Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / drivers / tty / serial / amba-pl011.c
blob7c198e0a3178ae2ab9805c9f317c722d18b2dadf
1 /*
2 * Driver for AMBA serial ports
4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 * Copyright 1999 ARM Limited
7 * Copyright (C) 2000 Deep Blue Solutions Ltd.
8 * Copyright (C) 2010 ST-Ericsson SA
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 * This is a generic driver for ARM AMBA-type serial ports. They
25 * have a lot of 16550-like features, but are not register compatible.
26 * Note that although they do have CTS, DCD and DSR inputs, they do
27 * not have an RI input, nor do they have DTR or RTS outputs. If
28 * required, these have to be supplied via some other means (eg, GPIO)
29 * and hooked into this driver.
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61 #include <linux/acpi.h>
63 #include "amba-pl011.h"
65 #define UART_NR 14
67 #define SERIAL_AMBA_MAJOR 204
68 #define SERIAL_AMBA_MINOR 64
69 #define SERIAL_AMBA_NR UART_NR
71 #define AMBA_ISR_PASS_LIMIT 256
73 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
74 #define UART_DUMMY_DR_RX (1 << 16)
76 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
77 [REG_DR] = UART01x_DR,
78 [REG_FR] = UART01x_FR,
79 [REG_LCRH_RX] = UART011_LCRH,
80 [REG_LCRH_TX] = UART011_LCRH,
81 [REG_IBRD] = UART011_IBRD,
82 [REG_FBRD] = UART011_FBRD,
83 [REG_CR] = UART011_CR,
84 [REG_IFLS] = UART011_IFLS,
85 [REG_IMSC] = UART011_IMSC,
86 [REG_RIS] = UART011_RIS,
87 [REG_MIS] = UART011_MIS,
88 [REG_ICR] = UART011_ICR,
89 [REG_DMACR] = UART011_DMACR,
92 /* There is by now at least one vendor with differing details, so handle it */
93 struct vendor_data {
94 const u16 *reg_offset;
95 unsigned int ifls;
96 bool access_32b;
97 bool oversampling;
98 bool dma_threshold;
99 bool cts_event_workaround;
100 bool always_enabled;
101 bool fixed_options;
103 unsigned int (*get_fifosize)(struct amba_device *dev);
106 static unsigned int get_fifosize_arm(struct amba_device *dev)
108 return amba_rev(dev) < 3 ? 16 : 32;
111 static struct vendor_data vendor_arm = {
112 .reg_offset = pl011_std_offsets,
113 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
114 .oversampling = false,
115 .dma_threshold = false,
116 .cts_event_workaround = false,
117 .always_enabled = false,
118 .fixed_options = false,
119 .get_fifosize = get_fifosize_arm,
122 static struct vendor_data vendor_sbsa = {
123 .reg_offset = pl011_std_offsets,
124 .oversampling = false,
125 .dma_threshold = false,
126 .cts_event_workaround = false,
127 .always_enabled = true,
128 .fixed_options = true,
131 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
132 [REG_DR] = UART01x_DR,
133 [REG_ST_DMAWM] = ST_UART011_DMAWM,
134 [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
135 [REG_FR] = UART01x_FR,
136 [REG_LCRH_RX] = ST_UART011_LCRH_RX,
137 [REG_LCRH_TX] = ST_UART011_LCRH_TX,
138 [REG_IBRD] = UART011_IBRD,
139 [REG_FBRD] = UART011_FBRD,
140 [REG_CR] = UART011_CR,
141 [REG_IFLS] = UART011_IFLS,
142 [REG_IMSC] = UART011_IMSC,
143 [REG_RIS] = UART011_RIS,
144 [REG_MIS] = UART011_MIS,
145 [REG_ICR] = UART011_ICR,
146 [REG_DMACR] = UART011_DMACR,
147 [REG_ST_XFCR] = ST_UART011_XFCR,
148 [REG_ST_XON1] = ST_UART011_XON1,
149 [REG_ST_XON2] = ST_UART011_XON2,
150 [REG_ST_XOFF1] = ST_UART011_XOFF1,
151 [REG_ST_XOFF2] = ST_UART011_XOFF2,
152 [REG_ST_ITCR] = ST_UART011_ITCR,
153 [REG_ST_ITIP] = ST_UART011_ITIP,
154 [REG_ST_ABCR] = ST_UART011_ABCR,
155 [REG_ST_ABIMSC] = ST_UART011_ABIMSC,
158 static unsigned int get_fifosize_st(struct amba_device *dev)
160 return 64;
163 static struct vendor_data vendor_st = {
164 .reg_offset = pl011_st_offsets,
165 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
166 .oversampling = true,
167 .dma_threshold = true,
168 .cts_event_workaround = true,
169 .always_enabled = false,
170 .fixed_options = false,
171 .get_fifosize = get_fifosize_st,
174 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
175 [REG_DR] = ZX_UART011_DR,
176 [REG_FR] = ZX_UART011_FR,
177 [REG_LCRH_RX] = ZX_UART011_LCRH,
178 [REG_LCRH_TX] = ZX_UART011_LCRH,
179 [REG_IBRD] = ZX_UART011_IBRD,
180 [REG_FBRD] = ZX_UART011_FBRD,
181 [REG_CR] = ZX_UART011_CR,
182 [REG_IFLS] = ZX_UART011_IFLS,
183 [REG_IMSC] = ZX_UART011_IMSC,
184 [REG_RIS] = ZX_UART011_RIS,
185 [REG_MIS] = ZX_UART011_MIS,
186 [REG_ICR] = ZX_UART011_ICR,
187 [REG_DMACR] = ZX_UART011_DMACR,
190 static struct vendor_data vendor_zte __maybe_unused = {
191 .reg_offset = pl011_zte_offsets,
192 .access_32b = true,
193 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
194 .get_fifosize = get_fifosize_arm,
197 /* Deals with DMA transactions */
199 struct pl011_sgbuf {
200 struct scatterlist sg;
201 char *buf;
204 struct pl011_dmarx_data {
205 struct dma_chan *chan;
206 struct completion complete;
207 bool use_buf_b;
208 struct pl011_sgbuf sgbuf_a;
209 struct pl011_sgbuf sgbuf_b;
210 dma_cookie_t cookie;
211 bool running;
212 struct timer_list timer;
213 unsigned int last_residue;
214 unsigned long last_jiffies;
215 bool auto_poll_rate;
216 unsigned int poll_rate;
217 unsigned int poll_timeout;
220 struct pl011_dmatx_data {
221 struct dma_chan *chan;
222 struct scatterlist sg;
223 char *buf;
224 bool queued;
228 * We wrap our port structure around the generic uart_port.
230 struct uart_amba_port {
231 struct uart_port port;
232 const u16 *reg_offset;
233 struct clk *clk;
234 const struct vendor_data *vendor;
235 unsigned int dmacr; /* dma control reg */
236 unsigned int im; /* interrupt mask */
237 unsigned int old_status;
238 unsigned int fifosize; /* vendor-specific */
239 unsigned int old_cr; /* state during shutdown */
240 bool autorts;
241 unsigned int fixed_baud; /* vendor-set fixed baud rate */
242 char type[12];
243 #ifdef CONFIG_DMA_ENGINE
244 /* DMA stuff */
245 bool using_tx_dma;
246 bool using_rx_dma;
247 struct pl011_dmarx_data dmarx;
248 struct pl011_dmatx_data dmatx;
249 bool dma_probed;
250 #endif
253 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
254 unsigned int reg)
256 return uap->reg_offset[reg];
259 static unsigned int pl011_read(const struct uart_amba_port *uap,
260 unsigned int reg)
262 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
264 return (uap->port.iotype == UPIO_MEM32) ?
265 readl_relaxed(addr) : readw_relaxed(addr);
268 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
269 unsigned int reg)
271 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
273 if (uap->port.iotype == UPIO_MEM32)
274 writel_relaxed(val, addr);
275 else
276 writew_relaxed(val, addr);
280 * Reads up to 256 characters from the FIFO or until it's empty and
281 * inserts them into the TTY layer. Returns the number of characters
282 * read from the FIFO.
284 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
286 u16 status;
287 unsigned int ch, flag, max_count = 256;
288 int fifotaken = 0;
290 while (max_count--) {
291 status = pl011_read(uap, REG_FR);
292 if (status & UART01x_FR_RXFE)
293 break;
295 /* Take chars from the FIFO and update status */
296 ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
297 flag = TTY_NORMAL;
298 uap->port.icount.rx++;
299 fifotaken++;
301 if (unlikely(ch & UART_DR_ERROR)) {
302 if (ch & UART011_DR_BE) {
303 ch &= ~(UART011_DR_FE | UART011_DR_PE);
304 uap->port.icount.brk++;
305 if (uart_handle_break(&uap->port))
306 continue;
307 } else if (ch & UART011_DR_PE)
308 uap->port.icount.parity++;
309 else if (ch & UART011_DR_FE)
310 uap->port.icount.frame++;
311 if (ch & UART011_DR_OE)
312 uap->port.icount.overrun++;
314 ch &= uap->port.read_status_mask;
316 if (ch & UART011_DR_BE)
317 flag = TTY_BREAK;
318 else if (ch & UART011_DR_PE)
319 flag = TTY_PARITY;
320 else if (ch & UART011_DR_FE)
321 flag = TTY_FRAME;
324 if (uart_handle_sysrq_char(&uap->port, ch & 255))
325 continue;
327 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
330 return fifotaken;
335 * All the DMA operation mode stuff goes inside this ifdef.
