1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct
*target_completion_wq
;
57 static struct kmem_cache
*se_sess_cache
;
58 struct kmem_cache
*se_ua_cache
;
59 struct kmem_cache
*t10_pr_reg_cache
;
60 struct kmem_cache
*t10_alua_lu_gp_cache
;
61 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
62 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
63 struct kmem_cache
*t10_alua_lba_map_cache
;
64 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
66 static void transport_complete_task_attr(struct se_cmd
*cmd
);
67 static void transport_handle_queue_full(struct se_cmd
*cmd
,
68 struct se_device
*dev
);
69 static int transport_put_cmd(struct se_cmd
*cmd
);
70 static void target_complete_ok_work(struct work_struct
*work
);
72 int init_se_kmem_caches(void)
74 se_sess_cache
= kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session
), __alignof__(struct se_session
),
78 pr_err("kmem_cache_create() for struct se_session"
82 se_ua_cache
= kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua
), __alignof__(struct se_ua
),
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache
;
89 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration
),
91 __alignof__(struct t10_pr_registration
), 0, NULL
);
92 if (!t10_pr_reg_cache
) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 goto out_free_ua_cache
;
97 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
100 if (!t10_alua_lu_gp_cache
) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 goto out_free_pr_reg_cache
;
105 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member
),
107 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
108 if (!t10_alua_lu_gp_mem_cache
) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 goto out_free_lu_gp_cache
;
113 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp
),
115 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
116 if (!t10_alua_tg_pt_gp_cache
) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 goto out_free_lu_gp_mem_cache
;
121 t10_alua_lba_map_cache
= kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map
),
124 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
125 if (!t10_alua_lba_map_cache
) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
128 goto out_free_tg_pt_gp_cache
;
130 t10_alua_lba_map_mem_cache
= kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member
),
133 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
134 if (!t10_alua_lba_map_mem_cache
) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137 goto out_free_lba_map_cache
;
140 target_completion_wq
= alloc_workqueue("target_completion",
142 if (!target_completion_wq
)
143 goto out_free_lba_map_mem_cache
;
147 out_free_lba_map_mem_cache
:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
149 out_free_lba_map_cache
:
150 kmem_cache_destroy(t10_alua_lba_map_cache
);
151 out_free_tg_pt_gp_cache
:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
153 out_free_lu_gp_mem_cache
:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
155 out_free_lu_gp_cache
:
156 kmem_cache_destroy(t10_alua_lu_gp_cache
);
157 out_free_pr_reg_cache
:
158 kmem_cache_destroy(t10_pr_reg_cache
);
160 kmem_cache_destroy(se_ua_cache
);
162 kmem_cache_destroy(se_sess_cache
);
167 void release_se_kmem_caches(void)
169 destroy_workqueue(target_completion_wq
);
170 kmem_cache_destroy(se_sess_cache
);
171 kmem_cache_destroy(se_ua_cache
);
172 kmem_cache_destroy(t10_pr_reg_cache
);
173 kmem_cache_destroy(t10_alua_lu_gp_cache
);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
176 kmem_cache_destroy(t10_alua_lba_map_cache
);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
182 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
185 * Allocate a new row index for the entry type specified
187 u32
scsi_get_new_index(scsi_index_t type
)
191 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
193 spin_lock(&scsi_mib_index_lock
);
194 new_index
= ++scsi_mib_index
[type
];
195 spin_unlock(&scsi_mib_index_lock
);
200 void transport_subsystem_check_init(void)
203 static int sub_api_initialized
;
205 if (sub_api_initialized
)
208 ret
= request_module("target_core_iblock");
210 pr_err("Unable to load target_core_iblock\n");
212 ret
= request_module("target_core_file");
214 pr_err("Unable to load target_core_file\n");
216 ret
= request_module("target_core_pscsi");
218 pr_err("Unable to load target_core_pscsi\n");
220 ret
= request_module("target_core_user");
222 pr_err("Unable to load target_core_user\n");
224 sub_api_initialized
= 1;
227 struct se_session
*transport_init_session(enum target_prot_op sup_prot_ops
)
229 struct se_session
*se_sess
;
231 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
233 pr_err("Unable to allocate struct se_session from"
235 return ERR_PTR(-ENOMEM
);
237 INIT_LIST_HEAD(&se_sess
->sess_list
);
238 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
239 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
240 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
241 spin_lock_init(&se_sess
->sess_cmd_lock
);
242 kref_init(&se_sess
->sess_kref
);
243 se_sess
->sup_prot_ops
= sup_prot_ops
;
247 EXPORT_SYMBOL(transport_init_session
);
249 int transport_alloc_session_tags(struct se_session
*se_sess
,
250 unsigned int tag_num
, unsigned int tag_size
)
254 se_sess
->sess_cmd_map
= kzalloc(tag_num
* tag_size
,
255 GFP_KERNEL
| __GFP_NOWARN
| __GFP_REPEAT
);
256 if (!se_sess
->sess_cmd_map
) {
257 se_sess
->sess_cmd_map
= vzalloc(tag_num
* tag_size
);
258 if (!se_sess
->sess_cmd_map
) {
259 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
264 rc
= percpu_ida_init(&se_sess
->sess_tag_pool
, tag_num
);
266 pr_err("Unable to init se_sess->sess_tag_pool,"
267 " tag_num: %u\n", tag_num
);
268 kvfree(se_sess
->sess_cmd_map
);
269 se_sess
->sess_cmd_map
= NULL
;
275 EXPORT_SYMBOL(transport_alloc_session_tags
);
277 struct se_session
*transport_init_session_tags(unsigned int tag_num
,
278 unsigned int tag_size
,
279 enum target_prot_op sup_prot_ops
)
281 struct se_session
*se_sess
;
284 if (tag_num
!= 0 && !tag_size
) {
285 pr_err("init_session_tags called with percpu-ida tag_num:"
286 " %u, but zero tag_size\n", tag_num
);
287 return ERR_PTR(-EINVAL
);
289 if (!tag_num
&& tag_size
) {
290 pr_err("init_session_tags called with percpu-ida tag_size:"
291 " %u, but zero tag_num\n", tag_size
);
292 return ERR_PTR(-EINVAL
);
295 se_sess
= transport_init_session(sup_prot_ops
);
299 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
301 transport_free_session(se_sess
);
302 return ERR_PTR(-ENOMEM
);
307 EXPORT_SYMBOL(transport_init_session_tags
);
310 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
312 void __transport_register_session(
313 struct se_portal_group
*se_tpg
,
314 struct se_node_acl
*se_nacl
,
315 struct se_session
*se_sess
,
316 void *fabric_sess_ptr
)
318 const struct target_core_fabric_ops
*tfo
= se_tpg
->se_tpg_tfo
;
319 unsigned char buf
[PR_REG_ISID_LEN
];
321 se_sess
->se_tpg
= se_tpg
;
322 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
326 * Only set for struct se_session's that will actually be moving I/O.
327 * eg: *NOT* discovery sessions.
332 * Determine if fabric allows for T10-PI feature bits exposed to
333 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
335 * If so, then always save prot_type on a per se_node_acl node
336 * basis and re-instate the previous sess_prot_type to avoid
337 * disabling PI from below any previously initiator side
340 if (se_nacl
->saved_prot_type
)
341 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
;
342 else if (tfo
->tpg_check_prot_fabric_only
)
343 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
=
344 tfo
->tpg_check_prot_fabric_only(se_tpg
);
346 * If the fabric module supports an ISID based TransportID,
347 * save this value in binary from the fabric I_T Nexus now.
349 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
350 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
351 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
352 &buf
[0], PR_REG_ISID_LEN
);
353 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
356 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
358 * The se_nacl->nacl_sess pointer will be set to the
359 * last active I_T Nexus for each struct se_node_acl.
361 se_nacl
->nacl_sess
= se_sess
;
363 list_add_tail(&se_sess
->sess_acl_list
,
364 &se_nacl
->acl_sess_list
);
365 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
367 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
369 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
370 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
372 EXPORT_SYMBOL(__transport_register_session
);
374 void transport_register_session(
375 struct se_portal_group
*se_tpg
,
376 struct se_node_acl
*se_nacl
,
377 struct se_session
*se_sess
,
378 void *fabric_sess_ptr
)
382 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
383 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
384 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
386 EXPORT_SYMBOL(transport_register_session
);
389 target_alloc_session(struct se_portal_group
*tpg
,
390 unsigned int tag_num
, unsigned int tag_size
,
391 enum target_prot_op prot_op
,
392 const char *initiatorname
, void *private,
393 int (*callback
)(struct se_portal_group
*,
394 struct se_session
*, void *))
396 struct se_session
*sess
;
399 * If the fabric driver is using percpu-ida based pre allocation
400 * of I/O descriptor tags, go ahead and perform that setup now..
403 sess
= transport_init_session_tags(tag_num
, tag_size
, prot_op
);
405 sess
= transport_init_session(prot_op
);
410 sess
->se_node_acl
= core_tpg_check_initiator_node_acl(tpg
,
411 (unsigned char *)initiatorname
);
412 if (!sess
->se_node_acl
) {
413 transport_free_session(sess
);
414 return ERR_PTR(-EACCES
);
417 * Go ahead and perform any remaining fabric setup that is
418 * required before transport_register_session().
