Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / drivers / target / target_core_transport.c
blobab2bf12975e1386f51fbd4c94b7d0a79002b7af7
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
72 int init_se_kmem_caches(void)
74 se_sess_cache = kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session), __alignof__(struct se_session),
76 0, NULL);
77 if (!se_sess_cache) {
78 pr_err("kmem_cache_create() for struct se_session"
79 " failed\n");
80 goto out;
82 se_ua_cache = kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua), __alignof__(struct se_ua),
84 0, NULL);
85 if (!se_ua_cache) {
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache;
89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration),
91 __alignof__(struct t10_pr_registration), 0, NULL);
92 if (!t10_pr_reg_cache) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
94 " failed\n");
95 goto out_free_ua_cache;
97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 0, NULL);
100 if (!t10_alua_lu_gp_cache) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 " failed\n");
103 goto out_free_pr_reg_cache;
105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member),
107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 if (!t10_alua_lu_gp_mem_cache) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 "cache failed\n");
111 goto out_free_lu_gp_cache;
113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp),
115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 if (!t10_alua_tg_pt_gp_cache) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 "cache failed\n");
119 goto out_free_lu_gp_mem_cache;
121 t10_alua_lba_map_cache = kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map),
124 __alignof__(struct t10_alua_lba_map), 0, NULL);
125 if (!t10_alua_lba_map_cache) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 "cache failed\n");
128 goto out_free_tg_pt_gp_cache;
130 t10_alua_lba_map_mem_cache = kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member),
133 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 if (!t10_alua_lba_map_mem_cache) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 "cache failed\n");
137 goto out_free_lba_map_cache;
140 target_completion_wq = alloc_workqueue("target_completion",
141 WQ_MEM_RECLAIM, 0);
142 if (!target_completion_wq)
143 goto out_free_lba_map_mem_cache;
145 return 0;
147 out_free_lba_map_mem_cache:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 kmem_cache_destroy(se_sess_cache);
163 out:
164 return -ENOMEM;
167 void release_se_kmem_caches(void)
169 destroy_workqueue(target_completion_wq);
170 kmem_cache_destroy(se_sess_cache);
171 kmem_cache_destroy(se_ua_cache);
172 kmem_cache_destroy(t10_pr_reg_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 kmem_cache_destroy(t10_alua_lba_map_cache);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
185 * Allocate a new row index for the entry type specified
187 u32 scsi_get_new_index(scsi_index_t type)
189 u32 new_index;
191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
193 spin_lock(&scsi_mib_index_lock);
194 new_index = ++scsi_mib_index[type];
195 spin_unlock(&scsi_mib_index_lock);
197 return new_index;
200 void transport_subsystem_check_init(void)
202 int ret;
203 static int sub_api_initialized;
205 if (sub_api_initialized)
206 return;
208 ret = request_module("target_core_iblock");
209 if (ret != 0)
210 pr_err("Unable to load target_core_iblock\n");
212 ret = request_module("target_core_file");
213 if (ret != 0)
214 pr_err("Unable to load target_core_file\n");
216 ret = request_module("target_core_pscsi");
217 if (ret != 0)
218 pr_err("Unable to load target_core_pscsi\n");
220 ret = request_module("target_core_user");
221 if (ret != 0)
222 pr_err("Unable to load target_core_user\n");
224 sub_api_initialized = 1;
227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
229 struct se_session *se_sess;
231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 if (!se_sess) {
233 pr_err("Unable to allocate struct se_session from"
234 " se_sess_cache\n");
235 return ERR_PTR(-ENOMEM);
237 INIT_LIST_HEAD(&se_sess->sess_list);
238 INIT_LIST_HEAD(&se_sess->sess_acl_list);
239 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240 INIT_LIST_HEAD(&se_sess->sess_wait_list);
241 spin_lock_init(&se_sess->sess_cmd_lock);
242 kref_init(&se_sess->sess_kref);
243 se_sess->sup_prot_ops = sup_prot_ops;
245 return se_sess;
247 EXPORT_SYMBOL(transport_init_session);
249 int transport_alloc_session_tags(struct se_session *se_sess,
250 unsigned int tag_num, unsigned int tag_size)
252 int rc;
254 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
256 if (!se_sess->sess_cmd_map) {
257 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
258 if (!se_sess->sess_cmd_map) {
259 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
260 return -ENOMEM;
264 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
265 if (rc < 0) {
266 pr_err("Unable to init se_sess->sess_tag_pool,"
267 " tag_num: %u\n", tag_num);
268 kvfree(se_sess->sess_cmd_map);
269 se_sess->sess_cmd_map = NULL;
270 return -ENOMEM;
273 return 0;
275 EXPORT_SYMBOL(transport_alloc_session_tags);
277 struct se_session *transport_init_session_tags(unsigned int tag_num,
278 unsigned int tag_size,
279 enum target_prot_op sup_prot_ops)
281 struct se_session *se_sess;
282 int rc;
284 if (tag_num != 0 && !tag_size) {
285 pr_err("init_session_tags called with percpu-ida tag_num:"
286 " %u, but zero tag_size\n", tag_num);
287 return ERR_PTR(-EINVAL);
289 if (!tag_num && tag_size) {
290 pr_err("init_session_tags called with percpu-ida tag_size:"
291 " %u, but zero tag_num\n", tag_size);
292 return ERR_PTR(-EINVAL);
295 se_sess = transport_init_session(sup_prot_ops);
296 if (IS_ERR(se_sess))
297 return se_sess;
299 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
300 if (rc < 0) {
301 transport_free_session(se_sess);
302 return ERR_PTR(-ENOMEM);
305 return se_sess;
307 EXPORT_SYMBOL(transport_init_session_tags);
310 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
312 void __transport_register_session(
313 struct se_portal_group *se_tpg,
314 struct se_node_acl *se_nacl,
315 struct se_session *se_sess,
316 void *fabric_sess_ptr)
318 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
319 unsigned char buf[PR_REG_ISID_LEN];
321 se_sess->se_tpg = se_tpg;
322 se_sess->fabric_sess_ptr = fabric_sess_ptr;
324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
326 * Only set for struct se_session's that will actually be moving I/O.
327 * eg: *NOT* discovery sessions.
329 if (se_nacl) {
332 * Determine if fabric allows for T10-PI feature bits exposed to
333 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
335 * If so, then always save prot_type on a per se_node_acl node
336 * basis and re-instate the previous sess_prot_type to avoid
337 * disabling PI from below any previously initiator side
338 * registered LUNs.
340 if (se_nacl->saved_prot_type)
341 se_sess->sess_prot_type = se_nacl->saved_prot_type;
342 else if (tfo->tpg_check_prot_fabric_only)
343 se_sess->sess_prot_type = se_nacl->saved_prot_type =
344 tfo->tpg_check_prot_fabric_only(se_tpg);
346 * If the fabric module supports an ISID based TransportID,
347 * save this value in binary from the fabric I_T Nexus now.
349 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
350 memset(&buf[0], 0, PR_REG_ISID_LEN);
351 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
352 &buf[0], PR_REG_ISID_LEN);
353 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
356 spin_lock_irq(&se_nacl->nacl_sess_lock);
358 * The se_nacl->nacl_sess pointer will be set to the
359 * last active I_T Nexus for each struct se_node_acl.
361 se_nacl->nacl_sess = se_sess;
363 list_add_tail(&se_sess->sess_acl_list,
364 &se_nacl->acl_sess_list);
365 spin_unlock_irq(&se_nacl->nacl_sess_lock);
367 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
369 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
370 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
372 EXPORT_SYMBOL(__transport_register_session);
374 void transport_register_session(
375 struct se_portal_group *se_tpg,
376 struct se_node_acl *se_nacl,
377 struct se_session *se_sess,
378 void *fabric_sess_ptr)
380 unsigned long flags;
382 spin_lock_irqsave(&se_tpg->session_lock, flags);
383 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
384 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
386 EXPORT_SYMBOL(transport_register_session);
388 struct se_session *
389 target_alloc_session(struct se_portal_group *tpg,
390 unsigned int tag_num, unsigned int tag_size,
391 enum target_prot_op prot_op,
392 const char *initiatorname, void *private,
393 int (*callback)(struct se_portal_group *,
394 struct se_session *, void *))
396 struct se_session *sess;
399 * If the fabric driver is using percpu-ida based pre allocation
400 * of I/O descriptor tags, go ahead and perform that setup now..
402 if (tag_num != 0)
403 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
404 else
405 sess = transport_init_session(prot_op);
407 if (IS_ERR(sess))
408 return sess;
410 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
411 (unsigned char *)initiatorname);
412 if (!sess->se_node_acl) {
413 transport_free_session(sess);
414 return ERR_PTR(-EACCES);
417 * Go ahead and perform any remaining fabric setup that is
418 * required before transport_register_session().
420 if (callback != NULL) {
421 int rc = callback(tpg, sess, private);
422 if (rc) {
423 transport_free_session(sess);
424 return ERR_PTR(rc);
428 transport_register_session(tpg, sess->se_node_acl, sess, private);
429 return sess;
431 EXPORT_SYMBOL(target_alloc_session);
433 static void target_release_session(struct kref *kref)
435 struct se_session *se_sess = container_of(kref,
436 struct se_session, sess_kref);
437 struct se_portal_group *se_tpg = se_sess->se_tpg;
439 se_tpg->se_tpg_tfo->close_session(se_sess);
442 int target_get_session(struct se_session *se_sess)
444 return kref_get_unless_zero(&se_sess->sess_kref);
446 EXPORT_SYMBOL(target_get_session);
448 void target_put_session(struct se_session *se_sess)
450 kref_put(&se_sess->sess_kref, target_release_session);
452 EXPORT_SYMBOL(target_put_session);
454 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
456 struct se_session *se_sess;
457 ssize_t len = 0;
459 spin_lock_bh(&se_tpg->session_lock);
460 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
461 if (!se_sess->se_node_acl)
462 continue;
463 if (!se_sess->se_node_acl->dynamic_node_acl)
464 continue;
465 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
466 break;
468 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
469 se_sess->se_node_acl->initiatorname);
470 len += 1; /* Include NULL terminator */
472 spin_unlock_bh(&se_tpg->session_lock);
474 return len;
476 EXPORT_SYMBOL(target_show_dynamic_sessions);
478 static void target_complete_nacl(struct kref *kref)
480 struct se_node_acl *nacl = container_of(kref,
481 struct se_node_acl, acl_kref);
483 complete(&nacl->acl_free_comp);
486 void target_put_nacl(struct se_node_acl *nacl)
488 kref_put(&nacl->acl_kref, target_complete_nacl);
490 EXPORT_SYMBOL(target_put_nacl);
492 void transport_deregister_session_configfs(struct se_session *se_sess)
494 struct se_node_acl *se_nacl;
495 unsigned long flags;
497 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
499 se_nacl = se_sess->se_node_acl;
500 if (se_nacl) {
501 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
502 if (se_nacl->acl_stop == 0)
503 list_del(&se_sess->sess_acl_list);
505 * If the session list is empty, then clear the pointer.