336 * This assumes that you have a generic DMA device interface,
337 * no custom DMA interfaces are supported.
339 #ifdef CONFIG_DMA_ENGINE
341 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
343 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
344 enum dma_data_direction dir)
346 dma_addr_t dma_addr;
348 sg->buf = dma_alloc_coherent(chan->device->dev,
349 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
350 if (!sg->buf)
351 return -ENOMEM;
353 sg_init_table(&sg->sg, 1);
354 sg_set_page(&sg->sg, phys_to_page(dma_addr),
355 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
356 sg_dma_address(&sg->sg) = dma_addr;
357 sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
359 return 0;
362 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
363 enum dma_data_direction dir)
365 if (sg->buf) {
366 dma_free_coherent(chan->device->dev,
367 PL011_DMA_BUFFER_SIZE, sg->buf,
368 sg_dma_address(&sg->sg));
372 static void pl011_dma_probe(struct uart_amba_port *uap)
374 /* DMA is the sole user of the platform data right now */
375 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
376 struct device *dev = uap->port.dev;
377 struct dma_slave_config tx_conf = {
378 .dst_addr = uap->port.mapbase +
379 pl011_reg_to_offset(uap, REG_DR),
380 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
381 .direction = DMA_MEM_TO_DEV,
382 .dst_maxburst = uap->fifosize >> 1,
383 .device_fc = false,
385 struct dma_chan *chan;
386 dma_cap_mask_t mask;
388 uap->dma_probed = true;
389 chan = dma_request_slave_channel_reason(dev, "tx");
390 if (IS_ERR(chan)) {
391 if (PTR_ERR(chan) == -EPROBE_DEFER) {
392 uap->dma_probed = false;
393 return;
396 /* We need platform data */
397 if (!plat || !plat->dma_filter) {
398 dev_info(uap->port.dev, "no DMA platform data\n");
399 return;
402 /* Try to acquire a generic DMA engine slave TX channel */
403 dma_cap_zero(mask);
404 dma_cap_set(DMA_SLAVE, mask);
406 chan = dma_request_channel(mask, plat->dma_filter,
407 plat->dma_tx_param);
408 if (!chan) {
409 dev_err(uap->port.dev, "no TX DMA channel!\n");
410 return;
414 dmaengine_slave_config(chan, &tx_conf);
415 uap->dmatx.chan = chan;
417 dev_info(uap->port.dev, "DMA channel TX %s\n",
418 dma_chan_name(uap->dmatx.chan));
420 /* Optionally make use of an RX channel as well */
421 chan = dma_request_slave_channel(dev, "rx");
423 if (!chan && plat && plat->dma_rx_param) {
424 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
426 if (!chan) {
427 dev_err(uap->port.dev, "no RX DMA channel!\n");
428 return;
432 if (chan) {
433 struct dma_slave_config rx_conf = {
434 .src_addr = uap->port.mapbase +
435 pl011_reg_to_offset(uap, REG_DR),
436 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
437 .direction = DMA_DEV_TO_MEM,
438 .src_maxburst = uap->fifosize >> 2,
439 .device_fc = false,
441 struct dma_slave_caps caps;
444 * Some DMA controllers provide information on their capabilities.
445 * If the controller does, check for suitable residue processing
446 * otherwise assime all is well.
448 if (0 == dma_get_slave_caps(chan, &caps)) {
449 if (caps.residue_granularity ==
450 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
451 dma_release_channel(chan);
452 dev_info(uap->port.dev,
453 "RX DMA disabled - no residue processing\n");
454 return;
457 dmaengine_slave_config(chan, &rx_conf);
458 uap->dmarx.chan = chan;
460 uap->dmarx.auto_poll_rate = false;
461 if (plat && plat->dma_rx_poll_enable) {
462 /* Set poll rate if specified. */
463 if (plat->dma_rx_poll_rate) {
464 uap->dmarx.auto_poll_rate = false;
465 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
466 } else {
468 * 100 ms defaults to poll rate if not
469 * specified. This will be adjusted with
470 * the baud rate at set_termios.
472 uap->dmarx.auto_poll_rate = true;
473 uap->dmarx.poll_rate = 100;
475 /* 3 secs defaults poll_timeout if not specified. */
476 if (plat->dma_rx_poll_timeout)
477 uap->dmarx.poll_timeout =
478 plat->dma_rx_poll_timeout;
479 else
480 uap->dmarx.poll_timeout = 3000;
481 } else if (!plat && dev->of_node) {
482 uap->dmarx.auto_poll_rate = of_property_read_bool(
483 dev->of_node, "auto-poll");
484 if (uap->dmarx.auto_poll_rate) {
485 u32 x;
487 if (0 == of_property_read_u32(dev->of_node,
488 "poll-rate-ms", &x))
489 uap->dmarx.poll_rate = x;
490 else
491 uap->dmarx.poll_rate = 100;
492 if (0 == of_property_read_u32(dev->of_node,
493 "poll-timeout-ms", &x))
494 uap->dmarx.poll_timeout = x;
495 else
496 uap->dmarx.poll_timeout = 3000;
499 dev_info(uap->port.dev, "DMA channel RX %s\n",
500 dma_chan_name(uap->dmarx.chan));
504 static void pl011_dma_remove(struct uart_amba_port *uap)
506 if (uap->dmatx.chan)
507 dma_release_channel(uap->dmatx.chan);
508 if (uap->dmarx.chan)
509 dma_release_channel(uap->dmarx.chan);
512 /* Forward declare these for the refill routine */
513 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
514 static void pl011_start_tx_pio(struct uart_amba_port *uap);
517 * The current DMA TX buffer has been sent.
518 * Try to queue up another DMA buffer.
520 static void pl011_dma_tx_callback(void *data)
522 struct uart_amba_port *uap = data;
523 struct pl011_dmatx_data *dmatx = &uap->dmatx;
524 unsigned long flags;
525 u16 dmacr;
527 spin_lock_irqsave(&uap->port.lock, flags);
528 if (uap->dmatx.queued)
529 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
530 DMA_TO_DEVICE);
532 dmacr = uap->dmacr;
533 uap->dmacr = dmacr & ~UART011_TXDMAE;
534 pl011_write(uap->dmacr, uap, REG_DMACR);
537 * If TX DMA was disabled, it means that we've stopped the DMA for
538 * some reason (eg, XOFF received, or we want to send an X-char.)
540 * Note: we need to be careful here of a potential race between DMA
541 * and the rest of the driver - if the driver disables TX DMA while
542 * a TX buffer completing, we must update the tx queued status to
543 * get further refills (hence we check dmacr).
545 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
546 uart_circ_empty(&uap->port.state->xmit)) {
547 uap->dmatx.queued = false;
548 spin_unlock_irqrestore(&uap->port.lock, flags);
549 return;
552 if (pl011_dma_tx_refill(uap) <= 0)
554 * We didn't queue a DMA buffer for some reason, but we
555 * have data pending to be sent. Re-enable the TX IRQ.
557 pl011_start_tx_pio(uap);
559 spin_unlock_irqrestore(&uap->port.lock, flags);
563 * Try to refill the TX DMA buffer.
564 * Locking: called with port lock held and IRQs disabled.
565 * Returns:
566 * 1 if we queued up a TX DMA buffer.
567 * 0 if we didn't want to handle this by DMA
568 * <0 on error
570 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
572 struct pl011_dmatx_data *dmatx = &uap->dmatx;
573 struct dma_chan *chan = dmatx->chan;
574 struct dma_device *dma_dev = chan->device;
575 struct dma_async_tx_descriptor *desc;
576 struct circ_buf *xmit = &uap->port.state->xmit;
577 unsigned int count;
580 * Try to avoid the overhead involved in using DMA if the
581 * transaction fits in the first half of the FIFO, by using
582 * the standard interrupt handling. This ensures that we
583 * issue a uart_write_wakeup() at the appropriate time.
585 count = uart_circ_chars_pending(xmit);
586 if (count < (uap->fifosize >> 1)) {
587 uap->dmatx.queued = false;
588 return 0;
592 * Bodge: don't send the last character by DMA, as this
593 * will prevent XON from notifying us to restart DMA.
595 count -= 1;
597 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
598 if (count > PL011_DMA_BUFFER_SIZE)
599 count = PL011_DMA_BUFFER_SIZE;
601 if (xmit->tail < xmit->head)
602 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
603 else {
604 size_t first = UART_XMIT_SIZE - xmit->tail;
605 size_t second;
607 if (first > count)
608 first = count;
609 second = count - first;
611 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
612 if (second)
613 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
616 dmatx->sg.length = count;
618 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
619 uap->dmatx.queued = false;
620 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
621 return -EBUSY;
624 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
625 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
626 if (!desc) {
627 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
628 uap->dmatx.queued = false;
630 * If DMA cannot be used right now, we complete this
631 * transaction via IRQ and let the TTY layer retry.