420 if (callback
!= NULL
) {
421 int rc
= callback(tpg
, sess
, private);
423 transport_free_session(sess
);
428 transport_register_session(tpg
, sess
->se_node_acl
, sess
, private);
431 EXPORT_SYMBOL(target_alloc_session
);
433 static void target_release_session(struct kref
*kref
)
435 struct se_session
*se_sess
= container_of(kref
,
436 struct se_session
, sess_kref
);
437 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
439 se_tpg
->se_tpg_tfo
->close_session(se_sess
);
442 int target_get_session(struct se_session
*se_sess
)
444 return kref_get_unless_zero(&se_sess
->sess_kref
);
446 EXPORT_SYMBOL(target_get_session
);
448 void target_put_session(struct se_session
*se_sess
)
450 kref_put(&se_sess
->sess_kref
, target_release_session
);
452 EXPORT_SYMBOL(target_put_session
);
454 ssize_t
target_show_dynamic_sessions(struct se_portal_group
*se_tpg
, char *page
)
456 struct se_session
*se_sess
;
459 spin_lock_bh(&se_tpg
->session_lock
);
460 list_for_each_entry(se_sess
, &se_tpg
->tpg_sess_list
, sess_list
) {
461 if (!se_sess
->se_node_acl
)
463 if (!se_sess
->se_node_acl
->dynamic_node_acl
)
465 if (strlen(se_sess
->se_node_acl
->initiatorname
) + 1 + len
> PAGE_SIZE
)
468 len
+= snprintf(page
+ len
, PAGE_SIZE
- len
, "%s\n",
469 se_sess
->se_node_acl
->initiatorname
);
470 len
+= 1; /* Include NULL terminator */
472 spin_unlock_bh(&se_tpg
->session_lock
);
476 EXPORT_SYMBOL(target_show_dynamic_sessions
);
478 static void target_complete_nacl(struct kref
*kref
)
480 struct se_node_acl
*nacl
= container_of(kref
,
481 struct se_node_acl
, acl_kref
);
483 complete(&nacl
->acl_free_comp
);
486 void target_put_nacl(struct se_node_acl
*nacl
)
488 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
490 EXPORT_SYMBOL(target_put_nacl
);
492 void transport_deregister_session_configfs(struct se_session
*se_sess
)
494 struct se_node_acl
*se_nacl
;
497 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
499 se_nacl
= se_sess
->se_node_acl
;
501 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
502 if (se_nacl
->acl_stop
== 0)
503 list_del(&se_sess
->sess_acl_list
);
505 * If the session list is empty, then clear the pointer.
506 * Otherwise, set the struct se_session pointer from the tail
507 * element of the per struct se_node_acl active session list.
509 if (list_empty(&se_nacl
->acl_sess_list
))
510 se_nacl
->nacl_sess
= NULL
;
512 se_nacl
->nacl_sess
= container_of(
513 se_nacl
->acl_sess_list
.prev
,
514 struct se_session
, sess_acl_list
);
516 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
519 EXPORT_SYMBOL(transport_deregister_session_configfs
);
521 void transport_free_session(struct se_session
*se_sess
)
523 struct se_node_acl
*se_nacl
= se_sess
->se_node_acl
;
525 * Drop the se_node_acl->nacl_kref obtained from within
526 * core_tpg_get_initiator_node_acl().
529 se_sess
->se_node_acl
= NULL
;
530 target_put_nacl(se_nacl
);
532 if (se_sess
->sess_cmd_map
) {
533 percpu_ida_destroy(&se_sess
->sess_tag_pool
);
534 kvfree(se_sess
->sess_cmd_map
);
536 kmem_cache_free(se_sess_cache
, se_sess
);
538 EXPORT_SYMBOL(transport_free_session
);
540 void transport_deregister_session(struct se_session
*se_sess
)
542 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
543 const struct target_core_fabric_ops
*se_tfo
;
544 struct se_node_acl
*se_nacl
;
546 bool drop_nacl
= false;
549 transport_free_session(se_sess
);
552 se_tfo
= se_tpg
->se_tpg_tfo
;
554 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
555 list_del(&se_sess
->sess_list
);
556 se_sess
->se_tpg
= NULL
;
557 se_sess
->fabric_sess_ptr
= NULL
;
558 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
561 * Determine if we need to do extra work for this initiator node's
562 * struct se_node_acl if it had been previously dynamically generated.
564 se_nacl
= se_sess
->se_node_acl
;
566 mutex_lock(&se_tpg
->acl_node_mutex
);
567 if (se_nacl
&& se_nacl
->dynamic_node_acl
) {
568 if (!se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
569 list_del(&se_nacl
->acl_list
);
573 mutex_unlock(&se_tpg
->acl_node_mutex
);
576 core_tpg_wait_for_nacl_pr_ref(se_nacl
);
577 core_free_device_list_for_node(se_nacl
, se_tpg
);
578 se_sess
->se_node_acl
= NULL
;
581 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
582 se_tpg
->se_tpg_tfo
->get_fabric_name());
584 * If last kref is dropping now for an explicit NodeACL, awake sleeping
585 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
586 * removal context from within transport_free_session() code.
589 transport_free_session(se_sess
);
591 EXPORT_SYMBOL(transport_deregister_session
);
593 static void target_remove_from_state_list(struct se_cmd
*cmd
)
595 struct se_device
*dev
= cmd
->se_dev
;
601 if (cmd
->transport_state
& CMD_T_BUSY
)
604 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
605 if (cmd
->state_active
) {
606 list_del(&cmd
->state_list
);
607 cmd
->state_active
= false;
609 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
612 static int transport_cmd_check_stop(struct se_cmd
*cmd
, bool remove_from_lists
,
617 if (remove_from_lists
) {
618 target_remove_from_state_list(cmd
);
621 * Clear struct se_cmd->se_lun before the handoff to FE.
626 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
628 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
631 * Determine if frontend context caller is requesting the stopping of
632 * this command for frontend exceptions.
634 if (cmd
->transport_state
& CMD_T_STOP
) {
635 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
636 __func__
, __LINE__
, cmd
->tag
);
638 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
640 complete_all(&cmd
->t_transport_stop_comp
);
644 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
645 if (remove_from_lists
) {
647 * Some fabric modules like tcm_loop can release
648 * their internally allocated I/O reference now and
651 * Fabric modules are expected to return '1' here if the
652 * se_cmd being passed is released at this point,
653 * or zero if not being released.
655 if (cmd
->se_tfo
->check_stop_free
!= NULL
) {
656 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
657 return cmd
->se_tfo
->check_stop_free(cmd
);
661 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
665 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
667 return transport_cmd_check_stop(cmd
, true, false);
670 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
672 struct se_lun
*lun
= cmd
->se_lun
;
677 if (cmpxchg(&cmd
->lun_ref_active
, true, false))
678 percpu_ref_put(&lun
->lun_ref
);
681 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
683 bool ack_kref
= (cmd
->se_cmd_flags
& SCF_ACK_KREF
);
685 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)
686 transport_lun_remove_cmd(cmd
);
688 * Allow the fabric driver to unmap any resources before
689 * releasing the descriptor via TFO->release_cmd()
692 cmd
->se_tfo
->aborted_task(cmd
);
694 if (transport_cmd_check_stop_to_fabric(cmd
))
696 if (remove
&& ack_kref
)
697 transport_put_cmd(cmd
);
700 static void target_complete_failure_work(struct work_struct
*work
)
702 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
704 transport_generic_request_failure(cmd
,
705 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
709 * Used when asking transport to copy Sense Data from the underlying
710 * Linux/SCSI struct scsi_cmnd
712 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
714 struct se_device
*dev
= cmd
->se_dev
;
716 WARN_ON(!cmd
->se_lun
);
721 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
724 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
726 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
727 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
728 return cmd
->sense_buffer
;
731 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
733 struct se_device
*dev
= cmd
->se_dev
;
734 int success
= scsi_status
== GOOD
;
737 cmd
->scsi_status
= scsi_status
;
740 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
741 cmd
->transport_state
&= ~CMD_T_BUSY
;
743 if (dev
&& dev
->transport
->transport_complete
) {
744 dev
->transport
->transport_complete(cmd
,
746 transport_get_sense_buffer(cmd
));
747 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
752 * Check for case where an explicit ABORT_TASK has been received
753 * and transport_wait_for_tasks() will be waiting for completion..