506 * Otherwise, set the struct se_session pointer from the tail
507 * element of the per struct se_node_acl active session list.
509 if (list_empty(&se_nacl->acl_sess_list))
510 se_nacl->nacl_sess = NULL;
511 else {
512 se_nacl->nacl_sess = container_of(
513 se_nacl->acl_sess_list.prev,
514 struct se_session, sess_acl_list);
516 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
519 EXPORT_SYMBOL(transport_deregister_session_configfs);
521 void transport_free_session(struct se_session *se_sess)
523 struct se_node_acl *se_nacl = se_sess->se_node_acl;
525 * Drop the se_node_acl->nacl_kref obtained from within
526 * core_tpg_get_initiator_node_acl().
528 if (se_nacl) {
529 se_sess->se_node_acl = NULL;
530 target_put_nacl(se_nacl);
532 if (se_sess->sess_cmd_map) {
533 percpu_ida_destroy(&se_sess->sess_tag_pool);
534 kvfree(se_sess->sess_cmd_map);
536 kmem_cache_free(se_sess_cache, se_sess);
538 EXPORT_SYMBOL(transport_free_session);
540 void transport_deregister_session(struct se_session *se_sess)
542 struct se_portal_group *se_tpg = se_sess->se_tpg;
543 const struct target_core_fabric_ops *se_tfo;
544 struct se_node_acl *se_nacl;
545 unsigned long flags;
546 bool drop_nacl = false;
548 if (!se_tpg) {
549 transport_free_session(se_sess);
550 return;
552 se_tfo = se_tpg->se_tpg_tfo;
554 spin_lock_irqsave(&se_tpg->session_lock, flags);
555 list_del(&se_sess->sess_list);
556 se_sess->se_tpg = NULL;
557 se_sess->fabric_sess_ptr = NULL;
558 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
561 * Determine if we need to do extra work for this initiator node's
562 * struct se_node_acl if it had been previously dynamically generated.
564 se_nacl = se_sess->se_node_acl;
566 mutex_lock(&se_tpg->acl_node_mutex);
567 if (se_nacl && se_nacl->dynamic_node_acl) {
568 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
569 list_del(&se_nacl->acl_list);
570 drop_nacl = true;
573 mutex_unlock(&se_tpg->acl_node_mutex);
575 if (drop_nacl) {
576 core_tpg_wait_for_nacl_pr_ref(se_nacl);
577 core_free_device_list_for_node(se_nacl, se_tpg);
578 se_sess->se_node_acl = NULL;
579 kfree(se_nacl);
581 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
582 se_tpg->se_tpg_tfo->get_fabric_name());
584 * If last kref is dropping now for an explicit NodeACL, awake sleeping
585 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
586 * removal context from within transport_free_session() code.
589 transport_free_session(se_sess);
591 EXPORT_SYMBOL(transport_deregister_session);
593 static void target_remove_from_state_list(struct se_cmd *cmd)
595 struct se_device *dev = cmd->se_dev;
596 unsigned long flags;
598 if (!dev)
599 return;
601 if (cmd->transport_state & CMD_T_BUSY)
602 return;
604 spin_lock_irqsave(&dev->execute_task_lock, flags);
605 if (cmd->state_active) {
606 list_del(&cmd->state_list);
607 cmd->state_active = false;
609 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
612 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
613 bool write_pending)
615 unsigned long flags;
617 if (remove_from_lists) {
618 target_remove_from_state_list(cmd);
621 * Clear struct se_cmd->se_lun before the handoff to FE.
623 cmd->se_lun = NULL;
626 spin_lock_irqsave(&cmd->t_state_lock, flags);
627 if (write_pending)
628 cmd->t_state = TRANSPORT_WRITE_PENDING;
631 * Determine if frontend context caller is requesting the stopping of
632 * this command for frontend exceptions.
634 if (cmd->transport_state & CMD_T_STOP) {
635 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
636 __func__, __LINE__, cmd->tag);
638 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
640 complete_all(&cmd->t_transport_stop_comp);
641 return 1;
644 cmd->transport_state &= ~CMD_T_ACTIVE;
645 if (remove_from_lists) {
647 * Some fabric modules like tcm_loop can release
648 * their internally allocated I/O reference now and
649 * struct se_cmd now.
651 * Fabric modules are expected to return '1' here if the
652 * se_cmd being passed is released at this point,
653 * or zero if not being released.
655 if (cmd->se_tfo->check_stop_free != NULL) {
656 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
657 return cmd->se_tfo->check_stop_free(cmd);
661 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
662 return 0;
665 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
667 return transport_cmd_check_stop(cmd, true, false);
670 static void transport_lun_remove_cmd(struct se_cmd *cmd)
672 struct se_lun *lun = cmd->se_lun;
674 if (!lun)
675 return;
677 if (cmpxchg(&cmd->lun_ref_active, true, false))
678 percpu_ref_put(&lun->lun_ref);
681 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
683 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
685 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
686 transport_lun_remove_cmd(cmd);
688 * Allow the fabric driver to unmap any resources before
689 * releasing the descriptor via TFO->release_cmd()
691 if (remove)
692 cmd->se_tfo->aborted_task(cmd);
694 if (transport_cmd_check_stop_to_fabric(cmd))
695 return;
696 if (remove && ack_kref)
697 transport_put_cmd(cmd);
700 static void target_complete_failure_work(struct work_struct *work)
702 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
704 transport_generic_request_failure(cmd,
705 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
709 * Used when asking transport to copy Sense Data from the underlying
710 * Linux/SCSI struct scsi_cmnd
712 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
714 struct se_device *dev = cmd->se_dev;
716 WARN_ON(!cmd->se_lun);
718 if (!dev)
719 return NULL;
721 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
722 return NULL;
724 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
726 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
727 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
728 return cmd->sense_buffer;
731 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
733 struct se_device *dev = cmd->se_dev;
734 int success = scsi_status == GOOD;
735 unsigned long flags;
737 cmd->scsi_status = scsi_status;
740 spin_lock_irqsave(&cmd->t_state_lock, flags);
741 cmd->transport_state &= ~CMD_T_BUSY;
743 if (dev && dev->transport->transport_complete) {
744 dev->transport->transport_complete(cmd,
745 cmd->t_data_sg,
746 transport_get_sense_buffer(cmd));
747 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
748 success = 1;
752 * Check for case where an explicit ABORT_TASK has been received
753 * and transport_wait_for_tasks() will be waiting for completion..
755 if (cmd->transport_state & CMD_T_ABORTED ||
756 cmd->transport_state & CMD_T_STOP) {
757 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
758 complete_all(&cmd->t_transport_stop_comp);
759 return;
760 } else if (!success) {
761 INIT_WORK(&cmd->work, target_complete_failure_work);
762 } else {
763 INIT_WORK(&cmd->work, target_complete_ok_work);
766 cmd->t_state = TRANSPORT_COMPLETE;
767 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
768 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
770 if (cmd->se_cmd_flags & SCF_USE_CPUID)
771 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
772 else
773 queue_work(target_completion_wq, &cmd->work);
775 EXPORT_SYMBOL(target_complete_cmd);
777 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
779 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
780 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
781 cmd->residual_count += cmd->data_length - length;
782 } else {
783 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
784 cmd->residual_count = cmd->data_length - length;
787 cmd->data_length = length;
790 target_complete_cmd(cmd, scsi_status);
792 EXPORT_SYMBOL(target_complete_cmd_with_length);
794 static void target_add_to_state_list(struct se_cmd *cmd)
796 struct se_device *dev = cmd->se_dev;
797 unsigned long flags;
799 spin_lock_irqsave(&dev->execute_task_lock, flags);
800 if (!cmd->state_active) {
801 list_add_tail(&cmd->state_list, &dev->state_list);
802 cmd->state_active = true;
804 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
808 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
810 static void transport_write_pending_qf(struct se_cmd *cmd);
811 static void transport_complete_qf(struct se_cmd *cmd);
813 void target_qf_do_work(struct work_struct *work)
815 struct se_device *dev = container_of(work, struct se_device,
816 qf_work_queue);
817 LIST_HEAD(qf_cmd_list);
818 struct se_cmd *cmd, *cmd_tmp;
820 spin_lock_irq(&dev->qf_cmd_lock);
821 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
822 spin_unlock_irq(&dev->qf_cmd_lock);
824 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
825 list_del(&cmd->se_qf_node);
826 atomic_dec_mb(&dev->dev_qf_count);
828 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
829 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
830 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
831 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
832 : "UNKNOWN");
834 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
835 transport_write_pending_qf(cmd);
836 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
837 transport_complete_qf(cmd);
841 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
843 switch (cmd->data_direction) {
844 case DMA_NONE:
845 return "NONE";
846 case DMA_FROM_DEVICE:
847 return "READ";
848 case DMA_TO_DEVICE:
849 return "WRITE";
850 case DMA_BIDIRECTIONAL:
851 return "BIDI";
852 default:
853 break;
856 return "UNKNOWN";
859 void transport_dump_dev_state(
860 struct se_device *dev,
861 char *b,
862 int *bl)
864 *bl += sprintf(b + *bl, "Status: ");
865 if (dev->export_count)
866 *bl += sprintf(b + *bl, "ACTIVATED");
867 else
868 *bl += sprintf(b + *bl, "DEACTIVATED");
870 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
871 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
872 dev->dev_attrib.block_size,
873 dev->dev_attrib.hw_max_sectors);
874 *bl += sprintf(b + *bl, " ");
877 void transport_dump_vpd_proto_id(
878 struct t10_vpd *vpd,
879 unsigned char *p_buf,
880 int p_buf_len)
882 unsigned char buf[VPD_TMP_BUF_SIZE];
883 int len;
885 memset(buf, 0, VPD_TMP_BUF_SIZE);
886 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
888 switch (vpd->protocol_identifier) {
889 case 0x00:
890 sprintf(buf+len, "Fibre Channel\n");
891 break;
892 case 0x10:
893 sprintf(buf+len, "Parallel SCSI\n");
894 break;
895 case 0x20:
896 sprintf(buf+len, "SSA\n");
897 break;
898 case 0x30:
899 sprintf(buf+len, "IEEE 1394\n");
900 break;
901 case 0x40:
902 sprintf(buf+len, "SCSI Remote Direct Memory Access"
903 " Protocol\n");
904 break;
905 case 0x50:
906 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
907 break;
908 case 0x60:
909 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
910 break;
911 case 0x70:
912 sprintf(buf+len, "Automation/Drive Interface Transport"
913 " Protocol\n");
914 break;
915 case 0x80:
916 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
917 break;
918 default:
919 sprintf(buf+len, "Unknown 0x%02x\n",
920 vpd->protocol_identifier);
921 break;
924 if (p_buf)
925 strncpy(p_buf, buf, p_buf_len);
926 else
927 pr_debug("%s", buf);
930 void
931 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
934 * Check if the Protocol Identifier Valid (PIV) bit is set..
