Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / fs / ext4 / inode.c
blob981a1fc30eaa2c291c97958ce088e3ce96ab4353
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 raw->i_checksum_hi = 0;
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74 return csum;
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
80 __u32 provided, calculated;
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !ext4_has_metadata_csum(inode->i_sb))
85 return 1;
87 provided = le16_to_cpu(raw->i_checksum_lo);
88 calculated = ext4_inode_csum(inode, raw, ei);
89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 else
93 calculated &= 0xFFFF;
95 return provided == calculated;
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 struct ext4_inode_info *ei)
101 __u32 csum;
103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 cpu_to_le32(EXT4_OS_LINUX) ||
105 !ext4_has_metadata_csum(inode->i_sb))
106 return;
108 csum = ext4_inode_csum(inode, raw, ei);
109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 loff_t new_size)
118 trace_ext4_begin_ordered_truncate(inode, new_size);
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
125 if (!EXT4_I(inode)->jinode)
126 return 0;
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 EXT4_I(inode)->jinode,
129 new_size);
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 int pextents);
140 * Test whether an inode is a fast symlink.
142 int ext4_inode_is_fast_symlink(struct inode *inode)
144 int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
147 if (ext4_has_inline_data(inode))
148 return 0;
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 int nblocks)
161 int ret;
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
176 return ret;
180 * Called at the last iput() if i_nlink is zero.
182 void ext4_evict_inode(struct inode *inode)
184 handle_t *handle;
185 int err;
187 trace_ext4_evict_inode(inode);
189 if (inode->i_nlink) {
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
205 * Note that directories do not have this problem because they
206 * don't use page cache.
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
217 truncate_inode_pages_final(&inode->i_data);
219 goto no_delete;
222 if (is_bad_inode(inode))
223 goto no_delete;
224 dquot_initialize(inode);
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages_final(&inode->i_data);
231 * Protect us against freezing - iput() caller didn't have to have any
232 * protection against it
234 sb_start_intwrite(inode->i_sb);
235 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
236 ext4_blocks_for_truncate(inode)+3);
237 if (IS_ERR(handle)) {
238 ext4_std_error(inode->i_sb, PTR_ERR(handle));
240 * If we're going to skip the normal cleanup, we still need to
241 * make sure that the in-core orphan linked list is properly
242 * cleaned up.
244 ext4_orphan_del(NULL, inode);
245 sb_end_intwrite(inode->i_sb);
246 goto no_delete;
249 if (IS_SYNC(inode))
250 ext4_handle_sync(handle);
251 inode->i_size = 0;
252 err = ext4_mark_inode_dirty(handle, inode);
253 if (err) {
254 ext4_warning(inode->i_sb,
255 "couldn't mark inode dirty (err %d)", err);
256 goto stop_handle;
258 if (inode->i_blocks)
259 ext4_truncate(inode);
262 * ext4_ext_truncate() doesn't reserve any slop when it
263 * restarts journal transactions; therefore there may not be
264 * enough credits left in the handle to remove the inode from
265 * the orphan list and set the dtime field.
267 if (!ext4_handle_has_enough_credits(handle, 3)) {
268 err = ext4_journal_extend(handle, 3);
269 if (err > 0)
270 err = ext4_journal_restart(handle, 3);
271 if (err != 0) {
272 ext4_warning(inode->i_sb,
273 "couldn't extend journal (err %d)", err);
274 stop_handle:
275 ext4_journal_stop(handle);
276 ext4_orphan_del(NULL, inode);
277 sb_end_intwrite(inode->i_sb);
278 goto no_delete;
283 * Kill off the orphan record which ext4_truncate created.
284 * AKPM: I think this can be inside the above `if'.
285 * Note that ext4_orphan_del() has to be able to cope with the
286 * deletion of a non-existent orphan - this is because we don't
287 * know if ext4_truncate() actually created an orphan record.
288 * (Well, we could do this if we need to, but heck - it works)
290 ext4_orphan_del(handle, inode);
291 EXT4_I(inode)->i_dtime = get_seconds();
294 * One subtle ordering requirement: if anything has gone wrong
295 * (transaction abort, IO errors, whatever), then we can still
296 * do these next steps (the fs will already have been marked as
297 * having errors), but we can't free the inode if the mark_dirty
298 * fails.
300 if (ext4_mark_inode_dirty(handle, inode))
301 /* If that failed, just do the required in-core inode clear. */
302 ext4_clear_inode(inode);
303 else
304 ext4_free_inode(handle, inode);
305 ext4_journal_stop(handle);
306 sb_end_intwrite(inode->i_sb);
307 return;
308 no_delete:
309 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
312 #ifdef CONFIG_QUOTA
313 qsize_t *ext4_get_reserved_space(struct inode *inode)
315 return &EXT4_I(inode)->i_reserved_quota;
317 #endif
320 * Called with i_data_sem down, which is important since we can call
321 * ext4_discard_preallocations() from here.
323 void ext4_da_update_reserve_space(struct inode *inode,
324 int used, int quota_claim)
326 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
327 struct ext4_inode_info *ei = EXT4_I(inode);
329 spin_lock(&ei->i_block_reservation_lock);
330 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
331 if (unlikely(used > ei->i_reserved_data_blocks)) {
332 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
333 "with only %d reserved data blocks",
334 __func__, inode->i_ino, used,
335 ei->i_reserved_data_blocks);
336 WARN_ON(1);
337 used = ei->i_reserved_data_blocks;
340 /* Update per-inode reservations */
341 ei->i_reserved_data_blocks -= used;
342 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
344 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
346 /* Update quota subsystem for data blocks */
347 if (quota_claim)
348 dquot_claim_block(inode, EXT4_C2B(sbi, used));
349 else {
351 * We did fallocate with an offset that is already delayed
352 * allocated. So on delayed allocated writeback we should
353 * not re-claim the quota for fallocated blocks.
355 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
359 * If we have done all the pending block allocations and if
360 * there aren't any writers on the inode, we can discard the
361 * inode's preallocations.
363 if ((ei->i_reserved_data_blocks == 0) &&
364 (atomic_read(&inode->i_writecount) == 0))
365 ext4_discard_preallocations(inode);
368 static int __check_block_validity(struct inode *inode, const char *func,
369 unsigned int line,
370 struct ext4_map_blocks *map)
372 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
373 map->m_len)) {
374 ext4_error_inode(inode, func, line, map->m_pblk,
375 "lblock %lu mapped to illegal pblock "
376 "(length %d)", (unsigned long) map->m_lblk,
377 map->m_len);
378 return -EFSCORRUPTED;
380 return 0;
383 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
384 ext4_lblk_t len)
386 int ret;
388 if (ext4_encrypted_inode(inode))
389 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
391 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
392 if (ret > 0)
393 ret = 0;
395 return ret;
398 #define check_block_validity(inode, map) \
399 __check_block_validity((inode), __func__, __LINE__, (map))
401 #ifdef ES_AGGRESSIVE_TEST
402 static void ext4_map_blocks_es_recheck(handle_t *handle,
403 struct inode *inode,
404 struct ext4_map_blocks *es_map,
405 struct ext4_map_blocks *map,
406 int flags)
408 int retval;
410 map->m_flags = 0;
412 * There is a race window that the result is not the same.
413 * e.g. xfstests #223 when dioread_nolock enables. The reason
414 * is that we lookup a block mapping in extent status tree with
415 * out taking i_data_sem. So at the time the unwritten extent
416 * could be converted.
418 down_read(&EXT4_I(inode)->i_data_sem);
419 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
420 retval = ext4_ext_map_blocks(handle, inode, map, flags &
421 EXT4_GET_BLOCKS_KEEP_SIZE);
422 } else {
423 retval = ext4_ind_map_blocks(handle, inode, map, flags &
424 EXT4_GET_BLOCKS_KEEP_SIZE);
426 up_read((&EXT4_I(inode)->i_data_sem));
429 * We don't check m_len because extent will be collpased in status
430 * tree. So the m_len might not equal.
432 if (es_map->m_lblk != map->m_lblk ||
433 es_map->m_flags != map->m_flags ||
434 es_map->m_pblk != map->m_pblk) {
435 printk("ES cache assertion failed for inode: %lu "
436 "es_cached ex [%d/%d/%llu/%x] != "
437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438 inode->i_ino, es_map->m_lblk, es_map->m_len,
439 es_map->m_pblk, es_map->m_flags, map->m_lblk,
440 map->m_len, map->m_pblk, map->m_flags,
441 retval, flags);
444 #endif /* ES_AGGRESSIVE_TEST */
447 * The ext4_map_blocks() function tries to look up the requested blocks,
448 * and returns if the blocks are already mapped.
450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451 * and store the allocated blocks in the result buffer head and mark it
452 * mapped.
454 * If file type is extents based, it will call ext4_ext_map_blocks(),
455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
456 * based files
458 * On success, it returns the number of blocks being mapped or allocated. if
459 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
460 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
462 * It returns 0 if plain look up failed (blocks have not been allocated), in
463 * that case, @map is returned as unmapped but we still do fill map->m_len to
464 * indicate the length of a hole starting at map->m_lblk.
466 * It returns the error in case of allocation failure.
468 int ext4_map_blocks(handle_t *handle, struct inode *inode,
469 struct ext4_map_blocks *map, int flags)
471 struct extent_status es;
472 int retval;
473 int ret = 0;
474 #ifdef ES_AGGRESSIVE_TEST
475 struct ext4_map_blocks orig_map;
477 memcpy(&orig_map, map, sizeof(*map));
478 #endif
480 map->m_flags = 0;
481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 "logical block %lu\n", inode->i_ino, flags, map->m_len,
483 (unsigned long) map->m_lblk);
486 * ext4_map_blocks returns an int, and m_len is an unsigned int
488 if (unlikely(map->m_len > INT_MAX))
489 map->m_len = INT_MAX;
491 /* We can handle the block number less than EXT_MAX_BLOCKS */
492 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493 return -EFSCORRUPTED;
495 /* Lookup extent status tree firstly */
496 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
498 map->m_pblk = ext4_es_pblock(&es) +
499 map->m_lblk - es.es_lblk;
500 map->m_flags |= ext4_es_is_written(&es) ?
501 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
502 retval = es.es_len - (map->m_lblk - es.es_lblk);
503 if (retval > map->m_len)
504 retval = map->m_len;
505 map->m_len = retval;
506 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
507 map->m_pblk = 0;
508 retval = es.es_len - (map->m_lblk - es.es_lblk);
509 if (retval > map->m_len)
510 retval = map->m_len;
511 map->m_len = retval;
512 retval = 0;
513 } else {
514 BUG_ON(1);
516 #ifdef ES_AGGRESSIVE_TEST
517 ext4_map_blocks_es_recheck(handle, inode, map,
518 &orig_map, flags);
519 #endif
520 goto found;
524 * Try to see if we can get the block without requesting a new
525 * file system block.
527 down_read(&EXT4_I(inode)->i_data_sem);
528 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
529 retval = ext4_ext_map_blocks(handle, inode, map, flags &
530 EXT4_GET_BLOCKS_KEEP_SIZE);
531 } else {
532 retval = ext4_ind_map_blocks(handle, inode, map, flags &
533 EXT4_GET_BLOCKS_KEEP_SIZE);
535 if (retval > 0) {
536 unsigned int status;
538 if (unlikely(retval != map->m_len)) {
539 ext4_warning(inode->i_sb,
540 "ES len assertion failed for inode "
541 "%lu: retval %d != map->m_len %d",
542 inode->i_ino, retval, map->m_len);
543 WARN_ON(1);
546 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
547 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
548 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
549 !(status & EXTENT_STATUS_WRITTEN) &&
550 ext4_find_delalloc_range(inode, map->m_lblk,
551 map->m_lblk + map->m_len - 1))
552 status |= EXTENT_STATUS_DELAYED;
553 ret = ext4_es_insert_extent(inode, map->m_lblk,
554 map->m_len, map->m_pblk, status);
555 if (ret < 0)
556 retval = ret;
558 up_read((&EXT4_I(inode)->i_data_sem));
560 found:
561 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
562 ret = check_block_validity(inode, map);
563 if (ret != 0)
564 return ret;
567 /* If it is only a block(s) look up */
568 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
569 return retval;
572 * Returns if the blocks have already allocated
574 * Note that if blocks have been preallocated
575 * ext4_ext_get_block() returns the create = 0
576 * with buffer head unmapped.
578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
580 * If we need to convert extent to unwritten
581 * we continue and do the actual work in
582 * ext4_ext_map_blocks()
584 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
585 return retval;
588 * Here we clear m_flags because after allocating an new extent,
589 * it will be set again.
591 map->m_flags &= ~EXT4_MAP_FLAGS;
594 * New blocks allocate and/or writing to unwritten extent
595 * will possibly result in updating i_data, so we take
596 * the write lock of i_data_sem, and call get_block()
597 * with create == 1 flag.
599 down_write(&EXT4_I(inode)->i_data_sem);
602 * We need to check for EXT4 here because migrate
603 * could have changed the inode type in between
605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606 retval = ext4_ext_map_blocks(handle, inode, map, flags);
607 } else {
608 retval = ext4_ind_map_blocks(handle, inode, map, flags);
610 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
612 * We allocated new blocks which will result in
613 * i_data's format changing. Force the migrate
614 * to fail by clearing migrate flags
616 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
620 * Update reserved blocks/metadata blocks after successful
621 * block allocation which had been deferred till now. We don't
622 * support fallocate for non extent files. So we can update
623 * reserve space here.
625 if ((retval > 0) &&
626 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
627 ext4_da_update_reserve_space(inode, retval, 1);
630 if (retval > 0) {
631 unsigned int status;
633 if (unlikely(retval != map->m_len)) {
634 ext4_warning(inode->i_sb,
635 "ES len assertion failed for inode "
636 "%lu: retval %d != map->m_len %d",
637 inode->i_ino, retval, map->m_len);
638 WARN_ON(1);
642 * We have to zeroout blocks before inserting them into extent
643 * status tree. Otherwise someone could look them up there and
644 * use them before they are really zeroed.
646 if (flags & EXT4_GET_BLOCKS_ZERO &&
647 map->m_flags & EXT4_MAP_MAPPED &&
648 map->m_flags & EXT4_MAP_NEW) {
649 ret = ext4_issue_zeroout(inode, map->m_lblk,
650 map->m_pblk, map->m_len);
651 if (ret) {
652 retval = ret;
653 goto out_sem;
658 * If the extent has been zeroed out, we don't need to update
659 * extent status tree.
661 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
662 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
663 if (ext4_es_is_written(&es))
664 goto out_sem;
666 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
667 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
668 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
669 !(status & EXTENT_STATUS_WRITTEN) &&
670 ext4_find_delalloc_range(inode, map->m_lblk,
671 map->m_lblk + map->m_len - 1))
672 status |= EXTENT_STATUS_DELAYED;
673 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
674 map->m_pblk, status);
675 if (ret < 0) {
676 retval = ret;
677 goto out_sem;
681 out_sem:
682 up_write((&EXT4_I(inode)->i_data_sem));
683 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
684 ret = check_block_validity(inode, map);
685 if (ret != 0)
686 return ret;
688 return retval;
692 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
693 * we have to be careful as someone else may be manipulating b_state as well.
695 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
697 unsigned long old_state;
698 unsigned long new_state;
700 flags &= EXT4_MAP_FLAGS;
702 /* Dummy buffer_head? Set non-atomically. */
703 if (!bh->b_page) {
704 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
705 return;
708 * Someone else may be modifying b_state. Be careful! This is ugly but
709 * once we get rid of using bh as a container for mapping information
710 * to pass to / from get_block functions, this can go away.
712 do {
713 old_state = READ_ONCE(bh->b_state);
714 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
715 } while (unlikely(
716 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
719 static int _ext4_get_block(struct inode *inode, sector_t iblock,
720 struct buffer_head *bh, int flags)
722 struct ext4_map_blocks map;
723 int ret = 0;
725 if (ext4_has_inline_data(inode))
726 return -ERANGE;
728 map.m_lblk = iblock;
729 map.m_len = bh->b_size >> inode->i_blkbits;
731 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
732 flags);
733 if (ret > 0) {
734 map_bh(bh, inode->i_sb, map.m_pblk);
735 ext4_update_bh_state(bh, map.m_flags);
736 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
737 ret = 0;
739 return ret;
742 int ext4_get_block(struct inode *inode, sector_t iblock,
743 struct buffer_head *bh, int create)
745 return _ext4_get_block(inode, iblock, bh,
746 create ? EXT4_GET_BLOCKS_CREATE : 0);
750 * Get block function used when preparing for buffered write if we require
751 * creating an unwritten extent if blocks haven't been allocated. The extent
752 * will be converted to written after the IO is complete.
754 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
755 struct buffer_head *bh_result, int create)
757 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
758 inode->i_ino, create);
759 return _ext4_get_block(inode, iblock, bh_result,
760 EXT4_GET_BLOCKS_IO_CREATE_EXT);
763 /* Maximum number of blocks we map for direct IO at once. */
764 #define DIO_MAX_BLOCKS 4096
767 * Get blocks function for the cases that need to start a transaction -
768 * generally difference cases of direct IO and DAX IO. It also handles retries
769 * in case of ENOSPC.
771 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
772 struct buffer_head *bh_result, int flags)
774 int dio_credits;
775 handle_t *handle;
776 int retries = 0;
777 int ret;
779 /* Trim mapping request to maximum we can map at once for DIO */
780 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
781 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
782 dio_credits = ext4_chunk_trans_blocks(inode,
783 bh_result->b_size >> inode->i_blkbits);
784 retry:
785 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
786 if (IS_ERR(handle))
787 return PTR_ERR(handle);
789 ret = _ext4_get_block(inode, iblock, bh_result, flags);
790 ext4_journal_stop(handle);
792 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
793 goto retry;
794 return ret;
797 /* Get block function for DIO reads and writes to inodes without extents */
798 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
799 struct buffer_head *bh, int create)
801 /* We don't expect handle for direct IO */
802 WARN_ON_ONCE(ext4_journal_current_handle());
804 if (!create)
805 return _ext4_get_block(inode, iblock, bh, 0);
806 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
810 * Get block function for AIO DIO writes when we create unwritten extent if
811 * blocks are not allocated yet. The extent will be converted to written
812 * after IO is complete.
814 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
815 sector_t iblock, struct buffer_head *bh_result, int create)
817 int ret;
819 /* We don't expect handle for direct IO */
820 WARN_ON_ONCE(ext4_journal_current_handle());
822 ret = ext4_get_block_trans(inode, iblock, bh_result,
823 EXT4_GET_BLOCKS_IO_CREATE_EXT);
826 * When doing DIO using unwritten extents, we need io_end to convert
827 * unwritten extents to written on IO completion. We allocate io_end
828 * once we spot unwritten extent and store it in b_private. Generic
829 * DIO code keeps b_private set and furthermore passes the value to
830 * our completion callback in 'private' argument.
832 if (!ret && buffer_unwritten(bh_result)) {
833 if (!bh_result->b_private) {
834 ext4_io_end_t *io_end;
836 io_end = ext4_init_io_end(inode, GFP_KERNEL);
837 if (!io_end)
838 return -ENOMEM;
839 bh_result->b_private = io_end;
840 ext4_set_io_unwritten_flag(inode, io_end);
842 set_buffer_defer_completion(bh_result);
845 return ret;
849 * Get block function for non-AIO DIO writes when we create unwritten extent if
850 * blocks are not allocated yet. The extent will be converted to written
851 * after IO is complete from ext4_ext_direct_IO() function.
853 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
854 sector_t iblock, struct buffer_head *bh_result, int create)
856 int ret;
858 /* We don't expect handle for direct IO */
859 WARN_ON_ONCE(ext4_journal_current_handle());
861 ret = ext4_get_block_trans(inode, iblock, bh_result,
862 EXT4_GET_BLOCKS_IO_CREATE_EXT);
865 * Mark inode as having pending DIO writes to unwritten extents.
866 * ext4_ext_direct_IO() checks this flag and converts extents to
867 * written.
