2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
53 static DEFINE_MUTEX(regulator_list_mutex
);
54 static LIST_HEAD(regulator_map_list
);
55 static LIST_HEAD(regulator_ena_gpio_list
);
56 static LIST_HEAD(regulator_supply_alias_list
);
57 static bool has_full_constraints
;
59 static struct dentry
*debugfs_root
;
61 static struct class regulator_class
;
64 * struct regulator_map
66 * Used to provide symbolic supply names to devices.
68 struct regulator_map
{
69 struct list_head list
;
70 const char *dev_name
; /* The dev_name() for the consumer */
72 struct regulator_dev
*regulator
;
76 * struct regulator_enable_gpio
78 * Management for shared enable GPIO pin
80 struct regulator_enable_gpio
{
81 struct list_head list
;
82 struct gpio_desc
*gpiod
;
83 u32 enable_count
; /* a number of enabled shared GPIO */
84 u32 request_count
; /* a number of requested shared GPIO */
85 unsigned int ena_gpio_invert
:1;
89 * struct regulator_supply_alias
91 * Used to map lookups for a supply onto an alternative device.
93 struct regulator_supply_alias
{
94 struct list_head list
;
95 struct device
*src_dev
;
96 const char *src_supply
;
97 struct device
*alias_dev
;
98 const char *alias_supply
;
101 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
102 static int _regulator_disable(struct regulator_dev
*rdev
);
103 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
104 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
105 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
106 static int _notifier_call_chain(struct regulator_dev
*rdev
,
107 unsigned long event
, void *data
);
108 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
109 int min_uV
, int max_uV
);
110 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
112 const char *supply_name
);
113 static void _regulator_put(struct regulator
*regulator
);
115 static struct regulator_dev
*dev_to_rdev(struct device
*dev
)
117 return container_of(dev
, struct regulator_dev
, dev
);
120 static const char *rdev_get_name(struct regulator_dev
*rdev
)
122 if (rdev
->constraints
&& rdev
->constraints
->name
)
123 return rdev
->constraints
->name
;
124 else if (rdev
->desc
->name
)
125 return rdev
->desc
->name
;
130 static bool have_full_constraints(void)
132 return has_full_constraints
|| of_have_populated_dt();
135 static inline struct regulator_dev
*rdev_get_supply(struct regulator_dev
*rdev
)
137 if (rdev
&& rdev
->supply
)
138 return rdev
->supply
->rdev
;
144 * regulator_lock_supply - lock a regulator and its supplies
145 * @rdev: regulator source
147 static void regulator_lock_supply(struct regulator_dev
*rdev
)
151 for (i
= 0; rdev
; rdev
= rdev_get_supply(rdev
), i
++)
152 mutex_lock_nested(&rdev
->mutex
, i
);
156 * regulator_unlock_supply - unlock a regulator and its supplies
157 * @rdev: regulator source
159 static void regulator_unlock_supply(struct regulator_dev
*rdev
)
161 struct regulator
*supply
;
164 mutex_unlock(&rdev
->mutex
);
165 supply
= rdev
->supply
;
175 * of_get_regulator - get a regulator device node based on supply name
176 * @dev: Device pointer for the consumer (of regulator) device
177 * @supply: regulator supply name
179 * Extract the regulator device node corresponding to the supply name.
180 * returns the device node corresponding to the regulator if found, else
183 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
185 struct device_node
*regnode
= NULL
;
186 char prop_name
[32]; /* 32 is max size of property name */
188 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
190 snprintf(prop_name
, 32, "%s-supply", supply
);
191 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
194 dev_dbg(dev
, "Looking up %s property in node %s failed",
195 prop_name
, dev
->of_node
->full_name
);
201 static int _regulator_can_change_status(struct regulator_dev
*rdev
)
203 if (!rdev
->constraints
)
206 if (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
)
212 /* Platform voltage constraint check */
213 static int regulator_check_voltage(struct regulator_dev
*rdev
,
214 int *min_uV
, int *max_uV
)
216 BUG_ON(*min_uV
> *max_uV
);
218 if (!rdev
->constraints
) {
219 rdev_err(rdev
, "no constraints\n");
222 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
223 rdev_err(rdev
, "voltage operation not allowed\n");
227 if (*max_uV
> rdev
->constraints
->max_uV
)
228 *max_uV
= rdev
->constraints
->max_uV
;
229 if (*min_uV
< rdev
->constraints
->min_uV
)
230 *min_uV
= rdev
->constraints
->min_uV
;
232 if (*min_uV
> *max_uV
) {
233 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
241 /* Make sure we select a voltage that suits the needs of all
242 * regulator consumers
244 static int regulator_check_consumers(struct regulator_dev
*rdev
,
245 int *min_uV
, int *max_uV
)
247 struct regulator
*regulator
;
249 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
251 * Assume consumers that didn't say anything are OK
252 * with anything in the constraint range.
254 if (!regulator
->min_uV
&& !regulator
->max_uV
)
257 if (*max_uV
> regulator
->max_uV
)
258 *max_uV
= regulator
->max_uV
;
259 if (*min_uV
< regulator
->min_uV
)
260 *min_uV
= regulator
->min_uV
;
263 if (*min_uV
> *max_uV
) {
264 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
274 int *min_uA
, int *max_uA
)
276 BUG_ON(*min_uA
> *max_uA
);
278 if (!rdev
->constraints
) {
279 rdev_err(rdev
, "no constraints\n");
282 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_CURRENT
)) {
283 rdev_err(rdev
, "current operation not allowed\n");
287 if (*max_uA
> rdev
->constraints
->max_uA
)
288 *max_uA
= rdev
->constraints
->max_uA
;
289 if (*min_uA
< rdev
->constraints
->min_uA
)
290 *min_uA
= rdev
->constraints
->min_uA
;
292 if (*min_uA
> *max_uA
) {
293 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
301 /* operating mode constraint check */
302 static int regulator_mode_constrain(struct regulator_dev
*rdev
, int *mode
)
305 case REGULATOR_MODE_FAST
:
306 case REGULATOR_MODE_NORMAL
:
307 case REGULATOR_MODE_IDLE
:
308 case REGULATOR_MODE_STANDBY
:
311 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
315 if (!rdev
->constraints
) {
316 rdev_err(rdev
, "no constraints\n");
319 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_MODE
)) {
320 rdev_err(rdev
, "mode operation not allowed\n");
324 /* The modes are bitmasks, the most power hungry modes having
325 * the lowest values. If the requested mode isn't supported
326 * try higher modes. */
328 if (rdev
->constraints
->valid_modes_mask
& *mode
)
336 /* dynamic regulator mode switching constraint check */
337 static int regulator_check_drms(struct regulator_dev
*rdev
)
339 if (!rdev
->constraints
) {
340 rdev_err(rdev
, "no constraints\n");
343 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
)) {
344 rdev_dbg(rdev
, "drms operation not allowed\n");
350 static ssize_t
regulator_uV_show(struct device
*dev
,
351 struct device_attribute
*attr
, char *buf
)
353 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
356 mutex_lock(&rdev
->mutex
);
357 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
358 mutex_unlock(&rdev
->mutex
);
362 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
364 static ssize_t
regulator_uA_show(struct device
*dev
,
365 struct device_attribute
*attr
, char *buf
)
367 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
369 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
371 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
373 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
376 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
378 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
380 static DEVICE_ATTR_RO(name
);
382 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
385 case REGULATOR_MODE_FAST
:
386 return sprintf(buf
, "fast\n");
387 case REGULATOR_MODE_NORMAL
:
388 return sprintf(buf
, "normal\n");
389 case REGULATOR_MODE_IDLE
:
390 return sprintf(buf
, "idle\n");
391 case REGULATOR_MODE_STANDBY
:
392 return sprintf(buf
, "standby\n");
394 return sprintf(buf
, "unknown\n");
397 static ssize_t
regulator_opmode_show(struct device
*dev
,
398 struct device_attribute
*attr
, char *buf
)
400 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
402 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
404 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
406 static ssize_t
regulator_print_state(char *buf
, int state
)
409 return sprintf(buf
, "enabled\n");
411 return sprintf(buf
, "disabled\n");
413 return sprintf(buf
, "unknown\n");
416 static ssize_t
regulator_state_show(struct device
*dev
,
417 struct device_attribute
*attr
, char *buf
)
419 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
422 mutex_lock(&rdev
->mutex
);
423 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
424 mutex_unlock(&rdev
->mutex
);
428 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
430 static ssize_t
regulator_status_show(struct device
*dev
,
431 struct device_attribute
*attr
, char *buf
)
433 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
437 status
= rdev
->desc
->ops
->get_status(rdev
);
442 case REGULATOR_STATUS_OFF
:
445 case REGULATOR_STATUS_ON
:
448 case REGULATOR_STATUS_ERROR
:
451 case REGULATOR_STATUS_FAST
:
454 case REGULATOR_STATUS_NORMAL
:
457 case REGULATOR_STATUS_IDLE
:
460 case REGULATOR_STATUS_STANDBY
:
463 case REGULATOR_STATUS_BYPASS
:
466 case REGULATOR_STATUS_UNDEFINED
:
473 return sprintf(buf
, "%s\n", label
);
475 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
477 static ssize_t
regulator_min_uA_show(struct device
*dev
,
478 struct device_attribute
*attr
, char *buf
)
480 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
482 if (!rdev
->constraints
)
483 return sprintf(buf
, "constraint not defined\n");
485 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
487 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
489 static ssize_t
regulator_max_uA_show(struct device
*dev
,
490 struct device_attribute
*attr
, char *buf
)
492 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
494 if (!rdev
->constraints
)
495 return sprintf(buf
, "constraint not defined\n");
497 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
499 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
501 static ssize_t
regulator_min_uV_show(struct device
*dev
,
502 struct device_attribute
*attr
, char *buf
)
504 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
506 if (!rdev
->constraints
)
507 return sprintf(buf
, "constraint not defined\n");
509 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
511 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
513 static ssize_t
regulator_max_uV_show(struct device
*dev
,
514 struct device_attribute
*attr
, char *buf
)
516 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
518 if (!rdev
->constraints
)
519 return sprintf(buf
, "constraint not defined\n");
521 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
523 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
525 static ssize_t
regulator_total_uA_show(struct device
*dev
,
526 struct device_attribute
*attr
, char *buf
)
528 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
529 struct regulator
*regulator
;
532 mutex_lock(&rdev
->mutex
);
533 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
534 uA
+= regulator
->uA_load
;
535 mutex_unlock(&rdev
->mutex
);
536 return sprintf(buf
, "%d\n", uA
);
538 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
540 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
543 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
544 return sprintf(buf
, "%d\n", rdev
->use_count
);
546 static DEVICE_ATTR_RO(num_users
);
548 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
551 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
553 switch (rdev
->desc
->type
) {
554 case REGULATOR_VOLTAGE
:
555 return sprintf(buf
, "voltage\n");
556 case REGULATOR_CURRENT
:
557 return sprintf(buf
, "current\n");
559 return sprintf(buf
, "unknown\n");
561 static DEVICE_ATTR_RO(type
);
563 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
564 struct device_attribute
*attr
, char *buf
)
566 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
568 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
570 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
571 regulator_suspend_mem_uV_show
, NULL
);
573 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
574 struct device_attribute
*attr
, char *buf
)
576 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
578 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
580 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
581 regulator_suspend_disk_uV_show
, NULL
);
583 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
584 struct device_attribute
*attr
, char *buf
)
586 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
588 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
590 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
591 regulator_suspend_standby_uV_show
, NULL
);
593 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
594 struct device_attribute
*attr
, char *buf
)
596 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
598 return regulator_print_opmode(buf
,
599 rdev
->constraints
->state_mem
.mode
);
601 static DEVICE_ATTR(suspend_mem_mode
, 0444,
602 regulator_suspend_mem_mode_show
, NULL
);
604 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
605 struct device_attribute
*attr
, char *buf
)
607 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
609 return regulator_print_opmode(buf
,
610 rdev
->constraints
->state_disk
.mode
);
612 static DEVICE_ATTR(suspend_disk_mode
, 0444,
613 regulator_suspend_disk_mode_show
, NULL
);
615 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
616 struct device_attribute
*attr
, char *buf
)
618 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
620 return regulator_print_opmode(buf
,
621 rdev
->constraints
->state_standby
.mode
);
623 static DEVICE_ATTR(suspend_standby_mode
, 0444,
624 regulator_suspend_standby_mode_show
, NULL
);
626 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
627 struct device_attribute
*attr
, char *buf
)
629 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
631 return regulator_print_state(buf
,
632 rdev
->constraints
->state_mem
.enabled
);
634 static DEVICE_ATTR(suspend_mem_state
, 0444,
635 regulator_suspend_mem_state_show
, NULL
);
637 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
638 struct device_attribute
*attr
, char *buf
)
640 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
642 return regulator_print_state(buf
,
643 rdev
->constraints
->state_disk
.enabled
);
645 static DEVICE_ATTR(suspend_disk_state
, 0444,
646 regulator_suspend_disk_state_show
, NULL
);
648 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
649 struct device_attribute
*attr
, char *buf
)
651 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
653 return regulator_print_state(buf
,
654 rdev
->constraints
->state_standby
.enabled
);
656 static DEVICE_ATTR(suspend_standby_state
, 0444,
657 regulator_suspend_standby_state_show
, NULL
);
659 static ssize_t
regulator_bypass_show(struct device
*dev
,
660 struct device_attribute
*attr
, char *buf
)
662 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
667 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
676 return sprintf(buf
, "%s\n", report
);
678 static DEVICE_ATTR(bypass
, 0444,
679 regulator_bypass_show
, NULL
);
681 /* Calculate the new optimum regulator operating mode based on the new total
682 * consumer load. All locks held by caller */
683 static int drms_uA_update(struct regulator_dev
*rdev
)
685 struct regulator
*sibling
;
686 int current_uA
= 0, output_uV
, input_uV
, err
;
689 lockdep_assert_held_once(&rdev
->mutex
);
692 * first check to see if we can set modes at all, otherwise just
693 * tell the consumer everything is OK.