936 * from spc3r23.pdf section 7.5.1
938 if (page_83[1] & 0x80) {
939 vpd->protocol_identifier = (page_83[0] & 0xf0);
940 vpd->protocol_identifier_set = 1;
941 transport_dump_vpd_proto_id(vpd, NULL, 0);
944 EXPORT_SYMBOL(transport_set_vpd_proto_id);
946 int transport_dump_vpd_assoc(
947 struct t10_vpd *vpd,
948 unsigned char *p_buf,
949 int p_buf_len)
951 unsigned char buf[VPD_TMP_BUF_SIZE];
952 int ret = 0;
953 int len;
955 memset(buf, 0, VPD_TMP_BUF_SIZE);
956 len = sprintf(buf, "T10 VPD Identifier Association: ");
958 switch (vpd->association) {
959 case 0x00:
960 sprintf(buf+len, "addressed logical unit\n");
961 break;
962 case 0x10:
963 sprintf(buf+len, "target port\n");
964 break;
965 case 0x20:
966 sprintf(buf+len, "SCSI target device\n");
967 break;
968 default:
969 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
970 ret = -EINVAL;
971 break;
974 if (p_buf)
975 strncpy(p_buf, buf, p_buf_len);
976 else
977 pr_debug("%s", buf);
979 return ret;
982 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
985 * The VPD identification association..
987 * from spc3r23.pdf Section 7.6.3.1 Table 297
989 vpd->association = (page_83[1] & 0x30);
990 return transport_dump_vpd_assoc(vpd, NULL, 0);
992 EXPORT_SYMBOL(transport_set_vpd_assoc);
994 int transport_dump_vpd_ident_type(
995 struct t10_vpd *vpd,
996 unsigned char *p_buf,
997 int p_buf_len)
999 unsigned char buf[VPD_TMP_BUF_SIZE];
1000 int ret = 0;
1001 int len;
1003 memset(buf, 0, VPD_TMP_BUF_SIZE);
1004 len = sprintf(buf, "T10 VPD Identifier Type: ");
1006 switch (vpd->device_identifier_type) {
1007 case 0x00:
1008 sprintf(buf+len, "Vendor specific\n");
1009 break;
1010 case 0x01:
1011 sprintf(buf+len, "T10 Vendor ID based\n");
1012 break;
1013 case 0x02:
1014 sprintf(buf+len, "EUI-64 based\n");
1015 break;
1016 case 0x03:
1017 sprintf(buf+len, "NAA\n");
1018 break;
1019 case 0x04:
1020 sprintf(buf+len, "Relative target port identifier\n");
1021 break;
1022 case 0x08:
1023 sprintf(buf+len, "SCSI name string\n");
1024 break;
1025 default:
1026 sprintf(buf+len, "Unsupported: 0x%02x\n",
1027 vpd->device_identifier_type);
1028 ret = -EINVAL;
1029 break;
1032 if (p_buf) {
1033 if (p_buf_len < strlen(buf)+1)
1034 return -EINVAL;
1035 strncpy(p_buf, buf, p_buf_len);
1036 } else {
1037 pr_debug("%s", buf);
1040 return ret;
1043 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1046 * The VPD identifier type..
1048 * from spc3r23.pdf Section 7.6.3.1 Table 298
1050 vpd->device_identifier_type = (page_83[1] & 0x0f);
1051 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1053 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1055 int transport_dump_vpd_ident(
1056 struct t10_vpd *vpd,
1057 unsigned char *p_buf,
1058 int p_buf_len)
1060 unsigned char buf[VPD_TMP_BUF_SIZE];
1061 int ret = 0;
1063 memset(buf, 0, VPD_TMP_BUF_SIZE);
1065 switch (vpd->device_identifier_code_set) {
1066 case 0x01: /* Binary */
1067 snprintf(buf, sizeof(buf),
1068 "T10 VPD Binary Device Identifier: %s\n",
1069 &vpd->device_identifier[0]);
1070 break;
1071 case 0x02: /* ASCII */
1072 snprintf(buf, sizeof(buf),
1073 "T10 VPD ASCII Device Identifier: %s\n",
1074 &vpd->device_identifier[0]);
1075 break;
1076 case 0x03: /* UTF-8 */
1077 snprintf(buf, sizeof(buf),
1078 "T10 VPD UTF-8 Device Identifier: %s\n",
1079 &vpd->device_identifier[0]);
1080 break;
1081 default:
1082 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1083 " 0x%02x", vpd->device_identifier_code_set);
1084 ret = -EINVAL;
1085 break;
1088 if (p_buf)
1089 strncpy(p_buf, buf, p_buf_len);
1090 else
1091 pr_debug("%s", buf);
1093 return ret;
1097 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1099 static const char hex_str[] = "0123456789abcdef";
1100 int j = 0, i = 4; /* offset to start of the identifier */
1103 * The VPD Code Set (encoding)
1105 * from spc3r23.pdf Section 7.6.3.1 Table 296
1107 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1108 switch (vpd->device_identifier_code_set) {
1109 case 0x01: /* Binary */
1110 vpd->device_identifier[j++] =
1111 hex_str[vpd->device_identifier_type];
1112 while (i < (4 + page_83[3])) {
1113 vpd->device_identifier[j++] =
1114 hex_str[(page_83[i] & 0xf0) >> 4];
1115 vpd->device_identifier[j++] =
1116 hex_str[page_83[i] & 0x0f];
1117 i++;
1119 break;
1120 case 0x02: /* ASCII */
1121 case 0x03: /* UTF-8 */
1122 while (i < (4 + page_83[3]))
1123 vpd->device_identifier[j++] = page_83[i++];
1124 break;
1125 default:
1126 break;
1129 return transport_dump_vpd_ident(vpd, NULL, 0);
1131 EXPORT_SYMBOL(transport_set_vpd_ident);
1133 static sense_reason_t
1134 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1135 unsigned int size)
1137 u32 mtl;
1139 if (!cmd->se_tfo->max_data_sg_nents)
1140 return TCM_NO_SENSE;
1142 * Check if fabric enforced maximum SGL entries per I/O descriptor
1143 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1144 * residual_count and reduce original cmd->data_length to maximum
1145 * length based on single PAGE_SIZE entry scatter-lists.
1147 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1148 if (cmd->data_length > mtl) {
1150 * If an existing CDB overflow is present, calculate new residual
1151 * based on CDB size minus fabric maximum transfer length.
1153 * If an existing CDB underflow is present, calculate new residual
1154 * based on original cmd->data_length minus fabric maximum transfer
1155 * length.
1157 * Otherwise, set the underflow residual based on cmd->data_length
1158 * minus fabric maximum transfer length.
1160 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1161 cmd->residual_count = (size - mtl);
1162 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1163 u32 orig_dl = size + cmd->residual_count;
1164 cmd->residual_count = (orig_dl - mtl);
1165 } else {
1166 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1167 cmd->residual_count = (cmd->data_length - mtl);
1169 cmd->data_length = mtl;
1171 * Reset sbc_check_prot() calculated protection payload
1172 * length based upon the new smaller MTL.
1174 if (cmd->prot_length) {
1175 u32 sectors = (mtl / dev->dev_attrib.block_size);
1176 cmd->prot_length = dev->prot_length * sectors;
1179 return TCM_NO_SENSE;
1182 sense_reason_t
1183 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1185 struct se_device *dev = cmd->se_dev;
1187 if (cmd->unknown_data_length) {
1188 cmd->data_length = size;
1189 } else if (size != cmd->data_length) {
1190 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1191 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1192 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1193 cmd->data_length, size, cmd->t_task_cdb[0]);
1195 if (cmd->data_direction == DMA_TO_DEVICE &&
1196 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1197 pr_err("Rejecting underflow/overflow WRITE data\n");
1198 return TCM_INVALID_CDB_FIELD;
1201 * Reject READ_* or WRITE_* with overflow/underflow for
1202 * type SCF_SCSI_DATA_CDB.
1204 if (dev->dev_attrib.block_size != 512) {
1205 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1206 " CDB on non 512-byte sector setup subsystem"
1207 " plugin: %s\n", dev->transport->name);
1208 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1209 return TCM_INVALID_CDB_FIELD;
1212 * For the overflow case keep the existing fabric provided
1213 * ->data_length. Otherwise for the underflow case, reset
1214 * ->data_length to the smaller SCSI expected data transfer
1215 * length.
