Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / drivers / regulator / core.c
blobe0b7642847731390ed44bbc3e8718fd5dd9e7116
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
39 #include "dummy.h"
40 #include "internal.h"
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
59 static struct dentry *debugfs_root;
61 static struct class regulator_class;
64 * struct regulator_map
66 * Used to provide symbolic supply names to devices.
68 struct regulator_map {
69 struct list_head list;
70 const char *dev_name; /* The dev_name() for the consumer */
71 const char *supply;
72 struct regulator_dev *regulator;
76 * struct regulator_enable_gpio
78 * Management for shared enable GPIO pin
80 struct regulator_enable_gpio {
81 struct list_head list;
82 struct gpio_desc *gpiod;
83 u32 enable_count; /* a number of enabled shared GPIO */
84 u32 request_count; /* a number of requested shared GPIO */
85 unsigned int ena_gpio_invert:1;
89 * struct regulator_supply_alias
91 * Used to map lookups for a supply onto an alternative device.
93 struct regulator_supply_alias {
94 struct list_head list;
95 struct device *src_dev;
96 const char *src_supply;
97 struct device *alias_dev;
98 const char *alias_supply;
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 struct device *dev,
112 const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
117 return container_of(dev, struct regulator_dev, dev);
120 static const char *rdev_get_name(struct regulator_dev *rdev)
122 if (rdev->constraints && rdev->constraints->name)
123 return rdev->constraints->name;
124 else if (rdev->desc->name)
125 return rdev->desc->name;
126 else
127 return "";
130 static bool have_full_constraints(void)
132 return has_full_constraints || of_have_populated_dt();
135 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
137 if (rdev && rdev->supply)
138 return rdev->supply->rdev;
140 return NULL;
144 * regulator_lock_supply - lock a regulator and its supplies
145 * @rdev: regulator source
147 static void regulator_lock_supply(struct regulator_dev *rdev)
149 int i;
151 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
152 mutex_lock_nested(&rdev->mutex, i);
156 * regulator_unlock_supply - unlock a regulator and its supplies
157 * @rdev: regulator source
159 static void regulator_unlock_supply(struct regulator_dev *rdev)
161 struct regulator *supply;
163 while (1) {
164 mutex_unlock(&rdev->mutex);
165 supply = rdev->supply;
167 if (!rdev->supply)
168 return;
170 rdev = supply->rdev;
175 * of_get_regulator - get a regulator device node based on supply name
176 * @dev: Device pointer for the consumer (of regulator) device
177 * @supply: regulator supply name
179 * Extract the regulator device node corresponding to the supply name.
180 * returns the device node corresponding to the regulator if found, else
181 * returns NULL.
183 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
185 struct device_node *regnode = NULL;
186 char prop_name[32]; /* 32 is max size of property name */
188 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
190 snprintf(prop_name, 32, "%s-supply", supply);
191 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
193 if (!regnode) {
194 dev_dbg(dev, "Looking up %s property in node %s failed",
195 prop_name, dev->of_node->full_name);
196 return NULL;
198 return regnode;
201 static int _regulator_can_change_status(struct regulator_dev *rdev)
203 if (!rdev->constraints)
204 return 0;
206 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
207 return 1;
208 else
209 return 0;
212 /* Platform voltage constraint check */
213 static int regulator_check_voltage(struct regulator_dev *rdev,
214 int *min_uV, int *max_uV)
216 BUG_ON(*min_uV > *max_uV);
218 if (!rdev->constraints) {
219 rdev_err(rdev, "no constraints\n");
220 return -ENODEV;
222 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
223 rdev_err(rdev, "voltage operation not allowed\n");
224 return -EPERM;
227 if (*max_uV > rdev->constraints->max_uV)
228 *max_uV = rdev->constraints->max_uV;
229 if (*min_uV < rdev->constraints->min_uV)
230 *min_uV = rdev->constraints->min_uV;
232 if (*min_uV > *max_uV) {
233 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
234 *min_uV, *max_uV);
235 return -EINVAL;
238 return 0;
241 /* Make sure we select a voltage that suits the needs of all
242 * regulator consumers
244 static int regulator_check_consumers(struct regulator_dev *rdev,
245 int *min_uV, int *max_uV)
247 struct regulator *regulator;
249 list_for_each_entry(regulator, &rdev->consumer_list, list) {
251 * Assume consumers that didn't say anything are OK
252 * with anything in the constraint range.
254 if (!regulator->min_uV && !regulator->max_uV)
255 continue;
257 if (*max_uV > regulator->max_uV)
258 *max_uV = regulator->max_uV;
259 if (*min_uV < regulator->min_uV)
260 *min_uV = regulator->min_uV;
263 if (*min_uV > *max_uV) {
264 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265 *min_uV, *max_uV);
266 return -EINVAL;
269 return 0;
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev *rdev,
274 int *min_uA, int *max_uA)
276 BUG_ON(*min_uA > *max_uA);
278 if (!rdev->constraints) {
279 rdev_err(rdev, "no constraints\n");
280 return -ENODEV;
282 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
283 rdev_err(rdev, "current operation not allowed\n");
284 return -EPERM;
287 if (*max_uA > rdev->constraints->max_uA)
288 *max_uA = rdev->constraints->max_uA;
289 if (*min_uA < rdev->constraints->min_uA)
290 *min_uA = rdev->constraints->min_uA;
292 if (*min_uA > *max_uA) {
293 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
294 *min_uA, *max_uA);
295 return -EINVAL;
298 return 0;
301 /* operating mode constraint check */
302 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
304 switch (*mode) {
305 case REGULATOR_MODE_FAST:
306 case REGULATOR_MODE_NORMAL:
307 case REGULATOR_MODE_IDLE:
308 case REGULATOR_MODE_STANDBY:
309 break;
310 default:
311 rdev_err(rdev, "invalid mode %x specified\n", *mode);
312 return -EINVAL;
315 if (!rdev->constraints) {
316 rdev_err(rdev, "no constraints\n");
317 return -ENODEV;
319 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
320 rdev_err(rdev, "mode operation not allowed\n");
321 return -EPERM;
324 /* The modes are bitmasks, the most power hungry modes having
325 * the lowest values. If the requested mode isn't supported
326 * try higher modes. */
327 while (*mode) {
328 if (rdev->constraints->valid_modes_mask & *mode)
329 return 0;
330 *mode /= 2;
333 return -EINVAL;
336 /* dynamic regulator mode switching constraint check */
337 static int regulator_check_drms(struct regulator_dev *rdev)
339 if (!rdev->constraints) {
340 rdev_err(rdev, "no constraints\n");
341 return -ENODEV;
343 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
344 rdev_dbg(rdev, "drms operation not allowed\n");
345 return -EPERM;
347 return 0;
350 static ssize_t regulator_uV_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
354 ssize_t ret;
356 mutex_lock(&rdev->mutex);
357 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
358 mutex_unlock(&rdev->mutex);
360 return ret;
362 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
364 static ssize_t regulator_uA_show(struct device *dev,
365 struct device_attribute *attr, char *buf)
367 struct regulator_dev *rdev = dev_get_drvdata(dev);
369 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
371 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
373 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
374 char *buf)
376 struct regulator_dev *rdev = dev_get_drvdata(dev);
378 return sprintf(buf, "%s\n", rdev_get_name(rdev));
380 static DEVICE_ATTR_RO(name);
382 static ssize_t regulator_print_opmode(char *buf, int mode)
384 switch (mode) {
385 case REGULATOR_MODE_FAST:
386 return sprintf(buf, "fast\n");
387 case REGULATOR_MODE_NORMAL:
388 return sprintf(buf, "normal\n");
389 case REGULATOR_MODE_IDLE:
390 return sprintf(buf, "idle\n");
391 case REGULATOR_MODE_STANDBY:
392 return sprintf(buf, "standby\n");
394 return sprintf(buf, "unknown\n");
397 static ssize_t regulator_opmode_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
400 struct regulator_dev *rdev = dev_get_drvdata(dev);
402 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
404 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
406 static ssize_t regulator_print_state(char *buf, int state)
408 if (state > 0)
409 return sprintf(buf, "enabled\n");
410 else if (state == 0)
411 return sprintf(buf, "disabled\n");
412 else
413 return sprintf(buf, "unknown\n");
416 static ssize_t regulator_state_show(struct device *dev,
417 struct device_attribute *attr, char *buf)
419 struct regulator_dev *rdev = dev_get_drvdata(dev);
420 ssize_t ret;
422 mutex_lock(&rdev->mutex);
423 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
424 mutex_unlock(&rdev->mutex);
426 return ret;
428 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
430 static ssize_t regulator_status_show(struct device *dev,
431 struct device_attribute *attr, char *buf)
433 struct regulator_dev *rdev = dev_get_drvdata(dev);
434 int status;
435 char *label;
437 status = rdev->desc->ops->get_status(rdev);
438 if (status < 0)
439 return status;
441 switch (status) {
442 case REGULATOR_STATUS_OFF:
443 label = "off";
444 break;
445 case REGULATOR_STATUS_ON:
446 label = "on";
447 break;
448 case REGULATOR_STATUS_ERROR:
449 label = "error";
450 break;
451 case REGULATOR_STATUS_FAST:
452 label = "fast";
453 break;
454 case REGULATOR_STATUS_NORMAL:
455 label = "normal";
456 break;
457 case REGULATOR_STATUS_IDLE:
458 label = "idle";
459 break;
460 case REGULATOR_STATUS_STANDBY:
461 label = "standby";
462 break;
463 case REGULATOR_STATUS_BYPASS:
464 label = "bypass";
465 break;
466 case REGULATOR_STATUS_UNDEFINED:
467 label = "undefined";
468 break;
469 default:
470 return -ERANGE;
473 return sprintf(buf, "%s\n", label);
475 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
477 static ssize_t regulator_min_uA_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
480 struct regulator_dev *rdev = dev_get_drvdata(dev);
482 if (!rdev->constraints)
483 return sprintf(buf, "constraint not defined\n");
485 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
487 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
489 static ssize_t regulator_max_uA_show(struct device *dev,
490 struct device_attribute *attr, char *buf)
492 struct regulator_dev *rdev = dev_get_drvdata(dev);
494 if (!rdev->constraints)
495 return sprintf(buf, "constraint not defined\n");
497 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
499 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
501 static ssize_t regulator_min_uV_show(struct device *dev,
502 struct device_attribute *attr, char *buf)
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
506 if (!rdev->constraints)
507 return sprintf(buf, "constraint not defined\n");
509 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
511 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
513 static ssize_t regulator_max_uV_show(struct device *dev,
514 struct device_attribute *attr, char *buf)
516 struct regulator_dev *rdev = dev_get_drvdata(dev);
518 if (!rdev->constraints)
519 return sprintf(buf, "constraint not defined\n");
521 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
523 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
525 static ssize_t regulator_total_uA_show(struct device *dev,
526 struct device_attribute *attr, char *buf)
528 struct regulator_dev *rdev = dev_get_drvdata(dev);
529 struct regulator *regulator;
530 int uA = 0;
532 mutex_lock(&rdev->mutex);
533 list_for_each_entry(regulator, &rdev->consumer_list, list)
534 uA += regulator->uA_load;
535 mutex_unlock(&rdev->mutex);
536 return sprintf(buf, "%d\n", uA);
538 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
540 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
541 char *buf)
543 struct regulator_dev *rdev = dev_get_drvdata(dev);
544 return sprintf(buf, "%d\n", rdev->use_count);
546 static DEVICE_ATTR_RO(num_users);
548 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
549 char *buf)
551 struct regulator_dev *rdev = dev_get_drvdata(dev);
553 switch (rdev->desc->type) {
554 case REGULATOR_VOLTAGE:
555 return sprintf(buf, "voltage\n");
556 case REGULATOR_CURRENT:
557 return sprintf(buf, "current\n");
559 return sprintf(buf, "unknown\n");
561 static DEVICE_ATTR_RO(type);
563 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
564 struct device_attribute *attr, char *buf)
566 struct regulator_dev *rdev = dev_get_drvdata(dev);
568 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
570 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
571 regulator_suspend_mem_uV_show, NULL);
573 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
574 struct device_attribute *attr, char *buf)
576 struct regulator_dev *rdev = dev_get_drvdata(dev);
578 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
580 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
581 regulator_suspend_disk_uV_show, NULL);
583 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
584 struct device_attribute *attr, char *buf)
586 struct regulator_dev *rdev = dev_get_drvdata(dev);
588 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
590 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
591 regulator_suspend_standby_uV_show, NULL);
593 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
594 struct device_attribute *attr, char *buf)
596 struct regulator_dev *rdev = dev_get_drvdata(dev);
598 return regulator_print_opmode(buf,
599 rdev->constraints->state_mem.mode);
601 static DEVICE_ATTR(suspend_mem_mode, 0444,
602 regulator_suspend_mem_mode_show, NULL);
604 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
605 struct device_attribute *attr, char *buf)
607 struct regulator_dev *rdev = dev_get_drvdata(dev);
609 return regulator_print_opmode(buf,
610 rdev->constraints->state_disk.mode);
612 static DEVICE_ATTR(suspend_disk_mode, 0444,
613 regulator_suspend_disk_mode_show, NULL);
615 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
616 struct device_attribute *attr, char *buf)
618 struct regulator_dev *rdev = dev_get_drvdata(dev);
620 return regulator_print_opmode(buf,
621 rdev->constraints->state_standby.mode);
623 static DEVICE_ATTR(suspend_standby_mode, 0444,
624 regulator_suspend_standby_mode_show, NULL);
626 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
627 struct device_attribute *attr, char *buf)
629 struct regulator_dev *rdev = dev_get_drvdata(dev);
631 return regulator_print_state(buf,
632 rdev->constraints->state_mem.enabled);
634 static DEVICE_ATTR(suspend_mem_state, 0444,
635 regulator_suspend_mem_state_show, NULL);
637 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
638 struct device_attribute *attr, char *buf)
640 struct regulator_dev *rdev = dev_get_drvdata(dev);
642 return regulator_print_state(buf,
643 rdev->constraints->state_disk.enabled);
645 static DEVICE_ATTR(suspend_disk_state, 0444,
646 regulator_suspend_disk_state_show, NULL);
648 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
649 struct device_attribute *attr, char *buf)
651 struct regulator_dev *rdev = dev_get_drvdata(dev);
653 return regulator_print_state(buf,
654 rdev->constraints->state_standby.enabled);
656 static DEVICE_ATTR(suspend_standby_state, 0444,
657 regulator_suspend_standby_state_show, NULL);
659 static ssize_t regulator_bypass_show(struct device *dev,
660 struct device_attribute *attr, char *buf)
662 struct regulator_dev *rdev = dev_get_drvdata(dev);
663 const char *report;
664 bool bypass;
665 int ret;
667 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
669 if (ret != 0)
670 report = "unknown";
671 else if (bypass)
672 report = "enabled";
673 else
674 report = "disabled";
676 return sprintf(buf, "%s\n", report);
678 static DEVICE_ATTR(bypass, 0444,
679 regulator_bypass_show, NULL);
681 /* Calculate the new optimum regulator operating mode based on the new total
682 * consumer load. All locks held by caller */
683 static int drms_uA_update(struct regulator_dev *rdev)
685 struct regulator *sibling;
686 int current_uA = 0, output_uV, input_uV, err;
687 unsigned int mode;
689 lockdep_assert_held_once(&rdev->mutex);
692 * first check to see if we can set modes at all, otherwise just
693 * tell the consumer everything is OK.