695 err
= regulator_check_drms(rdev
);
699 if (!rdev
->desc
->ops
->get_optimum_mode
&&
700 !rdev
->desc
->ops
->set_load
)
703 if (!rdev
->desc
->ops
->set_mode
&&
704 !rdev
->desc
->ops
->set_load
)
707 /* get output voltage */
708 output_uV
= _regulator_get_voltage(rdev
);
709 if (output_uV
<= 0) {
710 rdev_err(rdev
, "invalid output voltage found\n");
714 /* get input voltage */
717 input_uV
= regulator_get_voltage(rdev
->supply
);
719 input_uV
= rdev
->constraints
->input_uV
;
721 rdev_err(rdev
, "invalid input voltage found\n");
725 /* calc total requested load */
726 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
727 current_uA
+= sibling
->uA_load
;
729 current_uA
+= rdev
->constraints
->system_load
;
731 if (rdev
->desc
->ops
->set_load
) {
732 /* set the optimum mode for our new total regulator load */
733 err
= rdev
->desc
->ops
->set_load(rdev
, current_uA
);
735 rdev_err(rdev
, "failed to set load %d\n", current_uA
);
737 /* now get the optimum mode for our new total regulator load */
738 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
739 output_uV
, current_uA
);
741 /* check the new mode is allowed */
742 err
= regulator_mode_constrain(rdev
, &mode
);
744 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745 current_uA
, input_uV
, output_uV
);
749 err
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
751 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
757 static int suspend_set_state(struct regulator_dev
*rdev
,
758 struct regulator_state
*rstate
)
762 /* If we have no suspend mode configration don't set anything;
763 * only warn if the driver implements set_suspend_voltage or
764 * set_suspend_mode callback.
766 if (!rstate
->enabled
&& !rstate
->disabled
) {
767 if (rdev
->desc
->ops
->set_suspend_voltage
||
768 rdev
->desc
->ops
->set_suspend_mode
)
769 rdev_warn(rdev
, "No configuration\n");
773 if (rstate
->enabled
&& rstate
->disabled
) {
774 rdev_err(rdev
, "invalid configuration\n");
778 if (rstate
->enabled
&& rdev
->desc
->ops
->set_suspend_enable
)
779 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
780 else if (rstate
->disabled
&& rdev
->desc
->ops
->set_suspend_disable
)
781 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
782 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
786 rdev_err(rdev
, "failed to enabled/disable\n");
790 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
791 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
793 rdev_err(rdev
, "failed to set voltage\n");
798 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
799 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
801 rdev_err(rdev
, "failed to set mode\n");
808 /* locks held by caller */
809 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
811 lockdep_assert_held_once(&rdev
->mutex
);
813 if (!rdev
->constraints
)
817 case PM_SUSPEND_STANDBY
:
818 return suspend_set_state(rdev
,
819 &rdev
->constraints
->state_standby
);
821 return suspend_set_state(rdev
,
822 &rdev
->constraints
->state_mem
);
824 return suspend_set_state(rdev
,
825 &rdev
->constraints
->state_disk
);
831 static void print_constraints(struct regulator_dev
*rdev
)
833 struct regulation_constraints
*constraints
= rdev
->constraints
;
835 size_t len
= sizeof(buf
) - 1;
839 if (constraints
->min_uV
&& constraints
->max_uV
) {
840 if (constraints
->min_uV
== constraints
->max_uV
)
841 count
+= scnprintf(buf
+ count
, len
- count
, "%d mV ",
842 constraints
->min_uV
/ 1000);
844 count
+= scnprintf(buf
+ count
, len
- count
,
846 constraints
->min_uV
/ 1000,
847 constraints
->max_uV
/ 1000);
850 if (!constraints
->min_uV
||
851 constraints
->min_uV
!= constraints
->max_uV
) {
852 ret
= _regulator_get_voltage(rdev
);
854 count
+= scnprintf(buf
+ count
, len
- count
,
855 "at %d mV ", ret
/ 1000);
858 if (constraints
->uV_offset
)
859 count
+= scnprintf(buf
+ count
, len
- count
, "%dmV offset ",
860 constraints
->uV_offset
/ 1000);
862 if (constraints
->min_uA
&& constraints
->max_uA
) {
863 if (constraints
->min_uA
== constraints
->max_uA
)
864 count
+= scnprintf(buf
+ count
, len
- count
, "%d mA ",
865 constraints
->min_uA
/ 1000);
867 count
+= scnprintf(buf
+ count
, len
- count
,
869 constraints
->min_uA
/ 1000,
870 constraints
->max_uA
/ 1000);
873 if (!constraints
->min_uA
||
874 constraints
->min_uA
!= constraints
->max_uA
) {
875 ret
= _regulator_get_current_limit(rdev
);
877 count
+= scnprintf(buf
+ count
, len
- count
,
878 "at %d mA ", ret
/ 1000);
881 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
882 count
+= scnprintf(buf
+ count
, len
- count
, "fast ");
883 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
884 count
+= scnprintf(buf
+ count
, len
- count
, "normal ");
885 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
886 count
+= scnprintf(buf
+ count
, len
- count
, "idle ");
887 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
888 count
+= scnprintf(buf
+ count
, len
- count
, "standby");
891 scnprintf(buf
, len
, "no parameters");
893 rdev_dbg(rdev
, "%s\n", buf
);
895 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
896 !(constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
))
898 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
901 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
902 struct regulation_constraints
*constraints
)
904 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
907 /* do we need to apply the constraint voltage */
908 if (rdev
->constraints
->apply_uV
&&
909 rdev
->constraints
->min_uV
== rdev
->constraints
->max_uV
) {
910 int current_uV
= _regulator_get_voltage(rdev
);
911 if (current_uV
< 0) {
913 "failed to get the current voltage(%d)\n",
917 if (current_uV
< rdev
->constraints
->min_uV
||
918 current_uV
> rdev
->constraints
->max_uV
) {
919 ret
= _regulator_do_set_voltage(
920 rdev
, rdev
->constraints
->min_uV
,
921 rdev
->constraints
->max_uV
);
924 "failed to apply %duV constraint(%d)\n",
925 rdev
->constraints
->min_uV
, ret
);
931 /* constrain machine-level voltage specs to fit
932 * the actual range supported by this regulator.
934 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
935 int count
= rdev
->desc
->n_voltages
;
937 int min_uV
= INT_MAX
;
938 int max_uV
= INT_MIN
;
939 int cmin
= constraints
->min_uV
;
940 int cmax
= constraints
->max_uV
;
942 /* it's safe to autoconfigure fixed-voltage supplies
943 and the constraints are used by list_voltage. */
944 if (count
== 1 && !cmin
) {
947 constraints
->min_uV
= cmin
;
948 constraints
->max_uV
= cmax
;
951 /* voltage constraints are optional */
952 if ((cmin
== 0) && (cmax
== 0))
955 /* else require explicit machine-level constraints */
956 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
957 rdev_err(rdev
, "invalid voltage constraints\n");
961 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
962 for (i
= 0; i
< count
; i
++) {
965 value
= ops
->list_voltage(rdev
, i
);
969 /* maybe adjust [min_uV..max_uV] */
970 if (value
>= cmin
&& value
< min_uV
)
972 if (value
<= cmax
&& value
> max_uV
)
976 /* final: [min_uV..max_uV] valid iff constraints valid */
977 if (max_uV
< min_uV
) {
979 "unsupportable voltage constraints %u-%uuV\n",
984 /* use regulator's subset of machine constraints */
985 if (constraints
->min_uV
< min_uV
) {
986 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
987 constraints
->min_uV
, min_uV
);
988 constraints
->min_uV
= min_uV
;
990 if (constraints
->max_uV
> max_uV
) {
991 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
992 constraints
->max_uV
, max_uV
);
993 constraints
->max_uV
= max_uV
;
1000 static int machine_constraints_current(struct regulator_dev
*rdev
,
1001 struct regulation_constraints
*constraints
)
1003 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1006 if (!constraints
->min_uA
&& !constraints
->max_uA
)
1009 if (constraints
->min_uA
> constraints
->max_uA
) {
1010 rdev_err(rdev
, "Invalid current constraints\n");
1014 if (!ops
->set_current_limit
|| !ops
->get_current_limit
) {
1015 rdev_warn(rdev
, "Operation of current configuration missing\n");
1019 /* Set regulator current in constraints range */
1020 ret
= ops
->set_current_limit(rdev
, constraints
->min_uA
,
1021 constraints
->max_uA
);
1023 rdev_err(rdev
, "Failed to set current constraint, %d\n", ret
);
1030 static int _regulator_do_enable(struct regulator_dev
*rdev
);
1033 * set_machine_constraints - sets regulator constraints
1034 * @rdev: regulator source
1035 * @constraints: constraints to apply
1037 * Allows platform initialisation code to define and constrain
1038 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1039 * Constraints *must* be set by platform code in order for some
1040 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1043 static int set_machine_constraints(struct regulator_dev
*rdev
,
1044 const struct regulation_constraints
*constraints
)
1047 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1050 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
1053 rdev
->constraints
= kzalloc(sizeof(*constraints
),
1055 if (!rdev
->constraints
)
1058 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
1062 ret
= machine_constraints_current(rdev
, rdev
->constraints
);
1066 if (rdev
->constraints
->ilim_uA
&& ops
->set_input_current_limit
) {
1067 ret
= ops
->set_input_current_limit(rdev
,
1068 rdev
->constraints
->ilim_uA
);
1070 rdev_err(rdev
, "failed to set input limit\n");
1075 /* do we need to setup our suspend state */
1076 if (rdev
->constraints
->initial_state
) {
1077 ret
= suspend_prepare(rdev
, rdev
->constraints
->initial_state
);
1079 rdev_err(rdev
, "failed to set suspend state\n");
1084 if (rdev
->constraints
->initial_mode
) {
1085 if (!ops
->set_mode
) {
1086 rdev_err(rdev
, "no set_mode operation\n");
1090 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
1092 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
1097 /* If the constraints say the regulator should be on at this point
1098 * and we have control then make sure it is enabled.
1100 if (rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) {
1101 ret
= _regulator_do_enable(rdev
);
1102 if (ret
< 0 && ret
!= -EINVAL
) {
1103 rdev_err(rdev
, "failed to enable\n");
1108 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
1109 && ops
->set_ramp_delay
) {
1110 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
1112 rdev_err(rdev
, "failed to set ramp_delay\n");
1117 if (rdev
->constraints
->pull_down
&& ops
->set_pull_down
) {
1118 ret
= ops
->set_pull_down(rdev
);
1120 rdev_err(rdev
, "failed to set pull down\n");
1125 if (rdev
->constraints
->soft_start
&& ops
->set_soft_start
) {
1126 ret
= ops
->set_soft_start(rdev
);
1128 rdev_err(rdev
, "failed to set soft start\n");
1133 if (rdev
->constraints
->over_current_protection
1134 && ops
->set_over_current_protection
) {
1135 ret
= ops
->set_over_current_protection(rdev
);
1137 rdev_err(rdev
, "failed to set over current protection\n");
1142 if (rdev
->constraints
->active_discharge
&& ops
->set_active_discharge
) {
1143 bool ad_state
= (rdev
->constraints
->active_discharge
==
1144 REGULATOR_ACTIVE_DISCHARGE_ENABLE
) ? true : false;
1146 ret
= ops
->set_active_discharge(rdev
, ad_state
);
1148 rdev_err(rdev
, "failed to set active discharge\n");
1153 if (rdev
->constraints
->active_discharge
&& ops
->set_active_discharge
) {
1154 bool ad_state
= (rdev
->constraints
->active_discharge
==
1155 REGULATOR_ACTIVE_DISCHARGE_ENABLE
) ? true : false;
1157 ret
= ops
->set_active_discharge(rdev
, ad_state
);
1159 rdev_err(rdev
, "failed to set active discharge\n");
1164 print_constraints(rdev
);
1169 * set_supply - set regulator supply regulator
1170 * @rdev: regulator name
1171 * @supply_rdev: supply regulator name
1173 * Called by platform initialisation code to set the supply regulator for this
1174 * regulator. This ensures that a regulators supply will also be enabled by the
1175 * core if it's child is enabled.
1177 static int set_supply(struct regulator_dev
*rdev
,
1178 struct regulator_dev
*supply_rdev
)
1182 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1184 if (!try_module_get(supply_rdev
->owner
))
1187 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1188 if (rdev
->supply
== NULL
) {
1192 supply_rdev
->open_count
++;
1198 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1199 * @rdev: regulator source
1200 * @consumer_dev_name: dev_name() string for device supply applies to
1201 * @supply: symbolic name for supply
1203 * Allows platform initialisation code to map physical regulator
1204 * sources to symbolic names for supplies for use by devices. Devices
1205 * should use these symbolic names to request regulators, avoiding the
1206 * need to provide board-specific regulator names as platform data.
