Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / drivers / usb / core / hcd.c
blob2ca2cef7f6811abd03bf036770667e31091c53df
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
50 #include "usb.h"
53 /*-------------------------------------------------------------------------*/
56 * USB Host Controller Driver framework
58 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
59 * HCD-specific behaviors/bugs.
61 * This does error checks, tracks devices and urbs, and delegates to a
62 * "hc_driver" only for code (and data) that really needs to know about
63 * hardware differences. That includes root hub registers, i/o queues,
64 * and so on ... but as little else as possible.
66 * Shared code includes most of the "root hub" code (these are emulated,
67 * though each HC's hardware works differently) and PCI glue, plus request
68 * tracking overhead. The HCD code should only block on spinlocks or on
69 * hardware handshaking; blocking on software events (such as other kernel
70 * threads releasing resources, or completing actions) is all generic.
72 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
73 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
74 * only by the hub driver ... and that neither should be seen or used by
75 * usb client device drivers.
77 * Contributors of ideas or unattributed patches include: David Brownell,
78 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
80 * HISTORY:
81 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
82 * associated cleanup. "usb_hcd" still != "usb_bus".
83 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
86 /*-------------------------------------------------------------------------*/
88 /* Keep track of which host controller drivers are loaded */
89 unsigned long usb_hcds_loaded;
90 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
92 /* host controllers we manage */
93 DEFINE_IDR (usb_bus_idr);
94 EXPORT_SYMBOL_GPL (usb_bus_idr);
96 /* used when allocating bus numbers */
97 #define USB_MAXBUS 64
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115 static inline int is_root_hub(struct usb_device *udev)
117 return (udev->parent == NULL);
120 /*-------------------------------------------------------------------------*/
123 * Sharable chunks of root hub code.
126 /*-------------------------------------------------------------------------*/
127 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
128 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130 /* usb 3.1 root hub device descriptor */
131 static const u8 usb31_rh_dev_descriptor[18] = {
132 0x12, /* __u8 bLength; */
133 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
134 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
137 0x00, /* __u8 bDeviceSubClass; */
138 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
145 0x03, /* __u8 iManufacturer; */
146 0x02, /* __u8 iProduct; */
147 0x01, /* __u8 iSerialNumber; */
148 0x01 /* __u8 bNumConfigurations; */
151 /* usb 3.0 root hub device descriptor */
152 static const u8 usb3_rh_dev_descriptor[18] = {
153 0x12, /* __u8 bLength; */
154 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
155 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
160 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
163 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
172 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
173 static const u8 usb25_rh_dev_descriptor[18] = {
174 0x12, /* __u8 bLength; */
175 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
176 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
178 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
179 0x00, /* __u8 bDeviceSubClass; */
180 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
181 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
183 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
184 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
185 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
187 0x03, /* __u8 iManufacturer; */
188 0x02, /* __u8 iProduct; */
189 0x01, /* __u8 iSerialNumber; */
190 0x01 /* __u8 bNumConfigurations; */
193 /* usb 2.0 root hub device descriptor */
194 static const u8 usb2_rh_dev_descriptor[18] = {
195 0x12, /* __u8 bLength; */
196 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
197 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
199 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
200 0x00, /* __u8 bDeviceSubClass; */
201 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
202 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
204 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
205 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
206 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
208 0x03, /* __u8 iManufacturer; */
209 0x02, /* __u8 iProduct; */
210 0x01, /* __u8 iSerialNumber; */
211 0x01 /* __u8 bNumConfigurations; */
214 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
216 /* usb 1.1 root hub device descriptor */
217 static const u8 usb11_rh_dev_descriptor[18] = {
218 0x12, /* __u8 bLength; */
219 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
220 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
222 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
223 0x00, /* __u8 bDeviceSubClass; */
224 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
225 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
227 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
228 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
229 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
231 0x03, /* __u8 iManufacturer; */
232 0x02, /* __u8 iProduct; */
233 0x01, /* __u8 iSerialNumber; */
234 0x01 /* __u8 bNumConfigurations; */
238 /*-------------------------------------------------------------------------*/
240 /* Configuration descriptors for our root hubs */
242 static const u8 fs_rh_config_descriptor[] = {
244 /* one configuration */
245 0x09, /* __u8 bLength; */
246 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
247 0x19, 0x00, /* __le16 wTotalLength; */
248 0x01, /* __u8 bNumInterfaces; (1) */
249 0x01, /* __u8 bConfigurationValue; */
250 0x00, /* __u8 iConfiguration; */
251 0xc0, /* __u8 bmAttributes;
252 Bit 7: must be set,
253 6: Self-powered,
254 5: Remote wakeup,
255 4..0: resvd */
256 0x00, /* __u8 MaxPower; */
258 /* USB 1.1:
259 * USB 2.0, single TT organization (mandatory):
260 * one interface, protocol 0
262 * USB 2.0, multiple TT organization (optional):
263 * two interfaces, protocols 1 (like single TT)
264 * and 2 (multiple TT mode) ... config is
265 * sometimes settable
266 * NOT IMPLEMENTED
269 /* one interface */
270 0x09, /* __u8 if_bLength; */
271 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
272 0x00, /* __u8 if_bInterfaceNumber; */
273 0x00, /* __u8 if_bAlternateSetting; */
274 0x01, /* __u8 if_bNumEndpoints; */
275 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
276 0x00, /* __u8 if_bInterfaceSubClass; */
277 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
278 0x00, /* __u8 if_iInterface; */
280 /* one endpoint (status change endpoint) */
281 0x07, /* __u8 ep_bLength; */
282 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
283 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
284 0x03, /* __u8 ep_bmAttributes; Interrupt */
285 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
286 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
289 static const u8 hs_rh_config_descriptor[] = {
291 /* one configuration */
292 0x09, /* __u8 bLength; */
293 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
294 0x19, 0x00, /* __le16 wTotalLength; */
295 0x01, /* __u8 bNumInterfaces; (1) */
296 0x01, /* __u8 bConfigurationValue; */
297 0x00, /* __u8 iConfiguration; */
298 0xc0, /* __u8 bmAttributes;
299 Bit 7: must be set,
300 6: Self-powered,
301 5: Remote wakeup,
302 4..0: resvd */
303 0x00, /* __u8 MaxPower; */
305 /* USB 1.1:
306 * USB 2.0, single TT organization (mandatory):
307 * one interface, protocol 0
309 * USB 2.0, multiple TT organization (optional):
310 * two interfaces, protocols 1 (like single TT)
311 * and 2 (multiple TT mode) ... config is
312 * sometimes settable
313 * NOT IMPLEMENTED
316 /* one interface */
317 0x09, /* __u8 if_bLength; */
318 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
319 0x00, /* __u8 if_bInterfaceNumber; */
320 0x00, /* __u8 if_bAlternateSetting; */
321 0x01, /* __u8 if_bNumEndpoints; */
322 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
323 0x00, /* __u8 if_bInterfaceSubClass; */
324 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
325 0x00, /* __u8 if_iInterface; */
327 /* one endpoint (status change endpoint) */
328 0x07, /* __u8 ep_bLength; */
329 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
330 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
331 0x03, /* __u8 ep_bmAttributes; Interrupt */
332 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
333 * see hub.c:hub_configure() for details. */
334 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
335 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
338 static const u8 ss_rh_config_descriptor[] = {
339 /* one configuration */
340 0x09, /* __u8 bLength; */
341 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
342 0x1f, 0x00, /* __le16 wTotalLength; */
343 0x01, /* __u8 bNumInterfaces; (1) */
344 0x01, /* __u8 bConfigurationValue; */
345 0x00, /* __u8 iConfiguration; */
346 0xc0, /* __u8 bmAttributes;
347 Bit 7: must be set,
348 6: Self-powered,
349 5: Remote wakeup,
350 4..0: resvd */
351 0x00, /* __u8 MaxPower; */
353 /* one interface */
354 0x09, /* __u8 if_bLength; */
355 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
356 0x00, /* __u8 if_bInterfaceNumber; */
357 0x00, /* __u8 if_bAlternateSetting; */
358 0x01, /* __u8 if_bNumEndpoints; */
359 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
360 0x00, /* __u8 if_bInterfaceSubClass; */
361 0x00, /* __u8 if_bInterfaceProtocol; */
362 0x00, /* __u8 if_iInterface; */
364 /* one endpoint (status change endpoint) */
365 0x07, /* __u8 ep_bLength; */
366 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
367 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
368 0x03, /* __u8 ep_bmAttributes; Interrupt */
369 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
370 * see hub.c:hub_configure() for details. */
371 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
372 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
374 /* one SuperSpeed endpoint companion descriptor */
375 0x06, /* __u8 ss_bLength */
376 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
377 /* Companion */
378 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
379 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
380 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
383 /* authorized_default behaviour:
384 * -1 is authorized for all devices except wireless (old behaviour)
385 * 0 is unauthorized for all devices
386 * 1 is authorized for all devices
388 static int authorized_default = -1;
389 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
390 MODULE_PARM_DESC(authorized_default,
391 "Default USB device authorization: 0 is not authorized, 1 is "
392 "authorized, -1 is authorized except for wireless USB (default, "
393 "old behaviour");
394 /*-------------------------------------------------------------------------*/
397 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
398 * @s: Null-terminated ASCII (actually ISO-8859-1) string
399 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
400 * @len: Length (in bytes; may be odd) of descriptor buffer.
402 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
403 * whichever is less.
405 * Note:
406 * USB String descriptors can contain at most 126 characters; input
407 * strings longer than that are truncated.
409 static unsigned
410 ascii2desc(char const *s, u8 *buf, unsigned len)
412 unsigned n, t = 2 + 2*strlen(s);
414 if (t > 254)
415 t = 254; /* Longest possible UTF string descriptor */
416 if (len > t)
417 len = t;
419 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
421 n = len;
422 while (n--) {
423 *buf++ = t;
424 if (!n--)
425 break;
426 *buf++ = t >> 8;
427 t = (unsigned char)*s++;
429 return len;
433 * rh_string() - provides string descriptors for root hub
434 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
435 * @hcd: the host controller for this root hub
436 * @data: buffer for output packet
437 * @len: length of the provided buffer
439 * Produces either a manufacturer, product or serial number string for the
440 * virtual root hub device.
442 * Return: The number of bytes filled in: the length of the descriptor or
443 * of the provided buffer, whichever is less.