633 dev_dbg(uap->port.dev, "TX DMA busy\n");
634 return -EBUSY;
637 /* Some data to go along to the callback */
638 desc->callback = pl011_dma_tx_callback;
639 desc->callback_param = uap;
641 /* All errors should happen at prepare time */
642 dmaengine_submit(desc);
644 /* Fire the DMA transaction */
645 dma_dev->device_issue_pending(chan);
647 uap->dmacr |= UART011_TXDMAE;
648 pl011_write(uap->dmacr, uap, REG_DMACR);
649 uap->dmatx.queued = true;
652 * Now we know that DMA will fire, so advance the ring buffer
653 * with the stuff we just dispatched.
655 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
656 uap->port.icount.tx += count;
658 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
659 uart_write_wakeup(&uap->port);
661 return 1;
665 * We received a transmit interrupt without a pending X-char but with
666 * pending characters.
667 * Locking: called with port lock held and IRQs disabled.
668 * Returns:
669 * false if we want to use PIO to transmit
670 * true if we queued a DMA buffer
672 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
674 if (!uap->using_tx_dma)
675 return false;
678 * If we already have a TX buffer queued, but received a
679 * TX interrupt, it will be because we've just sent an X-char.
680 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
682 if (uap->dmatx.queued) {
683 uap->dmacr |= UART011_TXDMAE;
684 pl011_write(uap->dmacr, uap, REG_DMACR);
685 uap->im &= ~UART011_TXIM;
686 pl011_write(uap->im, uap, REG_IMSC);
687 return true;
691 * We don't have a TX buffer queued, so try to queue one.
692 * If we successfully queued a buffer, mask the TX IRQ.
694 if (pl011_dma_tx_refill(uap) > 0) {
695 uap->im &= ~UART011_TXIM;
696 pl011_write(uap->im, uap, REG_IMSC);
697 return true;
699 return false;
703 * Stop the DMA transmit (eg, due to received XOFF).
704 * Locking: called with port lock held and IRQs disabled.
706 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
708 if (uap->dmatx.queued) {
709 uap->dmacr &= ~UART011_TXDMAE;
710 pl011_write(uap->dmacr, uap, REG_DMACR);
715 * Try to start a DMA transmit, or in the case of an XON/OFF
716 * character queued for send, try to get that character out ASAP.
717 * Locking: called with port lock held and IRQs disabled.
718 * Returns:
719 * false if we want the TX IRQ to be enabled
720 * true if we have a buffer queued
722 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
724 u16 dmacr;
726 if (!uap->using_tx_dma)
727 return false;
729 if (!uap->port.x_char) {
730 /* no X-char, try to push chars out in DMA mode */
731 bool ret = true;
733 if (!uap->dmatx.queued) {
734 if (pl011_dma_tx_refill(uap) > 0) {
735 uap->im &= ~UART011_TXIM;
736 pl011_write(uap->im, uap, REG_IMSC);
737 } else
738 ret = false;
739 } else if (!(uap->dmacr & UART011_TXDMAE)) {
740 uap->dmacr |= UART011_TXDMAE;
741 pl011_write(uap->dmacr, uap, REG_DMACR);
743 return ret;
747 * We have an X-char to send. Disable DMA to prevent it loading
748 * the TX fifo, and then see if we can stuff it into the FIFO.
750 dmacr = uap->dmacr;
751 uap->dmacr &= ~UART011_TXDMAE;
752 pl011_write(uap->dmacr, uap, REG_DMACR);
754 if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
756 * No space in the FIFO, so enable the transmit interrupt
757 * so we know when there is space. Note that once we've
758 * loaded the character, we should just re-enable DMA.
760 return false;
763 pl011_write(uap->port.x_char, uap, REG_DR);
764 uap->port.icount.tx++;
765 uap->port.x_char = 0;
767 /* Success - restore the DMA state */
768 uap->dmacr = dmacr;
769 pl011_write(dmacr, uap, REG_DMACR);
771 return true;
775 * Flush the transmit buffer.
776 * Locking: called with port lock held and IRQs disabled.
778 static void pl011_dma_flush_buffer(struct uart_port *port)
779 __releases(&uap->port.lock)
780 __acquires(&uap->port.lock)
782 struct uart_amba_port *uap =
783 container_of(port, struct uart_amba_port, port);
785 if (!uap->using_tx_dma)
786 return;
788 /* Avoid deadlock with the DMA engine callback */
789 spin_unlock(&uap->port.lock);
790 dmaengine_terminate_all(uap->dmatx.chan);
791 spin_lock(&uap->port.lock);
792 if (uap->dmatx.queued) {
793 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
794 DMA_TO_DEVICE);
795 uap->dmatx.queued = false;
796 uap->dmacr &= ~UART011_TXDMAE;
797 pl011_write(uap->dmacr, uap, REG_DMACR);
801 static void pl011_dma_rx_callback(void *data);
803 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
805 struct dma_chan *rxchan = uap->dmarx.chan;
806 struct pl011_dmarx_data *dmarx = &uap->dmarx;
807 struct dma_async_tx_descriptor *desc;
808 struct pl011_sgbuf *sgbuf;
810 if (!rxchan)
811 return -EIO;
813 /* Start the RX DMA job */
814 sgbuf = uap->dmarx.use_buf_b ?
815 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
816 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
817 DMA_DEV_TO_MEM,
818 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
820 * If the DMA engine is busy and cannot prepare a
821 * channel, no big deal, the driver will fall back
822 * to interrupt mode as a result of this error code.
824 if (!desc) {
825 uap->dmarx.running = false;
826 dmaengine_terminate_all(rxchan);
827 return -EBUSY;
830 /* Some data to go along to the callback */
831 desc->callback = pl011_dma_rx_callback;
832 desc->callback_param = uap;
833 dmarx->cookie = dmaengine_submit(desc);
834 dma_async_issue_pending(rxchan);
836 uap->dmacr |= UART011_RXDMAE;
837 pl011_write(uap->dmacr, uap, REG_DMACR);
838 uap->dmarx.running = true;
840 uap->im &= ~UART011_RXIM;
841 pl011_write(uap->im, uap, REG_IMSC);
843 return 0;
847 * This is called when either the DMA job is complete, or
848 * the FIFO timeout interrupt occurred. This must be called
849 * with the port spinlock uap->port.lock held.
851 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
852 u32 pending, bool use_buf_b,
853 bool readfifo)
855 struct tty_port *port = &uap->port.state->port;
856 struct pl011_sgbuf *sgbuf = use_buf_b ?
857 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
858 int dma_count = 0;
859 u32 fifotaken = 0; /* only used for vdbg() */
861 struct pl011_dmarx_data *dmarx = &uap->dmarx;
862 int dmataken = 0;
864 if (uap->dmarx.poll_rate) {
865 /* The data can be taken by polling */
866 dmataken = sgbuf->sg.length - dmarx->last_residue;
867 /* Recalculate the pending size */
868 if (pending >= dmataken)
869 pending -= dmataken;
872 /* Pick the remain data from the DMA */
873 if (pending) {
876 * First take all chars in the DMA pipe, then look in the FIFO.
877 * Note that tty_insert_flip_buf() tries to take as many chars
878 * as it can.
880 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
881 pending);
883 uap->port.icount.rx += dma_count;
884 if (dma_count < pending)
885 dev_warn(uap->port.dev,
886 "couldn't insert all characters (TTY is full?)\n");
889 /* Reset the last_residue for Rx DMA poll */
890 if (uap->dmarx.poll_rate)
891 dmarx->last_residue = sgbuf->sg.length;
894 * Only continue with trying to read the FIFO if all DMA chars have
895 * been taken first.
897 if (dma_count == pending && readfifo) {
898 /* Clear any error flags */
899 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
900 UART011_FEIS, uap, REG_ICR);
903 * If we read all the DMA'd characters, and we had an
904 * incomplete buffer, that could be due to an rx error, or
905 * maybe we just timed out. Read any pending chars and check
906 * the error status.
908 * Error conditions will only occur in the FIFO, these will
909 * trigger an immediate interrupt and stop the DMA job, so we
910 * will always find the error in the FIFO, never in the DMA
911 * buffer.
913 fifotaken = pl011_fifo_to_tty(uap);
916 spin_unlock(&uap->port.lock);
917 dev_vdbg(uap->port.dev,
918 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
919 dma_count, fifotaken);
920 tty_flip_buffer_push(port);
921 spin_lock(&uap->port.lock);
924 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
926 struct pl011_dmarx_data *dmarx = &uap->dmarx;
927 struct dma_chan *rxchan = dmarx->chan;
928 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
929 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
930 size_t pending;
931 struct dma_tx_state state;
932 enum dma_status dmastat;
935 * Pause the transfer so we can trust the current counter,
936 * do this before we pause the PL011 block, else we may
937 * overflow the FIFO.
939 if (dmaengine_pause(rxchan))
940 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
941 dmastat = rxchan->device->device_tx_status(rxchan,
942 dmarx->cookie, &state);
943 if (dmastat != DMA_PAUSED)
944 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
946 /* Disable RX DMA - incoming data will wait in the FIFO */
947 uap->dmacr &= ~UART011_RXDMAE;
948 pl011_write(uap->dmacr, uap, REG_DMACR);
949 uap->dmarx.running = false;
951 pending = sgbuf->sg.length - state.residue;
952 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
953 /* Then we terminate the transfer - we now know our residue */
954 dmaengine_terminate_all(rxchan);
957 * This will take the chars we have so far and insert
958 * into the framework.