1208 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1209 const char *consumer_dev_name
,
1212 struct regulator_map
*node
;
1218 if (consumer_dev_name
!= NULL
)
1223 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1224 if (node
->dev_name
&& consumer_dev_name
) {
1225 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1227 } else if (node
->dev_name
|| consumer_dev_name
) {
1231 if (strcmp(node
->supply
, supply
) != 0)
1234 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1236 dev_name(&node
->regulator
->dev
),
1237 node
->regulator
->desc
->name
,
1239 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1243 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1247 node
->regulator
= rdev
;
1248 node
->supply
= supply
;
1251 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1252 if (node
->dev_name
== NULL
) {
1258 list_add(&node
->list
, ®ulator_map_list
);
1262 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1264 struct regulator_map
*node
, *n
;
1266 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1267 if (rdev
== node
->regulator
) {
1268 list_del(&node
->list
);
1269 kfree(node
->dev_name
);
1275 #define REG_STR_SIZE 64
1277 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1279 const char *supply_name
)
1281 struct regulator
*regulator
;
1282 char buf
[REG_STR_SIZE
];
1285 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1286 if (regulator
== NULL
)
1289 mutex_lock(&rdev
->mutex
);
1290 regulator
->rdev
= rdev
;
1291 list_add(®ulator
->list
, &rdev
->consumer_list
);
1294 regulator
->dev
= dev
;
1296 /* Add a link to the device sysfs entry */
1297 size
= scnprintf(buf
, REG_STR_SIZE
, "%s-%s",
1298 dev
->kobj
.name
, supply_name
);
1299 if (size
>= REG_STR_SIZE
)
1302 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1303 if (regulator
->supply_name
== NULL
)
1306 err
= sysfs_create_link_nowarn(&rdev
->dev
.kobj
, &dev
->kobj
,
1309 rdev_dbg(rdev
, "could not add device link %s err %d\n",
1310 dev
->kobj
.name
, err
);
1314 regulator
->supply_name
= kstrdup(supply_name
, GFP_KERNEL
);
1315 if (regulator
->supply_name
== NULL
)
1319 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1321 if (!regulator
->debugfs
) {
1322 rdev_dbg(rdev
, "Failed to create debugfs directory\n");
1324 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1325 ®ulator
->uA_load
);
1326 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1327 ®ulator
->min_uV
);
1328 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1329 ®ulator
->max_uV
);
1333 * Check now if the regulator is an always on regulator - if
1334 * it is then we don't need to do nearly so much work for
1335 * enable/disable calls.
1337 if (!_regulator_can_change_status(rdev
) &&
1338 _regulator_is_enabled(rdev
))
1339 regulator
->always_on
= true;
1341 mutex_unlock(&rdev
->mutex
);
1344 list_del(®ulator
->list
);
1346 mutex_unlock(&rdev
->mutex
);
1350 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1352 if (rdev
->constraints
&& rdev
->constraints
->enable_time
)
1353 return rdev
->constraints
->enable_time
;
1354 if (!rdev
->desc
->ops
->enable_time
)
1355 return rdev
->desc
->enable_time
;
1356 return rdev
->desc
->ops
->enable_time(rdev
);
1359 static struct regulator_supply_alias
*regulator_find_supply_alias(
1360 struct device
*dev
, const char *supply
)
1362 struct regulator_supply_alias
*map
;
1364 list_for_each_entry(map
, ®ulator_supply_alias_list
, list
)
1365 if (map
->src_dev
== dev
&& strcmp(map
->src_supply
, supply
) == 0)
1371 static void regulator_supply_alias(struct device
**dev
, const char **supply
)
1373 struct regulator_supply_alias
*map
;
1375 map
= regulator_find_supply_alias(*dev
, *supply
);
1377 dev_dbg(*dev
, "Mapping supply %s to %s,%s\n",
1378 *supply
, map
->alias_supply
,
1379 dev_name(map
->alias_dev
));
1380 *dev
= map
->alias_dev
;
1381 *supply
= map
->alias_supply
;
1385 static int of_node_match(struct device
*dev
, const void *data
)
1387 return dev
->of_node
== data
;
1390 static struct regulator_dev
*of_find_regulator_by_node(struct device_node
*np
)
1394 dev
= class_find_device(®ulator_class
, NULL
, np
, of_node_match
);
1396 return dev
? dev_to_rdev(dev
) : NULL
;
1399 static int regulator_match(struct device
*dev
, const void *data
)
1401 struct regulator_dev
*r
= dev_to_rdev(dev
);
1403 return strcmp(rdev_get_name(r
), data
) == 0;
1406 static struct regulator_dev
*regulator_lookup_by_name(const char *name
)
1410 dev
= class_find_device(®ulator_class
, NULL
, name
, regulator_match
);
1412 return dev
? dev_to_rdev(dev
) : NULL
;
1416 * regulator_dev_lookup - lookup a regulator device.
1417 * @dev: device for regulator "consumer".
1418 * @supply: Supply name or regulator ID.
1419 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1420 * lookup could succeed in the future.
1422 * If successful, returns a struct regulator_dev that corresponds to the name
1423 * @supply and with the embedded struct device refcount incremented by one,
1424 * or NULL on failure. The refcount must be dropped by calling put_device().
1426 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1430 struct regulator_dev
*r
;
1431 struct device_node
*node
;
1432 struct regulator_map
*map
;
1433 const char *devname
= NULL
;
1435 regulator_supply_alias(&dev
, &supply
);
1437 /* first do a dt based lookup */
1438 if (dev
&& dev
->of_node
) {
1439 node
= of_get_regulator(dev
, supply
);
1441 r
= of_find_regulator_by_node(node
);
1444 *ret
= -EPROBE_DEFER
;
1448 * If we couldn't even get the node then it's
1449 * not just that the device didn't register
1450 * yet, there's no node and we'll never
1457 /* if not found, try doing it non-dt way */
1459 devname
= dev_name(dev
);
1461 r
= regulator_lookup_by_name(supply
);
1465 mutex_lock(®ulator_list_mutex
);
1466 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1467 /* If the mapping has a device set up it must match */
1468 if (map
->dev_name
&&
1469 (!devname
|| strcmp(map
->dev_name
, devname
)))
1472 if (strcmp(map
->supply
, supply
) == 0 &&
1473 get_device(&map
->regulator
->dev
)) {
1474 mutex_unlock(®ulator_list_mutex
);
1475 return map
->regulator
;
1478 mutex_unlock(®ulator_list_mutex
);
1483 static int regulator_resolve_supply(struct regulator_dev
*rdev
)
1485 struct regulator_dev
*r
;
1486 struct device
*dev
= rdev
->dev
.parent
;
1489 /* No supply to resovle? */
1490 if (!rdev
->supply_name
)
1493 /* Supply already resolved? */
1497 r
= regulator_dev_lookup(dev
, rdev
->supply_name
, &ret
);
1499 if (ret
== -ENODEV
) {
1501 * No supply was specified for this regulator and
1502 * there will never be one.
1507 /* Did the lookup explicitly defer for us? */
1508 if (ret
== -EPROBE_DEFER
)
1511 if (have_full_constraints()) {
1512 r
= dummy_regulator_rdev
;
1513 get_device(&r
->dev
);
1515 dev_err(dev
, "Failed to resolve %s-supply for %s\n",
1516 rdev
->supply_name
, rdev
->desc
->name
);
1517 return -EPROBE_DEFER
;
1521 /* Recursively resolve the supply of the supply */
1522 ret
= regulator_resolve_supply(r
);
1524 put_device(&r
->dev
);
1528 ret
= set_supply(rdev
, r
);
1530 put_device(&r
->dev
);
1534 /* Cascade always-on state to supply */
1535 if (_regulator_is_enabled(rdev
) && rdev
->supply
) {
1536 ret
= regulator_enable(rdev
->supply
);
1538 _regulator_put(rdev
->supply
);
1546 /* Internal regulator request function */
1547 static struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1548 bool exclusive
, bool allow_dummy
)
1550 struct regulator_dev
*rdev
;
1551 struct regulator
*regulator
= ERR_PTR(-EPROBE_DEFER
);
1552 const char *devname
= NULL
;
1556 pr_err("get() with no identifier\n");
1557 return ERR_PTR(-EINVAL
);
1561 devname
= dev_name(dev
);
1563 if (have_full_constraints())
1566 ret
= -EPROBE_DEFER
;
1568 rdev
= regulator_dev_lookup(dev
, id
, &ret
);
1572 regulator
= ERR_PTR(ret
);
1575 * If we have return value from dev_lookup fail, we do not expect to
1576 * succeed, so, quit with appropriate error value
1578 if (ret
&& ret
!= -ENODEV
)
1582 devname
= "deviceless";
1585 * Assume that a regulator is physically present and enabled
1586 * even if it isn't hooked up and just provide a dummy.
1588 if (have_full_constraints() && allow_dummy
) {
1589 pr_warn("%s supply %s not found, using dummy regulator\n",
1592 rdev
= dummy_regulator_rdev
;
1593 get_device(&rdev
->dev
);
1595 /* Don't log an error when called from regulator_get_optional() */
1596 } else if (!have_full_constraints() || exclusive
) {
1597 dev_warn(dev
, "dummy supplies not allowed\n");
1603 if (rdev
->exclusive
) {
1604 regulator
= ERR_PTR(-EPERM
);
1605 put_device(&rdev
->dev
);
1609 if (exclusive
&& rdev
->open_count
) {
1610 regulator
= ERR_PTR(-EBUSY
);
1611 put_device(&rdev
->dev
);
1615 ret
= regulator_resolve_supply(rdev
);
1617 regulator
= ERR_PTR(ret
);
1618 put_device(&rdev
->dev
);
1622 if (!try_module_get(rdev
->owner
)) {
1623 put_device(&rdev
->dev
);
1627 regulator
= create_regulator(rdev
, dev
, id
);
1628 if (regulator
== NULL
) {
1629 regulator
= ERR_PTR(-ENOMEM
);
1630 put_device(&rdev
->dev
);
1631 module_put(rdev
->owner
);
1637 rdev
->exclusive
= 1;
1639 ret
= _regulator_is_enabled(rdev
);
1641 rdev
->use_count
= 1;
1643 rdev
->use_count
= 0;
1650 * regulator_get - lookup and obtain a reference to a regulator.
1651 * @dev: device for regulator "consumer"
1652 * @id: Supply name or regulator ID.
1654 * Returns a struct regulator corresponding to the regulator producer,
1655 * or IS_ERR() condition containing errno.
1657 * Use of supply names configured via regulator_set_device_supply() is
1658 * strongly encouraged. It is recommended that the supply name used
1659 * should match the name used for the supply and/or the relevant
1660 * device pins in the datasheet.
1662 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1664 return _regulator_get(dev
, id
, false, true);
1666 EXPORT_SYMBOL_GPL(regulator_get
);
1669 * regulator_get_exclusive - obtain exclusive access to a regulator.
1670 * @dev: device for regulator "consumer"
1671 * @id: Supply name or regulator ID.
1673 * Returns a struct regulator corresponding to the regulator producer,
1674 * or IS_ERR() condition containing errno. Other consumers will be
1675 * unable to obtain this regulator while this reference is held and the
1676 * use count for the regulator will be initialised to reflect the current
1677 * state of the regulator.
1679 * This is intended for use by consumers which cannot tolerate shared
1680 * use of the regulator such as those which need to force the
1681 * regulator off for correct operation of the hardware they are
1684 * Use of supply names configured via regulator_set_device_supply() is
1685 * strongly encouraged. It is recommended that the supply name used
1686 * should match the name used for the supply and/or the relevant
1687 * device pins in the datasheet.
1689 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1691 return _regulator_get(dev
, id
, true, false);
1693 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1696 * regulator_get_optional - obtain optional access to a regulator.
1697 * @dev: device for regulator "consumer"
1698 * @id: Supply name or regulator ID.
1700 * Returns a struct regulator corresponding to the regulator producer,
1701 * or IS_ERR() condition containing errno.
1703 * This is intended for use by consumers for devices which can have
1704 * some supplies unconnected in normal use, such as some MMC devices.
1705 * It can allow the regulator core to provide stub supplies for other
1706 * supplies requested using normal regulator_get() calls without
1707 * disrupting the operation of drivers that can handle absent
1710 * Use of supply names configured via regulator_set_device_supply() is
1711 * strongly encouraged. It is recommended that the supply name used
1712 * should match the name used for the supply and/or the relevant
1713 * device pins in the datasheet.
1715 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
1717 return _regulator_get(dev
, id
, false, false);
1719 EXPORT_SYMBOL_GPL(regulator_get_optional
);
1721 /* regulator_list_mutex lock held by regulator_put() */
1722 static void _regulator_put(struct regulator
*regulator
)
1724 struct regulator_dev
*rdev
;
1726 if (IS_ERR_OR_NULL(regulator
))
1729 lockdep_assert_held_once(®ulator_list_mutex
);
1731 rdev
= regulator
->rdev
;
1733 debugfs_remove_recursive(regulator
->debugfs
);
1735 /* remove any sysfs entries */
1737 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1738 mutex_lock(&rdev
->mutex
);
1739 list_del(®ulator
->list
);
1742 rdev
->exclusive
= 0;
1743 put_device(&rdev
->dev
);
1744 mutex_unlock(&rdev
->mutex
);
1746 kfree(regulator
->supply_name
);
1749 module_put(rdev
->owner
);
1753 * regulator_put - "free" the regulator source
1754 * @regulator: regulator source
1756 * Note: drivers must ensure that all regulator_enable calls made on this
1757 * regulator source are balanced by regulator_disable calls prior to calling
1760 void regulator_put(struct regulator
*regulator
)
1762 mutex_lock(®ulator_list_mutex
);
1763 _regulator_put(regulator
);
1764 mutex_unlock(®ulator_list_mutex
);
1766 EXPORT_SYMBOL_GPL(regulator_put
);
1769 * regulator_register_supply_alias - Provide device alias for supply lookup
1771 * @dev: device that will be given as the regulator "consumer"
1772 * @id: Supply name or regulator ID
1773 * @alias_dev: device that should be used to lookup the supply
1774 * @alias_id: Supply name or regulator ID that should be used to lookup the
1777 * All lookups for id on dev will instead be conducted for alias_id on
1780 int regulator_register_supply_alias(struct device
*dev
, const char *id
,
1781 struct device
*alias_dev
,
1782 const char *alias_id
)
1784 struct regulator_supply_alias
*map
;
1786 map
= regulator_find_supply_alias(dev
, id
);
1790 map
= kzalloc(sizeof(struct regulator_supply_alias
), GFP_KERNEL
);
1795 map
->src_supply
= id
;
1796 map
->alias_dev
= alias_dev
;
1797 map
->alias_supply
= alias_id
;
1799 list_add(&map
->list
, ®ulator_supply_alias_list
);
1801 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1802 id
, dev_name(dev
), alias_id
, dev_name(alias_dev
));
1806 EXPORT_SYMBOL_GPL(regulator_register_supply_alias
);
1809 * regulator_unregister_supply_alias - Remove device alias
1811 * @dev: device that will be given as the regulator "consumer"
1812 * @id: Supply name or regulator ID
1814 * Remove a lookup alias if one exists for id on dev.