869 if (!ret && buffer_unwritten(bh_result))
870 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
872 return ret;
875 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
876 struct buffer_head *bh_result, int create)
878 int ret;
880 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
881 inode->i_ino, create);
882 /* We don't expect handle for direct IO */
883 WARN_ON_ONCE(ext4_journal_current_handle());
885 ret = _ext4_get_block(inode, iblock, bh_result, 0);
887 * Blocks should have been preallocated! ext4_file_write_iter() checks
888 * that.
890 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
892 return ret;
897 * `handle' can be NULL if create is zero
899 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
900 ext4_lblk_t block, int map_flags)
902 struct ext4_map_blocks map;
903 struct buffer_head *bh;
904 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
905 int err;
907 J_ASSERT(handle != NULL || create == 0);
909 map.m_lblk = block;
910 map.m_len = 1;
911 err = ext4_map_blocks(handle, inode, &map, map_flags);
913 if (err == 0)
914 return create ? ERR_PTR(-ENOSPC) : NULL;
915 if (err < 0)
916 return ERR_PTR(err);
918 bh = sb_getblk(inode->i_sb, map.m_pblk);
919 if (unlikely(!bh))
920 return ERR_PTR(-ENOMEM);
921 if (map.m_flags & EXT4_MAP_NEW) {
922 J_ASSERT(create != 0);
923 J_ASSERT(handle != NULL);
926 * Now that we do not always journal data, we should
927 * keep in mind whether this should always journal the
928 * new buffer as metadata. For now, regular file
929 * writes use ext4_get_block instead, so it's not a
930 * problem.
932 lock_buffer(bh);
933 BUFFER_TRACE(bh, "call get_create_access");
934 err = ext4_journal_get_create_access(handle, bh);
935 if (unlikely(err)) {
936 unlock_buffer(bh);
937 goto errout;
939 if (!buffer_uptodate(bh)) {
940 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
941 set_buffer_uptodate(bh);
943 unlock_buffer(bh);
944 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
945 err = ext4_handle_dirty_metadata(handle, inode, bh);
946 if (unlikely(err))
947 goto errout;
948 } else
949 BUFFER_TRACE(bh, "not a new buffer");
950 return bh;
951 errout:
952 brelse(bh);
953 return ERR_PTR(err);
956 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
957 ext4_lblk_t block, int map_flags)
959 struct buffer_head *bh;
961 bh = ext4_getblk(handle, inode, block, map_flags);
962 if (IS_ERR(bh))
963 return bh;
964 if (!bh || buffer_uptodate(bh))
965 return bh;
966 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
967 wait_on_buffer(bh);
968 if (buffer_uptodate(bh))
969 return bh;
970 put_bh(bh);
971 return ERR_PTR(-EIO);
974 int ext4_walk_page_buffers(handle_t *handle,
975 struct buffer_head *head,
976 unsigned from,
977 unsigned to,
978 int *partial,
979 int (*fn)(handle_t *handle,
980 struct buffer_head *bh))
982 struct buffer_head *bh;
983 unsigned block_start, block_end;
984 unsigned blocksize = head->b_size;
985 int err, ret = 0;
986 struct buffer_head *next;
988 for (bh = head, block_start = 0;
989 ret == 0 && (bh != head || !block_start);
990 block_start = block_end, bh = next) {
991 next = bh->b_this_page;
992 block_end = block_start + blocksize;
993 if (block_end <= from || block_start >= to) {
994 if (partial && !buffer_uptodate(bh))
995 *partial = 1;
996 continue;
998 err = (*fn)(handle, bh);
999 if (!ret)
1000 ret = err;
1002 return ret;
1006 * To preserve ordering, it is essential that the hole instantiation and
1007 * the data write be encapsulated in a single transaction. We cannot
1008 * close off a transaction and start a new one between the ext4_get_block()
1009 * and the commit_write(). So doing the jbd2_journal_start at the start of
1010 * prepare_write() is the right place.
1012 * Also, this function can nest inside ext4_writepage(). In that case, we
1013 * *know* that ext4_writepage() has generated enough buffer credits to do the
1014 * whole page. So we won't block on the journal in that case, which is good,
1015 * because the caller may be PF_MEMALLOC.
1017 * By accident, ext4 can be reentered when a transaction is open via
1018 * quota file writes. If we were to commit the transaction while thus
1019 * reentered, there can be a deadlock - we would be holding a quota
1020 * lock, and the commit would never complete if another thread had a
1021 * transaction open and was blocking on the quota lock - a ranking
1022 * violation.
1024 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1025 * will _not_ run commit under these circumstances because handle->h_ref
1026 * is elevated. We'll still have enough credits for the tiny quotafile
1027 * write.
1029 int do_journal_get_write_access(handle_t *handle,
1030 struct buffer_head *bh)
1032 int dirty = buffer_dirty(bh);
1033 int ret;
1035 if (!buffer_mapped(bh) || buffer_freed(bh))
1036 return 0;
1038 * __block_write_begin() could have dirtied some buffers. Clean
1039 * the dirty bit as jbd2_journal_get_write_access() could complain
1040 * otherwise about fs integrity issues. Setting of the dirty bit
1041 * by __block_write_begin() isn't a real problem here as we clear
1042 * the bit before releasing a page lock and thus writeback cannot
1043 * ever write the buffer.
1045 if (dirty)
1046 clear_buffer_dirty(bh);
1047 BUFFER_TRACE(bh, "get write access");
1048 ret = ext4_journal_get_write_access(handle, bh);
1049 if (!ret && dirty)
1050 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1051 return ret;
1054 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1055 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1056 get_block_t *get_block)
1058 unsigned from = pos & (PAGE_SIZE - 1);
1059 unsigned to = from + len;
1060 struct inode *inode = page->mapping->host;
1061 unsigned block_start, block_end;
1062 sector_t block;
1063 int err = 0;
1064 unsigned blocksize = inode->i_sb->s_blocksize;
1065 unsigned bbits;
1066 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1067 bool decrypt = false;
1069 BUG_ON(!PageLocked(page));
1070 BUG_ON(from > PAGE_SIZE);
1071 BUG_ON(to > PAGE_SIZE);
1072 BUG_ON(from > to);
1074 if (!page_has_buffers(page))
1075 create_empty_buffers(page, blocksize, 0);
1076 head = page_buffers(page);
1077 bbits = ilog2(blocksize);
1078 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1080 for (bh = head, block_start = 0; bh != head || !block_start;
1081 block++, block_start = block_end, bh = bh->b_this_page) {
1082 block_end = block_start + blocksize;
1083 if (block_end <= from || block_start >= to) {
1084 if (PageUptodate(page)) {
1085 if (!buffer_uptodate(bh))
1086 set_buffer_uptodate(bh);
1088 continue;
1090 if (buffer_new(bh))
1091 clear_buffer_new(bh);
1092 if (!buffer_mapped(bh)) {
1093 WARN_ON(bh->b_size != blocksize);
1094 err = get_block(inode, block, bh, 1);
1095 if (err)
1096 break;
1097 if (buffer_new(bh)) {
1098 unmap_underlying_metadata(bh->b_bdev,
1099 bh->b_blocknr);
1100 if (PageUptodate(page)) {
1101 clear_buffer_new(bh);
1102 set_buffer_uptodate(bh);
1103 mark_buffer_dirty(bh);
1104 continue;
1106 if (block_end > to || block_start < from)
1107 zero_user_segments(page, to, block_end,
1108 block_start, from);
1109 continue;
1112 if (PageUptodate(page)) {
1113 if (!buffer_uptodate(bh))
1114 set_buffer_uptodate(bh);
1115 continue;
1117 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1118 !buffer_unwritten(bh) &&
1119 (block_start < from || block_end > to)) {
1120 ll_rw_block(READ, 1, &bh);
1121 *wait_bh++ = bh;
1122 decrypt = ext4_encrypted_inode(inode) &&
1123 S_ISREG(inode->i_mode);
1127 * If we issued read requests, let them complete.
1129 while (wait_bh > wait) {
1130 wait_on_buffer(*--wait_bh);
1131 if (!buffer_uptodate(*wait_bh))
1132 err = -EIO;
1134 if (unlikely(err))
1135 page_zero_new_buffers(page, from, to);
1136 else if (decrypt)
1137 err = ext4_decrypt(page);
1138 return err;
1140 #endif
1142 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1143 loff_t pos, unsigned len, unsigned flags,
1144 struct page **pagep, void **fsdata)
1146 struct inode *inode = mapping->host;
1147 int ret, needed_blocks;
1148 handle_t *handle;
1149 int retries = 0;
1150 struct page *page;
1151 pgoff_t index;
1152 unsigned from, to;
1154 trace_ext4_write_begin(inode, pos, len, flags);
1156 * Reserve one block more for addition to orphan list in case
1157 * we allocate blocks but write fails for some reason
1159 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1160 index = pos >> PAGE_SHIFT;
1161 from = pos & (PAGE_SIZE - 1);
1162 to = from + len;
1164 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1165 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1166 flags, pagep);
1167 if (ret < 0)
1168 return ret;
1169 if (ret == 1)
1170 return 0;
1174 * grab_cache_page_write_begin() can take a long time if the
1175 * system is thrashing due to memory pressure, or if the page
1176 * is being written back. So grab it first before we start
1177 * the transaction handle. This also allows us to allocate
1178 * the page (if needed) without using GFP_NOFS.
1180 retry_grab:
1181 page = grab_cache_page_write_begin(mapping, index, flags);
1182 if (!page)
1183 return -ENOMEM;
1184 unlock_page(page);
1186 retry_journal:
1187 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1188 if (IS_ERR(handle)) {
1189 put_page(page);
1190 return PTR_ERR(handle);
1193 lock_page(page);
1194 if (page->mapping != mapping) {
1195 /* The page got truncated from under us */
1196 unlock_page(page);
1197 put_page(page);
1198 ext4_journal_stop(handle);
1199 goto retry_grab;
1201 /* In case writeback began while the page was unlocked */
1202 wait_for_stable_page(page);
1204 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1205 if (ext4_should_dioread_nolock(inode))
1206 ret = ext4_block_write_begin(page, pos, len,
1207 ext4_get_block_unwritten);
1208 else
1209 ret = ext4_block_write_begin(page, pos, len,
1210 ext4_get_block);
1211 #else
1212 if (ext4_should_dioread_nolock(inode))
1213 ret = __block_write_begin(page, pos, len,
1214 ext4_get_block_unwritten);
1215 else
1216 ret = __block_write_begin(page, pos, len, ext4_get_block);
1217 #endif
1218 if (!ret && ext4_should_journal_data(inode)) {
1219 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1220 from, to, NULL,
1221 do_journal_get_write_access);
1224 if (ret) {
1225 unlock_page(page);
1227 * __block_write_begin may have instantiated a few blocks
1228 * outside i_size. Trim these off again. Don't need
1229 * i_size_read because we hold i_mutex.
1231 * Add inode to orphan list in case we crash before
1232 * truncate finishes
1234 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1235 ext4_orphan_add(handle, inode);
1237 ext4_journal_stop(handle);
1238 if (pos + len > inode->i_size) {
1239 ext4_truncate_failed_write(inode);
1241 * If truncate failed early the inode might
1242 * still be on the orphan list; we need to
1243 * make sure the inode is removed from the
1244 * orphan list in that case.
1246 if (inode->i_nlink)
1247 ext4_orphan_del(NULL, inode);
1250 if (ret == -ENOSPC &&
1251 ext4_should_retry_alloc(inode->i_sb, &retries))
1252 goto retry_journal;
1253 put_page(page);
1254 return ret;
1256 *pagep = page;
1257 return ret;
1260 /* For write_end() in data=journal mode */
1261 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1263 int ret;
1264 if (!buffer_mapped(bh) || buffer_freed(bh))
1265 return 0;
1266 set_buffer_uptodate(bh);
1267 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1268 clear_buffer_meta(bh);
1269 clear_buffer_prio(bh);
1270 return ret;
1274 * We need to pick up the new inode size which generic_commit_write gave us
1275 * `file' can be NULL - eg, when called from page_symlink().
1277 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1278 * buffers are managed internally.
1280 static int ext4_write_end(struct file *file,
1281 struct address_space *mapping,
1282 loff_t pos, unsigned len, unsigned copied,
1283 struct page *page, void *fsdata)
1285 handle_t *handle = ext4_journal_current_handle();
1286 struct inode *inode = mapping->host;
1287 loff_t old_size = inode->i_size;
1288 int ret = 0, ret2;
1289 int i_size_changed = 0;
1291 trace_ext4_write_end(inode, pos, len, copied);
1292 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1293 ret = ext4_jbd2_file_inode(handle, inode);
1294 if (ret) {
1295 unlock_page(page);
1296 put_page(page);
1297 goto errout;
1301 if (ext4_has_inline_data(inode)) {
1302 ret = ext4_write_inline_data_end(inode, pos, len,
1303 copied, page);
1304 if (ret < 0)
1305 goto errout;
1306 copied = ret;
1307 } else
1308 copied = block_write_end(file, mapping, pos,
1309 len, copied, page, fsdata);
1311 * it's important to update i_size while still holding page lock:
1312 * page writeout could otherwise come in and zero beyond i_size.
1314 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1315 unlock_page(page);
1316 put_page(page);
1318 if (old_size < pos)
1319 pagecache_isize_extended(inode, old_size, pos);
1321 * Don't mark the inode dirty under page lock. First, it unnecessarily
1322 * makes the holding time of page lock longer. Second, it forces lock
1323 * ordering of page lock and transaction start for journaling
1324 * filesystems.
1326 if (i_size_changed)
1327 ext4_mark_inode_dirty(handle, inode);
1329 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1330 /* if we have allocated more blocks and copied
1331 * less. We will have blocks allocated outside
1332 * inode->i_size. So truncate them
1334 ext4_orphan_add(handle, inode);
1335 errout:
1336 ret2 = ext4_journal_stop(handle);
1337 if (!ret)
1338 ret = ret2;
1340 if (pos + len > inode->i_size) {
1341 ext4_truncate_failed_write(inode);
1343 * If truncate failed early the inode might still be
1344 * on the orphan list; we need to make sure the inode
1345 * is removed from the orphan list in that case.
1347 if (inode->i_nlink)
1348 ext4_orphan_del(NULL, inode);
1351 return ret ? ret : copied;
1355 * This is a private version of page_zero_new_buffers() which doesn't
1356 * set the buffer to be dirty, since in data=journalled mode we need
1357 * to call ext4_handle_dirty_metadata() instead.
1359 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1361 unsigned int block_start = 0, block_end;
1362 struct buffer_head *head, *bh;
1364 bh = head = page_buffers(page);
1365 do {
1366 block_end = block_start + bh->b_size;
1367 if (buffer_new(bh)) {
1368 if (block_end > from && block_start < to) {
1369 if (!PageUptodate(page)) {
1370 unsigned start, size;
1372 start = max(from, block_start);
1373 size = min(to, block_end) - start;
1375 zero_user(page, start, size);
1376 set_buffer_uptodate(bh);
1378 clear_buffer_new(bh);
1381 block_start = block_end;
1382 bh = bh->b_this_page;
1383 } while (bh != head);
1386 static int ext4_journalled_write_end(struct file *file,
1387 struct address_space *mapping,
1388 loff_t pos, unsigned len, unsigned copied,
1389 struct page *page, void *fsdata)
1391 handle_t *handle = ext4_journal_current_handle();
1392 struct inode *inode = mapping->host;
1393 loff_t old_size = inode->i_size;
1394 int ret = 0, ret2;
1395 int partial = 0;
1396 unsigned from, to;
1397 int size_changed = 0;
1399 trace_ext4_journalled_write_end(inode, pos, len, copied);
1400 from = pos & (PAGE_SIZE - 1);
1401 to = from + len;
1403 BUG_ON(!ext4_handle_valid(handle));
1405 if (ext4_has_inline_data(inode))
1406 copied = ext4_write_inline_data_end(inode, pos, len,
1407 copied, page);
1408 else {
1409 if (copied < len) {
1410 if (!PageUptodate(page))
1411 copied = 0;
1412 zero_new_buffers(page, from+copied, to);
1415 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1416 to, &partial, write_end_fn);
1417 if (!partial)
1418 SetPageUptodate(page);
1420 size_changed = ext4_update_inode_size(inode, pos + copied);
1421 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1422 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1423 unlock_page(page);
1424 put_page(page);
1426 if (old_size < pos)
1427 pagecache_isize_extended(inode, old_size, pos);
1429 if (size_changed) {
1430 ret2 = ext4_mark_inode_dirty(handle, inode);
1431 if (!ret)
1432 ret = ret2;
1435 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1436 /* if we have allocated more blocks and copied
1437 * less. We will have blocks allocated outside
1438 * inode->i_size. So truncate them
1440 ext4_orphan_add(handle, inode);
1442 ret2 = ext4_journal_stop(handle);
1443 if (!ret)
1444 ret = ret2;
1445 if (pos + len > inode->i_size) {
1446 ext4_truncate_failed_write(inode);
1448 * If truncate failed early the inode might still be
1449 * on the orphan list; we need to make sure the inode
1450 * is removed from the orphan list in that case.
1452 if (inode->i_nlink)
1453 ext4_orphan_del(NULL, inode);
1456 return ret ? ret : copied;
1460 * Reserve space for a single cluster
1462 static int ext4_da_reserve_space(struct inode *inode)
1464 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1465 struct ext4_inode_info *ei = EXT4_I(inode);
1466 int ret;
1469 * We will charge metadata quota at writeout time; this saves
1470 * us from metadata over-estimation, though we may go over by
1471 * a small amount in the end. Here we just reserve for data.
1473 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1474 if (ret)
1475 return ret;
1477 spin_lock(&ei->i_block_reservation_lock);
1478 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1479 spin_unlock(&ei->i_block_reservation_lock);
1480 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1481 return -ENOSPC;
1483 ei->i_reserved_data_blocks++;
1484 trace_ext4_da_reserve_space(inode);
1485 spin_unlock(&ei->i_block_reservation_lock);
1487 return 0; /* success */
1490 static void ext4_da_release_space(struct inode *inode, int to_free)
1492 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1493 struct ext4_inode_info *ei = EXT4_I(inode);
1495 if (!to_free)
1496 return; /* Nothing to release, exit */
1498 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1500 trace_ext4_da_release_space(inode, to_free);
1501 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1503 * if there aren't enough reserved blocks, then the
1504 * counter is messed up somewhere. Since this
1505 * function is called from invalidate page, it's
1506 * harmless to return without any action.
1508 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1509 "ino %lu, to_free %d with only %d reserved "
1510 "data blocks", inode->i_ino, to_free,
1511 ei->i_reserved_data_blocks);
1512 WARN_ON(1);
1513 to_free = ei->i_reserved_data_blocks;
1515 ei->i_reserved_data_blocks -= to_free;
1517 /* update fs dirty data blocks counter */
1518 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1520 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1522 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1525 static void ext4_da_page_release_reservation(struct page *page,
1526 unsigned int offset,
1527 unsigned int length)
1529 int to_release = 0, contiguous_blks = 0;
1530 struct buffer_head *head, *bh;
1531 unsigned int curr_off = 0;
1532 struct inode *inode = page->mapping->host;
1533 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1534 unsigned int stop = offset + length;
1535 int num_clusters;
1536 ext4_fsblk_t lblk;
1538 BUG_ON(stop > PAGE_SIZE || stop < length);
1540 head = page_buffers(page);
1541 bh = head;
1542 do {
1543 unsigned int next_off = curr_off + bh->b_size;
1545 if (next_off > stop)
1546 break;
1548 if ((offset <= curr_off) && (buffer_delay(bh))) {
1549 to_release++;
1550 contiguous_blks++;
1551 clear_buffer_delay(bh);
1552 } else if (contiguous_blks) {
1553 lblk = page->index <<
1554 (PAGE_SHIFT - inode->i_blkbits);
1555 lblk += (curr_off >> inode->i_blkbits) -
1556 contiguous_blks;
1557 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1558 contiguous_blks = 0;
1560 curr_off = next_off;
1561 } while ((bh = bh->b_this_page) != head);
1563 if (contiguous_blks) {
1564 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1565 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1566 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1569 /* If we have released all the blocks belonging to a cluster, then we
1570 * need to release the reserved space for that cluster. */
1571 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1572 while (num_clusters > 0) {
1573 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1574 ((num_clusters - 1) << sbi->s_cluster_bits);
1575 if (sbi->s_cluster_ratio == 1 ||
1576 !ext4_find_delalloc_cluster(inode, lblk))
1577 ext4_da_release_space(inode, 1);
1579 num_clusters--;
1584 * Delayed allocation stuff
1587 struct mpage_da_data {
1588 struct inode *inode;
1589 struct writeback_control *wbc;
1591 pgoff_t first_page; /* The first page to write */
1592 pgoff_t next_page; /* Current page to examine */
1593 pgoff_t last_page; /* Last page to examine */
1595 * Extent to map - this can be after first_page because that can be
1596 * fully mapped. We somewhat abuse m_flags to store whether the extent
1597 * is delalloc or unwritten.