960 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
962 /* Switch buffer & re-trigger DMA job */
963 dmarx->use_buf_b = !dmarx->use_buf_b;
964 if (pl011_dma_rx_trigger_dma(uap)) {
965 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
966 "fall back to interrupt mode\n");
967 uap->im |= UART011_RXIM;
968 pl011_write(uap->im, uap, REG_IMSC);
972 static void pl011_dma_rx_callback(void *data)
974 struct uart_amba_port *uap = data;
975 struct pl011_dmarx_data *dmarx = &uap->dmarx;
976 struct dma_chan *rxchan = dmarx->chan;
977 bool lastbuf = dmarx->use_buf_b;
978 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
979 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
980 size_t pending;
981 struct dma_tx_state state;
982 int ret;
985 * This completion interrupt occurs typically when the
986 * RX buffer is totally stuffed but no timeout has yet
987 * occurred. When that happens, we just want the RX
988 * routine to flush out the secondary DMA buffer while
989 * we immediately trigger the next DMA job.
991 spin_lock_irq(&uap->port.lock);
993 * Rx data can be taken by the UART interrupts during
994 * the DMA irq handler. So we check the residue here.
996 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
997 pending = sgbuf->sg.length - state.residue;
998 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
999 /* Then we terminate the transfer - we now know our residue */
1000 dmaengine_terminate_all(rxchan);
1002 uap->dmarx.running = false;
1003 dmarx->use_buf_b = !lastbuf;
1004 ret = pl011_dma_rx_trigger_dma(uap);
1006 pl011_dma_rx_chars(uap, pending, lastbuf, false);
1007 spin_unlock_irq(&uap->port.lock);
1009 * Do this check after we picked the DMA chars so we don't
1010 * get some IRQ immediately from RX.
1012 if (ret) {
1013 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1014 "fall back to interrupt mode\n");
1015 uap->im |= UART011_RXIM;
1016 pl011_write(uap->im, uap, REG_IMSC);
1021 * Stop accepting received characters, when we're shutting down or
1022 * suspending this port.
1023 * Locking: called with port lock held and IRQs disabled.
1025 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1027 /* FIXME. Just disable the DMA enable */
1028 uap->dmacr &= ~UART011_RXDMAE;
1029 pl011_write(uap->dmacr, uap, REG_DMACR);
1033 * Timer handler for Rx DMA polling.
1034 * Every polling, It checks the residue in the dma buffer and transfer
1035 * data to the tty. Also, last_residue is updated for the next polling.
1037 static void pl011_dma_rx_poll(unsigned long args)
1039 struct uart_amba_port *uap = (struct uart_amba_port *)args;
1040 struct tty_port *port = &uap->port.state->port;
1041 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1042 struct dma_chan *rxchan = uap->dmarx.chan;
1043 unsigned long flags = 0;
1044 unsigned int dmataken = 0;
1045 unsigned int size = 0;
1046 struct pl011_sgbuf *sgbuf;
1047 int dma_count;
1048 struct dma_tx_state state;
1050 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1051 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1052 if (likely(state.residue < dmarx->last_residue)) {
1053 dmataken = sgbuf->sg.length - dmarx->last_residue;
1054 size = dmarx->last_residue - state.residue;
1055 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1056 size);
1057 if (dma_count == size)
1058 dmarx->last_residue = state.residue;
1059 dmarx->last_jiffies = jiffies;
1061 tty_flip_buffer_push(port);
1064 * If no data is received in poll_timeout, the driver will fall back
1065 * to interrupt mode. We will retrigger DMA at the first interrupt.
1067 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1068 > uap->dmarx.poll_timeout) {
1070 spin_lock_irqsave(&uap->port.lock, flags);
1071 pl011_dma_rx_stop(uap);
1072 uap->im |= UART011_RXIM;
1073 pl011_write(uap->im, uap, REG_IMSC);
1074 spin_unlock_irqrestore(&uap->port.lock, flags);
1076 uap->dmarx.running = false;
1077 dmaengine_terminate_all(rxchan);
1078 del_timer(&uap->dmarx.timer);
1079 } else {
1080 mod_timer(&uap->dmarx.timer,
1081 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1085 static void pl011_dma_startup(struct uart_amba_port *uap)
1087 int ret;
1089 if (!uap->dma_probed)
1090 pl011_dma_probe(uap);
1092 if (!uap->dmatx.chan)
1093 return;
1095 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1096 if (!uap->dmatx.buf) {
1097 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1098 uap->port.fifosize = uap->fifosize;
1099 return;
1102 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1104 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1105 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1106 uap->using_tx_dma = true;
1108 if (!uap->dmarx.chan)
1109 goto skip_rx;
1111 /* Allocate and map DMA RX buffers */
1112 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1113 DMA_FROM_DEVICE);
1114 if (ret) {
1115 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1116 "RX buffer A", ret);
1117 goto skip_rx;
1120 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1121 DMA_FROM_DEVICE);
1122 if (ret) {
1123 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1124 "RX buffer B", ret);
1125 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1126 DMA_FROM_DEVICE);
1127 goto skip_rx;
1130 uap->using_rx_dma = true;
1132 skip_rx:
1133 /* Turn on DMA error (RX/TX will be enabled on demand) */
1134 uap->dmacr |= UART011_DMAONERR;
1135 pl011_write(uap->dmacr, uap, REG_DMACR);
1138 * ST Micro variants has some specific dma burst threshold
1139 * compensation. Set this to 16 bytes, so burst will only
1140 * be issued above/below 16 bytes.
1142 if (uap->vendor->dma_threshold)
1143 pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1144 uap, REG_ST_DMAWM);
1146 if (uap->using_rx_dma) {
1147 if (pl011_dma_rx_trigger_dma(uap))
1148 dev_dbg(uap->port.dev, "could not trigger initial "
1149 "RX DMA job, fall back to interrupt mode\n");
1150 if (uap->dmarx.poll_rate) {
1151 init_timer(&(uap->dmarx.timer));
1152 uap->dmarx.timer.function = pl011_dma_rx_poll;
1153 uap->dmarx.timer.data = (unsigned long)uap;
1154 mod_timer(&uap->dmarx.timer,
1155 jiffies +
1156 msecs_to_jiffies(uap->dmarx.poll_rate));
1157 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1158 uap->dmarx.last_jiffies = jiffies;
1163 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1165 if (!(uap->using_tx_dma || uap->using_rx_dma))
1166 return;
1168 /* Disable RX and TX DMA */
1169 while (pl011_read(uap, REG_FR) & UART01x_FR_BUSY)
1170 cpu_relax();
1172 spin_lock_irq(&uap->port.lock);
1173 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1174 pl011_write(uap->dmacr, uap, REG_DMACR);
1175 spin_unlock_irq(&uap->port.lock);
1177 if (uap->using_tx_dma) {
1178 /* In theory, this should already be done by pl011_dma_flush_buffer */
1179 dmaengine_terminate_all(uap->dmatx.chan);
1180 if (uap->dmatx.queued) {
1181 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1182 DMA_TO_DEVICE);
1183 uap->dmatx.queued = false;
1186 kfree(uap->dmatx.buf);
1187 uap->using_tx_dma = false;
1190 if (uap->using_rx_dma) {
1191 dmaengine_terminate_all(uap->dmarx.chan);
1192 /* Clean up the RX DMA */
1193 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1194 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1195 if (uap->dmarx.poll_rate)
1196 del_timer_sync(&uap->dmarx.timer);
1197 uap->using_rx_dma = false;
1201 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1203 return uap->using_rx_dma;
1206 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1208 return uap->using_rx_dma && uap->dmarx.running;
1211 #else
1212 /* Blank functions if the DMA engine is not available */
1213 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1217 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1221 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1225 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1229 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1231 return false;
1234 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1238 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1240 return false;
1243 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1247 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1251 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1253 return -EIO;
1256 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1258 return false;
1261 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1263 return false;
1266 #define pl011_dma_flush_buffer NULL
1267 #endif
1269 static void pl011_stop_tx(struct uart_port *port)
1271 struct uart_amba_port *uap =
1272 container_of(port, struct uart_amba_port, port);
1274 uap->im &= ~UART011_TXIM;
1275 pl011_write(uap->im, uap, REG_IMSC);
1276 pl011_dma_tx_stop(uap);
1279 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1281 /* Start TX with programmed I/O only (no DMA) */
1282 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1284 uap->im |= UART011_TXIM;
1285 pl011_write(uap->im, uap, REG_IMSC);
1286 pl011_tx_chars(uap, false);
1289 static void pl011_start_tx(struct uart_port *port)
1291 struct uart_amba_port *uap =
1292 container_of(port, struct uart_amba_port, port);
1294 if (!pl011_dma_tx_start(uap))
1295 pl011_start_tx_pio(uap);
1298 static void pl011_stop_rx(struct uart_port *port)
1300 struct uart_amba_port *uap =
1301 container_of(port, struct uart_amba_port, port);
1303 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1304 UART011_PEIM|UART011_BEIM|UART011_OEIM);
1305 pl011_write(uap->im, uap, REG_IMSC);
1307 pl011_dma_rx_stop(uap);
1310 static void pl011_enable_ms(struct uart_port *port)
1312 struct uart_amba_port *uap =
1313 container_of(port, struct uart_amba_port, port);
1315 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1316 pl011_write(uap->im, uap, REG_IMSC);
1319 static void pl011_rx_chars(struct uart_amba_port *uap)
1320 __releases(&uap->port.lock)
1321 __acquires(&uap->port.lock)
1323 pl011_fifo_to_tty(uap);
1325 spin_unlock(&uap->port.lock);
1326 tty_flip_buffer_push(&uap->port.state->port);
1328 * If we were temporarily out of DMA mode for a while,
1329 * attempt to switch back to DMA mode again.
1331 if (pl011_dma_rx_available(uap)) {
1332 if (pl011_dma_rx_trigger_dma(uap)) {
1333 dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1334 "fall back to interrupt mode again\n");
1335 uap->im |= UART011_RXIM;
1336 pl011_write(uap->im, uap, REG_IMSC);
1337 } else {
1338 #ifdef CONFIG_DMA_ENGINE
1339 /* Start Rx DMA poll */
1340 if (uap->dmarx.poll_rate) {
1341 uap->dmarx.last_jiffies = jiffies;
1342 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1343 mod_timer(&uap->dmarx.timer,
1344 jiffies +
1345 msecs_to_jiffies(uap->dmarx.poll_rate));
1347 #endif
1350 spin_lock(&uap->port.lock);
1353 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1354 bool from_irq)
1356 if (unlikely(!from_irq) &&
1357 pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1358 return false; /* unable to transmit character */
1360 pl011_write(c, uap, REG_DR);
1361 uap->port.icount.tx++;
1363 return true;
1366 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1368 struct circ_buf *xmit = &uap->port.state->xmit;
1369 int count = uap->fifosize >> 1;
1371 if (uap->port.x_char) {
1372 if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1373 return;
1374 uap->port.x_char = 0;
1375 --count;
1377 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1378 pl011_stop_tx(&uap->port);
1379 return;
1382 /* If we are using DMA mode, try to send some characters. */
1383 if (pl011_dma_tx_irq(uap))
1384 return;
1386 do {
1387 if (likely(from_irq) && count-- == 0)
1388 break;
1390 if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1391 break;
1393 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1394 } while (!uart_circ_empty(xmit));
1396 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1397 uart_write_wakeup(&uap->port);
1399 if (uart_circ_empty(xmit))
1400 pl011_stop_tx(&uap->port);
1403 static void pl011_modem_status(struct uart_amba_port *uap)
1405 unsigned int status, delta;
1407 status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1409 delta = status ^ uap->old_status;
1410 uap->old_status = status;
1412 if (!delta)
1413 return;
1415 if (delta & UART01x_FR_DCD)
1416 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1418 if (delta & UART01x_FR_DSR)
1419 uap->port.icount.dsr++;
1421 if (delta & UART01x_FR_CTS)
1422 uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1424 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1427 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1429 unsigned int dummy_read;
1431 if (!uap->vendor->cts_event_workaround)
1432 return;
1434 /* workaround to make sure that all bits are unlocked.. */
1435 pl011_write(0x00, uap, REG_ICR);
1438 * WA: introduce 26ns(1 uart clk) delay before W1C;
1439 * single apb access will incur 2 pclk(133.12Mhz) delay,
1440 * so add 2 dummy reads
1442 dummy_read = pl011_read(uap, REG_ICR);
1443 dummy_read = pl011_read(uap, REG_ICR);
1446 static irqreturn_t pl011_int(int irq, void *dev_id)
1448 struct uart_amba_port *uap = dev_id;
1449 unsigned long flags;
1450 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1451 u16 imsc;
1452 int handled = 0;
1454 spin_lock_irqsave(&uap->port.lock, flags);
1455 imsc = pl011_read(uap, REG_IMSC);
1456 status = pl011_read(uap, REG_RIS) & imsc;
1457 if (status) {
1458 do {
1459 check_apply_cts_event_workaround(uap);
1461 pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1462 UART011_RXIS),
1463 uap, REG_ICR);
1465 if (status & (UART011_RTIS|UART011_RXIS)) {
1466 if (pl011_dma_rx_running(uap))
1467 pl011_dma_rx_irq(uap);
1468 else
1469 pl011_rx_chars(uap);
1471 if (status & (UART011_DSRMIS|UART011_DCDMIS|
1472 UART011_CTSMIS|UART011_RIMIS))
1473 pl011_modem_status(uap);
1474 if (status & UART011_TXIS)
1475 pl011_tx_chars(uap, true);
1477 if (pass_counter-- == 0)
1478 break;
1480 status = pl011_read(uap, REG_RIS) & imsc;
1481 } while (status != 0);
1482 handled = 1;
1485 spin_unlock_irqrestore(&uap->port.lock, flags);
1487 return IRQ_RETVAL(handled);
1490 static unsigned int pl011_tx_empty(struct uart_port *port)
1492 struct uart_amba_port *uap =
1493 container_of(port, struct uart_amba_port, port);
1494 unsigned int status = pl011_read(uap, REG_FR);
1495 return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1498 static unsigned int pl011_get_mctrl(struct uart_port *port)
1500 struct uart_amba_port *uap =
1501 container_of(port, struct uart_amba_port, port);
1502 unsigned int result = 0;
1503 unsigned int status = pl011_read(uap, REG_FR);
1505 #define TIOCMBIT(uartbit, tiocmbit) \
1506 if (status & uartbit) \
1507 result |= tiocmbit
1509 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1510 TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1511 TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1512 TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1513 #undef TIOCMBIT
1514 return result;
1517 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1519 struct uart_amba_port *uap =
1520 container_of(port, struct uart_amba_port, port);
1521 unsigned int cr;
1523 cr = pl011_read(uap, REG_CR);
1525 #define TIOCMBIT(tiocmbit, uartbit) \
1526 if (mctrl & tiocmbit) \
1527 cr |= uartbit; \
1528 else \
1529 cr &= ~uartbit
1531 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1532 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1533 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1534 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1535 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1537 if (uap->autorts) {
1538 /* We need to disable auto-RTS if we want to turn RTS off */
1539 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1541 #undef TIOCMBIT
1543 pl011_write(cr, uap, REG_CR);
1546 static void pl011_break_ctl(struct uart_port *port, int break_state)
1548 struct uart_amba_port *uap =
1549 container_of(port, struct uart_amba_port, port);
1550 unsigned long flags;
1551 unsigned int lcr_h;
1553 spin_lock_irqsave(&uap->port.lock, flags);
1554 lcr_h = pl011_read(uap, REG_LCRH_TX);
1555 if (break_state == -1)
1556 lcr_h |= UART01x_LCRH_BRK;
1557 else
1558 lcr_h &= ~UART01x_LCRH_BRK;
1559 pl011_write(lcr_h, uap, REG_LCRH_TX);
1560 spin_unlock_irqrestore(&uap->port.lock, flags);
1563 #ifdef CONFIG_CONSOLE_POLL
1565 static void pl011_quiesce_irqs(struct uart_port *port)
1567 struct uart_amba_port *uap =
1568 container_of(port, struct uart_amba_port, port);
1570 pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1572 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1573 * we simply mask it. start_tx() will unmask it.
1575 * Note we can race with start_tx(), and if the race happens, the
1576 * polling user might get another interrupt just after we clear it.
1577 * But it should be OK and can happen even w/o the race, e.g.
1578 * controller immediately got some new data and raised the IRQ.
1580 * And whoever uses polling routines assumes that it manages the device
1581 * (including tx queue), so we're also fine with start_tx()'s caller
1582 * side.
1584 pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1585 REG_IMSC);
1588 static int pl011_get_poll_char(struct uart_port *port)
1590 struct uart_amba_port *uap =
1591 container_of(port, struct uart_amba_port, port);
1592 unsigned int status;
1595 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1596 * debugger.
1598 pl011_quiesce_irqs(port);
1600 status = pl011_read(uap, REG_FR);
1601 if (status & UART01x_FR_RXFE)
1602 return NO_POLL_CHAR;
1604 return pl011_read(uap, REG_DR);
1607 static void pl011_put_poll_char(struct uart_port *port,
1608 unsigned char ch)
1610 struct uart_amba_port *uap =
1611 container_of(port, struct uart_amba_port, port);
1613 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1614 cpu_relax();
1616 pl011_write(ch, uap, REG_DR);
1619 #endif /* CONFIG_CONSOLE_POLL */
1621 static int pl011_hwinit(struct uart_port *port)
1623 struct uart_amba_port *uap =
1624 container_of(port, struct uart_amba_port, port);
1625 int retval;
1627 /* Optionaly enable pins to be muxed in and configured */
1628 pinctrl_pm_select_default_state(port->dev);
1631 * Try to enable the clock producer.
1633 retval = clk_prepare_enable(uap->clk);
1634 if (retval)
1635 return retval;
1637 uap->port.uartclk = clk_get_rate(uap->clk);
1639 /* Clear pending error and receive interrupts */
1640 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1641 UART011_FEIS | UART011_RTIS | UART011_RXIS,
1642 uap, REG_ICR);
1645 * Save interrupts enable mask, and enable RX interrupts in case if
1646 * the interrupt is used for NMI entry.
