2 * Driver for AMBA serial ports
4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 * Copyright 1999 ARM Limited
7 * Copyright (C) 2000 Deep Blue Solutions Ltd.
8 * Copyright (C) 2010 ST-Ericsson SA
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 * This is a generic driver for ARM AMBA-type serial ports. They
25 * have a lot of 16550-like features, but are not register compatible.
26 * Note that although they do have CTS, DCD and DSR inputs, they do
27 * not have an RI input, nor do they have DTR or RTS outputs. If
28 * required, these have to be supplied via some other means (eg, GPIO)
29 * and hooked into this driver.
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
61 #include <linux/acpi.h>
63 #include "amba-pl011.h"
67 #define SERIAL_AMBA_MAJOR 204
68 #define SERIAL_AMBA_MINOR 64
69 #define SERIAL_AMBA_NR UART_NR
71 #define AMBA_ISR_PASS_LIMIT 256
73 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
74 #define UART_DUMMY_DR_RX (1 << 16)
76 static u16 pl011_std_offsets
[REG_ARRAY_SIZE
] = {
77 [REG_DR
] = UART01x_DR
,
78 [REG_FR
] = UART01x_FR
,
79 [REG_LCRH_RX
] = UART011_LCRH
,
80 [REG_LCRH_TX
] = UART011_LCRH
,
81 [REG_IBRD
] = UART011_IBRD
,
82 [REG_FBRD
] = UART011_FBRD
,
83 [REG_CR
] = UART011_CR
,
84 [REG_IFLS
] = UART011_IFLS
,
85 [REG_IMSC
] = UART011_IMSC
,
86 [REG_RIS
] = UART011_RIS
,
87 [REG_MIS
] = UART011_MIS
,
88 [REG_ICR
] = UART011_ICR
,
89 [REG_DMACR
] = UART011_DMACR
,
92 /* There is by now at least one vendor with differing details, so handle it */
94 const u16
*reg_offset
;
99 bool cts_event_workaround
;
103 unsigned int (*get_fifosize
)(struct amba_device
*dev
);
106 static unsigned int get_fifosize_arm(struct amba_device
*dev
)
108 return amba_rev(dev
) < 3 ? 16 : 32;
111 static struct vendor_data vendor_arm
= {
112 .reg_offset
= pl011_std_offsets
,
113 .ifls
= UART011_IFLS_RX4_8
|UART011_IFLS_TX4_8
,
114 .oversampling
= false,
115 .dma_threshold
= false,
116 .cts_event_workaround
= false,
117 .always_enabled
= false,
118 .fixed_options
= false,
119 .get_fifosize
= get_fifosize_arm
,
122 static struct vendor_data vendor_sbsa
= {
123 .reg_offset
= pl011_std_offsets
,
124 .oversampling
= false,
125 .dma_threshold
= false,
126 .cts_event_workaround
= false,
127 .always_enabled
= true,
128 .fixed_options
= true,
131 static u16 pl011_st_offsets
[REG_ARRAY_SIZE
] = {
132 [REG_DR
] = UART01x_DR
,
133 [REG_ST_DMAWM
] = ST_UART011_DMAWM
,
134 [REG_ST_TIMEOUT
] = ST_UART011_TIMEOUT
,
135 [REG_FR
] = UART01x_FR
,
136 [REG_LCRH_RX
] = ST_UART011_LCRH_RX
,
137 [REG_LCRH_TX
] = ST_UART011_LCRH_TX
,
138 [REG_IBRD
] = UART011_IBRD
,
139 [REG_FBRD
] = UART011_FBRD
,
140 [REG_CR
] = UART011_CR
,
141 [REG_IFLS
] = UART011_IFLS
,
142 [REG_IMSC
] = UART011_IMSC
,
143 [REG_RIS
] = UART011_RIS
,
144 [REG_MIS
] = UART011_MIS
,
145 [REG_ICR
] = UART011_ICR
,
146 [REG_DMACR
] = UART011_DMACR
,
147 [REG_ST_XFCR
] = ST_UART011_XFCR
,
148 [REG_ST_XON1
] = ST_UART011_XON1
,
149 [REG_ST_XON2
] = ST_UART011_XON2
,
150 [REG_ST_XOFF1
] = ST_UART011_XOFF1
,
151 [REG_ST_XOFF2
] = ST_UART011_XOFF2
,
152 [REG_ST_ITCR
] = ST_UART011_ITCR
,
153 [REG_ST_ITIP
] = ST_UART011_ITIP
,
154 [REG_ST_ABCR
] = ST_UART011_ABCR
,
155 [REG_ST_ABIMSC
] = ST_UART011_ABIMSC
,
158 static unsigned int get_fifosize_st(struct amba_device
*dev
)
163 static struct vendor_data vendor_st
= {
164 .reg_offset
= pl011_st_offsets
,
165 .ifls
= UART011_IFLS_RX_HALF
|UART011_IFLS_TX_HALF
,
166 .oversampling
= true,
167 .dma_threshold
= true,
168 .cts_event_workaround
= true,
169 .always_enabled
= false,
170 .fixed_options
= false,
171 .get_fifosize
= get_fifosize_st
,
174 static const u16 pl011_zte_offsets
[REG_ARRAY_SIZE
] = {
175 [REG_DR
] = ZX_UART011_DR
,
176 [REG_FR
] = ZX_UART011_FR
,
177 [REG_LCRH_RX
] = ZX_UART011_LCRH
,
178 [REG_LCRH_TX
] = ZX_UART011_LCRH
,
179 [REG_IBRD
] = ZX_UART011_IBRD
,
180 [REG_FBRD
] = ZX_UART011_FBRD
,
181 [REG_CR
] = ZX_UART011_CR
,
182 [REG_IFLS
] = ZX_UART011_IFLS
,
183 [REG_IMSC
] = ZX_UART011_IMSC
,
184 [REG_RIS
] = ZX_UART011_RIS
,
185 [REG_MIS
] = ZX_UART011_MIS
,
186 [REG_ICR
] = ZX_UART011_ICR
,
187 [REG_DMACR
] = ZX_UART011_DMACR
,
190 static struct vendor_data vendor_zte __maybe_unused
= {
191 .reg_offset
= pl011_zte_offsets
,
193 .ifls
= UART011_IFLS_RX4_8
|UART011_IFLS_TX4_8
,
194 .get_fifosize
= get_fifosize_arm
,
197 /* Deals with DMA transactions */
200 struct scatterlist sg
;
204 struct pl011_dmarx_data
{
205 struct dma_chan
*chan
;
206 struct completion complete
;
208 struct pl011_sgbuf sgbuf_a
;
209 struct pl011_sgbuf sgbuf_b
;
212 struct timer_list timer
;
213 unsigned int last_residue
;
214 unsigned long last_jiffies
;
216 unsigned int poll_rate
;
217 unsigned int poll_timeout
;
220 struct pl011_dmatx_data
{
221 struct dma_chan
*chan
;
222 struct scatterlist sg
;
228 * We wrap our port structure around the generic uart_port.
230 struct uart_amba_port
{
231 struct uart_port port
;
232 const u16
*reg_offset
;
234 const struct vendor_data
*vendor
;
235 unsigned int dmacr
; /* dma control reg */
236 unsigned int im
; /* interrupt mask */
237 unsigned int old_status
;
238 unsigned int fifosize
; /* vendor-specific */
239 unsigned int old_cr
; /* state during shutdown */
241 unsigned int fixed_baud
; /* vendor-set fixed baud rate */
243 #ifdef CONFIG_DMA_ENGINE
247 struct pl011_dmarx_data dmarx
;
248 struct pl011_dmatx_data dmatx
;
253 static unsigned int pl011_reg_to_offset(const struct uart_amba_port
*uap
,
256 return uap
->reg_offset
[reg
];
259 static unsigned int pl011_read(const struct uart_amba_port
*uap
,
262 void __iomem
*addr
= uap
->port
.membase
+ pl011_reg_to_offset(uap
, reg
);
264 return (uap
->port
.iotype
== UPIO_MEM32
) ?
265 readl_relaxed(addr
) : readw_relaxed(addr
);
268 static void pl011_write(unsigned int val
, const struct uart_amba_port
*uap
,
271 void __iomem
*addr
= uap
->port
.membase
+ pl011_reg_to_offset(uap
, reg
);
273 if (uap
->port
.iotype
== UPIO_MEM32
)
274 writel_relaxed(val
, addr
);
276 writew_relaxed(val
, addr
);
280 * Reads up to 256 characters from the FIFO or until it's empty and
281 * inserts them into the TTY layer. Returns the number of characters
282 * read from the FIFO.
284 static int pl011_fifo_to_tty(struct uart_amba_port
*uap
)
287 unsigned int ch
, flag
, max_count
= 256;
290 while (max_count
--) {
291 status
= pl011_read(uap
, REG_FR
);
292 if (status
& UART01x_FR_RXFE
)
295 /* Take chars from the FIFO and update status */
296 ch
= pl011_read(uap
, REG_DR
) | UART_DUMMY_DR_RX
;
298 uap
->port
.icount
.rx
++;
301 if (unlikely(ch
& UART_DR_ERROR
)) {
302 if (ch
& UART011_DR_BE
) {
303 ch
&= ~(UART011_DR_FE
| UART011_DR_PE
);
304 uap
->port
.icount
.brk
++;
305 if (uart_handle_break(&uap
->port
))
307 } else if (ch
& UART011_DR_PE
)
308 uap
->port
.icount
.parity
++;
309 else if (ch
& UART011_DR_FE
)
310 uap
->port
.icount
.frame
++;
311 if (ch
& UART011_DR_OE
)
312 uap
->port
.icount
.overrun
++;
314 ch
&= uap
->port
.read_status_mask
;
316 if (ch
& UART011_DR_BE
)
318 else if (ch
& UART011_DR_PE
)
320 else if (ch
& UART011_DR_FE
)
324 if (uart_handle_sysrq_char(&uap
->port
, ch
& 255))
327 uart_insert_char(&uap
->port
, ch
, UART011_DR_OE
, ch
, flag
);
335 * All the DMA operation mode stuff goes inside this ifdef.
336 * This assumes that you have a generic DMA device interface,
337 * no custom DMA interfaces are supported.
