1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
25 #include "workarounds.h"
26 #include "ef10_regs.h"
30 #define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32 unsigned int efx_piobuf_size __read_mostly
= EFX_PIOBUF_SIZE_DEF
;
34 #endif /* EFX_USE_PIO */
36 static inline unsigned int
37 efx_tx_queue_get_insert_index(const struct efx_tx_queue
*tx_queue
)
39 return tx_queue
->insert_count
& tx_queue
->ptr_mask
;
42 static inline struct efx_tx_buffer
*
43 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue
*tx_queue
)
45 return &tx_queue
->buffer
[efx_tx_queue_get_insert_index(tx_queue
)];
48 static inline struct efx_tx_buffer
*
49 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue
*tx_queue
)
51 struct efx_tx_buffer
*buffer
=
52 __efx_tx_queue_get_insert_buffer(tx_queue
);
54 EFX_BUG_ON_PARANOID(buffer
->len
);
55 EFX_BUG_ON_PARANOID(buffer
->flags
);
56 EFX_BUG_ON_PARANOID(buffer
->unmap_len
);
61 static void efx_dequeue_buffer(struct efx_tx_queue
*tx_queue
,
62 struct efx_tx_buffer
*buffer
,
63 unsigned int *pkts_compl
,
64 unsigned int *bytes_compl
)
66 if (buffer
->unmap_len
) {
67 struct device
*dma_dev
= &tx_queue
->efx
->pci_dev
->dev
;
68 dma_addr_t unmap_addr
= buffer
->dma_addr
- buffer
->dma_offset
;
69 if (buffer
->flags
& EFX_TX_BUF_MAP_SINGLE
)
70 dma_unmap_single(dma_dev
, unmap_addr
, buffer
->unmap_len
,
73 dma_unmap_page(dma_dev
, unmap_addr
, buffer
->unmap_len
,
75 buffer
->unmap_len
= 0;
78 if (buffer
->flags
& EFX_TX_BUF_SKB
) {
80 (*bytes_compl
) += buffer
->skb
->len
;
81 dev_consume_skb_any((struct sk_buff
*)buffer
->skb
);
82 netif_vdbg(tx_queue
->efx
, tx_done
, tx_queue
->efx
->net_dev
,
83 "TX queue %d transmission id %x complete\n",
84 tx_queue
->queue
, tx_queue
->read_count
);
85 } else if (buffer
->flags
& EFX_TX_BUF_HEAP
) {
86 kfree(buffer
->heap_buf
);
93 static int efx_enqueue_skb_tso(struct efx_tx_queue
*tx_queue
,
96 static inline unsigned
97 efx_max_tx_len(struct efx_nic
*efx
, dma_addr_t dma_addr
)
99 /* Depending on the NIC revision, we can use descriptor
100 * lengths up to 8K or 8K-1. However, since PCI Express
101 * devices must split read requests at 4K boundaries, there is
102 * little benefit from using descriptors that cross those
103 * boundaries and we keep things simple by not doing so.
105 unsigned len
= (~dma_addr
& (EFX_PAGE_SIZE
- 1)) + 1;
107 /* Work around hardware bug for unaligned buffers. */
108 if (EFX_WORKAROUND_5391(efx
) && (dma_addr
& 0xf))
109 len
= min_t(unsigned, len
, 512 - (dma_addr
& 0xf));
114 unsigned int efx_tx_max_skb_descs(struct efx_nic
*efx
)
116 /* Header and payload descriptor for each output segment, plus
117 * one for every input fragment boundary within a segment
119 unsigned int max_descs
= EFX_TSO_MAX_SEGS
* 2 + MAX_SKB_FRAGS
;
121 /* Possibly one more per segment for the alignment workaround,
122 * or for option descriptors
124 if (EFX_WORKAROUND_5391(efx
) || efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
)
125 max_descs
+= EFX_TSO_MAX_SEGS
;
127 /* Possibly more for PCIe page boundaries within input fragments */
128 if (PAGE_SIZE
> EFX_PAGE_SIZE
)
129 max_descs
+= max_t(unsigned int, MAX_SKB_FRAGS
,
130 DIV_ROUND_UP(GSO_MAX_SIZE
, EFX_PAGE_SIZE
));
135 static void efx_tx_maybe_stop_queue(struct efx_tx_queue
*txq1
)
137 /* We need to consider both queues that the net core sees as one */
138 struct efx_tx_queue
*txq2
= efx_tx_queue_partner(txq1
);
139 struct efx_nic
*efx
= txq1
->efx
;
140 unsigned int fill_level
;
142 fill_level
= max(txq1
->insert_count
- txq1
->old_read_count
,
143 txq2
->insert_count
- txq2
->old_read_count
);
144 if (likely(fill_level
< efx
->txq_stop_thresh
))
147 /* We used the stale old_read_count above, which gives us a
148 * pessimistic estimate of the fill level (which may even
149 * validly be >= efx->txq_entries). Now try again using
150 * read_count (more likely to be a cache miss).
152 * If we read read_count and then conditionally stop the
153 * queue, it is possible for the completion path to race with
154 * us and complete all outstanding descriptors in the middle,
155 * after which there will be no more completions to wake it.
156 * Therefore we stop the queue first, then read read_count
157 * (with a memory barrier to ensure the ordering), then
158 * restart the queue if the fill level turns out to be low
161 netif_tx_stop_queue(txq1
->core_txq
);
163 txq1
->old_read_count
= ACCESS_ONCE(txq1
->read_count
);
164 txq2
->old_read_count
= ACCESS_ONCE(txq2
->read_count
);
166 fill_level
= max(txq1
->insert_count
- txq1
->old_read_count
,
167 txq2
->insert_count
- txq2
->old_read_count
);
168 EFX_BUG_ON_PARANOID(fill_level
>= efx
->txq_entries
);
169 if (likely(fill_level
< efx
->txq_stop_thresh
)) {
171 if (likely(!efx
->loopback_selftest
))
172 netif_tx_start_queue(txq1
->core_txq
);
178 struct efx_short_copy_buffer
{
180 u8 buf
[L1_CACHE_BYTES
];
183 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
184 * Advances piobuf pointer. Leaves additional data in the copy buffer.
