2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
26 #include <crypto/hash.h>
27 #include <crypto/skcipher.h>
29 #include <linux/mount.h>
30 #include <linux/pagemap.h>
31 #include <linux/random.h>
32 #include <linux/compiler.h>
33 #include <linux/key.h>
34 #include <linux/namei.h>
35 #include <linux/file.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38 #include <asm/unaligned.h>
39 #include "ecryptfs_kernel.h"
46 * @dst: Buffer to take hex character representation of contents of
47 * src; must be at least of size (src_size * 2)
48 * @src: Buffer to be converted to a hex string respresentation
49 * @src_size: number of bytes to convert
51 void ecryptfs_to_hex(char *dst
, char *src
, size_t src_size
)
55 for (x
= 0; x
< src_size
; x
++)
56 sprintf(&dst
[x
* 2], "%.2x", (unsigned char)src
[x
]);
61 * @dst: Buffer to take the bytes from src hex; must be at least of
63 * @src: Buffer to be converted from a hex string respresentation to raw value
64 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
66 void ecryptfs_from_hex(char *dst
, char *src
, int dst_size
)
71 for (x
= 0; x
< dst_size
; x
++) {
73 tmp
[1] = src
[x
* 2 + 1];
74 dst
[x
] = (unsigned char)simple_strtol(tmp
, NULL
, 16);
78 static int ecryptfs_hash_digest(struct crypto_shash
*tfm
,
79 char *src
, int len
, char *dst
)
81 SHASH_DESC_ON_STACK(desc
, tfm
);
85 desc
->flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
86 err
= crypto_shash_digest(desc
, src
, len
, dst
);
87 shash_desc_zero(desc
);
92 * ecryptfs_calculate_md5 - calculates the md5 of @src
93 * @dst: Pointer to 16 bytes of allocated memory
94 * @crypt_stat: Pointer to crypt_stat struct for the current inode
95 * @src: Data to be md5'd
96 * @len: Length of @src
98 * Uses the allocated crypto context that crypt_stat references to
99 * generate the MD5 sum of the contents of src.
101 static int ecryptfs_calculate_md5(char *dst
,
102 struct ecryptfs_crypt_stat
*crypt_stat
,
105 struct crypto_shash
*tfm
;
108 mutex_lock(&crypt_stat
->cs_hash_tfm_mutex
);
109 tfm
= crypt_stat
->hash_tfm
;
111 tfm
= crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH
, 0, 0);
114 ecryptfs_printk(KERN_ERR
, "Error attempting to "
115 "allocate crypto context; rc = [%d]\n",
119 crypt_stat
->hash_tfm
= tfm
;
121 rc
= ecryptfs_hash_digest(tfm
, src
, len
, dst
);
124 "%s: Error computing crypto hash; rc = [%d]\n",
129 mutex_unlock(&crypt_stat
->cs_hash_tfm_mutex
);
133 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name
,
135 char *chaining_modifier
)
137 int cipher_name_len
= strlen(cipher_name
);
138 int chaining_modifier_len
= strlen(chaining_modifier
);
139 int algified_name_len
;
142 algified_name_len
= (chaining_modifier_len
+ cipher_name_len
+ 3);
143 (*algified_name
) = kmalloc(algified_name_len
, GFP_KERNEL
);
144 if (!(*algified_name
)) {
148 snprintf((*algified_name
), algified_name_len
, "%s(%s)",
149 chaining_modifier
, cipher_name
);
157 * @iv: destination for the derived iv vale
158 * @crypt_stat: Pointer to crypt_stat struct for the current inode
159 * @offset: Offset of the extent whose IV we are to derive
161 * Generate the initialization vector from the given root IV and page
164 * Returns zero on success; non-zero on error.
166 int ecryptfs_derive_iv(char *iv
, struct ecryptfs_crypt_stat
*crypt_stat
,
170 char dst
[MD5_DIGEST_SIZE
];
171 char src
[ECRYPTFS_MAX_IV_BYTES
+ 16];
173 if (unlikely(ecryptfs_verbosity
> 0)) {
174 ecryptfs_printk(KERN_DEBUG
, "root iv:\n");
175 ecryptfs_dump_hex(crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
177 /* TODO: It is probably secure to just cast the least
178 * significant bits of the root IV into an unsigned long and
179 * add the offset to that rather than go through all this
180 * hashing business. -Halcrow */
181 memcpy(src
, crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
182 memset((src
+ crypt_stat
->iv_bytes
), 0, 16);
183 snprintf((src
+ crypt_stat
->iv_bytes
), 16, "%lld", offset
);
184 if (unlikely(ecryptfs_verbosity
> 0)) {
185 ecryptfs_printk(KERN_DEBUG
, "source:\n");
186 ecryptfs_dump_hex(src
, (crypt_stat
->iv_bytes
+ 16));
188 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, src
,
189 (crypt_stat
->iv_bytes
+ 16));
191 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
192 "MD5 while generating IV for a page\n");
195 memcpy(iv
, dst
, crypt_stat
->iv_bytes
);
196 if (unlikely(ecryptfs_verbosity
> 0)) {
197 ecryptfs_printk(KERN_DEBUG
, "derived iv:\n");
198 ecryptfs_dump_hex(iv
, crypt_stat
->iv_bytes
);
205 * ecryptfs_init_crypt_stat
206 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
208 * Initialize the crypt_stat structure.
211 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
213 memset((void *)crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
214 INIT_LIST_HEAD(&crypt_stat
->keysig_list
);
215 mutex_init(&crypt_stat
->keysig_list_mutex
);
216 mutex_init(&crypt_stat
->cs_mutex
);
217 mutex_init(&crypt_stat
->cs_tfm_mutex
);
218 mutex_init(&crypt_stat
->cs_hash_tfm_mutex
);
219 crypt_stat
->flags
|= ECRYPTFS_STRUCT_INITIALIZED
;
223 * ecryptfs_destroy_crypt_stat
224 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
226 * Releases all memory associated with a crypt_stat struct.