1599 struct ext4_map_blocks map;
1600 struct ext4_io_submit io_submit; /* IO submission data */
1603 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1604 bool invalidate)
1606 int nr_pages, i;
1607 pgoff_t index, end;
1608 struct pagevec pvec;
1609 struct inode *inode = mpd->inode;
1610 struct address_space *mapping = inode->i_mapping;
1612 /* This is necessary when next_page == 0. */
1613 if (mpd->first_page >= mpd->next_page)
1614 return;
1616 index = mpd->first_page;
1617 end = mpd->next_page - 1;
1618 if (invalidate) {
1619 ext4_lblk_t start, last;
1620 start = index << (PAGE_SHIFT - inode->i_blkbits);
1621 last = end << (PAGE_SHIFT - inode->i_blkbits);
1622 ext4_es_remove_extent(inode, start, last - start + 1);
1625 pagevec_init(&pvec, 0);
1626 while (index <= end) {
1627 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1628 if (nr_pages == 0)
1629 break;
1630 for (i = 0; i < nr_pages; i++) {
1631 struct page *page = pvec.pages[i];
1632 if (page->index > end)
1633 break;
1634 BUG_ON(!PageLocked(page));
1635 BUG_ON(PageWriteback(page));
1636 if (invalidate) {
1637 block_invalidatepage(page, 0, PAGE_SIZE);
1638 ClearPageUptodate(page);
1640 unlock_page(page);
1642 index = pvec.pages[nr_pages - 1]->index + 1;
1643 pagevec_release(&pvec);
1647 static void ext4_print_free_blocks(struct inode *inode)
1649 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1650 struct super_block *sb = inode->i_sb;
1651 struct ext4_inode_info *ei = EXT4_I(inode);
1653 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1654 EXT4_C2B(EXT4_SB(inode->i_sb),
1655 ext4_count_free_clusters(sb)));
1656 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1657 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1658 (long long) EXT4_C2B(EXT4_SB(sb),
1659 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1660 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1661 (long long) EXT4_C2B(EXT4_SB(sb),
1662 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1663 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1664 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1665 ei->i_reserved_data_blocks);
1666 return;
1669 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1671 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1675 * This function is grabs code from the very beginning of
1676 * ext4_map_blocks, but assumes that the caller is from delayed write
1677 * time. This function looks up the requested blocks and sets the
1678 * buffer delay bit under the protection of i_data_sem.
1680 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1681 struct ext4_map_blocks *map,
1682 struct buffer_head *bh)
1684 struct extent_status es;
1685 int retval;
1686 sector_t invalid_block = ~((sector_t) 0xffff);
1687 #ifdef ES_AGGRESSIVE_TEST
1688 struct ext4_map_blocks orig_map;
1690 memcpy(&orig_map, map, sizeof(*map));
1691 #endif
1693 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1694 invalid_block = ~0;
1696 map->m_flags = 0;
1697 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1698 "logical block %lu\n", inode->i_ino, map->m_len,
1699 (unsigned long) map->m_lblk);
1701 /* Lookup extent status tree firstly */
1702 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1703 if (ext4_es_is_hole(&es)) {
1704 retval = 0;
1705 down_read(&EXT4_I(inode)->i_data_sem);
1706 goto add_delayed;
1710 * Delayed extent could be allocated by fallocate.
1711 * So we need to check it.
1713 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1714 map_bh(bh, inode->i_sb, invalid_block);
1715 set_buffer_new(bh);
1716 set_buffer_delay(bh);
1717 return 0;
1720 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1721 retval = es.es_len - (iblock - es.es_lblk);
1722 if (retval > map->m_len)
1723 retval = map->m_len;
1724 map->m_len = retval;
1725 if (ext4_es_is_written(&es))
1726 map->m_flags |= EXT4_MAP_MAPPED;
1727 else if (ext4_es_is_unwritten(&es))
1728 map->m_flags |= EXT4_MAP_UNWRITTEN;
1729 else
1730 BUG_ON(1);
1732 #ifdef ES_AGGRESSIVE_TEST
1733 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1734 #endif
1735 return retval;
1739 * Try to see if we can get the block without requesting a new
1740 * file system block.
1742 down_read(&EXT4_I(inode)->i_data_sem);
1743 if (ext4_has_inline_data(inode))
1744 retval = 0;
1745 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1746 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1747 else
1748 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1750 add_delayed:
1751 if (retval == 0) {
1752 int ret;
1754 * XXX: __block_prepare_write() unmaps passed block,
1755 * is it OK?
1758 * If the block was allocated from previously allocated cluster,
1759 * then we don't need to reserve it again. However we still need
1760 * to reserve metadata for every block we're going to write.
1762 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1763 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1764 ret = ext4_da_reserve_space(inode);
1765 if (ret) {
1766 /* not enough space to reserve */
1767 retval = ret;
1768 goto out_unlock;
1772 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1773 ~0, EXTENT_STATUS_DELAYED);
1774 if (ret) {
1775 retval = ret;
1776 goto out_unlock;
1779 map_bh(bh, inode->i_sb, invalid_block);
1780 set_buffer_new(bh);
1781 set_buffer_delay(bh);
1782 } else if (retval > 0) {
1783 int ret;
1784 unsigned int status;
1786 if (unlikely(retval != map->m_len)) {
1787 ext4_warning(inode->i_sb,
1788 "ES len assertion failed for inode "
1789 "%lu: retval %d != map->m_len %d",
1790 inode->i_ino, retval, map->m_len);
1791 WARN_ON(1);
1794 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1795 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1796 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1797 map->m_pblk, status);
1798 if (ret != 0)
1799 retval = ret;
1802 out_unlock:
1803 up_read((&EXT4_I(inode)->i_data_sem));
1805 return retval;
1809 * This is a special get_block_t callback which is used by
1810 * ext4_da_write_begin(). It will either return mapped block or
1811 * reserve space for a single block.
1813 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1814 * We also have b_blocknr = -1 and b_bdev initialized properly
1816 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1817 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1818 * initialized properly.
1820 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1821 struct buffer_head *bh, int create)
1823 struct ext4_map_blocks map;
1824 int ret = 0;
1826 BUG_ON(create == 0);
1827 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1829 map.m_lblk = iblock;
1830 map.m_len = 1;
1833 * first, we need to know whether the block is allocated already
1834 * preallocated blocks are unmapped but should treated
1835 * the same as allocated blocks.
1837 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1838 if (ret <= 0)
1839 return ret;
1841 map_bh(bh, inode->i_sb, map.m_pblk);
1842 ext4_update_bh_state(bh, map.m_flags);
1844 if (buffer_unwritten(bh)) {
1845 /* A delayed write to unwritten bh should be marked
1846 * new and mapped. Mapped ensures that we don't do
1847 * get_block multiple times when we write to the same
1848 * offset and new ensures that we do proper zero out
1849 * for partial write.
1851 set_buffer_new(bh);
1852 set_buffer_mapped(bh);
1854 return 0;
1857 static int bget_one(handle_t *handle, struct buffer_head *bh)
1859 get_bh(bh);
1860 return 0;
1863 static int bput_one(handle_t *handle, struct buffer_head *bh)
1865 put_bh(bh);
1866 return 0;
1869 static int __ext4_journalled_writepage(struct page *page,
1870 unsigned int len)
1872 struct address_space *mapping = page->mapping;
1873 struct inode *inode = mapping->host;
1874 struct buffer_head *page_bufs = NULL;
1875 handle_t *handle = NULL;
1876 int ret = 0, err = 0;
1877 int inline_data = ext4_has_inline_data(inode);
1878 struct buffer_head *inode_bh = NULL;
1880 ClearPageChecked(page);
1882 if (inline_data) {
1883 BUG_ON(page->index != 0);
1884 BUG_ON(len > ext4_get_max_inline_size(inode));
1885 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1886 if (inode_bh == NULL)
1887 goto out;
1888 } else {
1889 page_bufs = page_buffers(page);
1890 if (!page_bufs) {
1891 BUG();
1892 goto out;
1894 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1895 NULL, bget_one);
1898 * We need to release the page lock before we start the
1899 * journal, so grab a reference so the page won't disappear
1900 * out from under us.
1902 get_page(page);
1903 unlock_page(page);
1905 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1906 ext4_writepage_trans_blocks(inode));
1907 if (IS_ERR(handle)) {
1908 ret = PTR_ERR(handle);
1909 put_page(page);
1910 goto out_no_pagelock;
1912 BUG_ON(!ext4_handle_valid(handle));
1914 lock_page(page);
1915 put_page(page);
1916 if (page->mapping != mapping) {
1917 /* The page got truncated from under us */
1918 ext4_journal_stop(handle);
1919 ret = 0;
1920 goto out;
1923 if (inline_data) {
1924 BUFFER_TRACE(inode_bh, "get write access");
1925 ret = ext4_journal_get_write_access(handle, inode_bh);
1927 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1929 } else {
1930 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1931 do_journal_get_write_access);
1933 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1934 write_end_fn);
1936 if (ret == 0)
1937 ret = err;
1938 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1939 err = ext4_journal_stop(handle);
1940 if (!ret)
1941 ret = err;
1943 if (!ext4_has_inline_data(inode))
1944 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1945 NULL, bput_one);
1946 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1947 out:
1948 unlock_page(page);
1949 out_no_pagelock:
1950 brelse(inode_bh);
1951 return ret;
1955 * Note that we don't need to start a transaction unless we're journaling data
1956 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1957 * need to file the inode to the transaction's list in ordered mode because if
1958 * we are writing back data added by write(), the inode is already there and if
1959 * we are writing back data modified via mmap(), no one guarantees in which
1960 * transaction the data will hit the disk. In case we are journaling data, we
1961 * cannot start transaction directly because transaction start ranks above page
1962 * lock so we have to do some magic.
1964 * This function can get called via...
1965 * - ext4_writepages after taking page lock (have journal handle)
1966 * - journal_submit_inode_data_buffers (no journal handle)
1967 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1968 * - grab_page_cache when doing write_begin (have journal handle)
1970 * We don't do any block allocation in this function. If we have page with
1971 * multiple blocks we need to write those buffer_heads that are mapped. This
1972 * is important for mmaped based write. So if we do with blocksize 1K
1973 * truncate(f, 1024);
1974 * a = mmap(f, 0, 4096);
1975 * a[0] = 'a';
1976 * truncate(f, 4096);
1977 * we have in the page first buffer_head mapped via page_mkwrite call back
1978 * but other buffer_heads would be unmapped but dirty (dirty done via the
1979 * do_wp_page). So writepage should write the first block. If we modify
1980 * the mmap area beyond 1024 we will again get a page_fault and the
1981 * page_mkwrite callback will do the block allocation and mark the
1982 * buffer_heads mapped.
1984 * We redirty the page if we have any buffer_heads that is either delay or
1985 * unwritten in the page.
1987 * We can get recursively called as show below.
1989 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1990 * ext4_writepage()
1992 * But since we don't do any block allocation we should not deadlock.
1993 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1995 static int ext4_writepage(struct page *page,
1996 struct writeback_control *wbc)
1998 int ret = 0;
1999 loff_t size;
2000 unsigned int len;
2001 struct buffer_head *page_bufs = NULL;
2002 struct inode *inode = page->mapping->host;
2003 struct ext4_io_submit io_submit;
2004 bool keep_towrite = false;
2006 trace_ext4_writepage(page);
2007 size = i_size_read(inode);
2008 if (page->index == size >> PAGE_SHIFT)
2009 len = size & ~PAGE_MASK;
2010 else
2011 len = PAGE_SIZE;
2013 page_bufs = page_buffers(page);
2015 * We cannot do block allocation or other extent handling in this
2016 * function. If there are buffers needing that, we have to redirty
2017 * the page. But we may reach here when we do a journal commit via
2018 * journal_submit_inode_data_buffers() and in that case we must write
2019 * allocated buffers to achieve data=ordered mode guarantees.
2021 * Also, if there is only one buffer per page (the fs block
2022 * size == the page size), if one buffer needs block
2023 * allocation or needs to modify the extent tree to clear the
2024 * unwritten flag, we know that the page can't be written at
2025 * all, so we might as well refuse the write immediately.
2026 * Unfortunately if the block size != page size, we can't as
2027 * easily detect this case using ext4_walk_page_buffers(), but
2028 * for the extremely common case, this is an optimization that
2029 * skips a useless round trip through ext4_bio_write_page().
2031 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2032 ext4_bh_delay_or_unwritten)) {
2033 redirty_page_for_writepage(wbc, page);
2034 if ((current->flags & PF_MEMALLOC) ||
2035 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2037 * For memory cleaning there's no point in writing only
2038 * some buffers. So just bail out. Warn if we came here
2039 * from direct reclaim.
2041 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2042 == PF_MEMALLOC);
2043 unlock_page(page);
2044 return 0;
2046 keep_towrite = true;
2049 if (PageChecked(page) && ext4_should_journal_data(inode))
2051 * It's mmapped pagecache. Add buffers and journal it. There
2052 * doesn't seem much point in redirtying the page here.
2054 return __ext4_journalled_writepage(page, len);
2056 ext4_io_submit_init(&io_submit, wbc);
2057 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2058 if (!io_submit.io_end) {
2059 redirty_page_for_writepage(wbc, page);
2060 unlock_page(page);
2061 return -ENOMEM;
2063 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2064 ext4_io_submit(&io_submit);
2065 /* Drop io_end reference we got from init */
2066 ext4_put_io_end_defer(io_submit.io_end);
2067 return ret;
2070 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2072 int len;
2073 loff_t size = i_size_read(mpd->inode);
2074 int err;
2076 BUG_ON(page->index != mpd->first_page);
2077 if (page->index == size >> PAGE_SHIFT)
2078 len = size & ~PAGE_MASK;
2079 else
2080 len = PAGE_SIZE;
2081 clear_page_dirty_for_io(page);
2082 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2083 if (!err)
2084 mpd->wbc->nr_to_write--;
2085 mpd->first_page++;
2087 return err;
2090 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2093 * mballoc gives us at most this number of blocks...
2094 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2095 * The rest of mballoc seems to handle chunks up to full group size.
2097 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2100 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2102 * @mpd - extent of blocks
2103 * @lblk - logical number of the block in the file
2104 * @bh - buffer head we want to add to the extent
2106 * The function is used to collect contig. blocks in the same state. If the
2107 * buffer doesn't require mapping for writeback and we haven't started the
2108 * extent of buffers to map yet, the function returns 'true' immediately - the
2109 * caller can write the buffer right away. Otherwise the function returns true
2110 * if the block has been added to the extent, false if the block couldn't be
2111 * added.
2113 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2114 struct buffer_head *bh)
2116 struct ext4_map_blocks *map = &mpd->map;
2118 /* Buffer that doesn't need mapping for writeback? */
2119 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2120 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2121 /* So far no extent to map => we write the buffer right away */
2122 if (map->m_len == 0)
2123 return true;
2124 return false;
2127 /* First block in the extent? */
2128 if (map->m_len == 0) {
2129 map->m_lblk = lblk;
2130 map->m_len = 1;
2131 map->m_flags = bh->b_state & BH_FLAGS;
2132 return true;
2135 /* Don't go larger than mballoc is willing to allocate */
2136 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2137 return false;
2139 /* Can we merge the block to our big extent? */
2140 if (lblk == map->m_lblk + map->m_len &&
2141 (bh->b_state & BH_FLAGS) == map->m_flags) {
2142 map->m_len++;
2143 return true;
2145 return false;
2149 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2151 * @mpd - extent of blocks for mapping
2152 * @head - the first buffer in the page
2153 * @bh - buffer we should start processing from
2154 * @lblk - logical number of the block in the file corresponding to @bh
2156 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2157 * the page for IO if all buffers in this page were mapped and there's no
2158 * accumulated extent of buffers to map or add buffers in the page to the
2159 * extent of buffers to map. The function returns 1 if the caller can continue
2160 * by processing the next page, 0 if it should stop adding buffers to the
2161 * extent to map because we cannot extend it anymore. It can also return value
2162 * < 0 in case of error during IO submission.
2164 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2165 struct buffer_head *head,
2166 struct buffer_head *bh,
2167 ext4_lblk_t lblk)
2169 struct inode *inode = mpd->inode;
2170 int err;
2171 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2172 >> inode->i_blkbits;
2174 do {
2175 BUG_ON(buffer_locked(bh));
2177 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2178 /* Found extent to map? */
2179 if (mpd->map.m_len)
2180 return 0;
2181 /* Everything mapped so far and we hit EOF */
2182 break;
2184 } while (lblk++, (bh = bh->b_this_page) != head);
2185 /* So far everything mapped? Submit the page for IO. */
2186 if (mpd->map.m_len == 0) {
2187 err = mpage_submit_page(mpd, head->b_page);
2188 if (err < 0)
2189 return err;
2191 return lblk < blocks;
2195 * mpage_map_buffers - update buffers corresponding to changed extent and
2196 * submit fully mapped pages for IO
2198 * @mpd - description of extent to map, on return next extent to map
2200 * Scan buffers corresponding to changed extent (we expect corresponding pages
2201 * to be already locked) and update buffer state according to new extent state.
2202 * We map delalloc buffers to their physical location, clear unwritten bits,
2203 * and mark buffers as uninit when we perform writes to unwritten extents
2204 * and do extent conversion after IO is finished. If the last page is not fully
2205 * mapped, we update @map to the next extent in the last page that needs
2206 * mapping. Otherwise we submit the page for IO.
2208 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2210 struct pagevec pvec;
2211 int nr_pages, i;
2212 struct inode *inode = mpd->inode;
2213 struct buffer_head *head, *bh;
2214 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2215 pgoff_t start, end;
2216 ext4_lblk_t lblk;
2217 sector_t pblock;
2218 int err;
2220 start = mpd->map.m_lblk >> bpp_bits;
2221 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2222 lblk = start << bpp_bits;
2223 pblock = mpd->map.m_pblk;
2225 pagevec_init(&pvec, 0);
2226 while (start <= end) {
2227 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2228 PAGEVEC_SIZE);
2229 if (nr_pages == 0)
2230 break;
2231 for (i = 0; i < nr_pages; i++) {
2232 struct page *page = pvec.pages[i];
2234 if (page->index > end)
2235 break;
2236 /* Up to 'end' pages must be contiguous */
2237 BUG_ON(page->index != start);
2238 bh = head = page_buffers(page);
2239 do {
2240 if (lblk < mpd->map.m_lblk)
2241 continue;
2242 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2244 * Buffer after end of mapped extent.
2245 * Find next buffer in the page to map.
2247 mpd->map.m_len = 0;
2248 mpd->map.m_flags = 0;
2250 * FIXME: If dioread_nolock supports
2251 * blocksize < pagesize, we need to make
2252 * sure we add size mapped so far to
2253 * io_end->size as the following call
2254 * can submit the page for IO.
2256 err = mpage_process_page_bufs(mpd, head,
2257 bh, lblk);
2258 pagevec_release(&pvec);
2259 if (err > 0)
2260 err = 0;
2261 return err;
2263 if (buffer_delay(bh)) {
2264 clear_buffer_delay(bh);
2265 bh->b_blocknr = pblock++;
2267 clear_buffer_unwritten(bh);
2268 } while (lblk++, (bh = bh->b_this_page) != head);
2271 * FIXME: This is going to break if dioread_nolock
2272 * supports blocksize < pagesize as we will try to
2273 * convert potentially unmapped parts of inode.