1816 void regulator_unregister_supply_alias(struct device
*dev
, const char *id
)
1818 struct regulator_supply_alias
*map
;
1820 map
= regulator_find_supply_alias(dev
, id
);
1822 list_del(&map
->list
);
1826 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias
);
1829 * regulator_bulk_register_supply_alias - register multiple aliases
1831 * @dev: device that will be given as the regulator "consumer"
1832 * @id: List of supply names or regulator IDs
1833 * @alias_dev: device that should be used to lookup the supply
1834 * @alias_id: List of supply names or regulator IDs that should be used to
1836 * @num_id: Number of aliases to register
1838 * @return 0 on success, an errno on failure.
1840 * This helper function allows drivers to register several supply
1841 * aliases in one operation. If any of the aliases cannot be
1842 * registered any aliases that were registered will be removed
1843 * before returning to the caller.
1845 int regulator_bulk_register_supply_alias(struct device
*dev
,
1846 const char *const *id
,
1847 struct device
*alias_dev
,
1848 const char *const *alias_id
,
1854 for (i
= 0; i
< num_id
; ++i
) {
1855 ret
= regulator_register_supply_alias(dev
, id
[i
], alias_dev
,
1865 "Failed to create supply alias %s,%s -> %s,%s\n",
1866 id
[i
], dev_name(dev
), alias_id
[i
], dev_name(alias_dev
));
1869 regulator_unregister_supply_alias(dev
, id
[i
]);
1873 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias
);
1876 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1878 * @dev: device that will be given as the regulator "consumer"
1879 * @id: List of supply names or regulator IDs
1880 * @num_id: Number of aliases to unregister
1882 * This helper function allows drivers to unregister several supply
1883 * aliases in one operation.
1885 void regulator_bulk_unregister_supply_alias(struct device
*dev
,
1886 const char *const *id
,
1891 for (i
= 0; i
< num_id
; ++i
)
1892 regulator_unregister_supply_alias(dev
, id
[i
]);
1894 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias
);
1897 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1898 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
1899 const struct regulator_config
*config
)
1901 struct regulator_enable_gpio
*pin
;
1902 struct gpio_desc
*gpiod
;
1905 gpiod
= gpio_to_desc(config
->ena_gpio
);
1907 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
1908 if (pin
->gpiod
== gpiod
) {
1909 rdev_dbg(rdev
, "GPIO %d is already used\n",
1911 goto update_ena_gpio_to_rdev
;
1915 ret
= gpio_request_one(config
->ena_gpio
,
1916 GPIOF_DIR_OUT
| config
->ena_gpio_flags
,
1917 rdev_get_name(rdev
));
1921 pin
= kzalloc(sizeof(struct regulator_enable_gpio
), GFP_KERNEL
);
1923 gpio_free(config
->ena_gpio
);
1928 pin
->ena_gpio_invert
= config
->ena_gpio_invert
;
1929 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
1931 update_ena_gpio_to_rdev
:
1932 pin
->request_count
++;
1933 rdev
->ena_pin
= pin
;
1937 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
1939 struct regulator_enable_gpio
*pin
, *n
;
1944 /* Free the GPIO only in case of no use */
1945 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
1946 if (pin
->gpiod
== rdev
->ena_pin
->gpiod
) {
1947 if (pin
->request_count
<= 1) {
1948 pin
->request_count
= 0;
1949 gpiod_put(pin
->gpiod
);
1950 list_del(&pin
->list
);
1952 rdev
->ena_pin
= NULL
;
1955 pin
->request_count
--;
1962 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1963 * @rdev: regulator_dev structure
1964 * @enable: enable GPIO at initial use?
1966 * GPIO is enabled in case of initial use. (enable_count is 0)
1967 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1969 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
1971 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
1977 /* Enable GPIO at initial use */
1978 if (pin
->enable_count
== 0)
1979 gpiod_set_value_cansleep(pin
->gpiod
,
1980 !pin
->ena_gpio_invert
);
1982 pin
->enable_count
++;
1984 if (pin
->enable_count
> 1) {
1985 pin
->enable_count
--;
1989 /* Disable GPIO if not used */
1990 if (pin
->enable_count
<= 1) {
1991 gpiod_set_value_cansleep(pin
->gpiod
,
1992 pin
->ena_gpio_invert
);
1993 pin
->enable_count
= 0;
2001 * _regulator_enable_delay - a delay helper function
2002 * @delay: time to delay in microseconds
2004 * Delay for the requested amount of time as per the guidelines in:
2006 * Documentation/timers/timers-howto.txt
2008 * The assumption here is that regulators will never be enabled in
2009 * atomic context and therefore sleeping functions can be used.
2011 static void _regulator_enable_delay(unsigned int delay
)
2013 unsigned int ms
= delay
/ 1000;
2014 unsigned int us
= delay
% 1000;
2018 * For small enough values, handle super-millisecond
2019 * delays in the usleep_range() call below.
2028 * Give the scheduler some room to coalesce with any other
2029 * wakeup sources. For delays shorter than 10 us, don't even
2030 * bother setting up high-resolution timers and just busy-
2034 usleep_range(us
, us
+ 100);
2039 static int _regulator_do_enable(struct regulator_dev
*rdev
)
2043 /* Query before enabling in case configuration dependent. */
2044 ret
= _regulator_get_enable_time(rdev
);
2048 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
2052 trace_regulator_enable(rdev_get_name(rdev
));
2054 if (rdev
->desc
->off_on_delay
) {
2055 /* if needed, keep a distance of off_on_delay from last time
2056 * this regulator was disabled.
2058 unsigned long start_jiffy
= jiffies
;
2059 unsigned long intended
, max_delay
, remaining
;
2061 max_delay
= usecs_to_jiffies(rdev
->desc
->off_on_delay
);
2062 intended
= rdev
->last_off_jiffy
+ max_delay
;
2064 if (time_before(start_jiffy
, intended
)) {
2065 /* calc remaining jiffies to deal with one-time
2067 * in case of multiple timer wrapping, either it can be
2068 * detected by out-of-range remaining, or it cannot be
2069 * detected and we gets a panelty of
2070 * _regulator_enable_delay().
2072 remaining
= intended
- start_jiffy
;
2073 if (remaining
<= max_delay
)
2074 _regulator_enable_delay(
2075 jiffies_to_usecs(remaining
));
2079 if (rdev
->ena_pin
) {
2080 if (!rdev
->ena_gpio_state
) {
2081 ret
= regulator_ena_gpio_ctrl(rdev
, true);
2084 rdev
->ena_gpio_state
= 1;
2086 } else if (rdev
->desc
->ops
->enable
) {
2087 ret
= rdev
->desc
->ops
->enable(rdev
);
2094 /* Allow the regulator to ramp; it would be useful to extend
2095 * this for bulk operations so that the regulators can ramp
2097 trace_regulator_enable_delay(rdev_get_name(rdev
));
2099 _regulator_enable_delay(delay
);
2101 trace_regulator_enable_complete(rdev_get_name(rdev
));
2106 /* locks held by regulator_enable() */
2107 static int _regulator_enable(struct regulator_dev
*rdev
)
2111 lockdep_assert_held_once(&rdev
->mutex
);
2113 /* check voltage and requested load before enabling */
2114 if (rdev
->constraints
&&
2115 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
))
2116 drms_uA_update(rdev
);
2118 if (rdev
->use_count
== 0) {
2119 /* The regulator may on if it's not switchable or left on */
2120 ret
= _regulator_is_enabled(rdev
);
2121 if (ret
== -EINVAL
|| ret
== 0) {
2122 if (!_regulator_can_change_status(rdev
))
2125 ret
= _regulator_do_enable(rdev
);
2129 } else if (ret
< 0) {
2130 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
2133 /* Fallthrough on positive return values - already enabled */
2142 * regulator_enable - enable regulator output
2143 * @regulator: regulator source
2145 * Request that the regulator be enabled with the regulator output at
2146 * the predefined voltage or current value. Calls to regulator_enable()
2147 * must be balanced with calls to regulator_disable().
2149 * NOTE: the output value can be set by other drivers, boot loader or may be
2150 * hardwired in the regulator.
2152 int regulator_enable(struct regulator
*regulator
)
2154 struct regulator_dev
*rdev
= regulator
->rdev
;
2157 if (regulator
->always_on
)
2161 ret
= regulator_enable(rdev
->supply
);
2166 mutex_lock(&rdev
->mutex
);
2167 ret
= _regulator_enable(rdev
);
2168 mutex_unlock(&rdev
->mutex
);
2170 if (ret
!= 0 && rdev
->supply
)
2171 regulator_disable(rdev
->supply
);
2175 EXPORT_SYMBOL_GPL(regulator_enable
);
2177 static int _regulator_do_disable(struct regulator_dev
*rdev
)
2181 trace_regulator_disable(rdev_get_name(rdev
));
2183 if (rdev
->ena_pin
) {
2184 if (rdev
->ena_gpio_state
) {
2185 ret
= regulator_ena_gpio_ctrl(rdev
, false);
2188 rdev
->ena_gpio_state
= 0;
2191 } else if (rdev
->desc
->ops
->disable
) {
2192 ret
= rdev
->desc
->ops
->disable(rdev
);
2197 /* cares about last_off_jiffy only if off_on_delay is required by
2200 if (rdev
->desc
->off_on_delay
)
2201 rdev
->last_off_jiffy
= jiffies
;
2203 trace_regulator_disable_complete(rdev_get_name(rdev
));
2208 /* locks held by regulator_disable() */
2209 static int _regulator_disable(struct regulator_dev
*rdev
)
2213 lockdep_assert_held_once(&rdev
->mutex
);
2215 if (WARN(rdev
->use_count
<= 0,
2216 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
2219 /* are we the last user and permitted to disable ? */
2220 if (rdev
->use_count
== 1 &&
2221 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
2223 /* we are last user */
2224 if (_regulator_can_change_status(rdev
)) {
2225 ret
= _notifier_call_chain(rdev
,
2226 REGULATOR_EVENT_PRE_DISABLE
,
2228 if (ret
& NOTIFY_STOP_MASK
)
2231 ret
= _regulator_do_disable(rdev
);
2233 rdev_err(rdev
, "failed to disable\n");
2234 _notifier_call_chain(rdev
,
2235 REGULATOR_EVENT_ABORT_DISABLE
,
2239 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
2243 rdev
->use_count
= 0;
2244 } else if (rdev
->use_count
> 1) {
2246 if (rdev
->constraints
&&
2247 (rdev
->constraints
->valid_ops_mask
&
2248 REGULATOR_CHANGE_DRMS
))
2249 drms_uA_update(rdev
);
2258 * regulator_disable - disable regulator output
2259 * @regulator: regulator source
2261 * Disable the regulator output voltage or current. Calls to
2262 * regulator_enable() must be balanced with calls to
2263 * regulator_disable().
2265 * NOTE: this will only disable the regulator output if no other consumer
2266 * devices have it enabled, the regulator device supports disabling and
2267 * machine constraints permit this operation.
2269 int regulator_disable(struct regulator
*regulator
)
2271 struct regulator_dev
*rdev
= regulator
->rdev
;
2274 if (regulator
->always_on
)
2277 mutex_lock(&rdev
->mutex
);
2278 ret
= _regulator_disable(rdev
);
2279 mutex_unlock(&rdev
->mutex
);
2281 if (ret
== 0 && rdev
->supply
)
2282 regulator_disable(rdev
->supply
);
2286 EXPORT_SYMBOL_GPL(regulator_disable
);
2288 /* locks held by regulator_force_disable() */
2289 static int _regulator_force_disable(struct regulator_dev
*rdev
)
2293 lockdep_assert_held_once(&rdev
->mutex
);
2295 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2296 REGULATOR_EVENT_PRE_DISABLE
, NULL
);
2297 if (ret
& NOTIFY_STOP_MASK
)
2300 ret
= _regulator_do_disable(rdev
);
2302 rdev_err(rdev
, "failed to force disable\n");
2303 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2304 REGULATOR_EVENT_ABORT_DISABLE
, NULL
);
2308 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2309 REGULATOR_EVENT_DISABLE
, NULL
);
2315 * regulator_force_disable - force disable regulator output
2316 * @regulator: regulator source
2318 * Forcibly disable the regulator output voltage or current.