186 static void efx_memcpy_toio_aligned(struct efx_nic
*efx
, u8 __iomem
**piobuf
,
188 struct efx_short_copy_buffer
*copy_buf
)
190 int block_len
= len
& ~(sizeof(copy_buf
->buf
) - 1);
192 __iowrite64_copy(*piobuf
, data
, block_len
>> 3);
193 *piobuf
+= block_len
;
198 BUG_ON(copy_buf
->used
);
199 BUG_ON(len
> sizeof(copy_buf
->buf
));
200 memcpy(copy_buf
->buf
, data
, len
);
201 copy_buf
->used
= len
;
205 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
206 * Advances piobuf pointer. Leaves additional data in the copy buffer.
208 static void efx_memcpy_toio_aligned_cb(struct efx_nic
*efx
, u8 __iomem
**piobuf
,
210 struct efx_short_copy_buffer
*copy_buf
)
212 if (copy_buf
->used
) {
213 /* if the copy buffer is partially full, fill it up and write */
215 min_t(int, sizeof(copy_buf
->buf
) - copy_buf
->used
, len
);
217 memcpy(copy_buf
->buf
+ copy_buf
->used
, data
, copy_to_buf
);
218 copy_buf
->used
+= copy_to_buf
;
220 /* if we didn't fill it up then we're done for now */
221 if (copy_buf
->used
< sizeof(copy_buf
->buf
))
224 __iowrite64_copy(*piobuf
, copy_buf
->buf
,
225 sizeof(copy_buf
->buf
) >> 3);
226 *piobuf
+= sizeof(copy_buf
->buf
);
232 efx_memcpy_toio_aligned(efx
, piobuf
, data
, len
, copy_buf
);
235 static void efx_flush_copy_buffer(struct efx_nic
*efx
, u8 __iomem
*piobuf
,
236 struct efx_short_copy_buffer
*copy_buf
)
238 /* if there's anything in it, write the whole buffer, including junk */
240 __iowrite64_copy(piobuf
, copy_buf
->buf
,
241 sizeof(copy_buf
->buf
) >> 3);
244 /* Traverse skb structure and copy fragments in to PIO buffer.
245 * Advances piobuf pointer.
247 static void efx_skb_copy_bits_to_pio(struct efx_nic
*efx
, struct sk_buff
*skb
,
249 struct efx_short_copy_buffer
*copy_buf
)
253 efx_memcpy_toio_aligned(efx
, piobuf
, skb
->data
, skb_headlen(skb
),
256 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; ++i
) {
257 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
260 vaddr
= kmap_atomic(skb_frag_page(f
));
262 efx_memcpy_toio_aligned_cb(efx
, piobuf
, vaddr
+ f
->page_offset
,
263 skb_frag_size(f
), copy_buf
);
264 kunmap_atomic(vaddr
);
267 EFX_BUG_ON_PARANOID(skb_shinfo(skb
)->frag_list
);
270 static struct efx_tx_buffer
*
271 efx_enqueue_skb_pio(struct efx_tx_queue
*tx_queue
, struct sk_buff
*skb
)
273 struct efx_tx_buffer
*buffer
=
274 efx_tx_queue_get_insert_buffer(tx_queue
);
275 u8 __iomem
*piobuf
= tx_queue
->piobuf
;
277 /* Copy to PIO buffer. Ensure the writes are padded to the end
278 * of a cache line, as this is required for write-combining to be
279 * effective on at least x86.
282 if (skb_shinfo(skb
)->nr_frags
) {
283 /* The size of the copy buffer will ensure all writes
284 * are the size of a cache line.
286 struct efx_short_copy_buffer copy_buf
;
290 efx_skb_copy_bits_to_pio(tx_queue
->efx
, skb
,
292 efx_flush_copy_buffer(tx_queue
->efx
, piobuf
, ©_buf
);
294 /* Pad the write to the size of a cache line.
295 * We can do this because we know the skb_shared_info sruct is
296 * after the source, and the destination buffer is big enough.
298 BUILD_BUG_ON(L1_CACHE_BYTES
>
299 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)));
300 __iowrite64_copy(tx_queue
->piobuf
, skb
->data
,
301 ALIGN(skb
->len
, L1_CACHE_BYTES
) >> 3);
304 EFX_POPULATE_QWORD_5(buffer
->option
,
305 ESF_DZ_TX_DESC_IS_OPT
, 1,
306 ESF_DZ_TX_OPTION_TYPE
, ESE_DZ_TX_OPTION_DESC_PIO
,
307 ESF_DZ_TX_PIO_CONT
, 0,
308 ESF_DZ_TX_PIO_BYTE_CNT
, skb
->len
,
309 ESF_DZ_TX_PIO_BUF_ADDR
,
310 tx_queue
->piobuf_offset
);
311 ++tx_queue
->pio_packets
;
312 ++tx_queue
->insert_count
;
315 #endif /* EFX_USE_PIO */
318 * Add a socket buffer to a TX queue
320 * This maps all fragments of a socket buffer for DMA and adds them to
321 * the TX queue. The queue's insert pointer will be incremented by
322 * the number of fragments in the socket buffer.
324 * If any DMA mapping fails, any mapped fragments will be unmapped,
325 * the queue's insert pointer will be restored to its original value.
327 * This function is split out from efx_hard_start_xmit to allow the
328 * loopback test to direct packets via specific TX queues.
330 * Returns NETDEV_TX_OK.
331 * You must hold netif_tx_lock() to call this function.