2275 mpd->io_submit.io_end->size += PAGE_SIZE;
2276 /* Page fully mapped - let IO run! */
2277 err = mpage_submit_page(mpd, page);
2278 if (err < 0) {
2279 pagevec_release(&pvec);
2280 return err;
2282 start++;
2284 pagevec_release(&pvec);
2286 /* Extent fully mapped and matches with page boundary. We are done. */
2287 mpd->map.m_len = 0;
2288 mpd->map.m_flags = 0;
2289 return 0;
2292 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2294 struct inode *inode = mpd->inode;
2295 struct ext4_map_blocks *map = &mpd->map;
2296 int get_blocks_flags;
2297 int err, dioread_nolock;
2299 trace_ext4_da_write_pages_extent(inode, map);
2301 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2302 * to convert an unwritten extent to be initialized (in the case
2303 * where we have written into one or more preallocated blocks). It is
2304 * possible that we're going to need more metadata blocks than
2305 * previously reserved. However we must not fail because we're in
2306 * writeback and there is nothing we can do about it so it might result
2307 * in data loss. So use reserved blocks to allocate metadata if
2308 * possible.
2310 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2311 * the blocks in question are delalloc blocks. This indicates
2312 * that the blocks and quotas has already been checked when
2313 * the data was copied into the page cache.
2315 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2316 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2317 dioread_nolock = ext4_should_dioread_nolock(inode);
2318 if (dioread_nolock)
2319 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2320 if (map->m_flags & (1 << BH_Delay))
2321 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2323 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2324 if (err < 0)
2325 return err;
2326 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2327 if (!mpd->io_submit.io_end->handle &&
2328 ext4_handle_valid(handle)) {
2329 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2330 handle->h_rsv_handle = NULL;
2332 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2335 BUG_ON(map->m_len == 0);
2336 if (map->m_flags & EXT4_MAP_NEW) {
2337 struct block_device *bdev = inode->i_sb->s_bdev;
2338 int i;
2340 for (i = 0; i < map->m_len; i++)
2341 unmap_underlying_metadata(bdev, map->m_pblk + i);
2343 return 0;
2347 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2348 * mpd->len and submit pages underlying it for IO
2350 * @handle - handle for journal operations
2351 * @mpd - extent to map
2352 * @give_up_on_write - we set this to true iff there is a fatal error and there
2353 * is no hope of writing the data. The caller should discard
2354 * dirty pages to avoid infinite loops.
2356 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2357 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2358 * them to initialized or split the described range from larger unwritten
2359 * extent. Note that we need not map all the described range since allocation
2360 * can return less blocks or the range is covered by more unwritten extents. We
2361 * cannot map more because we are limited by reserved transaction credits. On
2362 * the other hand we always make sure that the last touched page is fully
2363 * mapped so that it can be written out (and thus forward progress is
2364 * guaranteed). After mapping we submit all mapped pages for IO.
2366 static int mpage_map_and_submit_extent(handle_t *handle,
2367 struct mpage_da_data *mpd,
2368 bool *give_up_on_write)
2370 struct inode *inode = mpd->inode;
2371 struct ext4_map_blocks *map = &mpd->map;
2372 int err;
2373 loff_t disksize;
2374 int progress = 0;
2376 mpd->io_submit.io_end->offset =
2377 ((loff_t)map->m_lblk) << inode->i_blkbits;
2378 do {
2379 err = mpage_map_one_extent(handle, mpd);
2380 if (err < 0) {
2381 struct super_block *sb = inode->i_sb;
2383 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2384 goto invalidate_dirty_pages;
2386 * Let the uper layers retry transient errors.
2387 * In the case of ENOSPC, if ext4_count_free_blocks()
2388 * is non-zero, a commit should free up blocks.
2390 if ((err == -ENOMEM) ||
2391 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2392 if (progress)
2393 goto update_disksize;
2394 return err;
2396 ext4_msg(sb, KERN_CRIT,
2397 "Delayed block allocation failed for "
2398 "inode %lu at logical offset %llu with"
2399 " max blocks %u with error %d",
2400 inode->i_ino,
2401 (unsigned long long)map->m_lblk,
2402 (unsigned)map->m_len, -err);
2403 ext4_msg(sb, KERN_CRIT,
2404 "This should not happen!! Data will "
2405 "be lost\n");
2406 if (err == -ENOSPC)
2407 ext4_print_free_blocks(inode);
2408 invalidate_dirty_pages:
2409 *give_up_on_write = true;
2410 return err;
2412 progress = 1;
2414 * Update buffer state, submit mapped pages, and get us new
2415 * extent to map
2417 err = mpage_map_and_submit_buffers(mpd);
2418 if (err < 0)
2419 goto update_disksize;
2420 } while (map->m_len);
2422 update_disksize:
2424 * Update on-disk size after IO is submitted. Races with
2425 * truncate are avoided by checking i_size under i_data_sem.
2427 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2428 if (disksize > EXT4_I(inode)->i_disksize) {
2429 int err2;
2430 loff_t i_size;
2432 down_write(&EXT4_I(inode)->i_data_sem);
2433 i_size = i_size_read(inode);
2434 if (disksize > i_size)
2435 disksize = i_size;
2436 if (disksize > EXT4_I(inode)->i_disksize)
2437 EXT4_I(inode)->i_disksize = disksize;
2438 err2 = ext4_mark_inode_dirty(handle, inode);
2439 up_write(&EXT4_I(inode)->i_data_sem);
2440 if (err2)
2441 ext4_error(inode->i_sb,
2442 "Failed to mark inode %lu dirty",
2443 inode->i_ino);
2444 if (!err)
2445 err = err2;
2447 return err;
2451 * Calculate the total number of credits to reserve for one writepages
2452 * iteration. This is called from ext4_writepages(). We map an extent of
2453 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2454 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2455 * bpp - 1 blocks in bpp different extents.
2457 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2459 int bpp = ext4_journal_blocks_per_page(inode);
2461 return ext4_meta_trans_blocks(inode,
2462 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2466 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2467 * and underlying extent to map
2469 * @mpd - where to look for pages
2471 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2472 * IO immediately. When we find a page which isn't mapped we start accumulating
2473 * extent of buffers underlying these pages that needs mapping (formed by
2474 * either delayed or unwritten buffers). We also lock the pages containing
2475 * these buffers. The extent found is returned in @mpd structure (starting at
2476 * mpd->lblk with length mpd->len blocks).
2478 * Note that this function can attach bios to one io_end structure which are
2479 * neither logically nor physically contiguous. Although it may seem as an
2480 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2481 * case as we need to track IO to all buffers underlying a page in one io_end.
2483 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2485 struct address_space *mapping = mpd->inode->i_mapping;
2486 struct pagevec pvec;
2487 unsigned int nr_pages;
2488 long left = mpd->wbc->nr_to_write;
2489 pgoff_t index = mpd->first_page;
2490 pgoff_t end = mpd->last_page;
2491 int tag;
2492 int i, err = 0;
2493 int blkbits = mpd->inode->i_blkbits;
2494 ext4_lblk_t lblk;
2495 struct buffer_head *head;
2497 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2498 tag = PAGECACHE_TAG_TOWRITE;
2499 else
2500 tag = PAGECACHE_TAG_DIRTY;
2502 pagevec_init(&pvec, 0);
2503 mpd->map.m_len = 0;
2504 mpd->next_page = index;
2505 while (index <= end) {
2506 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2507 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2508 if (nr_pages == 0)
2509 goto out;
2511 for (i = 0; i < nr_pages; i++) {
2512 struct page *page = pvec.pages[i];
2515 * At this point, the page may be truncated or
2516 * invalidated (changing page->mapping to NULL), or
2517 * even swizzled back from swapper_space to tmpfs file
2518 * mapping. However, page->index will not change
2519 * because we have a reference on the page.
2521 if (page->index > end)
2522 goto out;
2525 * Accumulated enough dirty pages? This doesn't apply
2526 * to WB_SYNC_ALL mode. For integrity sync we have to
2527 * keep going because someone may be concurrently
2528 * dirtying pages, and we might have synced a lot of
2529 * newly appeared dirty pages, but have not synced all
2530 * of the old dirty pages.
2532 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2533 goto out;
2535 /* If we can't merge this page, we are done. */
2536 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2537 goto out;
2539 lock_page(page);
2541 * If the page is no longer dirty, or its mapping no
2542 * longer corresponds to inode we are writing (which
2543 * means it has been truncated or invalidated), or the
2544 * page is already under writeback and we are not doing
2545 * a data integrity writeback, skip the page
2547 if (!PageDirty(page) ||
2548 (PageWriteback(page) &&
2549 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2550 unlikely(page->mapping != mapping)) {
2551 unlock_page(page);
2552 continue;
2555 wait_on_page_writeback(page);
2556 BUG_ON(PageWriteback(page));
2558 if (mpd->map.m_len == 0)
2559 mpd->first_page = page->index;
2560 mpd->next_page = page->index + 1;
2561 /* Add all dirty buffers to mpd */
2562 lblk = ((ext4_lblk_t)page->index) <<
2563 (PAGE_SHIFT - blkbits);
2564 head = page_buffers(page);
2565 err = mpage_process_page_bufs(mpd, head, head, lblk);
2566 if (err <= 0)
2567 goto out;
2568 err = 0;
2569 left--;
2571 pagevec_release(&pvec);
2572 cond_resched();
2574 return 0;
2575 out:
2576 pagevec_release(&pvec);
2577 return err;
2580 static int __writepage(struct page *page, struct writeback_control *wbc,
2581 void *data)
2583 struct address_space *mapping = data;
2584 int ret = ext4_writepage(page, wbc);
2585 mapping_set_error(mapping, ret);
2586 return ret;
2589 static int ext4_writepages(struct address_space *mapping,
2590 struct writeback_control *wbc)
2592 pgoff_t writeback_index = 0;
2593 long nr_to_write = wbc->nr_to_write;
2594 int range_whole = 0;
2595 int cycled = 1;
2596 handle_t *handle = NULL;
2597 struct mpage_da_data mpd;
2598 struct inode *inode = mapping->host;
2599 int needed_blocks, rsv_blocks = 0, ret = 0;
2600 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2601 bool done;
2602 struct blk_plug plug;
2603 bool give_up_on_write = false;
2605 trace_ext4_writepages(inode, wbc);
2607 if (dax_mapping(mapping))
2608 return dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2609 wbc);
2612 * No pages to write? This is mainly a kludge to avoid starting
2613 * a transaction for special inodes like journal inode on last iput()
2614 * because that could violate lock ordering on umount
2616 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2617 goto out_writepages;
2619 if (ext4_should_journal_data(inode)) {
2620 struct blk_plug plug;
2622 blk_start_plug(&plug);
2623 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2624 blk_finish_plug(&plug);
2625 goto out_writepages;
2629 * If the filesystem has aborted, it is read-only, so return
2630 * right away instead of dumping stack traces later on that
2631 * will obscure the real source of the problem. We test
2632 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2633 * the latter could be true if the filesystem is mounted
2634 * read-only, and in that case, ext4_writepages should
2635 * *never* be called, so if that ever happens, we would want
2636 * the stack trace.
2638 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2639 ret = -EROFS;
2640 goto out_writepages;
2643 if (ext4_should_dioread_nolock(inode)) {
2645 * We may need to convert up to one extent per block in
2646 * the page and we may dirty the inode.
2648 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2652 * If we have inline data and arrive here, it means that
2653 * we will soon create the block for the 1st page, so
2654 * we'd better clear the inline data here.
2656 if (ext4_has_inline_data(inode)) {
2657 /* Just inode will be modified... */
2658 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2659 if (IS_ERR(handle)) {
2660 ret = PTR_ERR(handle);
2661 goto out_writepages;
2663 BUG_ON(ext4_test_inode_state(inode,
2664 EXT4_STATE_MAY_INLINE_DATA));
2665 ext4_destroy_inline_data(handle, inode);
2666 ext4_journal_stop(handle);
2669 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2670 range_whole = 1;
2672 if (wbc->range_cyclic) {
2673 writeback_index = mapping->writeback_index;
2674 if (writeback_index)
2675 cycled = 0;
2676 mpd.first_page = writeback_index;
2677 mpd.last_page = -1;
2678 } else {
2679 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2680 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2683 mpd.inode = inode;
2684 mpd.wbc = wbc;
2685 ext4_io_submit_init(&mpd.io_submit, wbc);
2686 retry:
2687 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2688 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2689 done = false;
2690 blk_start_plug(&plug);
2691 while (!done && mpd.first_page <= mpd.last_page) {
2692 /* For each extent of pages we use new io_end */
2693 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2694 if (!mpd.io_submit.io_end) {
2695 ret = -ENOMEM;
2696 break;
2700 * We have two constraints: We find one extent to map and we
2701 * must always write out whole page (makes a difference when
2702 * blocksize < pagesize) so that we don't block on IO when we
2703 * try to write out the rest of the page. Journalled mode is
2704 * not supported by delalloc.
2706 BUG_ON(ext4_should_journal_data(inode));
2707 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2709 /* start a new transaction */
2710 handle = ext4_journal_start_with_reserve(inode,
2711 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2712 if (IS_ERR(handle)) {
2713 ret = PTR_ERR(handle);
2714 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2715 "%ld pages, ino %lu; err %d", __func__,
2716 wbc->nr_to_write, inode->i_ino, ret);
2717 /* Release allocated io_end */
2718 ext4_put_io_end(mpd.io_submit.io_end);
2719 break;
2722 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2723 ret = mpage_prepare_extent_to_map(&mpd);
2724 if (!ret) {
2725 if (mpd.map.m_len)
2726 ret = mpage_map_and_submit_extent(handle, &mpd,
2727 &give_up_on_write);
2728 else {
2730 * We scanned the whole range (or exhausted
2731 * nr_to_write), submitted what was mapped and
2732 * didn't find anything needing mapping. We are
2733 * done.
2735 done = true;
2738 ext4_journal_stop(handle);
2739 /* Submit prepared bio */
2740 ext4_io_submit(&mpd.io_submit);
2741 /* Unlock pages we didn't use */
2742 mpage_release_unused_pages(&mpd, give_up_on_write);
2743 /* Drop our io_end reference we got from init */
2744 ext4_put_io_end(mpd.io_submit.io_end);
2746 if (ret == -ENOSPC && sbi->s_journal) {
2748 * Commit the transaction which would
2749 * free blocks released in the transaction
2750 * and try again
2752 jbd2_journal_force_commit_nested(sbi->s_journal);
2753 ret = 0;
2754 continue;
2756 /* Fatal error - ENOMEM, EIO... */
2757 if (ret)
2758 break;
2760 blk_finish_plug(&plug);
2761 if (!ret && !cycled && wbc->nr_to_write > 0) {
2762 cycled = 1;
2763 mpd.last_page = writeback_index - 1;
2764 mpd.first_page = 0;
2765 goto retry;
2768 /* Update index */
2769 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2771 * Set the writeback_index so that range_cyclic
2772 * mode will write it back later
2774 mapping->writeback_index = mpd.first_page;
2776 out_writepages:
2777 trace_ext4_writepages_result(inode, wbc, ret,
2778 nr_to_write - wbc->nr_to_write);
2779 return ret;
2782 static int ext4_nonda_switch(struct super_block *sb)
2784 s64 free_clusters, dirty_clusters;
2785 struct ext4_sb_info *sbi = EXT4_SB(sb);
2788 * switch to non delalloc mode if we are running low
2789 * on free block. The free block accounting via percpu
2790 * counters can get slightly wrong with percpu_counter_batch getting
2791 * accumulated on each CPU without updating global counters
2792 * Delalloc need an accurate free block accounting. So switch
2793 * to non delalloc when we are near to error range.
2795 free_clusters =
2796 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2797 dirty_clusters =
2798 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2800 * Start pushing delalloc when 1/2 of free blocks are dirty.
2802 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2803 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2805 if (2 * free_clusters < 3 * dirty_clusters ||
2806 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2808 * free block count is less than 150% of dirty blocks
2809 * or free blocks is less than watermark
2811 return 1;
2813 return 0;
2816 /* We always reserve for an inode update; the superblock could be there too */
2817 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2819 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2820 return 1;
2822 if (pos + len <= 0x7fffffffULL)
2823 return 1;
2825 /* We might need to update the superblock to set LARGE_FILE */
2826 return 2;
2829 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2830 loff_t pos, unsigned len, unsigned flags,
2831 struct page **pagep, void **fsdata)
2833 int ret, retries = 0;
2834 struct page *page;
2835 pgoff_t index;
2836 struct inode *inode = mapping->host;
2837 handle_t *handle;
2839 index = pos >> PAGE_SHIFT;
2841 if (ext4_nonda_switch(inode->i_sb)) {
2842 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2843 return ext4_write_begin(file, mapping, pos,
2844 len, flags, pagep, fsdata);
2846 *fsdata = (void *)0;
2847 trace_ext4_da_write_begin(inode, pos, len, flags);
2849 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2850 ret = ext4_da_write_inline_data_begin(mapping, inode,
2851 pos, len, flags,
2852 pagep, fsdata);
2853 if (ret < 0)
2854 return ret;
2855 if (ret == 1)
2856 return 0;
2860 * grab_cache_page_write_begin() can take a long time if the
2861 * system is thrashing due to memory pressure, or if the page
2862 * is being written back. So grab it first before we start
2863 * the transaction handle. This also allows us to allocate
2864 * the page (if needed) without using GFP_NOFS.
2866 retry_grab:
2867 page = grab_cache_page_write_begin(mapping, index, flags);
2868 if (!page)
2869 return -ENOMEM;
2870 unlock_page(page);
2873 * With delayed allocation, we don't log the i_disksize update
2874 * if there is delayed block allocation. But we still need
2875 * to journalling the i_disksize update if writes to the end
2876 * of file which has an already mapped buffer.
2878 retry_journal:
2879 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2880 ext4_da_write_credits(inode, pos, len));
2881 if (IS_ERR(handle)) {
2882 put_page(page);
2883 return PTR_ERR(handle);
2886 lock_page(page);
2887 if (page->mapping != mapping) {
2888 /* The page got truncated from under us */
2889 unlock_page(page);
2890 put_page(page);
2891 ext4_journal_stop(handle);
2892 goto retry_grab;
2894 /* In case writeback began while the page was unlocked */
2895 wait_for_stable_page(page);
2897 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2898 ret = ext4_block_write_begin(page, pos, len,
2899 ext4_da_get_block_prep);
2900 #else
2901 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2902 #endif
2903 if (ret < 0) {
2904 unlock_page(page);
2905 ext4_journal_stop(handle);
2907 * block_write_begin may have instantiated a few blocks
2908 * outside i_size. Trim these off again. Don't need
2909 * i_size_read because we hold i_mutex.
2911 if (pos + len > inode->i_size)
2912 ext4_truncate_failed_write(inode);
2914 if (ret == -ENOSPC &&
2915 ext4_should_retry_alloc(inode->i_sb, &retries))
2916 goto retry_journal;
2918 put_page(page);
2919 return ret;
2922 *pagep = page;
2923 return ret;
2927 * Check if we should update i_disksize
2928 * when write to the end of file but not require block allocation
2930 static int ext4_da_should_update_i_disksize(struct page *page,
2931 unsigned long offset)
2933 struct buffer_head *bh;
2934 struct inode *inode = page->mapping->host;
2935 unsigned int idx;
2936 int i;
2938 bh = page_buffers(page);
2939 idx = offset >> inode->i_blkbits;
2941 for (i = 0; i < idx; i++)
2942 bh = bh->b_this_page;
2944 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2945 return 0;
2946 return 1;
2949 static int ext4_da_write_end(struct file *file,
2950 struct address_space *mapping,
2951 loff_t pos, unsigned len, unsigned copied,
2952 struct page *page, void *fsdata)
2954 struct inode *inode = mapping->host;
2955 int ret = 0, ret2;
2956 handle_t *handle = ext4_journal_current_handle();
2957 loff_t new_i_size;
2958 unsigned long start, end;
2959 int write_mode = (int)(unsigned long)fsdata;
2961 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2962 return ext4_write_end(file, mapping, pos,
2963 len, copied, page, fsdata);
2965 trace_ext4_da_write_end(inode, pos, len, copied);
2966 start = pos & (PAGE_SIZE - 1);
2967 end = start + copied - 1;
2970 * generic_write_end() will run mark_inode_dirty() if i_size
2971 * changes. So let's piggyback the i_disksize mark_inode_dirty
2972 * into that.