228 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
230 struct ecryptfs_key_sig
*key_sig
, *key_sig_tmp
;
232 crypto_free_skcipher(crypt_stat
->tfm
);
233 crypto_free_shash(crypt_stat
->hash_tfm
);
234 list_for_each_entry_safe(key_sig
, key_sig_tmp
,
235 &crypt_stat
->keysig_list
, crypt_stat_list
) {
236 list_del(&key_sig
->crypt_stat_list
);
237 kmem_cache_free(ecryptfs_key_sig_cache
, key_sig
);
239 memset(crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
242 void ecryptfs_destroy_mount_crypt_stat(
243 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
245 struct ecryptfs_global_auth_tok
*auth_tok
, *auth_tok_tmp
;
247 if (!(mount_crypt_stat
->flags
& ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED
))
249 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
250 list_for_each_entry_safe(auth_tok
, auth_tok_tmp
,
251 &mount_crypt_stat
->global_auth_tok_list
,
252 mount_crypt_stat_list
) {
253 list_del(&auth_tok
->mount_crypt_stat_list
);
254 if (!(auth_tok
->flags
& ECRYPTFS_AUTH_TOK_INVALID
))
255 key_put(auth_tok
->global_auth_tok_key
);
256 kmem_cache_free(ecryptfs_global_auth_tok_cache
, auth_tok
);
258 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
259 memset(mount_crypt_stat
, 0, sizeof(struct ecryptfs_mount_crypt_stat
));
263 * virt_to_scatterlist
264 * @addr: Virtual address
265 * @size: Size of data; should be an even multiple of the block size
266 * @sg: Pointer to scatterlist array; set to NULL to obtain only
267 * the number of scatterlist structs required in array
268 * @sg_size: Max array size
270 * Fills in a scatterlist array with page references for a passed
273 * Returns the number of scatterlist structs in array used
275 int virt_to_scatterlist(const void *addr
, int size
, struct scatterlist
*sg
,
281 int remainder_of_page
;
283 sg_init_table(sg
, sg_size
);
285 while (size
> 0 && i
< sg_size
) {
286 pg
= virt_to_page(addr
);
287 offset
= offset_in_page(addr
);
288 sg_set_page(&sg
[i
], pg
, 0, offset
);
289 remainder_of_page
= PAGE_SIZE
- offset
;
290 if (size
>= remainder_of_page
) {
291 sg
[i
].length
= remainder_of_page
;
292 addr
+= remainder_of_page
;
293 size
-= remainder_of_page
;
306 struct extent_crypt_result
{
307 struct completion completion
;
311 static void extent_crypt_complete(struct crypto_async_request
*req
, int rc
)
313 struct extent_crypt_result
*ecr
= req
->data
;
315 if (rc
== -EINPROGRESS
)
319 complete(&ecr
->completion
);
324 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
325 * @dst_sg: Destination of the data after performing the crypto operation
326 * @src_sg: Data to be encrypted or decrypted
327 * @size: Length of data
329 * @op: ENCRYPT or DECRYPT to indicate the desired operation
331 * Returns the number of bytes encrypted or decrypted; negative value on error
333 static int crypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
334 struct scatterlist
*dst_sg
,
335 struct scatterlist
*src_sg
, int size
,
336 unsigned char *iv
, int op
)
338 struct skcipher_request
*req
= NULL
;
339 struct extent_crypt_result ecr
;
342 BUG_ON(!crypt_stat
|| !crypt_stat
->tfm
343 || !(crypt_stat
->flags
& ECRYPTFS_STRUCT_INITIALIZED
));
344 if (unlikely(ecryptfs_verbosity
> 0)) {
345 ecryptfs_printk(KERN_DEBUG
, "Key size [%zd]; key:\n",
346 crypt_stat
->key_size
);
347 ecryptfs_dump_hex(crypt_stat
->key
,
348 crypt_stat
->key_size
);
351 init_completion(&ecr
.completion
);
353 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
354 req
= skcipher_request_alloc(crypt_stat
->tfm
, GFP_NOFS
);
356 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
361 skcipher_request_set_callback(req
,
362 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
363 extent_crypt_complete
, &ecr
);
364 /* Consider doing this once, when the file is opened */
365 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_SET
)) {
366 rc
= crypto_skcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
367 crypt_stat
->key_size
);
369 ecryptfs_printk(KERN_ERR
,
370 "Error setting key; rc = [%d]\n",
372 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
376 crypt_stat
->flags
|= ECRYPTFS_KEY_SET
;
378 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
379 skcipher_request_set_crypt(req
, src_sg
, dst_sg
, size
, iv
);
380 rc
= op
== ENCRYPT
? crypto_skcipher_encrypt(req
) :
381 crypto_skcipher_decrypt(req
);
382 if (rc
== -EINPROGRESS
|| rc
== -EBUSY
) {
383 struct extent_crypt_result
*ecr
= req
->base
.data
;
385 wait_for_completion(&ecr
->completion
);
387 reinit_completion(&ecr
->completion
);
390 skcipher_request_free(req
);
395 * lower_offset_for_page
397 * Convert an eCryptfs page index into a lower byte offset
399 static loff_t
lower_offset_for_page(struct ecryptfs_crypt_stat
*crypt_stat
,
402 return ecryptfs_lower_header_size(crypt_stat
) +
403 ((loff_t
)page
->index
<< PAGE_SHIFT
);
408 * @crypt_stat: crypt_stat containing cryptographic context for the
409 * encryption operation
410 * @dst_page: The page to write the result into
411 * @src_page: The page to read from
412 * @extent_offset: Page extent offset for use in generating IV
413 * @op: ENCRYPT or DECRYPT to indicate the desired operation
415 * Encrypts or decrypts one extent of data.
417 * Return zero on success; non-zero otherwise
419 static int crypt_extent(struct ecryptfs_crypt_stat
*crypt_stat
,
420 struct page
*dst_page
,
421 struct page
*src_page
,
422 unsigned long extent_offset
, int op
)
424 pgoff_t page_index
= op
== ENCRYPT
? src_page
->index
: dst_page
->index
;
426 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
427 struct scatterlist src_sg
, dst_sg
;
428 size_t extent_size
= crypt_stat
->extent_size
;
431 extent_base
= (((loff_t
)page_index
) * (PAGE_SIZE
/ extent_size
));
432 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
433 (extent_base
+ extent_offset
));
435 ecryptfs_printk(KERN_ERR
, "Error attempting to derive IV for "
436 "extent [0x%.16llx]; rc = [%d]\n",
437 (unsigned long long)(extent_base
+ extent_offset
), rc
);
441 sg_init_table(&src_sg
, 1);
442 sg_init_table(&dst_sg
, 1);
444 sg_set_page(&src_sg
, src_page
, extent_size
,
445 extent_offset
* extent_size
);
446 sg_set_page(&dst_sg
, dst_page
, extent_size
,
447 extent_offset
* extent_size
);
449 rc
= crypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, extent_size
,
452 printk(KERN_ERR
"%s: Error attempting to crypt page with "
453 "page_index = [%ld], extent_offset = [%ld]; "
454 "rc = [%d]\n", __func__
, page_index
, extent_offset
, rc
);
463 * ecryptfs_encrypt_page
464 * @page: Page mapped from the eCryptfs inode for the file; contains
465 * decrypted content that needs to be encrypted (to a temporary
466 * page; not in place) and written out to the lower file
468 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
469 * that eCryptfs pages may straddle the lower pages -- for instance,
470 * if the file was created on a machine with an 8K page size
471 * (resulting in an 8K header), and then the file is copied onto a
472 * host with a 32K page size, then when reading page 0 of the eCryptfs
473 * file, 24K of page 0 of the lower file will be read and decrypted,
474 * and then 8K of page 1 of the lower file will be read and decrypted.
476 * Returns zero on success; negative on error
478 int ecryptfs_encrypt_page(struct page
*page
)
480 struct inode
*ecryptfs_inode
;
481 struct ecryptfs_crypt_stat
*crypt_stat
;
482 char *enc_extent_virt
;
483 struct page
*enc_extent_page
= NULL
;
484 loff_t extent_offset
;
488 ecryptfs_inode
= page
->mapping
->host
;
490 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
491 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
492 enc_extent_page
= alloc_page(GFP_USER
);
493 if (!enc_extent_page
) {
495 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
496 "encrypted extent\n");
500 for (extent_offset
= 0;
501 extent_offset
< (PAGE_SIZE
/ crypt_stat
->extent_size
);
503 rc
= crypt_extent(crypt_stat
, enc_extent_page
, page
,
504 extent_offset
, ENCRYPT
);
506 printk(KERN_ERR
"%s: Error encrypting extent; "
507 "rc = [%d]\n", __func__
, rc
);
512 lower_offset
= lower_offset_for_page(crypt_stat
, page
);
513 enc_extent_virt
= kmap(enc_extent_page
);
514 rc
= ecryptfs_write_lower(ecryptfs_inode
, enc_extent_virt
, lower_offset
,
516 kunmap(enc_extent_page
);
518 ecryptfs_printk(KERN_ERR
,
519 "Error attempting to write lower page; rc = [%d]\n",
525 if (enc_extent_page
) {
526 __free_page(enc_extent_page
);
532 * ecryptfs_decrypt_page
533 * @page: Page mapped from the eCryptfs inode for the file; data read
534 * and decrypted from the lower file will be written into this
537 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
538 * that eCryptfs pages may straddle the lower pages -- for instance,
539 * if the file was created on a machine with an 8K page size
540 * (resulting in an 8K header), and then the file is copied onto a
541 * host with a 32K page size, then when reading page 0 of the eCryptfs
542 * file, 24K of page 0 of the lower file will be read and decrypted,
543 * and then 8K of page 1 of the lower file will be read and decrypted.