339 #ifdef CONFIG_DMA_ENGINE
341 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
343 static int pl011_sgbuf_init(struct dma_chan
*chan
, struct pl011_sgbuf
*sg
,
344 enum dma_data_direction dir
)
348 sg
->buf
= dma_alloc_coherent(chan
->device
->dev
,
349 PL011_DMA_BUFFER_SIZE
, &dma_addr
, GFP_KERNEL
);
353 sg_init_table(&sg
->sg
, 1);
354 sg_set_page(&sg
->sg
, phys_to_page(dma_addr
),
355 PL011_DMA_BUFFER_SIZE
, offset_in_page(dma_addr
));
356 sg_dma_address(&sg
->sg
) = dma_addr
;
357 sg_dma_len(&sg
->sg
) = PL011_DMA_BUFFER_SIZE
;
362 static void pl011_sgbuf_free(struct dma_chan
*chan
, struct pl011_sgbuf
*sg
,
363 enum dma_data_direction dir
)
366 dma_free_coherent(chan
->device
->dev
,
367 PL011_DMA_BUFFER_SIZE
, sg
->buf
,
368 sg_dma_address(&sg
->sg
));
372 static void pl011_dma_probe(struct uart_amba_port
*uap
)
374 /* DMA is the sole user of the platform data right now */
375 struct amba_pl011_data
*plat
= dev_get_platdata(uap
->port
.dev
);
376 struct device
*dev
= uap
->port
.dev
;
377 struct dma_slave_config tx_conf
= {
378 .dst_addr
= uap
->port
.mapbase
+
379 pl011_reg_to_offset(uap
, REG_DR
),
380 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
381 .direction
= DMA_MEM_TO_DEV
,
382 .dst_maxburst
= uap
->fifosize
>> 1,
385 struct dma_chan
*chan
;
388 uap
->dma_probed
= true;
389 chan
= dma_request_slave_channel_reason(dev
, "tx");
391 if (PTR_ERR(chan
) == -EPROBE_DEFER
) {
392 uap
->dma_probed
= false;
396 /* We need platform data */
397 if (!plat
|| !plat
->dma_filter
) {
398 dev_info(uap
->port
.dev
, "no DMA platform data\n");
402 /* Try to acquire a generic DMA engine slave TX channel */
404 dma_cap_set(DMA_SLAVE
, mask
);
406 chan
= dma_request_channel(mask
, plat
->dma_filter
,
409 dev_err(uap
->port
.dev
, "no TX DMA channel!\n");
414 dmaengine_slave_config(chan
, &tx_conf
);
415 uap
->dmatx
.chan
= chan
;
417 dev_info(uap
->port
.dev
, "DMA channel TX %s\n",
418 dma_chan_name(uap
->dmatx
.chan
));
420 /* Optionally make use of an RX channel as well */
421 chan
= dma_request_slave_channel(dev
, "rx");
423 if (!chan
&& plat
&& plat
->dma_rx_param
) {
424 chan
= dma_request_channel(mask
, plat
->dma_filter
, plat
->dma_rx_param
);
427 dev_err(uap
->port
.dev
, "no RX DMA channel!\n");
433 struct dma_slave_config rx_conf
= {
434 .src_addr
= uap
->port
.mapbase
+
435 pl011_reg_to_offset(uap
, REG_DR
),
436 .src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
437 .direction
= DMA_DEV_TO_MEM
,
438 .src_maxburst
= uap
->fifosize
>> 2,
441 struct dma_slave_caps caps
;
444 * Some DMA controllers provide information on their capabilities.
445 * If the controller does, check for suitable residue processing
446 * otherwise assime all is well.
448 if (0 == dma_get_slave_caps(chan
, &caps
)) {
449 if (caps
.residue_granularity
==
450 DMA_RESIDUE_GRANULARITY_DESCRIPTOR
) {
451 dma_release_channel(chan
);
452 dev_info(uap
->port
.dev
,
453 "RX DMA disabled - no residue processing\n");
457 dmaengine_slave_config(chan
, &rx_conf
);
458 uap
->dmarx
.chan
= chan
;
460 uap
->dmarx
.auto_poll_rate
= false;
461 if (plat
&& plat
->dma_rx_poll_enable
) {
462 /* Set poll rate if specified. */
463 if (plat
->dma_rx_poll_rate
) {
464 uap
->dmarx
.auto_poll_rate
= false;
465 uap
->dmarx
.poll_rate
= plat
->dma_rx_poll_rate
;
468 * 100 ms defaults to poll rate if not
469 * specified. This will be adjusted with
470 * the baud rate at set_termios.
472 uap
->dmarx
.auto_poll_rate
= true;
473 uap
->dmarx
.poll_rate
= 100;
475 /* 3 secs defaults poll_timeout if not specified. */
476 if (plat
->dma_rx_poll_timeout
)
477 uap
->dmarx
.poll_timeout
=
478 plat
->dma_rx_poll_timeout
;
480 uap
->dmarx
.poll_timeout
= 3000;
481 } else if (!plat
&& dev
->of_node
) {
482 uap
->dmarx
.auto_poll_rate
= of_property_read_bool(
483 dev
->of_node
, "auto-poll");
484 if (uap
->dmarx
.auto_poll_rate
) {
487 if (0 == of_property_read_u32(dev
->of_node
,
489 uap
->dmarx
.poll_rate
= x
;
491 uap
->dmarx
.poll_rate
= 100;
492 if (0 == of_property_read_u32(dev
->of_node
,
493 "poll-timeout-ms", &x
))
494 uap
->dmarx
.poll_timeout
= x
;
496 uap
->dmarx
.poll_timeout
= 3000;
499 dev_info(uap
->port
.dev
, "DMA channel RX %s\n",
500 dma_chan_name(uap
->dmarx
.chan
));
504 static void pl011_dma_remove(struct uart_amba_port
*uap
)
507 dma_release_channel(uap
->dmatx
.chan
);
509 dma_release_channel(uap
->dmarx
.chan
);
512 /* Forward declare these for the refill routine */
513 static int pl011_dma_tx_refill(struct uart_amba_port
*uap
);
514 static void pl011_start_tx_pio(struct uart_amba_port
*uap
);
517 * The current DMA TX buffer has been sent.
518 * Try to queue up another DMA buffer.
520 static void pl011_dma_tx_callback(void *data
)
522 struct uart_amba_port
*uap
= data
;
523 struct pl011_dmatx_data
*dmatx
= &uap
->dmatx
;
527 spin_lock_irqsave(&uap
->port
.lock
, flags
);
528 if (uap
->dmatx
.queued
)
529 dma_unmap_sg(dmatx
->chan
->device
->dev
, &dmatx
->sg
, 1,
533 uap
->dmacr
= dmacr
& ~UART011_TXDMAE
;
534 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
537 * If TX DMA was disabled, it means that we've stopped the DMA for
538 * some reason (eg, XOFF received, or we want to send an X-char.)
540 * Note: we need to be careful here of a potential race between DMA
541 * and the rest of the driver - if the driver disables TX DMA while
542 * a TX buffer completing, we must update the tx queued status to
543 * get further refills (hence we check dmacr).
545 if (!(dmacr
& UART011_TXDMAE
) || uart_tx_stopped(&uap
->port
) ||
546 uart_circ_empty(&uap
->port
.state
->xmit
)) {
547 uap
->dmatx
.queued
= false;
548 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
552 if (pl011_dma_tx_refill(uap
) <= 0)
554 * We didn't queue a DMA buffer for some reason, but we
555 * have data pending to be sent. Re-enable the TX IRQ.
557 pl011_start_tx_pio(uap
);
559 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
563 * Try to refill the TX DMA buffer.
564 * Locking: called with port lock held and IRQs disabled.
566 * 1 if we queued up a TX DMA buffer.
567 * 0 if we didn't want to handle this by DMA
570 static int pl011_dma_tx_refill(struct uart_amba_port
*uap
)
572 struct pl011_dmatx_data
*dmatx
= &uap
->dmatx
;
573 struct dma_chan
*chan
= dmatx
->chan
;
574 struct dma_device
*dma_dev
= chan
->device
;
575 struct dma_async_tx_descriptor
*desc
;
576 struct circ_buf
*xmit
= &uap
->port
.state
->xmit
;
580 * Try to avoid the overhead involved in using DMA if the
581 * transaction fits in the first half of the FIFO, by using
582 * the standard interrupt handling. This ensures that we
583 * issue a uart_write_wakeup() at the appropriate time.
585 count
= uart_circ_chars_pending(xmit
);
586 if (count
< (uap
->fifosize
>> 1)) {
587 uap
->dmatx
.queued
= false;
592 * Bodge: don't send the last character by DMA, as this
593 * will prevent XON from notifying us to restart DMA.
597 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
598 if (count
> PL011_DMA_BUFFER_SIZE
)
599 count
= PL011_DMA_BUFFER_SIZE
;
601 if (xmit
->tail
< xmit
->head
)
602 memcpy(&dmatx
->buf
[0], &xmit
->buf
[xmit
->tail
], count
);
604 size_t first
= UART_XMIT_SIZE
- xmit
->tail
;
609 second
= count
- first
;
611 memcpy(&dmatx
->buf
[0], &xmit
->buf
[xmit
->tail
], first
);
613 memcpy(&dmatx
->buf
[first
], &xmit
->buf
[0], second
);
616 dmatx
->sg
.length
= count
;
618 if (dma_map_sg(dma_dev
->dev
, &dmatx
->sg
, 1, DMA_TO_DEVICE
) != 1) {
619 uap
->dmatx
.queued
= false;
620 dev_dbg(uap
->port
.dev
, "unable to map TX DMA\n");
624 desc
= dmaengine_prep_slave_sg(chan
, &dmatx
->sg
, 1, DMA_MEM_TO_DEV
,
625 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
627 dma_unmap_sg(dma_dev
->dev
, &dmatx
->sg
, 1, DMA_TO_DEVICE
);
628 uap
->dmatx
.queued
= false;
630 * If DMA cannot be used right now, we complete this
631 * transaction via IRQ and let the TTY layer retry.
633 dev_dbg(uap
->port
.dev
, "TX DMA busy\n");
637 /* Some data to go along to the callback */
638 desc
->callback
= pl011_dma_tx_callback
;
639 desc
->callback_param
= uap
;
641 /* All errors should happen at prepare time */
642 dmaengine_submit(desc
);
644 /* Fire the DMA transaction */
645 dma_dev
->device_issue_pending(chan
);
647 uap
->dmacr
|= UART011_TXDMAE
;
648 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
649 uap
->dmatx
.queued
= true;
652 * Now we know that DMA will fire, so advance the ring buffer
653 * with the stuff we just dispatched.
655 xmit
->tail
= (xmit
->tail
+ count
) & (UART_XMIT_SIZE
- 1);
656 uap
->port
.icount
.tx
+= count
;
658 if (uart_circ_chars_pending(xmit
) < WAKEUP_CHARS
)
659 uart_write_wakeup(&uap
->port
);
665 * We received a transmit interrupt without a pending X-char but with
666 * pending characters.