695 err = regulator_check_drms(rdev);
696 if (err < 0)
697 return 0;
699 if (!rdev->desc->ops->get_optimum_mode &&
700 !rdev->desc->ops->set_load)
701 return 0;
703 if (!rdev->desc->ops->set_mode &&
704 !rdev->desc->ops->set_load)
705 return -EINVAL;
707 /* get output voltage */
708 output_uV = _regulator_get_voltage(rdev);
709 if (output_uV <= 0) {
710 rdev_err(rdev, "invalid output voltage found\n");
711 return -EINVAL;
714 /* get input voltage */
715 input_uV = 0;
716 if (rdev->supply)
717 input_uV = regulator_get_voltage(rdev->supply);
718 if (input_uV <= 0)
719 input_uV = rdev->constraints->input_uV;
720 if (input_uV <= 0) {
721 rdev_err(rdev, "invalid input voltage found\n");
722 return -EINVAL;
725 /* calc total requested load */
726 list_for_each_entry(sibling, &rdev->consumer_list, list)
727 current_uA += sibling->uA_load;
729 current_uA += rdev->constraints->system_load;
731 if (rdev->desc->ops->set_load) {
732 /* set the optimum mode for our new total regulator load */
733 err = rdev->desc->ops->set_load(rdev, current_uA);
734 if (err < 0)
735 rdev_err(rdev, "failed to set load %d\n", current_uA);
736 } else {
737 /* now get the optimum mode for our new total regulator load */
738 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
739 output_uV, current_uA);
741 /* check the new mode is allowed */
742 err = regulator_mode_constrain(rdev, &mode);
743 if (err < 0) {
744 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745 current_uA, input_uV, output_uV);
746 return err;
749 err = rdev->desc->ops->set_mode(rdev, mode);
750 if (err < 0)
751 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
754 return err;
757 static int suspend_set_state(struct regulator_dev *rdev,
758 struct regulator_state *rstate)
760 int ret = 0;
762 /* If we have no suspend mode configration don't set anything;
763 * only warn if the driver implements set_suspend_voltage or
764 * set_suspend_mode callback.
766 if (!rstate->enabled && !rstate->disabled) {
767 if (rdev->desc->ops->set_suspend_voltage ||
768 rdev->desc->ops->set_suspend_mode)
769 rdev_warn(rdev, "No configuration\n");
770 return 0;
773 if (rstate->enabled && rstate->disabled) {
774 rdev_err(rdev, "invalid configuration\n");
775 return -EINVAL;
778 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
779 ret = rdev->desc->ops->set_suspend_enable(rdev);
780 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
781 ret = rdev->desc->ops->set_suspend_disable(rdev);
782 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
783 ret = 0;
785 if (ret < 0) {
786 rdev_err(rdev, "failed to enabled/disable\n");
787 return ret;
790 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
791 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
792 if (ret < 0) {
793 rdev_err(rdev, "failed to set voltage\n");
794 return ret;
798 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
799 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
800 if (ret < 0) {
801 rdev_err(rdev, "failed to set mode\n");
802 return ret;
805 return ret;
808 /* locks held by caller */
809 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
811 lockdep_assert_held_once(&rdev->mutex);
813 if (!rdev->constraints)
814 return -EINVAL;
816 switch (state) {
817 case PM_SUSPEND_STANDBY:
818 return suspend_set_state(rdev,
819 &rdev->constraints->state_standby);
820 case PM_SUSPEND_MEM:
821 return suspend_set_state(rdev,
822 &rdev->constraints->state_mem);
823 case PM_SUSPEND_MAX:
824 return suspend_set_state(rdev,
825 &rdev->constraints->state_disk);
826 default:
827 return -EINVAL;
831 static void print_constraints(struct regulator_dev *rdev)
833 struct regulation_constraints *constraints = rdev->constraints;
834 char buf[160] = "";
835 size_t len = sizeof(buf) - 1;
836 int count = 0;
837 int ret;
839 if (constraints->min_uV && constraints->max_uV) {
840 if (constraints->min_uV == constraints->max_uV)
841 count += scnprintf(buf + count, len - count, "%d mV ",
842 constraints->min_uV / 1000);
843 else
844 count += scnprintf(buf + count, len - count,
845 "%d <--> %d mV ",
846 constraints->min_uV / 1000,
847 constraints->max_uV / 1000);
850 if (!constraints->min_uV ||
851 constraints->min_uV != constraints->max_uV) {
852 ret = _regulator_get_voltage(rdev);
853 if (ret > 0)
854 count += scnprintf(buf + count, len - count,
855 "at %d mV ", ret / 1000);
858 if (constraints->uV_offset)
859 count += scnprintf(buf + count, len - count, "%dmV offset ",
860 constraints->uV_offset / 1000);
862 if (constraints->min_uA && constraints->max_uA) {
863 if (constraints->min_uA == constraints->max_uA)
864 count += scnprintf(buf + count, len - count, "%d mA ",
865 constraints->min_uA / 1000);
866 else
867 count += scnprintf(buf + count, len - count,
868 "%d <--> %d mA ",
869 constraints->min_uA / 1000,
870 constraints->max_uA / 1000);
873 if (!constraints->min_uA ||
874 constraints->min_uA != constraints->max_uA) {
875 ret = _regulator_get_current_limit(rdev);
876 if (ret > 0)
877 count += scnprintf(buf + count, len - count,
878 "at %d mA ", ret / 1000);
881 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
882 count += scnprintf(buf + count, len - count, "fast ");
883 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
884 count += scnprintf(buf + count, len - count, "normal ");
885 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
886 count += scnprintf(buf + count, len - count, "idle ");
887 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
888 count += scnprintf(buf + count, len - count, "standby");
890 if (!count)
891 scnprintf(buf, len, "no parameters");
893 rdev_dbg(rdev, "%s\n", buf);
895 if ((constraints->min_uV != constraints->max_uV) &&
896 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
897 rdev_warn(rdev,
898 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
901 static int machine_constraints_voltage(struct regulator_dev *rdev,
902 struct regulation_constraints *constraints)
904 const struct regulator_ops *ops = rdev->desc->ops;
905 int ret;
907 /* do we need to apply the constraint voltage */
908 if (rdev->constraints->apply_uV &&
909 rdev->constraints->min_uV == rdev->constraints->max_uV) {
910 int current_uV = _regulator_get_voltage(rdev);
911 if (current_uV < 0) {
912 rdev_err(rdev,
913 "failed to get the current voltage(%d)\n",
914 current_uV);
915 return current_uV;
917 if (current_uV < rdev->constraints->min_uV ||
918 current_uV > rdev->constraints->max_uV) {
919 ret = _regulator_do_set_voltage(
920 rdev, rdev->constraints->min_uV,
921 rdev->constraints->max_uV);
922 if (ret < 0) {
923 rdev_err(rdev,
924 "failed to apply %duV constraint(%d)\n",
925 rdev->constraints->min_uV, ret);
926 return ret;
931 /* constrain machine-level voltage specs to fit
932 * the actual range supported by this regulator.
934 if (ops->list_voltage && rdev->desc->n_voltages) {
935 int count = rdev->desc->n_voltages;
936 int i;
937 int min_uV = INT_MAX;
938 int max_uV = INT_MIN;
939 int cmin = constraints->min_uV;
940 int cmax = constraints->max_uV;
942 /* it's safe to autoconfigure fixed-voltage supplies
943 and the constraints are used by list_voltage. */
944 if (count == 1 && !cmin) {
945 cmin = 1;
946 cmax = INT_MAX;
947 constraints->min_uV = cmin;
948 constraints->max_uV = cmax;
951 /* voltage constraints are optional */
952 if ((cmin == 0) && (cmax == 0))
953 return 0;
955 /* else require explicit machine-level constraints */
956 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
957 rdev_err(rdev, "invalid voltage constraints\n");
958 return -EINVAL;
961 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
962 for (i = 0; i < count; i++) {
963 int value;
965 value = ops->list_voltage(rdev, i);
966 if (value <= 0)
967 continue;
969 /* maybe adjust [min_uV..max_uV] */
970 if (value >= cmin && value < min_uV)
971 min_uV = value;
972 if (value <= cmax && value > max_uV)
973 max_uV = value;
976 /* final: [min_uV..max_uV] valid iff constraints valid */
977 if (max_uV < min_uV) {
978 rdev_err(rdev,
979 "unsupportable voltage constraints %u-%uuV\n",
980 min_uV, max_uV);
981 return -EINVAL;
984 /* use regulator's subset of machine constraints */
985 if (constraints->min_uV < min_uV) {
986 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
987 constraints->min_uV, min_uV);
988 constraints->min_uV = min_uV;
990 if (constraints->max_uV > max_uV) {
991 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
992 constraints->max_uV, max_uV);
993 constraints->max_uV = max_uV;
997 return 0;
1000 static int machine_constraints_current(struct regulator_dev *rdev,
1001 struct regulation_constraints *constraints)
1003 const struct regulator_ops *ops = rdev->desc->ops;
1004 int ret;
1006 if (!constraints->min_uA && !constraints->max_uA)
1007 return 0;
1009 if (constraints->min_uA > constraints->max_uA) {
1010 rdev_err(rdev, "Invalid current constraints\n");
1011 return -EINVAL;
1014 if (!ops->set_current_limit || !ops->get_current_limit) {
1015 rdev_warn(rdev, "Operation of current configuration missing\n");
1016 return 0;
1019 /* Set regulator current in constraints range */
1020 ret = ops->set_current_limit(rdev, constraints->min_uA,
1021 constraints->max_uA);
1022 if (ret < 0) {
1023 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024 return ret;
1027 return 0;
1030 static int _regulator_do_enable(struct regulator_dev *rdev);
1033 * set_machine_constraints - sets regulator constraints
1034 * @rdev: regulator source
1035 * @constraints: constraints to apply
1037 * Allows platform initialisation code to define and constrain
1038 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1039 * Constraints *must* be set by platform code in order for some
1040 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041 * set_mode.
1043 static int set_machine_constraints(struct regulator_dev *rdev,
1044 const struct regulation_constraints *constraints)
1046 int ret = 0;
1047 const struct regulator_ops *ops = rdev->desc->ops;
1049 if (constraints)
1050 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051 GFP_KERNEL);
1052 else
1053 rdev->constraints = kzalloc(sizeof(*constraints),
1054 GFP_KERNEL);
1055 if (!rdev->constraints)
1056 return -ENOMEM;
1058 ret = machine_constraints_voltage(rdev, rdev->constraints);
1059 if (ret != 0)
1060 return ret;
1062 ret = machine_constraints_current(rdev, rdev->constraints);
1063 if (ret != 0)
1064 return ret;
1066 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067 ret = ops->set_input_current_limit(rdev,
1068 rdev->constraints->ilim_uA);
1069 if (ret < 0) {
1070 rdev_err(rdev, "failed to set input limit\n");
1071 return ret;
1075 /* do we need to setup our suspend state */
1076 if (rdev->constraints->initial_state) {
1077 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078 if (ret < 0) {
1079 rdev_err(rdev, "failed to set suspend state\n");
1080 return ret;
1084 if (rdev->constraints->initial_mode) {
1085 if (!ops->set_mode) {
1086 rdev_err(rdev, "no set_mode operation\n");
1087 return -EINVAL;
1090 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1091 if (ret < 0) {
1092 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1093 return ret;
1097 /* If the constraints say the regulator should be on at this point
1098 * and we have control then make sure it is enabled.
1100 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1101 ret = _regulator_do_enable(rdev);
1102 if (ret < 0 && ret != -EINVAL) {
1103 rdev_err(rdev, "failed to enable\n");
1104 return ret;
1108 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1109 && ops->set_ramp_delay) {
1110 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1111 if (ret < 0) {
1112 rdev_err(rdev, "failed to set ramp_delay\n");
1113 return ret;
1117 if (rdev->constraints->pull_down && ops->set_pull_down) {
1118 ret = ops->set_pull_down(rdev);
1119 if (ret < 0) {
1120 rdev_err(rdev, "failed to set pull down\n");
1121 return ret;
1125 if (rdev->constraints->soft_start && ops->set_soft_start) {
1126 ret = ops->set_soft_start(rdev);
1127 if (ret < 0) {
1128 rdev_err(rdev, "failed to set soft start\n");
1129 return ret;
1133 if (rdev->constraints->over_current_protection
1134 && ops->set_over_current_protection) {
1135 ret = ops->set_over_current_protection(rdev);
1136 if (ret < 0) {
1137 rdev_err(rdev, "failed to set over current protection\n");
1138 return ret;
1142 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1143 bool ad_state = (rdev->constraints->active_discharge ==
1144 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1146 ret = ops->set_active_discharge(rdev, ad_state);
1147 if (ret < 0) {
1148 rdev_err(rdev, "failed to set active discharge\n");
1149 return ret;
1153 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1154 bool ad_state = (rdev->constraints->active_discharge ==
1155 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1157 ret = ops->set_active_discharge(rdev, ad_state);
1158 if (ret < 0) {
1159 rdev_err(rdev, "failed to set active discharge\n");
1160 return ret;
1164 print_constraints(rdev);
1165 return 0;
1169 * set_supply - set regulator supply regulator
1170 * @rdev: regulator name
1171 * @supply_rdev: supply regulator name
1173 * Called by platform initialisation code to set the supply regulator for this
1174 * regulator. This ensures that a regulators supply will also be enabled by the
1175 * core if it's child is enabled.
1177 static int set_supply(struct regulator_dev *rdev,
1178 struct regulator_dev *supply_rdev)
1180 int err;
1182 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1184 if (!try_module_get(supply_rdev->owner))
1185 return -ENODEV;
1187 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1188 if (rdev->supply == NULL) {
1189 err = -ENOMEM;
1190 return err;
1192 supply_rdev->open_count++;
1194 return 0;
1198 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1199 * @rdev: regulator source
1200 * @consumer_dev_name: dev_name() string for device supply applies to
1201 * @supply: symbolic name for supply
1203 * Allows platform initialisation code to map physical regulator
1204 * sources to symbolic names for supplies for use by devices. Devices
1205 * should use these symbolic names to request regulators, avoiding the
1206 * need to provide board-specific regulator names as platform data.
1208 static int set_consumer_device_supply(struct regulator_dev *rdev,
1209 const char *consumer_dev_name,
1210 const char *supply)
1212 struct regulator_map *node;
1213 int has_dev;
1215 if (supply == NULL)
1216 return -EINVAL;
1218 if (consumer_dev_name != NULL)
1219 has_dev = 1;
1220 else
1221 has_dev = 0;
1223 list_for_each_entry(node, &regulator_map_list, list) {
1224 if (node->dev_name && consumer_dev_name) {
1225 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1226 continue;
1227 } else if (node->dev_name || consumer_dev_name) {
1228 continue;
1231 if (strcmp(node->supply, supply) != 0)
1232 continue;
1234 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1235 consumer_dev_name,
1236 dev_name(&node->regulator->dev),
1237 node->regulator->desc->name,
1238 supply,
1239 dev_name(&rdev->dev), rdev_get_name(rdev));
1240 return -EBUSY;
1243 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1244 if (node == NULL)
1245 return -ENOMEM;
1247 node->regulator = rdev;
1248 node->supply = supply;
1250 if (has_dev) {
1251 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1252 if (node->dev_name == NULL) {
1253 kfree(node);
1254 return -ENOMEM;
1258 list_add(&node->list, &regulator_map_list);
1259 return 0;
1262 static void unset_regulator_supplies(struct regulator_dev *rdev)
1264 struct regulator_map *node, *n;
1266 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1267 if (rdev == node->regulator) {
1268 list_del(&node->list);
1269 kfree(node->dev_name);
1270 kfree(node);
1275 #define REG_STR_SIZE 64
1277 static struct regulator *create_regulator(struct regulator_dev *rdev,
1278 struct device *dev,
1279 const char *supply_name)
1281 struct regulator *regulator;
1282 char buf[REG_STR_SIZE];
1283 int err, size;
1285 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1286 if (regulator == NULL)
1287 return NULL;
1289 mutex_lock(&rdev->mutex);
1290 regulator->rdev = rdev;
1291 list_add(&regulator->list, &rdev->consumer_list);
1293 if (dev) {
1294 regulator->dev = dev;
1296 /* Add a link to the device sysfs entry */
1297 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1298 dev->kobj.name, supply_name);
1299 if (size >= REG_STR_SIZE)
1300 goto overflow_err;
1302 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1303 if (regulator->supply_name == NULL)
1304 goto overflow_err;
1306 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1307 buf);
1308 if (err) {
1309 rdev_dbg(rdev, "could not add device link %s err %d\n",
1310 dev->kobj.name, err);
1311 /* non-fatal */
1313 } else {
1314 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1315 if (regulator->supply_name == NULL)
1316 goto overflow_err;
1319 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1320 rdev->debugfs);
1321 if (!regulator->debugfs) {
1322 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1323 } else {
1324 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1325 &regulator->uA_load);
1326 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1327 &regulator->min_uV);
1328 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1329 &regulator->max_uV);
1333 * Check now if the regulator is an always on regulator - if
1334 * it is then we don't need to do nearly so much work for
1335 * enable/disable calls.
1337 if (!_regulator_can_change_status(rdev) &&
1338 _regulator_is_enabled(rdev))
1339 regulator->always_on = true;
1341 mutex_unlock(&rdev->mutex);
1342 return regulator;
1343 overflow_err:
1344 list_del(&regulator->list);
1345 kfree(regulator);
1346 mutex_unlock(&rdev->mutex);
1347 return NULL;
1350 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1352 if (rdev->constraints && rdev->constraints->enable_time)
1353 return rdev->constraints->enable_time;
1354 if (!rdev->desc->ops->enable_time)
1355 return rdev->desc->enable_time;
1356 return rdev->desc->ops->enable_time(rdev);
1359 static struct regulator_supply_alias *regulator_find_supply_alias(
1360 struct device *dev, const char *supply)
1362 struct regulator_supply_alias *map;
1364 list_for_each_entry(map, &regulator_supply_alias_list, list)
1365 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1366 return map;
1368 return NULL;
1371 static void regulator_supply_alias(struct device **dev, const char **supply)
1373 struct regulator_supply_alias *map;
1375 map = regulator_find_supply_alias(*dev, *supply);
1376 if (map) {
1377 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1378 *supply, map->alias_supply,
1379 dev_name(map->alias_dev));
1380 *dev = map->alias_dev;
1381 *supply = map->alias_supply;
1385 static int of_node_match(struct device *dev, const void *data)
1387 return dev->of_node == data;
1390 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1392 struct device *dev;
1394 dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1396 return dev ? dev_to_rdev(dev) : NULL;
1399 static int regulator_match(struct device *dev, const void *data)
1401 struct regulator_dev *r = dev_to_rdev(dev);
1403 return strcmp(rdev_get_name(r), data) == 0;
1406 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1408 struct device *dev;
1410 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1412 return dev ? dev_to_rdev(dev) : NULL;
1416 * regulator_dev_lookup - lookup a regulator device.
1417 * @dev: device for regulator "consumer".
1418 * @supply: Supply name or regulator ID.
1419 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1420 * lookup could succeed in the future.
1422 * If successful, returns a struct regulator_dev that corresponds to the name
1423 * @supply and with the embedded struct device refcount incremented by one,
1424 * or NULL on failure. The refcount must be dropped by calling put_device().
1426 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1427 const char *supply,
1428 int *ret)
1430 struct regulator_dev *r;
1431 struct device_node *node;
1432 struct regulator_map *map;
1433 const char *devname = NULL;
1435 regulator_supply_alias(&dev, &supply);
1437 /* first do a dt based lookup */
1438 if (dev && dev->of_node) {
1439 node = of_get_regulator(dev, supply);
1440 if (node) {
1441 r = of_find_regulator_by_node(node);
1442 if (r)
1443 return r;
1444 *ret = -EPROBE_DEFER;
1445 return NULL;
1446 } else {
1448 * If we couldn't even get the node then it's
1449 * not just that the device didn't register
1450 * yet, there's no node and we'll never
1451 * succeed.
1453 *ret = -ENODEV;
1457 /* if not found, try doing it non-dt way */
1458 if (dev)
1459 devname = dev_name(dev);
1461 r = regulator_lookup_by_name(supply);
1462 if (r)
1463 return r;
1465 mutex_lock(&regulator_list_mutex);
1466 list_for_each_entry(map, &regulator_map_list, list) {
1467 /* If the mapping has a device set up it must match */
1468 if (map->dev_name &&
1469 (!devname || strcmp(map->dev_name, devname)))
1470 continue;
1472 if (strcmp(map->supply, supply) == 0 &&
1473 get_device(&map->regulator->dev)) {
1474 mutex_unlock(&regulator_list_mutex);
1475 return map->regulator;
1478 mutex_unlock(&regulator_list_mutex);
1480 return NULL;
1483 static int regulator_resolve_supply(struct regulator_dev *rdev)
1485 struct regulator_dev *r;
1486 struct device *dev = rdev->dev.parent;
1487 int ret;
1489 /* No supply to resovle? */
1490 if (!rdev->supply_name)
1491 return 0;
1493 /* Supply already resolved? */
1494 if (rdev->supply)
1495 return 0;
1497 r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1498 if (!r) {
1499 if (ret == -ENODEV) {
1501 * No supply was specified for this regulator and
1502 * there will never be one.
1504 return 0;
1507 /* Did the lookup explicitly defer for us? */
1508 if (ret == -EPROBE_DEFER)
1509 return ret;
1511 if (have_full_constraints()) {
1512 r = dummy_regulator_rdev;
1513 get_device(&r->dev);
1514 } else {
1515 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1516 rdev->supply_name, rdev->desc->name);
1517 return -EPROBE_DEFER;
1521 /* Recursively resolve the supply of the supply */
1522 ret = regulator_resolve_supply(r);
1523 if (ret < 0) {
1524 put_device(&r->dev);
1525 return ret;
1528 ret = set_supply(rdev, r);
1529 if (ret < 0) {
1530 put_device(&r->dev);
1531 return ret;
1534 /* Cascade always-on state to supply */
1535 if (_regulator_is_enabled(rdev) && rdev->supply) {
1536 ret = regulator_enable(rdev->supply);
1537 if (ret < 0) {
1538 _regulator_put(rdev->supply);
1539 return ret;
1543 return 0;
1546 /* Internal regulator request function */
1547 static struct regulator *_regulator_get(struct device *dev, const char *id,
1548 bool exclusive, bool allow_dummy)
1550 struct regulator_dev *rdev;
1551 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1552 const char *devname = NULL;
1553 int ret;
1555 if (id == NULL) {
1556 pr_err("get() with no identifier\n");
1557 return ERR_PTR(-EINVAL);
1560 if (dev)
1561 devname = dev_name(dev);
1563 if (have_full_constraints())
1564 ret = -ENODEV;
1565 else
1566 ret = -EPROBE_DEFER;
1568 rdev = regulator_dev_lookup(dev, id, &ret);
1569 if (rdev)
1570 goto found;
1572 regulator = ERR_PTR(ret);
1575 * If we have return value from dev_lookup fail, we do not expect to
1576 * succeed, so, quit with appropriate error value
1578 if (ret && ret != -ENODEV)
1579 return regulator;
1581 if (!devname)
1582 devname = "deviceless";
1585 * Assume that a regulator is physically present and enabled
1586 * even if it isn't hooked up and just provide a dummy.
1588 if (have_full_constraints() && allow_dummy) {
1589 pr_warn("%s supply %s not found, using dummy regulator\n",
1590 devname, id);
1592 rdev = dummy_regulator_rdev;
1593 get_device(&rdev->dev);
1594 goto found;
1595 /* Don't log an error when called from regulator_get_optional() */
1596 } else if (!have_full_constraints() || exclusive) {
1597 dev_warn(dev, "dummy supplies not allowed\n");
1600 return regulator;
1602 found:
1603 if (rdev->exclusive) {
1604 regulator = ERR_PTR(-EPERM);
1605 put_device(&rdev->dev);
1606 return regulator;
1609 if (exclusive && rdev->open_count) {
1610 regulator = ERR_PTR(-EBUSY);
1611 put_device(&rdev->dev);
1612 return regulator;
1615 ret = regulator_resolve_supply(rdev);
1616 if (ret < 0) {
1617 regulator = ERR_PTR(ret);
1618 put_device(&rdev->dev);
1619 return regulator;
1622 if (!try_module_get(rdev->owner)) {
1623 put_device(&rdev->dev);
1624 return regulator;
1627 regulator = create_regulator(rdev, dev, id);
1628 if (regulator == NULL) {
1629 regulator = ERR_PTR(-ENOMEM);
1630 put_device(&rdev->dev);
1631 module_put(rdev->owner);
1632 return regulator;
1635 rdev->open_count++;
1636 if (exclusive) {
1637 rdev->exclusive = 1;
1639 ret = _regulator_is_enabled(rdev);
1640 if (ret > 0)
1641 rdev->use_count = 1;
1642 else
1643 rdev->use_count = 0;
1646 return regulator;
1650 * regulator_get - lookup and obtain a reference to a regulator.
1651 * @dev: device for regulator "consumer"
1652 * @id: Supply name or regulator ID.
1654 * Returns a struct regulator corresponding to the regulator producer,
1655 * or IS_ERR() condition containing errno.
1657 * Use of supply names configured via regulator_set_device_supply() is
1658 * strongly encouraged. It is recommended that the supply name used
1659 * should match the name used for the supply and/or the relevant
1660 * device pins in the datasheet.
1662 struct regulator *regulator_get(struct device *dev, const char *id)
1664 return _regulator_get(dev, id, false, true);
1666 EXPORT_SYMBOL_GPL(regulator_get);
1669 * regulator_get_exclusive - obtain exclusive access to a regulator.
1670 * @dev: device for regulator "consumer"
1671 * @id: Supply name or regulator ID.
1673 * Returns a struct regulator corresponding to the regulator producer,
1674 * or IS_ERR() condition containing errno. Other consumers will be
1675 * unable to obtain this regulator while this reference is held and the
1676 * use count for the regulator will be initialised to reflect the current
1677 * state of the regulator.
1679 * This is intended for use by consumers which cannot tolerate shared
1680 * use of the regulator such as those which need to force the
1681 * regulator off for correct operation of the hardware they are
1682 * controlling.
1684 * Use of supply names configured via regulator_set_device_supply() is
1685 * strongly encouraged. It is recommended that the supply name used
1686 * should match the name used for the supply and/or the relevant
1687 * device pins in the datasheet.
1689 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1691 return _regulator_get(dev, id, true, false);
1693 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1696 * regulator_get_optional - obtain optional access to a regulator.
1697 * @dev: device for regulator "consumer"
1698 * @id: Supply name or regulator ID.
1700 * Returns a struct regulator corresponding to the regulator producer,
1701 * or IS_ERR() condition containing errno.
1703 * This is intended for use by consumers for devices which can have
1704 * some supplies unconnected in normal use, such as some MMC devices.
1705 * It can allow the regulator core to provide stub supplies for other
1706 * supplies requested using normal regulator_get() calls without
1707 * disrupting the operation of drivers that can handle absent
1708 * supplies.
1710 * Use of supply names configured via regulator_set_device_supply() is
1711 * strongly encouraged. It is recommended that the supply name used
1712 * should match the name used for the supply and/or the relevant
1713 * device pins in the datasheet.
1715 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1717 return _regulator_get(dev, id, false, false);
1719 EXPORT_SYMBOL_GPL(regulator_get_optional);
1721 /* regulator_list_mutex lock held by regulator_put() */
1722 static void _regulator_put(struct regulator *regulator)
1724 struct regulator_dev *rdev;
1726 if (IS_ERR_OR_NULL(regulator))
1727 return;
1729 lockdep_assert_held_once(&regulator_list_mutex);
1731 rdev = regulator->rdev;
1733 debugfs_remove_recursive(regulator->debugfs);
1735 /* remove any sysfs entries */
1736 if (regulator->dev)
1737 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1738 mutex_lock(&rdev->mutex);
1739 list_del(&regulator->list);
1741 rdev->open_count--;
1742 rdev->exclusive = 0;
1743 put_device(&rdev->dev);
1744 mutex_unlock(&rdev->mutex);
1746 kfree(regulator->supply_name);
1747 kfree(regulator);
1749 module_put(rdev->owner);
1753 * regulator_put - "free" the regulator source
1754 * @regulator: regulator source
1756 * Note: drivers must ensure that all regulator_enable calls made on this
1757 * regulator source are balanced by regulator_disable calls prior to calling
1758 * this function.
1760 void regulator_put(struct regulator *regulator)
1762 mutex_lock(&regulator_list_mutex);
1763 _regulator_put(regulator);
1764 mutex_unlock(&regulator_list_mutex);
1766 EXPORT_SYMBOL_GPL(regulator_put);
1769 * regulator_register_supply_alias - Provide device alias for supply lookup
1771 * @dev: device that will be given as the regulator "consumer"
1772 * @id: Supply name or regulator ID
1773 * @alias_dev: device that should be used to lookup the supply
1774 * @alias_id: Supply name or regulator ID that should be used to lookup the
1775 * supply
1777 * All lookups for id on dev will instead be conducted for alias_id on
1778 * alias_dev.
1780 int regulator_register_supply_alias(struct device *dev, const char *id,
1781 struct device *alias_dev,
1782 const char *alias_id)
1784 struct regulator_supply_alias *map;
1786 map = regulator_find_supply_alias(dev, id);
1787 if (map)
1788 return -EEXIST;
1790 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1791 if (!map)
1792 return -ENOMEM;
1794 map->src_dev = dev;
1795 map->src_supply = id;
1796 map->alias_dev = alias_dev;
1797 map->alias_supply = alias_id;
1799 list_add(&map->list, &regulator_supply_alias_list);
1801 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1802 id, dev_name(dev), alias_id, dev_name(alias_dev));
1804 return 0;
1806 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1809 * regulator_unregister_supply_alias - Remove device alias
1811 * @dev: device that will be given as the regulator "consumer"
1812 * @id: Supply name or regulator ID
1814 * Remove a lookup alias if one exists for id on dev.
1816 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1818 struct regulator_supply_alias *map;
1820 map = regulator_find_supply_alias(dev, id);
1821 if (map) {
1822 list_del(&map->list);
1823 kfree(map);
1826 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1829 * regulator_bulk_register_supply_alias - register multiple aliases
1831 * @dev: device that will be given as the regulator "consumer"
1832 * @id: List of supply names or regulator IDs
1833 * @alias_dev: device that should be used to lookup the supply
1834 * @alias_id: List of supply names or regulator IDs that should be used to
1835 * lookup the supply
1836 * @num_id: Number of aliases to register
1838 * @return 0 on success, an errno on failure.
1840 * This helper function allows drivers to register several supply
1841 * aliases in one operation. If any of the aliases cannot be
1842 * registered any aliases that were registered will be removed
1843 * before returning to the caller.
1845 int regulator_bulk_register_supply_alias(struct device *dev,
1846 const char *const *id,
1847 struct device *alias_dev,
1848 const char *const *alias_id,
1849 int num_id)
1851 int i;
1852 int ret;
1854 for (i = 0; i < num_id; ++i) {
1855 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1856 alias_id[i]);
1857 if (ret < 0)
1858 goto err;
1861 return 0;
1863 err:
1864 dev_err(dev,
1865 "Failed to create supply alias %s,%s -> %s,%s\n",
1866 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1868 while (--i >= 0)
1869 regulator_unregister_supply_alias(dev, id[i]);
1871 return ret;
1873 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1876 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1878 * @dev: device that will be given as the regulator "consumer"
1879 * @id: List of supply names or regulator IDs
1880 * @num_id: Number of aliases to unregister
1882 * This helper function allows drivers to unregister several supply
1883 * aliases in one operation.
1885 void regulator_bulk_unregister_supply_alias(struct device *dev,
1886 const char *const *id,
1887 int num_id)
1889 int i;
1891 for (i = 0; i < num_id; ++i)
1892 regulator_unregister_supply_alias(dev, id[i]);
1894 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1897 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1898 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1899 const struct regulator_config *config)
1901 struct regulator_enable_gpio *pin;
1902 struct gpio_desc *gpiod;
1903 int ret;
1905 gpiod = gpio_to_desc(config->ena_gpio);
1907 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1908 if (pin->gpiod == gpiod) {
1909 rdev_dbg(rdev, "GPIO %d is already used\n",
1910 config->ena_gpio);
1911 goto update_ena_gpio_to_rdev;
1915 ret = gpio_request_one(config->ena_gpio,
1916 GPIOF_DIR_OUT | config->ena_gpio_flags,
1917 rdev_get_name(rdev));
1918 if (ret)
1919 return ret;
1921 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1922 if (pin == NULL) {
1923 gpio_free(config->ena_gpio);
1924 return -ENOMEM;
1927 pin->gpiod = gpiod;
1928 pin->ena_gpio_invert = config->ena_gpio_invert;
1929 list_add(&pin->list, &regulator_ena_gpio_list);
1931 update_ena_gpio_to_rdev:
1932 pin->request_count++;
1933 rdev->ena_pin = pin;
1934 return 0;
1937 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1939 struct regulator_enable_gpio *pin, *n;
1941 if (!rdev->ena_pin)
1942 return;
1944 /* Free the GPIO only in case of no use */
1945 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1946 if (pin->gpiod == rdev->ena_pin->gpiod) {
1947 if (pin->request_count <= 1) {
1948 pin->request_count = 0;
1949 gpiod_put(pin->gpiod);
1950 list_del(&pin->list);
1951 kfree(pin);
1952 rdev->ena_pin = NULL;
1953 return;
1954 } else {
1955 pin->request_count--;
1962 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1963 * @rdev: regulator_dev structure
1964 * @enable: enable GPIO at initial use?
1966 * GPIO is enabled in case of initial use. (enable_count is 0)
1967 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1969 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1971 struct regulator_enable_gpio *pin = rdev->ena_pin;
1973 if (!pin)
1974 return -EINVAL;
1976 if (enable) {
1977 /* Enable GPIO at initial use */
1978 if (pin->enable_count == 0)
1979 gpiod_set_value_cansleep(pin->gpiod,
1980 !pin->ena_gpio_invert);
1982 pin->enable_count++;
1983 } else {
1984 if (pin->enable_count > 1) {
1985 pin->enable_count--;
1986 return 0;
1989 /* Disable GPIO if not used */
1990 if (pin->enable_count <= 1) {
1991 gpiod_set_value_cansleep(pin->gpiod,
1992 pin->ena_gpio_invert);
1993 pin->enable_count = 0;
1997 return 0;
2001 * _regulator_enable_delay - a delay helper function
2002 * @delay: time to delay in microseconds
2004 * Delay for the requested amount of time as per the guidelines in:
2006 * Documentation/timers/timers-howto.txt
2008 * The assumption here is that regulators will never be enabled in
2009 * atomic context and therefore sleeping functions can be used.
2011 static void _regulator_enable_delay(unsigned int delay)
2013 unsigned int ms = delay / 1000;
2014 unsigned int us = delay % 1000;
2016 if (ms > 0) {
2018 * For small enough values, handle super-millisecond
2019 * delays in the usleep_range() call below.
2021 if (ms < 20)
2022 us += ms * 1000;
2023 else
2024 msleep(ms);
2028 * Give the scheduler some room to coalesce with any other
2029 * wakeup sources. For delays shorter than 10 us, don't even
2030 * bother setting up high-resolution timers and just busy-
2031 * loop.
2033 if (us >= 10)
2034 usleep_range(us, us + 100);
2035 else
2036 udelay(us);
2039 static int _regulator_do_enable(struct regulator_dev *rdev)
2041 int ret, delay;
2043 /* Query before enabling in case configuration dependent. */
2044 ret = _regulator_get_enable_time(rdev);
2045 if (ret >= 0) {
2046 delay = ret;
2047 } else {
2048 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2049 delay = 0;
2052 trace_regulator_enable(rdev_get_name(rdev));
2054 if (rdev->desc->off_on_delay) {
2055 /* if needed, keep a distance of off_on_delay from last time
2056 * this regulator was disabled.
2058 unsigned long start_jiffy = jiffies;
2059 unsigned long intended, max_delay, remaining;
2061 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2062 intended = rdev->last_off_jiffy + max_delay;
2064 if (time_before(start_jiffy, intended)) {
2065 /* calc remaining jiffies to deal with one-time
2066 * timer wrapping.
2067 * in case of multiple timer wrapping, either it can be
2068 * detected by out-of-range remaining, or it cannot be
2069 * detected and we gets a panelty of
2070 * _regulator_enable_delay().
2072 remaining = intended - start_jiffy;
2073 if (remaining <= max_delay)
2074 _regulator_enable_delay(
2075 jiffies_to_usecs(remaining));
2079 if (rdev->ena_pin) {
2080 if (!rdev->ena_gpio_state) {
2081 ret = regulator_ena_gpio_ctrl(rdev, true);
2082 if (ret < 0)
2083 return ret;
2084 rdev->ena_gpio_state = 1;
2086 } else if (rdev->desc->ops->enable) {
2087 ret = rdev->desc->ops->enable(rdev);
2088 if (ret < 0)
2089 return ret;
2090 } else {
2091 return -EINVAL;
2094 /* Allow the regulator to ramp; it would be useful to extend
2095 * this for bulk operations so that the regulators can ramp
2096 * together. */
2097 trace_regulator_enable_delay(rdev_get_name(rdev));
2099 _regulator_enable_delay(delay);
2101 trace_regulator_enable_complete(rdev_get_name(rdev));
2103 return 0;
2106 /* locks held by regulator_enable() */
2107 static int _regulator_enable(struct regulator_dev *rdev)
2109 int ret;
2111 lockdep_assert_held_once(&rdev->mutex);
2113 /* check voltage and requested load before enabling */
2114 if (rdev->constraints &&
2115 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2116 drms_uA_update(rdev);
2118 if (rdev->use_count == 0) {
2119 /* The regulator may on if it's not switchable or left on */
2120 ret = _regulator_is_enabled(rdev);
2121 if (ret == -EINVAL || ret == 0) {
2122 if (!_regulator_can_change_status(rdev))
2123 return -EPERM;
2125 ret = _regulator_do_enable(rdev);
2126 if (ret < 0)
2127 return ret;
2129 } else if (ret < 0) {
2130 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2131 return ret;
2133 /* Fallthrough on positive return values - already enabled */
2136 rdev->use_count++;
2138 return 0;
2142 * regulator_enable - enable regulator output
2143 * @regulator: regulator source
2145 * Request that the regulator be enabled with the regulator output at
2146 * the predefined voltage or current value. Calls to regulator_enable()
2147 * must be balanced with calls to regulator_disable().
2149 * NOTE: the output value can be set by other drivers, boot loader or may be
2150 * hardwired in the regulator.
2152 int regulator_enable(struct regulator *regulator)
2154 struct regulator_dev *rdev = regulator->rdev;
2155 int ret = 0;
2157 if (regulator->always_on)
2158 return 0;
2160 if (rdev->supply) {
2161 ret = regulator_enable(rdev->supply);
2162 if (ret != 0)
2163 return ret;
2166 mutex_lock(&rdev->mutex);
2167 ret = _regulator_enable(rdev);
2168 mutex_unlock(&rdev->mutex);
2170 if (ret != 0 && rdev->supply)
2171 regulator_disable(rdev->supply);
2173 return ret;
2175 EXPORT_SYMBOL_GPL(regulator_enable);
2177 static int _regulator_do_disable(struct regulator_dev *rdev)
2179 int ret;
2181 trace_regulator_disable(rdev_get_name(rdev));
2183 if (rdev->ena_pin) {
2184 if (rdev->ena_gpio_state) {
2185 ret = regulator_ena_gpio_ctrl(rdev, false);
2186 if (ret < 0)
2187 return ret;
2188 rdev->ena_gpio_state = 0;
2191 } else if (rdev->desc->ops->disable) {
2192 ret = rdev->desc->ops->disable(rdev);
2193 if (ret != 0)
2194 return ret;
2197 /* cares about last_off_jiffy only if off_on_delay is required by
2198 * device.
2200 if (rdev->desc->off_on_delay)
2201 rdev->last_off_jiffy = jiffies;
2203 trace_regulator_disable_complete(rdev_get_name(rdev));
2205 return 0;
2208 /* locks held by regulator_disable() */
2209 static int _regulator_disable(struct regulator_dev *rdev)
2211 int ret = 0;
2213 lockdep_assert_held_once(&rdev->mutex);
2215 if (WARN(rdev->use_count <= 0,
2216 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2217 return -EIO;
2219 /* are we the last user and permitted to disable ? */
2220 if (rdev->use_count == 1 &&
2221 (rdev->constraints && !rdev->constraints->always_on)) {
2223 /* we are last user */
2224 if (_regulator_can_change_status(rdev)) {
2225 ret = _notifier_call_chain(rdev,
2226 REGULATOR_EVENT_PRE_DISABLE,
2227 NULL);
2228 if (ret & NOTIFY_STOP_MASK)
2229 return -EINVAL;
2231 ret = _regulator_do_disable(rdev);
2232 if (ret < 0) {
2233 rdev_err(rdev, "failed to disable\n");
2234 _notifier_call_chain(rdev,
2235 REGULATOR_EVENT_ABORT_DISABLE,
2236 NULL);
2237 return ret;
2239 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2240 NULL);
2243 rdev->use_count = 0;
2244 } else if (rdev->use_count > 1) {
2246 if (rdev->constraints &&
2247 (rdev->constraints->valid_ops_mask &
2248 REGULATOR_CHANGE_DRMS))
2249 drms_uA_update(rdev);
2251 rdev->use_count--;
2254 return ret;
2258 * regulator_disable - disable regulator output
2259 * @regulator: regulator source
2261 * Disable the regulator output voltage or current. Calls to
2262 * regulator_enable() must be balanced with calls to
2263 * regulator_disable().
2265 * NOTE: this will only disable the regulator output if no other consumer
2266 * devices have it enabled, the regulator device supports disabling and
2267 * machine constraints permit this operation.
2269 int regulator_disable(struct regulator *regulator)
2271 struct regulator_dev *rdev = regulator->rdev;
2272 int ret = 0;
2274 if (regulator->always_on)
2275 return 0;
2277 mutex_lock(&rdev->mutex);
2278 ret = _regulator_disable(rdev);
2279 mutex_unlock(&rdev->mutex);
2281 if (ret == 0 && rdev->supply)
2282 regulator_disable(rdev->supply);
2284 return ret;
2286 EXPORT_SYMBOL_GPL(regulator_disable);
2288 /* locks held by regulator_force_disable() */
2289 static int _regulator_force_disable(struct regulator_dev *rdev)
2291 int ret = 0;
2293 lockdep_assert_held_once(&rdev->mutex);
2295 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2296 REGULATOR_EVENT_PRE_DISABLE, NULL);
2297 if (ret & NOTIFY_STOP_MASK)
2298 return -EINVAL;
2300 ret = _regulator_do_disable(rdev);
2301 if (ret < 0) {
2302 rdev_err(rdev, "failed to force disable\n");
2303 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2304 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2305 return ret;
2308 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2309 REGULATOR_EVENT_DISABLE, NULL);
2311 return 0;
2315 * regulator_force_disable - force disable regulator output
2316 * @regulator: regulator source
2318 * Forcibly disable the regulator output voltage or current.
2319 * NOTE: this *will* disable the regulator output even if other consumer
2320 * devices have it enabled. This should be used for situations when device
2321 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2323 int regulator_force_disable(struct regulator *regulator)
2325 struct regulator_dev *rdev = regulator->rdev;
2326 int ret;
2328 mutex_lock(&rdev->mutex);
2329 regulator->uA_load = 0;
2330 ret = _regulator_force_disable(regulator->rdev);
2331 mutex_unlock(&rdev->mutex);
2333 if (rdev->supply)
2334 while (rdev->open_count--)
2335 regulator_disable(rdev->supply);
2337 return ret;
2339 EXPORT_SYMBOL_GPL(regulator_force_disable);
2341 static void regulator_disable_work(struct work_struct *work)
2343 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2344 disable_work.work);
2345 int count, i, ret;
2347 mutex_lock(&rdev->mutex);
2349 BUG_ON(!rdev->deferred_disables);
2351 count = rdev->deferred_disables;
2352 rdev->deferred_disables = 0;
2354 for (i = 0; i < count; i++) {
2355 ret = _regulator_disable(rdev);
2356 if (ret != 0)
2357 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2360 mutex_unlock(&rdev->mutex);
2362 if (rdev->supply) {
2363 for (i = 0; i < count; i++) {
2364 ret = regulator_disable(rdev->supply);
2365 if (ret != 0) {
2366 rdev_err(rdev,
2367 "Supply disable failed: %d\n", ret);
2374 * regulator_disable_deferred - disable regulator output with delay
2375 * @regulator: regulator source
2376 * @ms: miliseconds until the regulator is disabled
2378 * Execute regulator_disable() on the regulator after a delay. This
2379 * is intended for use with devices that require some time to quiesce.
2381 * NOTE: this will only disable the regulator output if no other consumer
2382 * devices have it enabled, the regulator device supports disabling and
2383 * machine constraints permit this operation.
2385 int regulator_disable_deferred(struct regulator *regulator, int ms)
2387 struct regulator_dev *rdev = regulator->rdev;
2389 if (regulator->always_on)
2390 return 0;
2392 if (!ms)
2393 return regulator_disable(regulator);
2395 mutex_lock(&rdev->mutex);
2396 rdev->deferred_disables++;
2397 mutex_unlock(&rdev->mutex);
2399 queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2400 msecs_to_jiffies(ms));
2401 return 0;
2403 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2405 static int _regulator_is_enabled(struct regulator_dev *rdev)
2407 /* A GPIO control always takes precedence */
2408 if (rdev->ena_pin)
2409 return rdev->ena_gpio_state;
2411 /* If we don't know then assume that the regulator is always on */
2412 if (!rdev->desc->ops->is_enabled)
2413 return 1;
2415 return rdev->desc->ops->is_enabled(rdev);
2418 static int _regulator_list_voltage(struct regulator *regulator,
2419 unsigned selector, int lock)
2421 struct regulator_dev *rdev = regulator->rdev;
2422 const struct regulator_ops *ops = rdev->desc->ops;
2423 int ret;
2425 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2426 return rdev->desc->fixed_uV;
2428 if (ops->list_voltage) {
2429 if (selector >= rdev->desc->n_voltages)
2430 return -EINVAL;
2431 if (lock)
2432 mutex_lock(&rdev->mutex);
2433 ret = ops->list_voltage(rdev, selector);
2434 if (lock)
2435 mutex_unlock(&rdev->mutex);
2436 } else if (rdev->supply) {
2437 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2438 } else {
2439 return -EINVAL;
2442 if (ret > 0) {
2443 if (ret < rdev->constraints->min_uV)
2444 ret = 0;
2445 else if (ret > rdev->constraints->max_uV)
2446 ret = 0;
2449 return ret;
2453 * regulator_is_enabled - is the regulator output enabled
2454 * @regulator: regulator source
2456 * Returns positive if the regulator driver backing the source/client
2457 * has requested that the device be enabled, zero if it hasn't, else a
2458 * negative errno code.
2460 * Note that the device backing this regulator handle can have multiple
2461 * users, so it might be enabled even if regulator_enable() was never
2462 * called for this particular source.
2464 int regulator_is_enabled(struct regulator *regulator)
2466 int ret;
2468 if (regulator->always_on)
2469 return 1;
2471 mutex_lock(&regulator->rdev->mutex);
2472 ret = _regulator_is_enabled(regulator->rdev);
2473 mutex_unlock(&regulator->rdev->mutex);
2475 return ret;
2477 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2480 * regulator_can_change_voltage - check if regulator can change voltage
2481 * @regulator: regulator source
2483 * Returns positive if the regulator driver backing the source/client
2484 * can change its voltage, false otherwise. Useful for detecting fixed
2485 * or dummy regulators and disabling voltage change logic in the client
2486 * driver.
2488 int regulator_can_change_voltage(struct regulator *regulator)
2490 struct regulator_dev *rdev = regulator->rdev;
2492 if (rdev->constraints &&
2493 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2494 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2495 return 1;
2497 if (rdev->desc->continuous_voltage_range &&
2498 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2499 rdev->constraints->min_uV != rdev->constraints->max_uV)
2500 return 1;
2503 return 0;
2505 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2508 * regulator_count_voltages - count regulator_list_voltage() selectors
2509 * @regulator: regulator source
2511 * Returns number of selectors, or negative errno. Selectors are
2512 * numbered starting at zero, and typically correspond to bitfields
2513 * in hardware registers.
2515 int regulator_count_voltages(struct regulator *regulator)
2517 struct regulator_dev *rdev = regulator->rdev;
2519 if (rdev->desc->n_voltages)
2520 return rdev->desc->n_voltages;
2522 if (!rdev->supply)
2523 return -EINVAL;
2525 return regulator_count_voltages(rdev->supply);
2527 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2530 * regulator_list_voltage - enumerate supported voltages
2531 * @regulator: regulator source
2532 * @selector: identify voltage to list
2533 * Context: can sleep
2535 * Returns a voltage that can be passed to @regulator_set_voltage(),
2536 * zero if this selector code can't be used on this system, or a
2537 * negative errno.
2539 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2541 return _regulator_list_voltage(regulator, selector, 1);
2543 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2546 * regulator_get_regmap - get the regulator's register map
2547 * @regulator: regulator source
2549 * Returns the register map for the given regulator, or an ERR_PTR value
2550 * if the regulator doesn't use regmap.
2552 struct regmap *regulator_get_regmap(struct regulator *regulator)
2554 struct regmap *map = regulator->rdev->regmap;
2556 return map ? map : ERR_PTR(-EOPNOTSUPP);
2560 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2561 * @regulator: regulator source
2562 * @vsel_reg: voltage selector register, output parameter
2563 * @vsel_mask: mask for voltage selector bitfield, output parameter
2565 * Returns the hardware register offset and bitmask used for setting the
2566 * regulator voltage. This might be useful when configuring voltage-scaling
2567 * hardware or firmware that can make I2C requests behind the kernel's back,
2568 * for example.
2570 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2571 * and 0 is returned, otherwise a negative errno is returned.
2573 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2574 unsigned *vsel_reg,
2575 unsigned *vsel_mask)
2577 struct regulator_dev *rdev = regulator->rdev;
2578 const struct regulator_ops *ops = rdev->desc->ops;
2580 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2581 return -EOPNOTSUPP;
2583 *vsel_reg = rdev->desc->vsel_reg;
2584 *vsel_mask = rdev->desc->vsel_mask;
2586 return 0;
2588 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2591 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2592 * @regulator: regulator source
2593 * @selector: identify voltage to list
2595 * Converts the selector to a hardware-specific voltage selector that can be
2596 * directly written to the regulator registers. The address of the voltage
2597 * register can be determined by calling @regulator_get_hardware_vsel_register.
2599 * On error a negative errno is returned.
2601 int regulator_list_hardware_vsel(struct regulator *regulator,
2602 unsigned selector)
2604 struct regulator_dev *rdev = regulator->rdev;
2605 const struct regulator_ops *ops = rdev->desc->ops;
2607 if (selector >= rdev->desc->n_voltages)
2608 return -EINVAL;
2609 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2610 return -EOPNOTSUPP;
2612 return selector;
2614 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2617 * regulator_get_linear_step - return the voltage step size between VSEL values
2618 * @regulator: regulator source
2620 * Returns the voltage step size between VSEL values for linear
2621 * regulators, or return 0 if the regulator isn't a linear regulator.
2623 unsigned int regulator_get_linear_step(struct regulator *regulator)
2625 struct regulator_dev *rdev = regulator->rdev;
2627 return rdev->desc->uV_step;
2629 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2632 * regulator_is_supported_voltage - check if a voltage range can be supported
2634 * @regulator: Regulator to check.
2635 * @min_uV: Minimum required voltage in uV.
2636 * @max_uV: Maximum required voltage in uV.
2638 * Returns a boolean or a negative error code.
2640 int regulator_is_supported_voltage(struct regulator *regulator,
2641 int min_uV, int max_uV)
2643 struct regulator_dev *rdev = regulator->rdev;
2644 int i, voltages, ret;
2646 /* If we can't change voltage check the current voltage */
2647 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2648 ret = regulator_get_voltage(regulator);
2649 if (ret >= 0)
2650 return min_uV <= ret && ret <= max_uV;
2651 else
2652 return ret;
2655 /* Any voltage within constrains range is fine? */
2656 if (rdev->desc->continuous_voltage_range)
2657 return min_uV >= rdev->constraints->min_uV &&
2658 max_uV <= rdev->constraints->max_uV;
2660 ret = regulator_count_voltages(regulator);
2661 if (ret < 0)
2662 return ret;
2663 voltages = ret;
2665 for (i = 0; i < voltages; i++) {
2666 ret = regulator_list_voltage(regulator, i);
2668 if (ret >= min_uV && ret <= max_uV)
2669 return 1;
2672 return 0;
2674 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2676 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2677 int max_uV)
2679 const struct regulator_desc *desc = rdev->desc;
2681 if (desc->ops->map_voltage)
2682 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2684 if (desc->ops->list_voltage == regulator_list_voltage_linear)
2685 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2687 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2688 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2690 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2693 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2694 int min_uV, int max_uV,
2695 unsigned *selector)
2697 struct pre_voltage_change_data data;
2698 int ret;
2700 data.old_uV = _regulator_get_voltage(rdev);
2701 data.min_uV = min_uV;
2702 data.max_uV = max_uV;
2703 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2704 &data);
2705 if (ret & NOTIFY_STOP_MASK)
2706 return -EINVAL;
2708 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2709 if (ret >= 0)
2710 return ret;
2712 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2713 (void *)data.old_uV);
2715 return ret;
2718 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2719 int uV, unsigned selector)
2721 struct pre_voltage_change_data data;
2722 int ret;
2724 data.old_uV = _regulator_get_voltage(rdev);
2725 data.min_uV = uV;
2726 data.max_uV = uV;
2727 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2728 &data);
2729 if (ret & NOTIFY_STOP_MASK)
2730 return -EINVAL;
2732 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2733 if (ret >= 0)
2734 return ret;
2736 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2737 (void *)data.old_uV);
2739 return ret;
2742 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2743 int min_uV, int max_uV)
2745 int ret;
2746 int delay = 0;
2747 int best_val = 0;
2748 unsigned int selector;
2749 int old_selector = -1;
2751 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2753 min_uV += rdev->constraints->uV_offset;
2754 max_uV += rdev->constraints->uV_offset;
2757 * If we can't obtain the old selector there is not enough
2758 * info to call set_voltage_time_sel().
2760 if (_regulator_is_enabled(rdev) &&
2761 rdev->desc->ops->set_voltage_time_sel &&
2762 rdev->desc->ops->get_voltage_sel) {
2763 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2764 if (old_selector < 0)
2765 return old_selector;
2768 if (rdev->desc->ops->set_voltage) {
2769 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2770 &selector);
2772 if (ret >= 0) {
2773 if (rdev->desc->ops->list_voltage)
2774 best_val = rdev->desc->ops->list_voltage(rdev,
2775 selector);
2776 else
2777 best_val = _regulator_get_voltage(rdev);
2780 } else if (rdev->desc->ops->set_voltage_sel) {
2781 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2782 if (ret >= 0) {
2783 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2784 if (min_uV <= best_val && max_uV >= best_val) {
2785 selector = ret;
2786 if (old_selector == selector)
2787 ret = 0;
2788 else
2789 ret = _regulator_call_set_voltage_sel(
2790 rdev, best_val, selector);
2791 } else {
2792 ret = -EINVAL;
2795 } else {
2796 ret = -EINVAL;
2799 /* Call set_voltage_time_sel if successfully obtained old_selector */
2800 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2801 && old_selector != selector) {
2803 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2804 old_selector, selector);
2805 if (delay < 0) {
2806 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2807 delay);
2808 delay = 0;
2811 /* Insert any necessary delays */
2812 if (delay >= 1000) {
2813 mdelay(delay / 1000);
2814 udelay(delay % 1000);
2815 } else if (delay) {
2816 udelay(delay);
2820 if (ret == 0 && best_val >= 0) {
2821 unsigned long data = best_val;
2823 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2824 (void *)data);
2827 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2829 return ret;
2832 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2833 int min_uV, int max_uV)
2835 struct regulator_dev *rdev = regulator->rdev;
2836 int ret = 0;
2837 int old_min_uV, old_max_uV;
2838 int current_uV;
2839 int best_supply_uV = 0;
2840 int supply_change_uV = 0;
2842 /* If we're setting the same range as last time the change
2843 * should be a noop (some cpufreq implementations use the same
2844 * voltage for multiple frequencies, for example).
2846 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2847 goto out;
2849 /* If we're trying to set a range that overlaps the current voltage,
2850 * return successfully even though the regulator does not support
2851 * changing the voltage.
2853 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2854 current_uV = _regulator_get_voltage(rdev);
2855 if (min_uV <= current_uV && current_uV <= max_uV) {
2856 regulator->min_uV = min_uV;
2857 regulator->max_uV = max_uV;
2858 goto out;
2862 /* sanity check */
2863 if (!rdev->desc->ops->set_voltage &&
2864 !rdev->desc->ops->set_voltage_sel) {
2865 ret = -EINVAL;
2866 goto out;
2869 /* constraints check */
2870 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2871 if (ret < 0)
2872 goto out;
2874 /* restore original values in case of error */
2875 old_min_uV = regulator->min_uV;
2876 old_max_uV = regulator->max_uV;
2877 regulator->min_uV = min_uV;
2878 regulator->max_uV = max_uV;
2880 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2881 if (ret < 0)
2882 goto out2;
2884 if (rdev->supply && (rdev->desc->min_dropout_uV ||
2885 !rdev->desc->ops->get_voltage)) {
2886 int current_supply_uV;
2887 int selector;
2889 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2890 if (selector < 0) {
2891 ret = selector;
2892 goto out2;
2895 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2896 if (best_supply_uV < 0) {
2897 ret = best_supply_uV;
2898 goto out2;
2901 best_supply_uV += rdev->desc->min_dropout_uV;
2903 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2904 if (current_supply_uV < 0) {
2905 ret = current_supply_uV;
2906 goto out2;
2909 supply_change_uV = best_supply_uV - current_supply_uV;
2912 if (supply_change_uV > 0) {
2913 ret = regulator_set_voltage_unlocked(rdev->supply,
2914 best_supply_uV, INT_MAX);
2915 if (ret) {
2916 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2917 ret);
2918 goto out2;
2922 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2923 if (ret < 0)
2924 goto out2;
2926 if (supply_change_uV < 0) {
2927 ret = regulator_set_voltage_unlocked(rdev->supply,
2928 best_supply_uV, INT_MAX);
2929 if (ret)
2930 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2931 ret);
2932 /* No need to fail here */
2933 ret = 0;
2936 out:
2937 return ret;
2938 out2:
2939 regulator->min_uV = old_min_uV;
2940 regulator->max_uV = old_max_uV;
2942 return ret;
2946 * regulator_set_voltage - set regulator output voltage
2947 * @regulator: regulator source
2948 * @min_uV: Minimum required voltage in uV
2949 * @max_uV: Maximum acceptable voltage in uV
2951 * Sets a voltage regulator to the desired output voltage. This can be set
2952 * during any regulator state. IOW, regulator can be disabled or enabled.
2954 * If the regulator is enabled then the voltage will change to the new value
2955 * immediately otherwise if the regulator is disabled the regulator will
2956 * output at the new voltage when enabled.
2958 * NOTE: If the regulator is shared between several devices then the lowest
2959 * request voltage that meets the system constraints will be used.
2960 * Regulator system constraints must be set for this regulator before
2961 * calling this function otherwise this call will fail.
2963 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2965 int ret = 0;
2967 regulator_lock_supply(regulator->rdev);
2969 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2971 regulator_unlock_supply(regulator->rdev);
2973 return ret;
2975 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2978 * regulator_set_voltage_time - get raise/fall time
2979 * @regulator: regulator source
2980 * @old_uV: starting voltage in microvolts
2981 * @new_uV: target voltage in microvolts
2983 * Provided with the starting and ending voltage, this function attempts to
2984 * calculate the time in microseconds required to rise or fall to this new
2985 * voltage.
2987 int regulator_set_voltage_time(struct regulator *regulator,
2988 int old_uV, int new_uV)
2990 struct regulator_dev *rdev = regulator->rdev;
2991 const struct regulator_ops *ops = rdev->desc->ops;
2992 int old_sel = -1;
2993 int new_sel = -1;
2994 int voltage;
2995 int i;
2997 /* Currently requires operations to do this */
2998 if (!ops->list_voltage || !ops->set_voltage_time_sel
2999 || !rdev->desc->n_voltages)
3000 return -EINVAL;
3002 for (i = 0; i < rdev->desc->n_voltages; i++) {
3003 /* We only look for exact voltage matches here */
3004 voltage = regulator_list_voltage(regulator, i);
3005 if (voltage < 0)
3006 return -EINVAL;
3007 if (voltage == 0)
3008 continue;
3009 if (voltage == old_uV)
3010 old_sel = i;
3011 if (voltage == new_uV)
3012 new_sel = i;
3015 if (old_sel < 0 || new_sel < 0)
3016 return -EINVAL;
3018 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3020 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3023 * regulator_set_voltage_time_sel - get raise/fall time
3024 * @rdev: regulator source device
3025 * @old_selector: selector for starting voltage
3026 * @new_selector: selector for target voltage
3028 * Provided with the starting and target voltage selectors, this function
3029 * returns time in microseconds required to rise or fall to this new voltage
3031 * Drivers providing ramp_delay in regulation_constraints can use this as their
3032 * set_voltage_time_sel() operation.
3034 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3035 unsigned int old_selector,
3036 unsigned int new_selector)
3038 unsigned int ramp_delay = 0;
3039 int old_volt, new_volt;
3041 if (rdev->constraints->ramp_delay)
3042 ramp_delay = rdev->constraints->ramp_delay;
3043 else if (rdev->desc->ramp_delay)
3044 ramp_delay = rdev->desc->ramp_delay;
3046 if (ramp_delay == 0) {
3047 rdev_warn(rdev, "ramp_delay not set\n");
3048 return 0;
3051 /* sanity check */
3052 if (!rdev->desc->ops->list_voltage)
3053 return -EINVAL;
3055 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3056 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3058 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3060 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3063 * regulator_sync_voltage - re-apply last regulator output voltage
3064 * @regulator: regulator source
3066 * Re-apply the last configured voltage. This is intended to be used
3067 * where some external control source the consumer is cooperating with
3068 * has caused the configured voltage to change.
3070 int regulator_sync_voltage(struct regulator *regulator)
3072 struct regulator_dev *rdev = regulator->rdev;
3073 int ret, min_uV, max_uV;
3075 mutex_lock(&rdev->mutex);
3077 if (!rdev->desc->ops->set_voltage &&
3078 !rdev->desc->ops->set_voltage_sel) {
3079 ret = -EINVAL;
3080 goto out;
3083 /* This is only going to work if we've had a voltage configured. */
3084 if (!regulator->min_uV && !regulator->max_uV) {
3085 ret = -EINVAL;
3086 goto out;
3089 min_uV = regulator->min_uV;
3090 max_uV = regulator->max_uV;
3092 /* This should be a paranoia check... */
3093 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3094 if (ret < 0)
3095 goto out;
3097 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3098 if (ret < 0)
3099 goto out;
3101 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3103 out:
3104 mutex_unlock(&rdev->mutex);
3105 return ret;
3107 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3109 static int _regulator_get_voltage(struct regulator_dev *rdev)
3111 int sel, ret;
3113 if (rdev->desc->ops->get_voltage_sel) {
3114 sel = rdev->desc->ops->get_voltage_sel(rdev);
3115 if (sel < 0)
3116 return sel;
3117 ret = rdev->desc->ops->list_voltage(rdev, sel);
3118 } else if (rdev->desc->ops->get_voltage) {
3119 ret = rdev->desc->ops->get_voltage(rdev);
3120 } else if (rdev->desc->ops->list_voltage) {
3121 ret = rdev->desc->ops->list_voltage(rdev, 0);
3122 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3123 ret = rdev->desc->fixed_uV;
3124 } else if (rdev->supply) {
3125 ret = _regulator_get_voltage(rdev->supply->rdev);
3126 } else {
3127 return -EINVAL;
3130 if (ret < 0)
3131 return ret;
3132 return ret - rdev->constraints->uV_offset;
3136 * regulator_get_voltage - get regulator output voltage
3137 * @regulator: regulator source
3139 * This returns the current regulator voltage in uV.
3141 * NOTE: If the regulator is disabled it will return the voltage value. This
3142 * function should not be used to determine regulator state.
3144 int regulator_get_voltage(struct regulator *regulator)
3146 int ret;
3148 regulator_lock_supply(regulator->rdev);
3150 ret = _regulator_get_voltage(regulator->rdev);
3152 regulator_unlock_supply(regulator->rdev);
3154 return ret;
3156 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3159 * regulator_set_current_limit - set regulator output current limit
3160 * @regulator: regulator source
3161 * @min_uA: Minimum supported current in uA
3162 * @max_uA: Maximum supported current in uA
3164 * Sets current sink to the desired output current. This can be set during
3165 * any regulator state. IOW, regulator can be disabled or enabled.
3167 * If the regulator is enabled then the current will change to the new value
3168 * immediately otherwise if the regulator is disabled the regulator will
3169 * output at the new current when enabled.
3171 * NOTE: Regulator system constraints must be set for this regulator before
3172 * calling this function otherwise this call will fail.
3174 int regulator_set_current_limit(struct regulator *regulator,
3175 int min_uA, int max_uA)
3177 struct regulator_dev *rdev = regulator->rdev;
3178 int ret;
3180 mutex_lock(&rdev->mutex);
3182 /* sanity check */
3183 if (!rdev->desc->ops->set_current_limit) {
3184 ret = -EINVAL;
3185 goto out;
3188 /* constraints check */
3189 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3190 if (ret < 0)
3191 goto out;
3193 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3194 out:
3195 mutex_unlock(&rdev->mutex);
3196 return ret;
3198 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3200 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3202 int ret;
3204 mutex_lock(&rdev->mutex);
3206 /* sanity check */
3207 if (!rdev->desc->ops->get_current_limit) {
3208 ret = -EINVAL;
3209 goto out;
3212 ret = rdev->desc->ops->get_current_limit(rdev);
3213 out:
3214 mutex_unlock(&rdev->mutex);
3215 return ret;
3219 * regulator_get_current_limit - get regulator output current
3220 * @regulator: regulator source
3222 * This returns the current supplied by the specified current sink in uA.
3224 * NOTE: If the regulator is disabled it will return the current value. This
3225 * function should not be used to determine regulator state.
3227 int regulator_get_current_limit(struct regulator *regulator)
3229 return _regulator_get_current_limit(regulator->rdev);
3231 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3234 * regulator_set_mode - set regulator operating mode
3235 * @regulator: regulator source
3236 * @mode: operating mode - one of the REGULATOR_MODE constants
3238 * Set regulator operating mode to increase regulator efficiency or improve
3239 * regulation performance.
3241 * NOTE: Regulator system constraints must be set for this regulator before
3242 * calling this function otherwise this call will fail.
3244 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3246 struct regulator_dev *rdev = regulator->rdev;
3247 int ret;
3248 int regulator_curr_mode;
3250 mutex_lock(&rdev->mutex);
3252 /* sanity check */
3253 if (!rdev->desc->ops->set_mode) {
3254 ret = -EINVAL;
3255 goto out;
3258 /* return if the same mode is requested */
3259 if (rdev->desc->ops->get_mode) {
3260 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3261 if (regulator_curr_mode == mode) {
3262 ret = 0;
3263 goto out;
3267 /* constraints check */
3268 ret = regulator_mode_constrain(rdev, &mode);
3269 if (ret < 0)
3270 goto out;
3272 ret = rdev->desc->ops->set_mode(rdev, mode);
3273 out:
3274 mutex_unlock(&rdev->mutex);
3275 return ret;
3277 EXPORT_SYMBOL_GPL(regulator_set_mode);
3279 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3281 int ret;
3283 mutex_lock(&rdev->mutex);
3285 /* sanity check */
3286 if (!rdev->desc->ops->get_mode) {
3287 ret = -EINVAL;
3288 goto out;
3291 ret = rdev->desc->ops->get_mode(rdev);
3292 out:
3293 mutex_unlock(&rdev->mutex);
3294 return ret;
3298 * regulator_get_mode - get regulator operating mode
3299 * @regulator: regulator source
3301 * Get the current regulator operating mode.
3303 unsigned int regulator_get_mode(struct regulator *regulator)
3305 return _regulator_get_mode(regulator->rdev);
3307 EXPORT_SYMBOL_GPL(regulator_get_mode);
3310 * regulator_set_load - set regulator load
3311 * @regulator: regulator source
3312 * @uA_load: load current
3314 * Notifies the regulator core of a new device load. This is then used by
3315 * DRMS (if enabled by constraints) to set the most efficient regulator
3316 * operating mode for the new regulator loading.
3318 * Consumer devices notify their supply regulator of the maximum power
3319 * they will require (can be taken from device datasheet in the power
3320 * consumption tables) when they change operational status and hence power
3321 * state. Examples of operational state changes that can affect power
3322 * consumption are :-
3324 * o Device is opened / closed.
3325 * o Device I/O is about to begin or has just finished.
3326 * o Device is idling in between work.
3328 * This information is also exported via sysfs to userspace.
3330 * DRMS will sum the total requested load on the regulator and change
3331 * to the most efficient operating mode if platform constraints allow.
3333 * On error a negative errno is returned.
3335 int regulator_set_load(struct regulator *regulator, int uA_load)
3337 struct regulator_dev *rdev = regulator->rdev;
3338 int ret;
3340 mutex_lock(&rdev->mutex);
3341 regulator->uA_load = uA_load;
3342 ret = drms_uA_update(rdev);
3343 mutex_unlock(&rdev->mutex);
3345 return ret;
3347 EXPORT_SYMBOL_GPL(regulator_set_load);
3350 * regulator_allow_bypass - allow the regulator to go into bypass mode
3352 * @regulator: Regulator to configure
3353 * @enable: enable or disable bypass mode
3355 * Allow the regulator to go into bypass mode if all other consumers
3356 * for the regulator also enable bypass mode and the machine
3357 * constraints allow this. Bypass mode means that the regulator is
3358 * simply passing the input directly to the output with no regulation.
3360 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3362 struct regulator_dev *rdev = regulator->rdev;
3363 int ret = 0;
3365 if (!rdev->desc->ops->set_bypass)
3366 return 0;
3368 if (rdev->constraints &&
3369 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3370 return 0;
3372 mutex_lock(&rdev->mutex);
3374 if (enable && !regulator->bypass) {
3375 rdev->bypass_count++;
3377 if (rdev->bypass_count == rdev->open_count) {
3378 ret = rdev->desc->ops->set_bypass(rdev, enable);
3379 if (ret != 0)
3380 rdev->bypass_count--;
3383 } else if (!enable && regulator->bypass) {
3384 rdev->bypass_count--;
3386 if (rdev->bypass_count != rdev->open_count) {
3387 ret = rdev->desc->ops->set_bypass(rdev, enable);
3388 if (ret != 0)
3389 rdev->bypass_count++;
3393 if (ret == 0)
3394 regulator->bypass = enable;
3396 mutex_unlock(&rdev->mutex);
3398 return ret;
3400 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3403 * regulator_register_notifier - register regulator event notifier
3404 * @regulator: regulator source
3405 * @nb: notifier block
3407 * Register notifier block to receive regulator events.
3409 int regulator_register_notifier(struct regulator *regulator,
3410 struct notifier_block *nb)
3412 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3413 nb);
3415 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3418 * regulator_unregister_notifier - unregister regulator event notifier
3419 * @regulator: regulator source
3420 * @nb: notifier block
3422 * Unregister regulator event notifier block.
3424 int regulator_unregister_notifier(struct regulator *regulator,
3425 struct notifier_block *nb)
3427 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3428 nb);
3430 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3432 /* notify regulator consumers and downstream regulator consumers.
3433 * Note mutex must be held by caller.
3435 static int _notifier_call_chain(struct regulator_dev *rdev,
3436 unsigned long event, void *data)
3438 /* call rdev chain first */
3439 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3443 * regulator_bulk_get - get multiple regulator consumers
3445 * @dev: Device to supply
3446 * @num_consumers: Number of consumers to register
3447 * @consumers: Configuration of consumers; clients are stored here.
3449 * @return 0 on success, an errno on failure.
3451 * This helper function allows drivers to get several regulator
3452 * consumers in one operation. If any of the regulators cannot be
3453 * acquired then any regulators that were allocated will be freed
3454 * before returning to the caller.
3456 int regulator_bulk_get(struct device *dev, int num_consumers,
3457 struct regulator_bulk_data *consumers)
3459 int i;
3460 int ret;
3462 for (i = 0; i < num_consumers; i++)
3463 consumers[i].consumer = NULL;
3465 for (i = 0; i < num_consumers; i++) {
3466 consumers[i].consumer = _regulator_get(dev,
3467 consumers[i].supply,
3468 false,
3469 !consumers[i].optional);
3470 if (IS_ERR(consumers[i].consumer)) {
3471 ret = PTR_ERR(consumers[i].consumer);
3472 dev_err(dev, "Failed to get supply '%s': %d\n",
3473 consumers[i].supply, ret);
3474 consumers[i].consumer = NULL;
3475 goto err;
3479 return 0;
3481 err:
3482 while (--i >= 0)
3483 regulator_put(consumers[i].consumer);
3485 return ret;
3487 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3489 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3491 struct regulator_bulk_data *bulk = data;
3493 bulk->ret = regulator_enable(bulk->consumer);
3497 * regulator_bulk_enable - enable multiple regulator consumers
3499 * @num_consumers: Number of consumers
3500 * @consumers: Consumer data; clients are stored here.
3501 * @return 0 on success, an errno on failure
3503 * This convenience API allows consumers to enable multiple regulator
3504 * clients in a single API call. If any consumers cannot be enabled
3505 * then any others that were enabled will be disabled again prior to
3506 * return.
3508 int regulator_bulk_enable(int num_consumers,
3509 struct regulator_bulk_data *consumers)
3511 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3512 int i;
3513 int ret = 0;
3515 for (i = 0; i < num_consumers; i++) {
3516 if (consumers[i].consumer->always_on)
3517 consumers[i].ret = 0;
3518 else
3519 async_schedule_domain(regulator_bulk_enable_async,
3520 &consumers[i], &async_domain);
3523 async_synchronize_full_domain(&async_domain);
3525 /* If any consumer failed we need to unwind any that succeeded */
3526 for (i = 0; i < num_consumers; i++) {
3527 if (consumers[i].ret != 0) {
3528 ret = consumers[i].ret;
3529 goto err;
3533 return 0;
3535 err:
3536 for (i = 0; i < num_consumers; i++) {
3537 if (consumers[i].ret < 0)
3538 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3539 consumers[i].ret);
3540 else
3541 regulator_disable(consumers[i].consumer);
3544 return ret;
3546 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3549 * regulator_bulk_disable - disable multiple regulator consumers
3551 * @num_consumers: Number of consumers
3552 * @consumers: Consumer data; clients are stored here.
3553 * @return 0 on success, an errno on failure
3555 * This convenience API allows consumers to disable multiple regulator
3556 * clients in a single API call. If any consumers cannot be disabled
3557 * then any others that were disabled will be enabled again prior to
3558 * return.
3560 int regulator_bulk_disable(int num_consumers,
3561 struct regulator_bulk_data *consumers)
3563 int i;
3564 int ret, r;
3566 for (i = num_consumers - 1; i >= 0; --i) {
3567 ret = regulator_disable(consumers[i].consumer);
3568 if (ret != 0)
3569 goto err;
3572 return 0;
3574 err:
3575 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3576 for (++i; i < num_consumers; ++i) {
3577 r = regulator_enable(consumers[i].consumer);
3578 if (r != 0)
3579 pr_err("Failed to reename %s: %d\n",
3580 consumers[i].supply, r);
3583 return ret;
3585 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3588 * regulator_bulk_force_disable - force disable multiple regulator consumers
3590 * @num_consumers: Number of consumers
3591 * @consumers: Consumer data; clients are stored here.
3592 * @return 0 on success, an errno on failure
3594 * This convenience API allows consumers to forcibly disable multiple regulator
3595 * clients in a single API call.
3596 * NOTE: This should be used for situations when device damage will
3597 * likely occur if the regulators are not disabled (e.g. over temp).
3598 * Although regulator_force_disable function call for some consumers can
3599 * return error numbers, the function is called for all consumers.
3601 int regulator_bulk_force_disable(int num_consumers,
3602 struct regulator_bulk_data *consumers)
3604 int i;
3605 int ret;
3607 for (i = 0; i < num_consumers; i++)
3608 consumers[i].ret =
3609 regulator_force_disable(consumers[i].consumer);
3611 for (i = 0; i < num_consumers; i++) {
3612 if (consumers[i].ret != 0) {
3613 ret = consumers[i].ret;
3614 goto out;
3618 return 0;
3619 out:
3620 return ret;
3622 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3625 * regulator_bulk_free - free multiple regulator consumers
3627 * @num_consumers: Number of consumers
3628 * @consumers: Consumer data; clients are stored here.
3630 * This convenience API allows consumers to free multiple regulator
3631 * clients in a single API call.
3633 void regulator_bulk_free(int num_consumers,
3634 struct regulator_bulk_data *consumers)
3636 int i;
3638 for (i = 0; i < num_consumers; i++) {
3639 regulator_put(consumers[i].consumer);
3640 consumers[i].consumer = NULL;
3643 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3646 * regulator_notifier_call_chain - call regulator event notifier
3647 * @rdev: regulator source
3648 * @event: notifier block
3649 * @data: callback-specific data.
3651 * Called by regulator drivers to notify clients a regulator event has
3652 * occurred. We also notify regulator clients downstream.
3653 * Note lock must be held by caller.
3655 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3656 unsigned long event, void *data)
3658 lockdep_assert_held_once(&rdev->mutex);
3660 _notifier_call_chain(rdev, event, data);
3661 return NOTIFY_DONE;
3664 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3667 * regulator_mode_to_status - convert a regulator mode into a status
3669 * @mode: Mode to convert
3671 * Convert a regulator mode into a status.
3673 int regulator_mode_to_status(unsigned int mode)
3675 switch (mode) {
3676 case REGULATOR_MODE_FAST:
3677 return REGULATOR_STATUS_FAST;
3678 case REGULATOR_MODE_NORMAL:
3679 return REGULATOR_STATUS_NORMAL;
3680 case REGULATOR_MODE_IDLE:
3681 return REGULATOR_STATUS_IDLE;
3682 case REGULATOR_MODE_STANDBY:
3683 return REGULATOR_STATUS_STANDBY;
3684 default:
3685 return REGULATOR_STATUS_UNDEFINED;
3688 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3690 static struct attribute *regulator_dev_attrs[] = {
3691 &dev_attr_name.attr,
3692 &dev_attr_num_users.attr,
3693 &dev_attr_type.attr,
3694 &dev_attr_microvolts.attr,
3695 &dev_attr_microamps.attr,
3696 &dev_attr_opmode.attr,
3697 &dev_attr_state.attr,
3698 &dev_attr_status.attr,
3699 &dev_attr_bypass.attr,
3700 &dev_attr_requested_microamps.attr,
3701 &dev_attr_min_microvolts.attr,
3702 &dev_attr_max_microvolts.attr,
3703 &dev_attr_min_microamps.attr,
3704 &dev_attr_max_microamps.attr,
3705 &dev_attr_suspend_standby_state.attr,
3706 &dev_attr_suspend_mem_state.attr,
3707 &dev_attr_suspend_disk_state.attr,
3708 &dev_attr_suspend_standby_microvolts.attr,
3709 &dev_attr_suspend_mem_microvolts.attr,
3710 &dev_attr_suspend_disk_microvolts.attr,
3711 &dev_attr_suspend_standby_mode.attr,
3712 &dev_attr_suspend_mem_mode.attr,
3713 &dev_attr_suspend_disk_mode.attr,
3714 NULL
3718 * To avoid cluttering sysfs (and memory) with useless state, only
3719 * create attributes that can be meaningfully displayed.
3721 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3722 struct attribute *attr, int idx)
3724 struct device *dev = kobj_to_dev(kobj);
3725 struct regulator_dev *rdev = dev_to_rdev(dev);
3726 const struct regulator_ops *ops = rdev->desc->ops;
3727 umode_t mode = attr->mode;
3729 /* these three are always present */
3730 if (attr == &dev_attr_name.attr ||
3731 attr == &dev_attr_num_users.attr ||
3732 attr == &dev_attr_type.attr)
3733 return mode;
3735 /* some attributes need specific methods to be displayed */
3736 if (attr == &dev_attr_microvolts.attr) {
3737 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3738 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3739 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3740 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3741 return mode;
3742 return 0;
3745 if (attr == &dev_attr_microamps.attr)
3746 return ops->get_current_limit ? mode : 0;
3748 if (attr == &dev_attr_opmode.attr)
3749 return ops->get_mode ? mode : 0;
3751 if (attr == &dev_attr_state.attr)
3752 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3754 if (attr == &dev_attr_status.attr)
3755 return ops->get_status ? mode : 0;
3757 if (attr == &dev_attr_bypass.attr)
3758 return ops->get_bypass ? mode : 0;
3760 /* some attributes are type-specific */
3761 if (attr == &dev_attr_requested_microamps.attr)
3762 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3764 /* constraints need specific supporting methods */
3765 if (attr == &dev_attr_min_microvolts.attr ||
3766 attr == &dev_attr_max_microvolts.attr)
3767 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3769 if (attr == &dev_attr_min_microamps.attr ||
3770 attr == &dev_attr_max_microamps.attr)
3771 return ops->set_current_limit ? mode : 0;
3773 if (attr == &dev_attr_suspend_standby_state.attr ||
3774 attr == &dev_attr_suspend_mem_state.attr ||
3775 attr == &dev_attr_suspend_disk_state.attr)
3776 return mode;
3778 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3779 attr == &dev_attr_suspend_mem_microvolts.attr ||
3780 attr == &dev_attr_suspend_disk_microvolts.attr)
3781 return ops->set_suspend_voltage ? mode : 0;
3783 if (attr == &dev_attr_suspend_standby_mode.attr ||
3784 attr == &dev_attr_suspend_mem_mode.attr ||
3785 attr == &dev_attr_suspend_disk_mode.attr)
3786 return ops->set_suspend_mode ? mode : 0;
3788 return mode;
3791 static const struct attribute_group regulator_dev_group = {
3792 .attrs = regulator_dev_attrs,
3793 .is_visible = regulator_attr_is_visible,
3796 static const struct attribute_group *regulator_dev_groups[] = {
3797 &regulator_dev_group,
3798 NULL
3801 static void regulator_dev_release(struct device *dev)
3803 struct regulator_dev *rdev = dev_get_drvdata(dev);
3805 kfree(rdev->constraints);
3806 of_node_put(rdev->dev.of_node);
3807 kfree(rdev);
3810 static struct class regulator_class = {
3811 .name = "regulator",
3812 .dev_release = regulator_dev_release,
3813 .dev_groups = regulator_dev_groups,
3816 static void rdev_init_debugfs(struct regulator_dev *rdev)
3818 struct device *parent = rdev->dev.parent;
3819 const char *rname = rdev_get_name(rdev);
3820 char name[NAME_MAX];
3822 /* Avoid duplicate debugfs directory names */
3823 if (parent && rname == rdev->desc->name) {
3824 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3825 rname);
3826 rname = name;
3829 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3830 if (!rdev->debugfs) {
3831 rdev_warn(rdev, "Failed to create debugfs directory\n");
3832 return;
3835 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3836 &rdev->use_count);
3837 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3838 &rdev->open_count);
3839 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3840 &rdev->bypass_count);
3844 * regulator_register - register regulator
3845 * @regulator_desc: regulator to register
3846 * @cfg: runtime configuration for regulator
3848 * Called by regulator drivers to register a regulator.
3849 * Returns a valid pointer to struct regulator_dev on success
3850 * or an ERR_PTR() on error.
3852 struct regulator_dev *
3853 regulator_register(const struct regulator_desc *regulator_desc,
3854 const struct regulator_config *cfg)
3856 const struct regulation_constraints *constraints = NULL;
3857 const struct regulator_init_data *init_data;
3858 struct regulator_config *config = NULL;
3859 static atomic_t regulator_no = ATOMIC_INIT(-1);
3860 struct regulator_dev *rdev;
3861 struct device *dev;
3862 int ret, i;
3864 if (regulator_desc == NULL || cfg == NULL)
3865 return ERR_PTR(-EINVAL);
3867 dev = cfg->dev;
3868 WARN_ON(!dev);
3870 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3871 return ERR_PTR(-EINVAL);
3873 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3874 regulator_desc->type != REGULATOR_CURRENT)
3875 return ERR_PTR(-EINVAL);
3877 /* Only one of each should be implemented */
3878 WARN_ON(regulator_desc->ops->get_voltage &&
3879 regulator_desc->ops->get_voltage_sel);
3880 WARN_ON(regulator_desc->ops->set_voltage &&
3881 regulator_desc->ops->set_voltage_sel);
3883 /* If we're using selectors we must implement list_voltage. */
3884 if (regulator_desc->ops->get_voltage_sel &&
3885 !regulator_desc->ops->list_voltage) {
3886 return ERR_PTR(-EINVAL);
3888 if (regulator_desc->ops->set_voltage_sel &&
3889 !regulator_desc->ops->list_voltage) {
3890 return ERR_PTR(-EINVAL);
3893 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3894 if (rdev == NULL)
3895 return ERR_PTR(-ENOMEM);
3898 * Duplicate the config so the driver could override it after
3899 * parsing init data.
3901 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3902 if (config == NULL) {
3903 kfree(rdev);
3904 return ERR_PTR(-ENOMEM);
3907 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3908 &rdev->dev.of_node);
3909 if (!init_data) {
3910 init_data = config->init_data;
3911 rdev->dev.of_node = of_node_get(config->of_node);
3914 mutex_lock(&regulator_list_mutex);
3916 mutex_init(&rdev->mutex);
3917 rdev->reg_data = config->driver_data;
3918 rdev->owner = regulator_desc->owner;
3919 rdev->desc = regulator_desc;
3920 if (config->regmap)
3921 rdev->regmap = config->regmap;
3922 else if (dev_get_regmap(dev, NULL))
3923 rdev->regmap = dev_get_regmap(dev, NULL);
3924 else if (dev->parent)
3925 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3926 INIT_LIST_HEAD(&rdev->consumer_list);
3927 INIT_LIST_HEAD(&rdev->list);
3928 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3929 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3931 /* preform any regulator specific init */
3932 if (init_data && init_data->regulator_init) {
3933 ret = init_data->regulator_init(rdev->reg_data);
3934 if (ret < 0)
3935 goto clean;
3938 if ((config->ena_gpio || config->ena_gpio_initialized) &&
3939 gpio_is_valid(config->ena_gpio)) {
3940 ret = regulator_ena_gpio_request(rdev, config);
3941 if (ret != 0) {
3942 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3943 config->ena_gpio, ret);
3944 goto clean;
3948 /* register with sysfs */
3949 rdev->dev.class = &regulator_class;
3950 rdev->dev.parent = dev;
3951 dev_set_name(&rdev->dev, "regulator.%lu",
3952 (unsigned long) atomic_inc_return(&regulator_no));
3953 ret = device_register(&rdev->dev);
3954 if (ret != 0) {
3955 put_device(&rdev->dev);
3956 goto wash;
3959 dev_set_drvdata(&rdev->dev, rdev);
3961 /* set regulator constraints */
3962 if (init_data)
3963 constraints = &init_data->constraints;
3965 ret = set_machine_constraints(rdev, constraints);
3966 if (ret < 0)
3967 goto scrub;
3969 if (init_data && init_data->supply_regulator)
3970 rdev->supply_name = init_data->supply_regulator;
3971 else if (regulator_desc->supply_name)
3972 rdev->supply_name = regulator_desc->supply_name;
3974 /* add consumers devices */
3975 if (init_data) {
3976 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3977 ret = set_consumer_device_supply(rdev,
3978 init_data->consumer_supplies[i].dev_name,
3979 init_data->consumer_supplies[i].supply);
3980 if (ret < 0) {
3981 dev_err(dev, "Failed to set supply %s\n",
3982 init_data->consumer_supplies[i].supply);
3983 goto unset_supplies;
3988 rdev_init_debugfs(rdev);
3989 out:
3990 mutex_unlock(&regulator_list_mutex);
3991 kfree(config);
3992 return rdev;
3994 unset_supplies:
3995 unset_regulator_supplies(rdev);
3997 scrub:
3998 regulator_ena_gpio_free(rdev);
3999 device_unregister(&rdev->dev);
4000 /* device core frees rdev */
4001 rdev = ERR_PTR(ret);
4002 goto out;
4004 wash:
4005 regulator_ena_gpio_free(rdev);
4006 clean:
4007 kfree(rdev);
4008 rdev = ERR_PTR(ret);
4009 goto out;
4011 EXPORT_SYMBOL_GPL(regulator_register);
4014 * regulator_unregister - unregister regulator
4015 * @rdev: regulator to unregister
4017 * Called by regulator drivers to unregister a regulator.
4019 void regulator_unregister(struct regulator_dev *rdev)
4021 if (rdev == NULL)
4022 return;
4024 if (rdev->supply) {
4025 while (rdev->use_count--)
4026 regulator_disable(rdev->supply);
4027 regulator_put(rdev->supply);
4029 mutex_lock(&regulator_list_mutex);
4030 debugfs_remove_recursive(rdev->debugfs);
4031 flush_work(&rdev->disable_work.work);
4032 WARN_ON(rdev->open_count);
4033 unset_regulator_supplies(rdev);
4034 list_del(&rdev->list);
4035 mutex_unlock(&regulator_list_mutex);
4036 regulator_ena_gpio_free(rdev);
4037 device_unregister(&rdev->dev);
4039 EXPORT_SYMBOL_GPL(regulator_unregister);
4041 static int _regulator_suspend_prepare(struct device *dev, void *data)
4043 struct regulator_dev *rdev = dev_to_rdev(dev);
4044 const suspend_state_t *state = data;
4045 int ret;
4047 mutex_lock(&rdev->mutex);
4048 ret = suspend_prepare(rdev, *state);
4049 mutex_unlock(&rdev->mutex);
4051 return ret;
4055 * regulator_suspend_prepare - prepare regulators for system wide suspend
4056 * @state: system suspend state
4058 * Configure each regulator with it's suspend operating parameters for state.
4059 * This will usually be called by machine suspend code prior to supending.
4061 int regulator_suspend_prepare(suspend_state_t state)
4063 /* ON is handled by regulator active state */
4064 if (state == PM_SUSPEND_ON)
4065 return -EINVAL;
4067 return class_for_each_device(&regulator_class, NULL, &state,
4068 _regulator_suspend_prepare);
4070 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4072 static int _regulator_suspend_finish(struct device *dev, void *data)
4074 struct regulator_dev *rdev = dev_to_rdev(dev);
4075 int ret;
4077 mutex_lock(&rdev->mutex);
4078 if (rdev->use_count > 0 || rdev->constraints->always_on) {
4079 if (!_regulator_is_enabled(rdev)) {
4080 ret = _regulator_do_enable(rdev);
4081 if (ret)
4082 dev_err(dev,
4083 "Failed to resume regulator %d\n",
4084 ret);
4086 } else {
4087 if (!have_full_constraints())
4088 goto unlock;
4089 if (!_regulator_is_enabled(rdev))
4090 goto unlock;
4092 ret = _regulator_do_disable(rdev);
4093 if (ret)
4094 dev_err(dev, "Failed to suspend regulator %d\n", ret);
4096 unlock:
4097 mutex_unlock(&rdev->mutex);
4099 /* Keep processing regulators in spite of any errors */
4100 return 0;
4104 * regulator_suspend_finish - resume regulators from system wide suspend
4106 * Turn on regulators that might be turned off by regulator_suspend_prepare
4107 * and that should be turned on according to the regulators properties.
4109 int regulator_suspend_finish(void)
4111 return class_for_each_device(&regulator_class, NULL, NULL,
4112 _regulator_suspend_finish);
4114 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4117 * regulator_has_full_constraints - the system has fully specified constraints
4119 * Calling this function will cause the regulator API to disable all
4120 * regulators which have a zero use count and don't have an always_on
4121 * constraint in a late_initcall.
4123 * The intention is that this will become the default behaviour in a
4124 * future kernel release so users are encouraged to use this facility
4125 * now.
4127 void regulator_has_full_constraints(void)
4129 has_full_constraints = 1;
4131 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4134 * rdev_get_drvdata - get rdev regulator driver data
4135 * @rdev: regulator
4137 * Get rdev regulator driver private data. This call can be used in the
4138 * regulator driver context.
4140 void *rdev_get_drvdata(struct regulator_dev *rdev)
4142 return rdev->reg_data;
4144 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4147 * regulator_get_drvdata - get regulator driver data
4148 * @regulator: regulator
4150 * Get regulator driver private data. This call can be used in the consumer
4151 * driver context when non API regulator specific functions need to be called.
4153 void *regulator_get_drvdata(struct regulator *regulator)
4155 return regulator->rdev->reg_data;
4157 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4160 * regulator_set_drvdata - set regulator driver data
4161 * @regulator: regulator
4162 * @data: data
4164 void regulator_set_drvdata(struct regulator *regulator, void *data)
4166 regulator->rdev->reg_data = data;
4168 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4171 * regulator_get_id - get regulator ID
4172 * @rdev: regulator
4174 int rdev_get_id(struct regulator_dev *rdev)
4176 return rdev->desc->id;
4178 EXPORT_SYMBOL_GPL(rdev_get_id);
4180 struct device *rdev_get_dev(struct regulator_dev *rdev)
4182 return &rdev->dev;
4184 EXPORT_SYMBOL_GPL(rdev_get_dev);
4186 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4188 return reg_init_data->driver_data;
4190 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4192 #ifdef CONFIG_DEBUG_FS
4193 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4194 size_t count, loff_t *ppos)
4196 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4197 ssize_t len, ret = 0;
4198 struct regulator_map *map;
4200 if (!buf)
4201 return -ENOMEM;
4203 list_for_each_entry(map, &regulator_map_list, list) {
4204 len = snprintf(buf + ret, PAGE_SIZE - ret,
4205 "%s -> %s.%s\n",
4206 rdev_get_name(map->regulator), map->dev_name,
4207 map->supply);
4208 if (len >= 0)
4209 ret += len;
4210 if (ret > PAGE_SIZE) {
4211 ret = PAGE_SIZE;
4212 break;
4216 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4218 kfree(buf);
4220 return ret;
4222 #endif
4224 static const struct file_operations supply_map_fops = {
4225 #ifdef CONFIG_DEBUG_FS
4226 .read = supply_map_read_file,
4227 .llseek = default_llseek,
4228 #endif
4231 #ifdef CONFIG_DEBUG_FS
4232 struct summary_data {
4233 struct seq_file *s;
4234 struct regulator_dev *parent;
4235 int level;
4238 static void regulator_summary_show_subtree(struct seq_file *s,
4239 struct regulator_dev *rdev,
4240 int level);
4242 static int regulator_summary_show_children(struct device *dev, void *data)
4244 struct regulator_dev *rdev = dev_to_rdev(dev);
4245 struct summary_data *summary_data = data;
4247 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4248 regulator_summary_show_subtree(summary_data->s, rdev,
4249 summary_data->level + 1);
4251 return 0;
4254 static void regulator_summary_show_subtree(struct seq_file *s,
4255 struct regulator_dev *rdev,
4256 int level)
4258 struct regulation_constraints *c;
4259 struct regulator *consumer;
4260 struct summary_data summary_data;
4262 if (!rdev)
4263 return;
4265 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4266 level * 3 + 1, "",
4267 30 - level * 3, rdev_get_name(rdev),
4268 rdev->use_count, rdev->open_count, rdev->bypass_count);
4270 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4271 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4273 c = rdev->constraints;
4274 if (c) {
4275 switch (rdev->desc->type) {
4276 case REGULATOR_VOLTAGE:
4277 seq_printf(s, "%5dmV %5dmV ",
4278 c->min_uV / 1000, c->max_uV / 1000);
4279 break;
4280 case REGULATOR_CURRENT:
4281 seq_printf(s, "%5dmA %5dmA ",
4282 c->min_uA / 1000, c->max_uA / 1000);
4283 break;
4287 seq_puts(s, "\n");
4289 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4290 if (consumer->dev->class == &regulator_class)
4291 continue;
4293 seq_printf(s, "%*s%-*s ",
4294 (level + 1) * 3 + 1, "",
4295 30 - (level + 1) * 3, dev_name(consumer->dev));
4297 switch (rdev->desc->type) {
4298 case REGULATOR_VOLTAGE:
4299 seq_printf(s, "%37dmV %5dmV",
4300 consumer->min_uV / 1000,
4301 consumer->max_uV / 1000);
4302 break;
4303 case REGULATOR_CURRENT:
4304 break;
4307 seq_puts(s, "\n");
4310 summary_data.s = s;
4311 summary_data.level = level;
4312 summary_data.parent = rdev;
4314 class_for_each_device(&regulator_class, NULL, &summary_data,
4315 regulator_summary_show_children);
4318 static int regulator_summary_show_roots(struct device *dev, void *data)
4320 struct regulator_dev *rdev = dev_to_rdev(dev);
4321 struct seq_file *s = data;
4323 if (!rdev->supply)
4324 regulator_summary_show_subtree(s, rdev, 0);
4326 return 0;
4329 static int regulator_summary_show(struct seq_file *s, void *data)
4331 seq_puts(s, " regulator use open bypass voltage current min max\n");
4332 seq_puts(s, "-------------------------------------------------------------------------------\n");
4334 class_for_each_device(&regulator_class, NULL, s,
4335 regulator_summary_show_roots);
4337 return 0;
4340 static int regulator_summary_open(struct inode *inode, struct file *file)
4342 return single_open(file, regulator_summary_show, inode->i_private);
4344 #endif
4346 static const struct file_operations regulator_summary_fops = {
4347 #ifdef CONFIG_DEBUG_FS
4348 .open = regulator_summary_open,
4349 .read = seq_read,
4350 .llseek = seq_lseek,
4351 .release = single_release,
4352 #endif
4355 static int __init regulator_init(void)
4357 int ret;
4359 ret = class_register(&regulator_class);
4361 debugfs_root = debugfs_create_dir("regulator", NULL);
4362 if (!debugfs_root)
4363 pr_warn("regulator: Failed to create debugfs directory\n");
4365 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4366 &supply_map_fops);
4368 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4369 NULL, &regulator_summary_fops);
4371 regulator_dummy_init();
4373 return ret;
4376 /* init early to allow our consumers to complete system booting */
4377 core_initcall(regulator_init);
4379 static int __init regulator_late_cleanup(struct device *dev, void *data)
4381 struct regulator_dev *rdev = dev_to_rdev(dev);
4382 const struct regulator_ops *ops = rdev->desc->ops;
4383 struct regulation_constraints *c = rdev->constraints;
4384 int enabled, ret;
4386 if (c && c->always_on)
4387 return 0;
4389 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4390 return 0;
4392 mutex_lock(&rdev->mutex);
4394 if (rdev->use_count)
4395 goto unlock;
4397 /* If we can't read the status assume it's on. */
4398 if (ops->is_enabled)
4399 enabled = ops->is_enabled(rdev);
4400 else
4401 enabled = 1;
4403 if (!enabled)
4404 goto unlock;
4406 if (have_full_constraints()) {
4407 /* We log since this may kill the system if it goes
4408 * wrong. */
4409 rdev_info(rdev, "disabling\n");
4410 ret = _regulator_do_disable(rdev);
4411 if (ret != 0)
4412 rdev_err(rdev, "couldn't disable: %d\n", ret);
4413 } else {
4414 /* The intention is that in future we will
4415 * assume that full constraints are provided
4416 * so warn even if we aren't going to do
4417 * anything here.
4419 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4422 unlock:
4423 mutex_unlock(&rdev->mutex);
4425 return 0;
4428 static int __init regulator_init_complete(void)
4431 * Since DT doesn't provide an idiomatic mechanism for
4432 * enabling full constraints and since it's much more natural
4433 * with DT to provide them just assume that a DT enabled
4434 * system has full constraints.
4436 if (of_have_populated_dt())
4437 has_full_constraints = true;
4439 /* If we have a full configuration then disable any regulators
4440 * we have permission to change the status for and which are
4441 * not in use or always_on. This is effectively the default
4442 * for DT and ACPI as they have full constraints.
4444 class_for_each_device(&regulator_class, NULL, NULL,
4445 regulator_late_cleanup);
4447 return 0;
4449 late_initcall_sync(regulator_init_complete);