1217 if (size > cmd->data_length) {
1218 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1219 cmd->residual_count = (size - cmd->data_length);
1220 } else {
1221 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1222 cmd->residual_count = (cmd->data_length - size);
1223 cmd->data_length = size;
1227 return target_check_max_data_sg_nents(cmd, dev, size);
1232 * Used by fabric modules containing a local struct se_cmd within their
1233 * fabric dependent per I/O descriptor.
1235 * Preserves the value of @cmd->tag.
1237 void transport_init_se_cmd(
1238 struct se_cmd *cmd,
1239 const struct target_core_fabric_ops *tfo,
1240 struct se_session *se_sess,
1241 u32 data_length,
1242 int data_direction,
1243 int task_attr,
1244 unsigned char *sense_buffer)
1246 INIT_LIST_HEAD(&cmd->se_delayed_node);
1247 INIT_LIST_HEAD(&cmd->se_qf_node);
1248 INIT_LIST_HEAD(&cmd->se_cmd_list);
1249 INIT_LIST_HEAD(&cmd->state_list);
1250 init_completion(&cmd->t_transport_stop_comp);
1251 init_completion(&cmd->cmd_wait_comp);
1252 spin_lock_init(&cmd->t_state_lock);
1253 kref_init(&cmd->cmd_kref);
1254 cmd->transport_state = CMD_T_DEV_ACTIVE;
1256 cmd->se_tfo = tfo;
1257 cmd->se_sess = se_sess;
1258 cmd->data_length = data_length;
1259 cmd->data_direction = data_direction;
1260 cmd->sam_task_attr = task_attr;
1261 cmd->sense_buffer = sense_buffer;
1263 cmd->state_active = false;
1265 EXPORT_SYMBOL(transport_init_se_cmd);
1267 static sense_reason_t
1268 transport_check_alloc_task_attr(struct se_cmd *cmd)
1270 struct se_device *dev = cmd->se_dev;
1273 * Check if SAM Task Attribute emulation is enabled for this
1274 * struct se_device storage object
1276 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1277 return 0;
1279 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1280 pr_debug("SAM Task Attribute ACA"
1281 " emulation is not supported\n");
1282 return TCM_INVALID_CDB_FIELD;
1285 return 0;
1288 sense_reason_t
1289 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1291 struct se_device *dev = cmd->se_dev;
1292 sense_reason_t ret;
1295 * Ensure that the received CDB is less than the max (252 + 8) bytes
1296 * for VARIABLE_LENGTH_CMD
1298 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1299 pr_err("Received SCSI CDB with command_size: %d that"
1300 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1301 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1302 return TCM_INVALID_CDB_FIELD;
1305 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1306 * allocate the additional extended CDB buffer now.. Otherwise
1307 * setup the pointer from __t_task_cdb to t_task_cdb.
1309 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1310 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1311 GFP_KERNEL);
1312 if (!cmd->t_task_cdb) {
1313 pr_err("Unable to allocate cmd->t_task_cdb"
1314 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1315 scsi_command_size(cdb),
1316 (unsigned long)sizeof(cmd->__t_task_cdb));
1317 return TCM_OUT_OF_RESOURCES;
1319 } else
1320 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1322 * Copy the original CDB into cmd->
1324 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1326 trace_target_sequencer_start(cmd);
1329 * Check for an existing UNIT ATTENTION condition
1331 ret = target_scsi3_ua_check(cmd);
1332 if (ret)
1333 return ret;
1335 ret = target_alua_state_check(cmd);
1336 if (ret)
1337 return ret;
1339 ret = target_check_reservation(cmd);
1340 if (ret) {
1341 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1342 return ret;
1345 ret = dev->transport->parse_cdb(cmd);
1346 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1347 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1348 cmd->se_tfo->get_fabric_name(),
1349 cmd->se_sess->se_node_acl->initiatorname,
1350 cmd->t_task_cdb[0]);
1351 if (ret)
1352 return ret;
1354 ret = transport_check_alloc_task_attr(cmd);
1355 if (ret)
1356 return ret;
1358 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1359 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1360 return 0;
1362 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1365 * Used by fabric module frontends to queue tasks directly.
1366 * May only be used from process context.
1368 int transport_handle_cdb_direct(
1369 struct se_cmd *cmd)
1371 sense_reason_t ret;
1373 if (!cmd->se_lun) {
1374 dump_stack();
1375 pr_err("cmd->se_lun is NULL\n");
1376 return -EINVAL;
1378 if (in_interrupt()) {
1379 dump_stack();
1380 pr_err("transport_generic_handle_cdb cannot be called"
1381 " from interrupt context\n");
1382 return -EINVAL;
1385 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1386 * outstanding descriptors are handled correctly during shutdown via
1387 * transport_wait_for_tasks()
1389 * Also, we don't take cmd->t_state_lock here as we only expect
1390 * this to be called for initial descriptor submission.
1392 cmd->t_state = TRANSPORT_NEW_CMD;
1393 cmd->transport_state |= CMD_T_ACTIVE;
1396 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1397 * so follow TRANSPORT_NEW_CMD processing thread context usage
1398 * and call transport_generic_request_failure() if necessary..
1400 ret = transport_generic_new_cmd(cmd);
1401 if (ret)
1402 transport_generic_request_failure(cmd, ret);
1403 return 0;
1405 EXPORT_SYMBOL(transport_handle_cdb_direct);
1407 sense_reason_t
1408 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1409 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1411 if (!sgl || !sgl_count)
1412 return 0;
1415 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1416 * scatterlists already have been set to follow what the fabric
1417 * passes for the original expected data transfer length.
1419 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1420 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1421 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1422 return TCM_INVALID_CDB_FIELD;
1425 cmd->t_data_sg = sgl;
1426 cmd->t_data_nents = sgl_count;
1427 cmd->t_bidi_data_sg = sgl_bidi;
1428 cmd->t_bidi_data_nents = sgl_bidi_count;
1430 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1431 return 0;
1435 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1436 * se_cmd + use pre-allocated SGL memory.
1438 * @se_cmd: command descriptor to submit
1439 * @se_sess: associated se_sess for endpoint
1440 * @cdb: pointer to SCSI CDB
1441 * @sense: pointer to SCSI sense buffer
1442 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1443 * @data_length: fabric expected data transfer length
1444 * @task_addr: SAM task attribute
1445 * @data_dir: DMA data direction
1446 * @flags: flags for command submission from target_sc_flags_tables
1447 * @sgl: struct scatterlist memory for unidirectional mapping
1448 * @sgl_count: scatterlist count for unidirectional mapping
1449 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1450 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1451 * @sgl_prot: struct scatterlist memory protection information
1452 * @sgl_prot_count: scatterlist count for protection information
1454 * Task tags are supported if the caller has set @se_cmd->tag.
1456 * Returns non zero to signal active I/O shutdown failure. All other
1457 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1458 * but still return zero here.
1460 * This may only be called from process context, and also currently
1461 * assumes internal allocation of fabric payload buffer by target-core.
1463 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1464 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1465 u32 data_length, int task_attr, int data_dir, int flags,
1466 struct scatterlist *sgl, u32 sgl_count,
1467 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1468 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1470 struct se_portal_group *se_tpg;
1471 sense_reason_t rc;
1472 int ret;
1474 se_tpg = se_sess->se_tpg;
1475 BUG_ON(!se_tpg);
1476 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1477 BUG_ON(in_interrupt());
1479 * Initialize se_cmd for target operation. From this point
1480 * exceptions are handled by sending exception status via
1481 * target_core_fabric_ops->queue_status() callback
1483 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1484 data_length, data_dir, task_attr, sense);
1486 if (flags & TARGET_SCF_USE_CPUID)
1487 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1488 else
1489 se_cmd->cpuid = WORK_CPU_UNBOUND;
1491 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1492 se_cmd->unknown_data_length = 1;
1494 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1495 * se_sess->sess_cmd_list. A second kref_get here is necessary
1496 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1497 * kref_put() to happen during fabric packet acknowledgement.
1499 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1500 if (ret)
1501 return ret;
1503 * Signal bidirectional data payloads to target-core
1505 if (flags & TARGET_SCF_BIDI_OP)
1506 se_cmd->se_cmd_flags |= SCF_BIDI;
1508 * Locate se_lun pointer and attach it to struct se_cmd
1510 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1511 if (rc) {
1512 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1513 target_put_sess_cmd(se_cmd);
1514 return 0;
1517 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1518 if (rc != 0) {
1519 transport_generic_request_failure(se_cmd, rc);
1520 return 0;
1524 * Save pointers for SGLs containing protection information,
1525 * if present.
1527 if (sgl_prot_count) {
1528 se_cmd->t_prot_sg = sgl_prot;
1529 se_cmd->t_prot_nents = sgl_prot_count;
1530 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1534 * When a non zero sgl_count has been passed perform SGL passthrough
1535 * mapping for pre-allocated fabric memory instead of having target
1536 * core perform an internal SGL allocation..
1538 if (sgl_count != 0) {
1539 BUG_ON(!sgl);
1542 * A work-around for tcm_loop as some userspace code via
1543 * scsi-generic do not memset their associated read buffers,
1544 * so go ahead and do that here for type non-data CDBs. Also
1545 * note that this is currently guaranteed to be a single SGL
1546 * for this case by target core in target_setup_cmd_from_cdb()
1547 * -> transport_generic_cmd_sequencer().
1549 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1550 se_cmd->data_direction == DMA_FROM_DEVICE) {
1551 unsigned char *buf = NULL;
1553 if (sgl)
1554 buf = kmap(sg_page(sgl)) + sgl->offset;
1556 if (buf) {
1557 memset(buf, 0, sgl->length);
1558 kunmap(sg_page(sgl));
1562 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1563 sgl_bidi, sgl_bidi_count);
1564 if (rc != 0) {
1565 transport_generic_request_failure(se_cmd, rc);
1566 return 0;
1571 * Check if we need to delay processing because of ALUA
1572 * Active/NonOptimized primary access state..
1574 core_alua_check_nonop_delay(se_cmd);
1576 transport_handle_cdb_direct(se_cmd);
1577 return 0;
1579 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1582 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1584 * @se_cmd: command descriptor to submit
1585 * @se_sess: associated se_sess for endpoint
1586 * @cdb: pointer to SCSI CDB
1587 * @sense: pointer to SCSI sense buffer
1588 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1589 * @data_length: fabric expected data transfer length
1590 * @task_addr: SAM task attribute
1591 * @data_dir: DMA data direction
1592 * @flags: flags for command submission from target_sc_flags_tables
1594 * Task tags are supported if the caller has set @se_cmd->tag.