667 * Locking: called with port lock held and IRQs disabled.
669 * false if we want to use PIO to transmit
670 * true if we queued a DMA buffer
672 static bool pl011_dma_tx_irq(struct uart_amba_port
*uap
)
674 if (!uap
->using_tx_dma
)
678 * If we already have a TX buffer queued, but received a
679 * TX interrupt, it will be because we've just sent an X-char.
680 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
682 if (uap
->dmatx
.queued
) {
683 uap
->dmacr
|= UART011_TXDMAE
;
684 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
685 uap
->im
&= ~UART011_TXIM
;
686 pl011_write(uap
->im
, uap
, REG_IMSC
);
691 * We don't have a TX buffer queued, so try to queue one.
692 * If we successfully queued a buffer, mask the TX IRQ.
694 if (pl011_dma_tx_refill(uap
) > 0) {
695 uap
->im
&= ~UART011_TXIM
;
696 pl011_write(uap
->im
, uap
, REG_IMSC
);
703 * Stop the DMA transmit (eg, due to received XOFF).
704 * Locking: called with port lock held and IRQs disabled.
706 static inline void pl011_dma_tx_stop(struct uart_amba_port
*uap
)
708 if (uap
->dmatx
.queued
) {
709 uap
->dmacr
&= ~UART011_TXDMAE
;
710 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
715 * Try to start a DMA transmit, or in the case of an XON/OFF
716 * character queued for send, try to get that character out ASAP.
717 * Locking: called with port lock held and IRQs disabled.
719 * false if we want the TX IRQ to be enabled
720 * true if we have a buffer queued
722 static inline bool pl011_dma_tx_start(struct uart_amba_port
*uap
)
726 if (!uap
->using_tx_dma
)
729 if (!uap
->port
.x_char
) {
730 /* no X-char, try to push chars out in DMA mode */
733 if (!uap
->dmatx
.queued
) {
734 if (pl011_dma_tx_refill(uap
) > 0) {
735 uap
->im
&= ~UART011_TXIM
;
736 pl011_write(uap
->im
, uap
, REG_IMSC
);
739 } else if (!(uap
->dmacr
& UART011_TXDMAE
)) {
740 uap
->dmacr
|= UART011_TXDMAE
;
741 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
747 * We have an X-char to send. Disable DMA to prevent it loading
748 * the TX fifo, and then see if we can stuff it into the FIFO.
751 uap
->dmacr
&= ~UART011_TXDMAE
;
752 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
754 if (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
) {
756 * No space in the FIFO, so enable the transmit interrupt
757 * so we know when there is space. Note that once we've
758 * loaded the character, we should just re-enable DMA.
763 pl011_write(uap
->port
.x_char
, uap
, REG_DR
);
764 uap
->port
.icount
.tx
++;
765 uap
->port
.x_char
= 0;
767 /* Success - restore the DMA state */
769 pl011_write(dmacr
, uap
, REG_DMACR
);
775 * Flush the transmit buffer.
776 * Locking: called with port lock held and IRQs disabled.
778 static void pl011_dma_flush_buffer(struct uart_port
*port
)
779 __releases(&uap
->port
.lock
)
780 __acquires(&uap
->port
.lock
)
782 struct uart_amba_port
*uap
=
783 container_of(port
, struct uart_amba_port
, port
);
785 if (!uap
->using_tx_dma
)
788 /* Avoid deadlock with the DMA engine callback */
789 spin_unlock(&uap
->port
.lock
);
790 dmaengine_terminate_all(uap
->dmatx
.chan
);
791 spin_lock(&uap
->port
.lock
);
792 if (uap
->dmatx
.queued
) {
793 dma_unmap_sg(uap
->dmatx
.chan
->device
->dev
, &uap
->dmatx
.sg
, 1,
795 uap
->dmatx
.queued
= false;
796 uap
->dmacr
&= ~UART011_TXDMAE
;
797 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
801 static void pl011_dma_rx_callback(void *data
);
803 static int pl011_dma_rx_trigger_dma(struct uart_amba_port
*uap
)
805 struct dma_chan
*rxchan
= uap
->dmarx
.chan
;
806 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
807 struct dma_async_tx_descriptor
*desc
;
808 struct pl011_sgbuf
*sgbuf
;
813 /* Start the RX DMA job */
814 sgbuf
= uap
->dmarx
.use_buf_b
?
815 &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
816 desc
= dmaengine_prep_slave_sg(rxchan
, &sgbuf
->sg
, 1,
818 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
820 * If the DMA engine is busy and cannot prepare a
821 * channel, no big deal, the driver will fall back
822 * to interrupt mode as a result of this error code.
825 uap
->dmarx
.running
= false;
826 dmaengine_terminate_all(rxchan
);
830 /* Some data to go along to the callback */
831 desc
->callback
= pl011_dma_rx_callback
;
832 desc
->callback_param
= uap
;
833 dmarx
->cookie
= dmaengine_submit(desc
);
834 dma_async_issue_pending(rxchan
);
836 uap
->dmacr
|= UART011_RXDMAE
;
837 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
838 uap
->dmarx
.running
= true;
840 uap
->im
&= ~UART011_RXIM
;
841 pl011_write(uap
->im
, uap
, REG_IMSC
);
847 * This is called when either the DMA job is complete, or
848 * the FIFO timeout interrupt occurred. This must be called
849 * with the port spinlock uap->port.lock held.
851 static void pl011_dma_rx_chars(struct uart_amba_port
*uap
,
852 u32 pending
, bool use_buf_b
,
855 struct tty_port
*port
= &uap
->port
.state
->port
;
856 struct pl011_sgbuf
*sgbuf
= use_buf_b
?
857 &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
859 u32 fifotaken
= 0; /* only used for vdbg() */
861 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
864 if (uap
->dmarx
.poll_rate
) {
865 /* The data can be taken by polling */
866 dmataken
= sgbuf
->sg
.length
- dmarx
->last_residue
;
867 /* Recalculate the pending size */
868 if (pending
>= dmataken
)
872 /* Pick the remain data from the DMA */
876 * First take all chars in the DMA pipe, then look in the FIFO.
877 * Note that tty_insert_flip_buf() tries to take as many chars
880 dma_count
= tty_insert_flip_string(port
, sgbuf
->buf
+ dmataken
,
883 uap
->port
.icount
.rx
+= dma_count
;
884 if (dma_count
< pending
)
885 dev_warn(uap
->port
.dev
,
886 "couldn't insert all characters (TTY is full?)\n");
889 /* Reset the last_residue for Rx DMA poll */
890 if (uap
->dmarx
.poll_rate
)
891 dmarx
->last_residue
= sgbuf
->sg
.length
;
894 * Only continue with trying to read the FIFO if all DMA chars have
897 if (dma_count
== pending
&& readfifo
) {
898 /* Clear any error flags */
899 pl011_write(UART011_OEIS
| UART011_BEIS
| UART011_PEIS
|
900 UART011_FEIS
, uap
, REG_ICR
);
903 * If we read all the DMA'd characters, and we had an
904 * incomplete buffer, that could be due to an rx error, or
905 * maybe we just timed out. Read any pending chars and check
908 * Error conditions will only occur in the FIFO, these will
909 * trigger an immediate interrupt and stop the DMA job, so we
910 * will always find the error in the FIFO, never in the DMA
913 fifotaken
= pl011_fifo_to_tty(uap
);
916 spin_unlock(&uap
->port
.lock
);
917 dev_vdbg(uap
->port
.dev
,
918 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
919 dma_count
, fifotaken
);
920 tty_flip_buffer_push(port
);
921 spin_lock(&uap
->port
.lock
);
924 static void pl011_dma_rx_irq(struct uart_amba_port
*uap
)
926 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
927 struct dma_chan
*rxchan
= dmarx
->chan
;
928 struct pl011_sgbuf
*sgbuf
= dmarx
->use_buf_b
?
929 &dmarx
->sgbuf_b
: &dmarx
->sgbuf_a
;
931 struct dma_tx_state state
;
932 enum dma_status dmastat
;
935 * Pause the transfer so we can trust the current counter,
936 * do this before we pause the PL011 block, else we may
939 if (dmaengine_pause(rxchan
))
940 dev_err(uap
->port
.dev
, "unable to pause DMA transfer\n");
941 dmastat
= rxchan
->device
->device_tx_status(rxchan
,
942 dmarx
->cookie
, &state
);
943 if (dmastat
!= DMA_PAUSED
)
944 dev_err(uap
->port
.dev
, "unable to pause DMA transfer\n");
946 /* Disable RX DMA - incoming data will wait in the FIFO */
947 uap
->dmacr
&= ~UART011_RXDMAE
;
948 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
949 uap
->dmarx
.running
= false;
951 pending
= sgbuf
->sg
.length
- state
.residue
;
952 BUG_ON(pending
> PL011_DMA_BUFFER_SIZE
);
953 /* Then we terminate the transfer - we now know our residue */
954 dmaengine_terminate_all(rxchan
);
957 * This will take the chars we have so far and insert
958 * into the framework.
960 pl011_dma_rx_chars(uap
, pending
, dmarx
->use_buf_b
, true);
962 /* Switch buffer & re-trigger DMA job */
963 dmarx
->use_buf_b
= !dmarx
->use_buf_b
;
964 if (pl011_dma_rx_trigger_dma(uap
)) {
965 dev_dbg(uap
->port
.dev
, "could not retrigger RX DMA job "
966 "fall back to interrupt mode\n");
967 uap
->im
|= UART011_RXIM
;
968 pl011_write(uap
->im
, uap
, REG_IMSC
);
972 static void pl011_dma_rx_callback(void *data
)
974 struct uart_amba_port
*uap
= data
;
975 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
976 struct dma_chan
*rxchan
= dmarx
->chan
;
977 bool lastbuf
= dmarx
->use_buf_b
;
978 struct pl011_sgbuf
*sgbuf
= dmarx
->use_buf_b
?
979 &dmarx
->sgbuf_b
: &dmarx
->sgbuf_a
;
981 struct dma_tx_state state
;
985 * This completion interrupt occurs typically when the
986 * RX buffer is totally stuffed but no timeout has yet
987 * occurred. When that happens, we just want the RX
988 * routine to flush out the secondary DMA buffer while
989 * we immediately trigger the next DMA job.
991 spin_lock_irq(&uap
->port
.lock
);
993 * Rx data can be taken by the UART interrupts during
994 * the DMA irq handler. So we check the residue here.