2974 new_i_size = pos + copied;
2975 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2976 if (ext4_has_inline_data(inode) ||
2977 ext4_da_should_update_i_disksize(page, end)) {
2978 ext4_update_i_disksize(inode, new_i_size);
2979 /* We need to mark inode dirty even if
2980 * new_i_size is less that inode->i_size
2981 * bu greater than i_disksize.(hint delalloc)
2983 ext4_mark_inode_dirty(handle, inode);
2987 if (write_mode != CONVERT_INLINE_DATA &&
2988 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2989 ext4_has_inline_data(inode))
2990 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2991 page);
2992 else
2993 ret2 = generic_write_end(file, mapping, pos, len, copied,
2994 page, fsdata);
2996 copied = ret2;
2997 if (ret2 < 0)
2998 ret = ret2;
2999 ret2 = ext4_journal_stop(handle);
3000 if (!ret)
3001 ret = ret2;
3003 return ret ? ret : copied;
3006 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3007 unsigned int length)
3010 * Drop reserved blocks
3012 BUG_ON(!PageLocked(page));
3013 if (!page_has_buffers(page))
3014 goto out;
3016 ext4_da_page_release_reservation(page, offset, length);
3018 out:
3019 ext4_invalidatepage(page, offset, length);
3021 return;
3025 * Force all delayed allocation blocks to be allocated for a given inode.
3027 int ext4_alloc_da_blocks(struct inode *inode)
3029 trace_ext4_alloc_da_blocks(inode);
3031 if (!EXT4_I(inode)->i_reserved_data_blocks)
3032 return 0;
3035 * We do something simple for now. The filemap_flush() will
3036 * also start triggering a write of the data blocks, which is
3037 * not strictly speaking necessary (and for users of
3038 * laptop_mode, not even desirable). However, to do otherwise
3039 * would require replicating code paths in:
3041 * ext4_writepages() ->
3042 * write_cache_pages() ---> (via passed in callback function)
3043 * __mpage_da_writepage() -->
3044 * mpage_add_bh_to_extent()
3045 * mpage_da_map_blocks()
3047 * The problem is that write_cache_pages(), located in
3048 * mm/page-writeback.c, marks pages clean in preparation for
3049 * doing I/O, which is not desirable if we're not planning on
3050 * doing I/O at all.
3052 * We could call write_cache_pages(), and then redirty all of
3053 * the pages by calling redirty_page_for_writepage() but that
3054 * would be ugly in the extreme. So instead we would need to
3055 * replicate parts of the code in the above functions,
3056 * simplifying them because we wouldn't actually intend to
3057 * write out the pages, but rather only collect contiguous
3058 * logical block extents, call the multi-block allocator, and
3059 * then update the buffer heads with the block allocations.
3061 * For now, though, we'll cheat by calling filemap_flush(),
3062 * which will map the blocks, and start the I/O, but not
3063 * actually wait for the I/O to complete.
3065 return filemap_flush(inode->i_mapping);
3069 * bmap() is special. It gets used by applications such as lilo and by
3070 * the swapper to find the on-disk block of a specific piece of data.
3072 * Naturally, this is dangerous if the block concerned is still in the
3073 * journal. If somebody makes a swapfile on an ext4 data-journaling
3074 * filesystem and enables swap, then they may get a nasty shock when the
3075 * data getting swapped to that swapfile suddenly gets overwritten by
3076 * the original zero's written out previously to the journal and
3077 * awaiting writeback in the kernel's buffer cache.
3079 * So, if we see any bmap calls here on a modified, data-journaled file,
3080 * take extra steps to flush any blocks which might be in the cache.
3082 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3084 struct inode *inode = mapping->host;
3085 journal_t *journal;
3086 int err;
3089 * We can get here for an inline file via the FIBMAP ioctl
3091 if (ext4_has_inline_data(inode))
3092 return 0;
3094 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3095 test_opt(inode->i_sb, DELALLOC)) {
3097 * With delalloc we want to sync the file
3098 * so that we can make sure we allocate
3099 * blocks for file
3101 filemap_write_and_wait(mapping);
3104 if (EXT4_JOURNAL(inode) &&
3105 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3107 * This is a REALLY heavyweight approach, but the use of
3108 * bmap on dirty files is expected to be extremely rare:
3109 * only if we run lilo or swapon on a freshly made file
3110 * do we expect this to happen.
3112 * (bmap requires CAP_SYS_RAWIO so this does not
3113 * represent an unprivileged user DOS attack --- we'd be
3114 * in trouble if mortal users could trigger this path at
3115 * will.)
3117 * NB. EXT4_STATE_JDATA is not set on files other than
3118 * regular files. If somebody wants to bmap a directory
3119 * or symlink and gets confused because the buffer
3120 * hasn't yet been flushed to disk, they deserve
3121 * everything they get.
3124 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3125 journal = EXT4_JOURNAL(inode);
3126 jbd2_journal_lock_updates(journal);
3127 err = jbd2_journal_flush(journal);
3128 jbd2_journal_unlock_updates(journal);
3130 if (err)
3131 return 0;
3134 return generic_block_bmap(mapping, block, ext4_get_block);
3137 static int ext4_readpage(struct file *file, struct page *page)
3139 int ret = -EAGAIN;
3140 struct inode *inode = page->mapping->host;
3142 trace_ext4_readpage(page);
3144 if (ext4_has_inline_data(inode))
3145 ret = ext4_readpage_inline(inode, page);
3147 if (ret == -EAGAIN)
3148 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3150 return ret;
3153 static int
3154 ext4_readpages(struct file *file, struct address_space *mapping,
3155 struct list_head *pages, unsigned nr_pages)
3157 struct inode *inode = mapping->host;
3159 /* If the file has inline data, no need to do readpages. */
3160 if (ext4_has_inline_data(inode))
3161 return 0;
3163 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3166 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3167 unsigned int length)
3169 trace_ext4_invalidatepage(page, offset, length);
3171 /* No journalling happens on data buffers when this function is used */
3172 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3174 block_invalidatepage(page, offset, length);
3177 static int __ext4_journalled_invalidatepage(struct page *page,
3178 unsigned int offset,
3179 unsigned int length)
3181 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3183 trace_ext4_journalled_invalidatepage(page, offset, length);
3186 * If it's a full truncate we just forget about the pending dirtying
3188 if (offset == 0 && length == PAGE_SIZE)
3189 ClearPageChecked(page);
3191 return jbd2_journal_invalidatepage(journal, page, offset, length);
3194 /* Wrapper for aops... */
3195 static void ext4_journalled_invalidatepage(struct page *page,
3196 unsigned int offset,
3197 unsigned int length)
3199 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3202 static int ext4_releasepage(struct page *page, gfp_t wait)
3204 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3206 trace_ext4_releasepage(page);
3208 /* Page has dirty journalled data -> cannot release */
3209 if (PageChecked(page))
3210 return 0;
3211 if (journal)
3212 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3213 else
3214 return try_to_free_buffers(page);
3217 #ifdef CONFIG_FS_DAX
3218 int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3219 struct buffer_head *bh_result, int create)
3221 int ret, err;
3222 int credits;
3223 struct ext4_map_blocks map;
3224 handle_t *handle = NULL;
3225 int flags = 0;
3227 ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3228 inode->i_ino, create);
3229 map.m_lblk = iblock;
3230 map.m_len = bh_result->b_size >> inode->i_blkbits;
3231 credits = ext4_chunk_trans_blocks(inode, map.m_len);
3232 if (create) {
3233 flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3234 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3235 if (IS_ERR(handle)) {
3236 ret = PTR_ERR(handle);
3237 return ret;
3241 ret = ext4_map_blocks(handle, inode, &map, flags);
3242 if (create) {
3243 err = ext4_journal_stop(handle);
3244 if (ret >= 0 && err < 0)
3245 ret = err;
3247 if (ret <= 0)
3248 goto out;
3249 if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3250 int err2;
3253 * We are protected by i_mmap_sem so we know block cannot go
3254 * away from under us even though we dropped i_data_sem.
3255 * Convert extent to written and write zeros there.
3257 * Note: We may get here even when create == 0.
3259 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3260 if (IS_ERR(handle)) {
3261 ret = PTR_ERR(handle);
3262 goto out;
3265 err = ext4_map_blocks(handle, inode, &map,
3266 EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3267 if (err < 0)
3268 ret = err;
3269 err2 = ext4_journal_stop(handle);
3270 if (err2 < 0 && ret > 0)
3271 ret = err2;
3273 out:
3274 WARN_ON_ONCE(ret == 0 && create);
3275 if (ret > 0) {
3276 map_bh(bh_result, inode->i_sb, map.m_pblk);
3278 * At least for now we have to clear BH_New so that DAX code
3279 * doesn't attempt to zero blocks again in a racy way.
3281 map.m_flags &= ~EXT4_MAP_NEW;
3282 ext4_update_bh_state(bh_result, map.m_flags);
3283 bh_result->b_size = map.m_len << inode->i_blkbits;
3284 ret = 0;
3286 return ret;
3288 #endif
3290 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3291 ssize_t size, void *private)
3293 ext4_io_end_t *io_end = private;
3295 /* if not async direct IO just return */
3296 if (!io_end)
3297 return 0;
3299 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3300 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3301 io_end, io_end->inode->i_ino, iocb, offset, size);
3304 * Error during AIO DIO. We cannot convert unwritten extents as the
3305 * data was not written. Just clear the unwritten flag and drop io_end.
3307 if (size <= 0) {
3308 ext4_clear_io_unwritten_flag(io_end);
3309 size = 0;
3311 io_end->offset = offset;
3312 io_end->size = size;
3313 ext4_put_io_end(io_end);
3315 return 0;
3319 * For ext4 extent files, ext4 will do direct-io write to holes,
3320 * preallocated extents, and those write extend the file, no need to
3321 * fall back to buffered IO.
3323 * For holes, we fallocate those blocks, mark them as unwritten
3324 * If those blocks were preallocated, we mark sure they are split, but
3325 * still keep the range to write as unwritten.
3327 * The unwritten extents will be converted to written when DIO is completed.
3328 * For async direct IO, since the IO may still pending when return, we
3329 * set up an end_io call back function, which will do the conversion
3330 * when async direct IO completed.
3332 * If the O_DIRECT write will extend the file then add this inode to the
3333 * orphan list. So recovery will truncate it back to the original size
3334 * if the machine crashes during the write.
3337 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3338 loff_t offset)
3340 struct file *file = iocb->ki_filp;
3341 struct inode *inode = file->f_mapping->host;
3342 ssize_t ret;
3343 size_t count = iov_iter_count(iter);
3344 int overwrite = 0;
3345 get_block_t *get_block_func = NULL;
3346 int dio_flags = 0;
3347 loff_t final_size = offset + count;
3349 /* Use the old path for reads and writes beyond i_size. */
3350 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3351 return ext4_ind_direct_IO(iocb, iter, offset);
3353 BUG_ON(iocb->private == NULL);
3356 * Make all waiters for direct IO properly wait also for extent
3357 * conversion. This also disallows race between truncate() and
3358 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3360 if (iov_iter_rw(iter) == WRITE)
3361 inode_dio_begin(inode);
3363 /* If we do a overwrite dio, i_mutex locking can be released */
3364 overwrite = *((int *)iocb->private);
3366 if (overwrite)
3367 inode_unlock(inode);
3370 * We could direct write to holes and fallocate.
3372 * Allocated blocks to fill the hole are marked as unwritten to prevent
3373 * parallel buffered read to expose the stale data before DIO complete
3374 * the data IO.
3376 * As to previously fallocated extents, ext4 get_block will just simply
3377 * mark the buffer mapped but still keep the extents unwritten.
3379 * For non AIO case, we will convert those unwritten extents to written
3380 * after return back from blockdev_direct_IO. That way we save us from
3381 * allocating io_end structure and also the overhead of offloading
3382 * the extent convertion to a workqueue.
3384 * For async DIO, the conversion needs to be deferred when the
3385 * IO is completed. The ext4 end_io callback function will be
3386 * called to take care of the conversion work. Here for async
3387 * case, we allocate an io_end structure to hook to the iocb.
3389 iocb->private = NULL;
3390 if (overwrite)
3391 get_block_func = ext4_dio_get_block_overwrite;
3392 else if (is_sync_kiocb(iocb)) {
3393 get_block_func = ext4_dio_get_block_unwritten_sync;
3394 dio_flags = DIO_LOCKING;
3395 } else {
3396 get_block_func = ext4_dio_get_block_unwritten_async;
3397 dio_flags = DIO_LOCKING;
3399 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3400 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3401 #endif
3402 if (IS_DAX(inode))
3403 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3404 ext4_end_io_dio, dio_flags);
3405 else
3406 ret = __blockdev_direct_IO(iocb, inode,
3407 inode->i_sb->s_bdev, iter, offset,
3408 get_block_func,
3409 ext4_end_io_dio, NULL, dio_flags);
3411 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3412 EXT4_STATE_DIO_UNWRITTEN)) {
3413 int err;
3415 * for non AIO case, since the IO is already
3416 * completed, we could do the conversion right here
3418 err = ext4_convert_unwritten_extents(NULL, inode,
3419 offset, ret);
3420 if (err < 0)
3421 ret = err;
3422 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3425 if (iov_iter_rw(iter) == WRITE)
3426 inode_dio_end(inode);
3427 /* take i_mutex locking again if we do a ovewrite dio */
3428 if (overwrite)
3429 inode_lock(inode);
3431 return ret;
3434 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3435 loff_t offset)
3437 struct file *file = iocb->ki_filp;
3438 struct inode *inode = file->f_mapping->host;
3439 size_t count = iov_iter_count(iter);
3440 ssize_t ret;
3442 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3443 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3444 return 0;
3445 #endif
3448 * If we are doing data journalling we don't support O_DIRECT
3450 if (ext4_should_journal_data(inode))
3451 return 0;
3453 /* Let buffer I/O handle the inline data case. */
3454 if (ext4_has_inline_data(inode))
3455 return 0;
3457 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3458 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3459 ret = ext4_ext_direct_IO(iocb, iter, offset);
3460 else
3461 ret = ext4_ind_direct_IO(iocb, iter, offset);
3462 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3463 return ret;
3467 * Pages can be marked dirty completely asynchronously from ext4's journalling
3468 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3469 * much here because ->set_page_dirty is called under VFS locks. The page is
3470 * not necessarily locked.
3472 * We cannot just dirty the page and leave attached buffers clean, because the
3473 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3474 * or jbddirty because all the journalling code will explode.
3476 * So what we do is to mark the page "pending dirty" and next time writepage
3477 * is called, propagate that into the buffers appropriately.
3479 static int ext4_journalled_set_page_dirty(struct page *page)
3481 SetPageChecked(page);
3482 return __set_page_dirty_nobuffers(page);
3485 static const struct address_space_operations ext4_aops = {
3486 .readpage = ext4_readpage,
3487 .readpages = ext4_readpages,
3488 .writepage = ext4_writepage,
3489 .writepages = ext4_writepages,
3490 .write_begin = ext4_write_begin,
3491 .write_end = ext4_write_end,
3492 .bmap = ext4_bmap,
3493 .invalidatepage = ext4_invalidatepage,
3494 .releasepage = ext4_releasepage,
3495 .direct_IO = ext4_direct_IO,
3496 .migratepage = buffer_migrate_page,
3497 .is_partially_uptodate = block_is_partially_uptodate,
3498 .error_remove_page = generic_error_remove_page,
3501 static const struct address_space_operations ext4_journalled_aops = {
3502 .readpage = ext4_readpage,
3503 .readpages = ext4_readpages,
3504 .writepage = ext4_writepage,
3505 .writepages = ext4_writepages,
3506 .write_begin = ext4_write_begin,
3507 .write_end = ext4_journalled_write_end,
3508 .set_page_dirty = ext4_journalled_set_page_dirty,
3509 .bmap = ext4_bmap,
3510 .invalidatepage = ext4_journalled_invalidatepage,
3511 .releasepage = ext4_releasepage,
3512 .direct_IO = ext4_direct_IO,
3513 .is_partially_uptodate = block_is_partially_uptodate,
3514 .error_remove_page = generic_error_remove_page,
3517 static const struct address_space_operations ext4_da_aops = {
3518 .readpage = ext4_readpage,
3519 .readpages = ext4_readpages,
3520 .writepage = ext4_writepage,
3521 .writepages = ext4_writepages,
3522 .write_begin = ext4_da_write_begin,
3523 .write_end = ext4_da_write_end,
3524 .bmap = ext4_bmap,
3525 .invalidatepage = ext4_da_invalidatepage,
3526 .releasepage = ext4_releasepage,
3527 .direct_IO = ext4_direct_IO,
3528 .migratepage = buffer_migrate_page,
3529 .is_partially_uptodate = block_is_partially_uptodate,
3530 .error_remove_page = generic_error_remove_page,
3533 void ext4_set_aops(struct inode *inode)
3535 switch (ext4_inode_journal_mode(inode)) {
3536 case EXT4_INODE_ORDERED_DATA_MODE:
3537 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3538 break;
3539 case EXT4_INODE_WRITEBACK_DATA_MODE:
3540 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3541 break;
3542 case EXT4_INODE_JOURNAL_DATA_MODE:
3543 inode->i_mapping->a_ops = &ext4_journalled_aops;
3544 return;
3545 default:
3546 BUG();
3548 if (test_opt(inode->i_sb, DELALLOC))
3549 inode->i_mapping->a_ops = &ext4_da_aops;
3550 else
3551 inode->i_mapping->a_ops = &ext4_aops;
3554 static int __ext4_block_zero_page_range(handle_t *handle,
3555 struct address_space *mapping, loff_t from, loff_t length)
3557 ext4_fsblk_t index = from >> PAGE_SHIFT;
3558 unsigned offset = from & (PAGE_SIZE-1);
3559 unsigned blocksize, pos;
3560 ext4_lblk_t iblock;
3561 struct inode *inode = mapping->host;
3562 struct buffer_head *bh;
3563 struct page *page;
3564 int err = 0;
3566 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3567 mapping_gfp_constraint(mapping, ~__GFP_FS));
3568 if (!page)
3569 return -ENOMEM;
3571 blocksize = inode->i_sb->s_blocksize;
3573 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3575 if (!page_has_buffers(page))
3576 create_empty_buffers(page, blocksize, 0);
3578 /* Find the buffer that contains "offset" */
3579 bh = page_buffers(page);
3580 pos = blocksize;
3581 while (offset >= pos) {
3582 bh = bh->b_this_page;
3583 iblock++;
3584 pos += blocksize;
3586 if (buffer_freed(bh)) {
3587 BUFFER_TRACE(bh, "freed: skip");
3588 goto unlock;
3590 if (!buffer_mapped(bh)) {
3591 BUFFER_TRACE(bh, "unmapped");
3592 ext4_get_block(inode, iblock, bh, 0);
3593 /* unmapped? It's a hole - nothing to do */
3594 if (!buffer_mapped(bh)) {
3595 BUFFER_TRACE(bh, "still unmapped");
3596 goto unlock;
3600 /* Ok, it's mapped. Make sure it's up-to-date */
3601 if (PageUptodate(page))
3602 set_buffer_uptodate(bh);
3604 if (!buffer_uptodate(bh)) {
3605 err = -EIO;
3606 ll_rw_block(READ, 1, &bh);
3607 wait_on_buffer(bh);
3608 /* Uhhuh. Read error. Complain and punt. */
3609 if (!buffer_uptodate(bh))
3610 goto unlock;
3611 if (S_ISREG(inode->i_mode) &&
3612 ext4_encrypted_inode(inode)) {
3613 /* We expect the key to be set. */
3614 BUG_ON(!ext4_has_encryption_key(inode));
3615 BUG_ON(blocksize != PAGE_SIZE);
3616 WARN_ON_ONCE(ext4_decrypt(page));
3619 if (ext4_should_journal_data(inode)) {
3620 BUFFER_TRACE(bh, "get write access");
3621 err = ext4_journal_get_write_access(handle, bh);
3622 if (err)
3623 goto unlock;
3625 zero_user(page, offset, length);
3626 BUFFER_TRACE(bh, "zeroed end of block");
3628 if (ext4_should_journal_data(inode)) {
3629 err = ext4_handle_dirty_metadata(handle, inode, bh);
3630 } else {
3631 err = 0;
3632 mark_buffer_dirty(bh);
3633 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3634 err = ext4_jbd2_file_inode(handle, inode);
3637 unlock:
3638 unlock_page(page);
3639 put_page(page);
3640 return err;
3644 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3645 * starting from file offset 'from'. The range to be zero'd must
3646 * be contained with in one block. If the specified range exceeds
3647 * the end of the block it will be shortened to end of the block
3648 * that cooresponds to 'from'
3650 static int ext4_block_zero_page_range(handle_t *handle,
3651 struct address_space *mapping, loff_t from, loff_t length)
3653 struct inode *inode = mapping->host;
3654 unsigned offset = from & (PAGE_SIZE-1);
3655 unsigned blocksize = inode->i_sb->s_blocksize;
3656 unsigned max = blocksize - (offset & (blocksize - 1));
3659 * correct length if it does not fall between
3660 * 'from' and the end of the block
3662 if (length > max || length < 0)
3663 length = max;
3665 if (IS_DAX(inode))
3666 return dax_zero_page_range(inode, from, length, ext4_get_block);
3667 return __ext4_block_zero_page_range(handle, mapping, from, length);
3671 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3672 * up to the end of the block which corresponds to `from'.