445 static unsigned
446 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
448 char buf[100];
449 char const *s;
450 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
452 /* language ids */
453 switch (id) {
454 case 0:
455 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
456 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
457 if (len > 4)
458 len = 4;
459 memcpy(data, langids, len);
460 return len;
461 case 1:
462 /* Serial number */
463 s = hcd->self.bus_name;
464 break;
465 case 2:
466 /* Product name */
467 s = hcd->product_desc;
468 break;
469 case 3:
470 /* Manufacturer */
471 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
472 init_utsname()->release, hcd->driver->description);
473 s = buf;
474 break;
475 default:
476 /* Can't happen; caller guarantees it */
477 return 0;
480 return ascii2desc(s, data, len);
484 /* Root hub control transfers execute synchronously */
485 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
487 struct usb_ctrlrequest *cmd;
488 u16 typeReq, wValue, wIndex, wLength;
489 u8 *ubuf = urb->transfer_buffer;
490 unsigned len = 0;
491 int status;
492 u8 patch_wakeup = 0;
493 u8 patch_protocol = 0;
494 u16 tbuf_size;
495 u8 *tbuf = NULL;
496 const u8 *bufp;
498 might_sleep();
500 spin_lock_irq(&hcd_root_hub_lock);
501 status = usb_hcd_link_urb_to_ep(hcd, urb);
502 spin_unlock_irq(&hcd_root_hub_lock);
503 if (status)
504 return status;
505 urb->hcpriv = hcd; /* Indicate it's queued */
507 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
508 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
509 wValue = le16_to_cpu (cmd->wValue);
510 wIndex = le16_to_cpu (cmd->wIndex);
511 wLength = le16_to_cpu (cmd->wLength);
513 if (wLength > urb->transfer_buffer_length)
514 goto error;
517 * tbuf should be at least as big as the
518 * USB hub descriptor.
520 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
521 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
522 if (!tbuf)
523 return -ENOMEM;
525 bufp = tbuf;
528 urb->actual_length = 0;
529 switch (typeReq) {
531 /* DEVICE REQUESTS */
533 /* The root hub's remote wakeup enable bit is implemented using
534 * driver model wakeup flags. If this system supports wakeup
535 * through USB, userspace may change the default "allow wakeup"
536 * policy through sysfs or these calls.
538 * Most root hubs support wakeup from downstream devices, for
539 * runtime power management (disabling USB clocks and reducing
540 * VBUS power usage). However, not all of them do so; silicon,
541 * board, and BIOS bugs here are not uncommon, so these can't
542 * be treated quite like external hubs.
544 * Likewise, not all root hubs will pass wakeup events upstream,
545 * to wake up the whole system. So don't assume root hub and
546 * controller capabilities are identical.
549 case DeviceRequest | USB_REQ_GET_STATUS:
550 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
551 << USB_DEVICE_REMOTE_WAKEUP)
552 | (1 << USB_DEVICE_SELF_POWERED);
553 tbuf[1] = 0;
554 len = 2;
555 break;
556 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
557 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
558 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
559 else
560 goto error;
561 break;
562 case DeviceOutRequest | USB_REQ_SET_FEATURE:
563 if (device_can_wakeup(&hcd->self.root_hub->dev)
564 && wValue == USB_DEVICE_REMOTE_WAKEUP)
565 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
566 else
567 goto error;
568 break;
569 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
570 tbuf[0] = 1;
571 len = 1;
572 /* FALLTHROUGH */
573 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
574 break;
575 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
576 switch (wValue & 0xff00) {
577 case USB_DT_DEVICE << 8:
578 switch (hcd->speed) {
579 case HCD_USB31:
580 bufp = usb31_rh_dev_descriptor;
581 break;
582 case HCD_USB3:
583 bufp = usb3_rh_dev_descriptor;
584 break;
585 case HCD_USB25:
586 bufp = usb25_rh_dev_descriptor;
587 break;
588 case HCD_USB2:
589 bufp = usb2_rh_dev_descriptor;
590 break;
591 case HCD_USB11:
592 bufp = usb11_rh_dev_descriptor;
593 break;
594 default:
595 goto error;
597 len = 18;
598 if (hcd->has_tt)
599 patch_protocol = 1;
600 break;
601 case USB_DT_CONFIG << 8:
602 switch (hcd->speed) {
603 case HCD_USB31:
604 case HCD_USB3:
605 bufp = ss_rh_config_descriptor;
606 len = sizeof ss_rh_config_descriptor;
607 break;
608 case HCD_USB25:
609 case HCD_USB2:
610 bufp = hs_rh_config_descriptor;
611 len = sizeof hs_rh_config_descriptor;
612 break;
613 case HCD_USB11:
614 bufp = fs_rh_config_descriptor;
615 len = sizeof fs_rh_config_descriptor;
616 break;
617 default:
618 goto error;
620 if (device_can_wakeup(&hcd->self.root_hub->dev))
621 patch_wakeup = 1;
622 break;
623 case USB_DT_STRING << 8:
624 if ((wValue & 0xff) < 4)
625 urb->actual_length = rh_string(wValue & 0xff,
626 hcd, ubuf, wLength);
627 else /* unsupported IDs --> "protocol stall" */
628 goto error;
629 break;
630 case USB_DT_BOS << 8:
631 goto nongeneric;
632 default:
633 goto error;
635 break;
636 case DeviceRequest | USB_REQ_GET_INTERFACE:
637 tbuf[0] = 0;
638 len = 1;
639 /* FALLTHROUGH */
640 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
641 break;
642 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
643 /* wValue == urb->dev->devaddr */
644 dev_dbg (hcd->self.controller, "root hub device address %d\n",
645 wValue);
646 break;
648 /* INTERFACE REQUESTS (no defined feature/status flags) */
650 /* ENDPOINT REQUESTS */
652 case EndpointRequest | USB_REQ_GET_STATUS:
653 /* ENDPOINT_HALT flag */
654 tbuf[0] = 0;
655 tbuf[1] = 0;
656 len = 2;
657 /* FALLTHROUGH */
658 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
659 case EndpointOutRequest | USB_REQ_SET_FEATURE:
660 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
661 break;
663 /* CLASS REQUESTS (and errors) */
665 default:
666 nongeneric:
667 /* non-generic request */
668 switch (typeReq) {
669 case GetHubStatus:
670 len = 4;
671 break;
672 case GetPortStatus:
673 if (wValue == HUB_PORT_STATUS)
674 len = 4;
675 else
676 /* other port status types return 8 bytes */
677 len = 8;
678 break;
679 case GetHubDescriptor:
680 len = sizeof (struct usb_hub_descriptor);
681 break;
682 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
683 /* len is returned by hub_control */
684 break;
686 status = hcd->driver->hub_control (hcd,
687 typeReq, wValue, wIndex,
688 tbuf, wLength);
690 if (typeReq == GetHubDescriptor)
691 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
692 (struct usb_hub_descriptor *)tbuf);
693 break;
694 error:
695 /* "protocol stall" on error */
696 status = -EPIPE;
699 if (status < 0) {
700 len = 0;
701 if (status != -EPIPE) {
702 dev_dbg (hcd->self.controller,
703 "CTRL: TypeReq=0x%x val=0x%x "
704 "idx=0x%x len=%d ==> %d\n",
705 typeReq, wValue, wIndex,
706 wLength, status);
708 } else if (status > 0) {
709 /* hub_control may return the length of data copied. */
710 len = status;
711 status = 0;
713 if (len) {
714 if (urb->transfer_buffer_length < len)
715 len = urb->transfer_buffer_length;
716 urb->actual_length = len;
717 /* always USB_DIR_IN, toward host */
718 memcpy (ubuf, bufp, len);
720 /* report whether RH hardware supports remote wakeup */
721 if (patch_wakeup &&
722 len > offsetof (struct usb_config_descriptor,
723 bmAttributes))
724 ((struct usb_config_descriptor *)ubuf)->bmAttributes
725 |= USB_CONFIG_ATT_WAKEUP;
727 /* report whether RH hardware has an integrated TT */
728 if (patch_protocol &&
729 len > offsetof(struct usb_device_descriptor,
730 bDeviceProtocol))
731 ((struct usb_device_descriptor *) ubuf)->
732 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
735 kfree(tbuf);
737 /* any errors get returned through the urb completion */
738 spin_lock_irq(&hcd_root_hub_lock);
739 usb_hcd_unlink_urb_from_ep(hcd, urb);
740 usb_hcd_giveback_urb(hcd, urb, status);
741 spin_unlock_irq(&hcd_root_hub_lock);
742 return 0;
745 /*-------------------------------------------------------------------------*/
748 * Root Hub interrupt transfers are polled using a timer if the
749 * driver requests it; otherwise the driver is responsible for
750 * calling usb_hcd_poll_rh_status() when an event occurs.
752 * Completions are called in_interrupt(), but they may or may not
753 * be in_irq().
755 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
757 struct urb *urb;
758 int length;
759 unsigned long flags;
760 char buffer[6]; /* Any root hubs with > 31 ports? */
762 if (unlikely(!hcd->rh_pollable))
763 return;
764 if (!hcd->uses_new_polling && !hcd->status_urb)
765 return;
767 length = hcd->driver->hub_status_data(hcd, buffer);
768 if (length > 0) {
770 /* try to complete the status urb */
771 spin_lock_irqsave(&hcd_root_hub_lock, flags);
772 urb = hcd->status_urb;
773 if (urb) {
774 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
775 hcd->status_urb = NULL;
776 urb->actual_length = length;
777 memcpy(urb->transfer_buffer, buffer, length);
779 usb_hcd_unlink_urb_from_ep(hcd, urb);
780 usb_hcd_giveback_urb(hcd, urb, 0);
781 } else {
782 length = 0;
783 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
785 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
788 /* The USB 2.0 spec says 256 ms. This is close enough and won't
789 * exceed that limit if HZ is 100. The math is more clunky than
790 * maybe expected, this is to make sure that all timers for USB devices
791 * fire at the same time to give the CPU a break in between */
792 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
793 (length == 0 && hcd->status_urb != NULL))
794 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
796 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
798 /* timer callback */
799 static void rh_timer_func (unsigned long _hcd)
801 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
804 /*-------------------------------------------------------------------------*/
806 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
808 int retval;
809 unsigned long flags;
810 unsigned len = 1 + (urb->dev->maxchild / 8);
812 spin_lock_irqsave (&hcd_root_hub_lock, flags);
813 if (hcd->status_urb || urb->transfer_buffer_length < len) {
814 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
815 retval = -EINVAL;
816 goto done;
819 retval = usb_hcd_link_urb_to_ep(hcd, urb);
820 if (retval)
821 goto done;
823 hcd->status_urb = urb;
824 urb->hcpriv = hcd; /* indicate it's queued */
825 if (!hcd->uses_new_polling)
826 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
828 /* If a status change has already occurred, report it ASAP */
829 else if (HCD_POLL_PENDING(hcd))
830 mod_timer(&hcd->rh_timer, jiffies);
831 retval = 0;
832 done:
833 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
834 return retval;
837 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
839 if (usb_endpoint_xfer_int(&urb->ep->desc))
840 return rh_queue_status (hcd, urb);
841 if (usb_endpoint_xfer_control(&urb->ep->desc))
842 return rh_call_control (hcd, urb);
843 return -EINVAL;
846 /*-------------------------------------------------------------------------*/
848 /* Unlinks of root-hub control URBs are legal, but they don't do anything
849 * since these URBs always execute synchronously.