1596 * Returns non zero to signal active I/O shutdown failure. All other
1597 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1598 * but still return zero here.
1600 * This may only be called from process context, and also currently
1601 * assumes internal allocation of fabric payload buffer by target-core.
1603 * It also assumes interal target core SGL memory allocation.
1605 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1606 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1607 u32 data_length, int task_attr, int data_dir, int flags)
1609 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1610 unpacked_lun, data_length, task_attr, data_dir,
1611 flags, NULL, 0, NULL, 0, NULL, 0);
1613 EXPORT_SYMBOL(target_submit_cmd);
1615 static void target_complete_tmr_failure(struct work_struct *work)
1617 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1619 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1620 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1622 transport_cmd_check_stop_to_fabric(se_cmd);
1626 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1627 * for TMR CDBs
1629 * @se_cmd: command descriptor to submit
1630 * @se_sess: associated se_sess for endpoint
1631 * @sense: pointer to SCSI sense buffer
1632 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1633 * @fabric_context: fabric context for TMR req
1634 * @tm_type: Type of TM request
1635 * @gfp: gfp type for caller
1636 * @tag: referenced task tag for TMR_ABORT_TASK
1637 * @flags: submit cmd flags
1639 * Callable from all contexts.
1642 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1643 unsigned char *sense, u64 unpacked_lun,
1644 void *fabric_tmr_ptr, unsigned char tm_type,
1645 gfp_t gfp, u64 tag, int flags)
1647 struct se_portal_group *se_tpg;
1648 int ret;
1650 se_tpg = se_sess->se_tpg;
1651 BUG_ON(!se_tpg);
1653 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1654 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1656 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1657 * allocation failure.
1659 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1660 if (ret < 0)
1661 return -ENOMEM;
1663 if (tm_type == TMR_ABORT_TASK)
1664 se_cmd->se_tmr_req->ref_task_tag = tag;
1666 /* See target_submit_cmd for commentary */
1667 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1668 if (ret) {
1669 core_tmr_release_req(se_cmd->se_tmr_req);
1670 return ret;
1673 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1674 if (ret) {
1676 * For callback during failure handling, push this work off
1677 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1679 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1680 schedule_work(&se_cmd->work);
1681 return 0;
1683 transport_generic_handle_tmr(se_cmd);
1684 return 0;
1686 EXPORT_SYMBOL(target_submit_tmr);
1689 * Handle SAM-esque emulation for generic transport request failures.
1691 void transport_generic_request_failure(struct se_cmd *cmd,
1692 sense_reason_t sense_reason)
1694 int ret = 0, post_ret = 0;
1696 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1697 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1698 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1699 cmd->se_tfo->get_cmd_state(cmd),
1700 cmd->t_state, sense_reason);
1701 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1702 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1703 (cmd->transport_state & CMD_T_STOP) != 0,
1704 (cmd->transport_state & CMD_T_SENT) != 0);
1707 * For SAM Task Attribute emulation for failed struct se_cmd
1709 transport_complete_task_attr(cmd);
1711 * Handle special case for COMPARE_AND_WRITE failure, where the
1712 * callback is expected to drop the per device ->caw_sem.
1714 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1715 cmd->transport_complete_callback)
1716 cmd->transport_complete_callback(cmd, false, &post_ret);
1718 switch (sense_reason) {
1719 case TCM_NON_EXISTENT_LUN:
1720 case TCM_UNSUPPORTED_SCSI_OPCODE:
1721 case TCM_INVALID_CDB_FIELD:
1722 case TCM_INVALID_PARAMETER_LIST:
1723 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1724 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1725 case TCM_UNKNOWN_MODE_PAGE:
1726 case TCM_WRITE_PROTECTED:
1727 case TCM_ADDRESS_OUT_OF_RANGE:
1728 case TCM_CHECK_CONDITION_ABORT_CMD:
1729 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1730 case TCM_CHECK_CONDITION_NOT_READY:
1731 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1732 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1733 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1734 break;
1735 case TCM_OUT_OF_RESOURCES:
1736 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1737 break;
1738 case TCM_RESERVATION_CONFLICT:
1740 * No SENSE Data payload for this case, set SCSI Status
1741 * and queue the response to $FABRIC_MOD.
1743 * Uses linux/include/scsi/scsi.h SAM status codes defs
1745 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1747 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1748 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1749 * CONFLICT STATUS.
1751 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1753 if (cmd->se_sess &&
1754 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1755 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1756 cmd->orig_fe_lun, 0x2C,
1757 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1759 trace_target_cmd_complete(cmd);
1760 ret = cmd->se_tfo->queue_status(cmd);
1761 if (ret == -EAGAIN || ret == -ENOMEM)
1762 goto queue_full;
1763 goto check_stop;
1764 default:
1765 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1766 cmd->t_task_cdb[0], sense_reason);
1767 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1768 break;
1771 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1772 if (ret == -EAGAIN || ret == -ENOMEM)
1773 goto queue_full;
1775 check_stop:
1776 transport_lun_remove_cmd(cmd);
1777 transport_cmd_check_stop_to_fabric(cmd);
1778 return;
1780 queue_full:
1781 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1782 transport_handle_queue_full(cmd, cmd->se_dev);
1784 EXPORT_SYMBOL(transport_generic_request_failure);
1786 void __target_execute_cmd(struct se_cmd *cmd)
1788 sense_reason_t ret;
1790 if (cmd->execute_cmd) {
1791 ret = cmd->execute_cmd(cmd);
1792 if (ret) {
1793 spin_lock_irq(&cmd->t_state_lock);
1794 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1795 spin_unlock_irq(&cmd->t_state_lock);
1797 transport_generic_request_failure(cmd, ret);
1802 static int target_write_prot_action(struct se_cmd *cmd)
1804 u32 sectors;
1806 * Perform WRITE_INSERT of PI using software emulation when backend
1807 * device has PI enabled, if the transport has not already generated
1808 * PI using hardware WRITE_INSERT offload.
1810 switch (cmd->prot_op) {
1811 case TARGET_PROT_DOUT_INSERT:
1812 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1813 sbc_dif_generate(cmd);
1814 break;
1815 case TARGET_PROT_DOUT_STRIP:
1816 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1817 break;
1819 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1820 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1821 sectors, 0, cmd->t_prot_sg, 0);
1822 if (unlikely(cmd->pi_err)) {
1823 spin_lock_irq(&cmd->t_state_lock);
1824 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1825 spin_unlock_irq(&cmd->t_state_lock);
1826 transport_generic_request_failure(cmd, cmd->pi_err);
1827 return -1;
1829 break;
1830 default:
1831 break;
1834 return 0;
1837 static bool target_handle_task_attr(struct se_cmd *cmd)
1839 struct se_device *dev = cmd->se_dev;
1841 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1842 return false;
1845 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1846 * to allow the passed struct se_cmd list of tasks to the front of the list.
1848 switch (cmd->sam_task_attr) {
1849 case TCM_HEAD_TAG:
1850 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1851 cmd->t_task_cdb[0]);
1852 return false;
1853 case TCM_ORDERED_TAG:
1854 atomic_inc_mb(&dev->dev_ordered_sync);
1856 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1857 cmd->t_task_cdb[0]);
1860 * Execute an ORDERED command if no other older commands
1861 * exist that need to be completed first.
1863 if (!atomic_read(&dev->simple_cmds))
1864 return false;
1865 break;
1866 default:
1868 * For SIMPLE and UNTAGGED Task Attribute commands
1870 atomic_inc_mb(&dev->simple_cmds);
1871 break;
1874 if (atomic_read(&dev->dev_ordered_sync) == 0)
1875 return false;
1877 spin_lock(&dev->delayed_cmd_lock);
1878 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1879 spin_unlock(&dev->delayed_cmd_lock);
1881 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1882 cmd->t_task_cdb[0], cmd->sam_task_attr);
1883 return true;
1886 static int __transport_check_aborted_status(struct se_cmd *, int);
1888 void target_execute_cmd(struct se_cmd *cmd)
1891 * Determine if frontend context caller is requesting the stopping of
1892 * this command for frontend exceptions.
1894 * If the received CDB has aleady been aborted stop processing it here.
1896 spin_lock_irq(&cmd->t_state_lock);
1897 if (__transport_check_aborted_status(cmd, 1)) {
1898 spin_unlock_irq(&cmd->t_state_lock);
1899 return;
1901 if (cmd->transport_state & CMD_T_STOP) {
1902 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1903 __func__, __LINE__, cmd->tag);
1905 spin_unlock_irq(&cmd->t_state_lock);
1906 complete_all(&cmd->t_transport_stop_comp);
1907 return;
1910 cmd->t_state = TRANSPORT_PROCESSING;
1911 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1912 spin_unlock_irq(&cmd->t_state_lock);
1914 if (target_write_prot_action(cmd))
1915 return;
1917 if (target_handle_task_attr(cmd)) {
1918 spin_lock_irq(&cmd->t_state_lock);
1919 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1920 spin_unlock_irq(&cmd->t_state_lock);
1921 return;
1924 __target_execute_cmd(cmd);
1926 EXPORT_SYMBOL(target_execute_cmd);
1929 * Process all commands up to the last received ORDERED task attribute which
1930 * requires another blocking boundary
1932 static void target_restart_delayed_cmds(struct se_device *dev)
1934 for (;;) {
1935 struct se_cmd *cmd;
1937 spin_lock(&dev->delayed_cmd_lock);
1938 if (list_empty(&dev->delayed_cmd_list)) {
1939 spin_unlock(&dev->delayed_cmd_lock);
1940 break;
1943 cmd = list_entry(dev->delayed_cmd_list.next,
1944 struct se_cmd, se_delayed_node);
1945 list_del(&cmd->se_delayed_node);
1946 spin_unlock(&dev->delayed_cmd_lock);
1948 __target_execute_cmd(cmd);
1950 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1951 break;
1956 * Called from I/O completion to determine which dormant/delayed
1957 * and ordered cmds need to have their tasks added to the execution queue.