996 rxchan
->device
->device_tx_status(rxchan
, dmarx
->cookie
, &state
);
997 pending
= sgbuf
->sg
.length
- state
.residue
;
998 BUG_ON(pending
> PL011_DMA_BUFFER_SIZE
);
999 /* Then we terminate the transfer - we now know our residue */
1000 dmaengine_terminate_all(rxchan
);
1002 uap
->dmarx
.running
= false;
1003 dmarx
->use_buf_b
= !lastbuf
;
1004 ret
= pl011_dma_rx_trigger_dma(uap
);
1006 pl011_dma_rx_chars(uap
, pending
, lastbuf
, false);
1007 spin_unlock_irq(&uap
->port
.lock
);
1009 * Do this check after we picked the DMA chars so we don't
1010 * get some IRQ immediately from RX.
1013 dev_dbg(uap
->port
.dev
, "could not retrigger RX DMA job "
1014 "fall back to interrupt mode\n");
1015 uap
->im
|= UART011_RXIM
;
1016 pl011_write(uap
->im
, uap
, REG_IMSC
);
1021 * Stop accepting received characters, when we're shutting down or
1022 * suspending this port.
1023 * Locking: called with port lock held and IRQs disabled.
1025 static inline void pl011_dma_rx_stop(struct uart_amba_port
*uap
)
1027 /* FIXME. Just disable the DMA enable */
1028 uap
->dmacr
&= ~UART011_RXDMAE
;
1029 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1033 * Timer handler for Rx DMA polling.
1034 * Every polling, It checks the residue in the dma buffer and transfer
1035 * data to the tty. Also, last_residue is updated for the next polling.
1037 static void pl011_dma_rx_poll(unsigned long args
)
1039 struct uart_amba_port
*uap
= (struct uart_amba_port
*)args
;
1040 struct tty_port
*port
= &uap
->port
.state
->port
;
1041 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
1042 struct dma_chan
*rxchan
= uap
->dmarx
.chan
;
1043 unsigned long flags
= 0;
1044 unsigned int dmataken
= 0;
1045 unsigned int size
= 0;
1046 struct pl011_sgbuf
*sgbuf
;
1048 struct dma_tx_state state
;
1050 sgbuf
= dmarx
->use_buf_b
? &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
1051 rxchan
->device
->device_tx_status(rxchan
, dmarx
->cookie
, &state
);
1052 if (likely(state
.residue
< dmarx
->last_residue
)) {
1053 dmataken
= sgbuf
->sg
.length
- dmarx
->last_residue
;
1054 size
= dmarx
->last_residue
- state
.residue
;
1055 dma_count
= tty_insert_flip_string(port
, sgbuf
->buf
+ dmataken
,
1057 if (dma_count
== size
)
1058 dmarx
->last_residue
= state
.residue
;
1059 dmarx
->last_jiffies
= jiffies
;
1061 tty_flip_buffer_push(port
);
1064 * If no data is received in poll_timeout, the driver will fall back
1065 * to interrupt mode. We will retrigger DMA at the first interrupt.
1067 if (jiffies_to_msecs(jiffies
- dmarx
->last_jiffies
)
1068 > uap
->dmarx
.poll_timeout
) {
1070 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1071 pl011_dma_rx_stop(uap
);
1072 uap
->im
|= UART011_RXIM
;
1073 pl011_write(uap
->im
, uap
, REG_IMSC
);
1074 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1076 uap
->dmarx
.running
= false;
1077 dmaengine_terminate_all(rxchan
);
1078 del_timer(&uap
->dmarx
.timer
);
1080 mod_timer(&uap
->dmarx
.timer
,
1081 jiffies
+ msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1085 static void pl011_dma_startup(struct uart_amba_port
*uap
)
1089 if (!uap
->dma_probed
)
1090 pl011_dma_probe(uap
);
1092 if (!uap
->dmatx
.chan
)
1095 uap
->dmatx
.buf
= kmalloc(PL011_DMA_BUFFER_SIZE
, GFP_KERNEL
| __GFP_DMA
);
1096 if (!uap
->dmatx
.buf
) {
1097 dev_err(uap
->port
.dev
, "no memory for DMA TX buffer\n");
1098 uap
->port
.fifosize
= uap
->fifosize
;
1102 sg_init_one(&uap
->dmatx
.sg
, uap
->dmatx
.buf
, PL011_DMA_BUFFER_SIZE
);
1104 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1105 uap
->port
.fifosize
= PL011_DMA_BUFFER_SIZE
;
1106 uap
->using_tx_dma
= true;
1108 if (!uap
->dmarx
.chan
)
1111 /* Allocate and map DMA RX buffers */
1112 ret
= pl011_sgbuf_init(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
,
1115 dev_err(uap
->port
.dev
, "failed to init DMA %s: %d\n",
1116 "RX buffer A", ret
);
1120 ret
= pl011_sgbuf_init(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_b
,
1123 dev_err(uap
->port
.dev
, "failed to init DMA %s: %d\n",
1124 "RX buffer B", ret
);
1125 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
,
1130 uap
->using_rx_dma
= true;
1133 /* Turn on DMA error (RX/TX will be enabled on demand) */
1134 uap
->dmacr
|= UART011_DMAONERR
;
1135 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1138 * ST Micro variants has some specific dma burst threshold
1139 * compensation. Set this to 16 bytes, so burst will only
1140 * be issued above/below 16 bytes.
1142 if (uap
->vendor
->dma_threshold
)
1143 pl011_write(ST_UART011_DMAWM_RX_16
| ST_UART011_DMAWM_TX_16
,
1146 if (uap
->using_rx_dma
) {
1147 if (pl011_dma_rx_trigger_dma(uap
))
1148 dev_dbg(uap
->port
.dev
, "could not trigger initial "
1149 "RX DMA job, fall back to interrupt mode\n");
1150 if (uap
->dmarx
.poll_rate
) {
1151 init_timer(&(uap
->dmarx
.timer
));
1152 uap
->dmarx
.timer
.function
= pl011_dma_rx_poll
;
1153 uap
->dmarx
.timer
.data
= (unsigned long)uap
;
1154 mod_timer(&uap
->dmarx
.timer
,
1156 msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1157 uap
->dmarx
.last_residue
= PL011_DMA_BUFFER_SIZE
;
1158 uap
->dmarx
.last_jiffies
= jiffies
;
1163 static void pl011_dma_shutdown(struct uart_amba_port
*uap
)
1165 if (!(uap
->using_tx_dma
|| uap
->using_rx_dma
))
1168 /* Disable RX and TX DMA */
1169 while (pl011_read(uap
, REG_FR
) & UART01x_FR_BUSY
)
1172 spin_lock_irq(&uap
->port
.lock
);
1173 uap
->dmacr
&= ~(UART011_DMAONERR
| UART011_RXDMAE
| UART011_TXDMAE
);
1174 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1175 spin_unlock_irq(&uap
->port
.lock
);
1177 if (uap
->using_tx_dma
) {
1178 /* In theory, this should already be done by pl011_dma_flush_buffer */
1179 dmaengine_terminate_all(uap
->dmatx
.chan
);
1180 if (uap
->dmatx
.queued
) {
1181 dma_unmap_sg(uap
->dmatx
.chan
->device
->dev
, &uap
->dmatx
.sg
, 1,
1183 uap
->dmatx
.queued
= false;
1186 kfree(uap
->dmatx
.buf
);
1187 uap
->using_tx_dma
= false;
1190 if (uap
->using_rx_dma
) {
1191 dmaengine_terminate_all(uap
->dmarx
.chan
);
1192 /* Clean up the RX DMA */
1193 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
, DMA_FROM_DEVICE
);
1194 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_b
, DMA_FROM_DEVICE
);
1195 if (uap
->dmarx
.poll_rate
)
1196 del_timer_sync(&uap
->dmarx
.timer
);
1197 uap
->using_rx_dma
= false;
1201 static inline bool pl011_dma_rx_available(struct uart_amba_port
*uap
)
1203 return uap
->using_rx_dma
;
1206 static inline bool pl011_dma_rx_running(struct uart_amba_port
*uap
)
1208 return uap
->using_rx_dma
&& uap
->dmarx
.running
;
1212 /* Blank functions if the DMA engine is not available */
1213 static inline void pl011_dma_probe(struct uart_amba_port
*uap
)
1217 static inline void pl011_dma_remove(struct uart_amba_port
*uap
)
1221 static inline void pl011_dma_startup(struct uart_amba_port
*uap
)
1225 static inline void pl011_dma_shutdown(struct uart_amba_port
*uap
)
1229 static inline bool pl011_dma_tx_irq(struct uart_amba_port
*uap
)
1234 static inline void pl011_dma_tx_stop(struct uart_amba_port
*uap
)
1238 static inline bool pl011_dma_tx_start(struct uart_amba_port
*uap
)
1243 static inline void pl011_dma_rx_irq(struct uart_amba_port
*uap
)
1247 static inline void pl011_dma_rx_stop(struct uart_amba_port
*uap
)
1251 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port
*uap
)
1256 static inline bool pl011_dma_rx_available(struct uart_amba_port
*uap
)
1261 static inline bool pl011_dma_rx_running(struct uart_amba_port
*uap
)
1266 #define pl011_dma_flush_buffer NULL
1269 static void pl011_stop_tx(struct uart_port
*port
)
1271 struct uart_amba_port
*uap
=
1272 container_of(port
, struct uart_amba_port
, port
);
1274 uap
->im
&= ~UART011_TXIM
;
1275 pl011_write(uap
->im
, uap
, REG_IMSC
);
1276 pl011_dma_tx_stop(uap
);
1279 static void pl011_tx_chars(struct uart_amba_port
*uap
, bool from_irq
);
1281 /* Start TX with programmed I/O only (no DMA) */
1282 static void pl011_start_tx_pio(struct uart_amba_port
*uap
)
1284 uap
->im
|= UART011_TXIM
;
1285 pl011_write(uap
->im
, uap
, REG_IMSC
);
1286 pl011_tx_chars(uap
, false);
1289 static void pl011_start_tx(struct uart_port
*port
)
1291 struct uart_amba_port
*uap
=
1292 container_of(port
, struct uart_amba_port
, port
);
1294 if (!pl011_dma_tx_start(uap
))
1295 pl011_start_tx_pio(uap
);
1298 static void pl011_stop_rx(struct uart_port
*port
)
1300 struct uart_amba_port
*uap
=
1301 container_of(port
, struct uart_amba_port
, port
);
1303 uap
->im
&= ~(UART011_RXIM
|UART011_RTIM
|UART011_FEIM
|
1304 UART011_PEIM
|UART011_BEIM
|UART011_OEIM
);
1305 pl011_write(uap
->im
, uap
, REG_IMSC
);
1307 pl011_dma_rx_stop(uap
);
1310 static void pl011_enable_ms(struct uart_port
*port
)
1312 struct uart_amba_port
*uap
=
1313 container_of(port
, struct uart_amba_port
, port
);
1315 uap
->im
|= UART011_RIMIM
|UART011_CTSMIM
|UART011_DCDMIM
|UART011_DSRMIM
;
1316 pl011_write(uap
->im
, uap
, REG_IMSC
);
1319 static void pl011_rx_chars(struct uart_amba_port
*uap
)
1320 __releases(&uap
->port
.lock
)
1321 __acquires(&uap
->port
.lock
)
1323 pl011_fifo_to_tty(uap
);
1325 spin_unlock(&uap
->port
.lock
);
1326 tty_flip_buffer_push(&uap
->port
.state
->port
);
1328 * If we were temporarily out of DMA mode for a while,
1329 * attempt to switch back to DMA mode again.