851 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
853 unsigned long flags;
854 int rc;
856 spin_lock_irqsave(&hcd_root_hub_lock, flags);
857 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
858 if (rc)
859 goto done;
861 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
862 ; /* Do nothing */
864 } else { /* Status URB */
865 if (!hcd->uses_new_polling)
866 del_timer (&hcd->rh_timer);
867 if (urb == hcd->status_urb) {
868 hcd->status_urb = NULL;
869 usb_hcd_unlink_urb_from_ep(hcd, urb);
870 usb_hcd_giveback_urb(hcd, urb, status);
873 done:
874 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
875 return rc;
881 * Show & store the current value of authorized_default
883 static ssize_t authorized_default_show(struct device *dev,
884 struct device_attribute *attr, char *buf)
886 struct usb_device *rh_usb_dev = to_usb_device(dev);
887 struct usb_bus *usb_bus = rh_usb_dev->bus;
888 struct usb_hcd *hcd;
890 hcd = bus_to_hcd(usb_bus);
891 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
894 static ssize_t authorized_default_store(struct device *dev,
895 struct device_attribute *attr,
896 const char *buf, size_t size)
898 ssize_t result;
899 unsigned val;
900 struct usb_device *rh_usb_dev = to_usb_device(dev);
901 struct usb_bus *usb_bus = rh_usb_dev->bus;
902 struct usb_hcd *hcd;
904 hcd = bus_to_hcd(usb_bus);
905 result = sscanf(buf, "%u\n", &val);
906 if (result == 1) {
907 if (val)
908 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
909 else
910 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
912 result = size;
913 } else {
914 result = -EINVAL;
916 return result;
918 static DEVICE_ATTR_RW(authorized_default);
921 * interface_authorized_default_show - show default authorization status
922 * for USB interfaces
924 * note: interface_authorized_default is the default value
925 * for initializing the authorized attribute of interfaces
927 static ssize_t interface_authorized_default_show(struct device *dev,
928 struct device_attribute *attr, char *buf)
930 struct usb_device *usb_dev = to_usb_device(dev);
931 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
933 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
937 * interface_authorized_default_store - store default authorization status
938 * for USB interfaces
940 * note: interface_authorized_default is the default value
941 * for initializing the authorized attribute of interfaces
943 static ssize_t interface_authorized_default_store(struct device *dev,
944 struct device_attribute *attr, const char *buf, size_t count)
946 struct usb_device *usb_dev = to_usb_device(dev);
947 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
948 int rc = count;
949 bool val;
951 if (strtobool(buf, &val) != 0)
952 return -EINVAL;
954 if (val)
955 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
956 else
957 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
959 return rc;
961 static DEVICE_ATTR_RW(interface_authorized_default);
963 /* Group all the USB bus attributes */
964 static struct attribute *usb_bus_attrs[] = {
965 &dev_attr_authorized_default.attr,
966 &dev_attr_interface_authorized_default.attr,
967 NULL,
970 static struct attribute_group usb_bus_attr_group = {
971 .name = NULL, /* we want them in the same directory */
972 .attrs = usb_bus_attrs,
977 /*-------------------------------------------------------------------------*/
980 * usb_bus_init - shared initialization code
981 * @bus: the bus structure being initialized
983 * This code is used to initialize a usb_bus structure, memory for which is
984 * separately managed.
986 static void usb_bus_init (struct usb_bus *bus)
988 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
990 bus->devnum_next = 1;
992 bus->root_hub = NULL;
993 bus->busnum = -1;
994 bus->bandwidth_allocated = 0;
995 bus->bandwidth_int_reqs = 0;
996 bus->bandwidth_isoc_reqs = 0;
997 mutex_init(&bus->usb_address0_mutex);
1000 /*-------------------------------------------------------------------------*/
1003 * usb_register_bus - registers the USB host controller with the usb core
1004 * @bus: pointer to the bus to register
1005 * Context: !in_interrupt()
1007 * Assigns a bus number, and links the controller into usbcore data
1008 * structures so that it can be seen by scanning the bus list.
1010 * Return: 0 if successful. A negative error code otherwise.
1012 static int usb_register_bus(struct usb_bus *bus)
1014 int result = -E2BIG;
1015 int busnum;
1017 mutex_lock(&usb_bus_idr_lock);
1018 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1019 if (busnum < 0) {
1020 pr_err("%s: failed to get bus number\n", usbcore_name);
1021 goto error_find_busnum;
1023 bus->busnum = busnum;
1024 mutex_unlock(&usb_bus_idr_lock);
1026 usb_notify_add_bus(bus);
1028 dev_info (bus->controller, "new USB bus registered, assigned bus "
1029 "number %d\n", bus->busnum);
1030 return 0;
1032 error_find_busnum:
1033 mutex_unlock(&usb_bus_idr_lock);
1034 return result;
1038 * usb_deregister_bus - deregisters the USB host controller
1039 * @bus: pointer to the bus to deregister
1040 * Context: !in_interrupt()
1042 * Recycles the bus number, and unlinks the controller from usbcore data
1043 * structures so that it won't be seen by scanning the bus list.
1045 static void usb_deregister_bus (struct usb_bus *bus)
1047 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1050 * NOTE: make sure that all the devices are removed by the
1051 * controller code, as well as having it call this when cleaning
1052 * itself up
1054 mutex_lock(&usb_bus_idr_lock);
1055 idr_remove(&usb_bus_idr, bus->busnum);
1056 mutex_unlock(&usb_bus_idr_lock);
1058 usb_notify_remove_bus(bus);
1062 * register_root_hub - called by usb_add_hcd() to register a root hub
1063 * @hcd: host controller for this root hub
1065 * This function registers the root hub with the USB subsystem. It sets up
1066 * the device properly in the device tree and then calls usb_new_device()
1067 * to register the usb device. It also assigns the root hub's USB address
1068 * (always 1).
1070 * Return: 0 if successful. A negative error code otherwise.
1072 static int register_root_hub(struct usb_hcd *hcd)
1074 struct device *parent_dev = hcd->self.controller;
1075 struct usb_device *usb_dev = hcd->self.root_hub;
1076 const int devnum = 1;
1077 int retval;
1079 usb_dev->devnum = devnum;
1080 usb_dev->bus->devnum_next = devnum + 1;
1081 memset (&usb_dev->bus->devmap.devicemap, 0,
1082 sizeof usb_dev->bus->devmap.devicemap);
1083 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1084 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1086 mutex_lock(&usb_bus_idr_lock);
1088 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1089 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1090 if (retval != sizeof usb_dev->descriptor) {
1091 mutex_unlock(&usb_bus_idr_lock);
1092 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1093 dev_name(&usb_dev->dev), retval);
1094 return (retval < 0) ? retval : -EMSGSIZE;
1097 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1098 retval = usb_get_bos_descriptor(usb_dev);
1099 if (!retval) {
1100 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1101 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1102 mutex_unlock(&usb_bus_idr_lock);
1103 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1104 dev_name(&usb_dev->dev), retval);
1105 return retval;
1109 retval = usb_new_device (usb_dev);
1110 if (retval) {
1111 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1112 dev_name(&usb_dev->dev), retval);
1113 } else {
1114 spin_lock_irq (&hcd_root_hub_lock);
1115 hcd->rh_registered = 1;
1116 spin_unlock_irq (&hcd_root_hub_lock);
1118 /* Did the HC die before the root hub was registered? */
1119 if (HCD_DEAD(hcd))
1120 usb_hc_died (hcd); /* This time clean up */
1122 mutex_unlock(&usb_bus_idr_lock);
1124 return retval;
1128 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1129 * @bus: the bus which the root hub belongs to
1130 * @portnum: the port which is being resumed
1132 * HCDs should call this function when they know that a resume signal is
1133 * being sent to a root-hub port. The root hub will be prevented from
1134 * going into autosuspend until usb_hcd_end_port_resume() is called.
1136 * The bus's private lock must be held by the caller.
1138 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1140 unsigned bit = 1 << portnum;
1142 if (!(bus->resuming_ports & bit)) {
1143 bus->resuming_ports |= bit;
1144 pm_runtime_get_noresume(&bus->root_hub->dev);
1147 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1150 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1151 * @bus: the bus which the root hub belongs to
1152 * @portnum: the port which is being resumed
1154 * HCDs should call this function when they know that a resume signal has
1155 * stopped being sent to a root-hub port. The root hub will be allowed to
1156 * autosuspend again.
1158 * The bus's private lock must be held by the caller.
1160 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1162 unsigned bit = 1 << portnum;
1164 if (bus->resuming_ports & bit) {
1165 bus->resuming_ports &= ~bit;
1166 pm_runtime_put_noidle(&bus->root_hub->dev);
1169 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1171 /*-------------------------------------------------------------------------*/
1174 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1175 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1176 * @is_input: true iff the transaction sends data to the host
1177 * @isoc: true for isochronous transactions, false for interrupt ones
1178 * @bytecount: how many bytes in the transaction.
1180 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1182 * Note:
1183 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1184 * scheduled in software, this function is only used for such scheduling.
1186 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1188 unsigned long tmp;
1190 switch (speed) {
1191 case USB_SPEED_LOW: /* INTR only */
1192 if (is_input) {
1193 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1194 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1195 } else {
1196 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1197 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1199 case USB_SPEED_FULL: /* ISOC or INTR */
1200 if (isoc) {
1201 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1202 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1203 } else {
1204 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1205 return 9107L + BW_HOST_DELAY + tmp;
1207 case USB_SPEED_HIGH: /* ISOC or INTR */
1208 /* FIXME adjust for input vs output */
1209 if (isoc)
1210 tmp = HS_NSECS_ISO (bytecount);
1211 else
1212 tmp = HS_NSECS (bytecount);
1213 return tmp;
1214 default:
1215 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1216 return -1;
1219 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1222 /*-------------------------------------------------------------------------*/
1225 * Generic HC operations.
1228 /*-------------------------------------------------------------------------*/
1231 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1232 * @hcd: host controller to which @urb was submitted
1233 * @urb: URB being submitted
1235 * Host controller drivers should call this routine in their enqueue()
1236 * method. The HCD's private spinlock must be held and interrupts must
1237 * be disabled. The actions carried out here are required for URB
1238 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1240 * Return: 0 for no error, otherwise a negative error code (in which case
1241 * the enqueue() method must fail). If no error occurs but enqueue() fails
1242 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1243 * the private spinlock and returning.