755 if (cmd
->transport_state
& CMD_T_ABORTED
||
756 cmd
->transport_state
& CMD_T_STOP
) {
757 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
758 complete_all(&cmd
->t_transport_stop_comp
);
760 } else if (!success
) {
761 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
763 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
766 cmd
->t_state
= TRANSPORT_COMPLETE
;
767 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
768 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
770 if (cmd
->se_cmd_flags
& SCF_USE_CPUID
)
771 queue_work_on(cmd
->cpuid
, target_completion_wq
, &cmd
->work
);
773 queue_work(target_completion_wq
, &cmd
->work
);
775 EXPORT_SYMBOL(target_complete_cmd
);
777 void target_complete_cmd_with_length(struct se_cmd
*cmd
, u8 scsi_status
, int length
)
779 if (scsi_status
== SAM_STAT_GOOD
&& length
< cmd
->data_length
) {
780 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
781 cmd
->residual_count
+= cmd
->data_length
- length
;
783 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
784 cmd
->residual_count
= cmd
->data_length
- length
;
787 cmd
->data_length
= length
;
790 target_complete_cmd(cmd
, scsi_status
);
792 EXPORT_SYMBOL(target_complete_cmd_with_length
);
794 static void target_add_to_state_list(struct se_cmd
*cmd
)
796 struct se_device
*dev
= cmd
->se_dev
;
799 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
800 if (!cmd
->state_active
) {
801 list_add_tail(&cmd
->state_list
, &dev
->state_list
);
802 cmd
->state_active
= true;
804 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
808 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
810 static void transport_write_pending_qf(struct se_cmd
*cmd
);
811 static void transport_complete_qf(struct se_cmd
*cmd
);
813 void target_qf_do_work(struct work_struct
*work
)
815 struct se_device
*dev
= container_of(work
, struct se_device
,
817 LIST_HEAD(qf_cmd_list
);
818 struct se_cmd
*cmd
, *cmd_tmp
;
820 spin_lock_irq(&dev
->qf_cmd_lock
);
821 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
822 spin_unlock_irq(&dev
->qf_cmd_lock
);
824 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
825 list_del(&cmd
->se_qf_node
);
826 atomic_dec_mb(&dev
->dev_qf_count
);
828 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
829 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
830 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
831 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
834 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
835 transport_write_pending_qf(cmd
);
836 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
)
837 transport_complete_qf(cmd
);
841 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
843 switch (cmd
->data_direction
) {
846 case DMA_FROM_DEVICE
:
850 case DMA_BIDIRECTIONAL
:
859 void transport_dump_dev_state(
860 struct se_device
*dev
,
864 *bl
+= sprintf(b
+ *bl
, "Status: ");
865 if (dev
->export_count
)
866 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
868 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
870 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
871 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
872 dev
->dev_attrib
.block_size
,
873 dev
->dev_attrib
.hw_max_sectors
);
874 *bl
+= sprintf(b
+ *bl
, " ");
877 void transport_dump_vpd_proto_id(
879 unsigned char *p_buf
,
882 unsigned char buf
[VPD_TMP_BUF_SIZE
];
885 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
886 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
888 switch (vpd
->protocol_identifier
) {
890 sprintf(buf
+len
, "Fibre Channel\n");
893 sprintf(buf
+len
, "Parallel SCSI\n");
896 sprintf(buf
+len
, "SSA\n");
899 sprintf(buf
+len
, "IEEE 1394\n");
902 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
906 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
909 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
912 sprintf(buf
+len
, "Automation/Drive Interface Transport"
916 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
919 sprintf(buf
+len
, "Unknown 0x%02x\n",
920 vpd
->protocol_identifier
);
925 strncpy(p_buf
, buf
, p_buf_len
);
931 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
934 * Check if the Protocol Identifier Valid (PIV) bit is set..
936 * from spc3r23.pdf section 7.5.1
938 if (page_83
[1] & 0x80) {
939 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
940 vpd
->protocol_identifier_set
= 1;
941 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
944 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
946 int transport_dump_vpd_assoc(
948 unsigned char *p_buf
,
951 unsigned char buf
[VPD_TMP_BUF_SIZE
];
955 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
956 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
958 switch (vpd
->association
) {
960 sprintf(buf
+len
, "addressed logical unit\n");
963 sprintf(buf
+len
, "target port\n");
966 sprintf(buf
+len
, "SCSI target device\n");
969 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
975 strncpy(p_buf
, buf
, p_buf_len
);
982 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
985 * The VPD identification association..
987 * from spc3r23.pdf Section 7.6.3.1 Table 297
989 vpd
->association
= (page_83
[1] & 0x30);
990 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
992 EXPORT_SYMBOL(transport_set_vpd_assoc
);
994 int transport_dump_vpd_ident_type(
996 unsigned char *p_buf
,
999 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1003 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1004 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1006 switch (vpd
->device_identifier_type
) {
1008 sprintf(buf
+len
, "Vendor specific\n");
1011 sprintf(buf
+len
, "T10 Vendor ID based\n");
1014 sprintf(buf
+len
, "EUI-64 based\n");
1017 sprintf(buf
+len
, "NAA\n");
1020 sprintf(buf
+len
, "Relative target port identifier\n");
1023 sprintf(buf
+len
, "SCSI name string\n");
1026 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1027 vpd
->device_identifier_type
);
1033 if (p_buf_len
< strlen(buf
)+1)
1035 strncpy(p_buf
, buf
, p_buf_len
);
1037 pr_debug("%s", buf
);
1043 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1046 * The VPD identifier type..
1048 * from spc3r23.pdf Section 7.6.3.1 Table 298
1050 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1051 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1053 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1055 int transport_dump_vpd_ident(
1056 struct t10_vpd
*vpd
,
1057 unsigned char *p_buf
,
1060 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1063 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1065 switch (vpd
->device_identifier_code_set
) {
1066 case 0x01: /* Binary */
1067 snprintf(buf
, sizeof(buf
),
1068 "T10 VPD Binary Device Identifier: %s\n",
1069 &vpd
->device_identifier
[0]);
1071 case 0x02: /* ASCII */
1072 snprintf(buf
, sizeof(buf
),
1073 "T10 VPD ASCII Device Identifier: %s\n",
1074 &vpd
->device_identifier
[0]);
1076 case 0x03: /* UTF-8 */
1077 snprintf(buf
, sizeof(buf
),
1078 "T10 VPD UTF-8 Device Identifier: %s\n",
1079 &vpd
->device_identifier
[0]);
1082 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1083 " 0x%02x", vpd
->device_identifier_code_set
);
1089 strncpy(p_buf
, buf
, p_buf_len
);
1091 pr_debug("%s", buf
);
1097 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1099 static const char hex_str
[] = "0123456789abcdef";
1100 int j
= 0, i
= 4; /* offset to start of the identifier */
1103 * The VPD Code Set (encoding)
1105 * from spc3r23.pdf Section 7.6.3.1 Table 296
1107 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1108 switch (vpd
->device_identifier_code_set
) {
1109 case 0x01: /* Binary */
1110 vpd
->device_identifier
[j
++] =
1111 hex_str
[vpd
->device_identifier_type
];
1112 while (i
< (4 + page_83
[3])) {
1113 vpd
->device_identifier
[j
++] =
1114 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1115 vpd
->device_identifier
[j
++] =
1116 hex_str
[page_83
[i
] & 0x0f];
1120 case 0x02: /* ASCII */
1121 case 0x03: /* UTF-8 */
1122 while (i
< (4 + page_83
[3]))
1123 vpd
->device_identifier
[j
++] = page_83
[i
++];
1129 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1131 EXPORT_SYMBOL(transport_set_vpd_ident
);
1133 static sense_reason_t
1134 target_check_max_data_sg_nents(struct se_cmd
*cmd
, struct se_device
*dev
,
1139 if (!cmd
->se_tfo
->max_data_sg_nents
)
1140 return TCM_NO_SENSE
;
1142 * Check if fabric enforced maximum SGL entries per I/O descriptor
1143 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1144 * residual_count and reduce original cmd->data_length to maximum
1145 * length based on single PAGE_SIZE entry scatter-lists.
1147 mtl
= (cmd
->se_tfo
->max_data_sg_nents
* PAGE_SIZE
);
1148 if (cmd
->data_length
> mtl
) {
1150 * If an existing CDB overflow is present, calculate new residual
1151 * based on CDB size minus fabric maximum transfer length.
1153 * If an existing CDB underflow is present, calculate new residual
1154 * based on original cmd->data_length minus fabric maximum transfer
1157 * Otherwise, set the underflow residual based on cmd->data_length
1158 * minus fabric maximum transfer length.
1160 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1161 cmd
->residual_count
= (size
- mtl
);
1162 } else if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
1163 u32 orig_dl
= size
+ cmd
->residual_count
;
1164 cmd
->residual_count
= (orig_dl
- mtl
);
1166 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1167 cmd
->residual_count
= (cmd
->data_length
- mtl
);
1169 cmd
->data_length
= mtl
;
1171 * Reset sbc_check_prot() calculated protection payload
1172 * length based upon the new smaller MTL.
1174 if (cmd
->prot_length
) {
1175 u32 sectors
= (mtl
/ dev
->dev_attrib
.block_size
);
1176 cmd
->prot_length
= dev
->prot_length
* sectors
;
1179 return TCM_NO_SENSE
;
1183 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1185 struct se_device
*dev
= cmd
->se_dev
;
1187 if (cmd
->unknown_data_length
) {
1188 cmd
->data_length
= size
;
1189 } else if (size
!= cmd
->data_length
) {
1190 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1191 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1192 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
1193 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1195 if (cmd
->data_direction
== DMA_TO_DEVICE
&&
1196 cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) {
1197 pr_err("Rejecting underflow/overflow WRITE data\n");
1198 return TCM_INVALID_CDB_FIELD
;
1201 * Reject READ_* or WRITE_* with overflow/underflow for
1202 * type SCF_SCSI_DATA_CDB.
1204 if (dev
->dev_attrib
.block_size
!= 512) {
1205 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1206 " CDB on non 512-byte sector setup subsystem"
1207 " plugin: %s\n", dev
->transport
->name
);
1208 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1209 return TCM_INVALID_CDB_FIELD
;
1212 * For the overflow case keep the existing fabric provided
1213 * ->data_length. Otherwise for the underflow case, reset
1214 * ->data_length to the smaller SCSI expected data transfer
1217 if (size
> cmd
->data_length
) {
1218 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1219 cmd
->residual_count
= (size
- cmd
->data_length
);
1221 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1222 cmd
->residual_count
= (cmd
->data_length
- size
);
1223 cmd
->data_length
= size
;
1227 return target_check_max_data_sg_nents(cmd
, dev
, size
);
1232 * Used by fabric modules containing a local struct se_cmd within their
1233 * fabric dependent per I/O descriptor.