1331 if (pl011_dma_rx_available(uap
)) {
1332 if (pl011_dma_rx_trigger_dma(uap
)) {
1333 dev_dbg(uap
->port
.dev
, "could not trigger RX DMA job "
1334 "fall back to interrupt mode again\n");
1335 uap
->im
|= UART011_RXIM
;
1336 pl011_write(uap
->im
, uap
, REG_IMSC
);
1338 #ifdef CONFIG_DMA_ENGINE
1339 /* Start Rx DMA poll */
1340 if (uap
->dmarx
.poll_rate
) {
1341 uap
->dmarx
.last_jiffies
= jiffies
;
1342 uap
->dmarx
.last_residue
= PL011_DMA_BUFFER_SIZE
;
1343 mod_timer(&uap
->dmarx
.timer
,
1345 msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1350 spin_lock(&uap
->port
.lock
);
1353 static bool pl011_tx_char(struct uart_amba_port
*uap
, unsigned char c
,
1356 if (unlikely(!from_irq
) &&
1357 pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
1358 return false; /* unable to transmit character */
1360 pl011_write(c
, uap
, REG_DR
);
1361 uap
->port
.icount
.tx
++;
1366 static void pl011_tx_chars(struct uart_amba_port
*uap
, bool from_irq
)
1368 struct circ_buf
*xmit
= &uap
->port
.state
->xmit
;
1369 int count
= uap
->fifosize
>> 1;
1371 if (uap
->port
.x_char
) {
1372 if (!pl011_tx_char(uap
, uap
->port
.x_char
, from_irq
))
1374 uap
->port
.x_char
= 0;
1377 if (uart_circ_empty(xmit
) || uart_tx_stopped(&uap
->port
)) {
1378 pl011_stop_tx(&uap
->port
);
1382 /* If we are using DMA mode, try to send some characters. */
1383 if (pl011_dma_tx_irq(uap
))
1387 if (likely(from_irq
) && count
-- == 0)
1390 if (!pl011_tx_char(uap
, xmit
->buf
[xmit
->tail
], from_irq
))
1393 xmit
->tail
= (xmit
->tail
+ 1) & (UART_XMIT_SIZE
- 1);
1394 } while (!uart_circ_empty(xmit
));
1396 if (uart_circ_chars_pending(xmit
) < WAKEUP_CHARS
)
1397 uart_write_wakeup(&uap
->port
);
1399 if (uart_circ_empty(xmit
))
1400 pl011_stop_tx(&uap
->port
);
1403 static void pl011_modem_status(struct uart_amba_port
*uap
)
1405 unsigned int status
, delta
;
1407 status
= pl011_read(uap
, REG_FR
) & UART01x_FR_MODEM_ANY
;
1409 delta
= status
^ uap
->old_status
;
1410 uap
->old_status
= status
;
1415 if (delta
& UART01x_FR_DCD
)
1416 uart_handle_dcd_change(&uap
->port
, status
& UART01x_FR_DCD
);
1418 if (delta
& UART01x_FR_DSR
)
1419 uap
->port
.icount
.dsr
++;
1421 if (delta
& UART01x_FR_CTS
)
1422 uart_handle_cts_change(&uap
->port
, status
& UART01x_FR_CTS
);
1424 wake_up_interruptible(&uap
->port
.state
->port
.delta_msr_wait
);
1427 static void check_apply_cts_event_workaround(struct uart_amba_port
*uap
)
1429 unsigned int dummy_read
;
1431 if (!uap
->vendor
->cts_event_workaround
)
1434 /* workaround to make sure that all bits are unlocked.. */
1435 pl011_write(0x00, uap
, REG_ICR
);
1438 * WA: introduce 26ns(1 uart clk) delay before W1C;
1439 * single apb access will incur 2 pclk(133.12Mhz) delay,
1440 * so add 2 dummy reads
1442 dummy_read
= pl011_read(uap
, REG_ICR
);
1443 dummy_read
= pl011_read(uap
, REG_ICR
);
1446 static irqreturn_t
pl011_int(int irq
, void *dev_id
)
1448 struct uart_amba_port
*uap
= dev_id
;
1449 unsigned long flags
;
1450 unsigned int status
, pass_counter
= AMBA_ISR_PASS_LIMIT
;
1454 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1455 imsc
= pl011_read(uap
, REG_IMSC
);
1456 status
= pl011_read(uap
, REG_RIS
) & imsc
;
1459 check_apply_cts_event_workaround(uap
);
1461 pl011_write(status
& ~(UART011_TXIS
|UART011_RTIS
|
1465 if (status
& (UART011_RTIS
|UART011_RXIS
)) {
1466 if (pl011_dma_rx_running(uap
))
1467 pl011_dma_rx_irq(uap
);
1469 pl011_rx_chars(uap
);
1471 if (status
& (UART011_DSRMIS
|UART011_DCDMIS
|
1472 UART011_CTSMIS
|UART011_RIMIS
))
1473 pl011_modem_status(uap
);
1474 if (status
& UART011_TXIS
)
1475 pl011_tx_chars(uap
, true);
1477 if (pass_counter
-- == 0)
1480 status
= pl011_read(uap
, REG_RIS
) & imsc
;
1481 } while (status
!= 0);
1485 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1487 return IRQ_RETVAL(handled
);
1490 static unsigned int pl011_tx_empty(struct uart_port
*port
)
1492 struct uart_amba_port
*uap
=
1493 container_of(port
, struct uart_amba_port
, port
);
1494 unsigned int status
= pl011_read(uap
, REG_FR
);
1495 return status
& (UART01x_FR_BUSY
|UART01x_FR_TXFF
) ? 0 : TIOCSER_TEMT
;
1498 static unsigned int pl011_get_mctrl(struct uart_port
*port
)
1500 struct uart_amba_port
*uap
=
1501 container_of(port
, struct uart_amba_port
, port
);
1502 unsigned int result
= 0;
1503 unsigned int status
= pl011_read(uap
, REG_FR
);
1505 #define TIOCMBIT(uartbit, tiocmbit) \
1506 if (status & uartbit) \
1509 TIOCMBIT(UART01x_FR_DCD
, TIOCM_CAR
);
1510 TIOCMBIT(UART01x_FR_DSR
, TIOCM_DSR
);
1511 TIOCMBIT(UART01x_FR_CTS
, TIOCM_CTS
);
1512 TIOCMBIT(UART011_FR_RI
, TIOCM_RNG
);
1517 static void pl011_set_mctrl(struct uart_port
*port
, unsigned int mctrl
)
1519 struct uart_amba_port
*uap
=
1520 container_of(port
, struct uart_amba_port
, port
);
1523 cr
= pl011_read(uap
, REG_CR
);
1525 #define TIOCMBIT(tiocmbit, uartbit) \
1526 if (mctrl & tiocmbit) \
1531 TIOCMBIT(TIOCM_RTS
, UART011_CR_RTS
);
1532 TIOCMBIT(TIOCM_DTR
, UART011_CR_DTR
);
1533 TIOCMBIT(TIOCM_OUT1
, UART011_CR_OUT1
);
1534 TIOCMBIT(TIOCM_OUT2
, UART011_CR_OUT2
);
1535 TIOCMBIT(TIOCM_LOOP
, UART011_CR_LBE
);
1538 /* We need to disable auto-RTS if we want to turn RTS off */
1539 TIOCMBIT(TIOCM_RTS
, UART011_CR_RTSEN
);
1543 pl011_write(cr
, uap
, REG_CR
);
1546 static void pl011_break_ctl(struct uart_port
*port
, int break_state
)
1548 struct uart_amba_port
*uap
=
1549 container_of(port
, struct uart_amba_port
, port
);
1550 unsigned long flags
;
1553 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1554 lcr_h
= pl011_read(uap
, REG_LCRH_TX
);
1555 if (break_state
== -1)
1556 lcr_h
|= UART01x_LCRH_BRK
;
1558 lcr_h
&= ~UART01x_LCRH_BRK
;
1559 pl011_write(lcr_h
, uap
, REG_LCRH_TX
);
1560 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1563 #ifdef CONFIG_CONSOLE_POLL
1565 static void pl011_quiesce_irqs(struct uart_port
*port
)
1567 struct uart_amba_port
*uap
=
1568 container_of(port
, struct uart_amba_port
, port
);
1570 pl011_write(pl011_read(uap
, REG_MIS
), uap
, REG_ICR
);
1572 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1573 * we simply mask it. start_tx() will unmask it.
1575 * Note we can race with start_tx(), and if the race happens, the
1576 * polling user might get another interrupt just after we clear it.
1577 * But it should be OK and can happen even w/o the race, e.g.
1578 * controller immediately got some new data and raised the IRQ.
1580 * And whoever uses polling routines assumes that it manages the device
1581 * (including tx queue), so we're also fine with start_tx()'s caller
1584 pl011_write(pl011_read(uap
, REG_IMSC
) & ~UART011_TXIM
, uap
,
1588 static int pl011_get_poll_char(struct uart_port
*port
)
1590 struct uart_amba_port
*uap
=
1591 container_of(port
, struct uart_amba_port
, port
);
1592 unsigned int status
;
1595 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1598 pl011_quiesce_irqs(port
);
1600 status
= pl011_read(uap
, REG_FR
);
1601 if (status
& UART01x_FR_RXFE
)
1602 return NO_POLL_CHAR
;
1604 return pl011_read(uap
, REG_DR
);
1607 static void pl011_put_poll_char(struct uart_port
*port
,
1610 struct uart_amba_port
*uap
=
1611 container_of(port
, struct uart_amba_port
, port
);
1613 while (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
1616 pl011_write(ch
, uap
, REG_DR
);
1619 #endif /* CONFIG_CONSOLE_POLL */
1621 static int pl011_hwinit(struct uart_port
*port
)
1623 struct uart_amba_port
*uap
=
1624 container_of(port
, struct uart_amba_port
, port
);
1627 /* Optionaly enable pins to be muxed in and configured */
1628 pinctrl_pm_select_default_state(port
->dev
);
1631 * Try to enable the clock producer.