1648 uap->im = pl011_read(uap, REG_IMSC);
1649 pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1651 if (dev_get_platdata(uap->port.dev)) {
1652 struct amba_pl011_data *plat;
1654 plat = dev_get_platdata(uap->port.dev);
1655 if (plat->init)
1656 plat->init();
1658 return 0;
1661 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1663 return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1664 pl011_reg_to_offset(uap, REG_LCRH_TX);
1667 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1669 pl011_write(lcr_h, uap, REG_LCRH_RX);
1670 if (pl011_split_lcrh(uap)) {
1671 int i;
1673 * Wait 10 PCLKs before writing LCRH_TX register,
1674 * to get this delay write read only register 10 times
1676 for (i = 0; i < 10; ++i)
1677 pl011_write(0xff, uap, REG_MIS);
1678 pl011_write(lcr_h, uap, REG_LCRH_TX);
1682 static int pl011_allocate_irq(struct uart_amba_port *uap)
1684 pl011_write(uap->im, uap, REG_IMSC);
1686 return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1690 * Enable interrupts, only timeouts when using DMA
1691 * if initial RX DMA job failed, start in interrupt mode
1692 * as well.
1694 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1696 spin_lock_irq(&uap->port.lock);
1698 /* Clear out any spuriously appearing RX interrupts */
1699 pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1700 uap->im = UART011_RTIM;
1701 if (!pl011_dma_rx_running(uap))
1702 uap->im |= UART011_RXIM;
1703 pl011_write(uap->im, uap, REG_IMSC);
1704 spin_unlock_irq(&uap->port.lock);
1707 static int pl011_startup(struct uart_port *port)
1709 struct uart_amba_port *uap =
1710 container_of(port, struct uart_amba_port, port);
1711 unsigned int cr;
1712 int retval;
1714 retval = pl011_hwinit(port);
1715 if (retval)
1716 goto clk_dis;
1718 retval = pl011_allocate_irq(uap);
1719 if (retval)
1720 goto clk_dis;
1722 pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1724 spin_lock_irq(&uap->port.lock);
1726 /* restore RTS and DTR */
1727 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1728 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1729 pl011_write(cr, uap, REG_CR);
1731 spin_unlock_irq(&uap->port.lock);
1734 * initialise the old status of the modem signals
1736 uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1738 /* Startup DMA */
1739 pl011_dma_startup(uap);
1741 pl011_enable_interrupts(uap);
1743 return 0;
1745 clk_dis:
1746 clk_disable_unprepare(uap->clk);
1747 return retval;
1750 static int sbsa_uart_startup(struct uart_port *port)
1752 struct uart_amba_port *uap =
1753 container_of(port, struct uart_amba_port, port);
1754 int retval;
1756 retval = pl011_hwinit(port);
1757 if (retval)
1758 return retval;
1760 retval = pl011_allocate_irq(uap);
1761 if (retval)
1762 return retval;
1764 /* The SBSA UART does not support any modem status lines. */
1765 uap->old_status = 0;
1767 pl011_enable_interrupts(uap);
1769 return 0;
1772 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1773 unsigned int lcrh)
1775 unsigned long val;
1777 val = pl011_read(uap, lcrh);
1778 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1779 pl011_write(val, uap, lcrh);
1783 * disable the port. It should not disable RTS and DTR.
1784 * Also RTS and DTR state should be preserved to restore
1785 * it during startup().
1787 static void pl011_disable_uart(struct uart_amba_port *uap)
1789 unsigned int cr;
1791 uap->autorts = false;
1792 spin_lock_irq(&uap->port.lock);
1793 cr = pl011_read(uap, REG_CR);
1794 uap->old_cr = cr;
1795 cr &= UART011_CR_RTS | UART011_CR_DTR;
1796 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1797 pl011_write(cr, uap, REG_CR);
1798 spin_unlock_irq(&uap->port.lock);
1801 * disable break condition and fifos
1803 pl011_shutdown_channel(uap, REG_LCRH_RX);
1804 if (pl011_split_lcrh(uap))
1805 pl011_shutdown_channel(uap, REG_LCRH_TX);
1808 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1810 spin_lock_irq(&uap->port.lock);
1812 /* mask all interrupts and clear all pending ones */
1813 uap->im = 0;
1814 pl011_write(uap->im, uap, REG_IMSC);
1815 pl011_write(0xffff, uap, REG_ICR);
1817 spin_unlock_irq(&uap->port.lock);
1820 static void pl011_shutdown(struct uart_port *port)
1822 struct uart_amba_port *uap =
1823 container_of(port, struct uart_amba_port, port);
1825 pl011_disable_interrupts(uap);
1827 pl011_dma_shutdown(uap);
1829 free_irq(uap->port.irq, uap);
1831 pl011_disable_uart(uap);
1834 * Shut down the clock producer
1836 clk_disable_unprepare(uap->clk);
1837 /* Optionally let pins go into sleep states */
1838 pinctrl_pm_select_sleep_state(port->dev);
1840 if (dev_get_platdata(uap->port.dev)) {
1841 struct amba_pl011_data *plat;
1843 plat = dev_get_platdata(uap->port.dev);
1844 if (plat->exit)
1845 plat->exit();
1848 if (uap->port.ops->flush_buffer)
1849 uap->port.ops->flush_buffer(port);
1852 static void sbsa_uart_shutdown(struct uart_port *port)
1854 struct uart_amba_port *uap =
1855 container_of(port, struct uart_amba_port, port);
1857 pl011_disable_interrupts(uap);
1859 free_irq(uap->port.irq, uap);
1861 if (uap->port.ops->flush_buffer)
1862 uap->port.ops->flush_buffer(port);
1865 static void
1866 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1868 port->read_status_mask = UART011_DR_OE | 255;
1869 if (termios->c_iflag & INPCK)
1870 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1871 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1872 port->read_status_mask |= UART011_DR_BE;
1875 * Characters to ignore
1877 port->ignore_status_mask = 0;
1878 if (termios->c_iflag & IGNPAR)
1879 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1880 if (termios->c_iflag & IGNBRK) {
1881 port->ignore_status_mask |= UART011_DR_BE;
1883 * If we're ignoring parity and break indicators,
1884 * ignore overruns too (for real raw support).
1886 if (termios->c_iflag & IGNPAR)
1887 port->ignore_status_mask |= UART011_DR_OE;
1891 * Ignore all characters if CREAD is not set.
1893 if ((termios->c_cflag & CREAD) == 0)
1894 port->ignore_status_mask |= UART_DUMMY_DR_RX;
1897 static void
1898 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1899 struct ktermios *old)
1901 struct uart_amba_port *uap =
1902 container_of(port, struct uart_amba_port, port);
1903 unsigned int lcr_h, old_cr;
1904 unsigned long flags;
1905 unsigned int baud, quot, clkdiv;
1907 if (uap->vendor->oversampling)
1908 clkdiv = 8;
1909 else
1910 clkdiv = 16;
1913 * Ask the core to calculate the divisor for us.
1915 baud = uart_get_baud_rate(port, termios, old, 0,
1916 port->uartclk / clkdiv);
1917 #ifdef CONFIG_DMA_ENGINE
1919 * Adjust RX DMA polling rate with baud rate if not specified.
1921 if (uap->dmarx.auto_poll_rate)
1922 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1923 #endif
1925 if (baud > port->uartclk/16)
1926 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1927 else
1928 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1930 switch (termios->c_cflag & CSIZE) {
1931 case CS5:
1932 lcr_h = UART01x_LCRH_WLEN_5;
1933 break;
1934 case CS6:
1935 lcr_h = UART01x_LCRH_WLEN_6;
1936 break;
1937 case CS7:
1938 lcr_h = UART01x_LCRH_WLEN_7;
1939 break;
1940 default: // CS8
1941 lcr_h = UART01x_LCRH_WLEN_8;
1942 break;
1944 if (termios->c_cflag & CSTOPB)
1945 lcr_h |= UART01x_LCRH_STP2;
1946 if (termios->c_cflag & PARENB) {
1947 lcr_h |= UART01x_LCRH_PEN;
1948 if (!(termios->c_cflag & PARODD))
1949 lcr_h |= UART01x_LCRH_EPS;
1950 if (termios->c_cflag & CMSPAR)
1951 lcr_h |= UART011_LCRH_SPS;
1953 if (uap->fifosize > 1)
1954 lcr_h |= UART01x_LCRH_FEN;
1956 spin_lock_irqsave(&port->lock, flags);
1959 * Update the per-port timeout.
1961 uart_update_timeout(port, termios->c_cflag, baud);
1963 pl011_setup_status_masks(port, termios);
1965 if (UART_ENABLE_MS(port, termios->c_cflag))
1966 pl011_enable_ms(port);
1968 /* first, disable everything */
1969 old_cr = pl011_read(uap, REG_CR);
1970 pl011_write(0, uap, REG_CR);
1972 if (termios->c_cflag & CRTSCTS) {
1973 if (old_cr & UART011_CR_RTS)
1974 old_cr |= UART011_CR_RTSEN;
1976 old_cr |= UART011_CR_CTSEN;
1977 uap->autorts = true;
1978 } else {
1979 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1980 uap->autorts = false;
1983 if (uap->vendor->oversampling) {
1984 if (baud > port->uartclk / 16)
1985 old_cr |= ST_UART011_CR_OVSFACT;
1986 else
1987 old_cr &= ~ST_UART011_CR_OVSFACT;
1991 * Workaround for the ST Micro oversampling variants to
1992 * increase the bitrate slightly, by lowering the divisor,
1993 * to avoid delayed sampling of start bit at high speeds,
1994 * else we see data corruption.