545 * Returns zero on success; negative on error
547 int ecryptfs_decrypt_page(struct page
*page
)
549 struct inode
*ecryptfs_inode
;
550 struct ecryptfs_crypt_stat
*crypt_stat
;
552 unsigned long extent_offset
;
556 ecryptfs_inode
= page
->mapping
->host
;
558 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
559 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
561 lower_offset
= lower_offset_for_page(crypt_stat
, page
);
562 page_virt
= kmap(page
);
563 rc
= ecryptfs_read_lower(page_virt
, lower_offset
, PAGE_SIZE
,
567 ecryptfs_printk(KERN_ERR
,
568 "Error attempting to read lower page; rc = [%d]\n",
573 for (extent_offset
= 0;
574 extent_offset
< (PAGE_SIZE
/ crypt_stat
->extent_size
);
576 rc
= crypt_extent(crypt_stat
, page
, page
,
577 extent_offset
, DECRYPT
);
579 printk(KERN_ERR
"%s: Error encrypting extent; "
580 "rc = [%d]\n", __func__
, rc
);
588 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
591 * ecryptfs_init_crypt_ctx
592 * @crypt_stat: Uninitialized crypt stats structure
594 * Initialize the crypto context.
596 * TODO: Performance: Keep a cache of initialized cipher contexts;
597 * only init if needed
599 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat
*crypt_stat
)
604 ecryptfs_printk(KERN_DEBUG
,
605 "Initializing cipher [%s]; strlen = [%d]; "
606 "key_size_bits = [%zd]\n",
607 crypt_stat
->cipher
, (int)strlen(crypt_stat
->cipher
),
608 crypt_stat
->key_size
<< 3);
609 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
610 if (crypt_stat
->tfm
) {
614 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
,
615 crypt_stat
->cipher
, "cbc");
618 crypt_stat
->tfm
= crypto_alloc_skcipher(full_alg_name
, 0, 0);
619 if (IS_ERR(crypt_stat
->tfm
)) {
620 rc
= PTR_ERR(crypt_stat
->tfm
);
621 crypt_stat
->tfm
= NULL
;
622 ecryptfs_printk(KERN_ERR
, "cryptfs: init_crypt_ctx(): "
623 "Error initializing cipher [%s]\n",
627 crypto_skcipher_set_flags(crypt_stat
->tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
630 kfree(full_alg_name
);
632 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
636 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat
*crypt_stat
)
640 crypt_stat
->extent_mask
= 0xFFFFFFFF;
641 crypt_stat
->extent_shift
= 0;
642 if (crypt_stat
->extent_size
== 0)
644 extent_size_tmp
= crypt_stat
->extent_size
;
645 while ((extent_size_tmp
& 0x01) == 0) {
646 extent_size_tmp
>>= 1;
647 crypt_stat
->extent_mask
<<= 1;
648 crypt_stat
->extent_shift
++;
652 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat
*crypt_stat
)
654 /* Default values; may be overwritten as we are parsing the
656 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
657 set_extent_mask_and_shift(crypt_stat
);
658 crypt_stat
->iv_bytes
= ECRYPTFS_DEFAULT_IV_BYTES
;
659 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
660 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
662 if (PAGE_SIZE
<= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)
663 crypt_stat
->metadata_size
=
664 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
666 crypt_stat
->metadata_size
= PAGE_SIZE
;
671 * ecryptfs_compute_root_iv
674 * On error, sets the root IV to all 0's.
676 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat
*crypt_stat
)
679 char dst
[MD5_DIGEST_SIZE
];
681 BUG_ON(crypt_stat
->iv_bytes
> MD5_DIGEST_SIZE
);
682 BUG_ON(crypt_stat
->iv_bytes
<= 0);
683 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
685 ecryptfs_printk(KERN_WARNING
, "Session key not valid; "
686 "cannot generate root IV\n");
689 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, crypt_stat
->key
,
690 crypt_stat
->key_size
);
692 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
693 "MD5 while generating root IV\n");
696 memcpy(crypt_stat
->root_iv
, dst
, crypt_stat
->iv_bytes
);
699 memset(crypt_stat
->root_iv
, 0, crypt_stat
->iv_bytes
);
700 crypt_stat
->flags
|= ECRYPTFS_SECURITY_WARNING
;
705 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat
*crypt_stat
)
707 get_random_bytes(crypt_stat
->key
, crypt_stat
->key_size
);
708 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
709 ecryptfs_compute_root_iv(crypt_stat
);
710 if (unlikely(ecryptfs_verbosity
> 0)) {
711 ecryptfs_printk(KERN_DEBUG
, "Generated new session key:\n");
712 ecryptfs_dump_hex(crypt_stat
->key
,
713 crypt_stat
->key_size
);
718 * ecryptfs_copy_mount_wide_flags_to_inode_flags
719 * @crypt_stat: The inode's cryptographic context
720 * @mount_crypt_stat: The mount point's cryptographic context
722 * This function propagates the mount-wide flags to individual inode
725 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
726 struct ecryptfs_crypt_stat
*crypt_stat
,
727 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
729 if (mount_crypt_stat
->flags
& ECRYPTFS_XATTR_METADATA_ENABLED
)
730 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
731 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
732 crypt_stat
->flags
|= ECRYPTFS_VIEW_AS_ENCRYPTED
;
733 if (mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
) {
734 crypt_stat
->flags
|= ECRYPTFS_ENCRYPT_FILENAMES
;
735 if (mount_crypt_stat
->flags
736 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)
737 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_MOUNT_FNEK
;
738 else if (mount_crypt_stat
->flags
739 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK
)
740 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_FEK
;
744 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
745 struct ecryptfs_crypt_stat
*crypt_stat
,
746 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
748 struct ecryptfs_global_auth_tok
*global_auth_tok
;
751 mutex_lock(&crypt_stat
->keysig_list_mutex
);
752 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
754 list_for_each_entry(global_auth_tok
,
755 &mount_crypt_stat
->global_auth_tok_list
,
756 mount_crypt_stat_list
) {
757 if (global_auth_tok
->flags
& ECRYPTFS_AUTH_TOK_FNEK
)
759 rc
= ecryptfs_add_keysig(crypt_stat
, global_auth_tok
->sig
);
761 printk(KERN_ERR
"Error adding keysig; rc = [%d]\n", rc
);
767 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
768 mutex_unlock(&crypt_stat
->keysig_list_mutex
);
773 * ecryptfs_set_default_crypt_stat_vals
774 * @crypt_stat: The inode's cryptographic context
775 * @mount_crypt_stat: The mount point's cryptographic context
777 * Default values in the event that policy does not override them.
779 static void ecryptfs_set_default_crypt_stat_vals(
780 struct ecryptfs_crypt_stat
*crypt_stat
,
781 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
783 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
785 ecryptfs_set_default_sizes(crypt_stat
);
786 strcpy(crypt_stat
->cipher
, ECRYPTFS_DEFAULT_CIPHER
);
787 crypt_stat
->key_size
= ECRYPTFS_DEFAULT_KEY_BYTES
;
788 crypt_stat
->flags
&= ~(ECRYPTFS_KEY_VALID
);
789 crypt_stat
->file_version
= ECRYPTFS_FILE_VERSION
;
790 crypt_stat
->mount_crypt_stat
= mount_crypt_stat
;
794 * ecryptfs_new_file_context
795 * @ecryptfs_inode: The eCryptfs inode
797 * If the crypto context for the file has not yet been established,
798 * this is where we do that. Establishing a new crypto context
799 * involves the following decisions:
800 * - What cipher to use?
801 * - What set of authentication tokens to use?
802 * Here we just worry about getting enough information into the
803 * authentication tokens so that we know that they are available.
804 * We associate the available authentication tokens with the new file
805 * via the set of signatures in the crypt_stat struct. Later, when
806 * the headers are actually written out, we may again defer to
807 * userspace to perform the encryption of the session key; for the
808 * foreseeable future, this will be the case with public key packets.