1235 * Preserves the value of @cmd->tag.
1237 void transport_init_se_cmd(
1239 const struct target_core_fabric_ops
*tfo
,
1240 struct se_session
*se_sess
,
1244 unsigned char *sense_buffer
)
1246 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1247 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1248 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1249 INIT_LIST_HEAD(&cmd
->state_list
);
1250 init_completion(&cmd
->t_transport_stop_comp
);
1251 init_completion(&cmd
->cmd_wait_comp
);
1252 spin_lock_init(&cmd
->t_state_lock
);
1253 kref_init(&cmd
->cmd_kref
);
1254 cmd
->transport_state
= CMD_T_DEV_ACTIVE
;
1257 cmd
->se_sess
= se_sess
;
1258 cmd
->data_length
= data_length
;
1259 cmd
->data_direction
= data_direction
;
1260 cmd
->sam_task_attr
= task_attr
;
1261 cmd
->sense_buffer
= sense_buffer
;
1263 cmd
->state_active
= false;
1265 EXPORT_SYMBOL(transport_init_se_cmd
);
1267 static sense_reason_t
1268 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1270 struct se_device
*dev
= cmd
->se_dev
;
1273 * Check if SAM Task Attribute emulation is enabled for this
1274 * struct se_device storage object
1276 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1279 if (cmd
->sam_task_attr
== TCM_ACA_TAG
) {
1280 pr_debug("SAM Task Attribute ACA"
1281 " emulation is not supported\n");
1282 return TCM_INVALID_CDB_FIELD
;
1289 target_setup_cmd_from_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1291 struct se_device
*dev
= cmd
->se_dev
;
1295 * Ensure that the received CDB is less than the max (252 + 8) bytes
1296 * for VARIABLE_LENGTH_CMD
1298 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1299 pr_err("Received SCSI CDB with command_size: %d that"
1300 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1301 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1302 return TCM_INVALID_CDB_FIELD
;
1305 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1306 * allocate the additional extended CDB buffer now.. Otherwise
1307 * setup the pointer from __t_task_cdb to t_task_cdb.
1309 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1310 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1312 if (!cmd
->t_task_cdb
) {
1313 pr_err("Unable to allocate cmd->t_task_cdb"
1314 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1315 scsi_command_size(cdb
),
1316 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1317 return TCM_OUT_OF_RESOURCES
;
1320 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1322 * Copy the original CDB into cmd->
1324 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1326 trace_target_sequencer_start(cmd
);
1329 * Check for an existing UNIT ATTENTION condition
1331 ret
= target_scsi3_ua_check(cmd
);
1335 ret
= target_alua_state_check(cmd
);
1339 ret
= target_check_reservation(cmd
);
1341 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1345 ret
= dev
->transport
->parse_cdb(cmd
);
1346 if (ret
== TCM_UNSUPPORTED_SCSI_OPCODE
)
1347 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1348 cmd
->se_tfo
->get_fabric_name(),
1349 cmd
->se_sess
->se_node_acl
->initiatorname
,
1350 cmd
->t_task_cdb
[0]);
1354 ret
= transport_check_alloc_task_attr(cmd
);
1358 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1359 atomic_long_inc(&cmd
->se_lun
->lun_stats
.cmd_pdus
);
1362 EXPORT_SYMBOL(target_setup_cmd_from_cdb
);
1365 * Used by fabric module frontends to queue tasks directly.
1366 * May only be used from process context.
1368 int transport_handle_cdb_direct(
1375 pr_err("cmd->se_lun is NULL\n");
1378 if (in_interrupt()) {
1380 pr_err("transport_generic_handle_cdb cannot be called"
1381 " from interrupt context\n");
1385 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1386 * outstanding descriptors are handled correctly during shutdown via
1387 * transport_wait_for_tasks()
1389 * Also, we don't take cmd->t_state_lock here as we only expect
1390 * this to be called for initial descriptor submission.
1392 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1393 cmd
->transport_state
|= CMD_T_ACTIVE
;
1396 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1397 * so follow TRANSPORT_NEW_CMD processing thread context usage
1398 * and call transport_generic_request_failure() if necessary..
1400 ret
= transport_generic_new_cmd(cmd
);
1402 transport_generic_request_failure(cmd
, ret
);
1405 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1408 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1409 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1411 if (!sgl
|| !sgl_count
)
1415 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1416 * scatterlists already have been set to follow what the fabric
1417 * passes for the original expected data transfer length.
1419 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1420 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1421 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1422 return TCM_INVALID_CDB_FIELD
;
1425 cmd
->t_data_sg
= sgl
;
1426 cmd
->t_data_nents
= sgl_count
;
1427 cmd
->t_bidi_data_sg
= sgl_bidi
;
1428 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1430 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1435 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1436 * se_cmd + use pre-allocated SGL memory.
1438 * @se_cmd: command descriptor to submit
1439 * @se_sess: associated se_sess for endpoint
1440 * @cdb: pointer to SCSI CDB
1441 * @sense: pointer to SCSI sense buffer
1442 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1443 * @data_length: fabric expected data transfer length
1444 * @task_addr: SAM task attribute
1445 * @data_dir: DMA data direction
1446 * @flags: flags for command submission from target_sc_flags_tables
1447 * @sgl: struct scatterlist memory for unidirectional mapping
1448 * @sgl_count: scatterlist count for unidirectional mapping
1449 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1450 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1451 * @sgl_prot: struct scatterlist memory protection information
1452 * @sgl_prot_count: scatterlist count for protection information
1454 * Task tags are supported if the caller has set @se_cmd->tag.
1456 * Returns non zero to signal active I/O shutdown failure. All other
1457 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1458 * but still return zero here.
1460 * This may only be called from process context, and also currently
1461 * assumes internal allocation of fabric payload buffer by target-core.
1463 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1464 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1465 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1466 struct scatterlist
*sgl
, u32 sgl_count
,
1467 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1468 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
)
1470 struct se_portal_group
*se_tpg
;
1474 se_tpg
= se_sess
->se_tpg
;
1476 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1477 BUG_ON(in_interrupt());
1479 * Initialize se_cmd for target operation. From this point
1480 * exceptions are handled by sending exception status via
1481 * target_core_fabric_ops->queue_status() callback
1483 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1484 data_length
, data_dir
, task_attr
, sense
);
1486 if (flags
& TARGET_SCF_USE_CPUID
)
1487 se_cmd
->se_cmd_flags
|= SCF_USE_CPUID
;
1489 se_cmd
->cpuid
= WORK_CPU_UNBOUND
;
1491 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1492 se_cmd
->unknown_data_length
= 1;
1494 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1495 * se_sess->sess_cmd_list. A second kref_get here is necessary
1496 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1497 * kref_put() to happen during fabric packet acknowledgement.
1499 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1503 * Signal bidirectional data payloads to target-core
1505 if (flags
& TARGET_SCF_BIDI_OP
)
1506 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1508 * Locate se_lun pointer and attach it to struct se_cmd
1510 rc
= transport_lookup_cmd_lun(se_cmd
, unpacked_lun
);
1512 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1513 target_put_sess_cmd(se_cmd
);
1517 rc
= target_setup_cmd_from_cdb(se_cmd
, cdb
);
1519 transport_generic_request_failure(se_cmd
, rc
);
1524 * Save pointers for SGLs containing protection information,
1527 if (sgl_prot_count
) {
1528 se_cmd
->t_prot_sg
= sgl_prot
;
1529 se_cmd
->t_prot_nents
= sgl_prot_count
;
1530 se_cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
;
1534 * When a non zero sgl_count has been passed perform SGL passthrough
1535 * mapping for pre-allocated fabric memory instead of having target
1536 * core perform an internal SGL allocation..
1538 if (sgl_count
!= 0) {
1542 * A work-around for tcm_loop as some userspace code via
1543 * scsi-generic do not memset their associated read buffers,
1544 * so go ahead and do that here for type non-data CDBs. Also
1545 * note that this is currently guaranteed to be a single SGL
1546 * for this case by target core in target_setup_cmd_from_cdb()
1547 * -> transport_generic_cmd_sequencer().
1549 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1550 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1551 unsigned char *buf
= NULL
;
1554 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1557 memset(buf
, 0, sgl
->length
);
1558 kunmap(sg_page(sgl
));
1562 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1563 sgl_bidi
, sgl_bidi_count
);
1565 transport_generic_request_failure(se_cmd
, rc
);
1571 * Check if we need to delay processing because of ALUA
1572 * Active/NonOptimized primary access state..
1574 core_alua_check_nonop_delay(se_cmd
);
1576 transport_handle_cdb_direct(se_cmd
);
1579 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1582 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1584 * @se_cmd: command descriptor to submit
1585 * @se_sess: associated se_sess for endpoint
1586 * @cdb: pointer to SCSI CDB
1587 * @sense: pointer to SCSI sense buffer
1588 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1589 * @data_length: fabric expected data transfer length
1590 * @task_addr: SAM task attribute
1591 * @data_dir: DMA data direction
1592 * @flags: flags for command submission from target_sc_flags_tables
1594 * Task tags are supported if the caller has set @se_cmd->tag.
