 if (cmpxchg(&mcdi
->state
,
455 MCDI_STATE_RUNNING_SYNC
, MCDI_STATE_COMPLETED
) ==
456 MCDI_STATE_RUNNING_SYNC
) {
464 static void efx_mcdi_release(struct efx_mcdi_iface
*mcdi
)
466 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
467 struct efx_mcdi_async_param
*async
;
468 struct efx_nic
*efx
= mcdi
->efx
;
470 /* Process the asynchronous request queue */
471 spin_lock_bh(&mcdi
->async_lock
);
472 async
= list_first_entry_or_null(
473 &mcdi
->async_list
, struct efx_mcdi_async_param
, list
);
475 mcdi
->state
= MCDI_STATE_RUNNING_ASYNC
;
476 efx_mcdi_send_request(efx
, async
->cmd
,
477 (const efx_dword_t
*)(async
+ 1),
479 mod_timer(&mcdi
->async_timer
,
480 jiffies
+ MCDI_RPC_TIMEOUT
);
482 spin_unlock_bh(&mcdi
->async_lock
);
488 mcdi
->state
= MCDI_STATE_QUIESCENT
;
492 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
493 * asynchronous completion function, and release the interface.
494 * Return whether this was done. Must be called in bh-disabled
495 * context. Will take iface_lock and async_lock.
497 static bool efx_mcdi_complete_async(struct efx_mcdi_iface
*mcdi
, bool timeout
)
499 struct efx_nic
*efx
= mcdi
->efx
;
500 struct efx_mcdi_async_param
*async
;
501 size_t hdr_len
, data_len
, err_len
;
503 MCDI_DECLARE_BUF_ERR(errbuf
);
506 if (cmpxchg(&mcdi
->state
,
507 MCDI_STATE_RUNNING_ASYNC
, MCDI_STATE_COMPLETED
) !=
508 MCDI_STATE_RUNNING_ASYNC
)
511 spin_lock(&mcdi
->iface_lock
);
513 /* Ensure that if the completion event arrives later,
514 * the seqno check in efx_mcdi_ev_cpl() will fail
523 hdr_len
= mcdi
->resp_hdr_len
;
524 data_len
= mcdi
->resp_data_len
;
526 spin_unlock(&mcdi
->iface_lock
);
528 /* Stop the timer. In case the timer function is running, we
529 * must wait for it to return so that there is no possibility
530 * of it aborting the next request.
533 del_timer_sync(&mcdi
->async_timer
);
535 spin_lock(&mcdi
->async_lock
);
536 async
= list_first_entry(&mcdi
->async_list
,
537 struct efx_mcdi_async_param
, list
);
538 list_del(&async
->list
);
539 spin_unlock(&mcdi
->async_lock
);
541 outbuf
= (efx_dword_t
*)(async
+ 1);
542 efx
->type
->mcdi_read_response(efx
, outbuf
, hdr_len
,
543 min(async
->outlen
, data_len
));
544 if (!timeout
&& rc
&& !async
->quiet
) {
545 err_len
= min(sizeof(errbuf
), data_len
);
546 efx
->type
->mcdi_read_response(efx
, errbuf
, hdr_len
,
548 efx_mcdi_display_error(efx
, async
->cmd
, async
->inlen
, errbuf
,
551 async
->complete(efx
, async
->cookie
, rc
, outbuf
, data_len
);
554 efx_mcdi_release(mcdi
);
559 static void efx_mcdi_ev_cpl(struct efx_nic
*efx
, unsigned int seqno
,
560 unsigned int datalen
, unsigned int mcdi_err
)
562 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
565 spin_lock(&mcdi
->iface_lock
);
567 if ((seqno
^ mcdi
->seqno
) & SEQ_MASK
) {
569 /* The request has been cancelled */
572 netif_err(efx
, hw
, efx
->net_dev
,
573 "MC response mismatch tx seq 0x%x rx "
574 "seq 0x%x\n", seqno
, mcdi
->seqno
);
576 if (efx
->type
->mcdi_max_ver
>= 2) {
577 /* MCDI v2 responses don't fit in an event */
578 efx_mcdi_read_response_header(efx
);
580 mcdi
->resprc
= efx_mcdi_errno(mcdi_err
);
581 mcdi
->resp_hdr_len
= 4;
582 mcdi
->resp_data_len
= datalen
;
588 spin_unlock(&mcdi
->iface_lock
);
591 if (!efx_mcdi_complete_async(mcdi
, false))
592 (void) efx_mcdi_complete_sync(mcdi
);
594 /* If the interface isn't RUNNING_ASYNC or
595 * RUNNING_SYNC then we've received a duplicate
596 * completion after we've already transitioned back to
597 * QUIESCENT. [A subsequent invocation would increment
598 * seqno, so would have failed the seqno check].
603 static void efx_mcdi_timeout_async(unsigned long context
)
605 struct efx_mcdi_iface
*mcdi
= (struct efx_mcdi_iface
*)context
;
607 efx_mcdi_complete_async(mcdi
, true);
611 efx_mcdi_check_supported(struct efx_nic
*efx
, unsigned int cmd
, size_t inlen
)
613 if (efx
->type
->mcdi_max_ver
< 0 ||
614 (efx
->type
->mcdi_max_ver
< 2 &&
615 cmd
> MC_CMD_CMD_SPACE_ESCAPE_7
))
618 if (inlen
> MCDI_CTL_SDU_LEN_MAX_V2
||
619 (efx
->type
->mcdi_max_ver
< 2 &&
620 inlen
> MCDI_CTL_SDU_LEN_MAX_V1
))
626 static bool efx_mcdi_get_proxy_handle(struct efx_nic
*efx
,
627 size_t hdr_len
, size_t data_len
,
630 MCDI_DECLARE_BUF_ERR(testbuf
);
631 const size_t buflen
= sizeof(testbuf
);
633 if (!proxy_handle
|| data_len
< buflen
)
636 efx
->type
->mcdi_read_response(efx
, testbuf
, hdr_len
, buflen
);
637 if (MCDI_DWORD(testbuf
, ERR_CODE
) == MC_CMD_ERR_PROXY_PENDING
) {
638 *proxy_handle
= MCDI_DWORD(testbuf
, ERR_PROXY_PENDING_HANDLE
);
645 static int _efx_mcdi_rpc_finish(struct efx_nic
*efx
, unsigned int cmd
,
647 efx_dword_t
*outbuf
, size_t outlen
,
648 size_t *outlen_actual
, bool quiet
,
649 u32
*proxy_handle
, int *raw_rc
)
651 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
652 MCDI_DECLARE_BUF_ERR(errbuf
);
655 if (mcdi
->mode
== MCDI_MODE_POLL
)
656 rc
= efx_mcdi_poll(efx
);
658 rc
= efx_mcdi_await_completion(efx
);
661 netif_err(efx
, hw
, efx
->net_dev
,
662 "MC command 0x%x inlen %d mode %d timed out\n",
663 cmd
, (int)inlen
, mcdi
->mode
);
665 if (mcdi
->mode
== MCDI_MODE_EVENTS
&& efx_mcdi_poll_once(efx
)) {
666 netif_err(efx
, hw
, efx
->net_dev
,
667 "MCDI request was completed without an event\n");
671 efx_mcdi_abandon(efx
);
673 /* Close the race with efx_mcdi_ev_cpl() executing just too late
674 * and completing a request we've just cancelled, by ensuring
675 * that the seqno check therein fails.