1996 if (uap->vendor->oversampling) {
1997 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1998 quot -= 1;
1999 else if ((baud > 3250000) && (quot > 2))
2000 quot -= 2;
2002 /* Set baud rate */
2003 pl011_write(quot & 0x3f, uap, REG_FBRD);
2004 pl011_write(quot >> 6, uap, REG_IBRD);
2007 * ----------v----------v----------v----------v-----
2008 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2009 * REG_FBRD & REG_IBRD.
2010 * ----------^----------^----------^----------^-----
2012 pl011_write_lcr_h(uap, lcr_h);
2013 pl011_write(old_cr, uap, REG_CR);
2015 spin_unlock_irqrestore(&port->lock, flags);
2018 static void
2019 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2020 struct ktermios *old)
2022 struct uart_amba_port *uap =
2023 container_of(port, struct uart_amba_port, port);
2024 unsigned long flags;
2026 tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2028 /* The SBSA UART only supports 8n1 without hardware flow control. */
2029 termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2030 termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2031 termios->c_cflag |= CS8 | CLOCAL;
2033 spin_lock_irqsave(&port->lock, flags);
2034 uart_update_timeout(port, CS8, uap->fixed_baud);
2035 pl011_setup_status_masks(port, termios);
2036 spin_unlock_irqrestore(&port->lock, flags);
2039 static const char *pl011_type(struct uart_port *port)
2041 struct uart_amba_port *uap =
2042 container_of(port, struct uart_amba_port, port);
2043 return uap->port.type == PORT_AMBA ? uap->type : NULL;
2047 * Release the memory region(s) being used by 'port'
2049 static void pl011_release_port(struct uart_port *port)
2051 release_mem_region(port->mapbase, SZ_4K);
2055 * Request the memory region(s) being used by 'port'
2057 static int pl011_request_port(struct uart_port *port)
2059 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2060 != NULL ? 0 : -EBUSY;
2064 * Configure/autoconfigure the port.
2066 static void pl011_config_port(struct uart_port *port, int flags)
2068 if (flags & UART_CONFIG_TYPE) {
2069 port->type = PORT_AMBA;
2070 pl011_request_port(port);
2075 * verify the new serial_struct (for TIOCSSERIAL).
2077 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2079 int ret = 0;
2080 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2081 ret = -EINVAL;
2082 if (ser->irq < 0 || ser->irq >= nr_irqs)
2083 ret = -EINVAL;
2084 if (ser->baud_base < 9600)
2085 ret = -EINVAL;
2086 return ret;
2089 static struct uart_ops amba_pl011_pops = {
2090 .tx_empty = pl011_tx_empty,
2091 .set_mctrl = pl011_set_mctrl,
2092 .get_mctrl = pl011_get_mctrl,
2093 .stop_tx = pl011_stop_tx,
2094 .start_tx = pl011_start_tx,
2095 .stop_rx = pl011_stop_rx,
2096 .enable_ms = pl011_enable_ms,
2097 .break_ctl = pl011_break_ctl,
2098 .startup = pl011_startup,
2099 .shutdown = pl011_shutdown,
2100 .flush_buffer = pl011_dma_flush_buffer,
2101 .set_termios = pl011_set_termios,
2102 .type = pl011_type,
2103 .release_port = pl011_release_port,
2104 .request_port = pl011_request_port,
2105 .config_port = pl011_config_port,
2106 .verify_port = pl011_verify_port,
2107 #ifdef CONFIG_CONSOLE_POLL
2108 .poll_init = pl011_hwinit,
2109 .poll_get_char = pl011_get_poll_char,
2110 .poll_put_char = pl011_put_poll_char,
2111 #endif
2114 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2118 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2120 return 0;
2123 static const struct uart_ops sbsa_uart_pops = {
2124 .tx_empty = pl011_tx_empty,
2125 .set_mctrl = sbsa_uart_set_mctrl,
2126 .get_mctrl = sbsa_uart_get_mctrl,
2127 .stop_tx = pl011_stop_tx,
2128 .start_tx = pl011_start_tx,
2129 .stop_rx = pl011_stop_rx,
2130 .startup = sbsa_uart_startup,
2131 .shutdown = sbsa_uart_shutdown,
2132 .set_termios = sbsa_uart_set_termios,
2133 .type = pl011_type,
2134 .release_port = pl011_release_port,
2135 .request_port = pl011_request_port,
2136 .config_port = pl011_config_port,
2137 .verify_port = pl011_verify_port,
2138 #ifdef CONFIG_CONSOLE_POLL
2139 .poll_init = pl011_hwinit,
2140 .poll_get_char = pl011_get_poll_char,
2141 .poll_put_char = pl011_put_poll_char,
2142 #endif
2145 static struct uart_amba_port *amba_ports[UART_NR];
2147 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2149 static void pl011_console_putchar(struct uart_port *port, int ch)
2151 struct uart_amba_port *uap =
2152 container_of(port, struct uart_amba_port, port);
2154 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2155 cpu_relax();
2156 pl011_write(ch, uap, REG_DR);
2159 static void
2160 pl011_console_write(struct console *co, const char *s, unsigned int count)
2162 struct uart_amba_port *uap = amba_ports[co->index];
2163 unsigned int old_cr = 0, new_cr;
2164 unsigned long flags;
2165 int locked = 1;
2167 clk_enable(uap->clk);
2169 local_irq_save(flags);
2170 if (uap->port.sysrq)
2171 locked = 0;
2172 else if (oops_in_progress)
2173 locked = spin_trylock(&uap->port.lock);
2174 else
2175 spin_lock(&uap->port.lock);
2178 * First save the CR then disable the interrupts
2180 if (!uap->vendor->always_enabled) {
2181 old_cr = pl011_read(uap, REG_CR);
2182 new_cr = old_cr & ~UART011_CR_CTSEN;
2183 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2184 pl011_write(new_cr, uap, REG_CR);
2187 uart_console_write(&uap->port, s, count, pl011_console_putchar);
2190 * Finally, wait for transmitter to become empty
2191 * and restore the TCR
2193 while (pl011_read(uap, REG_FR) & UART01x_FR_BUSY)
2194 cpu_relax();
2195 if (!uap->vendor->always_enabled)
2196 pl011_write(old_cr, uap, REG_CR);
2198 if (locked)
2199 spin_unlock(&uap->port.lock);
2200 local_irq_restore(flags);
2202 clk_disable(uap->clk);
2205 static void __init
2206 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2207 int *parity, int *bits)
2209 if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2210 unsigned int lcr_h, ibrd, fbrd;
2212 lcr_h = pl011_read(uap, REG_LCRH_TX);
2214 *parity = 'n';
2215 if (lcr_h & UART01x_LCRH_PEN) {
2216 if (lcr_h & UART01x_LCRH_EPS)
2217 *parity = 'e';
2218 else
2219 *parity = 'o';
2222 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2223 *bits = 7;
2224 else
2225 *bits = 8;
2227 ibrd = pl011_read(uap, REG_IBRD);
2228 fbrd = pl011_read(uap, REG_FBRD);
2230 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2232 if (uap->vendor->oversampling) {
2233 if (pl011_read(uap, REG_CR)
2234 & ST_UART011_CR_OVSFACT)
2235 *baud *= 2;
2240 static int __init pl011_console_setup(struct console *co, char *options)
2242 struct uart_amba_port *uap;
2243 int baud = 38400;
2244 int bits = 8;
2245 int parity = 'n';
2246 int flow = 'n';
2247 int ret;
2250 * Check whether an invalid uart number has been specified, and
2251 * if so, search for the first available port that does have
2252 * console support.