810 * Returns zero on success; non-zero otherwise
812 int ecryptfs_new_file_context(struct inode
*ecryptfs_inode
)
814 struct ecryptfs_crypt_stat
*crypt_stat
=
815 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
816 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
817 &ecryptfs_superblock_to_private(
818 ecryptfs_inode
->i_sb
)->mount_crypt_stat
;
822 ecryptfs_set_default_crypt_stat_vals(crypt_stat
, mount_crypt_stat
);
823 crypt_stat
->flags
|= (ECRYPTFS_ENCRYPTED
| ECRYPTFS_KEY_VALID
);
824 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
826 rc
= ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat
,
829 printk(KERN_ERR
"Error attempting to copy mount-wide key sigs "
830 "to the inode key sigs; rc = [%d]\n", rc
);
834 strlen(mount_crypt_stat
->global_default_cipher_name
);
835 memcpy(crypt_stat
->cipher
,
836 mount_crypt_stat
->global_default_cipher_name
,
838 crypt_stat
->cipher
[cipher_name_len
] = '\0';
839 crypt_stat
->key_size
=
840 mount_crypt_stat
->global_default_cipher_key_size
;
841 ecryptfs_generate_new_key(crypt_stat
);
842 rc
= ecryptfs_init_crypt_ctx(crypt_stat
);
844 ecryptfs_printk(KERN_ERR
, "Error initializing cryptographic "
845 "context for cipher [%s]: rc = [%d]\n",
846 crypt_stat
->cipher
, rc
);
852 * ecryptfs_validate_marker - check for the ecryptfs marker
853 * @data: The data block in which to check
855 * Returns zero if marker found; -EINVAL if not found
857 static int ecryptfs_validate_marker(char *data
)
861 m_1
= get_unaligned_be32(data
);
862 m_2
= get_unaligned_be32(data
+ 4);
863 if ((m_1
^ MAGIC_ECRYPTFS_MARKER
) == m_2
)
865 ecryptfs_printk(KERN_DEBUG
, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
866 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1
, m_2
,
867 MAGIC_ECRYPTFS_MARKER
);
868 ecryptfs_printk(KERN_DEBUG
, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
869 "[0x%.8x]\n", (m_1
^ MAGIC_ECRYPTFS_MARKER
));
873 struct ecryptfs_flag_map_elem
{
878 /* Add support for additional flags by adding elements here. */
879 static struct ecryptfs_flag_map_elem ecryptfs_flag_map
[] = {
880 {0x00000001, ECRYPTFS_ENABLE_HMAC
},
881 {0x00000002, ECRYPTFS_ENCRYPTED
},
882 {0x00000004, ECRYPTFS_METADATA_IN_XATTR
},
883 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES
}
887 * ecryptfs_process_flags
888 * @crypt_stat: The cryptographic context
889 * @page_virt: Source data to be parsed
890 * @bytes_read: Updated with the number of bytes read
892 * Returns zero on success; non-zero if the flag set is invalid
894 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat
*crypt_stat
,
895 char *page_virt
, int *bytes_read
)
901 flags
= get_unaligned_be32(page_virt
);
902 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
903 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
904 if (flags
& ecryptfs_flag_map
[i
].file_flag
) {
905 crypt_stat
->flags
|= ecryptfs_flag_map
[i
].local_flag
;
907 crypt_stat
->flags
&= ~(ecryptfs_flag_map
[i
].local_flag
);
908 /* Version is in top 8 bits of the 32-bit flag vector */
909 crypt_stat
->file_version
= ((flags
>> 24) & 0xFF);
915 * write_ecryptfs_marker
916 * @page_virt: The pointer to in a page to begin writing the marker
917 * @written: Number of bytes written
919 * Marker = 0x3c81b7f5
921 static void write_ecryptfs_marker(char *page_virt
, size_t *written
)
925 get_random_bytes(&m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
926 m_2
= (m_1
^ MAGIC_ECRYPTFS_MARKER
);
927 put_unaligned_be32(m_1
, page_virt
);
928 page_virt
+= (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2);
929 put_unaligned_be32(m_2
, page_virt
);
930 (*written
) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
933 void ecryptfs_write_crypt_stat_flags(char *page_virt
,
934 struct ecryptfs_crypt_stat
*crypt_stat
,
940 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
941 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
942 if (crypt_stat
->flags
& ecryptfs_flag_map
[i
].local_flag
)
943 flags
|= ecryptfs_flag_map
[i
].file_flag
;
944 /* Version is in top 8 bits of the 32-bit flag vector */
945 flags
|= ((((u8
)crypt_stat
->file_version
) << 24) & 0xFF000000);
946 put_unaligned_be32(flags
, page_virt
);
950 struct ecryptfs_cipher_code_str_map_elem
{
955 /* Add support for additional ciphers by adding elements here. The
956 * cipher_code is whatever OpenPGP applicatoins use to identify the
957 * ciphers. List in order of probability. */
958 static struct ecryptfs_cipher_code_str_map_elem
959 ecryptfs_cipher_code_str_map
[] = {
960 {"aes",RFC2440_CIPHER_AES_128
},
961 {"blowfish", RFC2440_CIPHER_BLOWFISH
},
962 {"des3_ede", RFC2440_CIPHER_DES3_EDE
},
963 {"cast5", RFC2440_CIPHER_CAST_5
},
964 {"twofish", RFC2440_CIPHER_TWOFISH
},
965 {"cast6", RFC2440_CIPHER_CAST_6
},
966 {"aes", RFC2440_CIPHER_AES_192
},
967 {"aes", RFC2440_CIPHER_AES_256
}
971 * ecryptfs_code_for_cipher_string
972 * @cipher_name: The string alias for the cipher
973 * @key_bytes: Length of key in bytes; used for AES code selection
975 * Returns zero on no match, or the cipher code on match
977 u8
ecryptfs_code_for_cipher_string(char *cipher_name
, size_t key_bytes
)
981 struct ecryptfs_cipher_code_str_map_elem
*map
=
982 ecryptfs_cipher_code_str_map
;
984 if (strcmp(cipher_name
, "aes") == 0) {
987 code
= RFC2440_CIPHER_AES_128
;
990 code
= RFC2440_CIPHER_AES_192
;
993 code
= RFC2440_CIPHER_AES_256
;
996 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
997 if (strcmp(cipher_name
, map
[i
].cipher_str
) == 0) {
998 code
= map
[i
].cipher_code
;
1006 * ecryptfs_cipher_code_to_string
1007 * @str: Destination to write out the cipher name
1008 * @cipher_code: The code to convert to cipher name string
1010 * Returns zero on success
1012 int ecryptfs_cipher_code_to_string(char *str
, u8 cipher_code
)
1018 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1019 if (cipher_code
== ecryptfs_cipher_code_str_map
[i
].cipher_code
)
1020 strcpy(str
, ecryptfs_cipher_code_str_map
[i
].cipher_str
);
1021 if (str
[0] == '\0') {
1022 ecryptfs_printk(KERN_WARNING
, "Cipher code not recognized: "
1023 "[%d]\n", cipher_code
);
1029 int ecryptfs_read_and_validate_header_region(struct inode
*inode
)
1031 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
1032 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1035 rc
= ecryptfs_read_lower(file_size
, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES
,
1037 if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1038 return rc
>= 0 ? -EINVAL
: rc
;
1039 rc
= ecryptfs_validate_marker(marker
);
1041 ecryptfs_i_size_init(file_size
, inode
);
1046 ecryptfs_write_header_metadata(char *virt
,
1047 struct ecryptfs_crypt_stat
*crypt_stat
,
1050 u32 header_extent_size
;
1051 u16 num_header_extents_at_front
;
1053 header_extent_size
= (u32
)crypt_stat
->extent_size
;
1054 num_header_extents_at_front
=
1055 (u16
)(crypt_stat
->metadata_size
/ crypt_stat
->extent_size
);
1056 put_unaligned_be32(header_extent_size
, virt
);
1058 put_unaligned_be16(num_header_extents_at_front
, virt
);
1062 struct kmem_cache
*ecryptfs_header_cache
;
1065 * ecryptfs_write_headers_virt
1066 * @page_virt: The virtual address to write the headers to
1067 * @max: The size of memory allocated at page_virt
1068 * @size: Set to the number of bytes written by this function
1069 * @crypt_stat: The cryptographic context
1070 * @ecryptfs_dentry: The eCryptfs dentry
1075 * Octets 0-7: Unencrypted file size (big-endian)
1076 * Octets 8-15: eCryptfs special marker
1077 * Octets 16-19: Flags
1078 * Octet 16: File format version number (between 0 and 255)
1079 * Octets 17-18: Reserved