1596 * Returns non zero to signal active I/O shutdown failure. All other
1597 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1598 * but still return zero here.
1600 * This may only be called from process context, and also currently
1601 * assumes internal allocation of fabric payload buffer by target-core.
1603 * It also assumes interal target core SGL memory allocation.
1605 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1606 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1607 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1609 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1610 unpacked_lun
, data_length
, task_attr
, data_dir
,
1611 flags
, NULL
, 0, NULL
, 0, NULL
, 0);
1613 EXPORT_SYMBOL(target_submit_cmd
);
1615 static void target_complete_tmr_failure(struct work_struct
*work
)
1617 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1619 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1620 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1622 transport_cmd_check_stop_to_fabric(se_cmd
);
1626 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1629 * @se_cmd: command descriptor to submit
1630 * @se_sess: associated se_sess for endpoint
1631 * @sense: pointer to SCSI sense buffer
1632 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1633 * @fabric_context: fabric context for TMR req
1634 * @tm_type: Type of TM request
1635 * @gfp: gfp type for caller
1636 * @tag: referenced task tag for TMR_ABORT_TASK
1637 * @flags: submit cmd flags
1639 * Callable from all contexts.
1642 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1643 unsigned char *sense
, u64 unpacked_lun
,
1644 void *fabric_tmr_ptr
, unsigned char tm_type
,
1645 gfp_t gfp
, u64 tag
, int flags
)
1647 struct se_portal_group
*se_tpg
;
1650 se_tpg
= se_sess
->se_tpg
;
1653 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1654 0, DMA_NONE
, TCM_SIMPLE_TAG
, sense
);
1656 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1657 * allocation failure.
1659 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1663 if (tm_type
== TMR_ABORT_TASK
)
1664 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1666 /* See target_submit_cmd for commentary */
1667 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1669 core_tmr_release_req(se_cmd
->se_tmr_req
);
1673 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1676 * For callback during failure handling, push this work off
1677 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1679 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1680 schedule_work(&se_cmd
->work
);
1683 transport_generic_handle_tmr(se_cmd
);
1686 EXPORT_SYMBOL(target_submit_tmr
);
1689 * Handle SAM-esque emulation for generic transport request failures.
1691 void transport_generic_request_failure(struct se_cmd
*cmd
,
1692 sense_reason_t sense_reason
)
1694 int ret
= 0, post_ret
= 0;
1696 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1697 " CDB: 0x%02x\n", cmd
, cmd
->tag
, cmd
->t_task_cdb
[0]);
1698 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1699 cmd
->se_tfo
->get_cmd_state(cmd
),
1700 cmd
->t_state
, sense_reason
);
1701 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1702 (cmd
->transport_state
& CMD_T_ACTIVE
) != 0,
1703 (cmd
->transport_state
& CMD_T_STOP
) != 0,
1704 (cmd
->transport_state
& CMD_T_SENT
) != 0);
1707 * For SAM Task Attribute emulation for failed struct se_cmd
1709 transport_complete_task_attr(cmd
);
1711 * Handle special case for COMPARE_AND_WRITE failure, where the
1712 * callback is expected to drop the per device ->caw_sem.
1714 if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
1715 cmd
->transport_complete_callback
)
1716 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
1718 switch (sense_reason
) {
1719 case TCM_NON_EXISTENT_LUN
:
1720 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1721 case TCM_INVALID_CDB_FIELD
:
1722 case TCM_INVALID_PARAMETER_LIST
:
1723 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1724 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1725 case TCM_UNKNOWN_MODE_PAGE
:
1726 case TCM_WRITE_PROTECTED
:
1727 case TCM_ADDRESS_OUT_OF_RANGE
:
1728 case TCM_CHECK_CONDITION_ABORT_CMD
:
1729 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1730 case TCM_CHECK_CONDITION_NOT_READY
:
1731 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
1732 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
1733 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
1735 case TCM_OUT_OF_RESOURCES
:
1736 sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1738 case TCM_RESERVATION_CONFLICT
:
1740 * No SENSE Data payload for this case, set SCSI Status
1741 * and queue the response to $FABRIC_MOD.
1743 * Uses linux/include/scsi/scsi.h SAM status codes defs
1745 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1747 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1748 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1751 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1754 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
== 2) {
1755 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
1756 cmd
->orig_fe_lun
, 0x2C,
1757 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1759 trace_target_cmd_complete(cmd
);
1760 ret
= cmd
->se_tfo
->queue_status(cmd
);
1761 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1765 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1766 cmd
->t_task_cdb
[0], sense_reason
);
1767 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1771 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1772 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1776 transport_lun_remove_cmd(cmd
);
1777 transport_cmd_check_stop_to_fabric(cmd
);
1781 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
1782 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1784 EXPORT_SYMBOL(transport_generic_request_failure
);
1786 void __target_execute_cmd(struct se_cmd
*cmd
)
1790 if (cmd
->execute_cmd
) {
1791 ret
= cmd
->execute_cmd(cmd
);
1793 spin_lock_irq(&cmd
->t_state_lock
);
1794 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1795 spin_unlock_irq(&cmd
->t_state_lock
);
1797 transport_generic_request_failure(cmd
, ret
);
1802 static int target_write_prot_action(struct se_cmd
*cmd
)
1806 * Perform WRITE_INSERT of PI using software emulation when backend
1807 * device has PI enabled, if the transport has not already generated
1808 * PI using hardware WRITE_INSERT offload.
1810 switch (cmd
->prot_op
) {
1811 case TARGET_PROT_DOUT_INSERT
:
1812 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_INSERT
))
1813 sbc_dif_generate(cmd
);
1815 case TARGET_PROT_DOUT_STRIP
:
1816 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_STRIP
)
1819 sectors
= cmd
->data_length
>> ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
1820 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
1821 sectors
, 0, cmd
->t_prot_sg
, 0);
1822 if (unlikely(cmd
->pi_err
)) {
1823 spin_lock_irq(&cmd
->t_state_lock
);
1824 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1825 spin_unlock_irq(&cmd
->t_state_lock
);
1826 transport_generic_request_failure(cmd
, cmd
->pi_err
);
1837 static bool target_handle_task_attr(struct se_cmd
*cmd
)
1839 struct se_device
*dev
= cmd
->se_dev
;
1841 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1845 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1846 * to allow the passed struct se_cmd list of tasks to the front of the list.
1848 switch (cmd
->sam_task_attr
) {
1850 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1851 cmd
->t_task_cdb
[0]);
1853 case TCM_ORDERED_TAG
:
1854 atomic_inc_mb(&dev
->dev_ordered_sync
);
1856 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1857 cmd
->t_task_cdb
[0]);
1860 * Execute an ORDERED command if no other older commands
1861 * exist that need to be completed first.
1863 if (!atomic_read(&dev
->simple_cmds
))
1868 * For SIMPLE and UNTAGGED Task Attribute commands
1870 atomic_inc_mb(&dev
->simple_cmds
);
1874 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
1877 spin_lock(&dev
->delayed_cmd_lock
);
1878 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
1879 spin_unlock(&dev
->delayed_cmd_lock
);
1881 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1882 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
);
1886 static int __transport_check_aborted_status(struct se_cmd
*, int);
1888 void target_execute_cmd(struct se_cmd
*cmd
)
1891 * Determine if frontend context caller is requesting the stopping of
1892 * this command for frontend exceptions.
1894 * If the received CDB has aleady been aborted stop processing it here.
1896 spin_lock_irq(&cmd
->t_state_lock
);
1897 if (__transport_check_aborted_status(cmd
, 1)) {
1898 spin_unlock_irq(&cmd
->t_state_lock
);
1901 if (cmd
->transport_state
& CMD_T_STOP
) {
1902 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1903 __func__
, __LINE__
, cmd
->tag
);
1905 spin_unlock_irq(&cmd
->t_state_lock
);
1906 complete_all(&cmd
->t_transport_stop_comp
);
1910 cmd
->t_state
= TRANSPORT_PROCESSING
;
1911 cmd
->transport_state
|= CMD_T_ACTIVE
|CMD_T_BUSY
|CMD_T_SENT
;
1912 spin_unlock_irq(&cmd
->t_state_lock
);
1914 if (target_write_prot_action(cmd
))
1917 if (target_handle_task_attr(cmd
)) {
1918 spin_lock_irq(&cmd
->t_state_lock
);
1919 cmd
->transport_state
&= ~(CMD_T_BUSY
| CMD_T_SENT
);
1920 spin_unlock_irq(&cmd
->t_state_lock
);
1924 __target_execute_cmd(cmd
);
1926 EXPORT_SYMBOL(target_execute_cmd
);
1929 * Process all commands up to the last received ORDERED task attribute which
1930 * requires another blocking boundary
1932 static void target_restart_delayed_cmds(struct se_device
*dev
)
1937 spin_lock(&dev
->delayed_cmd_lock
);
1938 if (list_empty(&dev
->delayed_cmd_list
)) {
1939 spin_unlock(&dev
->delayed_cmd_lock
);
1943 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
1944 struct se_cmd
, se_delayed_node
);
1945 list_del(&cmd
->se_delayed_node
);
1946 spin_unlock(&dev
->delayed_cmd_lock
);
1948 __target_execute_cmd(cmd
);
1950 if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
)
1956 * Called from I/O completion to determine which dormant/delayed
1957 * and ordered cmds need to have their tasks added to the execution queue.
1959 static void transport_complete_task_attr(struct se_cmd
*cmd
)
1961 struct se_device
*dev
= cmd
->se_dev
;
1963 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1966 if (cmd
->sam_task_attr
== TCM_SIMPLE_TAG
) {
1967 atomic_dec_mb(&dev
->simple_cmds
);
1968 dev
->dev_cur_ordered_id
++;
1969 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1970 dev
->dev_cur_ordered_id
);
1971 } else if (cmd
->sam_task_attr
== TCM_HEAD_TAG
) {
1972 dev
->dev_cur_ordered_id
++;
1973 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1974 dev
->dev_cur_ordered_id
);
1975 } else if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
) {
1976 atomic_dec_mb(&dev
->dev_ordered_sync
);
1978 dev
->dev_cur_ordered_id
++;
1979 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1980 dev
->dev_cur_ordered_id
);
1983 target_restart_delayed_cmds(dev
);
1986 static void transport_complete_qf(struct se_cmd
*cmd
)
1990 transport_complete_task_attr(cmd
);
1992 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
1993 trace_target_cmd_complete(cmd
);
1994 ret
= cmd
->se_tfo
->queue_status(cmd
);
1998 switch (cmd
->data_direction
) {
1999 case DMA_FROM_DEVICE
:
2000 if (cmd
->scsi_status
)
2003 trace_target_cmd_complete(cmd
);
2004 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2007 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2008 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2011 /* Fall through for DMA_TO_DEVICE */
2014 trace_target_cmd_complete(cmd
);
2015 ret
= cmd
->se_tfo
->queue_status(cmd
);
2023 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2026 transport_lun_remove_cmd(cmd
);
2027 transport_cmd_check_stop_to_fabric(cmd
);
2030 static void transport_handle_queue_full(
2032 struct se_device
*dev
)
2034 spin_lock_irq(&dev
->qf_cmd_lock
);
2035 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
2036 atomic_inc_mb(&dev
->dev_qf_count
);
2037 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
2039 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2042 static bool target_read_prot_action(struct se_cmd
*cmd
)
2044 switch (cmd
->prot_op
) {
2045 case TARGET_PROT_DIN_STRIP
:
2046 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_STRIP
)) {
2047 u32 sectors
= cmd
->data_length
>>
2048 ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
2050 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
2051 sectors
, 0, cmd
->t_prot_sg
,
2057 case TARGET_PROT_DIN_INSERT
:
2058 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_INSERT
)
2061 sbc_dif_generate(cmd
);
2070 static void target_complete_ok_work(struct work_struct
*work
)
2072 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2076 * Check if we need to move delayed/dormant tasks from cmds on the
2077 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2080 transport_complete_task_attr(cmd
);
2083 * Check to schedule QUEUE_FULL work, or execute an existing
2084 * cmd->transport_qf_callback()
2086 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
2087 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2090 * Check if we need to send a sense buffer from
2091 * the struct se_cmd in question.
2093 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2094 WARN_ON(!cmd
->scsi_status
);
2095 ret
= transport_send_check_condition_and_sense(
2097 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2100 transport_lun_remove_cmd(cmd
);
2101 transport_cmd_check_stop_to_fabric(cmd
);
2105 * Check for a callback, used by amongst other things
2106 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2108 if (cmd
->transport_complete_callback
) {
2110 bool caw
= (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
);
2111 bool zero_dl
= !(cmd
->data_length
);
2114 rc
= cmd
->transport_complete_callback(cmd
, true, &post_ret
);
2115 if (!rc
&& !post_ret
) {
2121 ret
= transport_send_check_condition_and_sense(cmd
,
2123 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2126 transport_lun_remove_cmd(cmd
);
2127 transport_cmd_check_stop_to_fabric(cmd
);
2133 switch (cmd
->data_direction
) {
2134 case DMA_FROM_DEVICE
:
2135 if (cmd
->scsi_status
)
2138 atomic_long_add(cmd
->data_length
,
2139 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2141 * Perform READ_STRIP of PI using software emulation when
2142 * backend had PI enabled, if the transport will not be
2143 * performing hardware READ_STRIP offload.
2145 if (target_read_prot_action(cmd
)) {
2146 ret
= transport_send_check_condition_and_sense(cmd
,
2148 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2151 transport_lun_remove_cmd(cmd
);
2152 transport_cmd_check_stop_to_fabric(cmd
);
2156 trace_target_cmd_complete(cmd
);
2157 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2158 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2162 atomic_long_add(cmd
->data_length
,
2163 &cmd
->se_lun
->lun_stats
.rx_data_octets
);
2165 * Check if we need to send READ payload for BIDI-COMMAND
2167 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2168 atomic_long_add(cmd
->data_length
,
2169 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2170 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2171 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2175 /* Fall through for DMA_TO_DEVICE */
2178 trace_target_cmd_complete(cmd
);
2179 ret
= cmd
->se_tfo
->queue_status(cmd
);
2180 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2187 transport_lun_remove_cmd(cmd
);
2188 transport_cmd_check_stop_to_fabric(cmd
);
2192 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2193 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2194 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
2195 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2198 static inline void transport_free_sgl(struct scatterlist
*sgl
, int nents
)
2200 struct scatterlist
*sg
;
2203 for_each_sg(sgl
, sg
, nents
, count
)
2204 __free_page(sg_page(sg
));
2209 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2212 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2213 * emulation, and free + reset pointers if necessary..
2215 if (!cmd
->t_data_sg_orig
)
2218 kfree(cmd
->t_data_sg
);
2219 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2220 cmd
->t_data_sg_orig
= NULL
;
2221 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2222 cmd
->t_data_nents_orig
= 0;
2225 static inline void transport_free_pages(struct se_cmd
*cmd
)
2227 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2228 transport_free_sgl(cmd
->t_prot_sg
, cmd
->t_prot_nents
);
2229 cmd
->t_prot_sg
= NULL
;
2230 cmd
->t_prot_nents
= 0;
2233 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2235 * Release special case READ buffer payload required for
2236 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2238 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
2239 transport_free_sgl(cmd
->t_bidi_data_sg
,
2240 cmd
->t_bidi_data_nents
);
2241 cmd
->t_bidi_data_sg
= NULL
;
2242 cmd
->t_bidi_data_nents
= 0;
2244 transport_reset_sgl_orig(cmd
);
2247 transport_reset_sgl_orig(cmd
);
2249 transport_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2250 cmd
->t_data_sg
= NULL
;
2251 cmd
->t_data_nents
= 0;
2253 transport_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2254 cmd
->t_bidi_data_sg
= NULL
;
2255 cmd
->t_bidi_data_nents
= 0;
2259 * transport_put_cmd - release a reference to a command
2260 * @cmd: command to release
2262 * This routine releases our reference to the command and frees it if possible.
2264 static int transport_put_cmd(struct se_cmd
*cmd
)
2266 BUG_ON(!cmd
->se_tfo
);
2268 * If this cmd has been setup with target_get_sess_cmd(), drop
2269 * the kref and call ->release_cmd() in kref callback.
2271 return target_put_sess_cmd(cmd
);
2274 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2276 struct scatterlist
*sg
= cmd
->t_data_sg
;
2277 struct page
**pages
;
2281 * We need to take into account a possible offset here for fabrics like
2282 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2283 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2285 if (!cmd
->t_data_nents
)
2289 if (cmd
->t_data_nents
== 1)
2290 return kmap(sg_page(sg
)) + sg
->offset
;
2292 /* >1 page. use vmap */
2293 pages
= kmalloc(sizeof(*pages
) * cmd
->t_data_nents
, GFP_KERNEL
);
2297 /* convert sg[] to pages[] */
2298 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2299 pages
[i
] = sg_page(sg
);
2302 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2304 if (!cmd
->t_data_vmap
)
2307 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2309 EXPORT_SYMBOL(transport_kmap_data_sg
);
2311 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2313 if (!cmd
->t_data_nents
) {
2315 } else if (cmd
->t_data_nents
== 1) {
2316 kunmap(sg_page(cmd
->t_data_sg
));
2320 vunmap(cmd
->t_data_vmap
);
2321 cmd
->t_data_vmap
= NULL
;
2323 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2326 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2329 struct scatterlist
*sg
;
2331 gfp_t zero_flag
= (zero_page
) ? __GFP_ZERO
: 0;
2335 nent
= DIV_ROUND_UP(length
, PAGE_SIZE
);
2336 sg
= kmalloc(sizeof(struct scatterlist
) * nent
, GFP_KERNEL
);
2340 sg_init_table(sg
, nent
);
2343 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
2344 page
= alloc_page(GFP_KERNEL
| zero_flag
);
2348 sg_set_page(&sg
[i
], page
, page_len
, 0);
2359 __free_page(sg_page(&sg
[i
]));
2366 * Allocate any required resources to execute the command. For writes we
2367 * might not have the payload yet, so notify the fabric via a call to
2368 * ->write_pending instead. Otherwise place it on the execution queue.
2371 transport_generic_new_cmd(struct se_cmd
*cmd
)
2374 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2376 if (cmd
->prot_op
!= TARGET_PROT_NORMAL
&&
2377 !(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2378 ret
= target_alloc_sgl(&cmd
->t_prot_sg
, &cmd
->t_prot_nents
,
2379 cmd
->prot_length
, true);
2381 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2385 * Determine is the TCM fabric module has already allocated physical
2386 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2389 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2392 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2393 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2396 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2397 bidi_length
= cmd
->t_task_nolb
*
2398 cmd
->se_dev
->dev_attrib
.block_size
;
2400 bidi_length
= cmd
->data_length
;
2402 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2403 &cmd
->t_bidi_data_nents
,
2404 bidi_length
, zero_flag
);
2406 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2409 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2410 cmd
->data_length
, zero_flag
);
2412 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2413 } else if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2416 * Special case for COMPARE_AND_WRITE with fabrics
2417 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2419 u32 caw_length
= cmd
->t_task_nolb
*
2420 cmd
->se_dev
->dev_attrib
.block_size
;
2422 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2423 &cmd
->t_bidi_data_nents
,
2424 caw_length
, zero_flag
);
2426 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2429 * If this command is not a write we can execute it right here,
2430 * for write buffers we need to notify the fabric driver first
2431 * and let it call back once the write buffers are ready.
2433 target_add_to_state_list(cmd
);
2434 if (cmd
->data_direction
!= DMA_TO_DEVICE
|| cmd
->data_length
== 0) {
2435 target_execute_cmd(cmd
);
2438 transport_cmd_check_stop(cmd
, false, true);
2440 ret
= cmd
->se_tfo
->write_pending(cmd
);
2441 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2444 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2447 return (!ret
) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2450 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2451 cmd
->t_state
= TRANSPORT_COMPLETE_QF_WP
;
2452 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2455 EXPORT_SYMBOL(transport_generic_new_cmd
);
2457 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2461 ret
= cmd
->se_tfo
->write_pending(cmd
);
2462 if (ret
== -EAGAIN
|| ret
== -ENOMEM
) {
2463 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2465 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2470 __transport_wait_for_tasks(struct se_cmd
*, bool, bool *, bool *,
2471 unsigned long *flags
);
2473 static void target_wait_free_cmd(struct se_cmd
*cmd
, bool *aborted
, bool *tas
)
2475 unsigned long flags
;
2477 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2478 __transport_wait_for_tasks(cmd
, true, aborted
, tas
, &flags
);
2479 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2482 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2485 bool aborted
= false, tas
= false;
2487 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
2488 if (wait_for_tasks
&& (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2489 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2491 if (!aborted
|| tas
)
2492 ret
= transport_put_cmd(cmd
);
2495 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2497 * Handle WRITE failure case where transport_generic_new_cmd()
2498 * has already added se_cmd to state_list, but fabric has
2499 * failed command before I/O submission.
2501 if (cmd
->state_active
)
2502 target_remove_from_state_list(cmd
);
2505 transport_lun_remove_cmd(cmd
);
2507 if (!aborted
|| tas
)
2508 ret
= transport_put_cmd(cmd
);
2511 * If the task has been internally aborted due to TMR ABORT_TASK
2512 * or LUN_RESET, target_core_tmr.c is responsible for performing
2513 * the remaining calls to target_put_sess_cmd(), and not the
2514 * callers of this function.
2517 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd
->tag
);
2518 wait_for_completion(&cmd
->cmd_wait_comp
);
2519 cmd
->se_tfo
->release_cmd(cmd
);
2524 EXPORT_SYMBOL(transport_generic_free_cmd
);
2526 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2527 * @se_cmd: command descriptor to add
2528 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2530 int target_get_sess_cmd(struct se_cmd
*se_cmd
, bool ack_kref
)
2532 struct se_session
*se_sess
= se_cmd
->se_sess
;
2533 unsigned long flags
;
2537 * Add a second kref if the fabric caller is expecting to handle
2538 * fabric acknowledgement that requires two target_put_sess_cmd()
2539 * invocations before se_cmd descriptor release.
2542 kref_get(&se_cmd
->cmd_kref
);
2544 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2545 if (se_sess
->sess_tearing_down
) {
2549 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
2551 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2553 if (ret
&& ack_kref
)
2554 target_put_sess_cmd(se_cmd
);
2558 EXPORT_SYMBOL(target_get_sess_cmd
);
2560 static void target_free_cmd_mem(struct se_cmd
*cmd
)
2562 transport_free_pages(cmd
);
2564 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2565 core_tmr_release_req(cmd
->se_tmr_req
);
2566 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2567 kfree(cmd
->t_task_cdb
);
2570 static void target_release_cmd_kref(struct kref
*kref
)
2572 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2573 struct se_session
*se_sess
= se_cmd
->se_sess
;
2574 unsigned long flags
;
2577 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2578 if (list_empty(&se_cmd
->se_cmd_list
)) {
2579 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2580 target_free_cmd_mem(se_cmd
);
2581 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2585 spin_lock(&se_cmd
->t_state_lock
);
2586 fabric_stop
= (se_cmd
->transport_state
& CMD_T_FABRIC_STOP
);
2587 spin_unlock(&se_cmd
->t_state_lock
);
2589 if (se_cmd
->cmd_wait_set
|| fabric_stop
) {
2590 list_del_init(&se_cmd
->se_cmd_list
);
2591 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2592 target_free_cmd_mem(se_cmd
);
2593 complete(&se_cmd
->cmd_wait_comp
);
2596 list_del_init(&se_cmd
->se_cmd_list
);
2597 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2599 target_free_cmd_mem(se_cmd
);
2600 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2603 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2604 * @se_cmd: command descriptor to drop
2606 int target_put_sess_cmd(struct se_cmd
*se_cmd
)
2608 struct se_session
*se_sess
= se_cmd
->se_sess
;
2611 target_free_cmd_mem(se_cmd
);
2612 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2615 return kref_put(&se_cmd
->cmd_kref
, target_release_cmd_kref
);
2617 EXPORT_SYMBOL(target_put_sess_cmd
);
2619 /* target_sess_cmd_list_set_waiting - Flag all commands in
2620 * sess_cmd_list to complete cmd_wait_comp. Set
2621 * sess_tearing_down so no more commands are queued.
2622 * @se_sess: session to flag
2624 void target_sess_cmd_list_set_waiting(struct se_session
*se_sess
)
2626 struct se_cmd
*se_cmd
;
2627 unsigned long flags
;
2630 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2631 if (se_sess
->sess_tearing_down
) {
2632 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2635 se_sess
->sess_tearing_down
= 1;
2636 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
2638 list_for_each_entry(se_cmd
, &se_sess
->sess_wait_list
, se_cmd_list
) {
2639 rc
= kref_get_unless_zero(&se_cmd
->cmd_kref
);
2641 se_cmd
->cmd_wait_set
= 1;
2642 spin_lock(&se_cmd
->t_state_lock
);
2643 se_cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2644 spin_unlock(&se_cmd
->t_state_lock
);
2648 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2650 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting
);
2652 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2653 * @se_sess: session to wait for active I/O
2655 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2657 struct se_cmd
*se_cmd
, *tmp_cmd
;
2658 unsigned long flags
;
2661 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2662 &se_sess
->sess_wait_list
, se_cmd_list
) {
2663 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2664 " %d\n", se_cmd
, se_cmd
->t_state
,
2665 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2667 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
2668 tas
= (se_cmd
->transport_state
& CMD_T_TAS
);
2669 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
2671 if (!target_put_sess_cmd(se_cmd
)) {
2673 target_put_sess_cmd(se_cmd
);
2676 wait_for_completion(&se_cmd
->cmd_wait_comp
);
2677 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2678 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
2679 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2681 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2684 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2685 WARN_ON(!list_empty(&se_sess
->sess_cmd_list
));
2686 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2689 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2691 void transport_clear_lun_ref(struct se_lun
*lun
)
2693 percpu_ref_kill(&lun
->lun_ref
);
2694 wait_for_completion(&lun
->lun_ref_comp
);
2698 __transport_wait_for_tasks(struct se_cmd
*cmd
, bool fabric_stop
,
2699 bool *aborted
, bool *tas
, unsigned long *flags
)
2700 __releases(&cmd
->t_state_lock
)
2701 __acquires(&cmd
->t_state_lock
)
2704 assert_spin_locked(&cmd
->t_state_lock
);
2705 WARN_ON_ONCE(!irqs_disabled());
2708 cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2710 if (cmd
->transport_state
& CMD_T_ABORTED
)
2713 if (cmd
->transport_state
& CMD_T_TAS
)
2716 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
2717 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2720 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
2721 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2724 if (!(cmd
->transport_state
& CMD_T_ACTIVE
))
2727 if (fabric_stop
&& *aborted
)
2730 cmd
->transport_state
|= CMD_T_STOP
;
2732 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2733 " t_state: %d, CMD_T_STOP\n", cmd
, cmd
->tag
,
2734 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
2736 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
2738 wait_for_completion(&cmd
->t_transport_stop_comp
);
2740 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
2741 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
2743 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2744 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd
->tag
);
2750 * transport_wait_for_tasks - wait for completion to occur
2751 * @cmd: command to wait
2753 * Called from frontend fabric context to wait for storage engine
2754 * to pause and/or release frontend generated struct se_cmd.
2756 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
2758 unsigned long flags
;
2759 bool ret
, aborted
= false, tas
= false;
2761 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2762 ret
= __transport_wait_for_tasks(cmd
, false, &aborted
, &tas
, &flags
);
2763 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2767 EXPORT_SYMBOL(transport_wait_for_tasks
);
2773 bool add_sector_info
;
2776 static const struct sense_info sense_info_table
[] = {
2780 [TCM_NON_EXISTENT_LUN
] = {
2781 .key
= ILLEGAL_REQUEST
,
2782 .asc
= 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2784 [TCM_UNSUPPORTED_SCSI_OPCODE
] = {
2785 .key
= ILLEGAL_REQUEST
,
2786 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
2788 [TCM_SECTOR_COUNT_TOO_MANY
] = {
2789 .key
= ILLEGAL_REQUEST
,
2790 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
2792 [TCM_UNKNOWN_MODE_PAGE
] = {
2793 .key
= ILLEGAL_REQUEST
,
2794 .asc
= 0x24, /* INVALID FIELD IN CDB */
2796 [TCM_CHECK_CONDITION_ABORT_CMD
] = {
2797 .key
= ABORTED_COMMAND
,
2798 .asc
= 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2801 [TCM_INCORRECT_AMOUNT_OF_DATA
] = {
2802 .key
= ABORTED_COMMAND
,
2803 .asc
= 0x0c, /* WRITE ERROR */
2804 .ascq
= 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2806 [TCM_INVALID_CDB_FIELD
] = {
2807 .key
= ILLEGAL_REQUEST
,
2808 .asc
= 0x24, /* INVALID FIELD IN CDB */
2810 [TCM_INVALID_PARAMETER_LIST
] = {
2811 .key
= ILLEGAL_REQUEST
,
2812 .asc
= 0x26, /* INVALID FIELD IN PARAMETER LIST */
2814 [TCM_PARAMETER_LIST_LENGTH_ERROR
] = {
2815 .key
= ILLEGAL_REQUEST
,
2816 .asc
= 0x1a, /* PARAMETER LIST LENGTH ERROR */
2818 [TCM_UNEXPECTED_UNSOLICITED_DATA
] = {
2819 .key
= ILLEGAL_REQUEST
,
2820 .asc
= 0x0c, /* WRITE ERROR */
2821 .ascq
= 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2823 [TCM_SERVICE_CRC_ERROR
] = {
2824 .key
= ABORTED_COMMAND
,
2825 .asc
= 0x47, /* PROTOCOL SERVICE CRC ERROR */
2826 .ascq
= 0x05, /* N/A */
2828 [TCM_SNACK_REJECTED
] = {
2829 .key
= ABORTED_COMMAND
,
2830 .asc
= 0x11, /* READ ERROR */
2831 .ascq
= 0x13, /* FAILED RETRANSMISSION REQUEST */
2833 [TCM_WRITE_PROTECTED
] = {
2834 .key
= DATA_PROTECT
,
2835 .asc
= 0x27, /* WRITE PROTECTED */
2837 [TCM_ADDRESS_OUT_OF_RANGE
] = {
2838 .key
= ILLEGAL_REQUEST
,
2839 .asc
= 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2841 [TCM_CHECK_CONDITION_UNIT_ATTENTION
] = {
2842 .key
= UNIT_ATTENTION
,
2844 [TCM_CHECK_CONDITION_NOT_READY
] = {
2847 [TCM_MISCOMPARE_VERIFY
] = {
2849 .asc
= 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2852 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
] = {
2853 .key
= ABORTED_COMMAND
,
2855 .ascq
= 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2856 .add_sector_info
= true,
2858 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
] = {
2859 .key
= ABORTED_COMMAND
,
2861 .ascq
= 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2862 .add_sector_info
= true,
2864 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
] = {
2865 .key
= ABORTED_COMMAND
,
2867 .ascq
= 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2868 .add_sector_info
= true,
2870 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
] = {
2872 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2873 * Solaris initiators. Returning NOT READY instead means the
2874 * operations will be retried a finite number of times and we
2875 * can survive intermittent errors.
2878 .asc
= 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2882 static int translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
)
2884 const struct sense_info
*si
;
2885 u8
*buffer
= cmd
->sense_buffer
;
2886 int r
= (__force
int)reason
;
2888 bool desc_format
= target_sense_desc_format(cmd
->se_dev
);
2890 if (r
< ARRAY_SIZE(sense_info_table
) && sense_info_table
[r
].key
)
2891 si
= &sense_info_table
[r
];
2893 si
= &sense_info_table
[(__force
int)
2894 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
];
2896 if (reason
== TCM_CHECK_CONDITION_UNIT_ATTENTION
) {
2897 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
2898 WARN_ON_ONCE(asc
== 0);
2899 } else if (si
->asc
== 0) {
2900 WARN_ON_ONCE(cmd
->scsi_asc
== 0);
2901 asc
= cmd
->scsi_asc
;
2902 ascq
= cmd
->scsi_ascq
;
2908 scsi_build_sense_buffer(desc_format
, buffer
, si
->key
, asc
, ascq
);
2909 if (si
->add_sector_info
)
2910 return scsi_set_sense_information(buffer
,
2911 cmd
->scsi_sense_length
,
2918 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
2919 sense_reason_t reason
, int from_transport
)
2921 unsigned long flags
;
2923 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2924 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2925 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2928 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
2929 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2931 if (!from_transport
) {
2934 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
2935 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
2936 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
2937 rc
= translate_sense_reason(cmd
, reason
);
2942 trace_target_cmd_complete(cmd
);
2943 return cmd
->se_tfo
->queue_status(cmd
);
2945 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
2947 static int __transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
2948 __releases(&cmd
->t_state_lock
)
2949 __acquires(&cmd
->t_state_lock
)
2951 assert_spin_locked(&cmd
->t_state_lock
);
2952 WARN_ON_ONCE(!irqs_disabled());
2954 if (!(cmd
->transport_state
& CMD_T_ABORTED
))
2957 * If cmd has been aborted but either no status is to be sent or it has
2958 * already been sent, just return
2960 if (!send_status
|| !(cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
)) {
2962 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
2966 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
2967 " 0x%02x ITT: 0x%08llx\n", cmd
->t_task_cdb
[0], cmd
->tag
);
2969 cmd
->se_cmd_flags
&= ~SCF_SEND_DELAYED_TAS
;
2970 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
2971 trace_target_cmd_complete(cmd
);
2973 spin_unlock_irq(&cmd
->t_state_lock
);
2974 cmd
->se_tfo
->queue_status(cmd
);
2975 spin_lock_irq(&cmd
->t_state_lock
);
2980 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
2984 spin_lock_irq(&cmd
->t_state_lock
);
2985 ret
= __transport_check_aborted_status(cmd
, send_status
);
2986 spin_unlock_irq(&cmd
->t_state_lock
);
2990 EXPORT_SYMBOL(transport_check_aborted_status
);
2992 void transport_send_task_abort(struct se_cmd
*cmd
)
2994 unsigned long flags
;
2996 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2997 if (cmd
->se_cmd_flags
& (SCF_SENT_CHECK_CONDITION
)) {
2998 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3001 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3004 * If there are still expected incoming fabric WRITEs, we wait
3005 * until until they have completed before sending a TASK_ABORTED
3006 * response. This response with TASK_ABORTED status will be
3007 * queued back to fabric module by transport_check_aborted_status().
3009 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3010 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
3011 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3012 if (cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
) {
3013 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3016 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3017 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3022 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3024 transport_lun_remove_cmd(cmd
);
3026 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3027 cmd
->t_task_cdb
[0], cmd
->tag
);
3029 trace_target_cmd_complete(cmd
);
3030 cmd
->se_tfo
->queue_status(cmd
);
3033 static void target_tmr_work(struct work_struct
*work
)
3035 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3036 struct se_device
*dev
= cmd
->se_dev
;
3037 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
3038 unsigned long flags
;
3041 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3042 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3043 tmr
->response
= TMR_FUNCTION_REJECTED
;
3044 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3047 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3049 switch (tmr
->function
) {
3050 case TMR_ABORT_TASK
:
3051 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
3053 case TMR_ABORT_TASK_SET
:
3055 case TMR_CLEAR_TASK_SET
:
3056 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
3059 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
3060 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
3061 TMR_FUNCTION_REJECTED
;
3062 if (tmr
->response
== TMR_FUNCTION_COMPLETE
) {
3063 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
3064 cmd
->orig_fe_lun
, 0x29,
3065 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED
);
3068 case TMR_TARGET_WARM_RESET
:
3069 tmr
->response
= TMR_FUNCTION_REJECTED
;
3071 case TMR_TARGET_COLD_RESET
:
3072 tmr
->response
= TMR_FUNCTION_REJECTED
;
3075 pr_err("Uknown TMR function: 0x%02x.\n",
3077 tmr
->response
= TMR_FUNCTION_REJECTED
;
3081 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3082 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3083 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3086 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
3087 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3089 cmd
->se_tfo
->queue_tm_rsp(cmd
);
3092 transport_cmd_check_stop_to_fabric(cmd
);
3095 int transport_generic_handle_tmr(
3098 unsigned long flags
;
3100 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3101 cmd
->transport_state
|= CMD_T_ACTIVE
;
3102 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3104 INIT_WORK(&cmd
->work
, target_tmr_work
);
3105 queue_work(cmd
->se_dev
->tmr_wq
, &cmd
->work
);
3108 EXPORT_SYMBOL(transport_generic_handle_tmr
);
3111 target_check_wce(struct se_device
*dev
)
3115 if (dev
->transport
->get_write_cache
)
3116 wce
= dev
->transport
->get_write_cache(dev
);
3117 else if (dev
->dev_attrib
.emulate_write_cache
> 0)
3124 target_check_fua(struct se_device
*dev
)
3126 return target_check_wce(dev
) && dev
->dev_attrib
.emulate_fua_write
> 0;