333 netdev_tx_t
efx_enqueue_skb(struct efx_tx_queue
*tx_queue
, struct sk_buff
*skb
)
335 struct efx_nic
*efx
= tx_queue
->efx
;
336 struct device
*dma_dev
= &efx
->pci_dev
->dev
;
337 struct efx_tx_buffer
*buffer
;
338 unsigned int old_insert_count
= tx_queue
->insert_count
;
339 skb_frag_t
*fragment
;
340 unsigned int len
, unmap_len
= 0;
341 dma_addr_t dma_addr
, unmap_addr
= 0;
342 unsigned int dma_len
;
343 unsigned short dma_flags
;
346 if (skb_shinfo(skb
)->gso_size
)
347 return efx_enqueue_skb_tso(tx_queue
, skb
);
349 /* Get size of the initial fragment */
350 len
= skb_headlen(skb
);
352 /* Pad if necessary */
353 if (EFX_WORKAROUND_15592(efx
) && skb
->len
<= 32) {
354 EFX_BUG_ON_PARANOID(skb
->data_len
);
356 if (skb_pad(skb
, len
- skb
->len
))
360 /* Consider using PIO for short packets */
362 if (skb
->len
<= efx_piobuf_size
&& !skb
->xmit_more
&&
363 efx_nic_may_tx_pio(tx_queue
)) {
364 buffer
= efx_enqueue_skb_pio(tx_queue
, skb
);
365 dma_flags
= EFX_TX_BUF_OPTION
;
370 /* Map for DMA. Use dma_map_single rather than dma_map_page
371 * since this is more efficient on machines with sparse
374 dma_flags
= EFX_TX_BUF_MAP_SINGLE
;
375 dma_addr
= dma_map_single(dma_dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
377 /* Process all fragments */
379 if (unlikely(dma_mapping_error(dma_dev
, dma_addr
)))
382 /* Store fields for marking in the per-fragment final
385 unmap_addr
= dma_addr
;
387 /* Add to TX queue, splitting across DMA boundaries */
389 buffer
= efx_tx_queue_get_insert_buffer(tx_queue
);
391 dma_len
= efx_max_tx_len(efx
, dma_addr
);
392 if (likely(dma_len
>= len
))
395 /* Fill out per descriptor fields */
396 buffer
->len
= dma_len
;
397 buffer
->dma_addr
= dma_addr
;
398 buffer
->flags
= EFX_TX_BUF_CONT
;
401 ++tx_queue
->insert_count
;
404 /* Transfer ownership of the unmapping to the final buffer */
405 buffer
->flags
= EFX_TX_BUF_CONT
| dma_flags
;
406 buffer
->unmap_len
= unmap_len
;
407 buffer
->dma_offset
= buffer
->dma_addr
- unmap_addr
;
410 /* Get address and size of next fragment */
411 if (i
>= skb_shinfo(skb
)->nr_frags
)
413 fragment
= &skb_shinfo(skb
)->frags
[i
];
414 len
= skb_frag_size(fragment
);
418 dma_addr
= skb_frag_dma_map(dma_dev
, fragment
, 0, len
,
422 /* Transfer ownership of the skb to the final buffer */
427 buffer
->flags
= EFX_TX_BUF_SKB
| dma_flags
;
429 netdev_tx_sent_queue(tx_queue
->core_txq
, skb
->len
);
431 efx_tx_maybe_stop_queue(tx_queue
);
433 /* Pass off to hardware */
434 if (!skb
->xmit_more
|| netif_xmit_stopped(tx_queue
->core_txq
)) {
435 struct efx_tx_queue
*txq2
= efx_tx_queue_partner(tx_queue
);
437 /* There could be packets left on the partner queue if those
438 * SKBs had skb->xmit_more set. If we do not push those they
439 * could be left for a long time and cause a netdev watchdog.
441 if (txq2
->xmit_more_available
)
442 efx_nic_push_buffers(txq2
);
444 efx_nic_push_buffers(tx_queue
);
446 tx_queue
->xmit_more_available
= skb
->xmit_more
;
449 tx_queue
->tx_packets
++;
454 netif_err(efx
, tx_err
, efx
->net_dev
,
455 " TX queue %d could not map skb with %d bytes %d "
456 "fragments for DMA\n", tx_queue
->queue
, skb
->len
,
457 skb_shinfo(skb
)->nr_frags
+ 1);
459 /* Mark the packet as transmitted, and free the SKB ourselves */
460 dev_kfree_skb_any(skb
);
462 /* Work backwards until we hit the original insert pointer value */
463 while (tx_queue
->insert_count
!= old_insert_count
) {
464 unsigned int pkts_compl
= 0, bytes_compl
= 0;
465 --tx_queue
->insert_count
;
466 buffer
= __efx_tx_queue_get_insert_buffer(tx_queue
);
467 efx_dequeue_buffer(tx_queue
, buffer
, &pkts_compl
, &bytes_compl
);
470 /* Free the fragment we were mid-way through pushing */
472 if (dma_flags
& EFX_TX_BUF_MAP_SINGLE
)
473 dma_unmap_single(dma_dev
, unmap_addr
, unmap_len
,
476 dma_unmap_page(dma_dev
, unmap_addr
, unmap_len
,
483 /* Remove packets from the TX queue
485 * This removes packets from the TX queue, up to and including the
488 static void efx_dequeue_buffers(struct efx_tx_queue
*tx_queue
,
490 unsigned int *pkts_compl
,
491 unsigned int *bytes_compl
)
493 struct efx_nic
*efx
= tx_queue
->efx
;
494 unsigned int stop_index
, read_ptr
;
496 stop_index
= (index
+ 1) & tx_queue
->ptr_mask
;
497 read_ptr
= tx_queue
->read_count
& tx_queue
->ptr_mask
;
499 while (read_ptr
!= stop_index
) {
500 struct efx_tx_buffer
*buffer
= &tx_queue
->buffer
[read_ptr
];
502 if (!(buffer
->flags
& EFX_TX_BUF_OPTION
) &&
503 unlikely(buffer
->len
== 0)) {
504 netif_err(efx
, tx_err
, efx
->net_dev
,
505 "TX queue %d spurious TX completion id %x\n",
506 tx_queue
->queue
, read_ptr
);
507 efx_schedule_reset(efx
, RESET_TYPE_TX_SKIP
);
511 efx_dequeue_buffer(tx_queue
, buffer
, pkts_compl
, bytes_compl
);
513 ++tx_queue
->read_count
;
514 read_ptr
= tx_queue
->read_count
& tx_queue
->ptr_mask
;
518 /* Initiate a packet transmission. We use one channel per CPU
519 * (sharing when we have more CPUs than channels). On Falcon, the TX
520 * completion events will be directed back to the CPU that transmitted
521 * the packet, which should be cache-efficient.