1633 retval
= clk_prepare_enable(uap
->clk
);
1637 uap
->port
.uartclk
= clk_get_rate(uap
->clk
);
1639 /* Clear pending error and receive interrupts */
1640 pl011_write(UART011_OEIS
| UART011_BEIS
| UART011_PEIS
|
1641 UART011_FEIS
| UART011_RTIS
| UART011_RXIS
,
1645 * Save interrupts enable mask, and enable RX interrupts in case if
1646 * the interrupt is used for NMI entry.
1648 uap
->im
= pl011_read(uap
, REG_IMSC
);
1649 pl011_write(UART011_RTIM
| UART011_RXIM
, uap
, REG_IMSC
);
1651 if (dev_get_platdata(uap
->port
.dev
)) {
1652 struct amba_pl011_data
*plat
;
1654 plat
= dev_get_platdata(uap
->port
.dev
);
1661 static bool pl011_split_lcrh(const struct uart_amba_port
*uap
)
1663 return pl011_reg_to_offset(uap
, REG_LCRH_RX
) !=
1664 pl011_reg_to_offset(uap
, REG_LCRH_TX
);
1667 static void pl011_write_lcr_h(struct uart_amba_port
*uap
, unsigned int lcr_h
)
1669 pl011_write(lcr_h
, uap
, REG_LCRH_RX
);
1670 if (pl011_split_lcrh(uap
)) {
1673 * Wait 10 PCLKs before writing LCRH_TX register,
1674 * to get this delay write read only register 10 times
1676 for (i
= 0; i
< 10; ++i
)
1677 pl011_write(0xff, uap
, REG_MIS
);
1678 pl011_write(lcr_h
, uap
, REG_LCRH_TX
);
1682 static int pl011_allocate_irq(struct uart_amba_port
*uap
)
1684 pl011_write(uap
->im
, uap
, REG_IMSC
);
1686 return request_irq(uap
->port
.irq
, pl011_int
, 0, "uart-pl011", uap
);
1690 * Enable interrupts, only timeouts when using DMA
1691 * if initial RX DMA job failed, start in interrupt mode
1694 static void pl011_enable_interrupts(struct uart_amba_port
*uap
)
1696 spin_lock_irq(&uap
->port
.lock
);
1698 /* Clear out any spuriously appearing RX interrupts */
1699 pl011_write(UART011_RTIS
| UART011_RXIS
, uap
, REG_ICR
);
1700 uap
->im
= UART011_RTIM
;
1701 if (!pl011_dma_rx_running(uap
))
1702 uap
->im
|= UART011_RXIM
;
1703 pl011_write(uap
->im
, uap
, REG_IMSC
);
1704 spin_unlock_irq(&uap
->port
.lock
);
1707 static int pl011_startup(struct uart_port
*port
)
1709 struct uart_amba_port
*uap
=
1710 container_of(port
, struct uart_amba_port
, port
);
1714 retval
= pl011_hwinit(port
);
1718 retval
= pl011_allocate_irq(uap
);
1722 pl011_write(uap
->vendor
->ifls
, uap
, REG_IFLS
);
1724 spin_lock_irq(&uap
->port
.lock
);
1726 /* restore RTS and DTR */
1727 cr
= uap
->old_cr
& (UART011_CR_RTS
| UART011_CR_DTR
);
1728 cr
|= UART01x_CR_UARTEN
| UART011_CR_RXE
| UART011_CR_TXE
;
1729 pl011_write(cr
, uap
, REG_CR
);
1731 spin_unlock_irq(&uap
->port
.lock
);
1734 * initialise the old status of the modem signals
1736 uap
->old_status
= pl011_read(uap
, REG_FR
) & UART01x_FR_MODEM_ANY
;
1739 pl011_dma_startup(uap
);
1741 pl011_enable_interrupts(uap
);
1746 clk_disable_unprepare(uap
->clk
);
1750 static int sbsa_uart_startup(struct uart_port
*port
)
1752 struct uart_amba_port
*uap
=
1753 container_of(port
, struct uart_amba_port
, port
);
1756 retval
= pl011_hwinit(port
);
1760 retval
= pl011_allocate_irq(uap
);
1764 /* The SBSA UART does not support any modem status lines. */
1765 uap
->old_status
= 0;
1767 pl011_enable_interrupts(uap
);
1772 static void pl011_shutdown_channel(struct uart_amba_port
*uap
,
1777 val
= pl011_read(uap
, lcrh
);
1778 val
&= ~(UART01x_LCRH_BRK
| UART01x_LCRH_FEN
);
1779 pl011_write(val
, uap
, lcrh
);
1783 * disable the port. It should not disable RTS and DTR.
1784 * Also RTS and DTR state should be preserved to restore
1785 * it during startup().
1787 static void pl011_disable_uart(struct uart_amba_port
*uap
)
1791 uap
->autorts
= false;
1792 spin_lock_irq(&uap
->port
.lock
);
1793 cr
= pl011_read(uap
, REG_CR
);
1795 cr
&= UART011_CR_RTS
| UART011_CR_DTR
;
1796 cr
|= UART01x_CR_UARTEN
| UART011_CR_TXE
;
1797 pl011_write(cr
, uap
, REG_CR
);
1798 spin_unlock_irq(&uap
->port
.lock
);
1801 * disable break condition and fifos
1803 pl011_shutdown_channel(uap
, REG_LCRH_RX
);
1804 if (pl011_split_lcrh(uap
))
1805 pl011_shutdown_channel(uap
, REG_LCRH_TX
);
1808 static void pl011_disable_interrupts(struct uart_amba_port
*uap
)
1810 spin_lock_irq(&uap
->port
.lock
);
1812 /* mask all interrupts and clear all pending ones */
1814 pl011_write(uap
->im
, uap
, REG_IMSC
);
1815 pl011_write(0xffff, uap
, REG_ICR
);
1817 spin_unlock_irq(&uap
->port
.lock
);
1820 static void pl011_shutdown(struct uart_port
*port
)
1822 struct uart_amba_port
*uap
=
1823 container_of(port
, struct uart_amba_port
, port
);
1825 pl011_disable_interrupts(uap
);
1827 pl011_dma_shutdown(uap
);
1829 free_irq(uap
->port
.irq
, uap
);
1831 pl011_disable_uart(uap
);
1834 * Shut down the clock producer
1836 clk_disable_unprepare(uap
->clk
);
1837 /* Optionally let pins go into sleep states */
1838 pinctrl_pm_select_sleep_state(port
->dev
);
1840 if (dev_get_platdata(uap
->port
.dev
)) {
1841 struct amba_pl011_data
*plat
;
1843 plat
= dev_get_platdata(uap
->port
.dev
);
1848 if (uap
->port
.ops
->flush_buffer
)
1849 uap
->port
.ops
->flush_buffer(port
);
1852 static void sbsa_uart_shutdown(struct uart_port
*port
)
1854 struct uart_amba_port
*uap
=
1855 container_of(port
, struct uart_amba_port
, port
);
1857 pl011_disable_interrupts(uap
);
1859 free_irq(uap
->port
.irq
, uap
);
1861 if (uap
->port
.ops
->flush_buffer
)
1862 uap
->port
.ops
->flush_buffer(port
);
1866 pl011_setup_status_masks(struct uart_port
*port
, struct ktermios
*termios
)
1868 port
->read_status_mask
= UART011_DR_OE
| 255;
1869 if (termios
->c_iflag
& INPCK
)
1870 port
->read_status_mask
|= UART011_DR_FE
| UART011_DR_PE
;
1871 if (termios
->c_iflag
& (IGNBRK
| BRKINT
| PARMRK
))
1872 port
->read_status_mask
|= UART011_DR_BE
;
1875 * Characters to ignore
1877 port
->ignore_status_mask
= 0;
1878 if (termios
->c_iflag
& IGNPAR
)
1879 port
->ignore_status_mask
|= UART011_DR_FE
| UART011_DR_PE
;
1880 if (termios
->c_iflag
& IGNBRK
) {
1881 port
->ignore_status_mask
|= UART011_DR_BE
;
1883 * If we're ignoring parity and break indicators,
1884 * ignore overruns too (for real raw support).
1886 if (termios
->c_iflag
& IGNPAR
)
1887 port
->ignore_status_mask
|= UART011_DR_OE
;
1891 * Ignore all characters if CREAD is not set.
1893 if ((termios
->c_cflag
& CREAD
) == 0)
1894 port
->ignore_status_mask
|= UART_DUMMY_DR_RX
;
1898 pl011_set_termios(struct uart_port
*port
, struct ktermios
*termios
,
1899 struct ktermios
*old
)
1901 struct uart_amba_port
*uap
=
1902 container_of(port
, struct uart_amba_port
, port
);
1903 unsigned int lcr_h
, old_cr
;
1904 unsigned long flags
;
1905 unsigned int baud
, quot
, clkdiv
;
1907 if (uap
->vendor
->oversampling
)
1913 * Ask the core to calculate the divisor for us.
1915 baud
= uart_get_baud_rate(port
, termios
, old
, 0,
1916 port
->uartclk
/ clkdiv
);
1917 #ifdef CONFIG_DMA_ENGINE
1919 * Adjust RX DMA polling rate with baud rate if not specified.
1921 if (uap
->dmarx
.auto_poll_rate
)
1922 uap
->dmarx
.poll_rate
= DIV_ROUND_UP(10000000, baud
);
1925 if (baud
> port
->uartclk
/16)
1926 quot
= DIV_ROUND_CLOSEST(port
->uartclk
* 8, baud
);
1928 quot
= DIV_ROUND_CLOSEST(port
->uartclk
* 4, baud
);
1930 switch (termios
->c_cflag
& CSIZE
) {
1932 lcr_h
= UART01x_LCRH_WLEN_5
;
1935 lcr_h
= UART01x_LCRH_WLEN_6
;
1938 lcr_h
= UART01x_LCRH_WLEN_7
;
1941 lcr_h
= UART01x_LCRH_WLEN_8
;
1944 if (termios
->c_cflag
& CSTOPB
)
1945 lcr_h
|= UART01x_LCRH_STP2
;
1946 if (termios
->c_cflag
& PARENB
) {
1947 lcr_h
|= UART01x_LCRH_PEN
;
1948 if (!(termios
->c_cflag
& PARODD
))
1949 lcr_h
|= UART01x_LCRH_EPS
;
1950 if (termios
->c_cflag
& CMSPAR
)
1951 lcr_h
|= UART011_LCRH_SPS
;
1953 if (uap
->fifosize
> 1)
1954 lcr_h
|= UART01x_LCRH_FEN
;
1956 spin_lock_irqsave(&port
->lock
, flags
);
1959 * Update the per-port timeout.