2319 * NOTE: this *will* disable the regulator output even if other consumer
2320 * devices have it enabled. This should be used for situations when device
2321 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2323 int regulator_force_disable(struct regulator
*regulator
)
2325 struct regulator_dev
*rdev
= regulator
->rdev
;
2328 mutex_lock(&rdev
->mutex
);
2329 regulator
->uA_load
= 0;
2330 ret
= _regulator_force_disable(regulator
->rdev
);
2331 mutex_unlock(&rdev
->mutex
);
2334 while (rdev
->open_count
--)
2335 regulator_disable(rdev
->supply
);
2339 EXPORT_SYMBOL_GPL(regulator_force_disable
);
2341 static void regulator_disable_work(struct work_struct
*work
)
2343 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
2347 mutex_lock(&rdev
->mutex
);
2349 BUG_ON(!rdev
->deferred_disables
);
2351 count
= rdev
->deferred_disables
;
2352 rdev
->deferred_disables
= 0;
2354 for (i
= 0; i
< count
; i
++) {
2355 ret
= _regulator_disable(rdev
);
2357 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
2360 mutex_unlock(&rdev
->mutex
);
2363 for (i
= 0; i
< count
; i
++) {
2364 ret
= regulator_disable(rdev
->supply
);
2367 "Supply disable failed: %d\n", ret
);
2374 * regulator_disable_deferred - disable regulator output with delay
2375 * @regulator: regulator source
2376 * @ms: miliseconds until the regulator is disabled
2378 * Execute regulator_disable() on the regulator after a delay. This
2379 * is intended for use with devices that require some time to quiesce.
2381 * NOTE: this will only disable the regulator output if no other consumer
2382 * devices have it enabled, the regulator device supports disabling and
2383 * machine constraints permit this operation.
2385 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
2387 struct regulator_dev
*rdev
= regulator
->rdev
;
2389 if (regulator
->always_on
)
2393 return regulator_disable(regulator
);
2395 mutex_lock(&rdev
->mutex
);
2396 rdev
->deferred_disables
++;
2397 mutex_unlock(&rdev
->mutex
);
2399 queue_delayed_work(system_power_efficient_wq
, &rdev
->disable_work
,
2400 msecs_to_jiffies(ms
));
2403 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
2405 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
2407 /* A GPIO control always takes precedence */
2409 return rdev
->ena_gpio_state
;
2411 /* If we don't know then assume that the regulator is always on */
2412 if (!rdev
->desc
->ops
->is_enabled
)
2415 return rdev
->desc
->ops
->is_enabled(rdev
);
2418 static int _regulator_list_voltage(struct regulator
*regulator
,
2419 unsigned selector
, int lock
)
2421 struct regulator_dev
*rdev
= regulator
->rdev
;
2422 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2425 if (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1 && !selector
)
2426 return rdev
->desc
->fixed_uV
;
2428 if (ops
->list_voltage
) {
2429 if (selector
>= rdev
->desc
->n_voltages
)
2432 mutex_lock(&rdev
->mutex
);
2433 ret
= ops
->list_voltage(rdev
, selector
);
2435 mutex_unlock(&rdev
->mutex
);
2436 } else if (rdev
->supply
) {
2437 ret
= _regulator_list_voltage(rdev
->supply
, selector
, lock
);
2443 if (ret
< rdev
->constraints
->min_uV
)
2445 else if (ret
> rdev
->constraints
->max_uV
)
2453 * regulator_is_enabled - is the regulator output enabled
2454 * @regulator: regulator source
2456 * Returns positive if the regulator driver backing the source/client
2457 * has requested that the device be enabled, zero if it hasn't, else a
2458 * negative errno code.
2460 * Note that the device backing this regulator handle can have multiple
2461 * users, so it might be enabled even if regulator_enable() was never
2462 * called for this particular source.
2464 int regulator_is_enabled(struct regulator
*regulator
)
2468 if (regulator
->always_on
)
2471 mutex_lock(®ulator
->rdev
->mutex
);
2472 ret
= _regulator_is_enabled(regulator
->rdev
);
2473 mutex_unlock(®ulator
->rdev
->mutex
);
2477 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2480 * regulator_can_change_voltage - check if regulator can change voltage
2481 * @regulator: regulator source
2483 * Returns positive if the regulator driver backing the source/client
2484 * can change its voltage, false otherwise. Useful for detecting fixed
2485 * or dummy regulators and disabling voltage change logic in the client
2488 int regulator_can_change_voltage(struct regulator
*regulator
)
2490 struct regulator_dev
*rdev
= regulator
->rdev
;
2492 if (rdev
->constraints
&&
2493 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2494 if (rdev
->desc
->n_voltages
- rdev
->desc
->linear_min_sel
> 1)
2497 if (rdev
->desc
->continuous_voltage_range
&&
2498 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
&&
2499 rdev
->constraints
->min_uV
!= rdev
->constraints
->max_uV
)
2505 EXPORT_SYMBOL_GPL(regulator_can_change_voltage
);
2508 * regulator_count_voltages - count regulator_list_voltage() selectors
2509 * @regulator: regulator source
2511 * Returns number of selectors, or negative errno. Selectors are
2512 * numbered starting at zero, and typically correspond to bitfields
2513 * in hardware registers.
2515 int regulator_count_voltages(struct regulator
*regulator
)
2517 struct regulator_dev
*rdev
= regulator
->rdev
;
2519 if (rdev
->desc
->n_voltages
)
2520 return rdev
->desc
->n_voltages
;
2525 return regulator_count_voltages(rdev
->supply
);
2527 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2530 * regulator_list_voltage - enumerate supported voltages
2531 * @regulator: regulator source
2532 * @selector: identify voltage to list
2533 * Context: can sleep
2535 * Returns a voltage that can be passed to @regulator_set_voltage(),
2536 * zero if this selector code can't be used on this system, or a
2539 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
2541 return _regulator_list_voltage(regulator
, selector
, 1);
2543 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
2546 * regulator_get_regmap - get the regulator's register map
2547 * @regulator: regulator source
2549 * Returns the register map for the given regulator, or an ERR_PTR value
2550 * if the regulator doesn't use regmap.
2552 struct regmap
*regulator_get_regmap(struct regulator
*regulator
)
2554 struct regmap
*map
= regulator
->rdev
->regmap
;
2556 return map
? map
: ERR_PTR(-EOPNOTSUPP
);
2560 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2561 * @regulator: regulator source
2562 * @vsel_reg: voltage selector register, output parameter
2563 * @vsel_mask: mask for voltage selector bitfield, output parameter
2565 * Returns the hardware register offset and bitmask used for setting the
2566 * regulator voltage. This might be useful when configuring voltage-scaling
2567 * hardware or firmware that can make I2C requests behind the kernel's back,
2570 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2571 * and 0 is returned, otherwise a negative errno is returned.
2573 int regulator_get_hardware_vsel_register(struct regulator
*regulator
,
2575 unsigned *vsel_mask
)
2577 struct regulator_dev
*rdev
= regulator
->rdev
;
2578 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2580 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2583 *vsel_reg
= rdev
->desc
->vsel_reg
;
2584 *vsel_mask
= rdev
->desc
->vsel_mask
;
2588 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register
);
2591 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2592 * @regulator: regulator source
2593 * @selector: identify voltage to list
2595 * Converts the selector to a hardware-specific voltage selector that can be
2596 * directly written to the regulator registers. The address of the voltage
2597 * register can be determined by calling @regulator_get_hardware_vsel_register.
2599 * On error a negative errno is returned.
2601 int regulator_list_hardware_vsel(struct regulator
*regulator
,
2604 struct regulator_dev
*rdev
= regulator
->rdev
;
2605 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2607 if (selector
>= rdev
->desc
->n_voltages
)
2609 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2614 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel
);
2617 * regulator_get_linear_step - return the voltage step size between VSEL values
2618 * @regulator: regulator source
2620 * Returns the voltage step size between VSEL values for linear
2621 * regulators, or return 0 if the regulator isn't a linear regulator.
2623 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
2625 struct regulator_dev
*rdev
= regulator
->rdev
;
2627 return rdev
->desc
->uV_step
;
2629 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
2632 * regulator_is_supported_voltage - check if a voltage range can be supported
2634 * @regulator: Regulator to check.
2635 * @min_uV: Minimum required voltage in uV.
2636 * @max_uV: Maximum required voltage in uV.
2638 * Returns a boolean or a negative error code.
2640 int regulator_is_supported_voltage(struct regulator
*regulator
,
2641 int min_uV
, int max_uV
)
2643 struct regulator_dev
*rdev
= regulator
->rdev
;
2644 int i
, voltages
, ret
;
2646 /* If we can't change voltage check the current voltage */
2647 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2648 ret
= regulator_get_voltage(regulator
);
2650 return min_uV
<= ret
&& ret
<= max_uV
;
2655 /* Any voltage within constrains range is fine? */
2656 if (rdev
->desc
->continuous_voltage_range
)
2657 return min_uV
>= rdev
->constraints
->min_uV
&&
2658 max_uV
<= rdev
->constraints
->max_uV
;
2660 ret
= regulator_count_voltages(regulator
);
2665 for (i
= 0; i
< voltages
; i
++) {
2666 ret
= regulator_list_voltage(regulator
, i
);
2668 if (ret
>= min_uV
&& ret
<= max_uV
)
2674 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
2676 static int regulator_map_voltage(struct regulator_dev
*rdev
, int min_uV
,
2679 const struct regulator_desc
*desc
= rdev
->desc
;
2681 if (desc
->ops
->map_voltage
)
2682 return desc
->ops
->map_voltage(rdev
, min_uV
, max_uV
);
2684 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear
)
2685 return regulator_map_voltage_linear(rdev
, min_uV
, max_uV
);
2687 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear_range
)
2688 return regulator_map_voltage_linear_range(rdev
, min_uV
, max_uV
);
2690 return regulator_map_voltage_iterate(rdev
, min_uV
, max_uV
);
2693 static int _regulator_call_set_voltage(struct regulator_dev
*rdev
,
2694 int min_uV
, int max_uV
,
2697 struct pre_voltage_change_data data
;
2700 data
.old_uV
= _regulator_get_voltage(rdev
);
2701 data
.min_uV
= min_uV
;
2702 data
.max_uV
= max_uV
;
2703 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
2705 if (ret
& NOTIFY_STOP_MASK
)
2708 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
, selector
);
2712 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
2713 (void *)data
.old_uV
);
2718 static int _regulator_call_set_voltage_sel(struct regulator_dev
*rdev
,
2719 int uV
, unsigned selector
)
2721 struct pre_voltage_change_data data
;
2724 data
.old_uV
= _regulator_get_voltage(rdev
);
2727 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
2729 if (ret
& NOTIFY_STOP_MASK
)
2732 ret
= rdev
->desc
->ops
->set_voltage_sel(rdev
, selector
);
2736 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
2737 (void *)data
.old_uV
);
2742 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
2743 int min_uV
, int max_uV
)
2748 unsigned int selector
;
2749 int old_selector
= -1;
2751 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
2753 min_uV
+= rdev
->constraints
->uV_offset
;
2754 max_uV
+= rdev
->constraints
->uV_offset
;
2757 * If we can't obtain the old selector there is not enough
2758 * info to call set_voltage_time_sel().
2760 if (_regulator_is_enabled(rdev
) &&
2761 rdev
->desc
->ops
->set_voltage_time_sel
&&
2762 rdev
->desc
->ops
->get_voltage_sel
) {
2763 old_selector
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2764 if (old_selector
< 0)
2765 return old_selector
;
2768 if (rdev
->desc
->ops
->set_voltage
) {
2769 ret
= _regulator_call_set_voltage(rdev
, min_uV
, max_uV
,
2773 if (rdev
->desc
->ops
->list_voltage
)
2774 best_val
= rdev
->desc
->ops
->list_voltage(rdev
,
2777 best_val
= _regulator_get_voltage(rdev
);
2780 } else if (rdev
->desc
->ops
->set_voltage_sel
) {
2781 ret
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
2783 best_val
= rdev
->desc
->ops
->list_voltage(rdev
, ret
);
2784 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
2786 if (old_selector
== selector
)
2789 ret
= _regulator_call_set_voltage_sel(
2790 rdev
, best_val
, selector
);
2799 /* Call set_voltage_time_sel if successfully obtained old_selector */
2800 if (ret
== 0 && !rdev
->constraints
->ramp_disable
&& old_selector
>= 0
2801 && old_selector
!= selector
) {
2803 delay
= rdev
->desc
->ops
->set_voltage_time_sel(rdev
,
2804 old_selector
, selector
);
2806 rdev_warn(rdev
, "set_voltage_time_sel() failed: %d\n",
2811 /* Insert any necessary delays */
2812 if (delay
>= 1000) {
2813 mdelay(delay
/ 1000);
2814 udelay(delay
% 1000);
2820 if (ret
== 0 && best_val
>= 0) {
2821 unsigned long data
= best_val
;
2823 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
2827 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
2832 static int regulator_set_voltage_unlocked(struct regulator
*regulator
,
2833 int min_uV
, int max_uV
)
2835 struct regulator_dev
*rdev
= regulator
->rdev
;
2837 int old_min_uV
, old_max_uV
;
2839 int best_supply_uV
= 0;
2840 int supply_change_uV
= 0;
2842 /* If we're setting the same range as last time the change
2843 * should be a noop (some cpufreq implementations use the same
2844 * voltage for multiple frequencies, for example).
2846 if (regulator
->min_uV
== min_uV
&& regulator
->max_uV
== max_uV
)
2849 /* If we're trying to set a range that overlaps the current voltage,
2850 * return successfully even though the regulator does not support
2851 * changing the voltage.