677 spin_lock_bh(&mcdi
->iface_lock
);
680 spin_unlock_bh(&mcdi
->iface_lock
);
690 size_t hdr_len
, data_len
, err_len
;
692 /* At the very least we need a memory barrier here to ensure
693 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
694 * a spurious efx_mcdi_ev_cpl() running concurrently by
695 * acquiring the iface_lock. */
696 spin_lock_bh(&mcdi
->iface_lock
);
699 *raw_rc
= mcdi
->resprc_raw
;
700 hdr_len
= mcdi
->resp_hdr_len
;
701 data_len
= mcdi
->resp_data_len
;
702 err_len
= min(sizeof(errbuf
), data_len
);
703 spin_unlock_bh(&mcdi
->iface_lock
);
707 efx
->type
->mcdi_read_response(efx
, outbuf
, hdr_len
,
708 min(outlen
, data_len
));
710 *outlen_actual
= data_len
;
712 efx
->type
->mcdi_read_response(efx
, errbuf
, hdr_len
, err_len
);
714 if (cmd
== MC_CMD_REBOOT
&& rc
== -EIO
) {
715 /* Don't reset if MC_CMD_REBOOT returns EIO */
716 } else if (rc
== -EIO
|| rc
== -EINTR
) {
717 netif_err(efx
, hw
, efx
->net_dev
, "MC fatal error %d\n",
719 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
720 } else if (proxy_handle
&& (rc
== -EPROTO
) &&
721 efx_mcdi_get_proxy_handle(efx
, hdr_len
, data_len
,
723 mcdi
->proxy_rx_status
= 0;
724 mcdi
->proxy_rx_handle
= 0;
725 mcdi
->state
= MCDI_STATE_PROXY_WAIT
;
726 } else if (rc
&& !quiet
) {
727 efx_mcdi_display_error(efx
, cmd
, inlen
, errbuf
, err_len
,
731 if (rc
== -EIO
|| rc
== -EINTR
) {
732 msleep(MCDI_STATUS_SLEEP_MS
);
733 efx_mcdi_poll_reboot(efx
);
734 mcdi
->new_epoch
= true;
738 if (!proxy_handle
|| !*proxy_handle
)
739 efx_mcdi_release(mcdi
);
743 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface
*mcdi
)
745 if (mcdi
->state
== MCDI_STATE_PROXY_WAIT
) {
746 /* Interrupt the proxy wait. */
747 mcdi
->proxy_rx_status
= -EINTR
;
748 wake_up(&mcdi
->proxy_rx_wq
);
752 static void efx_mcdi_ev_proxy_response(struct efx_nic
*efx
,
753 u32 handle
, int status
)
755 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
757 WARN_ON(mcdi
->state
!= MCDI_STATE_PROXY_WAIT
);
759 mcdi
->proxy_rx_status
= efx_mcdi_errno(status
);
760 /* Ensure the status is written before we update the handle, since the
761 * latter is used to check if we've finished.
764 mcdi
->proxy_rx_handle
= handle
;
765 wake_up(&mcdi
->proxy_rx_wq
);
768 static int efx_mcdi_proxy_wait(struct efx_nic
*efx
, u32 handle
, bool quiet
)
770 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
773 /* Wait for a proxy event, or timeout. */
774 rc
= wait_event_timeout(mcdi
->proxy_rx_wq
,
775 mcdi
->proxy_rx_handle
!= 0 ||
776 mcdi
->proxy_rx_status
== -EINTR
,
780 netif_dbg(efx
, hw
, efx
->net_dev
,
781 "MCDI proxy timeout %d\n", handle
);
783 } else if (mcdi
->proxy_rx_handle
!= handle
) {
784 netif_warn(efx
, hw
, efx
->net_dev
,
785 "MCDI proxy unexpected handle %d (expected %d)\n",
786 mcdi
->proxy_rx_handle
, handle
);
790 return mcdi
->proxy_rx_status
;
793 static int _efx_mcdi_rpc(struct efx_nic
*efx
, unsigned int cmd
,
794 const efx_dword_t
*inbuf
, size_t inlen
,
795 efx_dword_t
*outbuf
, size_t outlen
,
796 size_t *outlen_actual
, bool quiet
, int *raw_rc
)
798 u32 proxy_handle
= 0; /* Zero is an invalid proxy handle. */
801 if (inbuf
&& inlen
&& (inbuf
== outbuf
)) {
802 /* The input buffer can't be aliased with the output. */
807 rc
= efx_mcdi_rpc_start(efx
, cmd
, inbuf
, inlen
);
811 rc
= _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
812 outlen_actual
, quiet
, &proxy_handle
, raw_rc
);
815 /* Handle proxy authorisation. This allows approval of MCDI
816 * operations to be delegated to the admin function, allowing
817 * fine control over (eg) multicast subscriptions.
819 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
821 netif_dbg(efx
, hw
, efx
->net_dev
,
822 "MCDI waiting for proxy auth %d\n",
824 rc
= efx_mcdi_proxy_wait(efx
, proxy_handle
, quiet
);
827 netif_dbg(efx
, hw
, efx
->net_dev
,
828 "MCDI proxy retry %d\n", proxy_handle
);
830 /* We now retry the original request. */
831 mcdi
->state
= MCDI_STATE_RUNNING_SYNC
;
832 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
834 rc
= _efx_mcdi_rpc_finish(efx
, cmd
, inlen
,
835 outbuf
, outlen
, outlen_actual
,
836 quiet
, NULL
, raw_rc
);
838 netif_printk(efx
, hw
,
839 rc
== -EPERM
? KERN_DEBUG
: KERN_ERR
,
841 "MC command 0x%x failed after proxy auth rc=%d\n",
844 if (rc
== -EINTR
|| rc
== -EIO
)
845 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
846 efx_mcdi_release(mcdi
);
853 static int _efx_mcdi_rpc_evb_retry(struct efx_nic
*efx
, unsigned cmd
,
854 const efx_dword_t
*inbuf
, size_t inlen
,
855 efx_dword_t
*outbuf
, size_t outlen
,
856 size_t *outlen_actual
, bool quiet
)
861 rc
= _efx_mcdi_rpc(efx
, cmd
, inbuf
, inlen
,
862 outbuf
, outlen
, outlen_actual
, true, &raw_rc
);
864 if ((rc
== -EPROTO
) && (raw_rc
== MC_CMD_ERR_NO_EVB_PORT
) &&
866 /* If the EVB port isn't available within a VF this may
867 * mean the PF is still bringing the switch up. We should
868 * retry our request shortly.
870 unsigned long abort_time
= jiffies
+ MCDI_RPC_TIMEOUT
;
871 unsigned int delay_us
= 10000;
873 netif_dbg(efx
, hw
, efx
->net_dev
,
874 "%s: NO_EVB_PORT; will retry request\n",
878 usleep_range(delay_us
, delay_us
+ 10000);
879 rc
= _efx_mcdi_rpc(efx
, cmd
, inbuf
, inlen
,
880 outbuf
, outlen
, outlen_actual
,
882 if (delay_us
< 100000)
884 } while ((rc
== -EPROTO
) &&
885 (raw_rc
== MC_CMD_ERR_NO_EVB_PORT
) &&
886 time_before(jiffies
, abort_time
));
889 if (rc
&& !quiet
&& !(cmd
== MC_CMD_REBOOT
&& rc
== -EIO
))
890 efx_mcdi_display_error(efx
, cmd
, inlen
,
897 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
898 * @efx: NIC through which to issue the command
899 * @cmd: Command type number
900 * @inbuf: Command parameters
901 * @inlen: Length of command parameters, in bytes. Must be a multiple
902 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
903 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
904 * @outlen: Length of response buffer, in bytes. If the actual
905 * response is longer than @outlen & ~3, it will be truncated
907 * @outlen_actual: Pointer through which to return the actual response
908 * length. May be %NULL if this is not needed.