1080 * Octet 19: Bit 1 (lsb): Reserved
1082 * Bits 3-8: Reserved
1083 * Octets 20-23: Header extent size (big-endian)
1084 * Octets 24-25: Number of header extents at front of file
1086 * Octet 26: Begin RFC 2440 authentication token packet set
1088 * Lower data (CBC encrypted)
1090 * Lower data (CBC encrypted)
1093 * Returns zero on success
1095 static int ecryptfs_write_headers_virt(char *page_virt
, size_t max
,
1097 struct ecryptfs_crypt_stat
*crypt_stat
,
1098 struct dentry
*ecryptfs_dentry
)
1104 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1105 write_ecryptfs_marker((page_virt
+ offset
), &written
);
1107 ecryptfs_write_crypt_stat_flags((page_virt
+ offset
), crypt_stat
,
1110 ecryptfs_write_header_metadata((page_virt
+ offset
), crypt_stat
,
1113 rc
= ecryptfs_generate_key_packet_set((page_virt
+ offset
), crypt_stat
,
1114 ecryptfs_dentry
, &written
,
1117 ecryptfs_printk(KERN_WARNING
, "Error generating key packet "
1118 "set; rc = [%d]\n", rc
);
1127 ecryptfs_write_metadata_to_contents(struct inode
*ecryptfs_inode
,
1128 char *virt
, size_t virt_len
)
1132 rc
= ecryptfs_write_lower(ecryptfs_inode
, virt
,
1135 printk(KERN_ERR
"%s: Error attempting to write header "
1136 "information to lower file; rc = [%d]\n", __func__
, rc
);
1143 ecryptfs_write_metadata_to_xattr(struct dentry
*ecryptfs_dentry
,
1144 char *page_virt
, size_t size
)
1148 rc
= ecryptfs_setxattr(ecryptfs_dentry
, ECRYPTFS_XATTR_NAME
, page_virt
,
1153 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask
,
1158 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, order
);
1160 return (unsigned long) page_address(page
);
1165 * ecryptfs_write_metadata
1166 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1167 * @ecryptfs_inode: The newly created eCryptfs inode
1169 * Write the file headers out. This will likely involve a userspace
1170 * callout, in which the session key is encrypted with one or more
1171 * public keys and/or the passphrase necessary to do the encryption is
1172 * retrieved via a prompt. Exactly what happens at this point should
1173 * be policy-dependent.
1175 * Returns zero on success; non-zero on error
1177 int ecryptfs_write_metadata(struct dentry
*ecryptfs_dentry
,
1178 struct inode
*ecryptfs_inode
)
1180 struct ecryptfs_crypt_stat
*crypt_stat
=
1181 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1188 if (likely(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
1189 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
1190 printk(KERN_ERR
"Key is invalid; bailing out\n");
1195 printk(KERN_WARNING
"%s: Encrypted flag not set\n",
1200 virt_len
= crypt_stat
->metadata_size
;
1201 order
= get_order(virt_len
);
1202 /* Released in this function */
1203 virt
= (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL
, order
);
1205 printk(KERN_ERR
"%s: Out of memory\n", __func__
);
1209 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1210 rc
= ecryptfs_write_headers_virt(virt
, virt_len
, &size
, crypt_stat
,
1213 printk(KERN_ERR
"%s: Error whilst writing headers; rc = [%d]\n",
1217 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1218 rc
= ecryptfs_write_metadata_to_xattr(ecryptfs_dentry
, virt
,
1221 rc
= ecryptfs_write_metadata_to_contents(ecryptfs_inode
, virt
,
1224 printk(KERN_ERR
"%s: Error writing metadata out to lower file; "
1225 "rc = [%d]\n", __func__
, rc
);
1229 free_pages((unsigned long)virt
, order
);
1234 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1235 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1236 static int parse_header_metadata(struct ecryptfs_crypt_stat
*crypt_stat
,
1237 char *virt
, int *bytes_read
,
1238 int validate_header_size
)
1241 u32 header_extent_size
;
1242 u16 num_header_extents_at_front
;
1244 header_extent_size
= get_unaligned_be32(virt
);
1245 virt
+= sizeof(__be32
);
1246 num_header_extents_at_front
= get_unaligned_be16(virt
);
1247 crypt_stat
->metadata_size
= (((size_t)num_header_extents_at_front
1248 * (size_t)header_extent_size
));
1249 (*bytes_read
) = (sizeof(__be32
) + sizeof(__be16
));
1250 if ((validate_header_size
== ECRYPTFS_VALIDATE_HEADER_SIZE
)
1251 && (crypt_stat
->metadata_size
1252 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)) {
1254 printk(KERN_WARNING
"Invalid header size: [%zd]\n",
1255 crypt_stat
->metadata_size
);
1261 * set_default_header_data
1262 * @crypt_stat: The cryptographic context
1264 * For version 0 file format; this function is only for backwards
1265 * compatibility for files created with the prior versions of
1268 static void set_default_header_data(struct ecryptfs_crypt_stat
*crypt_stat
)
1270 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
1273 void ecryptfs_i_size_init(const char *page_virt
, struct inode
*inode
)
1275 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
;
1276 struct ecryptfs_crypt_stat
*crypt_stat
;
1279 crypt_stat
= &ecryptfs_inode_to_private(inode
)->crypt_stat
;
1281 &ecryptfs_superblock_to_private(inode
->i_sb
)->mount_crypt_stat
;
1282 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
) {
1283 file_size
= i_size_read(ecryptfs_inode_to_lower(inode
));
1284 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1285 file_size
+= crypt_stat
->metadata_size
;
1287 file_size
= get_unaligned_be64(page_virt
);
1288 i_size_write(inode
, (loff_t
)file_size
);
1289 crypt_stat
->flags
|= ECRYPTFS_I_SIZE_INITIALIZED
;
1293 * ecryptfs_read_headers_virt
1294 * @page_virt: The virtual address into which to read the headers
1295 * @crypt_stat: The cryptographic context
1296 * @ecryptfs_dentry: The eCryptfs dentry
1297 * @validate_header_size: Whether to validate the header size while reading
1299 * Read/parse the header data. The header format is detailed in the
1300 * comment block for the ecryptfs_write_headers_virt() function.
1302 * Returns zero on success
1304 static int ecryptfs_read_headers_virt(char *page_virt
,
1305 struct ecryptfs_crypt_stat
*crypt_stat
,
1306 struct dentry
*ecryptfs_dentry
,
1307 int validate_header_size
)
1313 ecryptfs_set_default_sizes(crypt_stat
);
1314 crypt_stat
->mount_crypt_stat
= &ecryptfs_superblock_to_private(
1315 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1316 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1317 rc
= ecryptfs_validate_marker(page_virt
+ offset
);
1320 if (!(crypt_stat
->flags
& ECRYPTFS_I_SIZE_INITIALIZED
))
1321 ecryptfs_i_size_init(page_virt
, d_inode(ecryptfs_dentry
));
1322 offset
+= MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1323 rc
= ecryptfs_process_flags(crypt_stat
, (page_virt
+ offset
),
1326 ecryptfs_printk(KERN_WARNING
, "Error processing flags\n");
1329 if (crypt_stat
->file_version
> ECRYPTFS_SUPPORTED_FILE_VERSION
) {
1330 ecryptfs_printk(KERN_WARNING
, "File version is [%d]; only "
1331 "file version [%d] is supported by this "
1332 "version of eCryptfs\n",
1333 crypt_stat
->file_version
,
1334 ECRYPTFS_SUPPORTED_FILE_VERSION
);
1338 offset
+= bytes_read
;
1339 if (crypt_stat
->file_version
>= 1) {
1340 rc
= parse_header_metadata(crypt_stat
, (page_virt
+ offset
),
1341 &bytes_read
, validate_header_size
);
1343 ecryptfs_printk(KERN_WARNING
, "Error reading header "
1344 "metadata; rc = [%d]\n", rc
);
1346 offset
+= bytes_read
;
1348 set_default_header_data(crypt_stat
);
1349 rc
= ecryptfs_parse_packet_set(crypt_stat
, (page_virt
+ offset
),
1356 * ecryptfs_read_xattr_region
1357 * @page_virt: The vitual address into which to read the xattr data
1358 * @ecryptfs_inode: The eCryptfs inode
1360 * Attempts to read the crypto metadata from the extended attribute
1361 * region of the lower file.