1245 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1247 int rc = 0;
1249 spin_lock(&hcd_urb_list_lock);
1251 /* Check that the URB isn't being killed */
1252 if (unlikely(atomic_read(&urb->reject))) {
1253 rc = -EPERM;
1254 goto done;
1257 if (unlikely(!urb->ep->enabled)) {
1258 rc = -ENOENT;
1259 goto done;
1262 if (unlikely(!urb->dev->can_submit)) {
1263 rc = -EHOSTUNREACH;
1264 goto done;
1268 * Check the host controller's state and add the URB to the
1269 * endpoint's queue.
1271 if (HCD_RH_RUNNING(hcd)) {
1272 urb->unlinked = 0;
1273 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1274 } else {
1275 rc = -ESHUTDOWN;
1276 goto done;
1278 done:
1279 spin_unlock(&hcd_urb_list_lock);
1280 return rc;
1282 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1285 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1286 * @hcd: host controller to which @urb was submitted
1287 * @urb: URB being checked for unlinkability
1288 * @status: error code to store in @urb if the unlink succeeds
1290 * Host controller drivers should call this routine in their dequeue()
1291 * method. The HCD's private spinlock must be held and interrupts must
1292 * be disabled. The actions carried out here are required for making
1293 * sure than an unlink is valid.
1295 * Return: 0 for no error, otherwise a negative error code (in which case
1296 * the dequeue() method must fail). The possible error codes are:
1298 * -EIDRM: @urb was not submitted or has already completed.
1299 * The completion function may not have been called yet.
1301 * -EBUSY: @urb has already been unlinked.
1303 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1304 int status)
1306 struct list_head *tmp;
1308 /* insist the urb is still queued */
1309 list_for_each(tmp, &urb->ep->urb_list) {
1310 if (tmp == &urb->urb_list)
1311 break;
1313 if (tmp != &urb->urb_list)
1314 return -EIDRM;
1316 /* Any status except -EINPROGRESS means something already started to
1317 * unlink this URB from the hardware. So there's no more work to do.
1319 if (urb->unlinked)
1320 return -EBUSY;
1321 urb->unlinked = status;
1322 return 0;
1324 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1327 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1328 * @hcd: host controller to which @urb was submitted
1329 * @urb: URB being unlinked
1331 * Host controller drivers should call this routine before calling
1332 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1333 * interrupts must be disabled. The actions carried out here are required
1334 * for URB completion.
1336 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1338 /* clear all state linking urb to this dev (and hcd) */
1339 spin_lock(&hcd_urb_list_lock);
1340 list_del_init(&urb->urb_list);
1341 spin_unlock(&hcd_urb_list_lock);
1343 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1346 * Some usb host controllers can only perform dma using a small SRAM area.
1347 * The usb core itself is however optimized for host controllers that can dma
1348 * using regular system memory - like pci devices doing bus mastering.
1350 * To support host controllers with limited dma capabilities we provide dma
1351 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1352 * For this to work properly the host controller code must first use the
1353 * function dma_declare_coherent_memory() to point out which memory area
1354 * that should be used for dma allocations.
1356 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1357 * dma using dma_alloc_coherent() which in turn allocates from the memory
1358 * area pointed out with dma_declare_coherent_memory().
1360 * So, to summarize...
1362 * - We need "local" memory, canonical example being
1363 * a small SRAM on a discrete controller being the
1364 * only memory that the controller can read ...
1365 * (a) "normal" kernel memory is no good, and
1366 * (b) there's not enough to share
1368 * - The only *portable* hook for such stuff in the
1369 * DMA framework is dma_declare_coherent_memory()
1371 * - So we use that, even though the primary requirement
1372 * is that the memory be "local" (hence addressable
1373 * by that device), not "coherent".
1377 static int hcd_alloc_coherent(struct usb_bus *bus,
1378 gfp_t mem_flags, dma_addr_t *dma_handle,
1379 void **vaddr_handle, size_t size,
1380 enum dma_data_direction dir)
1382 unsigned char *vaddr;
1384 if (*vaddr_handle == NULL) {
1385 WARN_ON_ONCE(1);
1386 return -EFAULT;
1389 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1390 mem_flags, dma_handle);
1391 if (!vaddr)
1392 return -ENOMEM;
1395 * Store the virtual address of the buffer at the end
1396 * of the allocated dma buffer. The size of the buffer
1397 * may be uneven so use unaligned functions instead
1398 * of just rounding up. It makes sense to optimize for
1399 * memory footprint over access speed since the amount
1400 * of memory available for dma may be limited.
1402 put_unaligned((unsigned long)*vaddr_handle,
1403 (unsigned long *)(vaddr + size));
1405 if (dir == DMA_TO_DEVICE)
1406 memcpy(vaddr, *vaddr_handle, size);
1408 *vaddr_handle = vaddr;
1409 return 0;
1412 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1413 void **vaddr_handle, size_t size,
1414 enum dma_data_direction dir)
1416 unsigned char *vaddr = *vaddr_handle;
1418 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1420 if (dir == DMA_FROM_DEVICE)
1421 memcpy(vaddr, *vaddr_handle, size);
1423 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1425 *vaddr_handle = vaddr;
1426 *dma_handle = 0;
1429 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1431 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1432 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1433 dma_unmap_single(hcd->self.controller,
1434 urb->setup_dma,
1435 sizeof(struct usb_ctrlrequest),
1436 DMA_TO_DEVICE);
1437 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1438 hcd_free_coherent(urb->dev->bus,
1439 &urb->setup_dma,
1440 (void **) &urb->setup_packet,
1441 sizeof(struct usb_ctrlrequest),
1442 DMA_TO_DEVICE);
1444 /* Make it safe to call this routine more than once */
1445 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1447 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1449 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1451 if (hcd->driver->unmap_urb_for_dma)
1452 hcd->driver->unmap_urb_for_dma(hcd, urb);
1453 else
1454 usb_hcd_unmap_urb_for_dma(hcd, urb);
1457 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1459 enum dma_data_direction dir;
1461 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1463 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1464 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1465 (urb->transfer_flags & URB_DMA_MAP_SG))
1466 dma_unmap_sg(hcd->self.controller,
1467 urb->sg,
1468 urb->num_sgs,
1469 dir);
1470 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1471 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1472 dma_unmap_page(hcd->self.controller,
1473 urb->transfer_dma,
1474 urb->transfer_buffer_length,
1475 dir);
1476 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1477 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1478 dma_unmap_single(hcd->self.controller,
1479 urb->transfer_dma,
1480 urb->transfer_buffer_length,
1481 dir);
1482 else if (urb->transfer_flags & URB_MAP_LOCAL)
1483 hcd_free_coherent(urb->dev->bus,
1484 &urb->transfer_dma,
1485 &urb->transfer_buffer,
1486 urb->transfer_buffer_length,
1487 dir);
1489 /* Make it safe to call this routine more than once */
1490 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1491 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1493 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1495 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1496 gfp_t mem_flags)
1498 if (hcd->driver->map_urb_for_dma)
1499 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1500 else
1501 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1504 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1505 gfp_t mem_flags)
1507 enum dma_data_direction dir;
1508 int ret = 0;
1510 /* Map the URB's buffers for DMA access.
1511 * Lower level HCD code should use *_dma exclusively,
1512 * unless it uses pio or talks to another transport,
1513 * or uses the provided scatter gather list for bulk.
1516 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1517 if (hcd->self.uses_pio_for_control)
1518 return ret;
1519 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1520 urb->setup_dma = dma_map_single(
1521 hcd->self.controller,
1522 urb->setup_packet,
1523 sizeof(struct usb_ctrlrequest),
1524 DMA_TO_DEVICE);
1525 if (dma_mapping_error(hcd->self.controller,
1526 urb->setup_dma))
1527 return -EAGAIN;
1528 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1529 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1530 ret = hcd_alloc_coherent(
1531 urb->dev->bus, mem_flags,
1532 &urb->setup_dma,
1533 (void **)&urb->setup_packet,
1534 sizeof(struct usb_ctrlrequest),
1535 DMA_TO_DEVICE);
1536 if (ret)
1537 return ret;
1538 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1542 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1543 if (urb->transfer_buffer_length != 0
1544 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1545 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1546 if (urb->num_sgs) {
1547 int n;
1549 /* We don't support sg for isoc transfers ! */
1550 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1551 WARN_ON(1);
1552 return -EINVAL;
1555 n = dma_map_sg(
1556 hcd->self.controller,
1557 urb->sg,
1558 urb->num_sgs,
1559 dir);
1560 if (n <= 0)
1561 ret = -EAGAIN;
1562 else
1563 urb->transfer_flags |= URB_DMA_MAP_SG;
1564 urb->num_mapped_sgs = n;
1565 if (n != urb->num_sgs)
1566 urb->transfer_flags |=
1567 URB_DMA_SG_COMBINED;
1568 } else if (urb->sg) {
1569 struct scatterlist *sg = urb->sg;
1570 urb->transfer_dma = dma_map_page(
1571 hcd->self.controller,
1572 sg_page(sg),
1573 sg->offset,
1574 urb->transfer_buffer_length,
1575 dir);
1576 if (dma_mapping_error(hcd->self.controller,
1577 urb->transfer_dma))
1578 ret = -EAGAIN;
1579 else
1580 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1581 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1582 WARN_ONCE(1, "transfer buffer not dma capable\n");
1583 ret = -EAGAIN;
1584 } else {
1585 urb->transfer_dma = dma_map_single(
1586 hcd->self.controller,
1587 urb->transfer_buffer,
1588 urb->transfer_buffer_length,
1589 dir);
1590 if (dma_mapping_error(hcd->self.controller,
1591 urb->transfer_dma))
1592 ret = -EAGAIN;
1593 else
1594 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1596 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1597 ret = hcd_alloc_coherent(
1598 urb->dev->bus, mem_flags,
1599 &urb->transfer_dma,
1600 &urb->transfer_buffer,
1601 urb->transfer_buffer_length,
1602 dir);
1603 if (ret == 0)
1604 urb->transfer_flags |= URB_MAP_LOCAL;
1606 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1607 URB_SETUP_MAP_LOCAL)))
1608 usb_hcd_unmap_urb_for_dma(hcd, urb);
1610 return ret;
1612 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1614 /*-------------------------------------------------------------------------*/
1616 /* may be called in any context with a valid urb->dev usecount
1617 * caller surrenders "ownership" of urb
1618 * expects usb_submit_urb() to have sanity checked and conditioned all
1619 * inputs in the urb
1621 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1623 int status;
1624 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1626 /* increment urb's reference count as part of giving it to the HCD
1627 * (which will control it). HCD guarantees that it either returns
1628 * an error or calls giveback(), but not both.