910 * This function may sleep and therefore must be called in an appropriate
913 * Return: A negative error code, or zero if successful. The error
914 * code may come from the MCDI response or may indicate a failure
915 * to communicate with the MC. In the former case, the response
916 * will still be copied to @outbuf and *@outlen_actual will be
917 * set accordingly. In the latter case, *@outlen_actual will be
920 int efx_mcdi_rpc(struct efx_nic
*efx
, unsigned cmd
,
921 const efx_dword_t
*inbuf
, size_t inlen
,
922 efx_dword_t
*outbuf
, size_t outlen
,
923 size_t *outlen_actual
)
925 return _efx_mcdi_rpc_evb_retry(efx
, cmd
, inbuf
, inlen
, outbuf
, outlen
,
926 outlen_actual
, false);
929 /* Normally, on receiving an error code in the MCDI response,
930 * efx_mcdi_rpc will log an error message containing (among other
931 * things) the raw error code, by means of efx_mcdi_display_error.
932 * This _quiet version suppresses that; if the caller wishes to log
933 * the error conditionally on the return code, it should call this
934 * function and is then responsible for calling efx_mcdi_display_error
937 int efx_mcdi_rpc_quiet(struct efx_nic
*efx
, unsigned cmd
,
938 const efx_dword_t
*inbuf
, size_t inlen
,
939 efx_dword_t
*outbuf
, size_t outlen
,
940 size_t *outlen_actual
)
942 return _efx_mcdi_rpc_evb_retry(efx
, cmd
, inbuf
, inlen
, outbuf
, outlen
,
943 outlen_actual
, true);
946 int efx_mcdi_rpc_start(struct efx_nic
*efx
, unsigned cmd
,
947 const efx_dword_t
*inbuf
, size_t inlen
)
949 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
952 rc
= efx_mcdi_check_supported(efx
, cmd
, inlen
);
956 if (efx
->mc_bist_for_other_fn
)
959 if (mcdi
->mode
== MCDI_MODE_FAIL
)
962 efx_mcdi_acquire_sync(mcdi
);
963 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
967 static int _efx_mcdi_rpc_async(struct efx_nic
*efx
, unsigned int cmd
,
968 const efx_dword_t
*inbuf
, size_t inlen
,
970 efx_mcdi_async_completer
*complete
,
971 unsigned long cookie
, bool quiet
)
973 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
974 struct efx_mcdi_async_param
*async
;
977 rc
= efx_mcdi_check_supported(efx
, cmd
, inlen
);
981 if (efx
->mc_bist_for_other_fn
)
984 async
= kmalloc(sizeof(*async
) + ALIGN(max(inlen
, outlen
), 4),
990 async
->inlen
= inlen
;
991 async
->outlen
= outlen
;
992 async
->quiet
= quiet
;
993 async
->complete
= complete
;
994 async
->cookie
= cookie
;
995 memcpy(async
+ 1, inbuf
, inlen
);
997 spin_lock_bh(&mcdi
->async_lock
);
999 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
1000 list_add_tail(&async
->list
, &mcdi
->async_list
);
1002 /* If this is at the front of the queue, try to start it
1005 if (mcdi
->async_list
.next
== &async
->list
&&
1006 efx_mcdi_acquire_async(mcdi
)) {
1007 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
1008 mod_timer(&mcdi
->async_timer
,
1009 jiffies
+ MCDI_RPC_TIMEOUT
);
1016 spin_unlock_bh(&mcdi
->async_lock
);
1022 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1023 * @efx: NIC through which to issue the command
1024 * @cmd: Command type number
1025 * @inbuf: Command parameters
1026 * @inlen: Length of command parameters, in bytes
1027 * @outlen: Length to allocate for response buffer, in bytes
1028 * @complete: Function to be called on completion or cancellation.
1029 * @cookie: Arbitrary value to be passed to @complete.
1031 * This function does not sleep and therefore may be called in atomic
1032 * context. It will fail if event queues are disabled or if MCDI
1033 * event completions have been disabled due to an error.
1035 * If it succeeds, the @complete function will be called exactly once
1036 * in atomic context, when one of the following occurs:
1037 * (a) the completion event is received (in NAPI context)
1038 * (b) event queues are disabled (in the process that disables them)
1039 * (c) the request times-out (in timer context)
1042 efx_mcdi_rpc_async(struct efx_nic
*efx
, unsigned int cmd
,
1043 const efx_dword_t
*inbuf
, size_t inlen
, size_t outlen
,
1044 efx_mcdi_async_completer
*complete
, unsigned long cookie
)
1046 return _efx_mcdi_rpc_async(efx
, cmd
, inbuf
, inlen
, outlen
, complete
,
1050 int efx_mcdi_rpc_async_quiet(struct efx_nic
*efx
, unsigned int cmd
,
1051 const efx_dword_t
*inbuf
, size_t inlen
,
1052 size_t outlen
, efx_mcdi_async_completer
*complete
,
1053 unsigned long cookie
)
1055 return _efx_mcdi_rpc_async(efx
, cmd
, inbuf
, inlen
, outlen
, complete
,
1059 int efx_mcdi_rpc_finish(struct efx_nic
*efx
, unsigned cmd
, size_t inlen
,
1060 efx_dword_t
*outbuf
, size_t outlen
,
1061 size_t *outlen_actual
)
1063 return _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
1064 outlen_actual
, false, NULL
, NULL
);
1067 int efx_mcdi_rpc_finish_quiet(struct efx_nic
*efx
, unsigned cmd
, size_t inlen
,
1068 efx_dword_t
*outbuf
, size_t outlen
,
1069 size_t *outlen_actual
)
1071 return _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
1072 outlen_actual
, true, NULL
, NULL
);
1075 void efx_mcdi_display_error(struct efx_nic
*efx
, unsigned cmd
,
1076 size_t inlen
, efx_dword_t
*outbuf
,
1077 size_t outlen
, int rc
)
1079 int code
= 0, err_arg
= 0;
1081 if (outlen
>= MC_CMD_ERR_CODE_OFST
+ 4)
1082 code
= MCDI_DWORD(outbuf
, ERR_CODE
);
1083 if (outlen
>= MC_CMD_ERR_ARG_OFST
+ 4)
1084 err_arg
= MCDI_DWORD(outbuf
, ERR_ARG
);
1085 netif_printk(efx
, hw
, rc
== -EPERM
? KERN_DEBUG
: KERN_ERR
,
1087 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1088 cmd
, inlen
, rc
, code
, err_arg
);
1091 /* Switch to polled MCDI completions. This can be called in various
1092 * error conditions with various locks held, so it must be lockless.
1093 * Caller is responsible for flushing asynchronous requests later.