1363 * Returns zero on success; non-zero on error
1365 int ecryptfs_read_xattr_region(char *page_virt
, struct inode
*ecryptfs_inode
)
1367 struct dentry
*lower_dentry
=
1368 ecryptfs_inode_to_private(ecryptfs_inode
)->lower_file
->f_path
.dentry
;
1372 size
= ecryptfs_getxattr_lower(lower_dentry
, ECRYPTFS_XATTR_NAME
,
1373 page_virt
, ECRYPTFS_DEFAULT_EXTENT_SIZE
);
1375 if (unlikely(ecryptfs_verbosity
> 0))
1376 printk(KERN_INFO
"Error attempting to read the [%s] "
1377 "xattr from the lower file; return value = "
1378 "[%zd]\n", ECRYPTFS_XATTR_NAME
, size
);
1386 int ecryptfs_read_and_validate_xattr_region(struct dentry
*dentry
,
1387 struct inode
*inode
)
1389 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
1390 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1393 rc
= ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry
),
1394 ECRYPTFS_XATTR_NAME
, file_size
,
1395 ECRYPTFS_SIZE_AND_MARKER_BYTES
);
1396 if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1397 return rc
>= 0 ? -EINVAL
: rc
;
1398 rc
= ecryptfs_validate_marker(marker
);
1400 ecryptfs_i_size_init(file_size
, inode
);
1405 * ecryptfs_read_metadata
1407 * Common entry point for reading file metadata. From here, we could
1408 * retrieve the header information from the header region of the file,
1409 * the xattr region of the file, or some other repostory that is
1410 * stored separately from the file itself. The current implementation
1411 * supports retrieving the metadata information from the file contents
1412 * and from the xattr region.
1414 * Returns zero if valid headers found and parsed; non-zero otherwise
1416 int ecryptfs_read_metadata(struct dentry
*ecryptfs_dentry
)
1420 struct inode
*ecryptfs_inode
= d_inode(ecryptfs_dentry
);
1421 struct ecryptfs_crypt_stat
*crypt_stat
=
1422 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1423 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
1424 &ecryptfs_superblock_to_private(
1425 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1427 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1429 /* Read the first page from the underlying file */
1430 page_virt
= kmem_cache_alloc(ecryptfs_header_cache
, GFP_USER
);
1433 printk(KERN_ERR
"%s: Unable to allocate page_virt\n",
1437 rc
= ecryptfs_read_lower(page_virt
, 0, crypt_stat
->extent_size
,
1440 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1442 ECRYPTFS_VALIDATE_HEADER_SIZE
);
1444 /* metadata is not in the file header, so try xattrs */
1445 memset(page_virt
, 0, PAGE_SIZE
);
1446 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_inode
);
1448 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1449 "file header region or xattr region, inode %lu\n",
1450 ecryptfs_inode
->i_ino
);
1454 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1456 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE
);
1458 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1459 "file xattr region either, inode %lu\n",
1460 ecryptfs_inode
->i_ino
);
1463 if (crypt_stat
->mount_crypt_stat
->flags
1464 & ECRYPTFS_XATTR_METADATA_ENABLED
) {
1465 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
1467 printk(KERN_WARNING
"Attempt to access file with "
1468 "crypto metadata only in the extended attribute "
1469 "region, but eCryptfs was mounted without "
1470 "xattr support enabled. eCryptfs will not treat "
1471 "this like an encrypted file, inode %lu\n",
1472 ecryptfs_inode
->i_ino
);
1478 memset(page_virt
, 0, PAGE_SIZE
);
1479 kmem_cache_free(ecryptfs_header_cache
, page_virt
);
1485 * ecryptfs_encrypt_filename - encrypt filename
1487 * CBC-encrypts the filename. We do not want to encrypt the same
1488 * filename with the same key and IV, which may happen with hard
1489 * links, so we prepend random bits to each filename.
1491 * Returns zero on success; non-zero otherwise
1494 ecryptfs_encrypt_filename(struct ecryptfs_filename
*filename
,
1495 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
1499 filename
->encrypted_filename
= NULL
;
1500 filename
->encrypted_filename_size
= 0;
1501 if (mount_crypt_stat
&& (mount_crypt_stat
->flags
1502 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)) {
1504 size_t remaining_bytes
;
1506 rc
= ecryptfs_write_tag_70_packet(
1508 &filename
->encrypted_filename_size
,
1509 mount_crypt_stat
, NULL
,
1510 filename
->filename_size
);
1512 printk(KERN_ERR
"%s: Error attempting to get packet "
1513 "size for tag 72; rc = [%d]\n", __func__
,
1515 filename
->encrypted_filename_size
= 0;
1518 filename
->encrypted_filename
=
1519 kmalloc(filename
->encrypted_filename_size
, GFP_KERNEL
);
1520 if (!filename
->encrypted_filename
) {
1521 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1522 "to kmalloc [%zd] bytes\n", __func__
,
1523 filename
->encrypted_filename_size
);
1527 remaining_bytes
= filename
->encrypted_filename_size
;
1528 rc
= ecryptfs_write_tag_70_packet(filename
->encrypted_filename
,
1533 filename
->filename_size
);
1535 printk(KERN_ERR
"%s: Error attempting to generate "
1536 "tag 70 packet; rc = [%d]\n", __func__
,
1538 kfree(filename
->encrypted_filename
);
1539 filename
->encrypted_filename
= NULL
;
1540 filename
->encrypted_filename_size
= 0;
1543 filename
->encrypted_filename_size
= packet_size
;
1545 printk(KERN_ERR
"%s: No support for requested filename "
1546 "encryption method in this release\n", __func__
);
1554 static int ecryptfs_copy_filename(char **copied_name
, size_t *copied_name_size
,
1555 const char *name
, size_t name_size
)
1559 (*copied_name
) = kmalloc((name_size
+ 1), GFP_KERNEL
);
1560 if (!(*copied_name
)) {
1564 memcpy((void *)(*copied_name
), (void *)name
, name_size
);
1565 (*copied_name
)[(name_size
)] = '\0'; /* Only for convenience
1566 * in printing out the
1569 (*copied_name_size
) = name_size
;
1575 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1576 * @key_tfm: Crypto context for key material, set by this function
1577 * @cipher_name: Name of the cipher
1578 * @key_size: Size of the key in bytes
1580 * Returns zero on success. Any crypto_tfm structs allocated here
1581 * should be released by other functions, such as on a superblock put
1582 * event, regardless of whether this function succeeds for fails.