1961 uart_update_timeout(port
, termios
->c_cflag
, baud
);
1963 pl011_setup_status_masks(port
, termios
);
1965 if (UART_ENABLE_MS(port
, termios
->c_cflag
))
1966 pl011_enable_ms(port
);
1968 /* first, disable everything */
1969 old_cr
= pl011_read(uap
, REG_CR
);
1970 pl011_write(0, uap
, REG_CR
);
1972 if (termios
->c_cflag
& CRTSCTS
) {
1973 if (old_cr
& UART011_CR_RTS
)
1974 old_cr
|= UART011_CR_RTSEN
;
1976 old_cr
|= UART011_CR_CTSEN
;
1977 uap
->autorts
= true;
1979 old_cr
&= ~(UART011_CR_CTSEN
| UART011_CR_RTSEN
);
1980 uap
->autorts
= false;
1983 if (uap
->vendor
->oversampling
) {
1984 if (baud
> port
->uartclk
/ 16)
1985 old_cr
|= ST_UART011_CR_OVSFACT
;
1987 old_cr
&= ~ST_UART011_CR_OVSFACT
;
1991 * Workaround for the ST Micro oversampling variants to
1992 * increase the bitrate slightly, by lowering the divisor,
1993 * to avoid delayed sampling of start bit at high speeds,
1994 * else we see data corruption.
1996 if (uap
->vendor
->oversampling
) {
1997 if ((baud
>= 3000000) && (baud
< 3250000) && (quot
> 1))
1999 else if ((baud
> 3250000) && (quot
> 2))
2003 pl011_write(quot
& 0x3f, uap
, REG_FBRD
);
2004 pl011_write(quot
>> 6, uap
, REG_IBRD
);
2007 * ----------v----------v----------v----------v-----
2008 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2009 * REG_FBRD & REG_IBRD.
2010 * ----------^----------^----------^----------^-----
2012 pl011_write_lcr_h(uap
, lcr_h
);
2013 pl011_write(old_cr
, uap
, REG_CR
);
2015 spin_unlock_irqrestore(&port
->lock
, flags
);
2019 sbsa_uart_set_termios(struct uart_port
*port
, struct ktermios
*termios
,
2020 struct ktermios
*old
)
2022 struct uart_amba_port
*uap
=
2023 container_of(port
, struct uart_amba_port
, port
);
2024 unsigned long flags
;
2026 tty_termios_encode_baud_rate(termios
, uap
->fixed_baud
, uap
->fixed_baud
);
2028 /* The SBSA UART only supports 8n1 without hardware flow control. */
2029 termios
->c_cflag
&= ~(CSIZE
| CSTOPB
| PARENB
| PARODD
);
2030 termios
->c_cflag
&= ~(CMSPAR
| CRTSCTS
);
2031 termios
->c_cflag
|= CS8
| CLOCAL
;
2033 spin_lock_irqsave(&port
->lock
, flags
);
2034 uart_update_timeout(port
, CS8
, uap
->fixed_baud
);
2035 pl011_setup_status_masks(port
, termios
);
2036 spin_unlock_irqrestore(&port
->lock
, flags
);
2039 static const char *pl011_type(struct uart_port
*port
)
2041 struct uart_amba_port
*uap
=
2042 container_of(port
, struct uart_amba_port
, port
);
2043 return uap
->port
.type
== PORT_AMBA
? uap
->type
: NULL
;
2047 * Release the memory region(s) being used by 'port'
2049 static void pl011_release_port(struct uart_port
*port
)
2051 release_mem_region(port
->mapbase
, SZ_4K
);
2055 * Request the memory region(s) being used by 'port'
2057 static int pl011_request_port(struct uart_port
*port
)
2059 return request_mem_region(port
->mapbase
, SZ_4K
, "uart-pl011")
2060 != NULL
? 0 : -EBUSY
;
2064 * Configure/autoconfigure the port.
2066 static void pl011_config_port(struct uart_port
*port
, int flags
)
2068 if (flags
& UART_CONFIG_TYPE
) {
2069 port
->type
= PORT_AMBA
;
2070 pl011_request_port(port
);
2075 * verify the new serial_struct (for TIOCSSERIAL).
2077 static int pl011_verify_port(struct uart_port
*port
, struct serial_struct
*ser
)
2080 if (ser
->type
!= PORT_UNKNOWN
&& ser
->type
!= PORT_AMBA
)
2082 if (ser
->irq
< 0 || ser
->irq
>= nr_irqs
)
2084 if (ser
->baud_base
< 9600)
2089 static struct uart_ops amba_pl011_pops
= {
2090 .tx_empty
= pl011_tx_empty
,
2091 .set_mctrl
= pl011_set_mctrl
,
2092 .get_mctrl
= pl011_get_mctrl
,
2093 .stop_tx
= pl011_stop_tx
,
2094 .start_tx
= pl011_start_tx
,
2095 .stop_rx
= pl011_stop_rx
,
2096 .enable_ms
= pl011_enable_ms
,
2097 .break_ctl
= pl011_break_ctl
,
2098 .startup
= pl011_startup
,
2099 .shutdown
= pl011_shutdown
,
2100 .flush_buffer
= pl011_dma_flush_buffer
,
2101 .set_termios
= pl011_set_termios
,
2103 .release_port
= pl011_release_port
,
2104 .request_port
= pl011_request_port
,
2105 .config_port
= pl011_config_port
,
2106 .verify_port
= pl011_verify_port
,
2107 #ifdef CONFIG_CONSOLE_POLL
2108 .poll_init
= pl011_hwinit
,
2109 .poll_get_char
= pl011_get_poll_char
,
2110 .poll_put_char
= pl011_put_poll_char
,
2114 static void sbsa_uart_set_mctrl(struct uart_port
*port
, unsigned int mctrl
)
2118 static unsigned int sbsa_uart_get_mctrl(struct uart_port
*port
)
2123 static const struct uart_ops sbsa_uart_pops
= {
2124 .tx_empty
= pl011_tx_empty
,
2125 .set_mctrl
= sbsa_uart_set_mctrl
,
2126 .get_mctrl
= sbsa_uart_get_mctrl
,
2127 .stop_tx
= pl011_stop_tx
,
2128 .start_tx
= pl011_start_tx
,
2129 .stop_rx
= pl011_stop_rx
,
2130 .startup
= sbsa_uart_startup
,
2131 .shutdown
= sbsa_uart_shutdown
,
2132 .set_termios
= sbsa_uart_set_termios
,
2134 .release_port
= pl011_release_port
,
2135 .request_port
= pl011_request_port
,
2136 .config_port
= pl011_config_port
,
2137 .verify_port
= pl011_verify_port
,
2138 #ifdef CONFIG_CONSOLE_POLL
2139 .poll_init
= pl011_hwinit
,
2140 .poll_get_char
= pl011_get_poll_char
,
2141 .poll_put_char
= pl011_put_poll_char
,
2145 static struct uart_amba_port
*amba_ports
[UART_NR
];
2147 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2149 static void pl011_console_putchar(struct uart_port
*port
, int ch
)
2151 struct uart_amba_port
*uap
=
2152 container_of(port
, struct uart_amba_port
, port
);
2154 while (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
2156 pl011_write(ch
, uap
, REG_DR
);
2160 pl011_console_write(struct console
*co
, const char *s
, unsigned int count
)
2162 struct uart_amba_port
*uap
= amba_ports
[co
->index
];
2163 unsigned int old_cr
= 0, new_cr
;
2164 unsigned long flags
;
2167 clk_enable(uap
->clk
);
2169 local_irq_save(flags
);
2170 if (uap
->port
.sysrq
)
2172 else if (oops_in_progress
)
2173 locked
= spin_trylock(&uap
->port
.lock
);
2175 spin_lock(&uap
->port
.lock
);
2178 * First save the CR then disable the interrupts
2180 if (!uap
->vendor
->always_enabled
) {
2181 old_cr
= pl011_read(uap
, REG_CR
);
2182 new_cr
= old_cr
& ~UART011_CR_CTSEN
;
2183 new_cr
|= UART01x_CR_UARTEN
| UART011_CR_TXE
;
2184 pl011_write(new_cr
, uap
, REG_CR
);
2187 uart_console_write(&uap
->port
, s
, count
, pl011_console_putchar
);
2190 * Finally, wait for transmitter to become empty
2191 * and restore the TCR
2193 while (pl011_read(uap
, REG_FR
) & UART01x_FR_BUSY
)
2195 if (!uap
->vendor
->always_enabled
)
2196 pl011_write(old_cr
, uap
, REG_CR
);
2199 spin_unlock(&uap
->port
.lock
);
2200 local_irq_restore(flags
);
2202 clk_disable(uap
->clk
);
2206 pl011_console_get_options(struct uart_amba_port
*uap
, int *baud
,
2207 int *parity
, int *bits
)
2209 if (pl011_read(uap
, REG_CR
) & UART01x_CR_UARTEN
) {
2210 unsigned int lcr_h
, ibrd
, fbrd
;
2212 lcr_h
= pl011_read(uap
, REG_LCRH_TX
);
2215 if (lcr_h
& UART01x_LCRH_PEN
) {
2216 if (lcr_h
& UART01x_LCRH_EPS
)
2222 if ((lcr_h
& 0x60) == UART01x_LCRH_WLEN_7
)
2227 ibrd
= pl011_read(uap
, REG_IBRD
);
2228 fbrd
= pl011_read(uap
, REG_FBRD
);
2230 *baud
= uap
->port
.uartclk
* 4 / (64 * ibrd
+ fbrd
);
2232 if (uap
->vendor
->oversampling
) {
2233 if (pl011_read(uap
, REG_CR
)
2234 & ST_UART011_CR_OVSFACT
)
2240 static int __init
pl011_console_setup(struct console
*co
, char *options
)
2242 struct uart_amba_port
*uap
;
2250 * Check whether an invalid uart number has been specified, and
2251 * if so, search for the first available port that does have
2254 if (co
->index
>= UART_NR
)
2256 uap
= amba_ports
[co
->index
];
2260 /* Allow pins to be muxed in and configured */
2261 pinctrl_pm_select_default_state(uap
->port
.dev
);
2263 ret
= clk_prepare(uap
->clk
);
2267 if (dev_get_platdata(uap
->port
.dev
)) {
2268 struct amba_pl011_data
*plat
;
2270 plat
= dev_get_platdata(uap
->port
.dev
);
2275 uap
->port
.uartclk
= clk_get_rate(uap
->clk
);
2277 if (uap
->vendor
->fixed_options
) {
2278 baud
= uap
->fixed_baud
;
2281 uart_parse_options(options
,
2282 &baud
, &parity
, &bits
, &flow
);
2284 pl011_console_get_options(uap
, &baud
, &parity