3673 * This required during truncate. We need to physically zero the tail end
3674 * of that block so it doesn't yield old data if the file is later grown.
3676 static int ext4_block_truncate_page(handle_t *handle,
3677 struct address_space *mapping, loff_t from)
3679 unsigned offset = from & (PAGE_SIZE-1);
3680 unsigned length;
3681 unsigned blocksize;
3682 struct inode *inode = mapping->host;
3684 blocksize = inode->i_sb->s_blocksize;
3685 length = blocksize - (offset & (blocksize - 1));
3687 return ext4_block_zero_page_range(handle, mapping, from, length);
3690 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3691 loff_t lstart, loff_t length)
3693 struct super_block *sb = inode->i_sb;
3694 struct address_space *mapping = inode->i_mapping;
3695 unsigned partial_start, partial_end;
3696 ext4_fsblk_t start, end;
3697 loff_t byte_end = (lstart + length - 1);
3698 int err = 0;
3700 partial_start = lstart & (sb->s_blocksize - 1);
3701 partial_end = byte_end & (sb->s_blocksize - 1);
3703 start = lstart >> sb->s_blocksize_bits;
3704 end = byte_end >> sb->s_blocksize_bits;
3706 /* Handle partial zero within the single block */
3707 if (start == end &&
3708 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3709 err = ext4_block_zero_page_range(handle, mapping,
3710 lstart, length);
3711 return err;
3713 /* Handle partial zero out on the start of the range */
3714 if (partial_start) {
3715 err = ext4_block_zero_page_range(handle, mapping,
3716 lstart, sb->s_blocksize);
3717 if (err)
3718 return err;
3720 /* Handle partial zero out on the end of the range */
3721 if (partial_end != sb->s_blocksize - 1)
3722 err = ext4_block_zero_page_range(handle, mapping,
3723 byte_end - partial_end,
3724 partial_end + 1);
3725 return err;
3728 int ext4_can_truncate(struct inode *inode)
3730 if (S_ISREG(inode->i_mode))
3731 return 1;
3732 if (S_ISDIR(inode->i_mode))
3733 return 1;
3734 if (S_ISLNK(inode->i_mode))
3735 return !ext4_inode_is_fast_symlink(inode);
3736 return 0;
3740 * We have to make sure i_disksize gets properly updated before we truncate
3741 * page cache due to hole punching or zero range. Otherwise i_disksize update
3742 * can get lost as it may have been postponed to submission of writeback but
3743 * that will never happen after we truncate page cache.
3745 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3746 loff_t len)
3748 handle_t *handle;
3749 loff_t size = i_size_read(inode);
3751 WARN_ON(!inode_is_locked(inode));
3752 if (offset > size || offset + len < size)
3753 return 0;
3755 if (EXT4_I(inode)->i_disksize >= size)
3756 return 0;
3758 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3759 if (IS_ERR(handle))
3760 return PTR_ERR(handle);
3761 ext4_update_i_disksize(inode, size);
3762 ext4_mark_inode_dirty(handle, inode);
3763 ext4_journal_stop(handle);
3765 return 0;
3769 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3770 * associated with the given offset and length
3772 * @inode: File inode
3773 * @offset: The offset where the hole will begin
3774 * @len: The length of the hole
3776 * Returns: 0 on success or negative on failure
3779 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3781 struct super_block *sb = inode->i_sb;
3782 ext4_lblk_t first_block, stop_block;
3783 struct address_space *mapping = inode->i_mapping;
3784 loff_t first_block_offset, last_block_offset;
3785 handle_t *handle;
3786 unsigned int credits;
3787 int ret = 0;
3789 if (!S_ISREG(inode->i_mode))
3790 return -EOPNOTSUPP;
3792 trace_ext4_punch_hole(inode, offset, length, 0);
3795 * Write out all dirty pages to avoid race conditions
3796 * Then release them.
3798 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3799 ret = filemap_write_and_wait_range(mapping, offset,
3800 offset + length - 1);
3801 if (ret)
3802 return ret;
3805 inode_lock(inode);
3807 /* No need to punch hole beyond i_size */
3808 if (offset >= inode->i_size)
3809 goto out_mutex;
3812 * If the hole extends beyond i_size, set the hole
3813 * to end after the page that contains i_size
3815 if (offset + length > inode->i_size) {
3816 length = inode->i_size +
3817 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3818 offset;
3821 if (offset & (sb->s_blocksize - 1) ||
3822 (offset + length) & (sb->s_blocksize - 1)) {
3824 * Attach jinode to inode for jbd2 if we do any zeroing of
3825 * partial block
3827 ret = ext4_inode_attach_jinode(inode);
3828 if (ret < 0)
3829 goto out_mutex;
3833 /* Wait all existing dio workers, newcomers will block on i_mutex */
3834 ext4_inode_block_unlocked_dio(inode);
3835 inode_dio_wait(inode);
3838 * Prevent page faults from reinstantiating pages we have released from
3839 * page cache.
3841 down_write(&EXT4_I(inode)->i_mmap_sem);
3842 first_block_offset = round_up(offset, sb->s_blocksize);
3843 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3845 /* Now release the pages and zero block aligned part of pages*/
3846 if (last_block_offset > first_block_offset) {
3847 ret = ext4_update_disksize_before_punch(inode, offset, length);
3848 if (ret)
3849 goto out_dio;
3850 truncate_pagecache_range(inode, first_block_offset,
3851 last_block_offset);
3854 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3855 credits = ext4_writepage_trans_blocks(inode);
3856 else
3857 credits = ext4_blocks_for_truncate(inode);
3858 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3859 if (IS_ERR(handle)) {
3860 ret = PTR_ERR(handle);
3861 ext4_std_error(sb, ret);
3862 goto out_dio;
3865 ret = ext4_zero_partial_blocks(handle, inode, offset,
3866 length);
3867 if (ret)
3868 goto out_stop;
3870 first_block = (offset + sb->s_blocksize - 1) >>
3871 EXT4_BLOCK_SIZE_BITS(sb);
3872 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3874 /* If there are no blocks to remove, return now */
3875 if (first_block >= stop_block)
3876 goto out_stop;
3878 down_write(&EXT4_I(inode)->i_data_sem);
3879 ext4_discard_preallocations(inode);
3881 ret = ext4_es_remove_extent(inode, first_block,
3882 stop_block - first_block);
3883 if (ret) {
3884 up_write(&EXT4_I(inode)->i_data_sem);
3885 goto out_stop;
3888 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3889 ret = ext4_ext_remove_space(inode, first_block,
3890 stop_block - 1);
3891 else
3892 ret = ext4_ind_remove_space(handle, inode, first_block,
3893 stop_block);
3895 up_write(&EXT4_I(inode)->i_data_sem);
3896 if (IS_SYNC(inode))
3897 ext4_handle_sync(handle);
3899 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3900 ext4_mark_inode_dirty(handle, inode);
3901 out_stop:
3902 ext4_journal_stop(handle);
3903 out_dio:
3904 up_write(&EXT4_I(inode)->i_mmap_sem);
3905 ext4_inode_resume_unlocked_dio(inode);
3906 out_mutex:
3907 inode_unlock(inode);
3908 return ret;
3911 int ext4_inode_attach_jinode(struct inode *inode)
3913 struct ext4_inode_info *ei = EXT4_I(inode);
3914 struct jbd2_inode *jinode;
3916 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3917 return 0;
3919 jinode = jbd2_alloc_inode(GFP_KERNEL);
3920 spin_lock(&inode->i_lock);
3921 if (!ei->jinode) {
3922 if (!jinode) {
3923 spin_unlock(&inode->i_lock);
3924 return -ENOMEM;
3926 ei->jinode = jinode;
3927 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3928 jinode = NULL;
3930 spin_unlock(&inode->i_lock);
3931 if (unlikely(jinode != NULL))
3932 jbd2_free_inode(jinode);
3933 return 0;
3937 * ext4_truncate()
3939 * We block out ext4_get_block() block instantiations across the entire
3940 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3941 * simultaneously on behalf of the same inode.
3943 * As we work through the truncate and commit bits of it to the journal there
3944 * is one core, guiding principle: the file's tree must always be consistent on
3945 * disk. We must be able to restart the truncate after a crash.
3947 * The file's tree may be transiently inconsistent in memory (although it
3948 * probably isn't), but whenever we close off and commit a journal transaction,
3949 * the contents of (the filesystem + the journal) must be consistent and
3950 * restartable. It's pretty simple, really: bottom up, right to left (although
3951 * left-to-right works OK too).
3953 * Note that at recovery time, journal replay occurs *before* the restart of
3954 * truncate against the orphan inode list.
3956 * The committed inode has the new, desired i_size (which is the same as
3957 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3958 * that this inode's truncate did not complete and it will again call
3959 * ext4_truncate() to have another go. So there will be instantiated blocks
3960 * to the right of the truncation point in a crashed ext4 filesystem. But
3961 * that's fine - as long as they are linked from the inode, the post-crash
3962 * ext4_truncate() run will find them and release them.
3964 void ext4_truncate(struct inode *inode)
3966 struct ext4_inode_info *ei = EXT4_I(inode);
3967 unsigned int credits;
3968 handle_t *handle;
3969 struct address_space *mapping = inode->i_mapping;
3972 * There is a possibility that we're either freeing the inode
3973 * or it's a completely new inode. In those cases we might not
3974 * have i_mutex locked because it's not necessary.
3976 if (!(inode->i_state & (I_NEW|I_FREEING)))
3977 WARN_ON(!inode_is_locked(inode));
3978 trace_ext4_truncate_enter(inode);
3980 if (!ext4_can_truncate(inode))
3981 return;
3983 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3985 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3986 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3988 if (ext4_has_inline_data(inode)) {
3989 int has_inline = 1;
3991 ext4_inline_data_truncate(inode, &has_inline);
3992 if (has_inline)
3993 return;
3996 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3997 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3998 if (ext4_inode_attach_jinode(inode) < 0)
3999 return;
4002 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4003 credits = ext4_writepage_trans_blocks(inode);
4004 else
4005 credits = ext4_blocks_for_truncate(inode);
4007 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4008 if (IS_ERR(handle)) {
4009 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4010 return;
4013 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4014 ext4_block_truncate_page(handle, mapping, inode->i_size);
4017 * We add the inode to the orphan list, so that if this
4018 * truncate spans multiple transactions, and we crash, we will
4019 * resume the truncate when the filesystem recovers. It also
4020 * marks the inode dirty, to catch the new size.
4022 * Implication: the file must always be in a sane, consistent
4023 * truncatable state while each transaction commits.
4025 if (ext4_orphan_add(handle, inode))
4026 goto out_stop;
4028 down_write(&EXT4_I(inode)->i_data_sem);
4030 ext4_discard_preallocations(inode);
4032 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4033 ext4_ext_truncate(handle, inode);
4034 else
4035 ext4_ind_truncate(handle, inode);
4037 up_write(&ei->i_data_sem);
4039 if (IS_SYNC(inode))
4040 ext4_handle_sync(handle);
4042 out_stop:
4044 * If this was a simple ftruncate() and the file will remain alive,
4045 * then we need to clear up the orphan record which we created above.
4046 * However, if this was a real unlink then we were called by
4047 * ext4_evict_inode(), and we allow that function to clean up the
4048 * orphan info for us.
4050 if (inode->i_nlink)
4051 ext4_orphan_del(handle, inode);
4053 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4054 ext4_mark_inode_dirty(handle, inode);
4055 ext4_journal_stop(handle);
4057 trace_ext4_truncate_exit(inode);
4061 * ext4_get_inode_loc returns with an extra refcount against the inode's
4062 * underlying buffer_head on success. If 'in_mem' is true, we have all
4063 * data in memory that is needed to recreate the on-disk version of this
4064 * inode.
4066 static int __ext4_get_inode_loc(struct inode *inode,
4067 struct ext4_iloc *iloc, int in_mem)
4069 struct ext4_group_desc *gdp;
4070 struct buffer_head *bh;
4071 struct super_block *sb = inode->i_sb;
4072 ext4_fsblk_t block;
4073 int inodes_per_block, inode_offset;
4075 iloc->bh = NULL;
4076 if (!ext4_valid_inum(sb, inode->i_ino))
4077 return -EFSCORRUPTED;
4079 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4080 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4081 if (!gdp)
4082 return -EIO;
4085 * Figure out the offset within the block group inode table
4087 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4088 inode_offset = ((inode->i_ino - 1) %
4089 EXT4_INODES_PER_GROUP(sb));
4090 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4091 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4093 bh = sb_getblk(sb, block);
4094 if (unlikely(!bh))
4095 return -ENOMEM;
4096 if (!buffer_uptodate(bh)) {
4097 lock_buffer(bh);
4100 * If the buffer has the write error flag, we have failed
4101 * to write out another inode in the same block. In this
4102 * case, we don't have to read the block because we may
4103 * read the old inode data successfully.
4105 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4106 set_buffer_uptodate(bh);
4108 if (buffer_uptodate(bh)) {
4109 /* someone brought it uptodate while we waited */
4110 unlock_buffer(bh);
4111 goto has_buffer;
4115 * If we have all information of the inode in memory and this
4116 * is the only valid inode in the block, we need not read the
4117 * block.
4119 if (in_mem) {
4120 struct buffer_head *bitmap_bh;
4121 int i, start;
4123 start = inode_offset & ~(inodes_per_block - 1);
4125 /* Is the inode bitmap in cache? */
4126 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4127 if (unlikely(!bitmap_bh))
4128 goto make_io;
4131 * If the inode bitmap isn't in cache then the
4132 * optimisation may end up performing two reads instead
4133 * of one, so skip it.
4135 if (!buffer_uptodate(bitmap_bh)) {
4136 brelse(bitmap_bh);
4137 goto make_io;
4139 for (i = start; i < start + inodes_per_block; i++) {
4140 if (i == inode_offset)
4141 continue;
4142 if (ext4_test_bit(i, bitmap_bh->b_data))
4143 break;
4145 brelse(bitmap_bh);
4146 if (i == start + inodes_per_block) {
4147 /* all other inodes are free, so skip I/O */
4148 memset(bh->b_data, 0, bh->b_size);
4149 set_buffer_uptodate(bh);
4150 unlock_buffer(bh);
4151 goto has_buffer;
4155 make_io:
4157 * If we need to do any I/O, try to pre-readahead extra
4158 * blocks from the inode table.
4160 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4161 ext4_fsblk_t b, end, table;
4162 unsigned num;
4163 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4165 table = ext4_inode_table(sb, gdp);
4166 /* s_inode_readahead_blks is always a power of 2 */
4167 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4168 if (table > b)
4169 b = table;
4170 end = b + ra_blks;
4171 num = EXT4_INODES_PER_GROUP(sb);
4172 if (ext4_has_group_desc_csum(sb))
4173 num -= ext4_itable_unused_count(sb, gdp);
4174 table += num / inodes_per_block;
4175 if (end > table)
4176 end = table;
4177 while (b <= end)
4178 sb_breadahead(sb, b++);
4182 * There are other valid inodes in the buffer, this inode
4183 * has in-inode xattrs, or we don't have this inode in memory.
4184 * Read the block from disk.
4186 trace_ext4_load_inode(inode);
4187 get_bh(bh);
4188 bh->b_end_io = end_buffer_read_sync;
4189 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4190 wait_on_buffer(bh);
4191 if (!buffer_uptodate(bh)) {
4192 EXT4_ERROR_INODE_BLOCK(inode, block,
4193 "unable to read itable block");
4194 brelse(bh);
4195 return -EIO;
4198 has_buffer:
4199 iloc->bh = bh;
4200 return 0;
4203 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4205 /* We have all inode data except xattrs in memory here. */
4206 return __ext4_get_inode_loc(inode, iloc,
4207 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4210 void ext4_set_inode_flags(struct inode *inode)
4212 unsigned int flags = EXT4_I(inode)->i_flags;
4213 unsigned int new_fl = 0;
4215 if (flags & EXT4_SYNC_FL)
4216 new_fl |= S_SYNC;
4217 if (flags & EXT4_APPEND_FL)
4218 new_fl |= S_APPEND;
4219 if (flags & EXT4_IMMUTABLE_FL)
4220 new_fl |= S_IMMUTABLE;
4221 if (flags & EXT4_NOATIME_FL)
4222 new_fl |= S_NOATIME;
4223 if (flags & EXT4_DIRSYNC_FL)
4224 new_fl |= S_DIRSYNC;
4225 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4226 new_fl |= S_DAX;
4227 inode_set_flags(inode, new_fl,
4228 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4231 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4232 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4234 unsigned int vfs_fl;
4235 unsigned long old_fl, new_fl;
4237 do {
4238 vfs_fl = ei->vfs_inode.i_flags;
4239 old_fl = ei->i_flags;
4240 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4241 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4242 EXT4_DIRSYNC_FL);
4243 if (vfs_fl & S_SYNC)
4244 new_fl |= EXT4_SYNC_FL;
4245 if (vfs_fl & S_APPEND)
4246 new_fl |= EXT4_APPEND_FL;
4247 if (vfs_fl & S_IMMUTABLE)
4248 new_fl |= EXT4_IMMUTABLE_FL;
4249 if (vfs_fl & S_NOATIME)
4250 new_fl |= EXT4_NOATIME_FL;
4251 if (vfs_fl & S_DIRSYNC)
4252 new_fl |= EXT4_DIRSYNC_FL;
4253 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4256 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4257 struct ext4_inode_info *ei)
4259 blkcnt_t i_blocks ;
4260 struct inode *inode = &(ei->vfs_inode);
4261 struct super_block *sb = inode->i_sb;
4263 if (ext4_has_feature_huge_file(sb)) {
4264 /* we are using combined 48 bit field */
4265 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4266 le32_to_cpu(raw_inode->i_blocks_lo);
4267 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4268 /* i_blocks represent file system block size */
4269 return i_blocks << (inode->i_blkbits - 9);
4270 } else {
4271 return i_blocks;
4273 } else {
4274 return le32_to_cpu(raw_inode->i_blocks_lo);
4278 static inline void ext4_iget_extra_inode(struct inode *inode,
4279 struct ext4_inode *raw_inode,
4280 struct ext4_inode_info *ei)
4282 __le32 *magic = (void *)raw_inode +
4283 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4284 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4285 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4286 ext4_find_inline_data_nolock(inode);
4287 } else
4288 EXT4_I(inode)->i_inline_off = 0;
4291 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4293 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4294 return -EOPNOTSUPP;
4295 *projid = EXT4_I(inode)->i_projid;
4296 return 0;
4299 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4301 struct ext4_iloc iloc;
4302 struct ext4_inode *raw_inode;
4303 struct ext4_inode_info *ei;
4304 struct inode *inode;
4305 journal_t *journal = EXT4_SB(sb)->s_journal;
4306 long ret;
4307 int block;
4308 uid_t i_uid;
4309 gid_t i_gid;
4310 projid_t i_projid;
4312 inode = iget_locked(sb, ino);
4313 if (!inode)
4314 return ERR_PTR(-ENOMEM);
4315 if (!(inode->i_state & I_NEW))
4316 return inode;
4318 ei = EXT4_I(inode);
4319 iloc.bh = NULL;
4321 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4322 if (ret < 0)
4323 goto bad_inode;
4324 raw_inode = ext4_raw_inode(&iloc);
4326 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4327 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4328 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4329 EXT4_INODE_SIZE(inode->i_sb)) {
4330 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4331 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4332 EXT4_INODE_SIZE(inode->i_sb));
4333 ret = -EFSCORRUPTED;
4334 goto bad_inode;
4336 } else
4337 ei->i_extra_isize = 0;
4339 /* Precompute checksum seed for inode metadata */
4340 if (ext4_has_metadata_csum(sb)) {
4341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4342 __u32 csum;
4343 __le32 inum = cpu_to_le32(inode->i_ino);
4344 __le32 gen = raw_inode->i_generation;
4345 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4346 sizeof(inum));
4347 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4348 sizeof(gen));
4351 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4352 EXT4_ERROR_INODE(inode, "checksum invalid");
4353 ret = -EFSBADCRC;
4354 goto bad_inode;
4357 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4358 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4359 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4360 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4361 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4362 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4363 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4364 else
4365 i_projid = EXT4_DEF_PROJID;
4367 if (!(test_opt(inode->i_sb, NO_UID32))) {
4368 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4369 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4371 i_uid_write(inode, i_uid);
4372 i_gid_write(inode, i_gid);
4373 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4374 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4376 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4377 ei->i_inline_off = 0;
4378 ei->i_dir_start_lookup = 0;
4379 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4380 /* We now have enough fields to check if the inode was active or not.