1095 void efx_mcdi_mode_poll(struct efx_nic
*efx
)
1097 struct efx_mcdi_iface
*mcdi
;
1102 mcdi
= efx_mcdi(efx
);
1103 /* If already in polling mode, nothing to do.
1104 * If in fail-fast state, don't switch to polled completion.
1105 * FLR recovery will do that later.
1107 if (mcdi
->mode
== MCDI_MODE_POLL
|| mcdi
->mode
== MCDI_MODE_FAIL
)
1110 /* We can switch from event completion to polled completion, because
1111 * mcdi requests are always completed in shared memory. We do this by
1112 * switching the mode to POLL'd then completing the request.
1113 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1115 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1116 * which efx_mcdi_complete_sync() provides for us.
1118 mcdi
->mode
= MCDI_MODE_POLL
;
1120 efx_mcdi_complete_sync(mcdi
);
1123 /* Flush any running or queued asynchronous requests, after event processing
1126 void efx_mcdi_flush_async(struct efx_nic
*efx
)
1128 struct efx_mcdi_async_param
*async
, *next
;
1129 struct efx_mcdi_iface
*mcdi
;
1134 mcdi
= efx_mcdi(efx
);
1136 /* We must be in poll or fail mode so no more requests can be queued */
1137 BUG_ON(mcdi
->mode
== MCDI_MODE_EVENTS
);
1139 del_timer_sync(&mcdi
->async_timer
);
1141 /* If a request is still running, make sure we give the MC
1142 * time to complete it so that the response won't overwrite our
1145 if (mcdi
->state
== MCDI_STATE_RUNNING_ASYNC
) {
1147 mcdi
->state
= MCDI_STATE_QUIESCENT
;
1150 /* Nothing else will access the async list now, so it is safe
1151 * to walk it without holding async_lock. If we hold it while
1152 * calling a completer then lockdep may warn that we have
1153 * acquired locks in the wrong order.
1155 list_for_each_entry_safe(async
, next
, &mcdi
->async_list
, list
) {
1156 async
->complete(efx
, async
->cookie
, -ENETDOWN
, NULL
, 0);
1157 list_del(&async
->list
);
1162 void efx_mcdi_mode_event(struct efx_nic
*efx
)
1164 struct efx_mcdi_iface
*mcdi
;
1169 mcdi
= efx_mcdi(efx
);
1170 /* If already in event completion mode, nothing to do.
1171 * If in fail-fast state, don't switch to event completion. FLR
1172 * recovery will do that later.
1174 if (mcdi
->mode
== MCDI_MODE_EVENTS
|| mcdi
->mode
== MCDI_MODE_FAIL
)
1177 /* We can't switch from polled to event completion in the middle of a
1178 * request, because the completion method is specified in the request.
1179 * So acquire the interface to serialise the requestors. We don't need
1180 * to acquire the iface_lock to change the mode here, but we do need a
1181 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1182 * efx_mcdi_acquire() provides.
1184 efx_mcdi_acquire_sync(mcdi
);
1185 mcdi
->mode
= MCDI_MODE_EVENTS
;
1186 efx_mcdi_release(mcdi
);
1189 static void efx_mcdi_ev_death(struct efx_nic
*efx
, int rc
)
1191 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1193 /* If there is an outstanding MCDI request, it has been terminated
1194 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1195 * in polled mode, then do nothing because the MC reboot handler will
1196 * set the header correctly. However, if the mcdi interface is waiting
1197 * for a CMDDONE event it won't receive it [and since all MCDI events
1198 * are sent to the same queue, we can't be racing with
1199 * efx_mcdi_ev_cpl()]
1201 * If there is an outstanding asynchronous request, we can't
1202 * complete it now (efx_mcdi_complete() would deadlock). The
1203 * reset process will take care of this.
1205 * There's a race here with efx_mcdi_send_request(), because
1206 * we might receive a REBOOT event *before* the request has
1207 * been copied out. In polled mode (during startup) this is
1208 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1209 * event mode, this condition is just an edge-case of
1210 * receiving a REBOOT event after posting the MCDI
1211 * request. Did the mc reboot before or after the copyout? The
1212 * best we can do always is just return failure.
1214 * If there is an outstanding proxy response expected it is not going
1215 * to arrive. We should thus abort it.
1217 spin_lock(&mcdi
->iface_lock
);
1218 efx_mcdi_proxy_abort(mcdi
);
1220 if (efx_mcdi_complete_sync(mcdi
)) {
1221 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
1223 mcdi
->resp_hdr_len
= 0;
1224 mcdi
->resp_data_len
= 0;
1230 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1231 for (count
= 0; count
< MCDI_STATUS_DELAY_COUNT
; ++count
) {
1232 rc
= efx_mcdi_poll_reboot(efx
);
1235 udelay(MCDI_STATUS_DELAY_US
);
1238 /* On EF10, a CODE_MC_REBOOT event can be received without the
1239 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1240 * If zero was returned from the final call to
1241 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1242 * MC has definitely rebooted so prepare for the reset.
1244 if (!rc
&& efx
->type
->mcdi_reboot_detected
)
1245 efx
->type
->mcdi_reboot_detected(efx
);
1247 mcdi
->new_epoch
= true;
1249 /* Nobody was waiting for an MCDI request, so trigger a reset */
1250 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
1253 spin_unlock(&mcdi
->iface_lock
);
1256 /* The MC is going down in to BIST mode. set the BIST flag to block
1257 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1258 * (which doesn't actually execute a reset, it waits for the controlling
1259 * function to reset it).
1261 static void efx_mcdi_ev_bist(struct efx_nic
*efx
)
1263 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1265 spin_lock(&mcdi
->iface_lock
);
1266 efx
->mc_bist_for_other_fn
= true;
1267 efx_mcdi_proxy_abort(mcdi
);
1269 if (efx_mcdi_complete_sync(mcdi
)) {
1270 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
1271 mcdi
->resprc
= -EIO
;
1272 mcdi
->resp_hdr_len
= 0;
1273 mcdi
->resp_data_len
= 0;
1277 mcdi
->new_epoch
= true;
1278 efx_schedule_reset(efx
, RESET_TYPE_MC_BIST
);
1279 spin_unlock(&mcdi
->iface_lock
);
1282 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1285 static void efx_mcdi_abandon(struct efx_nic
*efx
)
1287 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1289 if (xchg(&mcdi
->mode
, MCDI_MODE_FAIL
) == MCDI_MODE_FAIL
)
1290 return; /* it had already been done */
1291 netif_dbg(efx
, hw
, efx
->net_dev
, "MCDI is timing out; trying to recover\n");
1292 efx_schedule_reset(efx
, RESET_TYPE_MCDI_TIMEOUT
);
1295 /* Called from falcon_process_eventq for MCDI events */
1296 void efx_mcdi_process_event(struct efx_channel
*channel
,
1299 struct efx_nic
*efx
= channel
->efx
;
1300 int code
= EFX_QWORD_FIELD(*event
, MCDI_EVENT_CODE
);
1301 u32 data
= EFX_QWORD_FIELD(*event
, MCDI_EVENT_DATA
);
1304 case MCDI_EVENT_CODE_BADSSERT
:
1305 netif_err(efx
, hw
, efx
->net_dev
,
1306 "MC watchdog or assertion failure at 0x%x\n", data
);
1307 efx_mcdi_ev_death(efx
, -EINTR
);
1310 case MCDI_EVENT_CODE_PMNOTICE
:
1311 netif_info(efx
, wol
, efx
->net_dev
, "MCDI PM event.\n");
1314 case MCDI_EVENT_CODE_CMDDONE
:
1315 efx_mcdi_ev_cpl(efx
,
1316 MCDI_EVENT_FIELD(*event
, CMDDONE_SEQ
),
1317 MCDI_EVENT_FIELD(*event
, CMDDONE_DATALEN
),
1318 MCDI_EVENT_FIELD(*event
, CMDDONE_ERRNO
));
1321 case MCDI_EVENT_CODE_LINKCHANGE
:
1322 efx_mcdi_process_link_change(efx
, event
);
1324 case MCDI_EVENT_CODE_SENSOREVT
:
1325 efx_mcdi_sensor_event(efx
, event
);
1327 case MCDI_EVENT_CODE_SCHEDERR
:
1328 netif_dbg(efx
, hw
, efx
->net_dev
,
1329 "MC Scheduler alert (0x%x)\n", data
);
1331 case MCDI_EVENT_CODE_REBOOT
:
1332 case MCDI_EVENT_CODE_MC_REBOOT
:
1333 netif_info(efx
, hw
, efx
->net_dev
, "MC Reboot\n");
1334 efx_mcdi_ev_death(efx
, -EIO
);
1336 case MCDI_EVENT_CODE_MC_BIST
:
1337 netif_info(efx
, hw
, efx
->net_dev
, "MC entered BIST mode\n");
1338 efx_mcdi_ev_bist(efx
);
1340 case MCDI_EVENT_CODE_MAC_STATS_DMA
:
1341 /* MAC stats are gather lazily. We can ignore this. */
1343 case MCDI_EVENT_CODE_FLR
:
1344 if (efx
->type
->sriov_flr
)
1345 efx
->type
->sriov_flr(efx
,
1346 MCDI_EVENT_FIELD(*event
, FLR_VF
));
1348 case MCDI_EVENT_CODE_PTP_RX
:
1349 case MCDI_EVENT_CODE_PTP_FAULT
:
1350 case MCDI_EVENT_CODE_PTP_PPS
:
1351 efx_ptp_event(efx
, event
);
1353 case MCDI_EVENT_CODE_PTP_TIME
:
1354 efx_time_sync_event(channel
, event
);
1356 case MCDI_EVENT_CODE_TX_FLUSH
:
1357 case MCDI_EVENT_CODE_RX_FLUSH
:
1358 /* Two flush events will be sent: one to the same event
1359 * queue as completions, and one to event queue 0.
1360 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1361 * flag will be set, and we should ignore the event
1362 * because we want to wait for all completions.
1364 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN
!=
1365 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN
);
1366 if (!MCDI_EVENT_FIELD(*event
, TX_FLUSH_TO_DRIVER
))
1367 efx_ef10_handle_drain_event(efx
);
1369 case MCDI_EVENT_CODE_TX_ERR
:
1370 case MCDI_EVENT_CODE_RX_ERR
:
1371 netif_err(efx
, hw
, efx
->net_dev
,
1372 "%s DMA error (event: "EFX_QWORD_FMT
")\n",
1373 code
== MCDI_EVENT_CODE_TX_ERR
? "TX" : "RX",
1374 EFX_QWORD_VAL(*event
));
1375 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
1377 case MCDI_EVENT_CODE_PROXY_RESPONSE
:
1378 efx_mcdi_ev_proxy_response(efx
,
1379 MCDI_EVENT_FIELD(*event
, PROXY_RESPONSE_HANDLE
),
1380 MCDI_EVENT_FIELD(*event
, PROXY_RESPONSE_RC
));
1383 netif_err(efx
, hw
, efx
->net_dev
, "Unknown MCDI event 0x%x\n",
1388 /**************************************************************************
1390 * Specific request functions
1392 **************************************************************************
1395 void efx_mcdi_print_fwver(struct efx_nic
*efx
, char *buf
, size_t len
)
1397 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_VERSION_OUT_LEN
);
1399 const __le16
*ver_words
;
1403 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN
!= 0);
1404 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_VERSION
, NULL
, 0,
1405 outbuf
, sizeof(outbuf
), &outlength
);
1408 if (outlength
< MC_CMD_GET_VERSION_OUT_LEN
) {
1413 ver_words
= (__le16
*)MCDI_PTR(outbuf
, GET_VERSION_OUT_VERSION
);
1414 offset
= snprintf(buf
, len
, "%u.%u.%u.%u",
1415 le16_to_cpu(ver_words
[0]), le16_to_cpu(ver_words
[1]),
1416 le16_to_cpu(ver_words
[2]), le16_to_cpu(ver_words
[3]));
1418 /* EF10 may have multiple datapath firmware variants within a
1419 * single version. Report which variants are running.
1421 if (efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
) {
1422 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1424 offset
+= snprintf(buf
+ offset
, len
- offset
, " rx%x tx%x",
1425 nic_data
->rx_dpcpu_fw_id
,
1426 nic_data
->tx_dpcpu_fw_id
);
1428 /* It's theoretically possible for the string to exceed 31
1429 * characters, though in practice the first three version
1430 * components are short enough that this doesn't happen.
1432 if (WARN_ON(offset
>= len
))
1439 netif_err(efx
, probe
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1443 static int efx_mcdi_drv_attach(struct efx_nic
*efx
, bool driver_operating
,
1446 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRV_ATTACH_IN_LEN
);
1447 MCDI_DECLARE_BUF(outbuf
, MC_CMD_DRV_ATTACH_EXT_OUT_LEN
);
1451 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_NEW_STATE
,
1452 driver_operating
? 1 : 0);
1453 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_UPDATE
, 1);
1454 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_FIRMWARE_ID
, MC_CMD_FW_LOW_LATENCY
);
1456 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_DRV_ATTACH
, inbuf
, sizeof(inbuf
),
1457 outbuf
, sizeof(outbuf
), &outlen
);
1458 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1459 * specified will fail with EPERM, and we have to tell the MC we don't
1460 * care what firmware we get.
1463 netif_dbg(efx
, probe
, efx
->net_dev
,
1464 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1465 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_FIRMWARE_ID
,
1466 MC_CMD_FW_DONT_CARE
);
1467 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_DRV_ATTACH
, inbuf
,
1468 sizeof(inbuf
), outbuf
, sizeof(outbuf
),
1472 efx_mcdi_display_error(efx
, MC_CMD_DRV_ATTACH
, sizeof(inbuf
),
1473 outbuf
, outlen
, rc
);
1476 if (outlen
< MC_CMD_DRV_ATTACH_OUT_LEN
) {
1481 if (driver_operating
) {
1482 if (outlen
>= MC_CMD_DRV_ATTACH_EXT_OUT_LEN
) {
1483 efx
->mcdi
->fn_flags
=
1485 DRV_ATTACH_EXT_OUT_FUNC_FLAGS
);
1487 /* Synthesise flags for Siena */
1488 efx
->mcdi
->fn_flags
=
1489 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
|
1490 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED
|
1491 (efx_port_num(efx
) == 0) <<
1492 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
;
1496 /* We currently assume we have control of the external link
1497 * and are completely trusted by firmware. Abort probing
1498 * if that's not true for this function.
1501 if (was_attached
!= NULL
)
1502 *was_attached
= MCDI_DWORD(outbuf
, DRV_ATTACH_OUT_OLD_STATE
);
1506 netif_err(efx
, probe
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1510 int efx_mcdi_get_board_cfg(struct efx_nic
*efx
, u8
*mac_address
,
1511 u16
*fw_subtype_list
, u32
*capabilities
)
1513 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_BOARD_CFG_OUT_LENMAX
);
1515 int port_num
= efx_port_num(efx
);
1518 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN
!= 0);
1519 /* we need __aligned(2) for ether_addr_copy */
1520 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST
& 1);
1521 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST
& 1);
1523 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_BOARD_CFG
, NULL
, 0,
1524 outbuf
, sizeof(outbuf
), &outlen
);
1528 if (outlen
< MC_CMD_GET_BOARD_CFG_OUT_LENMIN
) {
1534 ether_addr_copy(mac_address
,
1536 MCDI_PTR(outbuf
, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1
) :
1537 MCDI_PTR(outbuf
, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0
));
1538 if (fw_subtype_list
) {
1540 i
< MCDI_VAR_ARRAY_LEN(outlen
,
1541 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST
);
1543 fw_subtype_list
[i
] = MCDI_ARRAY_WORD(
1544 outbuf
, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST
, i
);
1545 for (; i
< MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM
; i
++)
1546 fw_subtype_list
[i
] = 0;
1550 *capabilities
= MCDI_DWORD(outbuf
,
1551 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1
);
1553 *capabilities
= MCDI_DWORD(outbuf
,
1554 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0
);
1560 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d len=%d\n",
1561 __func__
, rc
, (int)outlen
);
1566 int efx_mcdi_log_ctrl(struct efx_nic
*efx
, bool evq
, bool uart
, u32 dest_evq
)
1568 MCDI_DECLARE_BUF(inbuf
, MC_CMD_LOG_CTRL_IN_LEN
);
1573 dest
|= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART
;
1575 dest
|= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ
;
1577 MCDI_SET_DWORD(inbuf
, LOG_CTRL_IN_LOG_DEST
, dest
);
1578 MCDI_SET_DWORD(inbuf
, LOG_CTRL_IN_LOG_DEST_EVQ
, dest_evq
);
1580 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN
!= 0);
1582 rc
= efx_mcdi_rpc(efx
, MC_CMD_LOG_CTRL
, inbuf
, sizeof(inbuf
),
1587 int efx_mcdi_nvram_types(struct efx_nic
*efx
, u32
*nvram_types_out
)
1589 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_TYPES_OUT_LEN
);
1593 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN
!= 0);
1595 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_TYPES
, NULL
, 0,
1596 outbuf
, sizeof(outbuf
), &outlen
);
1599 if (outlen
< MC_CMD_NVRAM_TYPES_OUT_LEN
) {
1604 *nvram_types_out
= MCDI_DWORD(outbuf
, NVRAM_TYPES_OUT_TYPES
);
1608 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n",
1613 int efx_mcdi_nvram_info(struct efx_nic
*efx
, unsigned int type
,
1614 size_t *size_out
, size_t *erase_size_out
,
1615 bool *protected_out
)
1617 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_INFO_IN_LEN
);
1618 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_INFO_OUT_LEN
);
1622 MCDI_SET_DWORD(inbuf
, NVRAM_INFO_IN_TYPE
, type
);
1624 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_INFO
, inbuf
, sizeof(inbuf
),
1625 outbuf
, sizeof(outbuf
), &outlen
);
1628 if (outlen
< MC_CMD_NVRAM_INFO_OUT_LEN
) {
1633 *size_out
= MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_SIZE
);
1634 *erase_size_out
= MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_ERASESIZE
);
1635 *protected_out
= !!(MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_FLAGS
) &
1636 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN
));
1640 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1644 static int efx_mcdi_nvram_test(struct efx_nic
*efx
, unsigned int type
)
1646 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_TEST_IN_LEN
);
1647 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_TEST_OUT_LEN
);
1650 MCDI_SET_DWORD(inbuf
, NVRAM_TEST_IN_TYPE
, type
);
1652 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_TEST
, inbuf
, sizeof(inbuf
),
1653 outbuf
, sizeof(outbuf
), NULL
);
1657 switch (MCDI_DWORD(outbuf
, NVRAM_TEST_OUT_RESULT
)) {
1658 case MC_CMD_NVRAM_TEST_PASS
:
1659 case MC_CMD_NVRAM_TEST_NOTSUPP
:
1666 int efx_mcdi_nvram_test_all(struct efx_nic
*efx
)
1672 rc
= efx_mcdi_nvram_types(efx
, &nvram_types
);
1677 while (nvram_types
!= 0) {
1678 if (nvram_types
& 1) {
1679 rc
= efx_mcdi_nvram_test(efx
, type
);
1690 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed type=%u\n",
1693 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1697 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1698 * negative on error.
1700 static int efx_mcdi_read_assertion(struct efx_nic
*efx
)
1702 MCDI_DECLARE_BUF(inbuf
, MC_CMD_GET_ASSERTS_IN_LEN
);
1703 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_ASSERTS_OUT_LEN
);
1704 unsigned int flags
, index
;
1710 /* Attempt to read any stored assertion state before we reboot
1711 * the mcfw out of the assertion handler. Retry twice, once
1712 * because a boot-time assertion might cause this command to fail
1713 * with EINTR. And once again because GET_ASSERTS can race with
1714 * MC_CMD_REBOOT running on the other port. */
1717 MCDI_SET_DWORD(inbuf
, GET_ASSERTS_IN_CLEAR
, 1);
1718 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_GET_ASSERTS
,
1719 inbuf
, MC_CMD_GET_ASSERTS_IN_LEN
,
1720 outbuf
, sizeof(outbuf
), &outlen
);
1723 } while ((rc
== -EINTR
|| rc
== -EIO
) && retry
-- > 0);
1726 efx_mcdi_display_error(efx
, MC_CMD_GET_ASSERTS
,
1727 MC_CMD_GET_ASSERTS_IN_LEN
, outbuf
,
1731 if (outlen
< MC_CMD_GET_ASSERTS_OUT_LEN
)
1734 /* Print out any recorded assertion state */
1735 flags
= MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_GLOBAL_FLAGS
);
1736 if (flags
== MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS
)
1739 reason
= (flags
== MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL
)
1740 ? "system-level assertion"
1741 : (flags
== MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL
)
1742 ? "thread-level assertion"
1743 : (flags
== MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED
)
1745 : "unknown assertion";
1746 netif_err(efx
, hw
, efx
->net_dev
,
1747 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason
,
1748 MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_SAVED_PC_OFFS
),
1749 MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_THREAD_OFFS
));
1751 /* Print out the registers */
1753 index
< MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM
;
1755 netif_err(efx
, hw
, efx
->net_dev
, "R%.2d (?): 0x%.8x\n",
1757 MCDI_ARRAY_DWORD(outbuf
, GET_ASSERTS_OUT_GP_REGS_OFFS
,
1763 static int efx_mcdi_exit_assertion(struct efx_nic
*efx
)
1765 MCDI_DECLARE_BUF(inbuf
, MC_CMD_REBOOT_IN_LEN
);
1768 /* If the MC is running debug firmware, it might now be
1769 * waiting for a debugger to attach, but we just want it to
1770 * reboot. We set a flag that makes the command a no-op if it
1771 * has already done so.
1772 * The MCDI will thus return either 0 or -EIO.
1774 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN
!= 0);
1775 MCDI_SET_DWORD(inbuf
, REBOOT_IN_FLAGS
,
1776 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION
);
1777 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_REBOOT
, inbuf
, MC_CMD_REBOOT_IN_LEN
,
1782 efx_mcdi_display_error(efx
, MC_CMD_REBOOT
, MC_CMD_REBOOT_IN_LEN
,
1787 int efx_mcdi_handle_assertion(struct efx_nic
*efx
)
1791 rc
= efx_mcdi_read_assertion(efx
);
1795 return efx_mcdi_exit_assertion(efx
);
1798 void efx_mcdi_set_id_led(struct efx_nic
*efx
, enum efx_led_mode mode
)
1800 MCDI_DECLARE_BUF(inbuf
, MC_CMD_SET_ID_LED_IN_LEN
);
1803 BUILD_BUG_ON(EFX_LED_OFF
!= MC_CMD_LED_OFF
);
1804 BUILD_BUG_ON(EFX_LED_ON
!= MC_CMD_LED_ON
);
1805 BUILD_BUG_ON(EFX_LED_DEFAULT
!= MC_CMD_LED_DEFAULT
);
1807 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN
!= 0);
1809 MCDI_SET_DWORD(inbuf
, SET_ID_LED_IN_STATE
, mode
);
1811 rc
= efx_mcdi_rpc(efx
, MC_CMD_SET_ID_LED
, inbuf
, sizeof(inbuf
),
1815 static int efx_mcdi_reset_func(struct efx_nic
*efx
)
1817 MCDI_DECLARE_BUF(inbuf
, MC_CMD_ENTITY_RESET_IN_LEN
);
1820 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN
!= 0);
1821 MCDI_POPULATE_DWORD_1(inbuf
, ENTITY_RESET_IN_FLAG
,
1822 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET
, 1);
1823 rc
= efx_mcdi_rpc(efx
, MC_CMD_ENTITY_RESET
, inbuf
, sizeof(inbuf
),
1828 static int efx_mcdi_reset_mc(struct efx_nic
*efx
)
1830 MCDI_DECLARE_BUF(inbuf
, MC_CMD_REBOOT_IN_LEN
);
1833 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN
!= 0);
1834 MCDI_SET_DWORD(inbuf
, REBOOT_IN_FLAGS
, 0);
1835 rc
= efx_mcdi_rpc(efx
, MC_CMD_REBOOT
, inbuf
, sizeof(inbuf
),
1837 /* White is black, and up is down */
1845 enum reset_type
efx_mcdi_map_reset_reason(enum reset_type reason
)
1847 return RESET_TYPE_RECOVER_OR_ALL
;
1850 int efx_mcdi_reset(struct efx_nic
*efx
, enum reset_type method
)
1854 /* If MCDI is down, we can't handle_assertion */
1855 if (method
== RESET_TYPE_MCDI_TIMEOUT
) {
1856 rc
= pci_reset_function(efx
->pci_dev
);
1859 /* Re-enable polled MCDI completion */
1861 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1862 mcdi
->mode
= MCDI_MODE_POLL
;
1867 /* Recover from a failed assertion pre-reset */
1868 rc
= efx_mcdi_handle_assertion(efx
);
1872 if (method
== RESET_TYPE_DATAPATH
)
1874 else if (method
== RESET_TYPE_WORLD
)
1875 return efx_mcdi_reset_mc(efx
);
1877 return efx_mcdi_reset_func(efx
);
1880 static int efx_mcdi_wol_filter_set(struct efx_nic
*efx
, u32 type
,
1881 const u8
*mac
, int *id_out
)
1883 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WOL_FILTER_SET_IN_LEN
);
1884 MCDI_DECLARE_BUF(outbuf
, MC_CMD_WOL_FILTER_SET_OUT_LEN
);
1888 MCDI_SET_DWORD(inbuf
, WOL_FILTER_SET_IN_WOL_TYPE
, type
);
1889 MCDI_SET_DWORD(inbuf
, WOL_FILTER_SET_IN_FILTER_MODE
,
1890 MC_CMD_FILTER_MODE_SIMPLE
);
1891 ether_addr_copy(MCDI_PTR(inbuf
, WOL_FILTER_SET_IN_MAGIC_MAC
), mac
);
1893 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_SET
, inbuf
, sizeof(inbuf
),
1894 outbuf
, sizeof(outbuf
), &outlen
);
1898 if (outlen
< MC_CMD_WOL_FILTER_SET_OUT_LEN
) {
1903 *id_out
= (int)MCDI_DWORD(outbuf
, WOL_FILTER_SET_OUT_FILTER_ID
);
1909 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1916 efx_mcdi_wol_filter_set_magic(struct efx_nic
*efx
, const u8
*mac
, int *id_out
)
1918 return efx_mcdi_wol_filter_set(efx
, MC_CMD_WOL_TYPE_MAGIC
, mac
, id_out
);
1922 int efx_mcdi_wol_filter_get_magic(struct efx_nic
*efx
, int *id_out
)
1924 MCDI_DECLARE_BUF(outbuf
, MC_CMD_WOL_FILTER_GET_OUT_LEN
);
1928 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_GET
, NULL
, 0,
1929 outbuf
, sizeof(outbuf
), &outlen
);
1933 if (outlen
< MC_CMD_WOL_FILTER_GET_OUT_LEN
) {
1938 *id_out
= (int)MCDI_DWORD(outbuf
, WOL_FILTER_GET_OUT_FILTER_ID
);
1944 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1949 int efx_mcdi_wol_filter_remove(struct efx_nic
*efx
, int id
)
1951 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WOL_FILTER_REMOVE_IN_LEN
);
1954 MCDI_SET_DWORD(inbuf
, WOL_FILTER_REMOVE_IN_FILTER_ID
, (u32
)id
);
1956 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_REMOVE
, inbuf
, sizeof(inbuf
),
1961 int efx_mcdi_flush_rxqs(struct efx_nic
*efx
)
1963 struct efx_channel
*channel
;
1964 struct efx_rx_queue
*rx_queue
;
1965 MCDI_DECLARE_BUF(inbuf
,
1966 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS
));
1969 BUILD_BUG_ON(EFX_MAX_CHANNELS
>
1970 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM
);
1973 efx_for_each_channel(channel
, efx
) {
1974 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
1975 if (rx_queue
->flush_pending
) {
1976 rx_queue
->flush_pending
= false;
1977 atomic_dec(&efx
->rxq_flush_pending
);
1978 MCDI_SET_ARRAY_DWORD(
1979 inbuf
, FLUSH_RX_QUEUES_IN_QID_OFST
,
1980 count
, efx_rx_queue_index(rx_queue
));
1986 rc
= efx_mcdi_rpc(efx
, MC_CMD_FLUSH_RX_QUEUES
, inbuf
,
1987 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count
), NULL
, 0, NULL
);
1993 int efx_mcdi_wol_filter_reset(struct efx_nic
*efx
)
1997 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_RESET
, NULL
, 0, NULL
, 0, NULL
);
2001 int efx_mcdi_set_workaround(struct efx_nic
*efx
, u32 type
, bool enabled
,
2002 unsigned int *flags
)
2004 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WORKAROUND_IN_LEN
);
2005 MCDI_DECLARE_BUF(outbuf
, MC_CMD_WORKAROUND_EXT_OUT_LEN
);
2009 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN
!= 0);
2010 MCDI_SET_DWORD(inbuf
, WORKAROUND_IN_TYPE
, type
);
2011 MCDI_SET_DWORD(inbuf
, WORKAROUND_IN_ENABLED
, enabled
);
2012 rc
= efx_mcdi_rpc(efx
, MC_CMD_WORKAROUND
, inbuf
, sizeof(inbuf
),
2013 outbuf
, sizeof(outbuf
), &outlen
);
2020 if (outlen
>= MC_CMD_WORKAROUND_EXT_OUT_LEN
)
2021 *flags
= MCDI_DWORD(outbuf
, WORKAROUND_EXT_OUT_FLAGS
);
2028 int efx_mcdi_get_workarounds(struct efx_nic
*efx
, unsigned int *impl_out
,
2029 unsigned int *enabled_out
)
2031 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_WORKAROUNDS_OUT_LEN
);
2035 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_WORKAROUNDS
, NULL
, 0,
2036 outbuf
, sizeof(outbuf
), &outlen
);
2040 if (outlen
< MC_CMD_GET_WORKAROUNDS_OUT_LEN
) {
2046 *impl_out
= MCDI_DWORD(outbuf
, GET_WORKAROUNDS_OUT_IMPLEMENTED
);
2049 *enabled_out
= MCDI_DWORD(outbuf
, GET_WORKAROUNDS_OUT_ENABLED
);
2054 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2055 * terrifying. The call site will have to deal with it though.
2057 netif_printk(efx
, hw
, rc
== -ENOSYS
? KERN_DEBUG
: KERN_ERR
,
2058 efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
2062 #ifdef CONFIG_SFC_MTD
2064 #define EFX_MCDI_NVRAM_LEN_MAX 128
2066 static int efx_mcdi_nvram_update_start(struct efx_nic
*efx
, unsigned int type
)
2068 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_UPDATE_START_IN_LEN
);
2071 MCDI_SET_DWORD(inbuf
, NVRAM_UPDATE_START_IN_TYPE
, type
);
2073 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN
!= 0);
2075 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_UPDATE_START
, inbuf
, sizeof(inbuf
),
2080 static int efx_mcdi_nvram_read(struct efx_nic
*efx
, unsigned int type
,
2081 loff_t offset
, u8
*buffer
, size_t length
)
2083 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_READ_IN_LEN
);
2084 MCDI_DECLARE_BUF(outbuf
,
2085 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX
));
2089 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_TYPE
, type
);
2090 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_OFFSET
, offset
);
2091 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_LENGTH
, length
);
2093 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_READ
, inbuf
, sizeof(inbuf
),
2094 outbuf
, sizeof(outbuf
), &outlen
);
2098 memcpy(buffer
, MCDI_PTR(outbuf
, NVRAM_READ_OUT_READ_BUFFER
), length
);
2102 static int efx_mcdi_nvram_write(struct efx_nic
*efx
, unsigned int type
,
2103 loff_t offset
, const u8
*buffer
, size_t length
)
2105 MCDI_DECLARE_BUF(inbuf
,
2106 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX
));
2109 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_TYPE
, type
);
2110 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_OFFSET
, offset
);
2111 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_LENGTH
, length
);
2112 memcpy(MCDI_PTR(inbuf
, NVRAM_WRITE_IN_WRITE_BUFFER
), buffer
, length
);
2114 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN
!= 0);
2116 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_WRITE
, inbuf
,
2117 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length
), 4),
2122 static int efx_mcdi_nvram_erase(struct efx_nic
*efx
, unsigned int type
,
2123 loff_t offset
, size_t length
)
2125 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_ERASE_IN_LEN
);
2128 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_TYPE
, type
);
2129 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_OFFSET
, offset
);
2130 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_LENGTH
, length
);
2132 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN
!= 0);
2134 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_ERASE
, inbuf
, sizeof(inbuf
),
2139 static int efx_mcdi_nvram_update_finish(struct efx_nic
*efx
, unsigned int type
)
2141 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN
);
2144 MCDI_SET_DWORD(inbuf
, NVRAM_UPDATE_FINISH_IN_TYPE
, type
);
2146 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN
!= 0);
2148 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_UPDATE_FINISH
, inbuf
, sizeof(inbuf
),
2153 int efx_mcdi_mtd_read(struct mtd_info
*mtd
, loff_t start
,
2154 size_t len
, size_t *retlen
, u8
*buffer
)
2156 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2157 struct efx_nic
*efx
= mtd
->priv
;
2158 loff_t offset
= start
;
2159 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
2163 while (offset
< end
) {
2164 chunk
= min_t(size_t, end
- offset
, EFX_MCDI_NVRAM_LEN_MAX
);
2165 rc
= efx_mcdi_nvram_read(efx
, part
->nvram_type
, offset
,
2173 *retlen
= offset
- start
;
2177 int efx_mcdi_mtd_erase(struct mtd_info
*mtd
, loff_t start
, size_t len
)
2179 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2180 struct efx_nic
*efx
= mtd
->priv
;
2181 loff_t offset
= start
& ~((loff_t
)(mtd
->erasesize
- 1));
2182 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
2183 size_t chunk
= part
->common
.mtd
.erasesize
;
2186 if (!part
->updating
) {
2187 rc
= efx_mcdi_nvram_update_start(efx
, part
->nvram_type
);
2190 part
->updating
= true;
2193 /* The MCDI interface can in fact do multiple erase blocks at once;
2194 * but erasing may be slow, so we make multiple calls here to avoid
2195 * tripping the MCDI RPC timeout. */
2196 while (offset
< end
) {
2197 rc
= efx_mcdi_nvram_erase(efx
, part
->nvram_type
, offset
,
2207 int efx_mcdi_mtd_write(struct mtd_info
*mtd
, loff_t start
,
2208 size_t len
, size_t *retlen
, const u8
*buffer
)
2210 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2211 struct efx_nic
*efx
= mtd
->priv
;
2212 loff_t offset
= start
;
2213 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
2217 if (!part
->updating
) {
2218 rc
= efx_mcdi_nvram_update_start(efx
, part
->nvram_type
);
2221 part
->updating
= true;
2224 while (offset
< end
) {
2225 chunk
= min_t(size_t, end
- offset
, EFX_MCDI_NVRAM_LEN_MAX
);
2226 rc
= efx_mcdi_nvram_write(efx
, part
->nvram_type
, offset
,
2234 *retlen
= offset
- start
;
2238 int efx_mcdi_mtd_sync(struct mtd_info
*mtd
)
2240 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2241 struct efx_nic
*efx
= mtd
->priv
;
2244 if (part
->updating
) {
2245 part
->updating
= false;
2246 rc
= efx_mcdi_nvram_update_finish(efx
, part
->nvram_type
);
2252 void efx_mcdi_mtd_rename(struct efx_mtd_partition
*part
)
2254 struct efx_mcdi_mtd_partition
*mcdi_part
=
2255 container_of(part
, struct efx_mcdi_mtd_partition
, common
);
2256 struct efx_nic
*efx
= part
->mtd
.priv
;
2258 snprintf(part
->name
, sizeof(part
->name
), "%s %s:%02x",
2259 efx
->name
, part
->type_name
, mcdi_part
->fw_subtype
);
2262 #endif /* CONFIG_SFC_MTD */