1630 usb_get_urb(urb);
1631 atomic_inc(&urb->use_count);
1632 atomic_inc(&urb->dev->urbnum);
1633 usbmon_urb_submit(&hcd->self, urb);
1635 /* NOTE requirements on root-hub callers (usbfs and the hub
1636 * driver, for now): URBs' urb->transfer_buffer must be
1637 * valid and usb_buffer_{sync,unmap}() not be needed, since
1638 * they could clobber root hub response data. Also, control
1639 * URBs must be submitted in process context with interrupts
1640 * enabled.
1643 if (is_root_hub(urb->dev)) {
1644 status = rh_urb_enqueue(hcd, urb);
1645 } else {
1646 status = map_urb_for_dma(hcd, urb, mem_flags);
1647 if (likely(status == 0)) {
1648 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1649 if (unlikely(status))
1650 unmap_urb_for_dma(hcd, urb);
1654 if (unlikely(status)) {
1655 usbmon_urb_submit_error(&hcd->self, urb, status);
1656 urb->hcpriv = NULL;
1657 INIT_LIST_HEAD(&urb->urb_list);
1658 atomic_dec(&urb->use_count);
1659 atomic_dec(&urb->dev->urbnum);
1660 if (atomic_read(&urb->reject))
1661 wake_up(&usb_kill_urb_queue);
1662 usb_put_urb(urb);
1664 return status;
1667 /*-------------------------------------------------------------------------*/
1669 /* this makes the hcd giveback() the urb more quickly, by kicking it
1670 * off hardware queues (which may take a while) and returning it as
1671 * soon as practical. we've already set up the urb's return status,
1672 * but we can't know if the callback completed already.
1674 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1676 int value;
1678 if (is_root_hub(urb->dev))
1679 value = usb_rh_urb_dequeue(hcd, urb, status);
1680 else {
1682 /* The only reason an HCD might fail this call is if
1683 * it has not yet fully queued the urb to begin with.
1684 * Such failures should be harmless. */
1685 value = hcd->driver->urb_dequeue(hcd, urb, status);
1687 return value;
1691 * called in any context
1693 * caller guarantees urb won't be recycled till both unlink()
1694 * and the urb's completion function return
1696 int usb_hcd_unlink_urb (struct urb *urb, int status)
1698 struct usb_hcd *hcd;
1699 struct usb_device *udev = urb->dev;
1700 int retval = -EIDRM;
1701 unsigned long flags;
1703 /* Prevent the device and bus from going away while
1704 * the unlink is carried out. If they are already gone
1705 * then urb->use_count must be 0, since disconnected
1706 * devices can't have any active URBs.
1708 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1709 if (atomic_read(&urb->use_count) > 0) {
1710 retval = 0;
1711 usb_get_dev(udev);
1713 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1714 if (retval == 0) {
1715 hcd = bus_to_hcd(urb->dev->bus);
1716 retval = unlink1(hcd, urb, status);
1717 if (retval == 0)
1718 retval = -EINPROGRESS;
1719 else if (retval != -EIDRM && retval != -EBUSY)
1720 dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1721 urb, retval);
1722 usb_put_dev(udev);
1724 return retval;
1727 /*-------------------------------------------------------------------------*/
1729 static void __usb_hcd_giveback_urb(struct urb *urb)
1731 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1732 struct usb_anchor *anchor = urb->anchor;
1733 int status = urb->unlinked;
1734 unsigned long flags;
1736 urb->hcpriv = NULL;
1737 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1738 urb->actual_length < urb->transfer_buffer_length &&
1739 !status))
1740 status = -EREMOTEIO;
1742 unmap_urb_for_dma(hcd, urb);
1743 usbmon_urb_complete(&hcd->self, urb, status);
1744 usb_anchor_suspend_wakeups(anchor);
1745 usb_unanchor_urb(urb);
1746 if (likely(status == 0))
1747 usb_led_activity(USB_LED_EVENT_HOST);
1749 /* pass ownership to the completion handler */
1750 urb->status = status;
1753 * We disable local IRQs here avoid possible deadlock because
1754 * drivers may call spin_lock() to hold lock which might be
1755 * acquired in one hard interrupt handler.
1757 * The local_irq_save()/local_irq_restore() around complete()
1758 * will be removed if current USB drivers have been cleaned up
1759 * and no one may trigger the above deadlock situation when
1760 * running complete() in tasklet.
1762 local_irq_save(flags);
1763 urb->complete(urb);
1764 local_irq_restore(flags);
1766 usb_anchor_resume_wakeups(anchor);
1767 atomic_dec(&urb->use_count);
1768 if (unlikely(atomic_read(&urb->reject)))
1769 wake_up(&usb_kill_urb_queue);
1770 usb_put_urb(urb);
1773 static void usb_giveback_urb_bh(unsigned long param)
1775 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1776 struct list_head local_list;
1778 spin_lock_irq(&bh->lock);
1779 bh->running = true;
1780 restart:
1781 list_replace_init(&bh->head, &local_list);
1782 spin_unlock_irq(&bh->lock);
1784 while (!list_empty(&local_list)) {
1785 struct urb *urb;
1787 urb = list_entry(local_list.next, struct urb, urb_list);
1788 list_del_init(&urb->urb_list);
1789 bh->completing_ep = urb->ep;
1790 __usb_hcd_giveback_urb(urb);
1791 bh->completing_ep = NULL;
1794 /* check if there are new URBs to giveback */
1795 spin_lock_irq(&bh->lock);
1796 if (!list_empty(&bh->head))
1797 goto restart;
1798 bh->running = false;
1799 spin_unlock_irq(&bh->lock);
1803 * usb_hcd_giveback_urb - return URB from HCD to device driver
1804 * @hcd: host controller returning the URB
1805 * @urb: urb being returned to the USB device driver.
1806 * @status: completion status code for the URB.
1807 * Context: in_interrupt()
1809 * This hands the URB from HCD to its USB device driver, using its
1810 * completion function. The HCD has freed all per-urb resources
1811 * (and is done using urb->hcpriv). It also released all HCD locks;
1812 * the device driver won't cause problems if it frees, modifies,
1813 * or resubmits this URB.
1815 * If @urb was unlinked, the value of @status will be overridden by
1816 * @urb->unlinked. Erroneous short transfers are detected in case
1817 * the HCD hasn't checked for them.
1819 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1821 struct giveback_urb_bh *bh;
1822 bool running, high_prio_bh;
1824 /* pass status to tasklet via unlinked */
1825 if (likely(!urb->unlinked))
1826 urb->unlinked = status;
1828 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1829 __usb_hcd_giveback_urb(urb);
1830 return;
1833 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1834 bh = &hcd->high_prio_bh;
1835 high_prio_bh = true;
1836 } else {
1837 bh = &hcd->low_prio_bh;
1838 high_prio_bh = false;
1841 spin_lock(&bh->lock);
1842 list_add_tail(&urb->urb_list, &bh->head);
1843 running = bh->running;
1844 spin_unlock(&bh->lock);
1846 if (running)
1848 else if (high_prio_bh)
1849 tasklet_hi_schedule(&bh->bh);
1850 else
1851 tasklet_schedule(&bh->bh);
1853 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1855 /*-------------------------------------------------------------------------*/
1857 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1858 * queue to drain completely. The caller must first insure that no more
1859 * URBs can be submitted for this endpoint.
1861 void usb_hcd_flush_endpoint(struct usb_device *udev,
1862 struct usb_host_endpoint *ep)
1864 struct usb_hcd *hcd;
1865 struct urb *urb;
1867 if (!ep)
1868 return;
1869 might_sleep();
1870 hcd = bus_to_hcd(udev->bus);
1872 /* No more submits can occur */
1873 spin_lock_irq(&hcd_urb_list_lock);
1874 rescan:
1875 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1876 int is_in;
1878 if (urb->unlinked)
1879 continue;
1880 usb_get_urb (urb);
1881 is_in = usb_urb_dir_in(urb);
1882 spin_unlock(&hcd_urb_list_lock);
1884 /* kick hcd */
1885 unlink1(hcd, urb, -ESHUTDOWN);
1886 dev_dbg (hcd->self.controller,
1887 "shutdown urb %p ep%d%s%s\n",
1888 urb, usb_endpoint_num(&ep->desc),
1889 is_in ? "in" : "out",
1890 ({ char *s;
1892 switch (usb_endpoint_type(&ep->desc)) {
1893 case USB_ENDPOINT_XFER_CONTROL:
1894 s = ""; break;
1895 case USB_ENDPOINT_XFER_BULK:
1896 s = "-bulk"; break;
1897 case USB_ENDPOINT_XFER_INT:
1898 s = "-intr"; break;
1899 default:
1900 s = "-iso"; break;
1903 }));
1904 usb_put_urb (urb);
1906 /* list contents may have changed */
1907 spin_lock(&hcd_urb_list_lock);
1908 goto rescan;
1910 spin_unlock_irq(&hcd_urb_list_lock);
1912 /* Wait until the endpoint queue is completely empty */
1913 while (!list_empty (&ep->urb_list)) {
1914 spin_lock_irq(&hcd_urb_list_lock);
1916 /* The list may have changed while we acquired the spinlock */
1917 urb = NULL;
1918 if (!list_empty (&ep->urb_list)) {
1919 urb = list_entry (ep->urb_list.prev, struct urb,
1920 urb_list);
1921 usb_get_urb (urb);
1923 spin_unlock_irq(&hcd_urb_list_lock);
1925 if (urb) {
1926 usb_kill_urb (urb);
1927 usb_put_urb (urb);
1933 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1934 * the bus bandwidth
1935 * @udev: target &usb_device
1936 * @new_config: new configuration to install
1937 * @cur_alt: the current alternate interface setting
1938 * @new_alt: alternate interface setting that is being installed
1940 * To change configurations, pass in the new configuration in new_config,
1941 * and pass NULL for cur_alt and new_alt.
1943 * To reset a device's configuration (put the device in the ADDRESSED state),
1944 * pass in NULL for new_config, cur_alt, and new_alt.
1946 * To change alternate interface settings, pass in NULL for new_config,
1947 * pass in the current alternate interface setting in cur_alt,
1948 * and pass in the new alternate interface setting in new_alt.
1950 * Return: An error if the requested bandwidth change exceeds the
1951 * bus bandwidth or host controller internal resources.