4381 * This is needed because nfsd might try to access dead inodes
4382 * the test is that same one that e2fsck uses
4383 * NeilBrown 1999oct15
4385 if (inode->i_nlink == 0) {
4386 if ((inode->i_mode == 0 ||
4387 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4388 ino != EXT4_BOOT_LOADER_INO) {
4389 /* this inode is deleted */
4390 ret = -ESTALE;
4391 goto bad_inode;
4393 /* The only unlinked inodes we let through here have
4394 * valid i_mode and are being read by the orphan
4395 * recovery code: that's fine, we're about to complete
4396 * the process of deleting those.
4397 * OR it is the EXT4_BOOT_LOADER_INO which is
4398 * not initialized on a new filesystem. */
4400 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4401 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4402 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4403 if (ext4_has_feature_64bit(sb))
4404 ei->i_file_acl |=
4405 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4406 inode->i_size = ext4_isize(raw_inode);
4407 ei->i_disksize = inode->i_size;
4408 #ifdef CONFIG_QUOTA
4409 ei->i_reserved_quota = 0;
4410 #endif
4411 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4412 ei->i_block_group = iloc.block_group;
4413 ei->i_last_alloc_group = ~0;
4415 * NOTE! The in-memory inode i_data array is in little-endian order
4416 * even on big-endian machines: we do NOT byteswap the block numbers!
4418 for (block = 0; block < EXT4_N_BLOCKS; block++)
4419 ei->i_data[block] = raw_inode->i_block[block];
4420 INIT_LIST_HEAD(&ei->i_orphan);
4423 * Set transaction id's of transactions that have to be committed
4424 * to finish f[data]sync. We set them to currently running transaction
4425 * as we cannot be sure that the inode or some of its metadata isn't
4426 * part of the transaction - the inode could have been reclaimed and
4427 * now it is reread from disk.
4429 if (journal) {
4430 transaction_t *transaction;
4431 tid_t tid;
4433 read_lock(&journal->j_state_lock);
4434 if (journal->j_running_transaction)
4435 transaction = journal->j_running_transaction;
4436 else
4437 transaction = journal->j_committing_transaction;
4438 if (transaction)
4439 tid = transaction->t_tid;
4440 else
4441 tid = journal->j_commit_sequence;
4442 read_unlock(&journal->j_state_lock);
4443 ei->i_sync_tid = tid;
4444 ei->i_datasync_tid = tid;
4447 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4448 if (ei->i_extra_isize == 0) {
4449 /* The extra space is currently unused. Use it. */
4450 ei->i_extra_isize = sizeof(struct ext4_inode) -
4451 EXT4_GOOD_OLD_INODE_SIZE;
4452 } else {
4453 ext4_iget_extra_inode(inode, raw_inode, ei);
4457 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4458 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4459 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4460 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4462 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4463 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4464 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4465 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4466 inode->i_version |=
4467 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4471 ret = 0;
4472 if (ei->i_file_acl &&
4473 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4474 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4475 ei->i_file_acl);
4476 ret = -EFSCORRUPTED;
4477 goto bad_inode;
4478 } else if (!ext4_has_inline_data(inode)) {
4479 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4480 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4481 (S_ISLNK(inode->i_mode) &&
4482 !ext4_inode_is_fast_symlink(inode))))
4483 /* Validate extent which is part of inode */
4484 ret = ext4_ext_check_inode(inode);
4485 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4486 (S_ISLNK(inode->i_mode) &&
4487 !ext4_inode_is_fast_symlink(inode))) {
4488 /* Validate block references which are part of inode */
4489 ret = ext4_ind_check_inode(inode);
4492 if (ret)
4493 goto bad_inode;
4495 if (S_ISREG(inode->i_mode)) {
4496 inode->i_op = &ext4_file_inode_operations;
4497 inode->i_fop = &ext4_file_operations;
4498 ext4_set_aops(inode);
4499 } else if (S_ISDIR(inode->i_mode)) {
4500 inode->i_op = &ext4_dir_inode_operations;
4501 inode->i_fop = &ext4_dir_operations;
4502 } else if (S_ISLNK(inode->i_mode)) {
4503 if (ext4_encrypted_inode(inode)) {
4504 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4505 ext4_set_aops(inode);
4506 } else if (ext4_inode_is_fast_symlink(inode)) {
4507 inode->i_link = (char *)ei->i_data;
4508 inode->i_op = &ext4_fast_symlink_inode_operations;
4509 nd_terminate_link(ei->i_data, inode->i_size,
4510 sizeof(ei->i_data) - 1);
4511 } else {
4512 inode->i_op = &ext4_symlink_inode_operations;
4513 ext4_set_aops(inode);
4515 inode_nohighmem(inode);
4516 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4517 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4518 inode->i_op = &ext4_special_inode_operations;
4519 if (raw_inode->i_block[0])
4520 init_special_inode(inode, inode->i_mode,
4521 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4522 else
4523 init_special_inode(inode, inode->i_mode,
4524 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4525 } else if (ino == EXT4_BOOT_LOADER_INO) {
4526 make_bad_inode(inode);
4527 } else {
4528 ret = -EFSCORRUPTED;
4529 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4530 goto bad_inode;
4532 brelse(iloc.bh);
4533 ext4_set_inode_flags(inode);
4534 unlock_new_inode(inode);
4535 return inode;
4537 bad_inode:
4538 brelse(iloc.bh);
4539 iget_failed(inode);
4540 return ERR_PTR(ret);
4543 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4545 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4546 return ERR_PTR(-EFSCORRUPTED);
4547 return ext4_iget(sb, ino);
4550 static int ext4_inode_blocks_set(handle_t *handle,
4551 struct ext4_inode *raw_inode,
4552 struct ext4_inode_info *ei)
4554 struct inode *inode = &(ei->vfs_inode);
4555 u64 i_blocks = inode->i_blocks;
4556 struct super_block *sb = inode->i_sb;
4558 if (i_blocks <= ~0U) {
4560 * i_blocks can be represented in a 32 bit variable
4561 * as multiple of 512 bytes
4563 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4564 raw_inode->i_blocks_high = 0;
4565 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4566 return 0;
4568 if (!ext4_has_feature_huge_file(sb))
4569 return -EFBIG;
4571 if (i_blocks <= 0xffffffffffffULL) {
4573 * i_blocks can be represented in a 48 bit variable
4574 * as multiple of 512 bytes
4576 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4577 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4578 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4579 } else {
4580 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4581 /* i_block is stored in file system block size */
4582 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4583 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4584 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4586 return 0;
4589 struct other_inode {
4590 unsigned long orig_ino;
4591 struct ext4_inode *raw_inode;
4594 static int other_inode_match(struct inode * inode, unsigned long ino,
4595 void *data)
4597 struct other_inode *oi = (struct other_inode *) data;
4599 if ((inode->i_ino != ino) ||
4600 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4601 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4602 ((inode->i_state & I_DIRTY_TIME) == 0))
4603 return 0;
4604 spin_lock(&inode->i_lock);
4605 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4606 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4607 (inode->i_state & I_DIRTY_TIME)) {
4608 struct ext4_inode_info *ei = EXT4_I(inode);
4610 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4611 spin_unlock(&inode->i_lock);
4613 spin_lock(&ei->i_raw_lock);
4614 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4615 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4616 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4617 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4618 spin_unlock(&ei->i_raw_lock);
4619 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4620 return -1;
4622 spin_unlock(&inode->i_lock);
4623 return -1;
4627 * Opportunistically update the other time fields for other inodes in
4628 * the same inode table block.
4630 static void ext4_update_other_inodes_time(struct super_block *sb,
4631 unsigned long orig_ino, char *buf)
4633 struct other_inode oi;
4634 unsigned long ino;
4635 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4636 int inode_size = EXT4_INODE_SIZE(sb);
4638 oi.orig_ino = orig_ino;
4640 * Calculate the first inode in the inode table block. Inode
4641 * numbers are one-based. That is, the first inode in a block
4642 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4644 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4645 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4646 if (ino == orig_ino)
4647 continue;
4648 oi.raw_inode = (struct ext4_inode *) buf;
4649 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4654 * Post the struct inode info into an on-disk inode location in the
4655 * buffer-cache. This gobbles the caller's reference to the
4656 * buffer_head in the inode location struct.
4658 * The caller must have write access to iloc->bh.
4660 static int ext4_do_update_inode(handle_t *handle,
4661 struct inode *inode,
4662 struct ext4_iloc *iloc)
4664 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4665 struct ext4_inode_info *ei = EXT4_I(inode);
4666 struct buffer_head *bh = iloc->bh;
4667 struct super_block *sb = inode->i_sb;
4668 int err = 0, rc, block;
4669 int need_datasync = 0, set_large_file = 0;
4670 uid_t i_uid;
4671 gid_t i_gid;
4672 projid_t i_projid;
4674 spin_lock(&ei->i_raw_lock);
4676 /* For fields not tracked in the in-memory inode,
4677 * initialise them to zero for new inodes. */
4678 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4679 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4681 ext4_get_inode_flags(ei);
4682 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4683 i_uid = i_uid_read(inode);
4684 i_gid = i_gid_read(inode);
4685 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4686 if (!(test_opt(inode->i_sb, NO_UID32))) {
4687 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4688 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4690 * Fix up interoperability with old kernels. Otherwise, old inodes get
4691 * re-used with the upper 16 bits of the uid/gid intact
4693 if (!ei->i_dtime) {
4694 raw_inode->i_uid_high =
4695 cpu_to_le16(high_16_bits(i_uid));
4696 raw_inode->i_gid_high =
4697 cpu_to_le16(high_16_bits(i_gid));
4698 } else {
4699 raw_inode->i_uid_high = 0;
4700 raw_inode->i_gid_high = 0;
4702 } else {
4703 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4704 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4705 raw_inode->i_uid_high = 0;
4706 raw_inode->i_gid_high = 0;
4708 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4710 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4711 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4712 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4713 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4715 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4716 if (err) {
4717 spin_unlock(&ei->i_raw_lock);
4718 goto out_brelse;
4720 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4721 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4722 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4723 raw_inode->i_file_acl_high =
4724 cpu_to_le16(ei->i_file_acl >> 32);
4725 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4726 if (ei->i_disksize != ext4_isize(raw_inode)) {
4727 ext4_isize_set(raw_inode, ei->i_disksize);
4728 need_datasync = 1;
4730 if (ei->i_disksize > 0x7fffffffULL) {
4731 if (!ext4_has_feature_large_file(sb) ||
4732 EXT4_SB(sb)->s_es->s_rev_level ==
4733 cpu_to_le32(EXT4_GOOD_OLD_REV))
4734 set_large_file = 1;
4736 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4737 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4738 if (old_valid_dev(inode->i_rdev)) {
4739 raw_inode->i_block[0] =
4740 cpu_to_le32(old_encode_dev(inode->i_rdev));
4741 raw_inode->i_block[1] = 0;
4742 } else {
4743 raw_inode->i_block[0] = 0;
4744 raw_inode->i_block[1] =
4745 cpu_to_le32(new_encode_dev(inode->i_rdev));
4746 raw_inode->i_block[2] = 0;
4748 } else if (!ext4_has_inline_data(inode)) {
4749 for (block = 0; block < EXT4_N_BLOCKS; block++)
4750 raw_inode->i_block[block] = ei->i_data[block];
4753 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4754 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4755 if (ei->i_extra_isize) {
4756 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4757 raw_inode->i_version_hi =
4758 cpu_to_le32(inode->i_version >> 32);
4759 raw_inode->i_extra_isize =
4760 cpu_to_le16(ei->i_extra_isize);
4764 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4765 EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4766 i_projid != EXT4_DEF_PROJID);
4768 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4769 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4770 raw_inode->i_projid = cpu_to_le32(i_projid);
4772 ext4_inode_csum_set(inode, raw_inode, ei);
4773 spin_unlock(&ei->i_raw_lock);
4774 if (inode->i_sb->s_flags & MS_LAZYTIME)
4775 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4776 bh->b_data);
4778 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4779 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4780 if (!err)
4781 err = rc;
4782 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4783 if (set_large_file) {
4784 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4785 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4786 if (err)
4787 goto out_brelse;
4788 ext4_update_dynamic_rev(sb);
4789 ext4_set_feature_large_file(sb);
4790 ext4_handle_sync(handle);
4791 err = ext4_handle_dirty_super(handle, sb);
4793 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4794 out_brelse:
4795 brelse(bh);
4796 ext4_std_error(inode->i_sb, err);
4797 return err;
4801 * ext4_write_inode()
4803 * We are called from a few places:
4805 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4806 * Here, there will be no transaction running. We wait for any running
4807 * transaction to commit.
4809 * - Within flush work (sys_sync(), kupdate and such).
4810 * We wait on commit, if told to.
4812 * - Within iput_final() -> write_inode_now()
4813 * We wait on commit, if told to.
4815 * In all cases it is actually safe for us to return without doing anything,
4816 * because the inode has been copied into a raw inode buffer in
4817 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4818 * writeback.
4820 * Note that we are absolutely dependent upon all inode dirtiers doing the
4821 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4822 * which we are interested.
4824 * It would be a bug for them to not do this. The code:
4826 * mark_inode_dirty(inode)
4827 * stuff();
4828 * inode->i_size = expr;
4830 * is in error because write_inode() could occur while `stuff()' is running,
4831 * and the new i_size will be lost. Plus the inode will no longer be on the
4832 * superblock's dirty inode list.
4834 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4836 int err;
4838 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4839 return 0;
4841 if (EXT4_SB(inode->i_sb)->s_journal) {
4842 if (ext4_journal_current_handle()) {
4843 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4844 dump_stack();
4845 return -EIO;
4849 * No need to force transaction in WB_SYNC_NONE mode. Also
4850 * ext4_sync_fs() will force the commit after everything is
4851 * written.
4853 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4854 return 0;
4856 err = ext4_force_commit(inode->i_sb);
4857 } else {
4858 struct ext4_iloc iloc;
4860 err = __ext4_get_inode_loc(inode, &iloc, 0);
4861 if (err)
4862 return err;
4864 * sync(2) will flush the whole buffer cache. No need to do
4865 * it here separately for each inode.
4867 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4868 sync_dirty_buffer(iloc.bh);
4869 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4870 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4871 "IO error syncing inode");
4872 err = -EIO;
4874 brelse(iloc.bh);
4876 return err;
4880 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4881 * buffers that are attached to a page stradding i_size and are undergoing
4882 * commit. In that case we have to wait for commit to finish and try again.
4884 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4886 struct page *page;
4887 unsigned offset;
4888 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4889 tid_t commit_tid = 0;
4890 int ret;
4892 offset = inode->i_size & (PAGE_SIZE - 1);
4894 * All buffers in the last page remain valid? Then there's nothing to
4895 * do. We do the check mainly to optimize the common PAGE_SIZE ==
4896 * blocksize case
4898 if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
4899 return;
4900 while (1) {
4901 page = find_lock_page(inode->i_mapping,
4902 inode->i_size >> PAGE_SHIFT);
4903 if (!page)
4904 return;
4905 ret = __ext4_journalled_invalidatepage(page, offset,
4906 PAGE_SIZE - offset);
4907 unlock_page(page);
4908 put_page(page);
4909 if (ret != -EBUSY)
4910 return;
4911 commit_tid = 0;
4912 read_lock(&journal->j_state_lock);
4913 if (journal->j_committing_transaction)
4914 commit_tid = journal->j_committing_transaction->t_tid;
4915 read_unlock(&journal->j_state_lock);
4916 if (commit_tid)
4917 jbd2_log_wait_commit(journal, commit_tid);
4922 * ext4_setattr()
4924 * Called from notify_change.
4926 * We want to trap VFS attempts to truncate the file as soon as
4927 * possible. In particular, we want to make sure that when the VFS
4928 * shrinks i_size, we put the inode on the orphan list and modify
4929 * i_disksize immediately, so that during the subsequent flushing of
4930 * dirty pages and freeing of disk blocks, we can guarantee that any
4931 * commit will leave the blocks being flushed in an unused state on
4932 * disk. (On recovery, the inode will get truncated and the blocks will
4933 * be freed, so we have a strong guarantee that no future commit will
4934 * leave these blocks visible to the user.)
4936 * Another thing we have to assure is that if we are in ordered mode
4937 * and inode is still attached to the committing transaction, we must
4938 * we start writeout of all the dirty pages which are being truncated.
4939 * This way we are sure that all the data written in the previous
4940 * transaction are already on disk (truncate waits for pages under
4941 * writeback).
4943 * Called with inode->i_mutex down.