1959 static void transport_complete_task_attr(struct se_cmd *cmd)
1961 struct se_device *dev = cmd->se_dev;
1963 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1964 return;
1966 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1967 atomic_dec_mb(&dev->simple_cmds);
1968 dev->dev_cur_ordered_id++;
1969 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1970 dev->dev_cur_ordered_id);
1971 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1972 dev->dev_cur_ordered_id++;
1973 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1974 dev->dev_cur_ordered_id);
1975 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1976 atomic_dec_mb(&dev->dev_ordered_sync);
1978 dev->dev_cur_ordered_id++;
1979 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1980 dev->dev_cur_ordered_id);
1983 target_restart_delayed_cmds(dev);
1986 static void transport_complete_qf(struct se_cmd *cmd)
1988 int ret = 0;
1990 transport_complete_task_attr(cmd);
1992 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1993 trace_target_cmd_complete(cmd);
1994 ret = cmd->se_tfo->queue_status(cmd);
1995 goto out;
1998 switch (cmd->data_direction) {
1999 case DMA_FROM_DEVICE:
2000 if (cmd->scsi_status)
2001 goto queue_status;
2003 trace_target_cmd_complete(cmd);
2004 ret = cmd->se_tfo->queue_data_in(cmd);
2005 break;
2006 case DMA_TO_DEVICE:
2007 if (cmd->se_cmd_flags & SCF_BIDI) {
2008 ret = cmd->se_tfo->queue_data_in(cmd);
2009 break;
2011 /* Fall through for DMA_TO_DEVICE */
2012 case DMA_NONE:
2013 queue_status:
2014 trace_target_cmd_complete(cmd);
2015 ret = cmd->se_tfo->queue_status(cmd);
2016 break;
2017 default:
2018 break;
2021 out:
2022 if (ret < 0) {
2023 transport_handle_queue_full(cmd, cmd->se_dev);
2024 return;
2026 transport_lun_remove_cmd(cmd);
2027 transport_cmd_check_stop_to_fabric(cmd);
2030 static void transport_handle_queue_full(
2031 struct se_cmd *cmd,
2032 struct se_device *dev)
2034 spin_lock_irq(&dev->qf_cmd_lock);
2035 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2036 atomic_inc_mb(&dev->dev_qf_count);
2037 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2039 schedule_work(&cmd->se_dev->qf_work_queue);
2042 static bool target_read_prot_action(struct se_cmd *cmd)
2044 switch (cmd->prot_op) {
2045 case TARGET_PROT_DIN_STRIP:
2046 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2047 u32 sectors = cmd->data_length >>
2048 ilog2(cmd->se_dev->dev_attrib.block_size);
2050 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2051 sectors, 0, cmd->t_prot_sg,
2053 if (cmd->pi_err)
2054 return true;
2056 break;
2057 case TARGET_PROT_DIN_INSERT:
2058 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2059 break;
2061 sbc_dif_generate(cmd);
2062 break;
2063 default:
2064 break;
2067 return false;
2070 static void target_complete_ok_work(struct work_struct *work)
2072 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2073 int ret;
2076 * Check if we need to move delayed/dormant tasks from cmds on the
2077 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2078 * Attribute.
2080 transport_complete_task_attr(cmd);
2083 * Check to schedule QUEUE_FULL work, or execute an existing
2084 * cmd->transport_qf_callback()
2086 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2087 schedule_work(&cmd->se_dev->qf_work_queue);
2090 * Check if we need to send a sense buffer from
2091 * the struct se_cmd in question.
2093 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2094 WARN_ON(!cmd->scsi_status);
2095 ret = transport_send_check_condition_and_sense(
2096 cmd, 0, 1);
2097 if (ret == -EAGAIN || ret == -ENOMEM)
2098 goto queue_full;
2100 transport_lun_remove_cmd(cmd);
2101 transport_cmd_check_stop_to_fabric(cmd);
2102 return;
2105 * Check for a callback, used by amongst other things
2106 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2108 if (cmd->transport_complete_callback) {
2109 sense_reason_t rc;
2110 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2111 bool zero_dl = !(cmd->data_length);
2112 int post_ret = 0;
2114 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2115 if (!rc && !post_ret) {
2116 if (caw && zero_dl)
2117 goto queue_rsp;
2119 return;
2120 } else if (rc) {
2121 ret = transport_send_check_condition_and_sense(cmd,
2122 rc, 0);
2123 if (ret == -EAGAIN || ret == -ENOMEM)
2124 goto queue_full;
2126 transport_lun_remove_cmd(cmd);
2127 transport_cmd_check_stop_to_fabric(cmd);
2128 return;
2132 queue_rsp:
2133 switch (cmd->data_direction) {
2134 case DMA_FROM_DEVICE:
2135 if (cmd->scsi_status)
2136 goto queue_status;
2138 atomic_long_add(cmd->data_length,
2139 &cmd->se_lun->lun_stats.tx_data_octets);
2141 * Perform READ_STRIP of PI using software emulation when
2142 * backend had PI enabled, if the transport will not be
2143 * performing hardware READ_STRIP offload.
2145 if (target_read_prot_action(cmd)) {
2146 ret = transport_send_check_condition_and_sense(cmd,
2147 cmd->pi_err, 0);
2148 if (ret == -EAGAIN || ret == -ENOMEM)
2149 goto queue_full;
2151 transport_lun_remove_cmd(cmd);
2152 transport_cmd_check_stop_to_fabric(cmd);
2153 return;
2156 trace_target_cmd_complete(cmd);
2157 ret = cmd->se_tfo->queue_data_in(cmd);
2158 if (ret == -EAGAIN || ret == -ENOMEM)
2159 goto queue_full;
2160 break;
2161 case DMA_TO_DEVICE:
2162 atomic_long_add(cmd->data_length,
2163 &cmd->se_lun->lun_stats.rx_data_octets);
2165 * Check if we need to send READ payload for BIDI-COMMAND
2167 if (cmd->se_cmd_flags & SCF_BIDI) {
2168 atomic_long_add(cmd->data_length,
2169 &cmd->se_lun->lun_stats.tx_data_octets);
2170 ret = cmd->se_tfo->queue_data_in(cmd);
2171 if (ret == -EAGAIN || ret == -ENOMEM)
2172 goto queue_full;
2173 break;
2175 /* Fall through for DMA_TO_DEVICE */
2176 case DMA_NONE:
2177 queue_status:
2178 trace_target_cmd_complete(cmd);
2179 ret = cmd->se_tfo->queue_status(cmd);
2180 if (ret == -EAGAIN || ret == -ENOMEM)
2181 goto queue_full;
2182 break;
2183 default:
2184 break;
2187 transport_lun_remove_cmd(cmd);
2188 transport_cmd_check_stop_to_fabric(cmd);
2189 return;
2191 queue_full:
2192 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2193 " data_direction: %d\n", cmd, cmd->data_direction);
2194 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2195 transport_handle_queue_full(cmd, cmd->se_dev);
2198 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2200 struct scatterlist *sg;
2201 int count;
2203 for_each_sg(sgl, sg, nents, count)
2204 __free_page(sg_page(sg));
2206 kfree(sgl);
2209 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2212 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2213 * emulation, and free + reset pointers if necessary..
2215 if (!cmd->t_data_sg_orig)
2216 return;
2218 kfree(cmd->t_data_sg);
2219 cmd->t_data_sg = cmd->t_data_sg_orig;
2220 cmd->t_data_sg_orig = NULL;
2221 cmd->t_data_nents = cmd->t_data_nents_orig;
2222 cmd->t_data_nents_orig = 0;
2225 static inline void transport_free_pages(struct se_cmd *cmd)
2227 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2228 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2229 cmd->t_prot_sg = NULL;
2230 cmd->t_prot_nents = 0;
2233 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2235 * Release special case READ buffer payload required for
2236 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2238 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2239 transport_free_sgl(cmd->t_bidi_data_sg,
2240 cmd->t_bidi_data_nents);
2241 cmd->t_bidi_data_sg = NULL;
2242 cmd->t_bidi_data_nents = 0;
2244 transport_reset_sgl_orig(cmd);
2245 return;
2247 transport_reset_sgl_orig(cmd);
2249 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2250 cmd->t_data_sg = NULL;
2251 cmd->t_data_nents = 0;
2253 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2254 cmd->t_bidi_data_sg = NULL;
2255 cmd->t_bidi_data_nents = 0;
2259 * transport_put_cmd - release a reference to a command
2260 * @cmd: command to release
2262 * This routine releases our reference to the command and frees it if possible.
2264 static int transport_put_cmd(struct se_cmd *cmd)
2266 BUG_ON(!cmd->se_tfo);
2268 * If this cmd has been setup with target_get_sess_cmd(), drop
2269 * the kref and call ->release_cmd() in kref callback.
2271 return target_put_sess_cmd(cmd);
2274 void *transport_kmap_data_sg(struct se_cmd *cmd)
2276 struct scatterlist *sg = cmd->t_data_sg;
2277 struct page **pages;
2278 int i;
2281 * We need to take into account a possible offset here for fabrics like
2282 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2283 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2285 if (!cmd->t_data_nents)
2286 return NULL;
2288 BUG_ON(!sg);
2289 if (cmd->t_data_nents == 1)
2290 return kmap(sg_page(sg)) + sg->offset;
2292 /* >1 page. use vmap */
2293 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2294 if (!pages)
2295 return NULL;
2297 /* convert sg[] to pages[] */
2298 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2299 pages[i] = sg_page(sg);
2302 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2303 kfree(pages);
2304 if (!cmd->t_data_vmap)
2305 return NULL;
2307 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2309 EXPORT_SYMBOL(transport_kmap_data_sg);
2311 void transport_kunmap_data_sg(struct se_cmd *cmd)
2313 if (!cmd->t_data_nents) {
2314 return;
2315 } else if (cmd->t_data_nents == 1) {
2316 kunmap(sg_page(cmd->t_data_sg));
2317 return;
2320 vunmap(cmd->t_data_vmap);
2321 cmd->t_data_vmap = NULL;
2323 EXPORT_SYMBOL(transport_kunmap_data_sg);
2326 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2327 bool zero_page)
2329 struct scatterlist *sg;
2330 struct page *page;
2331 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2332 unsigned int nent;
2333 int i = 0;
2335 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2336 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2337 if (!sg)
2338 return -ENOMEM;
2340 sg_init_table(sg, nent);
2342 while (length) {
2343 u32 page_len = min_t(u32, length, PAGE_SIZE);
2344 page = alloc_page(GFP_KERNEL | zero_flag);
2345 if (!page)
2346 goto out;
2348 sg_set_page(&sg[i], page, page_len, 0);
2349 length -= page_len;
2350 i++;
2352 *sgl = sg;
2353 *nents = nent;
2354 return 0;
2356 out:
2357 while (i > 0) {
2358 i--;
2359 __free_page(sg_page(&sg[i]));
2361 kfree(sg);
2362 return -ENOMEM;
2366 * Allocate any required resources to execute the command. For writes we
2367 * might not have the payload yet, so notify the fabric via a call to
2368 * ->write_pending instead. Otherwise place it on the execution queue.