1585 ecryptfs_process_key_cipher(struct crypto_skcipher
**key_tfm
,
1586 char *cipher_name
, size_t *key_size
)
1588 char dummy_key
[ECRYPTFS_MAX_KEY_BYTES
];
1589 char *full_alg_name
= NULL
;
1593 if (*key_size
> ECRYPTFS_MAX_KEY_BYTES
) {
1595 printk(KERN_ERR
"Requested key size is [%zd] bytes; maximum "
1596 "allowable is [%d]\n", *key_size
, ECRYPTFS_MAX_KEY_BYTES
);
1599 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
, cipher_name
,
1603 *key_tfm
= crypto_alloc_skcipher(full_alg_name
, 0, CRYPTO_ALG_ASYNC
);
1604 if (IS_ERR(*key_tfm
)) {
1605 rc
= PTR_ERR(*key_tfm
);
1606 printk(KERN_ERR
"Unable to allocate crypto cipher with name "
1607 "[%s]; rc = [%d]\n", full_alg_name
, rc
);
1610 crypto_skcipher_set_flags(*key_tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
1612 *key_size
= crypto_skcipher_default_keysize(*key_tfm
);
1613 get_random_bytes(dummy_key
, *key_size
);
1614 rc
= crypto_skcipher_setkey(*key_tfm
, dummy_key
, *key_size
);
1616 printk(KERN_ERR
"Error attempting to set key of size [%zd] for "
1617 "cipher [%s]; rc = [%d]\n", *key_size
, full_alg_name
,
1623 kfree(full_alg_name
);
1627 struct kmem_cache
*ecryptfs_key_tfm_cache
;
1628 static struct list_head key_tfm_list
;
1629 struct mutex key_tfm_list_mutex
;
1631 int __init
ecryptfs_init_crypto(void)
1633 mutex_init(&key_tfm_list_mutex
);
1634 INIT_LIST_HEAD(&key_tfm_list
);
1639 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1641 * Called only at module unload time
1643 int ecryptfs_destroy_crypto(void)
1645 struct ecryptfs_key_tfm
*key_tfm
, *key_tfm_tmp
;
1647 mutex_lock(&key_tfm_list_mutex
);
1648 list_for_each_entry_safe(key_tfm
, key_tfm_tmp
, &key_tfm_list
,
1650 list_del(&key_tfm
->key_tfm_list
);
1651 crypto_free_skcipher(key_tfm
->key_tfm
);
1652 kmem_cache_free(ecryptfs_key_tfm_cache
, key_tfm
);
1654 mutex_unlock(&key_tfm_list_mutex
);
1659 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm
**key_tfm
, char *cipher_name
,
1662 struct ecryptfs_key_tfm
*tmp_tfm
;
1665 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1667 tmp_tfm
= kmem_cache_alloc(ecryptfs_key_tfm_cache
, GFP_KERNEL
);
1668 if (key_tfm
!= NULL
)
1669 (*key_tfm
) = tmp_tfm
;
1672 printk(KERN_ERR
"Error attempting to allocate from "
1673 "ecryptfs_key_tfm_cache\n");
1676 mutex_init(&tmp_tfm
->key_tfm_mutex
);
1677 strncpy(tmp_tfm
->cipher_name
, cipher_name
,
1678 ECRYPTFS_MAX_CIPHER_NAME_SIZE
);
1679 tmp_tfm
->cipher_name
[ECRYPTFS_MAX_CIPHER_NAME_SIZE
] = '\0';
1680 tmp_tfm
->key_size
= key_size
;
1681 rc
= ecryptfs_process_key_cipher(&tmp_tfm
->key_tfm
,
1682 tmp_tfm
->cipher_name
,
1683 &tmp_tfm
->key_size
);
1685 printk(KERN_ERR
"Error attempting to initialize key TFM "
1686 "cipher with name = [%s]; rc = [%d]\n",
1687 tmp_tfm
->cipher_name
, rc
);
1688 kmem_cache_free(ecryptfs_key_tfm_cache
, tmp_tfm
);
1689 if (key_tfm
!= NULL
)
1693 list_add(&tmp_tfm
->key_tfm_list
, &key_tfm_list
);
1699 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1700 * @cipher_name: the name of the cipher to search for
1701 * @key_tfm: set to corresponding tfm if found
1703 * Searches for cached key_tfm matching @cipher_name
1704 * Must be called with &key_tfm_list_mutex held
1705 * Returns 1 if found, with @key_tfm set
1706 * Returns 0 if not found, with @key_tfm set to NULL
1708 int ecryptfs_tfm_exists(char *cipher_name
, struct ecryptfs_key_tfm
**key_tfm
)
1710 struct ecryptfs_key_tfm
*tmp_key_tfm
;
1712 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1714 list_for_each_entry(tmp_key_tfm
, &key_tfm_list
, key_tfm_list
) {
1715 if (strcmp(tmp_key_tfm
->cipher_name
, cipher_name
) == 0) {
1717 (*key_tfm
) = tmp_key_tfm
;
1727 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1729 * @tfm: set to cached tfm found, or new tfm created
1730 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1731 * @cipher_name: the name of the cipher to search for and/or add
1733 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1734 * Searches for cached item first, and creates new if not found.
1735 * Returns 0 on success, non-zero if adding new cipher failed
1737 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher
**tfm
,
1738 struct mutex
**tfm_mutex
,
1741 struct ecryptfs_key_tfm
*key_tfm
;
1745 (*tfm_mutex
) = NULL
;
1747 mutex_lock(&key_tfm_list_mutex
);
1748 if (!ecryptfs_tfm_exists(cipher_name
, &key_tfm
)) {
1749 rc
= ecryptfs_add_new_key_tfm(&key_tfm
, cipher_name
, 0);
1751 printk(KERN_ERR
"Error adding new key_tfm to list; "
1756 (*tfm
) = key_tfm
->key_tfm
;
1757 (*tfm_mutex
) = &key_tfm
->key_tfm_mutex
;
1759 mutex_unlock(&key_tfm_list_mutex
);
1763 /* 64 characters forming a 6-bit target field */
1764 static unsigned char *portable_filename_chars
= ("-.0123456789ABCD"
1767 "klmnopqrstuvwxyz");
1769 /* We could either offset on every reverse map or just pad some 0x00's
1770 * at the front here */
1771 static const unsigned char filename_rev_map
[256] = {
1772 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1773 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1774 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1775 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1776 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1777 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1778 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1779 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1780 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1781 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1782 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1783 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1784 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1785 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1786 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1787 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1791 * ecryptfs_encode_for_filename
1792 * @dst: Destination location for encoded filename
1793 * @dst_size: Size of the encoded filename in bytes
1794 * @src: Source location for the filename to encode
1795 * @src_size: Size of the source in bytes
1797 static void ecryptfs_encode_for_filename(unsigned char *dst
, size_t *dst_size
,
1798 unsigned char *src
, size_t src_size
)
1801 size_t block_num
= 0;
1802 size_t dst_offset
= 0;
1803 unsigned char last_block
[3];
1805 if (src_size
== 0) {
1809 num_blocks
= (src_size
/ 3);
1810 if ((src_size
% 3) == 0) {
1811 memcpy(last_block
, (&src
[src_size
- 3]), 3);
1814 last_block
[2] = 0x00;
1815 switch (src_size
% 3) {
1817 last_block
[0] = src
[src_size
- 1];
1818 last_block
[1] = 0x00;
1821 last_block
[0] = src
[src_size
- 2];
1822 last_block
[1] = src
[src_size
- 1];
1825 (*dst_size
) = (num_blocks
* 4);
1828 while (block_num
< num_blocks
) {
1829 unsigned char *src_block
;
1830 unsigned char dst_block
[4];
1832 if (block_num
== (num_blocks
- 1))
1833 src_block
= last_block
;
1835 src_block
= &src
[block_num
* 3];
1836 dst_block
[0] = ((src_block
[0] >> 2) & 0x3F);
1837 dst_block
[1] = (((src_block
[0] << 4) & 0x30)
1838 | ((src_block
[1] >> 4) & 0x0F));
1839 dst_block
[2] = (((src_block
[1] << 2) & 0x3C)
1840 | ((src_block
[2] >> 6) & 0x03));
1841 dst_block
[3] = (src_block
[2] & 0x3F);
1842 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[0]];
1843 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[1]];
1844 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[2]];
1845 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[3]];
1852 static size_t ecryptfs_max_decoded_size(size_t encoded_size
)
1854 /* Not exact; conservatively long. Every block of 4
1855 * encoded characters decodes into a block of 3
1856 * decoded characters. This segment of code provides
1857 * the caller with the maximum amount of allocated
1858 * space that @dst will need to point to in a
1859 * subsequent call. */
1860 return ((encoded_size
+ 1) * 3) / 4;
1864 * ecryptfs_decode_from_filename
1865 * @dst: If NULL, this function only sets @dst_size and returns. If
1866 * non-NULL, this function decodes the encoded octets in @src
1867 * into the memory that @dst points to.