4945 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4947 struct inode *inode = d_inode(dentry);
4948 int error, rc = 0;
4949 int orphan = 0;
4950 const unsigned int ia_valid = attr->ia_valid;
4952 error = inode_change_ok(inode, attr);
4953 if (error)
4954 return error;
4956 if (is_quota_modification(inode, attr)) {
4957 error = dquot_initialize(inode);
4958 if (error)
4959 return error;
4961 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4962 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4963 handle_t *handle;
4965 /* (user+group)*(old+new) structure, inode write (sb,
4966 * inode block, ? - but truncate inode update has it) */
4967 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4968 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4969 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4970 if (IS_ERR(handle)) {
4971 error = PTR_ERR(handle);
4972 goto err_out;
4974 error = dquot_transfer(inode, attr);
4975 if (error) {
4976 ext4_journal_stop(handle);
4977 return error;
4979 /* Update corresponding info in inode so that everything is in
4980 * one transaction */
4981 if (attr->ia_valid & ATTR_UID)
4982 inode->i_uid = attr->ia_uid;
4983 if (attr->ia_valid & ATTR_GID)
4984 inode->i_gid = attr->ia_gid;
4985 error = ext4_mark_inode_dirty(handle, inode);
4986 ext4_journal_stop(handle);
4989 if (attr->ia_valid & ATTR_SIZE) {
4990 handle_t *handle;
4991 loff_t oldsize = inode->i_size;
4992 int shrink = (attr->ia_size <= inode->i_size);
4994 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4995 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4997 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4998 return -EFBIG;
5000 if (!S_ISREG(inode->i_mode))
5001 return -EINVAL;
5003 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5004 inode_inc_iversion(inode);
5006 if (ext4_should_order_data(inode) &&
5007 (attr->ia_size < inode->i_size)) {
5008 error = ext4_begin_ordered_truncate(inode,
5009 attr->ia_size);
5010 if (error)
5011 goto err_out;
5013 if (attr->ia_size != inode->i_size) {
5014 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5015 if (IS_ERR(handle)) {
5016 error = PTR_ERR(handle);
5017 goto err_out;
5019 if (ext4_handle_valid(handle) && shrink) {
5020 error = ext4_orphan_add(handle, inode);
5021 orphan = 1;
5024 * Update c/mtime on truncate up, ext4_truncate() will
5025 * update c/mtime in shrink case below
5027 if (!shrink) {
5028 inode->i_mtime = ext4_current_time(inode);
5029 inode->i_ctime = inode->i_mtime;
5031 down_write(&EXT4_I(inode)->i_data_sem);
5032 EXT4_I(inode)->i_disksize = attr->ia_size;
5033 rc = ext4_mark_inode_dirty(handle, inode);
5034 if (!error)
5035 error = rc;
5037 * We have to update i_size under i_data_sem together
5038 * with i_disksize to avoid races with writeback code
5039 * running ext4_wb_update_i_disksize().
5041 if (!error)
5042 i_size_write(inode, attr->ia_size);
5043 up_write(&EXT4_I(inode)->i_data_sem);
5044 ext4_journal_stop(handle);
5045 if (error) {
5046 if (orphan)
5047 ext4_orphan_del(NULL, inode);
5048 goto err_out;
5051 if (!shrink)
5052 pagecache_isize_extended(inode, oldsize, inode->i_size);
5055 * Blocks are going to be removed from the inode. Wait
5056 * for dio in flight. Temporarily disable
5057 * dioread_nolock to prevent livelock.
5059 if (orphan) {
5060 if (!ext4_should_journal_data(inode)) {
5061 ext4_inode_block_unlocked_dio(inode);
5062 inode_dio_wait(inode);
5063 ext4_inode_resume_unlocked_dio(inode);
5064 } else
5065 ext4_wait_for_tail_page_commit(inode);
5067 down_write(&EXT4_I(inode)->i_mmap_sem);
5069 * Truncate pagecache after we've waited for commit
5070 * in data=journal mode to make pages freeable.
5072 truncate_pagecache(inode, inode->i_size);
5073 if (shrink)
5074 ext4_truncate(inode);
5075 up_write(&EXT4_I(inode)->i_mmap_sem);
5078 if (!rc) {
5079 setattr_copy(inode, attr);
5080 mark_inode_dirty(inode);
5084 * If the call to ext4_truncate failed to get a transaction handle at
5085 * all, we need to clean up the in-core orphan list manually.
5087 if (orphan && inode->i_nlink)
5088 ext4_orphan_del(NULL, inode);
5090 if (!rc && (ia_valid & ATTR_MODE))
5091 rc = posix_acl_chmod(inode, inode->i_mode);
5093 err_out:
5094 ext4_std_error(inode->i_sb, error);
5095 if (!error)
5096 error = rc;
5097 return error;
5100 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5101 struct kstat *stat)
5103 struct inode *inode;
5104 unsigned long long delalloc_blocks;
5106 inode = d_inode(dentry);
5107 generic_fillattr(inode, stat);
5110 * If there is inline data in the inode, the inode will normally not
5111 * have data blocks allocated (it may have an external xattr block).
5112 * Report at least one sector for such files, so tools like tar, rsync,
5113 * others doen't incorrectly think the file is completely sparse.
5115 if (unlikely(ext4_has_inline_data(inode)))
5116 stat->blocks += (stat->size + 511) >> 9;
5119 * We can't update i_blocks if the block allocation is delayed
5120 * otherwise in the case of system crash before the real block
5121 * allocation is done, we will have i_blocks inconsistent with
5122 * on-disk file blocks.
5123 * We always keep i_blocks updated together with real
5124 * allocation. But to not confuse with user, stat
5125 * will return the blocks that include the delayed allocation
5126 * blocks for this file.
5128 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5129 EXT4_I(inode)->i_reserved_data_blocks);
5130 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5131 return 0;
5134 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5135 int pextents)
5137 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5138 return ext4_ind_trans_blocks(inode, lblocks);
5139 return ext4_ext_index_trans_blocks(inode, pextents);
5143 * Account for index blocks, block groups bitmaps and block group
5144 * descriptor blocks if modify datablocks and index blocks
5145 * worse case, the indexs blocks spread over different block groups
5147 * If datablocks are discontiguous, they are possible to spread over
5148 * different block groups too. If they are contiguous, with flexbg,
5149 * they could still across block group boundary.
5151 * Also account for superblock, inode, quota and xattr blocks
5153 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5154 int pextents)
5156 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5157 int gdpblocks;
5158 int idxblocks;
5159 int ret = 0;
5162 * How many index blocks need to touch to map @lblocks logical blocks
5163 * to @pextents physical extents?
5165 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5167 ret = idxblocks;
5170 * Now let's see how many group bitmaps and group descriptors need
5171 * to account
5173 groups = idxblocks + pextents;
5174 gdpblocks = groups;
5175 if (groups > ngroups)
5176 groups = ngroups;
5177 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5178 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5180 /* bitmaps and block group descriptor blocks */
5181 ret += groups + gdpblocks;
5183 /* Blocks for super block, inode, quota and xattr blocks */
5184 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5186 return ret;
5190 * Calculate the total number of credits to reserve to fit
5191 * the modification of a single pages into a single transaction,
5192 * which may include multiple chunks of block allocations.
5194 * This could be called via ext4_write_begin()
5196 * We need to consider the worse case, when
5197 * one new block per extent.
5199 int ext4_writepage_trans_blocks(struct inode *inode)
5201 int bpp = ext4_journal_blocks_per_page(inode);
5202 int ret;
5204 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5206 /* Account for data blocks for journalled mode */
5207 if (ext4_should_journal_data(inode))
5208 ret += bpp;
5209 return ret;
5213 * Calculate the journal credits for a chunk of data modification.
5215 * This is called from DIO, fallocate or whoever calling
5216 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5218 * journal buffers for data blocks are not included here, as DIO
5219 * and fallocate do no need to journal data buffers.
5221 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5223 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5227 * The caller must have previously called ext4_reserve_inode_write().
5228 * Give this, we know that the caller already has write access to iloc->bh.
5230 int ext4_mark_iloc_dirty(handle_t *handle,
5231 struct inode *inode, struct ext4_iloc *iloc)
5233 int err = 0;
5235 if (IS_I_VERSION(inode))
5236 inode_inc_iversion(inode);
5238 /* the do_update_inode consumes one bh->b_count */
5239 get_bh(iloc->bh);
5241 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5242 err = ext4_do_update_inode(handle, inode, iloc);
5243 put_bh(iloc->bh);
5244 return err;
5248 * On success, We end up with an outstanding reference count against
5249 * iloc->bh. This _must_ be cleaned up later.
5253 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5254 struct ext4_iloc *iloc)
5256 int err;
5258 err = ext4_get_inode_loc(inode, iloc);
5259 if (!err) {
5260 BUFFER_TRACE(iloc->bh, "get_write_access");
5261 err = ext4_journal_get_write_access(handle, iloc->bh);
5262 if (err) {
5263 brelse(iloc->bh);
5264 iloc->bh = NULL;
5267 ext4_std_error(inode->i_sb, err);
5268 return err;
5272 * Expand an inode by new_extra_isize bytes.
5273 * Returns 0 on success or negative error number on failure.
5275 static int ext4_expand_extra_isize(struct inode *inode,
5276 unsigned int new_extra_isize,
5277 struct ext4_iloc iloc,
5278 handle_t *handle)
5280 struct ext4_inode *raw_inode;
5281 struct ext4_xattr_ibody_header *header;
5283 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5284 return 0;
5286 raw_inode = ext4_raw_inode(&iloc);
5288 header = IHDR(inode, raw_inode);
5290 /* No extended attributes present */
5291 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5292 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5293 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5294 new_extra_isize);
5295 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5296 return 0;
5299 /* try to expand with EAs present */
5300 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5301 raw_inode, handle);
5305 * What we do here is to mark the in-core inode as clean with respect to inode
5306 * dirtiness (it may still be data-dirty).
5307 * This means that the in-core inode may be reaped by prune_icache
5308 * without having to perform any I/O. This is a very good thing,
5309 * because *any* task may call prune_icache - even ones which
5310 * have a transaction open against a different journal.
5312 * Is this cheating? Not really. Sure, we haven't written the
5313 * inode out, but prune_icache isn't a user-visible syncing function.
5314 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5315 * we start and wait on commits.
5317 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5319 struct ext4_iloc iloc;
5320 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5321 static unsigned int mnt_count;
5322 int err, ret;
5324 might_sleep();
5325 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5326 err = ext4_reserve_inode_write(handle, inode, &iloc);
5327 if (err)
5328 return err;
5329 if (ext4_handle_valid(handle) &&
5330 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5331 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5333 * We need extra buffer credits since we may write into EA block
5334 * with this same handle. If journal_extend fails, then it will
5335 * only result in a minor loss of functionality for that inode.
5336 * If this is felt to be critical, then e2fsck should be run to
5337 * force a large enough s_min_extra_isize.
5339 if ((jbd2_journal_extend(handle,
5340 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5341 ret = ext4_expand_extra_isize(inode,
5342 sbi->s_want_extra_isize,
5343 iloc, handle);
5344 if (ret) {
5345 ext4_set_inode_state(inode,
5346 EXT4_STATE_NO_EXPAND);
5347 if (mnt_count !=
5348 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5349 ext4_warning(inode->i_sb,
5350 "Unable to expand inode %lu. Delete"
5351 " some EAs or run e2fsck.",
5352 inode->i_ino);
5353 mnt_count =
5354 le16_to_cpu(sbi->s_es->s_mnt_count);
5359 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5363 * ext4_dirty_inode() is called from __mark_inode_dirty()
5365 * We're really interested in the case where a file is being extended.
5366 * i_size has been changed by generic_commit_write() and we thus need
5367 * to include the updated inode in the current transaction.
5369 * Also, dquot_alloc_block() will always dirty the inode when blocks
5370 * are allocated to the file.
5372 * If the inode is marked synchronous, we don't honour that here - doing
5373 * so would cause a commit on atime updates, which we don't bother doing.
5374 * We handle synchronous inodes at the highest possible level.
5376 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5377 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5378 * to copy into the on-disk inode structure are the timestamp files.
5380 void ext4_dirty_inode(struct inode *inode, int flags)
5382 handle_t *handle;
5384 if (flags == I_DIRTY_TIME)
5385 return;
5386 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5387 if (IS_ERR(handle))
5388 goto out;
5390 ext4_mark_inode_dirty(handle, inode);
5392 ext4_journal_stop(handle);
5393 out:
5394 return;
5397 #if 0
5399 * Bind an inode's backing buffer_head into this transaction, to prevent
5400 * it from being flushed to disk early. Unlike
5401 * ext4_reserve_inode_write, this leaves behind no bh reference and
5402 * returns no iloc structure, so the caller needs to repeat the iloc
5403 * lookup to mark the inode dirty later.
5405 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5407 struct ext4_iloc iloc;
5409 int err = 0;
5410 if (handle) {
5411 err = ext4_get_inode_loc(inode, &iloc);
5412 if (!err) {
5413 BUFFER_TRACE(iloc.bh, "get_write_access");
5414 err = jbd2_journal_get_write_access(handle, iloc.bh);
5415 if (!err)
5416 err = ext4_handle_dirty_metadata(handle,
5417 NULL,
5418 iloc.bh);
5419 brelse(iloc.bh);
5422 ext4_std_error(inode->i_sb, err);
5423 return err;
5425 #endif
5427 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5429 journal_t *journal;
5430 handle_t *handle;
5431 int err;
5434 * We have to be very careful here: changing a data block's
5435 * journaling status dynamically is dangerous. If we write a
5436 * data block to the journal, change the status and then delete
5437 * that block, we risk forgetting to revoke the old log record
5438 * from the journal and so a subsequent replay can corrupt data.
5439 * So, first we make sure that the journal is empty and that
5440 * nobody is changing anything.
5443 journal = EXT4_JOURNAL(inode);
5444 if (!journal)
5445 return 0;
5446 if (is_journal_aborted(journal))
5447 return -EROFS;
5448 /* We have to allocate physical blocks for delalloc blocks
5449 * before flushing journal. otherwise delalloc blocks can not
5450 * be allocated any more. even more truncate on delalloc blocks
5451 * could trigger BUG by flushing delalloc blocks in journal.
5452 * There is no delalloc block in non-journal data mode.
5454 if (val && test_opt(inode->i_sb, DELALLOC)) {
5455 err = ext4_alloc_da_blocks(inode);
5456 if (err < 0)
5457 return err;
5460 /* Wait for all existing dio workers */
5461 ext4_inode_block_unlocked_dio(inode);
5462 inode_dio_wait(inode);
5464 jbd2_journal_lock_updates(journal);
5467 * OK, there are no updates running now, and all cached data is
5468 * synced to disk. We are now in a completely consistent state
5469 * which doesn't have anything in the journal, and we know that
5470 * no filesystem updates are running, so it is safe to modify
5471 * the inode's in-core data-journaling state flag now.
5474 if (val)
5475 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5476 else {
5477 err = jbd2_journal_flush(journal);
5478 if (err < 0) {
5479 jbd2_journal_unlock_updates(journal);
5480 ext4_inode_resume_unlocked_dio(inode);
5481 return err;
5483 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5485 ext4_set_aops(inode);
5487 jbd2_journal_unlock_updates(journal);
5488 ext4_inode_resume_unlocked_dio(inode);
5490 /* Finally we can mark the inode as dirty. */
5492 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5493 if (IS_ERR(handle))
5494 return PTR_ERR(handle);
5496 err = ext4_mark_inode_dirty(handle, inode);
5497 ext4_handle_sync(handle);
5498 ext4_journal_stop(handle);
5499 ext4_std_error(inode->i_sb, err);
5501 return err;
5504 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5506 return !buffer_mapped(bh);
5509 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5511 struct page *page = vmf->page;
5512 loff_t size;
5513 unsigned long len;
5514 int ret;
5515 struct file *file = vma->vm_file;
5516 struct inode *inode = file_inode(file);
5517 struct address_space *mapping = inode->i_mapping;
5518 handle_t *handle;
5519 get_block_t *get_block;
5520 int retries = 0;
5522 sb_start_pagefault(inode->i_sb);
5523 file_update_time(vma->vm_file);
5525 down_read(&EXT4_I(inode)->i_mmap_sem);
5526 /* Delalloc case is easy... */
5527 if (test_opt(inode->i_sb, DELALLOC) &&
5528 !ext4_should_journal_data(inode) &&
5529 !ext4_nonda_switch(inode->i_sb)) {
5530 do {
5531 ret = block_page_mkwrite(vma, vmf,
5532 ext4_da_get_block_prep);
5533 } while (ret == -ENOSPC &&
5534 ext4_should_retry_alloc(inode->i_sb, &retries));
5535 goto out_ret;
5538 lock_page(page);
5539 size = i_size_read(inode);
5540 /* Page got truncated from under us? */
5541 if (page->mapping != mapping || page_offset(page) > size) {
5542 unlock_page(page);
5543 ret = VM_FAULT_NOPAGE;
5544 goto out;
5547 if (page->index == size >> PAGE_SHIFT)
5548 len = size & ~PAGE_MASK;
5549 else
5550 len = PAGE_SIZE;
5552 * Return if we have all the buffers mapped. This avoids the need to do
5553 * journal_start/journal_stop which can block and take a long time
5555 if (page_has_buffers(page)) {
5556 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5557 0, len, NULL,
5558 ext4_bh_unmapped)) {
5559 /* Wait so that we don't change page under IO */
5560 wait_for_stable_page(page);
5561 ret = VM_FAULT_LOCKED;
5562 goto out;
5565 unlock_page(page);
5566 /* OK, we need to fill the hole... */
5567 if (ext4_should_dioread_nolock(inode))
5568 get_block = ext4_get_block_unwritten;
5569 else
5570 get_block = ext4_get_block;
5571 retry_alloc:
5572 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5573 ext4_writepage_trans_blocks(inode));
5574 if (IS_ERR(handle)) {
5575 ret = VM_FAULT_SIGBUS;
5576 goto out;
5578 ret = block_page_mkwrite(vma, vmf, get_block);
5579 if (!ret && ext4_should_journal_data(inode)) {
5580 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5581 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5582 unlock_page(page);
5583 ret = VM_FAULT_SIGBUS;
5584 ext4_journal_stop(handle);
5585 goto out;
5587 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5589 ext4_journal_stop(handle);
5590 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5591 goto retry_alloc;
5592 out_ret:
5593 ret = block_page_mkwrite_return(ret);
5594 out:
5595 up_read(&EXT4_I(inode)->i_mmap_sem);
5596 sb_end_pagefault(inode->i_sb);
5597 return ret;
5600 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5602 struct inode *inode = file_inode(vma->vm_file);
5603 int err;
5605 down_read(&EXT4_I(inode)->i_mmap_sem);
5606 err = filemap_fault(vma, vmf);
5607 up_read(&EXT4_I(inode)->i_mmap_sem);
5609 return err;
5613 * Find the first extent at or after @lblk in an inode that is not a hole.
5614 * Search for @map_len blocks at most. The extent is returned in @result.
5616 * The function returns 1 if we found an extent. The function returns 0 in
5617 * case there is no extent at or after @lblk and in that case also sets
5618 * @result->es_len to 0. In case of error, the error code is returned.
5620 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5621 unsigned int map_len, struct extent_status *result)
5623 struct ext4_map_blocks map;
5624 struct extent_status es = {};
5625 int ret;
5627 map.m_lblk = lblk;
5628 map.m_len = map_len;
5631 * For non-extent based files this loop may iterate several times since
5632 * we do not determine full hole size.
5634 while (map.m_len > 0) {
5635 ret = ext4_map_blocks(NULL, inode, &map, 0);
5636 if (ret < 0)
5637 return ret;
5638 /* There's extent covering m_lblk? Just return it. */
5639 if (ret > 0) {
5640 int status;
5642 ext4_es_store_pblock(result, map.m_pblk);
5643 result->es_lblk = map.m_lblk;
5644 result->es_len = map.m_len;
5645 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5646 status = EXTENT_STATUS_UNWRITTEN;
5647 else
5648 status = EXTENT_STATUS_WRITTEN;
5649 ext4_es_store_status(result, status);
5650 return 1;
5652 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5653 map.m_lblk + map.m_len - 1,
5654 &es);
5655 /* Is delalloc data before next block in extent tree? */
5656 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5657 ext4_lblk_t offset = 0;
5659 if (es.es_lblk < lblk)
5660 offset = lblk - es.es_lblk;
5661 result->es_lblk = es.es_lblk + offset;
5662 ext4_es_store_pblock(result,
5663 ext4_es_pblock(&es) + offset);
5664 result->es_len = es.es_len - offset;
5665 ext4_es_store_status(result, ext4_es_status(&es));
5667 return 1;
5669 /* There's a hole at m_lblk, advance us after it */
5670 map.m_lblk += map.m_len;
5671 map_len -= map.m_len;
5672 map.m_len = map_len;
5673 cond_resched();
5675 result->es_len = 0;
5676 return 0;