2370 sense_reason_t
2371 transport_generic_new_cmd(struct se_cmd *cmd)
2373 int ret = 0;
2374 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2376 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2377 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2378 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2379 cmd->prot_length, true);
2380 if (ret < 0)
2381 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2385 * Determine is the TCM fabric module has already allocated physical
2386 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2387 * beforehand.
2389 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2390 cmd->data_length) {
2392 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2393 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2394 u32 bidi_length;
2396 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2397 bidi_length = cmd->t_task_nolb *
2398 cmd->se_dev->dev_attrib.block_size;
2399 else
2400 bidi_length = cmd->data_length;
2402 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2403 &cmd->t_bidi_data_nents,
2404 bidi_length, zero_flag);
2405 if (ret < 0)
2406 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2409 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2410 cmd->data_length, zero_flag);
2411 if (ret < 0)
2412 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2413 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2414 cmd->data_length) {
2416 * Special case for COMPARE_AND_WRITE with fabrics
2417 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2419 u32 caw_length = cmd->t_task_nolb *
2420 cmd->se_dev->dev_attrib.block_size;
2422 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2423 &cmd->t_bidi_data_nents,
2424 caw_length, zero_flag);
2425 if (ret < 0)
2426 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2429 * If this command is not a write we can execute it right here,
2430 * for write buffers we need to notify the fabric driver first
2431 * and let it call back once the write buffers are ready.
2433 target_add_to_state_list(cmd);
2434 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2435 target_execute_cmd(cmd);
2436 return 0;
2438 transport_cmd_check_stop(cmd, false, true);
2440 ret = cmd->se_tfo->write_pending(cmd);
2441 if (ret == -EAGAIN || ret == -ENOMEM)
2442 goto queue_full;
2444 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2445 WARN_ON(ret);
2447 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2449 queue_full:
2450 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2451 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2452 transport_handle_queue_full(cmd, cmd->se_dev);
2453 return 0;
2455 EXPORT_SYMBOL(transport_generic_new_cmd);
2457 static void transport_write_pending_qf(struct se_cmd *cmd)
2459 int ret;
2461 ret = cmd->se_tfo->write_pending(cmd);
2462 if (ret == -EAGAIN || ret == -ENOMEM) {
2463 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2464 cmd);
2465 transport_handle_queue_full(cmd, cmd->se_dev);
2469 static bool
2470 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2471 unsigned long *flags);
2473 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2475 unsigned long flags;
2477 spin_lock_irqsave(&cmd->t_state_lock, flags);
2478 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2479 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2482 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2484 int ret = 0;
2485 bool aborted = false, tas = false;
2487 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2488 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2489 target_wait_free_cmd(cmd, &aborted, &tas);
2491 if (!aborted || tas)
2492 ret = transport_put_cmd(cmd);
2493 } else {
2494 if (wait_for_tasks)
2495 target_wait_free_cmd(cmd, &aborted, &tas);
2497 * Handle WRITE failure case where transport_generic_new_cmd()
2498 * has already added se_cmd to state_list, but fabric has
2499 * failed command before I/O submission.
2501 if (cmd->state_active)
2502 target_remove_from_state_list(cmd);
2504 if (cmd->se_lun)
2505 transport_lun_remove_cmd(cmd);
2507 if (!aborted || tas)
2508 ret = transport_put_cmd(cmd);
2511 * If the task has been internally aborted due to TMR ABORT_TASK
2512 * or LUN_RESET, target_core_tmr.c is responsible for performing
2513 * the remaining calls to target_put_sess_cmd(), and not the
2514 * callers of this function.
2516 if (aborted) {
2517 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2518 wait_for_completion(&cmd->cmd_wait_comp);
2519 cmd->se_tfo->release_cmd(cmd);
2520 ret = 1;
2522 return ret;
2524 EXPORT_SYMBOL(transport_generic_free_cmd);
2526 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2527 * @se_cmd: command descriptor to add
2528 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2530 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2532 struct se_session *se_sess = se_cmd->se_sess;
2533 unsigned long flags;
2534 int ret = 0;
2537 * Add a second kref if the fabric caller is expecting to handle
2538 * fabric acknowledgement that requires two target_put_sess_cmd()
2539 * invocations before se_cmd descriptor release.
2541 if (ack_kref)
2542 kref_get(&se_cmd->cmd_kref);
2544 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2545 if (se_sess->sess_tearing_down) {
2546 ret = -ESHUTDOWN;
2547 goto out;
2549 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2550 out:
2551 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2553 if (ret && ack_kref)
2554 target_put_sess_cmd(se_cmd);
2556 return ret;
2558 EXPORT_SYMBOL(target_get_sess_cmd);
2560 static void target_free_cmd_mem(struct se_cmd *cmd)
2562 transport_free_pages(cmd);
2564 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2565 core_tmr_release_req(cmd->se_tmr_req);
2566 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2567 kfree(cmd->t_task_cdb);
2570 static void target_release_cmd_kref(struct kref *kref)
2572 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2573 struct se_session *se_sess = se_cmd->se_sess;
2574 unsigned long flags;
2575 bool fabric_stop;
2577 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2578 if (list_empty(&se_cmd->se_cmd_list)) {
2579 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2580 target_free_cmd_mem(se_cmd);
2581 se_cmd->se_tfo->release_cmd(se_cmd);
2582 return;
2585 spin_lock(&se_cmd->t_state_lock);
2586 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP);
2587 spin_unlock(&se_cmd->t_state_lock);
2589 if (se_cmd->cmd_wait_set || fabric_stop) {
2590 list_del_init(&se_cmd->se_cmd_list);
2591 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2592 target_free_cmd_mem(se_cmd);
2593 complete(&se_cmd->cmd_wait_comp);
2594 return;
2596 list_del_init(&se_cmd->se_cmd_list);
2597 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2599 target_free_cmd_mem(se_cmd);
2600 se_cmd->se_tfo->release_cmd(se_cmd);
2603 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2604 * @se_cmd: command descriptor to drop
2606 int target_put_sess_cmd(struct se_cmd *se_cmd)
2608 struct se_session *se_sess = se_cmd->se_sess;
2610 if (!se_sess) {
2611 target_free_cmd_mem(se_cmd);
2612 se_cmd->se_tfo->release_cmd(se_cmd);
2613 return 1;
2615 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2617 EXPORT_SYMBOL(target_put_sess_cmd);
2619 /* target_sess_cmd_list_set_waiting - Flag all commands in
2620 * sess_cmd_list to complete cmd_wait_comp. Set
2621 * sess_tearing_down so no more commands are queued.
2622 * @se_sess: session to flag
2624 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2626 struct se_cmd *se_cmd;
2627 unsigned long flags;
2628 int rc;
2630 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2631 if (se_sess->sess_tearing_down) {
2632 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2633 return;
2635 se_sess->sess_tearing_down = 1;
2636 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2638 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) {
2639 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2640 if (rc) {
2641 se_cmd->cmd_wait_set = 1;
2642 spin_lock(&se_cmd->t_state_lock);
2643 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2644 spin_unlock(&se_cmd->t_state_lock);
2648 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2650 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2652 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2653 * @se_sess: session to wait for active I/O
2655 void target_wait_for_sess_cmds(struct se_session *se_sess)
2657 struct se_cmd *se_cmd, *tmp_cmd;
2658 unsigned long flags;
2659 bool tas;
2661 list_for_each_entry_safe(se_cmd, tmp_cmd,
2662 &se_sess->sess_wait_list, se_cmd_list) {
2663 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2664 " %d\n", se_cmd, se_cmd->t_state,
2665 se_cmd->se_tfo->get_cmd_state(se_cmd));
2667 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2668 tas = (se_cmd->transport_state & CMD_T_TAS);
2669 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2671 if (!target_put_sess_cmd(se_cmd)) {
2672 if (tas)
2673 target_put_sess_cmd(se_cmd);
2676 wait_for_completion(&se_cmd->cmd_wait_comp);
2677 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2678 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2679 se_cmd->se_tfo->get_cmd_state(se_cmd));
2681 se_cmd->se_tfo->release_cmd(se_cmd);
2684 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2685 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2686 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2689 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2691 void transport_clear_lun_ref(struct se_lun *lun)
2693 percpu_ref_kill(&lun->lun_ref);
2694 wait_for_completion(&lun->lun_ref_comp);
2697 static bool
2698 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2699 bool *aborted, bool *tas, unsigned long *flags)
2700 __releases(&cmd->t_state_lock)
2701 __acquires(&cmd->t_state_lock)
2704 assert_spin_locked(&cmd->t_state_lock);
2705 WARN_ON_ONCE(!irqs_disabled());
2707 if (fabric_stop)
2708 cmd->transport_state |= CMD_T_FABRIC_STOP;
2710 if (cmd->transport_state & CMD_T_ABORTED)
2711 *aborted = true;
2713 if (cmd->transport_state & CMD_T_TAS)
2714 *tas = true;
2716 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2717 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2718 return false;
2720 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2721 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2722 return false;
2724 if (!(cmd->transport_state & CMD_T_ACTIVE))
2725 return false;
2727 if (fabric_stop && *aborted)
2728 return false;
2730 cmd->transport_state |= CMD_T_STOP;
2732 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2733 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2734 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2736 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2738 wait_for_completion(&cmd->t_transport_stop_comp);
2740 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2741 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2743 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2744 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2746 return true;
2750 * transport_wait_for_tasks - wait for completion to occur
2751 * @cmd: command to wait
2753 * Called from frontend fabric context to wait for storage engine
2754 * to pause and/or release frontend generated struct se_cmd.