2853 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2854 current_uV
= _regulator_get_voltage(rdev
);
2855 if (min_uV
<= current_uV
&& current_uV
<= max_uV
) {
2856 regulator
->min_uV
= min_uV
;
2857 regulator
->max_uV
= max_uV
;
2863 if (!rdev
->desc
->ops
->set_voltage
&&
2864 !rdev
->desc
->ops
->set_voltage_sel
) {
2869 /* constraints check */
2870 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2874 /* restore original values in case of error */
2875 old_min_uV
= regulator
->min_uV
;
2876 old_max_uV
= regulator
->max_uV
;
2877 regulator
->min_uV
= min_uV
;
2878 regulator
->max_uV
= max_uV
;
2880 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2884 if (rdev
->supply
&& (rdev
->desc
->min_dropout_uV
||
2885 !rdev
->desc
->ops
->get_voltage
)) {
2886 int current_supply_uV
;
2889 selector
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
2895 best_supply_uV
= _regulator_list_voltage(regulator
, selector
, 0);
2896 if (best_supply_uV
< 0) {
2897 ret
= best_supply_uV
;
2901 best_supply_uV
+= rdev
->desc
->min_dropout_uV
;
2903 current_supply_uV
= _regulator_get_voltage(rdev
->supply
->rdev
);
2904 if (current_supply_uV
< 0) {
2905 ret
= current_supply_uV
;
2909 supply_change_uV
= best_supply_uV
- current_supply_uV
;
2912 if (supply_change_uV
> 0) {
2913 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
2914 best_supply_uV
, INT_MAX
);
2916 dev_err(&rdev
->dev
, "Failed to increase supply voltage: %d\n",
2922 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2926 if (supply_change_uV
< 0) {
2927 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
2928 best_supply_uV
, INT_MAX
);
2930 dev_warn(&rdev
->dev
, "Failed to decrease supply voltage: %d\n",
2932 /* No need to fail here */
2939 regulator
->min_uV
= old_min_uV
;
2940 regulator
->max_uV
= old_max_uV
;
2946 * regulator_set_voltage - set regulator output voltage
2947 * @regulator: regulator source
2948 * @min_uV: Minimum required voltage in uV
2949 * @max_uV: Maximum acceptable voltage in uV
2951 * Sets a voltage regulator to the desired output voltage. This can be set
2952 * during any regulator state. IOW, regulator can be disabled or enabled.
2954 * If the regulator is enabled then the voltage will change to the new value
2955 * immediately otherwise if the regulator is disabled the regulator will
2956 * output at the new voltage when enabled.
2958 * NOTE: If the regulator is shared between several devices then the lowest
2959 * request voltage that meets the system constraints will be used.
2960 * Regulator system constraints must be set for this regulator before
2961 * calling this function otherwise this call will fail.
2963 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
2967 regulator_lock_supply(regulator
->rdev
);
2969 ret
= regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
);
2971 regulator_unlock_supply(regulator
->rdev
);
2975 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
2978 * regulator_set_voltage_time - get raise/fall time
2979 * @regulator: regulator source
2980 * @old_uV: starting voltage in microvolts
2981 * @new_uV: target voltage in microvolts
2983 * Provided with the starting and ending voltage, this function attempts to
2984 * calculate the time in microseconds required to rise or fall to this new
2987 int regulator_set_voltage_time(struct regulator
*regulator
,
2988 int old_uV
, int new_uV
)
2990 struct regulator_dev
*rdev
= regulator
->rdev
;
2991 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2997 /* Currently requires operations to do this */
2998 if (!ops
->list_voltage
|| !ops
->set_voltage_time_sel
2999 || !rdev
->desc
->n_voltages
)
3002 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
3003 /* We only look for exact voltage matches here */
3004 voltage
= regulator_list_voltage(regulator
, i
);
3009 if (voltage
== old_uV
)
3011 if (voltage
== new_uV
)
3015 if (old_sel
< 0 || new_sel
< 0)
3018 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
3020 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
3023 * regulator_set_voltage_time_sel - get raise/fall time
3024 * @rdev: regulator source device
3025 * @old_selector: selector for starting voltage
3026 * @new_selector: selector for target voltage
3028 * Provided with the starting and target voltage selectors, this function
3029 * returns time in microseconds required to rise or fall to this new voltage
3031 * Drivers providing ramp_delay in regulation_constraints can use this as their
3032 * set_voltage_time_sel() operation.
3034 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
3035 unsigned int old_selector
,
3036 unsigned int new_selector
)
3038 unsigned int ramp_delay
= 0;
3039 int old_volt
, new_volt
;
3041 if (rdev
->constraints
->ramp_delay
)
3042 ramp_delay
= rdev
->constraints
->ramp_delay
;
3043 else if (rdev
->desc
->ramp_delay
)
3044 ramp_delay
= rdev
->desc
->ramp_delay
;
3046 if (ramp_delay
== 0) {
3047 rdev_warn(rdev
, "ramp_delay not set\n");
3052 if (!rdev
->desc
->ops
->list_voltage
)
3055 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
3056 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
3058 return DIV_ROUND_UP(abs(new_volt
- old_volt
), ramp_delay
);
3060 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
3063 * regulator_sync_voltage - re-apply last regulator output voltage
3064 * @regulator: regulator source
3066 * Re-apply the last configured voltage. This is intended to be used
3067 * where some external control source the consumer is cooperating with
3068 * has caused the configured voltage to change.
3070 int regulator_sync_voltage(struct regulator
*regulator
)
3072 struct regulator_dev
*rdev
= regulator
->rdev
;
3073 int ret
, min_uV
, max_uV
;
3075 mutex_lock(&rdev
->mutex
);
3077 if (!rdev
->desc
->ops
->set_voltage
&&
3078 !rdev
->desc
->ops
->set_voltage_sel
) {
3083 /* This is only going to work if we've had a voltage configured. */
3084 if (!regulator
->min_uV
&& !regulator
->max_uV
) {
3089 min_uV
= regulator
->min_uV
;
3090 max_uV
= regulator
->max_uV
;
3092 /* This should be a paranoia check... */
3093 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
3097 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
3101 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3104 mutex_unlock(&rdev
->mutex
);
3107 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
3109 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
3113 if (rdev
->desc
->ops
->get_voltage_sel
) {
3114 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
3117 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
3118 } else if (rdev
->desc
->ops
->get_voltage
) {
3119 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
3120 } else if (rdev
->desc
->ops
->list_voltage
) {
3121 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
3122 } else if (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1)) {
3123 ret
= rdev
->desc
->fixed_uV
;
3124 } else if (rdev
->supply
) {
3125 ret
= _regulator_get_voltage(rdev
->supply
->rdev
);
3132 return ret
- rdev
->constraints
->uV_offset
;
3136 * regulator_get_voltage - get regulator output voltage
3137 * @regulator: regulator source
3139 * This returns the current regulator voltage in uV.
3141 * NOTE: If the regulator is disabled it will return the voltage value. This
3142 * function should not be used to determine regulator state.
3144 int regulator_get_voltage(struct regulator
*regulator
)
3148 regulator_lock_supply(regulator
->rdev
);
3150 ret
= _regulator_get_voltage(regulator
->rdev
);
3152 regulator_unlock_supply(regulator
->rdev
);
3156 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
3159 * regulator_set_current_limit - set regulator output current limit
3160 * @regulator: regulator source
3161 * @min_uA: Minimum supported current in uA
3162 * @max_uA: Maximum supported current in uA
3164 * Sets current sink to the desired output current. This can be set during
3165 * any regulator state. IOW, regulator can be disabled or enabled.
3167 * If the regulator is enabled then the current will change to the new value
3168 * immediately otherwise if the regulator is disabled the regulator will
3169 * output at the new current when enabled.
3171 * NOTE: Regulator system constraints must be set for this regulator before
3172 * calling this function otherwise this call will fail.
3174 int regulator_set_current_limit(struct regulator
*regulator
,
3175 int min_uA
, int max_uA
)
3177 struct regulator_dev
*rdev
= regulator
->rdev
;
3180 mutex_lock(&rdev
->mutex
);
3183 if (!rdev
->desc
->ops
->set_current_limit
) {
3188 /* constraints check */
3189 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
3193 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
3195 mutex_unlock(&rdev
->mutex
);
3198 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
3200 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
3204 mutex_lock(&rdev
->mutex
);
3207 if (!rdev
->desc
->ops
->get_current_limit
) {
3212 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
3214 mutex_unlock(&rdev
->mutex
);
3219 * regulator_get_current_limit - get regulator output current
3220 * @regulator: regulator source
3222 * This returns the current supplied by the specified current sink in uA.
3224 * NOTE: If the regulator is disabled it will return the current value. This
3225 * function should not be used to determine regulator state.
3227 int regulator_get_current_limit(struct regulator
*regulator
)
3229 return _regulator_get_current_limit(regulator
->rdev
);
3231 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
3234 * regulator_set_mode - set regulator operating mode
3235 * @regulator: regulator source
3236 * @mode: operating mode - one of the REGULATOR_MODE constants
3238 * Set regulator operating mode to increase regulator efficiency or improve
3239 * regulation performance.
3241 * NOTE: Regulator system constraints must be set for this regulator before
3242 * calling this function otherwise this call will fail.
3244 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
3246 struct regulator_dev
*rdev
= regulator
->rdev
;
3248 int regulator_curr_mode
;
3250 mutex_lock(&rdev
->mutex
);
3253 if (!rdev
->desc
->ops
->set_mode
) {
3258 /* return if the same mode is requested */
3259 if (rdev
->desc
->ops
->get_mode
) {
3260 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
3261 if (regulator_curr_mode
== mode
) {
3267 /* constraints check */
3268 ret
= regulator_mode_constrain(rdev
, &mode
);
3272 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
3274 mutex_unlock(&rdev
->mutex
);
3277 EXPORT_SYMBOL_GPL(regulator_set_mode
);
3279 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
3283 mutex_lock(&rdev
->mutex
);
3286 if (!rdev
->desc
->ops
->get_mode
) {
3291 ret
= rdev
->desc
->ops
->get_mode(rdev
);
3293 mutex_unlock(&rdev
->mutex
);
3298 * regulator_get_mode - get regulator operating mode
3299 * @regulator: regulator source
3301 * Get the current regulator operating mode.
3303 unsigned int regulator_get_mode(struct regulator
*regulator
)
3305 return _regulator_get_mode(regulator
->rdev
);
3307 EXPORT_SYMBOL_GPL(regulator_get_mode
);
3310 * regulator_set_load - set regulator load
3311 * @regulator: regulator source
3312 * @uA_load: load current
3314 * Notifies the regulator core of a new device load. This is then used by
3315 * DRMS (if enabled by constraints) to set the most efficient regulator
3316 * operating mode for the new regulator loading.
3318 * Consumer devices notify their supply regulator of the maximum power
3319 * they will require (can be taken from device datasheet in the power
3320 * consumption tables) when they change operational status and hence power
3321 * state. Examples of operational state changes that can affect power
3322 * consumption are :-
3324 * o Device is opened / closed.
3325 * o Device I/O is about to begin or has just finished.
3326 * o Device is idling in between work.
3328 * This information is also exported via sysfs to userspace.
3330 * DRMS will sum the total requested load on the regulator and change
3331 * to the most efficient operating mode if platform constraints allow.
3333 * On error a negative errno is returned.
3335 int regulator_set_load(struct regulator
*regulator
, int uA_load
)
3337 struct regulator_dev
*rdev
= regulator
->rdev
;
3340 mutex_lock(&rdev
->mutex
);
3341 regulator
->uA_load
= uA_load
;
3342 ret
= drms_uA_update(rdev
);
3343 mutex_unlock(&rdev
->mutex
);
3347 EXPORT_SYMBOL_GPL(regulator_set_load
);
3350 * regulator_allow_bypass - allow the regulator to go into bypass mode
3352 * @regulator: Regulator to configure
3353 * @enable: enable or disable bypass mode
3355 * Allow the regulator to go into bypass mode if all other consumers
3356 * for the regulator also enable bypass mode and the machine
3357 * constraints allow this. Bypass mode means that the regulator is
3358 * simply passing the input directly to the output with no regulation.
3360 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
3362 struct regulator_dev
*rdev
= regulator
->rdev
;
3365 if (!rdev
->desc
->ops
->set_bypass
)
3368 if (rdev
->constraints
&&
3369 !(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_BYPASS
))
3372 mutex_lock(&rdev
->mutex
);
3374 if (enable
&& !regulator
->bypass
) {
3375 rdev
->bypass_count
++;
3377 if (rdev
->bypass_count
== rdev
->open_count
) {
3378 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
3380 rdev
->bypass_count
--;
3383 } else if (!enable
&& regulator
->bypass
) {
3384 rdev
->bypass_count
--;
3386 if (rdev
->bypass_count
!= rdev
->open_count
) {
3387 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
3389 rdev
->bypass_count
++;
3394 regulator
->bypass
= enable
;
3396 mutex_unlock(&rdev
->mutex
);
3400 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
3403 * regulator_register_notifier - register regulator event notifier
3404 * @regulator: regulator source
3405 * @nb: notifier block
3407 * Register notifier block to receive regulator events.
3409 int regulator_register_notifier(struct regulator
*regulator
,
3410 struct notifier_block
*nb
)
3412 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
3415 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
3418 * regulator_unregister_notifier - unregister regulator event notifier
3419 * @regulator: regulator source
3420 * @nb: notifier block
3422 * Unregister regulator event notifier block.
3424 int regulator_unregister_notifier(struct regulator
*regulator
,
3425 struct notifier_block
*nb
)
3427 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
3430 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
3432 /* notify regulator consumers and downstream regulator consumers.
3433 * Note mutex must be held by caller.
3435 static int _notifier_call_chain(struct regulator_dev
*rdev
,
3436 unsigned long event
, void *data
)
3438 /* call rdev chain first */
3439 return blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
3443 * regulator_bulk_get - get multiple regulator consumers
3445 * @dev: Device to supply
3446 * @num_consumers: Number of consumers to register
3447 * @consumers: Configuration of consumers; clients are stored here.
3449 * @return 0 on success, an errno on failure.
3451 * This helper function allows drivers to get several regulator
3452 * consumers in one operation. If any of the regulators cannot be
3453 * acquired then any regulators that were allocated will be freed
3454 * before returning to the caller.
3456 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
3457 struct regulator_bulk_data
*consumers
)
3462 for (i
= 0; i
< num_consumers
; i
++)
3463 consumers
[i
].consumer
= NULL
;
3465 for (i
= 0; i
< num_consumers
; i
++) {
3466 consumers
[i
].consumer
= _regulator_get(dev
,
3467 consumers
[i
].supply
,
3469 !consumers
[i
].optional
);
3470 if (IS_ERR(consumers
[i
].consumer
)) {
3471 ret
= PTR_ERR(consumers
[i
].consumer
);
3472 dev_err(dev
, "Failed to get supply '%s': %d\n",
3473 consumers
[i
].supply
, ret
);
3474 consumers
[i
].consumer
= NULL
;
3483 regulator_put(consumers
[i
].consumer
);
3487 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
3489 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
3491 struct regulator_bulk_data
*bulk
= data
;
3493 bulk
->ret
= regulator_enable(bulk
->consumer
);
3497 * regulator_bulk_enable - enable multiple regulator consumers
3499 * @num_consumers: Number of consumers
3500 * @consumers: Consumer data; clients are stored here.
3501 * @return 0 on success, an errno on failure
3503 * This convenience API allows consumers to enable multiple regulator
3504 * clients in a single API call. If any consumers cannot be enabled
3505 * then any others that were enabled will be disabled again prior to
3508 int regulator_bulk_enable(int num_consumers
,
3509 struct regulator_bulk_data
*consumers
)
3511 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
3515 for (i
= 0; i
< num_consumers
; i
++) {
3516 if (consumers
[i
].consumer
->always_on
)
3517 consumers
[i
].ret
= 0;
3519 async_schedule_domain(regulator_bulk_enable_async
,
3520 &consumers
[i
], &async_domain
);
3523 async_synchronize_full_domain(&async_domain
);
3525 /* If any consumer failed we need to unwind any that succeeded */
3526 for (i
= 0; i
< num_consumers
; i
++) {
3527 if (consumers
[i
].ret
!= 0) {
3528 ret
= consumers
[i
].ret
;
3536 for (i
= 0; i
< num_consumers
; i
++) {
3537 if (consumers
[i
].ret
< 0)
3538 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
3541 regulator_disable(consumers
[i
].consumer
);
3546 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
3549 * regulator_bulk_disable - disable multiple regulator consumers
3551 * @num_consumers: Number of consumers
3552 * @consumers: Consumer data; clients are stored here.
3553 * @return 0 on success, an errno on failure
3555 * This convenience API allows consumers to disable multiple regulator
3556 * clients in a single API call. If any consumers cannot be disabled
3557 * then any others that were disabled will be enabled again prior to
3560 int regulator_bulk_disable(int num_consumers
,
3561 struct regulator_bulk_data
*consumers
)
3566 for (i
= num_consumers
- 1; i
>= 0; --i
) {
3567 ret
= regulator_disable(consumers
[i
].consumer
);
3575 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
3576 for (++i
; i
< num_consumers
; ++i
) {
3577 r
= regulator_enable(consumers
[i
].consumer
);
3579 pr_err("Failed to reename %s: %d\n",
3580 consumers
[i
].supply
, r
);
3585 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
3588 * regulator_bulk_force_disable - force disable multiple regulator consumers
3590 * @num_consumers: Number of consumers
3591 * @consumers: Consumer data; clients are stored here.
3592 * @return 0 on success, an errno on failure
3594 * This convenience API allows consumers to forcibly disable multiple regulator
3595 * clients in a single API call.
3596 * NOTE: This should be used for situations when device damage will
3597 * likely occur if the regulators are not disabled (e.g. over temp).
3598 * Although regulator_force_disable function call for some consumers can
3599 * return error numbers, the function is called for all consumers.
3601 int regulator_bulk_force_disable(int num_consumers
,
3602 struct regulator_bulk_data
*consumers
)
3607 for (i
= 0; i
< num_consumers
; i
++)
3609 regulator_force_disable(consumers
[i
].consumer
);
3611 for (i
= 0; i
< num_consumers
; i
++) {
3612 if (consumers
[i
].ret
!= 0) {
3613 ret
= consumers
[i
].ret
;
3622 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
3625 * regulator_bulk_free - free multiple regulator consumers
3627 * @num_consumers: Number of consumers
3628 * @consumers: Consumer data; clients are stored here.
3630 * This convenience API allows consumers to free multiple regulator
3631 * clients in a single API call.
3633 void regulator_bulk_free(int num_consumers
,
3634 struct regulator_bulk_data
*consumers
)
3638 for (i
= 0; i
< num_consumers
; i
++) {
3639 regulator_put(consumers
[i
].consumer
);
3640 consumers
[i
].consumer
= NULL
;
3643 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
3646 * regulator_notifier_call_chain - call regulator event notifier
3647 * @rdev: regulator source
3648 * @event: notifier block
3649 * @data: callback-specific data.
3651 * Called by regulator drivers to notify clients a regulator event has
3652 * occurred. We also notify regulator clients downstream.
3653 * Note lock must be held by caller.
3655 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
3656 unsigned long event
, void *data
)
3658 lockdep_assert_held_once(&rdev
->mutex
);
3660 _notifier_call_chain(rdev
, event
, data
);
3664 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
3667 * regulator_mode_to_status - convert a regulator mode into a status
3669 * @mode: Mode to convert
3671 * Convert a regulator mode into a status.
3673 int regulator_mode_to_status(unsigned int mode
)
3676 case REGULATOR_MODE_FAST
:
3677 return REGULATOR_STATUS_FAST
;
3678 case REGULATOR_MODE_NORMAL
:
3679 return REGULATOR_STATUS_NORMAL
;
3680 case REGULATOR_MODE_IDLE
:
3681 return REGULATOR_STATUS_IDLE
;
3682 case REGULATOR_MODE_STANDBY
:
3683 return REGULATOR_STATUS_STANDBY
;
3685 return REGULATOR_STATUS_UNDEFINED
;
3688 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
3690 static struct attribute
*regulator_dev_attrs
[] = {
3691 &dev_attr_name
.attr
,
3692 &dev_attr_num_users
.attr
,
3693 &dev_attr_type
.attr
,
3694 &dev_attr_microvolts
.attr
,
3695 &dev_attr_microamps
.attr
,
3696 &dev_attr_opmode
.attr
,
3697 &dev_attr_state
.attr
,
3698 &dev_attr_status
.attr
,
3699 &dev_attr_bypass
.attr
,
3700 &dev_attr_requested_microamps
.attr
,
3701 &dev_attr_min_microvolts
.attr
,
3702 &dev_attr_max_microvolts
.attr
,
3703 &dev_attr_min_microamps
.attr
,
3704 &dev_attr_max_microamps
.attr
,
3705 &dev_attr_suspend_standby_state
.attr
,
3706 &dev_attr_suspend_mem_state
.attr
,
3707 &dev_attr_suspend_disk_state
.attr
,
3708 &dev_attr_suspend_standby_microvolts
.attr
,
3709 &dev_attr_suspend_mem_microvolts
.attr
,
3710 &dev_attr_suspend_disk_microvolts
.attr
,
3711 &dev_attr_suspend_standby_mode
.attr
,
3712 &dev_attr_suspend_mem_mode
.attr
,
3713 &dev_attr_suspend_disk_mode
.attr
,
3718 * To avoid cluttering sysfs (and memory) with useless state, only
3719 * create attributes that can be meaningfully displayed.
3721 static umode_t
regulator_attr_is_visible(struct kobject
*kobj
,
3722 struct attribute
*attr
, int idx
)
3724 struct device
*dev
= kobj_to_dev(kobj
);
3725 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
3726 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3727 umode_t mode
= attr
->mode
;
3729 /* these three are always present */
3730 if (attr
== &dev_attr_name
.attr
||
3731 attr
== &dev_attr_num_users
.attr
||
3732 attr
== &dev_attr_type
.attr
)
3735 /* some attributes need specific methods to be displayed */
3736 if (attr
== &dev_attr_microvolts
.attr
) {
3737 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
3738 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
3739 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0) ||
3740 (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1))
3745 if (attr
== &dev_attr_microamps
.attr
)
3746 return ops
->get_current_limit
? mode
: 0;
3748 if (attr
== &dev_attr_opmode
.attr
)
3749 return ops
->get_mode
? mode
: 0;
3751 if (attr
== &dev_attr_state
.attr
)
3752 return (rdev
->ena_pin
|| ops
->is_enabled
) ? mode
: 0;
3754 if (attr
== &dev_attr_status
.attr
)
3755 return ops
->get_status
? mode
: 0;
3757 if (attr
== &dev_attr_bypass
.attr
)
3758 return ops
->get_bypass
? mode
: 0;
3760 /* some attributes are type-specific */
3761 if (attr
== &dev_attr_requested_microamps
.attr
)
3762 return rdev
->desc
->type
== REGULATOR_CURRENT
? mode
: 0;
3764 /* constraints need specific supporting methods */
3765 if (attr
== &dev_attr_min_microvolts
.attr
||
3766 attr
== &dev_attr_max_microvolts
.attr
)
3767 return (ops
->set_voltage
|| ops
->set_voltage_sel
) ? mode
: 0;
3769 if (attr
== &dev_attr_min_microamps
.attr
||
3770 attr
== &dev_attr_max_microamps
.attr
)
3771 return ops
->set_current_limit
? mode
: 0;
3773 if (attr
== &dev_attr_suspend_standby_state
.attr
||
3774 attr
== &dev_attr_suspend_mem_state
.attr
||
3775 attr
== &dev_attr_suspend_disk_state
.attr
)
3778 if (attr
== &dev_attr_suspend_standby_microvolts
.attr
||
3779 attr
== &dev_attr_suspend_mem_microvolts
.attr
||
3780 attr
== &dev_attr_suspend_disk_microvolts
.attr
)
3781 return ops
->set_suspend_voltage
? mode
: 0;
3783 if (attr
== &dev_attr_suspend_standby_mode
.attr
||
3784 attr
== &dev_attr_suspend_mem_mode
.attr
||
3785 attr
== &dev_attr_suspend_disk_mode
.attr
)
3786 return ops
->set_suspend_mode
? mode
: 0;
3791 static const struct attribute_group regulator_dev_group
= {
3792 .attrs
= regulator_dev_attrs
,
3793 .is_visible
= regulator_attr_is_visible
,
3796 static const struct attribute_group
*regulator_dev_groups
[] = {
3797 ®ulator_dev_group
,
3801 static void regulator_dev_release(struct device
*dev
)
3803 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
3805 kfree(rdev
->constraints
);
3806 of_node_put(rdev
->dev
.of_node
);
3810 static struct class regulator_class
= {
3811 .name
= "regulator",
3812 .dev_release
= regulator_dev_release
,
3813 .dev_groups
= regulator_dev_groups
,
3816 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
3818 struct device
*parent
= rdev
->dev
.parent
;
3819 const char *rname
= rdev_get_name(rdev
);
3820 char name
[NAME_MAX
];
3822 /* Avoid duplicate debugfs directory names */
3823 if (parent
&& rname
== rdev
->desc
->name
) {
3824 snprintf(name
, sizeof(name
), "%s-%s", dev_name(parent
),
3829 rdev
->debugfs
= debugfs_create_dir(rname
, debugfs_root
);
3830 if (!rdev
->debugfs
) {
3831 rdev_warn(rdev
, "Failed to create debugfs directory\n");
3835 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
3837 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
3839 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
3840 &rdev
->bypass_count
);
3844 * regulator_register - register regulator
3845 * @regulator_desc: regulator to register
3846 * @cfg: runtime configuration for regulator
3848 * Called by regulator drivers to register a regulator.
3849 * Returns a valid pointer to struct regulator_dev on success
3850 * or an ERR_PTR() on error.
3852 struct regulator_dev
*
3853 regulator_register(const struct regulator_desc
*regulator_desc
,
3854 const struct regulator_config
*cfg
)
3856 const struct regulation_constraints
*constraints
= NULL
;
3857 const struct regulator_init_data
*init_data
;
3858 struct regulator_config
*config
= NULL
;
3859 static atomic_t regulator_no
= ATOMIC_INIT(-1);
3860 struct regulator_dev
*rdev
;
3864 if (regulator_desc
== NULL
|| cfg
== NULL
)
3865 return ERR_PTR(-EINVAL
);
3870 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
3871 return ERR_PTR(-EINVAL
);
3873 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
3874 regulator_desc
->type
!= REGULATOR_CURRENT
)
3875 return ERR_PTR(-EINVAL
);
3877 /* Only one of each should be implemented */
3878 WARN_ON(regulator_desc
->ops
->get_voltage
&&
3879 regulator_desc
->ops
->get_voltage_sel
);
3880 WARN_ON(regulator_desc
->ops
->set_voltage
&&
3881 regulator_desc
->ops
->set_voltage_sel
);
3883 /* If we're using selectors we must implement list_voltage. */
3884 if (regulator_desc
->ops
->get_voltage_sel
&&
3885 !regulator_desc
->ops
->list_voltage
) {
3886 return ERR_PTR(-EINVAL
);
3888 if (regulator_desc
->ops
->set_voltage_sel
&&
3889 !regulator_desc
->ops
->list_voltage
) {
3890 return ERR_PTR(-EINVAL
);
3893 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
3895 return ERR_PTR(-ENOMEM
);
3898 * Duplicate the config so the driver could override it after
3899 * parsing init data.
3901 config
= kmemdup(cfg
, sizeof(*cfg
), GFP_KERNEL
);
3902 if (config
== NULL
) {
3904 return ERR_PTR(-ENOMEM
);
3907 init_data
= regulator_of_get_init_data(dev
, regulator_desc
, config
,
3908 &rdev
->dev
.of_node
);
3910 init_data
= config
->init_data
;
3911 rdev
->dev
.of_node
= of_node_get(config
->of_node
);
3914 mutex_lock(®ulator_list_mutex
);
3916 mutex_init(&rdev
->mutex
);
3917 rdev
->reg_data
= config
->driver_data
;
3918 rdev
->owner
= regulator_desc
->owner
;
3919 rdev
->desc
= regulator_desc
;
3921 rdev
->regmap
= config
->regmap
;
3922 else if (dev_get_regmap(dev
, NULL
))
3923 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
3924 else if (dev
->parent
)
3925 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
3926 INIT_LIST_HEAD(&rdev
->consumer_list
);
3927 INIT_LIST_HEAD(&rdev
->list
);
3928 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
3929 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
3931 /* preform any regulator specific init */
3932 if (init_data
&& init_data
->regulator_init
) {
3933 ret
= init_data
->regulator_init(rdev
->reg_data
);
3938 if ((config
->ena_gpio
|| config
->ena_gpio_initialized
) &&
3939 gpio_is_valid(config
->ena_gpio
)) {
3940 ret
= regulator_ena_gpio_request(rdev
, config
);
3942 rdev_err(rdev
, "Failed to request enable GPIO%d: %d\n",
3943 config
->ena_gpio
, ret
);
3948 /* register with sysfs */
3949 rdev
->dev
.class = ®ulator_class
;
3950 rdev
->dev
.parent
= dev
;
3951 dev_set_name(&rdev
->dev
, "regulator.%lu",
3952 (unsigned long) atomic_inc_return(®ulator_no
));
3953 ret
= device_register(&rdev
->dev
);
3955 put_device(&rdev
->dev
);
3959 dev_set_drvdata(&rdev
->dev
, rdev
);
3961 /* set regulator constraints */
3963 constraints
= &init_data
->constraints
;
3965 ret
= set_machine_constraints(rdev
, constraints
);
3969 if (init_data
&& init_data
->supply_regulator
)
3970 rdev
->supply_name
= init_data
->supply_regulator
;
3971 else if (regulator_desc
->supply_name
)
3972 rdev
->supply_name
= regulator_desc
->supply_name
;
3974 /* add consumers devices */
3976 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
3977 ret
= set_consumer_device_supply(rdev
,
3978 init_data
->consumer_supplies
[i
].dev_name
,
3979 init_data
->consumer_supplies
[i
].supply
);
3981 dev_err(dev
, "Failed to set supply %s\n",
3982 init_data
->consumer_supplies
[i
].supply
);
3983 goto unset_supplies
;
3988 rdev_init_debugfs(rdev
);
3990 mutex_unlock(®ulator_list_mutex
);
3995 unset_regulator_supplies(rdev
);
3998 regulator_ena_gpio_free(rdev
);
3999 device_unregister(&rdev
->dev
);
4000 /* device core frees rdev */
4001 rdev
= ERR_PTR(ret
);
4005 regulator_ena_gpio_free(rdev
);
4008 rdev
= ERR_PTR(ret
);
4011 EXPORT_SYMBOL_GPL(regulator_register
);
4014 * regulator_unregister - unregister regulator
4015 * @rdev: regulator to unregister
4017 * Called by regulator drivers to unregister a regulator.
4019 void regulator_unregister(struct regulator_dev
*rdev
)
4025 while (rdev
->use_count
--)
4026 regulator_disable(rdev
->supply
);
4027 regulator_put(rdev
->supply
);
4029 mutex_lock(®ulator_list_mutex
);
4030 debugfs_remove_recursive(rdev
->debugfs
);
4031 flush_work(&rdev
->disable_work
.work
);
4032 WARN_ON(rdev
->open_count
);
4033 unset_regulator_supplies(rdev
);
4034 list_del(&rdev
->list
);
4035 mutex_unlock(®ulator_list_mutex
);
4036 regulator_ena_gpio_free(rdev
);
4037 device_unregister(&rdev
->dev
);
4039 EXPORT_SYMBOL_GPL(regulator_unregister
);
4041 static int _regulator_suspend_prepare(struct device
*dev
, void *data
)
4043 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4044 const suspend_state_t
*state
= data
;
4047 mutex_lock(&rdev
->mutex
);
4048 ret
= suspend_prepare(rdev
, *state
);
4049 mutex_unlock(&rdev
->mutex
);
4055 * regulator_suspend_prepare - prepare regulators for system wide suspend
4056 * @state: system suspend state
4058 * Configure each regulator with it's suspend operating parameters for state.
4059 * This will usually be called by machine suspend code prior to supending.
4061 int regulator_suspend_prepare(suspend_state_t state
)
4063 /* ON is handled by regulator active state */
4064 if (state
== PM_SUSPEND_ON
)
4067 return class_for_each_device(®ulator_class
, NULL
, &state
,
4068 _regulator_suspend_prepare
);
4070 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
4072 static int _regulator_suspend_finish(struct device
*dev
, void *data
)
4074 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4077 mutex_lock(&rdev
->mutex
);
4078 if (rdev
->use_count
> 0 || rdev
->constraints
->always_on
) {
4079 if (!_regulator_is_enabled(rdev
)) {
4080 ret
= _regulator_do_enable(rdev
);
4083 "Failed to resume regulator %d\n",
4087 if (!have_full_constraints())
4089 if (!_regulator_is_enabled(rdev
))
4092 ret
= _regulator_do_disable(rdev
);
4094 dev_err(dev
, "Failed to suspend regulator %d\n", ret
);
4097 mutex_unlock(&rdev
->mutex
);
4099 /* Keep processing regulators in spite of any errors */
4104 * regulator_suspend_finish - resume regulators from system wide suspend
4106 * Turn on regulators that might be turned off by regulator_suspend_prepare
4107 * and that should be turned on according to the regulators properties.
4109 int regulator_suspend_finish(void)
4111 return class_for_each_device(®ulator_class
, NULL
, NULL
,
4112 _regulator_suspend_finish
);
4114 EXPORT_SYMBOL_GPL(regulator_suspend_finish
);
4117 * regulator_has_full_constraints - the system has fully specified constraints
4119 * Calling this function will cause the regulator API to disable all
4120 * regulators which have a zero use count and don't have an always_on
4121 * constraint in a late_initcall.
4123 * The intention is that this will become the default behaviour in a
4124 * future kernel release so users are encouraged to use this facility
4127 void regulator_has_full_constraints(void)
4129 has_full_constraints
= 1;
4131 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
4134 * rdev_get_drvdata - get rdev regulator driver data
4137 * Get rdev regulator driver private data. This call can be used in the
4138 * regulator driver context.
4140 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
4142 return rdev
->reg_data
;
4144 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
4147 * regulator_get_drvdata - get regulator driver data
4148 * @regulator: regulator
4150 * Get regulator driver private data. This call can be used in the consumer
4151 * driver context when non API regulator specific functions need to be called.
4153 void *regulator_get_drvdata(struct regulator
*regulator
)
4155 return regulator
->rdev
->reg_data
;
4157 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
4160 * regulator_set_drvdata - set regulator driver data
4161 * @regulator: regulator
4164 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
4166 regulator
->rdev
->reg_data
= data
;
4168 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
4171 * regulator_get_id - get regulator ID
4174 int rdev_get_id(struct regulator_dev
*rdev
)
4176 return rdev
->desc
->id
;
4178 EXPORT_SYMBOL_GPL(rdev_get_id
);
4180 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
4184 EXPORT_SYMBOL_GPL(rdev_get_dev
);
4186 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
4188 return reg_init_data
->driver_data
;
4190 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
4192 #ifdef CONFIG_DEBUG_FS
4193 static ssize_t
supply_map_read_file(struct file
*file
, char __user
*user_buf
,
4194 size_t count
, loff_t
*ppos
)
4196 char *buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4197 ssize_t len
, ret
= 0;
4198 struct regulator_map
*map
;
4203 list_for_each_entry(map
, ®ulator_map_list
, list
) {
4204 len
= snprintf(buf
+ ret
, PAGE_SIZE
- ret
,
4206 rdev_get_name(map
->regulator
), map
->dev_name
,
4210 if (ret
> PAGE_SIZE
) {
4216 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
4224 static const struct file_operations supply_map_fops
= {
4225 #ifdef CONFIG_DEBUG_FS
4226 .read
= supply_map_read_file
,
4227 .llseek
= default_llseek
,
4231 #ifdef CONFIG_DEBUG_FS
4232 struct summary_data
{
4234 struct regulator_dev
*parent
;
4238 static void regulator_summary_show_subtree(struct seq_file
*s
,
4239 struct regulator_dev
*rdev
,
4242 static int regulator_summary_show_children(struct device
*dev
, void *data
)
4244 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4245 struct summary_data
*summary_data
= data
;
4247 if (rdev
->supply
&& rdev
->supply
->rdev
== summary_data
->parent
)
4248 regulator_summary_show_subtree(summary_data
->s
, rdev
,
4249 summary_data
->level
+ 1);
4254 static void regulator_summary_show_subtree(struct seq_file
*s
,
4255 struct regulator_dev
*rdev
,
4258 struct regulation_constraints
*c
;
4259 struct regulator
*consumer
;
4260 struct summary_data summary_data
;
4265 seq_printf(s
, "%*s%-*s %3d %4d %6d ",
4267 30 - level
* 3, rdev_get_name(rdev
),
4268 rdev
->use_count
, rdev
->open_count
, rdev
->bypass_count
);
4270 seq_printf(s
, "%5dmV ", _regulator_get_voltage(rdev
) / 1000);
4271 seq_printf(s
, "%5dmA ", _regulator_get_current_limit(rdev
) / 1000);
4273 c
= rdev
->constraints
;
4275 switch (rdev
->desc
->type
) {
4276 case REGULATOR_VOLTAGE
:
4277 seq_printf(s
, "%5dmV %5dmV ",
4278 c
->min_uV
/ 1000, c
->max_uV
/ 1000);
4280 case REGULATOR_CURRENT
:
4281 seq_printf(s
, "%5dmA %5dmA ",
4282 c
->min_uA
/ 1000, c
->max_uA
/ 1000);
4289 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
) {
4290 if (consumer
->dev
->class == ®ulator_class
)
4293 seq_printf(s
, "%*s%-*s ",
4294 (level
+ 1) * 3 + 1, "",
4295 30 - (level
+ 1) * 3, dev_name(consumer
->dev
));
4297 switch (rdev
->desc
->type
) {
4298 case REGULATOR_VOLTAGE
:
4299 seq_printf(s
, "%37dmV %5dmV",
4300 consumer
->min_uV
/ 1000,
4301 consumer
->max_uV
/ 1000);
4303 case REGULATOR_CURRENT
:
4311 summary_data
.level
= level
;
4312 summary_data
.parent
= rdev
;
4314 class_for_each_device(®ulator_class
, NULL
, &summary_data
,
4315 regulator_summary_show_children
);
4318 static int regulator_summary_show_roots(struct device
*dev
, void *data
)
4320 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4321 struct seq_file
*s
= data
;
4324 regulator_summary_show_subtree(s
, rdev
, 0);
4329 static int regulator_summary_show(struct seq_file
*s
, void *data
)
4331 seq_puts(s
, " regulator use open bypass voltage current min max\n");
4332 seq_puts(s
, "-------------------------------------------------------------------------------\n");
4334 class_for_each_device(®ulator_class
, NULL
, s
,
4335 regulator_summary_show_roots
);
4340 static int regulator_summary_open(struct inode
*inode
, struct file
*file
)
4342 return single_open(file
, regulator_summary_show
, inode
->i_private
);
4346 static const struct file_operations regulator_summary_fops
= {
4347 #ifdef CONFIG_DEBUG_FS
4348 .open
= regulator_summary_open
,
4350 .llseek
= seq_lseek
,
4351 .release
= single_release
,
4355 static int __init
regulator_init(void)
4359 ret
= class_register(®ulator_class
);
4361 debugfs_root
= debugfs_create_dir("regulator", NULL
);
4363 pr_warn("regulator: Failed to create debugfs directory\n");
4365 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
4368 debugfs_create_file("regulator_summary", 0444, debugfs_root
,
4369 NULL
, ®ulator_summary_fops
);
4371 regulator_dummy_init();
4376 /* init early to allow our consumers to complete system booting */
4377 core_initcall(regulator_init
);
4379 static int __init
regulator_late_cleanup(struct device
*dev
, void *data
)
4381 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4382 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
4383 struct regulation_constraints
*c
= rdev
->constraints
;
4386 if (c
&& c
->always_on
)
4389 if (c
&& !(c
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
))
4392 mutex_lock(&rdev
->mutex
);
4394 if (rdev
->use_count
)
4397 /* If we can't read the status assume it's on. */
4398 if (ops
->is_enabled
)
4399 enabled
= ops
->is_enabled(rdev
);
4406 if (have_full_constraints()) {
4407 /* We log since this may kill the system if it goes
4409 rdev_info(rdev
, "disabling\n");
4410 ret
= _regulator_do_disable(rdev
);
4412 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
4414 /* The intention is that in future we will
4415 * assume that full constraints are provided
4416 * so warn even if we aren't going to do
4419 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
4423 mutex_unlock(&rdev
->mutex
);
4428 static int __init
regulator_init_complete(void)
4431 * Since DT doesn't provide an idiomatic mechanism for
4432 * enabling full constraints and since it's much more natural
4433 * with DT to provide them just assume that a DT enabled
4434 * system has full constraints.
4436 if (of_have_populated_dt())
4437 has_full_constraints
= true;
4439 /* If we have a full configuration then disable any regulators
4440 * we have permission to change the status for and which are
4441 * not in use or always_on. This is effectively the default
4442 * for DT and ACPI as they have full constraints.
4444 class_for_each_device(®ulator_class
, NULL
, NULL
,
4445 regulator_late_cleanup
);
4449 late_initcall_sync(regulator_init_complete
);