, &bits
);
2287 return uart_set_options(&uap
->port
, co
, baud
, parity
, bits
, flow
);
2290 static struct uart_driver amba_reg
;
2291 static struct console amba_console
= {
2293 .write
= pl011_console_write
,
2294 .device
= uart_console_device
,
2295 .setup
= pl011_console_setup
,
2296 .flags
= CON_PRINTBUFFER
,
2301 #define AMBA_CONSOLE (&amba_console)
2303 static void pl011_putc(struct uart_port
*port
, int c
)
2305 while (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_TXFF
)
2307 if (port
->iotype
== UPIO_MEM32
)
2308 writel(c
, port
->membase
+ UART01x_DR
);
2310 writeb(c
, port
->membase
+ UART01x_DR
);
2311 while (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_BUSY
)
2315 static void pl011_early_write(struct console
*con
, const char *s
, unsigned n
)
2317 struct earlycon_device
*dev
= con
->data
;
2319 uart_console_write(&dev
->port
, s
, n
, pl011_putc
);
2322 static int __init
pl011_early_console_setup(struct earlycon_device
*device
,
2325 if (!device
->port
.membase
)
2328 device
->con
->write
= pl011_early_write
;
2331 OF_EARLYCON_DECLARE(pl011
, "arm,pl011", pl011_early_console_setup
);
2334 #define AMBA_CONSOLE NULL
2337 static struct uart_driver amba_reg
= {
2338 .owner
= THIS_MODULE
,
2339 .driver_name
= "ttyAMA",
2340 .dev_name
= "ttyAMA",
2341 .major
= SERIAL_AMBA_MAJOR
,
2342 .minor
= SERIAL_AMBA_MINOR
,
2344 .cons
= AMBA_CONSOLE
,
2347 static int pl011_probe_dt_alias(int index
, struct device
*dev
)
2349 struct device_node
*np
;
2350 static bool seen_dev_with_alias
= false;
2351 static bool seen_dev_without_alias
= false;
2354 if (!IS_ENABLED(CONFIG_OF
))
2361 ret
= of_alias_get_id(np
, "serial");
2362 if (IS_ERR_VALUE(ret
)) {
2363 seen_dev_without_alias
= true;
2366 seen_dev_with_alias
= true;
2367 if (ret
>= ARRAY_SIZE(amba_ports
) || amba_ports
[ret
] != NULL
) {
2368 dev_warn(dev
, "requested serial port %d not available.\n", ret
);
2373 if (seen_dev_with_alias
&& seen_dev_without_alias
)
2374 dev_warn(dev
, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2379 /* unregisters the driver also if no more ports are left */
2380 static void pl011_unregister_port(struct uart_amba_port
*uap
)
2385 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++) {
2386 if (amba_ports
[i
] == uap
)
2387 amba_ports
[i
] = NULL
;
2388 else if (amba_ports
[i
])
2391 pl011_dma_remove(uap
);
2393 uart_unregister_driver(&amba_reg
);
2396 static int pl011_find_free_port(void)
2400 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++)
2401 if (amba_ports
[i
] == NULL
)
2407 static int pl011_setup_port(struct device
*dev
, struct uart_amba_port
*uap
,
2408 struct resource
*mmiobase
, int index
)
2412 base
= devm_ioremap_resource(dev
, mmiobase
);
2414 return PTR_ERR(base
);
2416 index
= pl011_probe_dt_alias(index
, dev
);
2419 uap
->port
.dev
= dev
;
2420 uap
->port
.mapbase
= mmiobase
->start
;
2421 uap
->port
.membase
= base
;
2422 uap
->port
.fifosize
= uap
->fifosize
;
2423 uap
->port
.flags
= UPF_BOOT_AUTOCONF
;
2424 uap
->port
.line
= index
;
2426 amba_ports
[index
] = uap
;
2431 static int pl011_register_port(struct uart_amba_port
*uap
)
2435 /* Ensure interrupts from this UART are masked and cleared */
2436 pl011_write(0, uap
, REG_IMSC
);
2437 pl011_write(0xffff, uap
, REG_ICR
);
2439 if (!amba_reg
.state
) {
2440 ret
= uart_register_driver(&amba_reg
);
2442 dev_err(uap
->port
.dev
,
2443 "Failed to register AMBA-PL011 driver\n");
2448 ret
= uart_add_one_port(&amba_reg
, &uap
->port
);
2450 pl011_unregister_port(uap
);
2455 static int pl011_probe(struct amba_device
*dev
, const struct amba_id
*id
)
2457 struct uart_amba_port
*uap
;
2458 struct vendor_data
*vendor
= id
->data
;
2461 portnr
= pl011_find_free_port();
2465 uap
= devm_kzalloc(&dev
->dev
, sizeof(struct uart_amba_port
),
2470 uap
->clk
= devm_clk_get(&dev
->dev
, NULL
);
2471 if (IS_ERR(uap
->clk
))
2472 return PTR_ERR(uap
->clk
);
2474 uap
->reg_offset
= vendor
->reg_offset
;
2475 uap
->vendor
= vendor
;
2476 uap
->fifosize
= vendor
->get_fifosize(dev
);
2477 uap
->port
.iotype
= vendor
->access_32b
? UPIO_MEM32
: UPIO_MEM
;
2478 uap
->port
.irq
= dev
->irq
[0];
2479 uap
->port
.ops
= &amba_pl011_pops
;
2481 snprintf(uap
->type
, sizeof(uap
->type
), "PL011 rev%u", amba_rev(dev
));
2483 ret
= pl011_setup_port(&dev
->dev
, uap
, &dev
->res
, portnr
);
2487 amba_set_drvdata(dev
, uap
);
2489 return pl011_register_port(uap
);
2492 static int pl011_remove(struct amba_device
*dev
)
2494 struct uart_amba_port
*uap
= amba_get_drvdata(dev
);
2496 uart_remove_one_port(&amba_reg
, &uap
->port
);
2497 pl011_unregister_port(uap
);
2501 #ifdef CONFIG_PM_SLEEP
2502 static int pl011_suspend(struct device
*dev
)
2504 struct uart_amba_port
*uap
= dev_get_drvdata(dev
);
2509 return uart_suspend_port(&amba_reg
, &uap
->port
);
2512 static int pl011_resume(struct device
*dev
)
2514 struct uart_amba_port
*uap
= dev_get_drvdata(dev
);
2519 return uart_resume_port(&amba_reg
, &uap
->port
);
2523 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops
, pl011_suspend
, pl011_resume
);
2525 static int sbsa_uart_probe(struct platform_device
*pdev
)
2527 struct uart_amba_port
*uap
;
2533 * Check the mandatory baud rate parameter in the DT node early
2534 * so that we can easily exit with the error.
2536 if (pdev
->dev
.of_node
) {
2537 struct device_node
*np
= pdev
->dev
.of_node
;
2539 ret
= of_property_read_u32(np
, "current-speed", &baudrate
);
2546 portnr
= pl011_find_free_port();
2550 uap
= devm_kzalloc(&pdev
->dev
, sizeof(struct uart_amba_port
),
2555 uap
->reg_offset
= vendor_sbsa
.reg_offset
;
2556 uap
->vendor
= &vendor_sbsa
;
2558 uap
->port
.iotype
= vendor_sbsa
.access_32b
? UPIO_MEM32
: UPIO_MEM
;
2559 uap
->port
.irq
= platform_get_irq(pdev
, 0);
2560 uap
->port
.ops
= &sbsa_uart_pops
;
2561 uap
->fixed_baud
= baudrate
;
2563 snprintf(uap
->type
, sizeof(uap
->type
), "SBSA");
2565 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2567 ret
= pl011_setup_port(&pdev
->dev
, uap
, r
, portnr
);
2571 platform_set_drvdata(pdev
, uap
);
2573 return pl011_register_port(uap
);
2576 static int sbsa_uart_remove(struct platform_device
*pdev
)
2578 struct uart_amba_port
*uap
= platform_get_drvdata(pdev
);
2580 uart_remove_one_port(&amba_reg
, &uap
->port
);
2581 pl011_unregister_port(uap
);
2585 static const struct of_device_id sbsa_uart_of_match
[] = {
2586 { .compatible
= "arm,sbsa-uart", },
2589 MODULE_DEVICE_TABLE(of
, sbsa_uart_of_match
);
2591 static const struct acpi_device_id sbsa_uart_acpi_match
[] = {
2595 MODULE_DEVICE_TABLE(acpi
, sbsa_uart_acpi_match
);
2597 static struct platform_driver arm_sbsa_uart_platform_driver
= {
2598 .probe
= sbsa_uart_probe
,
2599 .remove
= sbsa_uart_remove
,
2601 .name
= "sbsa-uart",
2602 .of_match_table
= of_match_ptr(sbsa_uart_of_match
),
2603 .acpi_match_table
= ACPI_PTR(sbsa_uart_acpi_match
),
2607 static struct amba_id pl011_ids
[] = {
2611 .data
= &vendor_arm
,
2621 MODULE_DEVICE_TABLE(amba
, pl011_ids
);
2623 static struct amba_driver pl011_driver
= {
2625 .name
= "uart-pl011",
2626 .pm
= &pl011_dev_pm_ops
,
2628 .id_table
= pl011_ids
,
2629 .probe
= pl011_probe
,
2630 .remove
= pl011_remove
,
2633 static int __init
pl011_init(void)
2635 printk(KERN_INFO
"Serial: AMBA PL011 UART driver\n");
2637 if (platform_driver_register(&arm_sbsa_uart_platform_driver
))
2638 pr_warn("could not register SBSA UART platform driver\n");
2639 return amba_driver_register(&pl011_driver
);
2642 static void __exit
pl011_exit(void)
2644 platform_driver_unregister(&arm_sbsa_uart_platform_driver
);
2645 amba_driver_unregister(&pl011_driver
);
2649 * While this can be a module, if builtin it's most likely the console
2650 * So let's leave module_exit but move module_init to an earlier place
2652 arch_initcall(pl011_init
);
2653 module_exit(pl011_exit
);
2655 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2656 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2657 MODULE_LICENSE("GPL");