1953 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1954 struct usb_host_config *new_config,
1955 struct usb_host_interface *cur_alt,
1956 struct usb_host_interface *new_alt)
1958 int num_intfs, i, j;
1959 struct usb_host_interface *alt = NULL;
1960 int ret = 0;
1961 struct usb_hcd *hcd;
1962 struct usb_host_endpoint *ep;
1964 hcd = bus_to_hcd(udev->bus);
1965 if (!hcd->driver->check_bandwidth)
1966 return 0;
1968 /* Configuration is being removed - set configuration 0 */
1969 if (!new_config && !cur_alt) {
1970 for (i = 1; i < 16; ++i) {
1971 ep = udev->ep_out[i];
1972 if (ep)
1973 hcd->driver->drop_endpoint(hcd, udev, ep);
1974 ep = udev->ep_in[i];
1975 if (ep)
1976 hcd->driver->drop_endpoint(hcd, udev, ep);
1978 hcd->driver->check_bandwidth(hcd, udev);
1979 return 0;
1981 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1982 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1983 * of the bus. There will always be bandwidth for endpoint 0, so it's
1984 * ok to exclude it.
1986 if (new_config) {
1987 num_intfs = new_config->desc.bNumInterfaces;
1988 /* Remove endpoints (except endpoint 0, which is always on the
1989 * schedule) from the old config from the schedule
1991 for (i = 1; i < 16; ++i) {
1992 ep = udev->ep_out[i];
1993 if (ep) {
1994 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1995 if (ret < 0)
1996 goto reset;
1998 ep = udev->ep_in[i];
1999 if (ep) {
2000 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2001 if (ret < 0)
2002 goto reset;
2005 for (i = 0; i < num_intfs; ++i) {
2006 struct usb_host_interface *first_alt;
2007 int iface_num;
2009 first_alt = &new_config->intf_cache[i]->altsetting[0];
2010 iface_num = first_alt->desc.bInterfaceNumber;
2011 /* Set up endpoints for alternate interface setting 0 */
2012 alt = usb_find_alt_setting(new_config, iface_num, 0);
2013 if (!alt)
2014 /* No alt setting 0? Pick the first setting. */
2015 alt = first_alt;
2017 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2018 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2019 if (ret < 0)
2020 goto reset;
2024 if (cur_alt && new_alt) {
2025 struct usb_interface *iface = usb_ifnum_to_if(udev,
2026 cur_alt->desc.bInterfaceNumber);
2028 if (!iface)
2029 return -EINVAL;
2030 if (iface->resetting_device) {
2032 * The USB core just reset the device, so the xHCI host
2033 * and the device will think alt setting 0 is installed.
2034 * However, the USB core will pass in the alternate
2035 * setting installed before the reset as cur_alt. Dig
2036 * out the alternate setting 0 structure, or the first
2037 * alternate setting if a broken device doesn't have alt
2038 * setting 0.
2040 cur_alt = usb_altnum_to_altsetting(iface, 0);
2041 if (!cur_alt)
2042 cur_alt = &iface->altsetting[0];
2045 /* Drop all the endpoints in the current alt setting */
2046 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2047 ret = hcd->driver->drop_endpoint(hcd, udev,
2048 &cur_alt->endpoint[i]);
2049 if (ret < 0)
2050 goto reset;
2052 /* Add all the endpoints in the new alt setting */
2053 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2054 ret = hcd->driver->add_endpoint(hcd, udev,
2055 &new_alt->endpoint[i]);
2056 if (ret < 0)
2057 goto reset;
2060 ret = hcd->driver->check_bandwidth(hcd, udev);
2061 reset:
2062 if (ret < 0)
2063 hcd->driver->reset_bandwidth(hcd, udev);
2064 return ret;
2067 /* Disables the endpoint: synchronizes with the hcd to make sure all
2068 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2069 * have been called previously. Use for set_configuration, set_interface,
2070 * driver removal, physical disconnect.
2072 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2073 * type, maxpacket size, toggle, halt status, and scheduling.
2075 void usb_hcd_disable_endpoint(struct usb_device *udev,
2076 struct usb_host_endpoint *ep)
2078 struct usb_hcd *hcd;
2080 might_sleep();
2081 hcd = bus_to_hcd(udev->bus);
2082 if (hcd->driver->endpoint_disable)
2083 hcd->driver->endpoint_disable(hcd, ep);
2087 * usb_hcd_reset_endpoint - reset host endpoint state
2088 * @udev: USB device.
2089 * @ep: the endpoint to reset.
2091 * Resets any host endpoint state such as the toggle bit, sequence
2092 * number and current window.
2094 void usb_hcd_reset_endpoint(struct usb_device *udev,
2095 struct usb_host_endpoint *ep)
2097 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2099 if (hcd->driver->endpoint_reset)
2100 hcd->driver->endpoint_reset(hcd, ep);
2101 else {
2102 int epnum = usb_endpoint_num(&ep->desc);
2103 int is_out = usb_endpoint_dir_out(&ep->desc);
2104 int is_control = usb_endpoint_xfer_control(&ep->desc);
2106 usb_settoggle(udev, epnum, is_out, 0);
2107 if (is_control)
2108 usb_settoggle(udev, epnum, !is_out, 0);
2113 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2114 * @interface: alternate setting that includes all endpoints.
2115 * @eps: array of endpoints that need streams.
2116 * @num_eps: number of endpoints in the array.
2117 * @num_streams: number of streams to allocate.
2118 * @mem_flags: flags hcd should use to allocate memory.
2120 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2121 * Drivers may queue multiple transfers to different stream IDs, which may
2122 * complete in a different order than they were queued.
2124 * Return: On success, the number of allocated streams. On failure, a negative
2125 * error code.
2127 int usb_alloc_streams(struct usb_interface *interface,
2128 struct usb_host_endpoint **eps, unsigned int num_eps,
2129 unsigned int num_streams, gfp_t mem_flags)
2131 struct usb_hcd *hcd;
2132 struct usb_device *dev;
2133 int i, ret;
2135 dev = interface_to_usbdev(interface);
2136 hcd = bus_to_hcd(dev->bus);
2137 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2138 return -EINVAL;
2139 if (dev->speed < USB_SPEED_SUPER)
2140 return -EINVAL;
2141 if (dev->state < USB_STATE_CONFIGURED)
2142 return -ENODEV;
2144 for (i = 0; i < num_eps; i++) {
2145 /* Streams only apply to bulk endpoints. */
2146 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2147 return -EINVAL;
2148 /* Re-alloc is not allowed */
2149 if (eps[i]->streams)
2150 return -EINVAL;
2153 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2154 num_streams, mem_flags);
2155 if (ret < 0)
2156 return ret;
2158 for (i = 0; i < num_eps; i++)
2159 eps[i]->streams = ret;
2161 return ret;
2163 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2166 * usb_free_streams - free bulk endpoint stream IDs.
2167 * @interface: alternate setting that includes all endpoints.
2168 * @eps: array of endpoints to remove streams from.
2169 * @num_eps: number of endpoints in the array.
2170 * @mem_flags: flags hcd should use to allocate memory.
2172 * Reverts a group of bulk endpoints back to not using stream IDs.
2173 * Can fail if we are given bad arguments, or HCD is broken.
2175 * Return: 0 on success. On failure, a negative error code.
2177 int usb_free_streams(struct usb_interface *interface,
2178 struct usb_host_endpoint **eps, unsigned int num_eps,
2179 gfp_t mem_flags)
2181 struct usb_hcd *hcd;
2182 struct usb_device *dev;
2183 int i, ret;
2185 dev = interface_to_usbdev(interface);
2186 hcd = bus_to_hcd(dev->bus);
2187 if (dev->speed < USB_SPEED_SUPER)
2188 return -EINVAL;
2190 /* Double-free is not allowed */
2191 for (i = 0; i < num_eps; i++)
2192 if (!eps[i] || !eps[i]->streams)
2193 return -EINVAL;
2195 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2196 if (ret < 0)
2197 return ret;
2199 for (i = 0; i < num_eps; i++)
2200 eps[i]->streams = 0;
2202 return ret;
2204 EXPORT_SYMBOL_GPL(usb_free_streams);
2206 /* Protect against drivers that try to unlink URBs after the device
2207 * is gone, by waiting until all unlinks for @udev are finished.
2208 * Since we don't currently track URBs by device, simply wait until
2209 * nothing is running in the locked region of usb_hcd_unlink_urb().
2211 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2213 spin_lock_irq(&hcd_urb_unlink_lock);
2214 spin_unlock_irq(&hcd_urb_unlink_lock);
2217 /*-------------------------------------------------------------------------*/
2219 /* called in any context */
2220 int usb_hcd_get_frame_number (struct usb_device *udev)
2222 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2224 if (!HCD_RH_RUNNING(hcd))
2225 return -ESHUTDOWN;
2226 return hcd->driver->get_frame_number (hcd);
2229 /*-------------------------------------------------------------------------*/
2231 #ifdef CONFIG_PM
2233 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2235 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2236 int status;
2237 int old_state = hcd->state;
2239 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2240 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2241 rhdev->do_remote_wakeup);
2242 if (HCD_DEAD(hcd)) {
2243 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2244 return 0;
2247 if (!hcd->driver->bus_suspend) {
2248 status = -ENOENT;
2249 } else {
2250 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2251 hcd->state = HC_STATE_QUIESCING;
2252 status = hcd->driver->bus_suspend(hcd);
2254 if (status == 0) {
2255 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2256 hcd->state = HC_STATE_SUSPENDED;
2258 /* Did we race with a root-hub wakeup event? */
2259 if (rhdev->do_remote_wakeup) {
2260 char buffer[6];
2262 status = hcd->driver->hub_status_data(hcd, buffer);
2263 if (status != 0) {
2264 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2265 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2266 status = -EBUSY;
2269 } else {
2270 spin_lock_irq(&hcd_root_hub_lock);
2271 if (!HCD_DEAD(hcd)) {
2272 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2273 hcd->state = old_state;
2275 spin_unlock_irq(&hcd_root_hub_lock);
2276 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2277 "suspend", status);
2279 return status;
2282 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2284 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2285 int status;
2286 int old_state = hcd->state;
2288 dev_dbg(&rhdev->dev, "usb %sresume\n",
2289 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2290 if (HCD_DEAD(hcd)) {
2291 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2292 return 0;
2294 if (!hcd->driver->bus_resume)
2295 return -ENOENT;
2296 if (HCD_RH_RUNNING(hcd))
2297 return 0;
2299 hcd->state = HC_STATE_RESUMING;
2300 status = hcd->driver->bus_resume(hcd);
2301 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2302 if (status == 0) {
2303 struct usb_device *udev;
2304 int port1;
2306 spin_lock_irq(&hcd_root_hub_lock);
2307 if (!HCD_DEAD(hcd)) {
2308 usb_set_device_state(rhdev, rhdev->actconfig
2309 ? USB_STATE_CONFIGURED
2310 : USB_STATE_ADDRESS);
2311 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2312 hcd->state = HC_STATE_RUNNING;
2314 spin_unlock_irq(&hcd_root_hub_lock);
2317 * Check whether any of the enabled ports on the root hub are
2318 * unsuspended. If they are then a TRSMRCY delay is needed
2319 * (this is what the USB-2 spec calls a "global resume").