523 * Context: non-blocking.
524 * Note that returning anything other than NETDEV_TX_OK will cause the
525 * OS to free the skb.
527 netdev_tx_t
efx_hard_start_xmit(struct sk_buff
*skb
,
528 struct net_device
*net_dev
)
530 struct efx_nic
*efx
= netdev_priv(net_dev
);
531 struct efx_tx_queue
*tx_queue
;
532 unsigned index
, type
;
534 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev
));
536 /* PTP "event" packet */
537 if (unlikely(efx_xmit_with_hwtstamp(skb
)) &&
538 unlikely(efx_ptp_is_ptp_tx(efx
, skb
))) {
539 return efx_ptp_tx(efx
, skb
);
542 index
= skb_get_queue_mapping(skb
);
543 type
= skb
->ip_summed
== CHECKSUM_PARTIAL
? EFX_TXQ_TYPE_OFFLOAD
: 0;
544 if (index
>= efx
->n_tx_channels
) {
545 index
-= efx
->n_tx_channels
;
546 type
|= EFX_TXQ_TYPE_HIGHPRI
;
548 tx_queue
= efx_get_tx_queue(efx
, index
, type
);
550 return efx_enqueue_skb(tx_queue
, skb
);
553 void efx_init_tx_queue_core_txq(struct efx_tx_queue
*tx_queue
)
555 struct efx_nic
*efx
= tx_queue
->efx
;
557 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
559 netdev_get_tx_queue(efx
->net_dev
,
560 tx_queue
->queue
/ EFX_TXQ_TYPES
+
561 ((tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
) ?
562 efx
->n_tx_channels
: 0));
565 int efx_setup_tc(struct net_device
*net_dev
, u32 handle
, __be16 proto
,
566 struct tc_to_netdev
*ntc
)
568 struct efx_nic
*efx
= netdev_priv(net_dev
);
569 struct efx_channel
*channel
;
570 struct efx_tx_queue
*tx_queue
;
574 if (ntc
->type
!= TC_SETUP_MQPRIO
)
579 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
|| num_tc
> EFX_MAX_TX_TC
)
582 if (num_tc
== net_dev
->num_tc
)
585 for (tc
= 0; tc
< num_tc
; tc
++) {
586 net_dev
->tc_to_txq
[tc
].offset
= tc
* efx
->n_tx_channels
;
587 net_dev
->tc_to_txq
[tc
].count
= efx
->n_tx_channels
;
590 if (num_tc
> net_dev
->num_tc
) {
591 /* Initialise high-priority queues as necessary */
592 efx_for_each_channel(channel
, efx
) {
593 efx_for_each_possible_channel_tx_queue(tx_queue
,
595 if (!(tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
))
597 if (!tx_queue
->buffer
) {
598 rc
= efx_probe_tx_queue(tx_queue
);
602 if (!tx_queue
->initialised
)
603 efx_init_tx_queue(tx_queue
);
604 efx_init_tx_queue_core_txq(tx_queue
);
608 /* Reduce number of classes before number of queues */
609 net_dev
->num_tc
= num_tc
;
612 rc
= netif_set_real_num_tx_queues(net_dev
,
613 max_t(int, num_tc
, 1) *
618 /* Do not destroy high-priority queues when they become
619 * unused. We would have to flush them first, and it is
620 * fairly difficult to flush a subset of TX queues. Leave
621 * it to efx_fini_channels().
624 net_dev
->num_tc
= num_tc
;
628 void efx_xmit_done(struct efx_tx_queue
*tx_queue
, unsigned int index
)
631 struct efx_nic
*efx
= tx_queue
->efx
;
632 struct efx_tx_queue
*txq2
;
633 unsigned int pkts_compl
= 0, bytes_compl
= 0;
635 EFX_BUG_ON_PARANOID(index
> tx_queue
->ptr_mask
);
637 efx_dequeue_buffers(tx_queue
, index
, &pkts_compl
, &bytes_compl
);
638 tx_queue
->pkts_compl
+= pkts_compl
;
639 tx_queue
->bytes_compl
+= bytes_compl
;
642 ++tx_queue
->merge_events
;
644 /* See if we need to restart the netif queue. This memory
645 * barrier ensures that we write read_count (inside
646 * efx_dequeue_buffers()) before reading the queue status.
649 if (unlikely(netif_tx_queue_stopped(tx_queue
->core_txq
)) &&
650 likely(efx
->port_enabled
) &&
651 likely(netif_device_present(efx
->net_dev
))) {
652 txq2
= efx_tx_queue_partner(tx_queue
);
653 fill_level
= max(tx_queue
->insert_count
- tx_queue
->read_count
,
654 txq2
->insert_count
- txq2
->read_count
);
655 if (fill_level
<= efx
->txq_wake_thresh
)
656 netif_tx_wake_queue(tx_queue
->core_txq
);
659 /* Check whether the hardware queue is now empty */
660 if ((int)(tx_queue
->read_count
- tx_queue
->old_write_count
) >= 0) {
661 tx_queue
->old_write_count
= ACCESS_ONCE(tx_queue
->write_count
);
662 if (tx_queue
->read_count
== tx_queue
->old_write_count
) {
664 tx_queue
->empty_read_count
=
665 tx_queue
->read_count
| EFX_EMPTY_COUNT_VALID
;
670 /* Size of page-based TSO header buffers. Larger blocks must be
671 * allocated from the heap.
673 #define TSOH_STD_SIZE 128
674 #define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE)
676 /* At most half the descriptors in the queue at any time will refer to
677 * a TSO header buffer, since they must always be followed by a
678 * payload descriptor referring to an skb.
680 static unsigned int efx_tsoh_page_count(struct efx_tx_queue
*tx_queue
)
682 return DIV_ROUND_UP(tx_queue
->ptr_mask
+ 1, 2 * TSOH_PER_PAGE
);
685 int efx_probe_tx_queue(struct efx_tx_queue
*tx_queue
)
687 struct efx_nic
*efx
= tx_queue
->efx
;
688 unsigned int entries
;
691 /* Create the smallest power-of-two aligned ring */
692 entries
= max(roundup_pow_of_two(efx
->txq_entries
), EFX_MIN_DMAQ_SIZE
);
693 EFX_BUG_ON_PARANOID(entries
> EFX_MAX_DMAQ_SIZE
);
694 tx_queue
->ptr_mask
= entries
- 1;
696 netif_dbg(efx
, probe
, efx
->net_dev
,
697 "creating TX queue %d size %#x mask %#x\n",
698 tx_queue
->queue
, efx
->txq_entries
, tx_queue
->ptr_mask
);
700 /* Allocate software ring */
701 tx_queue
->buffer
= kcalloc(entries
, sizeof(*tx_queue
->buffer
),
703 if (!tx_queue
->buffer
)
706 if (tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
) {
707 tx_queue
->tsoh_page
=
708 kcalloc(efx_tsoh_page_count(tx_queue
),
709 sizeof(tx_queue
->tsoh_page
[0]), GFP_KERNEL
);
710 if (!tx_queue
->tsoh_page
) {
716 /* Allocate hardware ring */
717 rc
= efx_nic_probe_tx(tx_queue
);
724 kfree(tx_queue
->tsoh_page
);
725 tx_queue
->tsoh_page
= NULL
;
727 kfree(tx_queue
->buffer
);
728 tx_queue
->buffer
= NULL
;
732 void efx_init_tx_queue(struct efx_tx_queue
*tx_queue
)
734 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
735 "initialising TX queue %d\n", tx_queue
->queue
);
737 tx_queue
->insert_count
= 0;
738 tx_queue
->write_count
= 0;
739 tx_queue
->old_write_count
= 0;
740 tx_queue
->read_count
= 0;
741 tx_queue
->old_read_count
= 0;
742 tx_queue
->empty_read_count
= 0 | EFX_EMPTY_COUNT_VALID
;
743 tx_queue
->xmit_more_available
= false;
745 /* Set up TX descriptor ring */
746 efx_nic_init_tx(tx_queue
);
748 tx_queue
->initialised
= true;
751 void efx_fini_tx_queue(struct efx_tx_queue
*tx_queue
)
753 struct efx_tx_buffer
*buffer
;
755 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
756 "shutting down TX queue %d\n", tx_queue
->queue
);
758 if (!tx_queue
->buffer
)
761 /* Free any buffers left in the ring */
762 while (tx_queue
->read_count
!= tx_queue
->write_count
) {
763 unsigned int pkts_compl
= 0, bytes_compl
= 0;
764 buffer
= &tx_queue
->buffer
[tx_queue
->read_count
& tx_queue
->ptr_mask
];
765 efx_dequeue_buffer(tx_queue
, buffer
, &pkts_compl
, &bytes_compl
);
767 ++tx_queue
->read_count
;
769 tx_queue
->xmit_more_available
= false;
770 netdev_tx_reset_queue(tx_queue
->core_txq
);
773 void efx_remove_tx_queue(struct efx_tx_queue
*tx_queue
)
777 if (!tx_queue
->buffer
)
780 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
781 "destroying TX queue %d\n", tx_queue
->queue
);
782 efx_nic_remove_tx(tx_queue
);
784 if (tx_queue
->tsoh_page
) {
785 for (i
= 0; i
< efx_tsoh_page_count(tx_queue
); i
++)
786 efx_nic_free_buffer(tx_queue
->efx
,
787 &tx_queue
->tsoh_page
[i
]);
788 kfree(tx_queue
->tsoh_page
);
789 tx_queue
->tsoh_page
= NULL
;
792 kfree(tx_queue
->buffer
);
793 tx_queue
->buffer
= NULL
;
797 /* Efx TCP segmentation acceleration.
799 * Why? Because by doing it here in the driver we can go significantly
800 * faster than the GSO.
802 * Requires TX checksum offload support.
805 #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
808 * struct tso_state - TSO state for an SKB
809 * @out_len: Remaining length in current segment
810 * @seqnum: Current sequence number
811 * @ipv4_id: Current IPv4 ID, host endian
812 * @packet_space: Remaining space in current packet
813 * @dma_addr: DMA address of current position
814 * @in_len: Remaining length in current SKB fragment
815 * @unmap_len: Length of SKB fragment
816 * @unmap_addr: DMA address of SKB fragment
817 * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
818 * @protocol: Network protocol (after any VLAN header)
819 * @ip_off: Offset of IP header
820 * @tcp_off: Offset of TCP header
821 * @header_len: Number of bytes of header
822 * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
823 * @header_dma_addr: Header DMA address, when using option descriptors
824 * @header_unmap_len: Header DMA mapped length, or 0 if not using option
827 * The state used during segmentation. It is put into this data structure
828 * just to make it easy to pass into inline functions.
831 /* Output position */
835 unsigned packet_space
;
841 dma_addr_t unmap_addr
;
842 unsigned short dma_flags
;
846 unsigned int tcp_off
;
848 unsigned int ip_base_len
;
849 dma_addr_t header_dma_addr
;
850 unsigned int header_unmap_len
;
855 * Verify that our various assumptions about sk_buffs and the conditions
856 * under which TSO will be attempted hold true. Return the protocol number.
858 static __be16
efx_tso_check_protocol(struct sk_buff
*skb
)
860 __be16 protocol
= skb
->protocol
;
862 EFX_BUG_ON_PARANOID(((struct ethhdr
*)skb
->data
)->h_proto
!=
864 if (protocol
== htons(ETH_P_8021Q
)) {
865 struct vlan_ethhdr
*veh
= (struct vlan_ethhdr
*)skb
->data
;
866 protocol
= veh
->h_vlan_encapsulated_proto
;
869 if (protocol
== htons(ETH_P_IP
)) {
870 EFX_BUG_ON_PARANOID(ip_hdr(skb
)->protocol
!= IPPROTO_TCP
);
872 EFX_BUG_ON_PARANOID(protocol
!= htons(ETH_P_IPV6
));
873 EFX_BUG_ON_PARANOID(ipv6_hdr(skb
)->nexthdr
!= NEXTHDR_TCP
);
875 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb
), skb
->data
)
876 + (tcp_hdr(skb
)->doff
<< 2u)) >
882 static u8
*efx_tsoh_get_buffer(struct efx_tx_queue
*tx_queue
,
883 struct efx_tx_buffer
*buffer
, unsigned int len
)
887 EFX_BUG_ON_PARANOID(buffer
->len
);
888 EFX_BUG_ON_PARANOID(buffer
->flags
);
889 EFX_BUG_ON_PARANOID(buffer
->unmap_len
);
891 if (likely(len
<= TSOH_STD_SIZE
- NET_IP_ALIGN
)) {
893 (tx_queue
->insert_count
& tx_queue
->ptr_mask
) / 2;
894 struct efx_buffer
*page_buf
=
895 &tx_queue
->tsoh_page
[index
/ TSOH_PER_PAGE
];
897 TSOH_STD_SIZE
* (index
% TSOH_PER_PAGE
) + NET_IP_ALIGN
;
899 if (unlikely(!page_buf
->addr
) &&
900 efx_nic_alloc_buffer(tx_queue
->efx
, page_buf
, PAGE_SIZE
,
904 result
= (u8
*)page_buf
->addr
+ offset
;
905 buffer
->dma_addr
= page_buf
->dma_addr
+ offset
;
906 buffer
->flags
= EFX_TX_BUF_CONT
;
908 tx_queue
->tso_long_headers
++;
910 buffer
->heap_buf
= kmalloc(NET_IP_ALIGN
+ len
, GFP_ATOMIC
);
911 if (unlikely(!buffer
->heap_buf
))
913 result
= (u8
*)buffer
->heap_buf
+ NET_IP_ALIGN
;
914 buffer
->flags
= EFX_TX_BUF_CONT
| EFX_TX_BUF_HEAP
;
923 * efx_tx_queue_insert - push descriptors onto the TX queue
924 * @tx_queue: Efx TX queue
925 * @dma_addr: DMA address of fragment
926 * @len: Length of fragment
927 * @final_buffer: The final buffer inserted into the queue
929 * Push descriptors onto the TX queue.
931 static void efx_tx_queue_insert(struct efx_tx_queue
*tx_queue
,
932 dma_addr_t dma_addr
, unsigned len
,
933 struct efx_tx_buffer
**final_buffer
)
935 struct efx_tx_buffer
*buffer
;
936 struct efx_nic
*efx
= tx_queue
->efx
;
939 EFX_BUG_ON_PARANOID(len
<= 0);
942 buffer
= efx_tx_queue_get_insert_buffer(tx_queue
);
943 ++tx_queue
->insert_count
;
945 EFX_BUG_ON_PARANOID(tx_queue
->insert_count
-
946 tx_queue
->read_count
>=
949 buffer
->dma_addr
= dma_addr
;
951 dma_len
= efx_max_tx_len(efx
, dma_addr
);
953 /* If there is enough space to send then do so */
957 buffer
->len
= dma_len
;
958 buffer
->flags
= EFX_TX_BUF_CONT
;
963 EFX_BUG_ON_PARANOID(!len
);
965 *final_buffer
= buffer
;
970 * Put a TSO header into the TX queue.
972 * This is special-cased because we know that it is small enough to fit in
973 * a single fragment, and we know it doesn't cross a page boundary. It
974 * also allows us to not worry about end-of-packet etc.
976 static int efx_tso_put_header(struct efx_tx_queue
*tx_queue
,
977 struct efx_tx_buffer
*buffer
, u8
*header
)
979 if (unlikely(buffer
->flags
& EFX_TX_BUF_HEAP
)) {
980 buffer
->dma_addr
= dma_map_single(&tx_queue
->efx
->pci_dev
->dev
,
983 if (unlikely(dma_mapping_error(&tx_queue
->efx
->pci_dev
->dev
,
984 buffer
->dma_addr
))) {
985 kfree(buffer
->heap_buf
);
990 buffer
->unmap_len
= buffer
->len
;
991 buffer
->dma_offset
= 0;
992 buffer
->flags
|= EFX_TX_BUF_MAP_SINGLE
;
995 ++tx_queue
->insert_count
;
1000 /* Remove buffers put into a tx_queue. None of the buffers must have
1003 static void efx_enqueue_unwind(struct efx_tx_queue
*tx_queue
,
1004 unsigned int insert_count
)
1006 struct efx_tx_buffer
*buffer
;
1008 /* Work backwards until we hit the original insert pointer value */
1009 while (tx_queue
->insert_count
!= insert_count
) {
1010 --tx_queue
->insert_count
;
1011 buffer
= __efx_tx_queue_get_insert_buffer(tx_queue
);
1012 efx_dequeue_buffer(tx_queue
, buffer
, NULL
, NULL
);
1017 /* Parse the SKB header and initialise state. */
1018 static int tso_start(struct tso_state
*st
, struct efx_nic
*efx
,
1019 struct efx_tx_queue
*tx_queue
,
1020 const struct sk_buff
*skb
)
1022 struct device
*dma_dev
= &efx
->pci_dev
->dev
;
1023 unsigned int header_len
, in_len
;
1024 bool use_opt_desc
= false;
1025 dma_addr_t dma_addr
;
1027 if (tx_queue
->tso_version
== 1)
1028 use_opt_desc
= true;
1030 st
->ip_off
= skb_network_header(skb
) - skb
->data
;
1031 st
->tcp_off
= skb_transport_header(skb
) - skb
->data
;
1032 header_len
= st
->tcp_off
+ (tcp_hdr(skb
)->doff
<< 2u);
1033 in_len
= skb_headlen(skb
) - header_len
;
1034 st
->header_len
= header_len
;
1035 st
->in_len
= in_len
;
1036 if (st
->protocol
== htons(ETH_P_IP
)) {
1037 st
->ip_base_len
= st
->header_len
- st
->ip_off
;
1038 st
->ipv4_id
= ntohs(ip_hdr(skb
)->id
);
1040 st
->ip_base_len
= st
->header_len
- st
->tcp_off
;
1043 st
->seqnum
= ntohl(tcp_hdr(skb
)->seq
);
1045 EFX_BUG_ON_PARANOID(tcp_hdr(skb
)->urg
);
1046 EFX_BUG_ON_PARANOID(tcp_hdr(skb
)->syn
);
1047 EFX_BUG_ON_PARANOID(tcp_hdr(skb
)->rst
);
1049 st
->out_len
= skb
->len
- header_len
;
1051 if (!use_opt_desc
) {
1052 st
->header_unmap_len
= 0;
1054 if (likely(in_len
== 0)) {
1060 dma_addr
= dma_map_single(dma_dev
, skb
->data
+ header_len
,
1061 in_len
, DMA_TO_DEVICE
);
1062 st
->dma_flags
= EFX_TX_BUF_MAP_SINGLE
;
1063 st
->dma_addr
= dma_addr
;
1064 st
->unmap_addr
= dma_addr
;
1065 st
->unmap_len
= in_len
;
1067 dma_addr
= dma_map_single(dma_dev
, skb
->data
,
1068 skb_headlen(skb
), DMA_TO_DEVICE
);
1069 st
->header_dma_addr
= dma_addr
;
1070 st
->header_unmap_len
= skb_headlen(skb
);
1072 st
->dma_addr
= dma_addr
+ header_len
;
1076 return unlikely(dma_mapping_error(dma_dev
, dma_addr
)) ? -ENOMEM
: 0;
1079 static int tso_get_fragment(struct tso_state
*st
, struct efx_nic
*efx
,
1082 st
->unmap_addr
= skb_frag_dma_map(&efx
->pci_dev
->dev
, frag
, 0,
1083 skb_frag_size(frag
), DMA_TO_DEVICE
);
1084 if (likely(!dma_mapping_error(&efx
->pci_dev
->dev
, st
->unmap_addr
))) {
1086 st
->unmap_len
= skb_frag_size(frag
);
1087 st
->in_len
= skb_frag_size(frag
);
1088 st
->dma_addr
= st
->unmap_addr
;
1096 * tso_fill_packet_with_fragment - form descriptors for the current fragment
1097 * @tx_queue: Efx TX queue
1098 * @skb: Socket buffer
1101 * Form descriptors for the current fragment, until we reach the end
1102 * of fragment or end-of-packet.
1104 static void tso_fill_packet_with_fragment(struct efx_tx_queue
*tx_queue
,
1105 const struct sk_buff
*skb
,
1106 struct tso_state
*st
)
1108 struct efx_tx_buffer
*buffer
;
1111 if (st
->in_len
== 0)
1113 if (st
->packet_space
== 0)
1116 EFX_BUG_ON_PARANOID(st
->in_len
<= 0);
1117 EFX_BUG_ON_PARANOID(st
->packet_space
<= 0);
1119 n
= min(st
->in_len
, st
->packet_space
);
1121 st
->packet_space
-= n
;
1125 efx_tx_queue_insert(tx_queue
, st
->dma_addr
, n
, &buffer
);
1127 if (st
->out_len
== 0) {
1128 /* Transfer ownership of the skb */
1130 buffer
->flags
= EFX_TX_BUF_SKB
;
1131 } else if (st
->packet_space
!= 0) {
1132 buffer
->flags
= EFX_TX_BUF_CONT
;
1135 if (st
->in_len
== 0) {
1136 /* Transfer ownership of the DMA mapping */
1137 buffer
->unmap_len
= st
->unmap_len
;
1138 buffer
->dma_offset
= buffer
->unmap_len
- buffer
->len
;
1139 buffer
->flags
|= st
->dma_flags
;
1148 * tso_start_new_packet - generate a new header and prepare for the new packet
1149 * @tx_queue: Efx TX queue
1150 * @skb: Socket buffer
1153 * Generate a new header and prepare for the new packet. Return 0 on
1154 * success, or -%ENOMEM if failed to alloc header.
1156 static int tso_start_new_packet(struct efx_tx_queue
*tx_queue
,
1157 const struct sk_buff
*skb
,
1158 struct tso_state
*st
)
1160 struct efx_tx_buffer
*buffer
=
1161 efx_tx_queue_get_insert_buffer(tx_queue
);
1162 bool is_last
= st
->out_len
<= skb_shinfo(skb
)->gso_size
;
1166 st
->packet_space
= skb_shinfo(skb
)->gso_size
;
1167 tcp_flags_clear
= 0x09; /* mask out FIN and PSH */
1169 st
->packet_space
= st
->out_len
;
1170 tcp_flags_clear
= 0x00;
1173 if (!st
->header_unmap_len
) {
1174 /* Allocate and insert a DMA-mapped header buffer. */
1175 struct tcphdr
*tsoh_th
;
1180 header
= efx_tsoh_get_buffer(tx_queue
, buffer
, st
->header_len
);
1184 tsoh_th
= (struct tcphdr
*)(header
+ st
->tcp_off
);
1186 /* Copy and update the headers. */
1187 memcpy(header
, skb
->data
, st
->header_len
);
1189 tsoh_th
->seq
= htonl(st
->seqnum
);
1190 ((u8
*)tsoh_th
)[13] &= ~tcp_flags_clear
;
1192 ip_length
= st
->ip_base_len
+ st
->packet_space
;
1194 if (st
->protocol
== htons(ETH_P_IP
)) {
1195 struct iphdr
*tsoh_iph
=
1196 (struct iphdr
*)(header
+ st
->ip_off
);
1198 tsoh_iph
->tot_len
= htons(ip_length
);
1199 tsoh_iph
->id
= htons(st
->ipv4_id
);
1201 struct ipv6hdr
*tsoh_iph
=
1202 (struct ipv6hdr
*)(header
+ st
->ip_off
);
1204 tsoh_iph
->payload_len
= htons(ip_length
);
1207 rc
= efx_tso_put_header(tx_queue
, buffer
, header
);
1211 /* Send the original headers with a TSO option descriptor
1214 u8 tcp_flags
= ((u8
*)tcp_hdr(skb
))[13] & ~tcp_flags_clear
;
1216 buffer
->flags
= EFX_TX_BUF_OPTION
;
1218 buffer
->unmap_len
= 0;
1219 EFX_POPULATE_QWORD_5(buffer
->option
,
1220 ESF_DZ_TX_DESC_IS_OPT
, 1,
1221 ESF_DZ_TX_OPTION_TYPE
,
1222 ESE_DZ_TX_OPTION_DESC_TSO
,
1223 ESF_DZ_TX_TSO_TCP_FLAGS
, tcp_flags
,
1224 ESF_DZ_TX_TSO_IP_ID
, st
->ipv4_id
,
1225 ESF_DZ_TX_TSO_TCP_SEQNO
, st
->seqnum
);
1226 ++tx_queue
->insert_count
;
1228 /* We mapped the headers in tso_start(). Unmap them
1229 * when the last segment is completed.