1868 * @dst_size: Set to the size of the decoded string.
1869 * @src: The encoded set of octets to decode.
1870 * @src_size: The size of the encoded set of octets to decode.
1873 ecryptfs_decode_from_filename(unsigned char *dst
, size_t *dst_size
,
1874 const unsigned char *src
, size_t src_size
)
1876 u8 current_bit_offset
= 0;
1877 size_t src_byte_offset
= 0;
1878 size_t dst_byte_offset
= 0;
1881 (*dst_size
) = ecryptfs_max_decoded_size(src_size
);
1884 while (src_byte_offset
< src_size
) {
1885 unsigned char src_byte
=
1886 filename_rev_map
[(int)src
[src_byte_offset
]];
1888 switch (current_bit_offset
) {
1890 dst
[dst_byte_offset
] = (src_byte
<< 2);
1891 current_bit_offset
= 6;
1894 dst
[dst_byte_offset
++] |= (src_byte
>> 4);
1895 dst
[dst_byte_offset
] = ((src_byte
& 0xF)
1897 current_bit_offset
= 4;
1900 dst
[dst_byte_offset
++] |= (src_byte
>> 2);
1901 dst
[dst_byte_offset
] = (src_byte
<< 6);
1902 current_bit_offset
= 2;
1905 dst
[dst_byte_offset
++] |= (src_byte
);
1906 current_bit_offset
= 0;
1911 (*dst_size
) = dst_byte_offset
;
1917 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1918 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1919 * @name: The plaintext name
1920 * @length: The length of the plaintext
1921 * @encoded_name: The encypted name
1923 * Encrypts and encodes a filename into something that constitutes a
1924 * valid filename for a filesystem, with printable characters.
1926 * We assume that we have a properly initialized crypto context,
1927 * pointed to by crypt_stat->tfm.
1929 * Returns zero on success; non-zero on otherwise
1931 int ecryptfs_encrypt_and_encode_filename(
1932 char **encoded_name
,
1933 size_t *encoded_name_size
,
1934 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
1935 const char *name
, size_t name_size
)
1937 size_t encoded_name_no_prefix_size
;
1940 (*encoded_name
) = NULL
;
1941 (*encoded_name_size
) = 0;
1942 if (mount_crypt_stat
&& (mount_crypt_stat
->flags
1943 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)) {
1944 struct ecryptfs_filename
*filename
;
1946 filename
= kzalloc(sizeof(*filename
), GFP_KERNEL
);
1948 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1949 "to kzalloc [%zd] bytes\n", __func__
,
1954 filename
->filename
= (char *)name
;
1955 filename
->filename_size
= name_size
;
1956 rc
= ecryptfs_encrypt_filename(filename
, mount_crypt_stat
);
1958 printk(KERN_ERR
"%s: Error attempting to encrypt "
1959 "filename; rc = [%d]\n", __func__
, rc
);
1963 ecryptfs_encode_for_filename(
1964 NULL
, &encoded_name_no_prefix_size
,
1965 filename
->encrypted_filename
,
1966 filename
->encrypted_filename_size
);
1967 if (mount_crypt_stat
1968 && (mount_crypt_stat
->flags
1969 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))
1970 (*encoded_name_size
) =
1971 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1972 + encoded_name_no_prefix_size
);
1974 (*encoded_name_size
) =
1975 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1976 + encoded_name_no_prefix_size
);
1977 (*encoded_name
) = kmalloc((*encoded_name_size
) + 1, GFP_KERNEL
);
1978 if (!(*encoded_name
)) {
1979 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1980 "to kzalloc [%zd] bytes\n", __func__
,
1981 (*encoded_name_size
));
1983 kfree(filename
->encrypted_filename
);
1987 if (mount_crypt_stat
1988 && (mount_crypt_stat
->flags
1989 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)) {
1990 memcpy((*encoded_name
),
1991 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
1992 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
);
1993 ecryptfs_encode_for_filename(
1995 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
),
1996 &encoded_name_no_prefix_size
,
1997 filename
->encrypted_filename
,
1998 filename
->encrypted_filename_size
);
1999 (*encoded_name_size
) =
2000 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2001 + encoded_name_no_prefix_size
);
2002 (*encoded_name
)[(*encoded_name_size
)] = '\0';
2007 printk(KERN_ERR
"%s: Error attempting to encode "
2008 "encrypted filename; rc = [%d]\n", __func__
,
2010 kfree((*encoded_name
));
2011 (*encoded_name
) = NULL
;
2012 (*encoded_name_size
) = 0;
2014 kfree(filename
->encrypted_filename
);
2017 rc
= ecryptfs_copy_filename(encoded_name
,
2026 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2027 * @plaintext_name: The plaintext name
2028 * @plaintext_name_size: The plaintext name size
2029 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2030 * @name: The filename in cipher text
2031 * @name_size: The cipher text name size
2033 * Decrypts and decodes the filename.
2035 * Returns zero on error; non-zero otherwise
2037 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name
,
2038 size_t *plaintext_name_size
,
2039 struct super_block
*sb
,
2040 const char *name
, size_t name_size
)
2042 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
2043 &ecryptfs_superblock_to_private(sb
)->mount_crypt_stat
;
2045 size_t decoded_name_size
;
2049 if ((mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)
2050 && !(mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
2051 && (name_size
> ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
)
2052 && (strncmp(name
, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2053 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
) == 0)) {
2054 const char *orig_name
= name
;
2055 size_t orig_name_size
= name_size
;
2057 name
+= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2058 name_size
-= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2059 ecryptfs_decode_from_filename(NULL
, &decoded_name_size
,
2061 decoded_name
= kmalloc(decoded_name_size
, GFP_KERNEL
);
2062 if (!decoded_name
) {
2063 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2064 "to kmalloc [%zd] bytes\n", __func__
,
2069 ecryptfs_decode_from_filename(decoded_name
, &decoded_name_size
,
2071 rc
= ecryptfs_parse_tag_70_packet(plaintext_name
,
2072 plaintext_name_size
,
2078 printk(KERN_INFO
"%s: Could not parse tag 70 packet "
2079 "from filename; copying through filename "
2080 "as-is\n", __func__
);
2081 rc
= ecryptfs_copy_filename(plaintext_name
,
2082 plaintext_name_size
,
2083 orig_name
, orig_name_size
);
2087 rc
= ecryptfs_copy_filename(plaintext_name
,
2088 plaintext_name_size
,
2093 kfree(decoded_name
);
2098 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2100 int ecryptfs_set_f_namelen(long *namelen
, long lower_namelen
,
2101 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
2103 struct crypto_skcipher
*tfm
;
2104 struct mutex
*tfm_mutex
;
2105 size_t cipher_blocksize
;
2108 if (!(mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)) {
2109 (*namelen
) = lower_namelen
;
2113 rc
= ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm
, &tfm_mutex
,
2114 mount_crypt_stat
->global_default_fn_cipher_name
);
2120 mutex_lock(tfm_mutex
);
2121 cipher_blocksize
= crypto_skcipher_blocksize(tfm
);
2122 mutex_unlock(tfm_mutex
);
2124 /* Return an exact amount for the common cases */
2125 if (lower_namelen
== NAME_MAX
2126 && (cipher_blocksize
== 8 || cipher_blocksize
== 16)) {
2127 (*namelen
) = ENC_NAME_MAX_BLOCKLEN_8_OR_16
;
2131 /* Return a safe estimate for the uncommon cases */
2132 (*namelen
) = lower_namelen
;
2133 (*namelen
) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2134 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2135 (*namelen
) = ecryptfs_max_decoded_size(*namelen
) - 3;
2136 (*namelen
) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE
;
2137 (*namelen
) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
;
2138 /* Worst case is that the filename is padded nearly a full block size */
2139 (*namelen
) -= cipher_blocksize
- 1;