2320 * Otherwise we can skip the delay.
2322 usb_hub_for_each_child(rhdev, port1, udev) {
2323 if (udev->state != USB_STATE_NOTATTACHED &&
2324 !udev->port_is_suspended) {
2325 usleep_range(10000, 11000); /* TRSMRCY */
2326 break;
2329 } else {
2330 hcd->state = old_state;
2331 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2332 "resume", status);
2333 if (status != -ESHUTDOWN)
2334 usb_hc_died(hcd);
2336 return status;
2339 /* Workqueue routine for root-hub remote wakeup */
2340 static void hcd_resume_work(struct work_struct *work)
2342 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2343 struct usb_device *udev = hcd->self.root_hub;
2345 usb_remote_wakeup(udev);
2349 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2350 * @hcd: host controller for this root hub
2352 * The USB host controller calls this function when its root hub is
2353 * suspended (with the remote wakeup feature enabled) and a remote
2354 * wakeup request is received. The routine submits a workqueue request
2355 * to resume the root hub (that is, manage its downstream ports again).
2357 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2359 unsigned long flags;
2361 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2362 if (hcd->rh_registered) {
2363 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2364 queue_work(pm_wq, &hcd->wakeup_work);
2366 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2368 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2370 #endif /* CONFIG_PM */
2372 /*-------------------------------------------------------------------------*/
2374 #ifdef CONFIG_USB_OTG
2377 * usb_bus_start_enum - start immediate enumeration (for OTG)
2378 * @bus: the bus (must use hcd framework)
2379 * @port_num: 1-based number of port; usually bus->otg_port
2380 * Context: in_interrupt()
2382 * Starts enumeration, with an immediate reset followed later by
2383 * hub_wq identifying and possibly configuring the device.
2384 * This is needed by OTG controller drivers, where it helps meet
2385 * HNP protocol timing requirements for starting a port reset.
2387 * Return: 0 if successful.
2389 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2391 struct usb_hcd *hcd;
2392 int status = -EOPNOTSUPP;
2394 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2395 * boards with root hubs hooked up to internal devices (instead of
2396 * just the OTG port) may need more attention to resetting...
2398 hcd = bus_to_hcd(bus);
2399 if (port_num && hcd->driver->start_port_reset)
2400 status = hcd->driver->start_port_reset(hcd, port_num);
2402 /* allocate hub_wq shortly after (first) root port reset finishes;
2403 * it may issue others, until at least 50 msecs have passed.
2405 if (status == 0)
2406 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2407 return status;
2409 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2411 #endif
2413 /*-------------------------------------------------------------------------*/
2416 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2417 * @irq: the IRQ being raised
2418 * @__hcd: pointer to the HCD whose IRQ is being signaled
2420 * If the controller isn't HALTed, calls the driver's irq handler.
2421 * Checks whether the controller is now dead.
2423 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2425 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2427 struct usb_hcd *hcd = __hcd;
2428 irqreturn_t rc;
2430 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2431 rc = IRQ_NONE;
2432 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2433 rc = IRQ_NONE;
2434 else
2435 rc = IRQ_HANDLED;
2437 return rc;
2439 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2441 /*-------------------------------------------------------------------------*/
2444 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2445 * @hcd: pointer to the HCD representing the controller
2447 * This is called by bus glue to report a USB host controller that died
2448 * while operations may still have been pending. It's called automatically
2449 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2451 * Only call this function with the primary HCD.
2453 void usb_hc_died (struct usb_hcd *hcd)
2455 unsigned long flags;
2457 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2459 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2460 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2461 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2462 if (hcd->rh_registered) {
2463 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2465 /* make hub_wq clean up old urbs and devices */
2466 usb_set_device_state (hcd->self.root_hub,
2467 USB_STATE_NOTATTACHED);
2468 usb_kick_hub_wq(hcd->self.root_hub);
2470 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2471 hcd = hcd->shared_hcd;
2472 if (hcd->rh_registered) {
2473 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2475 /* make hub_wq clean up old urbs and devices */
2476 usb_set_device_state(hcd->self.root_hub,
2477 USB_STATE_NOTATTACHED);
2478 usb_kick_hub_wq(hcd->self.root_hub);
2481 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2482 /* Make sure that the other roothub is also deallocated. */
2484 EXPORT_SYMBOL_GPL (usb_hc_died);
2486 /*-------------------------------------------------------------------------*/
2488 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2491 spin_lock_init(&bh->lock);
2492 INIT_LIST_HEAD(&bh->head);
2493 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2497 * usb_create_shared_hcd - create and initialize an HCD structure
2498 * @driver: HC driver that will use this hcd
2499 * @dev: device for this HC, stored in hcd->self.controller
2500 * @bus_name: value to store in hcd->self.bus_name
2501 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2502 * PCI device. Only allocate certain resources for the primary HCD
2503 * Context: !in_interrupt()
2505 * Allocate a struct usb_hcd, with extra space at the end for the
2506 * HC driver's private data. Initialize the generic members of the
2507 * hcd structure.
2509 * Return: On success, a pointer to the created and initialized HCD structure.
2510 * On failure (e.g. if memory is unavailable), %NULL.
2512 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2513 struct device *dev, const char *bus_name,
2514 struct usb_hcd *primary_hcd)
2516 struct usb_hcd *hcd;
2518 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2519 if (!hcd) {
2520 dev_dbg (dev, "hcd alloc failed\n");
2521 return NULL;
2523 if (primary_hcd == NULL) {
2524 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2525 GFP_KERNEL);
2526 if (!hcd->bandwidth_mutex) {
2527 kfree(hcd);
2528 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2529 return NULL;
2531 mutex_init(hcd->bandwidth_mutex);
2532 dev_set_drvdata(dev, hcd);
2533 } else {
2534 mutex_lock(&usb_port_peer_mutex);
2535 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2536 hcd->primary_hcd = primary_hcd;
2537 primary_hcd->primary_hcd = primary_hcd;
2538 hcd->shared_hcd = primary_hcd;
2539 primary_hcd->shared_hcd = hcd;
2540 mutex_unlock(&usb_port_peer_mutex);
2543 kref_init(&hcd->kref);
2545 usb_bus_init(&hcd->self);
2546 hcd->self.controller = dev;
2547 hcd->self.bus_name = bus_name;
2548 hcd->self.uses_dma = (dev->dma_mask != NULL);
2550 init_timer(&hcd->rh_timer);
2551 hcd->rh_timer.function = rh_timer_func;
2552 hcd->rh_timer.data = (unsigned long) hcd;
2553 #ifdef CONFIG_PM
2554 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2555 #endif
2557 hcd->driver = driver;
2558 hcd->speed = driver->flags & HCD_MASK;
2559 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2560 "USB Host Controller";
2561 return hcd;
2563 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2566 * usb_create_hcd - create and initialize an HCD structure
2567 * @driver: HC driver that will use this hcd
2568 * @dev: device for this HC, stored in hcd->self.controller
2569 * @bus_name: value to store in hcd->self.bus_name
2570 * Context: !in_interrupt()
2572 * Allocate a struct usb_hcd, with extra space at the end for the
2573 * HC driver's private data. Initialize the generic members of the
2574 * hcd structure.
2576 * Return: On success, a pointer to the created and initialized HCD
2577 * structure. On failure (e.g. if memory is unavailable), %NULL.
2579 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2580 struct device *dev, const char *bus_name)
2582 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2584 EXPORT_SYMBOL_GPL(usb_create_hcd);
2587 * Roothubs that share one PCI device must also share the bandwidth mutex.
2588 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2589 * deallocated.
2591 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2592 * freed. When hcd_release() is called for either hcd in a peer set
2593 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to
2594 * block new peering attempts
2596 static void hcd_release(struct kref *kref)
2598 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2600 mutex_lock(&usb_port_peer_mutex);
2601 if (usb_hcd_is_primary_hcd(hcd))
2602 kfree(hcd->bandwidth_mutex);
2603 if (hcd->shared_hcd) {
2604 struct usb_hcd *peer = hcd->shared_hcd;
2606 peer->shared_hcd = NULL;
2607 if (peer->primary_hcd == hcd)
2608 peer->primary_hcd = NULL;
2610 mutex_unlock(&usb_port_peer_mutex);
2611 kfree(hcd);
2614 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2616 if (hcd)
2617 kref_get (&hcd->kref);
2618 return hcd;
2620 EXPORT_SYMBOL_GPL(usb_get_hcd);
2622 void usb_put_hcd (struct usb_hcd *hcd)
2624 if (hcd)
2625 kref_put (&hcd->kref, hcd_release);
2627 EXPORT_SYMBOL_GPL(usb_put_hcd);
2629 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2631 if (!hcd->primary_hcd)
2632 return 1;
2633 return hcd == hcd->primary_hcd;
2635 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2637 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2639 if (!hcd->driver->find_raw_port_number)
2640 return port1;
2642 return hcd->driver->find_raw_port_number(hcd, port1);
2645 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2646 unsigned int irqnum, unsigned long irqflags)
2648 int retval;
2650 if (hcd->driver->irq) {
2652 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2653 hcd->driver->description, hcd->self.busnum);
2654 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2655 hcd->irq_descr, hcd);
2656 if (retval != 0) {
2657 dev_err(hcd->self.controller,
2658 "request interrupt %d failed\n",
2659 irqnum);
2660 return retval;
2662 hcd->irq = irqnum;
2663 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2664 (hcd->driver->flags & HCD_MEMORY) ?
2665 "io mem" : "io base",
2666 (unsigned long long)hcd->rsrc_start);
2667 } else {
2668 hcd->irq = 0;
2669 if (hcd->rsrc_start)
2670 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2671 (hcd->driver->flags & HCD_MEMORY) ?
2672 "io mem" : "io base",
2673 (unsigned long long)hcd->rsrc_start);
2675 return 0;
2679 * Before we free this root hub, flush in-flight peering attempts
2680 * and disable peer lookups
2682 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2684 struct usb_device *rhdev;
2686 mutex_lock(&usb_port_peer_mutex);
2687 rhdev = hcd->self.root_hub;
2688 hcd->self.root_hub = NULL;
2689 mutex_unlock(&usb_port_peer_mutex);
2690 usb_put_dev(rhdev);
2694 * usb_add_hcd - finish generic HCD structure initialization and register
2695 * @hcd: the usb_hcd structure to initialize
2696 * @irqnum: Interrupt line to allocate
2697 * @irqflags: Interrupt type flags
2699 * Finish the remaining parts of generic HCD initialization: allocate the
2700 * buffers of consistent memory, register the bus, request the IRQ line,
2701 * and call the driver's reset() and start() routines.