1231 buffer
= efx_tx_queue_get_insert_buffer(tx_queue
);
1232 buffer
->dma_addr
= st
->header_dma_addr
;
1233 buffer
->len
= st
->header_len
;
1235 buffer
->flags
= EFX_TX_BUF_CONT
| EFX_TX_BUF_MAP_SINGLE
;
1236 buffer
->unmap_len
= st
->header_unmap_len
;
1237 buffer
->dma_offset
= 0;
1238 /* Ensure we only unmap them once in case of a
1239 * later DMA mapping error and rollback
1241 st
->header_unmap_len
= 0;
1243 buffer
->flags
= EFX_TX_BUF_CONT
;
1244 buffer
->unmap_len
= 0;
1246 ++tx_queue
->insert_count
;
1249 st
->seqnum
+= skb_shinfo(skb
)->gso_size
;
1251 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1254 ++tx_queue
->tso_packets
;
1256 ++tx_queue
->tx_packets
;
1263 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1264 * @tx_queue: Efx TX queue
1265 * @skb: Socket buffer
1267 * Context: You must hold netif_tx_lock() to call this function.
1269 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1270 * @skb was not enqueued. In all cases @skb is consumed. Return
1273 static int efx_enqueue_skb_tso(struct efx_tx_queue
*tx_queue
,
1274 struct sk_buff
*skb
)
1276 struct efx_nic
*efx
= tx_queue
->efx
;
1277 unsigned int old_insert_count
= tx_queue
->insert_count
;
1279 struct tso_state state
;
1281 /* Find the packet protocol and sanity-check it */
1282 state
.protocol
= efx_tso_check_protocol(skb
);
1284 rc
= tso_start(&state
, efx
, tx_queue
, skb
);
1288 if (likely(state
.in_len
== 0)) {
1289 /* Grab the first payload fragment. */
1290 EFX_BUG_ON_PARANOID(skb_shinfo(skb
)->nr_frags
< 1);
1292 rc
= tso_get_fragment(&state
, efx
,
1293 skb_shinfo(skb
)->frags
+ frag_i
);
1297 /* Payload starts in the header area. */
1301 if (tso_start_new_packet(tx_queue
, skb
, &state
) < 0)
1305 tso_fill_packet_with_fragment(tx_queue
, skb
, &state
);
1307 /* Move onto the next fragment? */
1308 if (state
.in_len
== 0) {
1309 if (++frag_i
>= skb_shinfo(skb
)->nr_frags
)
1310 /* End of payload reached. */
1312 rc
= tso_get_fragment(&state
, efx
,
1313 skb_shinfo(skb
)->frags
+ frag_i
);
1318 /* Start at new packet? */
1319 if (state
.packet_space
== 0 &&
1320 tso_start_new_packet(tx_queue
, skb
, &state
) < 0)
1324 netdev_tx_sent_queue(tx_queue
->core_txq
, skb
->len
);
1326 efx_tx_maybe_stop_queue(tx_queue
);
1328 /* Pass off to hardware */
1329 if (!skb
->xmit_more
|| netif_xmit_stopped(tx_queue
->core_txq
)) {
1330 struct efx_tx_queue
*txq2
= efx_tx_queue_partner(tx_queue
);
1332 /* There could be packets left on the partner queue if those
1333 * SKBs had skb->xmit_more set. If we do not push those they
1334 * could be left for a long time and cause a netdev watchdog.
1336 if (txq2
->xmit_more_available
)
1337 efx_nic_push_buffers(txq2
);
1339 efx_nic_push_buffers(tx_queue
);
1341 tx_queue
->xmit_more_available
= skb
->xmit_more
;
1344 tx_queue
->tso_bursts
++;
1345 return NETDEV_TX_OK
;
1348 netif_err(efx
, tx_err
, efx
->net_dev
,
1349 "Out of memory for TSO headers, or DMA mapping error\n");
1350 dev_kfree_skb_any(skb
);
1352 /* Free the DMA mapping we were in the process of writing out */
1353 if (state
.unmap_len
) {
1354 if (state
.dma_flags
& EFX_TX_BUF_MAP_SINGLE
)
1355 dma_unmap_single(&efx
->pci_dev
->dev
, state
.unmap_addr
,
1356 state
.unmap_len
, DMA_TO_DEVICE
);
1358 dma_unmap_page(&efx
->pci_dev
->dev
, state
.unmap_addr
,
1359 state
.unmap_len
, DMA_TO_DEVICE
);
1362 /* Free the header DMA mapping, if using option descriptors */
1363 if (state
.header_unmap_len
)
1364 dma_unmap_single(&efx
->pci_dev
->dev
, state
.header_dma_addr
,
1365 state
.header_unmap_len
, DMA_TO_DEVICE
);
1367 efx_enqueue_unwind(tx_queue
, old_insert_count
);
1368 return NETDEV_TX_OK
;