2756 bool transport_wait_for_tasks(struct se_cmd *cmd)
2758 unsigned long flags;
2759 bool ret, aborted = false, tas = false;
2761 spin_lock_irqsave(&cmd->t_state_lock, flags);
2762 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2763 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2765 return ret;
2767 EXPORT_SYMBOL(transport_wait_for_tasks);
2769 struct sense_info {
2770 u8 key;
2771 u8 asc;
2772 u8 ascq;
2773 bool add_sector_info;
2776 static const struct sense_info sense_info_table[] = {
2777 [TCM_NO_SENSE] = {
2778 .key = NOT_READY
2780 [TCM_NON_EXISTENT_LUN] = {
2781 .key = ILLEGAL_REQUEST,
2782 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2784 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
2785 .key = ILLEGAL_REQUEST,
2786 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2788 [TCM_SECTOR_COUNT_TOO_MANY] = {
2789 .key = ILLEGAL_REQUEST,
2790 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2792 [TCM_UNKNOWN_MODE_PAGE] = {
2793 .key = ILLEGAL_REQUEST,
2794 .asc = 0x24, /* INVALID FIELD IN CDB */
2796 [TCM_CHECK_CONDITION_ABORT_CMD] = {
2797 .key = ABORTED_COMMAND,
2798 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2799 .ascq = 0x03,
2801 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
2802 .key = ABORTED_COMMAND,
2803 .asc = 0x0c, /* WRITE ERROR */
2804 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2806 [TCM_INVALID_CDB_FIELD] = {
2807 .key = ILLEGAL_REQUEST,
2808 .asc = 0x24, /* INVALID FIELD IN CDB */
2810 [TCM_INVALID_PARAMETER_LIST] = {
2811 .key = ILLEGAL_REQUEST,
2812 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2814 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2815 .key = ILLEGAL_REQUEST,
2816 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2818 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2819 .key = ILLEGAL_REQUEST,
2820 .asc = 0x0c, /* WRITE ERROR */
2821 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2823 [TCM_SERVICE_CRC_ERROR] = {
2824 .key = ABORTED_COMMAND,
2825 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2826 .ascq = 0x05, /* N/A */
2828 [TCM_SNACK_REJECTED] = {
2829 .key = ABORTED_COMMAND,
2830 .asc = 0x11, /* READ ERROR */
2831 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2833 [TCM_WRITE_PROTECTED] = {
2834 .key = DATA_PROTECT,
2835 .asc = 0x27, /* WRITE PROTECTED */
2837 [TCM_ADDRESS_OUT_OF_RANGE] = {
2838 .key = ILLEGAL_REQUEST,
2839 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2841 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2842 .key = UNIT_ATTENTION,
2844 [TCM_CHECK_CONDITION_NOT_READY] = {
2845 .key = NOT_READY,
2847 [TCM_MISCOMPARE_VERIFY] = {
2848 .key = MISCOMPARE,
2849 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2850 .ascq = 0x00,
2852 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2853 .key = ABORTED_COMMAND,
2854 .asc = 0x10,
2855 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2856 .add_sector_info = true,
2858 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2859 .key = ABORTED_COMMAND,
2860 .asc = 0x10,
2861 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2862 .add_sector_info = true,
2864 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2865 .key = ABORTED_COMMAND,
2866 .asc = 0x10,
2867 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2868 .add_sector_info = true,
2870 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2872 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2873 * Solaris initiators. Returning NOT READY instead means the
2874 * operations will be retried a finite number of times and we
2875 * can survive intermittent errors.
2877 .key = NOT_READY,
2878 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2882 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2884 const struct sense_info *si;
2885 u8 *buffer = cmd->sense_buffer;
2886 int r = (__force int)reason;
2887 u8 asc, ascq;
2888 bool desc_format = target_sense_desc_format(cmd->se_dev);
2890 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2891 si = &sense_info_table[r];
2892 else
2893 si = &sense_info_table[(__force int)
2894 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
2896 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
2897 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2898 WARN_ON_ONCE(asc == 0);
2899 } else if (si->asc == 0) {
2900 WARN_ON_ONCE(cmd->scsi_asc == 0);
2901 asc = cmd->scsi_asc;
2902 ascq = cmd->scsi_ascq;
2903 } else {
2904 asc = si->asc;
2905 ascq = si->ascq;
2908 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
2909 if (si->add_sector_info)
2910 return scsi_set_sense_information(buffer,
2911 cmd->scsi_sense_length,
2912 cmd->bad_sector);
2914 return 0;
2918 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2919 sense_reason_t reason, int from_transport)
2921 unsigned long flags;
2923 spin_lock_irqsave(&cmd->t_state_lock, flags);
2924 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2925 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2926 return 0;
2928 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2929 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2931 if (!from_transport) {
2932 int rc;
2934 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2935 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2936 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2937 rc = translate_sense_reason(cmd, reason);
2938 if (rc)
2939 return rc;
2942 trace_target_cmd_complete(cmd);
2943 return cmd->se_tfo->queue_status(cmd);
2945 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2947 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2948 __releases(&cmd->t_state_lock)
2949 __acquires(&cmd->t_state_lock)
2951 assert_spin_locked(&cmd->t_state_lock);
2952 WARN_ON_ONCE(!irqs_disabled());
2954 if (!(cmd->transport_state & CMD_T_ABORTED))
2955 return 0;
2957 * If cmd has been aborted but either no status is to be sent or it has
2958 * already been sent, just return
2960 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
2961 if (send_status)
2962 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2963 return 1;
2966 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
2967 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
2969 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2970 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2971 trace_target_cmd_complete(cmd);
2973 spin_unlock_irq(&cmd->t_state_lock);
2974 cmd->se_tfo->queue_status(cmd);
2975 spin_lock_irq(&cmd->t_state_lock);
2977 return 1;
2980 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2982 int ret;
2984 spin_lock_irq(&cmd->t_state_lock);
2985 ret = __transport_check_aborted_status(cmd, send_status);
2986 spin_unlock_irq(&cmd->t_state_lock);
2988 return ret;
2990 EXPORT_SYMBOL(transport_check_aborted_status);
2992 void transport_send_task_abort(struct se_cmd *cmd)
2994 unsigned long flags;
2996 spin_lock_irqsave(&cmd->t_state_lock, flags);
2997 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2998 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2999 return;
3001 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3004 * If there are still expected incoming fabric WRITEs, we wait
3005 * until until they have completed before sending a TASK_ABORTED
3006 * response. This response with TASK_ABORTED status will be
3007 * queued back to fabric module by transport_check_aborted_status().
3009 if (cmd->data_direction == DMA_TO_DEVICE) {
3010 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3011 spin_lock_irqsave(&cmd->t_state_lock, flags);
3012 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3013 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3014 goto send_abort;
3016 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3017 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3018 return;
3021 send_abort:
3022 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3024 transport_lun_remove_cmd(cmd);
3026 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3027 cmd->t_task_cdb[0], cmd->tag);
3029 trace_target_cmd_complete(cmd);
3030 cmd->se_tfo->queue_status(cmd);
3033 static void target_tmr_work(struct work_struct *work)
3035 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3036 struct se_device *dev = cmd->se_dev;
3037 struct se_tmr_req *tmr = cmd->se_tmr_req;
3038 unsigned long flags;
3039 int ret;
3041 spin_lock_irqsave(&cmd->t_state_lock, flags);
3042 if (cmd->transport_state & CMD_T_ABORTED) {
3043 tmr->response = TMR_FUNCTION_REJECTED;
3044 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3045 goto check_stop;
3047 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3049 switch (tmr->function) {
3050 case TMR_ABORT_TASK:
3051 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3052 break;
3053 case TMR_ABORT_TASK_SET:
3054 case TMR_CLEAR_ACA:
3055 case TMR_CLEAR_TASK_SET:
3056 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3057 break;
3058 case TMR_LUN_RESET:
3059 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3060 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3061 TMR_FUNCTION_REJECTED;
3062 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3063 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3064 cmd->orig_fe_lun, 0x29,
3065 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3067 break;
3068 case TMR_TARGET_WARM_RESET:
3069 tmr->response = TMR_FUNCTION_REJECTED;
3070 break;
3071 case TMR_TARGET_COLD_RESET:
3072 tmr->response = TMR_FUNCTION_REJECTED;
3073 break;
3074 default:
3075 pr_err("Uknown TMR function: 0x%02x.\n",
3076 tmr->function);
3077 tmr->response = TMR_FUNCTION_REJECTED;
3078 break;
3081 spin_lock_irqsave(&cmd->t_state_lock, flags);
3082 if (cmd->transport_state & CMD_T_ABORTED) {
3083 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3084 goto check_stop;
3086 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3087 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3089 cmd->se_tfo->queue_tm_rsp(cmd);
3091 check_stop:
3092 transport_cmd_check_stop_to_fabric(cmd);
3095 int transport_generic_handle_tmr(
3096 struct se_cmd *cmd)
3098 unsigned long flags;
3100 spin_lock_irqsave(&cmd->t_state_lock, flags);
3101 cmd->transport_state |= CMD_T_ACTIVE;
3102 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3104 INIT_WORK(&cmd->work, target_tmr_work);
3105 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3106 return 0;
3108 EXPORT_SYMBOL(transport_generic_handle_tmr);
3110 bool
3111 target_check_wce(struct se_device *dev)
3113 bool wce = false;
3115 if (dev->transport->get_write_cache)
3116 wce = dev->transport->get_write_cache(dev);
3117 else if (dev->dev_attrib.emulate_write_cache > 0)
3118 wce = true;
3120 return wce;
3123 bool
3124 target_check_fua(struct se_device *dev)
3126 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;