2254 if (co->index >= UART_NR)
2255 co->index = 0;
2256 uap = amba_ports[co->index];
2257 if (!uap)
2258 return -ENODEV;
2260 /* Allow pins to be muxed in and configured */
2261 pinctrl_pm_select_default_state(uap->port.dev);
2263 ret = clk_prepare(uap->clk);
2264 if (ret)
2265 return ret;
2267 if (dev_get_platdata(uap->port.dev)) {
2268 struct amba_pl011_data *plat;
2270 plat = dev_get_platdata(uap->port.dev);
2271 if (plat->init)
2272 plat->init();
2275 uap->port.uartclk = clk_get_rate(uap->clk);
2277 if (uap->vendor->fixed_options) {
2278 baud = uap->fixed_baud;
2279 } else {
2280 if (options)
2281 uart_parse_options(options,
2282 &baud, &parity, &bits, &flow);
2283 else
2284 pl011_console_get_options(uap, &baud, &parity, &bits);
2287 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2290 static struct uart_driver amba_reg;
2291 static struct console amba_console = {
2292 .name = "ttyAMA",
2293 .write = pl011_console_write,
2294 .device = uart_console_device,
2295 .setup = pl011_console_setup,
2296 .flags = CON_PRINTBUFFER,
2297 .index = -1,
2298 .data = &amba_reg,
2301 #define AMBA_CONSOLE (&amba_console)
2303 static void pl011_putc(struct uart_port *port, int c)
2305 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2306 cpu_relax();
2307 if (port->iotype == UPIO_MEM32)
2308 writel(c, port->membase + UART01x_DR);
2309 else
2310 writeb(c, port->membase + UART01x_DR);
2311 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2312 cpu_relax();
2315 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2317 struct earlycon_device *dev = con->data;
2319 uart_console_write(&dev->port, s, n, pl011_putc);
2322 static int __init pl011_early_console_setup(struct earlycon_device *device,
2323 const char *opt)
2325 if (!device->port.membase)
2326 return -ENODEV;
2328 device->con->write = pl011_early_write;
2329 return 0;
2331 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2333 #else
2334 #define AMBA_CONSOLE NULL
2335 #endif
2337 static struct uart_driver amba_reg = {
2338 .owner = THIS_MODULE,
2339 .driver_name = "ttyAMA",
2340 .dev_name = "ttyAMA",
2341 .major = SERIAL_AMBA_MAJOR,
2342 .minor = SERIAL_AMBA_MINOR,
2343 .nr = UART_NR,
2344 .cons = AMBA_CONSOLE,
2347 static int pl011_probe_dt_alias(int index, struct device *dev)
2349 struct device_node *np;
2350 static bool seen_dev_with_alias = false;
2351 static bool seen_dev_without_alias = false;
2352 int ret = index;
2354 if (!IS_ENABLED(CONFIG_OF))
2355 return ret;
2357 np = dev->of_node;
2358 if (!np)
2359 return ret;
2361 ret = of_alias_get_id(np, "serial");
2362 if (IS_ERR_VALUE(ret)) {
2363 seen_dev_without_alias = true;
2364 ret = index;
2365 } else {
2366 seen_dev_with_alias = true;
2367 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2368 dev_warn(dev, "requested serial port %d not available.\n", ret);
2369 ret = index;
2373 if (seen_dev_with_alias && seen_dev_without_alias)
2374 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2376 return ret;
2379 /* unregisters the driver also if no more ports are left */
2380 static void pl011_unregister_port(struct uart_amba_port *uap)
2382 int i;
2383 bool busy = false;
2385 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2386 if (amba_ports[i] == uap)
2387 amba_ports[i] = NULL;
2388 else if (amba_ports[i])
2389 busy = true;
2391 pl011_dma_remove(uap);
2392 if (!busy)
2393 uart_unregister_driver(&amba_reg);
2396 static int pl011_find_free_port(void)
2398 int i;
2400 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2401 if (amba_ports[i] == NULL)
2402 return i;
2404 return -EBUSY;
2407 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2408 struct resource *mmiobase, int index)
2410 void __iomem *base;
2412 base = devm_ioremap_resource(dev, mmiobase);
2413 if (IS_ERR(base))
2414 return PTR_ERR(base);
2416 index = pl011_probe_dt_alias(index, dev);
2418 uap->old_cr = 0;
2419 uap->port.dev = dev;
2420 uap->port.mapbase = mmiobase->start;
2421 uap->port.membase = base;
2422 uap->port.fifosize = uap->fifosize;
2423 uap->port.flags = UPF_BOOT_AUTOCONF;
2424 uap->port.line = index;
2426 amba_ports[index] = uap;
2428 return 0;
2431 static int pl011_register_port(struct uart_amba_port *uap)
2433 int ret;
2435 /* Ensure interrupts from this UART are masked and cleared */
2436 pl011_write(0, uap, REG_IMSC);
2437 pl011_write(0xffff, uap, REG_ICR);
2439 if (!amba_reg.state) {
2440 ret = uart_register_driver(&amba_reg);
2441 if (ret < 0) {
2442 dev_err(uap->port.dev,
2443 "Failed to register AMBA-PL011 driver\n");
2444 return ret;
2448 ret = uart_add_one_port(&amba_reg, &uap->port);
2449 if (ret)
2450 pl011_unregister_port(uap);
2452 return ret;
2455 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2457 struct uart_amba_port *uap;
2458 struct vendor_data *vendor = id->data;
2459 int portnr, ret;
2461 portnr = pl011_find_free_port();
2462 if (portnr < 0)
2463 return portnr;
2465 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2466 GFP_KERNEL);
2467 if (!uap)
2468 return -ENOMEM;
2470 uap->clk = devm_clk_get(&dev->dev, NULL);
2471 if (IS_ERR(uap->clk))
2472 return PTR_ERR(uap->clk);
2474 uap->reg_offset = vendor->reg_offset;
2475 uap->vendor = vendor;
2476 uap->fifosize = vendor->get_fifosize(dev);
2477 uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2478 uap->port.irq = dev->irq[0];
2479 uap->port.ops = &amba_pl011_pops;
2481 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2483 ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2484 if (ret)
2485 return ret;
2487 amba_set_drvdata(dev, uap);
2489 return pl011_register_port(uap);
2492 static int pl011_remove(struct amba_device *dev)
2494 struct uart_amba_port *uap = amba_get_drvdata(dev);
2496 uart_remove_one_port(&amba_reg, &uap->port);
2497 pl011_unregister_port(uap);
2498 return 0;
2501 #ifdef CONFIG_PM_SLEEP
2502 static int pl011_suspend(struct device *dev)
2504 struct uart_amba_port *uap = dev_get_drvdata(dev);
2506 if (!uap)
2507 return -EINVAL;
2509 return uart_suspend_port(&amba_reg, &uap->port);
2512 static int pl011_resume(struct device *dev)
2514 struct uart_amba_port *uap = dev_get_drvdata(dev);
2516 if (!uap)
2517 return -EINVAL;
2519 return uart_resume_port(&amba_reg, &uap->port);
2521 #endif
2523 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2525 static int sbsa_uart_probe(struct platform_device *pdev)
2527 struct uart_amba_port *uap;
2528 struct resource *r;
2529 int portnr, ret;
2530 int baudrate;
2533 * Check the mandatory baud rate parameter in the DT node early
2534 * so that we can easily exit with the error.
2536 if (pdev->dev.of_node) {
2537 struct device_node *np = pdev->dev.of_node;
2539 ret = of_property_read_u32(np, "current-speed", &baudrate);
2540 if (ret)
2541 return ret;
2542 } else {
2543 baudrate = 115200;
2546 portnr = pl011_find_free_port();
2547 if (portnr < 0)
2548 return portnr;
2550 uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2551 GFP_KERNEL);
2552 if (!uap)
2553 return -ENOMEM;
2555 uap->reg_offset = vendor_sbsa.reg_offset;
2556 uap->vendor = &vendor_sbsa;
2557 uap->fifosize = 32;
2558 uap->port.iotype = vendor_sbsa.access_32b ? UPIO_MEM32 : UPIO_MEM;
2559 uap->port.irq = platform_get_irq(pdev, 0);
2560 uap->port.ops = &sbsa_uart_pops;
2561 uap->fixed_baud = baudrate;
2563 snprintf(uap->type, sizeof(uap->type), "SBSA");
2565 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2567 ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2568 if (ret)
2569 return ret;
2571 platform_set_drvdata(pdev, uap);
2573 return pl011_register_port(uap);
2576 static int sbsa_uart_remove(struct platform_device *pdev)
2578 struct uart_amba_port *uap = platform_get_drvdata(pdev);
2580 uart_remove_one_port(&amba_reg, &uap->port);
2581 pl011_unregister_port(uap);
2582 return 0;
2585 static const struct of_device_id sbsa_uart_of_match[] = {
2586 { .compatible = "arm,sbsa-uart", },
2589 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2591 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2592 { "ARMH0011", 0 },
2595 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2597 static struct platform_driver arm_sbsa_uart_platform_driver = {
2598 .probe = sbsa_uart_probe,
2599 .remove = sbsa_uart_remove,
2600 .driver = {
2601 .name = "sbsa-uart",
2602 .of_match_table = of_match_ptr(sbsa_uart_of_match),
2603 .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2607 static struct amba_id pl011_ids[] = {
2609 .id = 0x00041011,
2610 .mask = 0x000fffff,
2611 .data = &vendor_arm,
2614 .id = 0x00380802,
2615 .mask = 0x00ffffff,
2616 .data = &vendor_st,
2618 { 0, 0 },
2621 MODULE_DEVICE_TABLE(amba, pl011_ids);
2623 static struct amba_driver pl011_driver = {
2624 .drv = {
2625 .name = "uart-pl011",
2626 .pm = &pl011_dev_pm_ops,
2628 .id_table = pl011_ids,
2629 .probe = pl011_probe,
2630 .remove = pl011_remove,
2633 static int __init pl011_init(void)
2635 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2637 if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2638 pr_warn("could not register SBSA UART platform driver\n");
2639 return amba_driver_register(&pl011_driver);
2642 static void __exit pl011_exit(void)
2644 platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2645 amba_driver_unregister(&pl011_driver);
2649 * While this can be a module, if builtin it's most likely the console
2650 * So let's leave module_exit but move module_init to an earlier place
2652 arch_initcall(pl011_init);
2653 module_exit(pl011_exit);
2655 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2656 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2657 MODULE_LICENSE("GPL");