2703 int usb_add_hcd(struct usb_hcd *hcd,
2704 unsigned int irqnum, unsigned long irqflags)
2706 int retval;
2707 struct usb_device *rhdev;
2709 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2710 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2712 if (IS_ERR(phy)) {
2713 retval = PTR_ERR(phy);
2714 if (retval == -EPROBE_DEFER)
2715 return retval;
2716 } else {
2717 retval = usb_phy_init(phy);
2718 if (retval) {
2719 usb_put_phy(phy);
2720 return retval;
2722 hcd->usb_phy = phy;
2723 hcd->remove_phy = 1;
2727 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2728 struct phy *phy = phy_get(hcd->self.controller, "usb");
2730 if (IS_ERR(phy)) {
2731 retval = PTR_ERR(phy);
2732 if (retval == -EPROBE_DEFER)
2733 goto err_phy;
2734 } else {
2735 retval = phy_init(phy);
2736 if (retval) {
2737 phy_put(phy);
2738 goto err_phy;
2740 retval = phy_power_on(phy);
2741 if (retval) {
2742 phy_exit(phy);
2743 phy_put(phy);
2744 goto err_phy;
2746 hcd->phy = phy;
2747 hcd->remove_phy = 1;
2751 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2753 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2754 if (authorized_default < 0 || authorized_default > 1) {
2755 if (hcd->wireless)
2756 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2757 else
2758 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2759 } else {
2760 if (authorized_default)
2761 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2762 else
2763 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2765 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2767 /* per default all interfaces are authorized */
2768 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2770 /* HC is in reset state, but accessible. Now do the one-time init,
2771 * bottom up so that hcds can customize the root hubs before hub_wq
2772 * starts talking to them. (Note, bus id is assigned early too.)
2774 retval = hcd_buffer_create(hcd);
2775 if (retval != 0) {
2776 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2777 goto err_create_buf;
2780 retval = usb_register_bus(&hcd->self);
2781 if (retval < 0)
2782 goto err_register_bus;
2784 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2785 if (rhdev == NULL) {
2786 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2787 retval = -ENOMEM;
2788 goto err_allocate_root_hub;
2790 mutex_lock(&usb_port_peer_mutex);
2791 hcd->self.root_hub = rhdev;
2792 mutex_unlock(&usb_port_peer_mutex);
2794 switch (hcd->speed) {
2795 case HCD_USB11:
2796 rhdev->speed = USB_SPEED_FULL;
2797 break;
2798 case HCD_USB2:
2799 rhdev->speed = USB_SPEED_HIGH;
2800 break;
2801 case HCD_USB25:
2802 rhdev->speed = USB_SPEED_WIRELESS;
2803 break;
2804 case HCD_USB3:
2805 rhdev->speed = USB_SPEED_SUPER;
2806 break;
2807 case HCD_USB31:
2808 rhdev->speed = USB_SPEED_SUPER_PLUS;
2809 break;
2810 default:
2811 retval = -EINVAL;
2812 goto err_set_rh_speed;
2815 /* wakeup flag init defaults to "everything works" for root hubs,
2816 * but drivers can override it in reset() if needed, along with
2817 * recording the overall controller's system wakeup capability.
2819 device_set_wakeup_capable(&rhdev->dev, 1);
2821 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2822 * registered. But since the controller can die at any time,
2823 * let's initialize the flag before touching the hardware.
2825 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2827 /* "reset" is misnamed; its role is now one-time init. the controller
2828 * should already have been reset (and boot firmware kicked off etc).
2830 if (hcd->driver->reset) {
2831 retval = hcd->driver->reset(hcd);
2832 if (retval < 0) {
2833 dev_err(hcd->self.controller, "can't setup: %d\n",
2834 retval);
2835 goto err_hcd_driver_setup;
2838 hcd->rh_pollable = 1;
2840 /* NOTE: root hub and controller capabilities may not be the same */
2841 if (device_can_wakeup(hcd->self.controller)
2842 && device_can_wakeup(&hcd->self.root_hub->dev))
2843 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2845 /* initialize tasklets */
2846 init_giveback_urb_bh(&hcd->high_prio_bh);
2847 init_giveback_urb_bh(&hcd->low_prio_bh);
2849 /* enable irqs just before we start the controller,
2850 * if the BIOS provides legacy PCI irqs.
2852 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2853 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2854 if (retval)
2855 goto err_request_irq;
2858 hcd->state = HC_STATE_RUNNING;
2859 retval = hcd->driver->start(hcd);
2860 if (retval < 0) {
2861 dev_err(hcd->self.controller, "startup error %d\n", retval);
2862 goto err_hcd_driver_start;
2865 /* starting here, usbcore will pay attention to this root hub */
2866 retval = register_root_hub(hcd);
2867 if (retval != 0)
2868 goto err_register_root_hub;
2870 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2871 if (retval < 0) {
2872 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2873 retval);
2874 goto error_create_attr_group;
2876 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2877 usb_hcd_poll_rh_status(hcd);
2879 return retval;
2881 error_create_attr_group:
2882 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2883 if (HC_IS_RUNNING(hcd->state))
2884 hcd->state = HC_STATE_QUIESCING;
2885 spin_lock_irq(&hcd_root_hub_lock);
2886 hcd->rh_registered = 0;
2887 spin_unlock_irq(&hcd_root_hub_lock);
2889 #ifdef CONFIG_PM
2890 cancel_work_sync(&hcd->wakeup_work);
2891 #endif
2892 mutex_lock(&usb_bus_idr_lock);
2893 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2894 mutex_unlock(&usb_bus_idr_lock);
2895 err_register_root_hub:
2896 hcd->rh_pollable = 0;
2897 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2898 del_timer_sync(&hcd->rh_timer);
2899 hcd->driver->stop(hcd);
2900 hcd->state = HC_STATE_HALT;
2901 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2902 del_timer_sync(&hcd->rh_timer);
2903 err_hcd_driver_start:
2904 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2905 free_irq(irqnum, hcd);
2906 err_request_irq:
2907 err_hcd_driver_setup:
2908 err_set_rh_speed:
2909 usb_put_invalidate_rhdev(hcd);
2910 err_allocate_root_hub:
2911 usb_deregister_bus(&hcd->self);
2912 err_register_bus:
2913 hcd_buffer_destroy(hcd);
2914 err_create_buf:
2915 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2916 phy_power_off(hcd->phy);
2917 phy_exit(hcd->phy);
2918 phy_put(hcd->phy);
2919 hcd->phy = NULL;
2921 err_phy:
2922 if (hcd->remove_phy && hcd->usb_phy) {
2923 usb_phy_shutdown(hcd->usb_phy);
2924 usb_put_phy(hcd->usb_phy);
2925 hcd->usb_phy = NULL;
2927 return retval;
2929 EXPORT_SYMBOL_GPL(usb_add_hcd);
2932 * usb_remove_hcd - shutdown processing for generic HCDs
2933 * @hcd: the usb_hcd structure to remove
2934 * Context: !in_interrupt()
2936 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2937 * invoking the HCD's stop() method.
2939 void usb_remove_hcd(struct usb_hcd *hcd)
2941 struct usb_device *rhdev = hcd->self.root_hub;
2943 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2945 usb_get_dev(rhdev);
2946 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2948 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2949 if (HC_IS_RUNNING (hcd->state))
2950 hcd->state = HC_STATE_QUIESCING;
2952 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2953 spin_lock_irq (&hcd_root_hub_lock);
2954 hcd->rh_registered = 0;
2955 spin_unlock_irq (&hcd_root_hub_lock);
2957 #ifdef CONFIG_PM
2958 cancel_work_sync(&hcd->wakeup_work);
2959 #endif
2961 mutex_lock(&usb_bus_idr_lock);
2962 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2963 mutex_unlock(&usb_bus_idr_lock);
2966 * tasklet_kill() isn't needed here because:
2967 * - driver's disconnect() called from usb_disconnect() should
2968 * make sure its URBs are completed during the disconnect()
2969 * callback
2971 * - it is too late to run complete() here since driver may have
2972 * been removed already now
2975 /* Prevent any more root-hub status calls from the timer.
2976 * The HCD might still restart the timer (if a port status change
2977 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2978 * the hub_status_data() callback.
2980 hcd->rh_pollable = 0;
2981 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2982 del_timer_sync(&hcd->rh_timer);
2984 hcd->driver->stop(hcd);
2985 hcd->state = HC_STATE_HALT;
2987 /* In case the HCD restarted the timer, stop it again. */
2988 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2989 del_timer_sync(&hcd->rh_timer);
2991 if (usb_hcd_is_primary_hcd(hcd)) {
2992 if (hcd->irq > 0)
2993 free_irq(hcd->irq, hcd);
2996 usb_deregister_bus(&hcd->self);
2997 hcd_buffer_destroy(hcd);
2999 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3000 phy_power_off(hcd->phy);
3001 phy_exit(hcd->phy);
3002 phy_put(hcd->phy);
3003 hcd->phy = NULL;
3005 if (hcd->remove_phy && hcd->usb_phy) {
3006 usb_phy_shutdown(hcd->usb_phy);
3007 usb_put_phy(hcd->usb_phy);
3008 hcd->usb_phy = NULL;
3011 usb_put_invalidate_rhdev(hcd);
3013 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3015 void
3016 usb_hcd_platform_shutdown(struct platform_device *dev)
3018 struct usb_hcd *hcd = platform_get_drvdata(dev);
3020 if (hcd->driver->shutdown)
3021 hcd->driver->shutdown(hcd);
3023 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3025 /*-------------------------------------------------------------------------*/
3027 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
3029 const struct usb_mon_operations *mon_ops;
3032 * The registration is unlocked.
3033 * We do it this way because we do not want to lock in hot paths.
3035 * Notice that the code is minimally error-proof. Because usbmon needs
3036 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3039 int usb_mon_register(const struct usb_mon_operations *ops)
3042 if (mon_ops)
3043 return -EBUSY;
3045 mon_ops = ops;
3046 mb();
3047 return 0;
3049 EXPORT_SYMBOL_GPL (usb_mon_register);
3051 void usb_mon_deregister (void)
3054 if (mon_ops == NULL) {
3055 printk(KERN_ERR "USB: monitor was not registered\n");
3056 return;
3058 mon_ops = NULL;
3059 mb();
3061 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3063 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */