4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
23 #include <trace/events/f2fs.h>
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
27 static struct kmem_cache
*nat_entry_slab
;
28 static struct kmem_cache
*free_nid_slab
;
29 static struct kmem_cache
*nat_entry_set_slab
;
31 bool available_free_memory(struct f2fs_sb_info
*sbi
, int type
)
33 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
35 unsigned long avail_ram
;
36 unsigned long mem_size
= 0;
41 /* only uses low memory */
42 avail_ram
= val
.totalram
- val
.totalhigh
;
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 if (type
== FREE_NIDS
) {
48 mem_size
= (nm_i
->fcnt
* sizeof(struct free_nid
)) >>
50 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
51 } else if (type
== NAT_ENTRIES
) {
52 mem_size
= (nm_i
->nat_cnt
* sizeof(struct nat_entry
)) >>
54 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
55 } else if (type
== DIRTY_DENTS
) {
56 if (sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
58 mem_size
= get_pages(sbi
, F2FS_DIRTY_DENTS
);
59 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
60 } else if (type
== INO_ENTRIES
) {
63 for (i
= 0; i
<= UPDATE_INO
; i
++)
64 mem_size
+= (sbi
->im
[i
].ino_num
*
65 sizeof(struct ino_entry
)) >> PAGE_SHIFT
;
66 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
67 } else if (type
== EXTENT_CACHE
) {
68 mem_size
= (atomic_read(&sbi
->total_ext_tree
) *
69 sizeof(struct extent_tree
) +
70 atomic_read(&sbi
->total_ext_node
) *
71 sizeof(struct extent_node
)) >> PAGE_SHIFT
;
72 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
74 if (!sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
80 static void clear_node_page_dirty(struct page
*page
)
82 struct address_space
*mapping
= page
->mapping
;
83 unsigned int long flags
;
85 if (PageDirty(page
)) {
86 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
87 radix_tree_tag_clear(&mapping
->page_tree
,
90 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
92 clear_page_dirty_for_io(page
);
93 dec_page_count(F2FS_M_SB(mapping
), F2FS_DIRTY_NODES
);
95 ClearPageUptodate(page
);
98 static struct page
*get_current_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
100 pgoff_t index
= current_nat_addr(sbi
, nid
);
101 return get_meta_page(sbi
, index
);
104 static struct page
*get_next_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
106 struct page
*src_page
;
107 struct page
*dst_page
;
112 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
114 src_off
= current_nat_addr(sbi
, nid
);
115 dst_off
= next_nat_addr(sbi
, src_off
);
117 /* get current nat block page with lock */
118 src_page
= get_meta_page(sbi
, src_off
);
119 dst_page
= grab_meta_page(sbi
, dst_off
);
120 f2fs_bug_on(sbi
, PageDirty(src_page
));
122 src_addr
= page_address(src_page
);
123 dst_addr
= page_address(dst_page
);
124 memcpy(dst_addr
, src_addr
, PAGE_SIZE
);
125 set_page_dirty(dst_page
);
126 f2fs_put_page(src_page
, 1);
128 set_to_next_nat(nm_i
, nid
);
133 static struct nat_entry
*__lookup_nat_cache(struct f2fs_nm_info
*nm_i
, nid_t n
)
135 return radix_tree_lookup(&nm_i
->nat_root
, n
);
138 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info
*nm_i
,
139 nid_t start
, unsigned int nr
, struct nat_entry
**ep
)
141 return radix_tree_gang_lookup(&nm_i
->nat_root
, (void **)ep
, start
, nr
);
144 static void __del_from_nat_cache(struct f2fs_nm_info
*nm_i
, struct nat_entry
*e
)
147 radix_tree_delete(&nm_i
->nat_root
, nat_get_nid(e
));
149 kmem_cache_free(nat_entry_slab
, e
);
152 static void __set_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
153 struct nat_entry
*ne
)
155 nid_t set
= NAT_BLOCK_OFFSET(ne
->ni
.nid
);
156 struct nat_entry_set
*head
;
158 if (get_nat_flag(ne
, IS_DIRTY
))
161 head
= radix_tree_lookup(&nm_i
->nat_set_root
, set
);
163 head
= f2fs_kmem_cache_alloc(nat_entry_set_slab
, GFP_NOFS
);
165 INIT_LIST_HEAD(&head
->entry_list
);
166 INIT_LIST_HEAD(&head
->set_list
);
169 f2fs_radix_tree_insert(&nm_i
->nat_set_root
, set
, head
);
171 list_move_tail(&ne
->list
, &head
->entry_list
);
172 nm_i
->dirty_nat_cnt
++;
174 set_nat_flag(ne
, IS_DIRTY
, true);
177 static void __clear_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
178 struct nat_entry
*ne
)
180 nid_t set
= NAT_BLOCK_OFFSET(ne
->ni
.nid
);
181 struct nat_entry_set
*head
;
183 head
= radix_tree_lookup(&nm_i
->nat_set_root
, set
);
185 list_move_tail(&ne
->list
, &nm_i
->nat_entries
);
186 set_nat_flag(ne
, IS_DIRTY
, false);
188 nm_i
->dirty_nat_cnt
--;
192 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info
*nm_i
,
193 nid_t start
, unsigned int nr
, struct nat_entry_set
**ep
)
195 return radix_tree_gang_lookup(&nm_i
->nat_set_root
, (void **)ep
,
199 int need_dentry_mark(struct f2fs_sb_info
*sbi
, nid_t nid
)
201 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
205 down_read(&nm_i
->nat_tree_lock
);
206 e
= __lookup_nat_cache(nm_i
, nid
);
208 if (!get_nat_flag(e
, IS_CHECKPOINTED
) &&
209 !get_nat_flag(e
, HAS_FSYNCED_INODE
))
212 up_read(&nm_i
->nat_tree_lock
);
216 bool is_checkpointed_node(struct f2fs_sb_info
*sbi
, nid_t nid
)
218 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
222 down_read(&nm_i
->nat_tree_lock
);
223 e
= __lookup_nat_cache(nm_i
, nid
);
224 if (e
&& !get_nat_flag(e
, IS_CHECKPOINTED
))
226 up_read(&nm_i
->nat_tree_lock
);
230 bool need_inode_block_update(struct f2fs_sb_info
*sbi
, nid_t ino
)
232 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
234 bool need_update
= true;
236 down_read(&nm_i
->nat_tree_lock
);
237 e
= __lookup_nat_cache(nm_i
, ino
);
238 if (e
&& get_nat_flag(e
, HAS_LAST_FSYNC
) &&
239 (get_nat_flag(e
, IS_CHECKPOINTED
) ||
240 get_nat_flag(e
, HAS_FSYNCED_INODE
)))
242 up_read(&nm_i
->nat_tree_lock
);
246 static struct nat_entry
*grab_nat_entry(struct f2fs_nm_info
*nm_i
, nid_t nid
)
248 struct nat_entry
*new;
250 new = f2fs_kmem_cache_alloc(nat_entry_slab
, GFP_NOFS
);
251 f2fs_radix_tree_insert(&nm_i
->nat_root
, nid
, new);
252 memset(new, 0, sizeof(struct nat_entry
));
253 nat_set_nid(new, nid
);
255 list_add_tail(&new->list
, &nm_i
->nat_entries
);
260 static void cache_nat_entry(struct f2fs_sb_info
*sbi
, nid_t nid
,
261 struct f2fs_nat_entry
*ne
)
263 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
266 e
= __lookup_nat_cache(nm_i
, nid
);
268 e
= grab_nat_entry(nm_i
, nid
);
269 node_info_from_raw_nat(&e
->ni
, ne
);
271 f2fs_bug_on(sbi
, nat_get_ino(e
) != ne
->ino
||
272 nat_get_blkaddr(e
) != ne
->block_addr
||
273 nat_get_version(e
) != ne
->version
);
277 static void set_node_addr(struct f2fs_sb_info
*sbi
, struct node_info
*ni
,
278 block_t new_blkaddr
, bool fsync_done
)
280 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
283 down_write(&nm_i
->nat_tree_lock
);
284 e
= __lookup_nat_cache(nm_i
, ni
->nid
);
286 e
= grab_nat_entry(nm_i
, ni
->nid
);
287 copy_node_info(&e
->ni
, ni
);
288 f2fs_bug_on(sbi
, ni
->blk_addr
== NEW_ADDR
);
289 } else if (new_blkaddr
== NEW_ADDR
) {
291 * when nid is reallocated,
292 * previous nat entry can be remained in nat cache.
293 * So, reinitialize it with new information.
295 copy_node_info(&e
->ni
, ni
);
296 f2fs_bug_on(sbi
, ni
->blk_addr
!= NULL_ADDR
);
300 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != ni
->blk_addr
);
301 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NULL_ADDR
&&
302 new_blkaddr
== NULL_ADDR
);
303 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NEW_ADDR
&&
304 new_blkaddr
== NEW_ADDR
);
305 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != NEW_ADDR
&&
306 nat_get_blkaddr(e
) != NULL_ADDR
&&
307 new_blkaddr
== NEW_ADDR
);
309 /* increment version no as node is removed */
310 if (nat_get_blkaddr(e
) != NEW_ADDR
&& new_blkaddr
== NULL_ADDR
) {
311 unsigned char version
= nat_get_version(e
);
312 nat_set_version(e
, inc_node_version(version
));
314 /* in order to reuse the nid */
315 if (nm_i
->next_scan_nid
> ni
->nid
)
316 nm_i
->next_scan_nid
= ni
->nid
;
320 nat_set_blkaddr(e
, new_blkaddr
);
321 if (new_blkaddr
== NEW_ADDR
|| new_blkaddr
== NULL_ADDR
)
322 set_nat_flag(e
, IS_CHECKPOINTED
, false);
323 __set_nat_cache_dirty(nm_i
, e
);
325 /* update fsync_mark if its inode nat entry is still alive */
326 if (ni
->nid
!= ni
->ino
)
327 e
= __lookup_nat_cache(nm_i
, ni
->ino
);
329 if (fsync_done
&& ni
->nid
== ni
->ino
)
330 set_nat_flag(e
, HAS_FSYNCED_INODE
, true);
331 set_nat_flag(e
, HAS_LAST_FSYNC
, fsync_done
);
333 up_write(&nm_i
->nat_tree_lock
);
336 int try_to_free_nats(struct f2fs_sb_info
*sbi
, int nr_shrink
)
338 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
341 if (!down_write_trylock(&nm_i
->nat_tree_lock
))
344 while (nr_shrink
&& !list_empty(&nm_i
->nat_entries
)) {
345 struct nat_entry
*ne
;
346 ne
= list_first_entry(&nm_i
->nat_entries
,
347 struct nat_entry
, list
);
348 __del_from_nat_cache(nm_i
, ne
);
351 up_write(&nm_i
->nat_tree_lock
);
352 return nr
- nr_shrink
;
356 * This function always returns success
358 void get_node_info(struct f2fs_sb_info
*sbi
, nid_t nid
, struct node_info
*ni
)
360 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
361 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
362 struct f2fs_journal
*journal
= curseg
->journal
;
363 nid_t start_nid
= START_NID(nid
);
364 struct f2fs_nat_block
*nat_blk
;
365 struct page
*page
= NULL
;
366 struct f2fs_nat_entry ne
;
372 /* Check nat cache */
373 down_read(&nm_i
->nat_tree_lock
);
374 e
= __lookup_nat_cache(nm_i
, nid
);
376 ni
->ino
= nat_get_ino(e
);
377 ni
->blk_addr
= nat_get_blkaddr(e
);
378 ni
->version
= nat_get_version(e
);
379 up_read(&nm_i
->nat_tree_lock
);
383 memset(&ne
, 0, sizeof(struct f2fs_nat_entry
));
385 /* Check current segment summary */
386 down_read(&curseg
->journal_rwsem
);
387 i
= lookup_journal_in_cursum(journal
, NAT_JOURNAL
, nid
, 0);
389 ne
= nat_in_journal(journal
, i
);
390 node_info_from_raw_nat(ni
, &ne
);
392 up_read(&curseg
->journal_rwsem
);
396 /* Fill node_info from nat page */
397 page
= get_current_nat_page(sbi
, start_nid
);
398 nat_blk
= (struct f2fs_nat_block
*)page_address(page
);
399 ne
= nat_blk
->entries
[nid
- start_nid
];
400 node_info_from_raw_nat(ni
, &ne
);
401 f2fs_put_page(page
, 1);
403 up_read(&nm_i
->nat_tree_lock
);
404 /* cache nat entry */
405 down_write(&nm_i
->nat_tree_lock
);
406 cache_nat_entry(sbi
, nid
, &ne
);
407 up_write(&nm_i
->nat_tree_lock
);
410 pgoff_t
get_next_page_offset(struct dnode_of_data
*dn
, pgoff_t pgofs
)
412 const long direct_index
= ADDRS_PER_INODE(dn
->inode
);
413 const long direct_blks
= ADDRS_PER_BLOCK
;
414 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
415 unsigned int skipped_unit
= ADDRS_PER_BLOCK
;
416 int cur_level
= dn
->cur_level
;
417 int max_level
= dn
->max_level
;
423 while (max_level
-- > cur_level
)
424 skipped_unit
*= NIDS_PER_BLOCK
;
426 switch (dn
->max_level
) {
428 base
+= 2 * indirect_blks
;
430 base
+= 2 * direct_blks
;
432 base
+= direct_index
;
435 f2fs_bug_on(F2FS_I_SB(dn
->inode
), 1);
438 return ((pgofs
- base
) / skipped_unit
+ 1) * skipped_unit
+ base
;
442 * The maximum depth is four.
443 * Offset[0] will have raw inode offset.
445 static int get_node_path(struct inode
*inode
, long block
,
446 int offset
[4], unsigned int noffset
[4])
448 const long direct_index
= ADDRS_PER_INODE(inode
);
449 const long direct_blks
= ADDRS_PER_BLOCK
;
450 const long dptrs_per_blk
= NIDS_PER_BLOCK
;
451 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
452 const long dindirect_blks
= indirect_blks
* NIDS_PER_BLOCK
;
458 if (block
< direct_index
) {
462 block
-= direct_index
;
463 if (block
< direct_blks
) {
464 offset
[n
++] = NODE_DIR1_BLOCK
;
470 block
-= direct_blks
;
471 if (block
< direct_blks
) {
472 offset
[n
++] = NODE_DIR2_BLOCK
;
478 block
-= direct_blks
;
479 if (block
< indirect_blks
) {
480 offset
[n
++] = NODE_IND1_BLOCK
;
482 offset
[n
++] = block
/ direct_blks
;
483 noffset
[n
] = 4 + offset
[n
- 1];
484 offset
[n
] = block
% direct_blks
;
488 block
-= indirect_blks
;
489 if (block
< indirect_blks
) {
490 offset
[n
++] = NODE_IND2_BLOCK
;
491 noffset
[n
] = 4 + dptrs_per_blk
;
492 offset
[n
++] = block
/ direct_blks
;
493 noffset
[n
] = 5 + dptrs_per_blk
+ offset
[n
- 1];
494 offset
[n
] = block
% direct_blks
;
498 block
-= indirect_blks
;
499 if (block
< dindirect_blks
) {
500 offset
[n
++] = NODE_DIND_BLOCK
;
501 noffset
[n
] = 5 + (dptrs_per_blk
* 2);
502 offset
[n
++] = block
/ indirect_blks
;
503 noffset
[n
] = 6 + (dptrs_per_blk
* 2) +
504 offset
[n
- 1] * (dptrs_per_blk
+ 1);
505 offset
[n
++] = (block
/ direct_blks
) % dptrs_per_blk
;
506 noffset
[n
] = 7 + (dptrs_per_blk
* 2) +
507 offset
[n
- 2] * (dptrs_per_blk
+ 1) +
509 offset
[n
] = block
% direct_blks
;
520 * Caller should call f2fs_put_dnode(dn).
521 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
522 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
523 * In the case of RDONLY_NODE, we don't need to care about mutex.
525 int get_dnode_of_data(struct dnode_of_data
*dn
, pgoff_t index
, int mode
)
527 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
528 struct page
*npage
[4];
529 struct page
*parent
= NULL
;
531 unsigned int noffset
[4];
536 level
= get_node_path(dn
->inode
, index
, offset
, noffset
);
538 nids
[0] = dn
->inode
->i_ino
;
539 npage
[0] = dn
->inode_page
;
542 npage
[0] = get_node_page(sbi
, nids
[0]);
543 if (IS_ERR(npage
[0]))
544 return PTR_ERR(npage
[0]);
547 /* if inline_data is set, should not report any block indices */
548 if (f2fs_has_inline_data(dn
->inode
) && index
) {
550 f2fs_put_page(npage
[0], 1);
556 nids
[1] = get_nid(parent
, offset
[0], true);
557 dn
->inode_page
= npage
[0];
558 dn
->inode_page_locked
= true;
560 /* get indirect or direct nodes */
561 for (i
= 1; i
<= level
; i
++) {
564 if (!nids
[i
] && mode
== ALLOC_NODE
) {
566 if (!alloc_nid(sbi
, &(nids
[i
]))) {
572 npage
[i
] = new_node_page(dn
, noffset
[i
], NULL
);
573 if (IS_ERR(npage
[i
])) {
574 alloc_nid_failed(sbi
, nids
[i
]);
575 err
= PTR_ERR(npage
[i
]);
579 set_nid(parent
, offset
[i
- 1], nids
[i
], i
== 1);
580 alloc_nid_done(sbi
, nids
[i
]);
582 } else if (mode
== LOOKUP_NODE_RA
&& i
== level
&& level
> 1) {
583 npage
[i
] = get_node_page_ra(parent
, offset
[i
- 1]);
584 if (IS_ERR(npage
[i
])) {
585 err
= PTR_ERR(npage
[i
]);
591 dn
->inode_page_locked
= false;
594 f2fs_put_page(parent
, 1);
598 npage
[i
] = get_node_page(sbi
, nids
[i
]);
599 if (IS_ERR(npage
[i
])) {
600 err
= PTR_ERR(npage
[i
]);
601 f2fs_put_page(npage
[0], 0);
607 nids
[i
+ 1] = get_nid(parent
, offset
[i
], false);
610 dn
->nid
= nids
[level
];
611 dn
->ofs_in_node
= offset
[level
];
612 dn
->node_page
= npage
[level
];
613 dn
->data_blkaddr
= datablock_addr(dn
->node_page
, dn
->ofs_in_node
);
617 f2fs_put_page(parent
, 1);
619 f2fs_put_page(npage
[0], 0);
621 dn
->inode_page
= NULL
;
622 dn
->node_page
= NULL
;
623 if (err
== -ENOENT
) {
625 dn
->max_level
= level
;
630 static void truncate_node(struct dnode_of_data
*dn
)
632 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
635 get_node_info(sbi
, dn
->nid
, &ni
);
636 if (dn
->inode
->i_blocks
== 0) {
637 f2fs_bug_on(sbi
, ni
.blk_addr
!= NULL_ADDR
);
640 f2fs_bug_on(sbi
, ni
.blk_addr
== NULL_ADDR
);
642 /* Deallocate node address */
643 invalidate_blocks(sbi
, ni
.blk_addr
);
644 dec_valid_node_count(sbi
, dn
->inode
);
645 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
647 if (dn
->nid
== dn
->inode
->i_ino
) {
648 remove_orphan_inode(sbi
, dn
->nid
);
649 dec_valid_inode_count(sbi
);
654 clear_node_page_dirty(dn
->node_page
);
655 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
657 f2fs_put_page(dn
->node_page
, 1);
659 invalidate_mapping_pages(NODE_MAPPING(sbi
),
660 dn
->node_page
->index
, dn
->node_page
->index
);
662 dn
->node_page
= NULL
;
663 trace_f2fs_truncate_node(dn
->inode
, dn
->nid
, ni
.blk_addr
);
666 static int truncate_dnode(struct dnode_of_data
*dn
)
673 /* get direct node */
674 page
= get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
675 if (IS_ERR(page
) && PTR_ERR(page
) == -ENOENT
)
677 else if (IS_ERR(page
))
678 return PTR_ERR(page
);
680 /* Make dnode_of_data for parameter */
681 dn
->node_page
= page
;
683 truncate_data_blocks(dn
);
688 static int truncate_nodes(struct dnode_of_data
*dn
, unsigned int nofs
,
691 struct dnode_of_data rdn
= *dn
;
693 struct f2fs_node
*rn
;
695 unsigned int child_nofs
;
700 return NIDS_PER_BLOCK
+ 1;
702 trace_f2fs_truncate_nodes_enter(dn
->inode
, dn
->nid
, dn
->data_blkaddr
);
704 page
= get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
706 trace_f2fs_truncate_nodes_exit(dn
->inode
, PTR_ERR(page
));
707 return PTR_ERR(page
);
710 rn
= F2FS_NODE(page
);
712 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++, freed
++) {
713 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
717 ret
= truncate_dnode(&rdn
);
720 if (set_nid(page
, i
, 0, false))
721 dn
->node_changed
= true;
724 child_nofs
= nofs
+ ofs
* (NIDS_PER_BLOCK
+ 1) + 1;
725 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++) {
726 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
727 if (child_nid
== 0) {
728 child_nofs
+= NIDS_PER_BLOCK
+ 1;
732 ret
= truncate_nodes(&rdn
, child_nofs
, 0, depth
- 1);
733 if (ret
== (NIDS_PER_BLOCK
+ 1)) {
734 if (set_nid(page
, i
, 0, false))
735 dn
->node_changed
= true;
737 } else if (ret
< 0 && ret
!= -ENOENT
) {
745 /* remove current indirect node */
746 dn
->node_page
= page
;
750 f2fs_put_page(page
, 1);
752 trace_f2fs_truncate_nodes_exit(dn
->inode
, freed
);
756 f2fs_put_page(page
, 1);
757 trace_f2fs_truncate_nodes_exit(dn
->inode
, ret
);
761 static int truncate_partial_nodes(struct dnode_of_data
*dn
,
762 struct f2fs_inode
*ri
, int *offset
, int depth
)
764 struct page
*pages
[2];
771 nid
[0] = le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
775 /* get indirect nodes in the path */
776 for (i
= 0; i
< idx
+ 1; i
++) {
777 /* reference count'll be increased */
778 pages
[i
] = get_node_page(F2FS_I_SB(dn
->inode
), nid
[i
]);
779 if (IS_ERR(pages
[i
])) {
780 err
= PTR_ERR(pages
[i
]);
784 nid
[i
+ 1] = get_nid(pages
[i
], offset
[i
+ 1], false);
787 /* free direct nodes linked to a partial indirect node */
788 for (i
= offset
[idx
+ 1]; i
< NIDS_PER_BLOCK
; i
++) {
789 child_nid
= get_nid(pages
[idx
], i
, false);
793 err
= truncate_dnode(dn
);
796 if (set_nid(pages
[idx
], i
, 0, false))
797 dn
->node_changed
= true;
800 if (offset
[idx
+ 1] == 0) {
801 dn
->node_page
= pages
[idx
];
805 f2fs_put_page(pages
[idx
], 1);
811 for (i
= idx
; i
>= 0; i
--)
812 f2fs_put_page(pages
[i
], 1);
814 trace_f2fs_truncate_partial_nodes(dn
->inode
, nid
, depth
, err
);
820 * All the block addresses of data and nodes should be nullified.
822 int truncate_inode_blocks(struct inode
*inode
, pgoff_t from
)
824 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
825 int err
= 0, cont
= 1;
826 int level
, offset
[4], noffset
[4];
827 unsigned int nofs
= 0;
828 struct f2fs_inode
*ri
;
829 struct dnode_of_data dn
;
832 trace_f2fs_truncate_inode_blocks_enter(inode
, from
);
834 level
= get_node_path(inode
, from
, offset
, noffset
);
836 page
= get_node_page(sbi
, inode
->i_ino
);
838 trace_f2fs_truncate_inode_blocks_exit(inode
, PTR_ERR(page
));
839 return PTR_ERR(page
);
842 set_new_dnode(&dn
, inode
, page
, NULL
, 0);
845 ri
= F2FS_INODE(page
);
853 if (!offset
[level
- 1])
855 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
856 if (err
< 0 && err
!= -ENOENT
)
858 nofs
+= 1 + NIDS_PER_BLOCK
;
861 nofs
= 5 + 2 * NIDS_PER_BLOCK
;
862 if (!offset
[level
- 1])
864 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
865 if (err
< 0 && err
!= -ENOENT
)
874 dn
.nid
= le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
876 case NODE_DIR1_BLOCK
:
877 case NODE_DIR2_BLOCK
:
878 err
= truncate_dnode(&dn
);
881 case NODE_IND1_BLOCK
:
882 case NODE_IND2_BLOCK
:
883 err
= truncate_nodes(&dn
, nofs
, offset
[1], 2);
886 case NODE_DIND_BLOCK
:
887 err
= truncate_nodes(&dn
, nofs
, offset
[1], 3);
894 if (err
< 0 && err
!= -ENOENT
)
896 if (offset
[1] == 0 &&
897 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]) {
899 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
900 f2fs_put_page(page
, 1);
903 f2fs_wait_on_page_writeback(page
, NODE
, true);
904 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
] = 0;
905 set_page_dirty(page
);
913 f2fs_put_page(page
, 0);
914 trace_f2fs_truncate_inode_blocks_exit(inode
, err
);
915 return err
> 0 ? 0 : err
;
918 int truncate_xattr_node(struct inode
*inode
, struct page
*page
)
920 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
921 nid_t nid
= F2FS_I(inode
)->i_xattr_nid
;
922 struct dnode_of_data dn
;
928 npage
= get_node_page(sbi
, nid
);
930 return PTR_ERR(npage
);
932 F2FS_I(inode
)->i_xattr_nid
= 0;
934 /* need to do checkpoint during fsync */
935 F2FS_I(inode
)->xattr_ver
= cur_cp_version(F2FS_CKPT(sbi
));
937 set_new_dnode(&dn
, inode
, page
, npage
, nid
);
940 dn
.inode_page_locked
= true;
946 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
949 int remove_inode_page(struct inode
*inode
)
951 struct dnode_of_data dn
;
954 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
955 err
= get_dnode_of_data(&dn
, 0, LOOKUP_NODE
);
959 err
= truncate_xattr_node(inode
, dn
.inode_page
);
965 /* remove potential inline_data blocks */
966 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
967 S_ISLNK(inode
->i_mode
))
968 truncate_data_blocks_range(&dn
, 1);
970 /* 0 is possible, after f2fs_new_inode() has failed */
971 f2fs_bug_on(F2FS_I_SB(inode
),
972 inode
->i_blocks
!= 0 && inode
->i_blocks
!= 1);
974 /* will put inode & node pages */
979 struct page
*new_inode_page(struct inode
*inode
)
981 struct dnode_of_data dn
;
983 /* allocate inode page for new inode */
984 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
986 /* caller should f2fs_put_page(page, 1); */
987 return new_node_page(&dn
, 0, NULL
);
990 struct page
*new_node_page(struct dnode_of_data
*dn
,
991 unsigned int ofs
, struct page
*ipage
)
993 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
994 struct node_info old_ni
, new_ni
;
998 if (unlikely(is_inode_flag_set(F2FS_I(dn
->inode
), FI_NO_ALLOC
)))
999 return ERR_PTR(-EPERM
);
1001 page
= grab_cache_page(NODE_MAPPING(sbi
), dn
->nid
);
1003 return ERR_PTR(-ENOMEM
);
1005 if (unlikely(!inc_valid_node_count(sbi
, dn
->inode
))) {
1010 get_node_info(sbi
, dn
->nid
, &old_ni
);
1012 /* Reinitialize old_ni with new node page */
1013 f2fs_bug_on(sbi
, old_ni
.blk_addr
!= NULL_ADDR
);
1015 new_ni
.ino
= dn
->inode
->i_ino
;
1016 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
1018 f2fs_wait_on_page_writeback(page
, NODE
, true);
1019 fill_node_footer(page
, dn
->nid
, dn
->inode
->i_ino
, ofs
, true);
1020 set_cold_node(dn
->inode
, page
);
1021 SetPageUptodate(page
);
1022 if (set_page_dirty(page
))
1023 dn
->node_changed
= true;
1025 if (f2fs_has_xattr_block(ofs
))
1026 F2FS_I(dn
->inode
)->i_xattr_nid
= dn
->nid
;
1028 dn
->node_page
= page
;
1030 update_inode(dn
->inode
, ipage
);
1032 sync_inode_page(dn
);
1034 inc_valid_inode_count(sbi
);
1039 clear_node_page_dirty(page
);
1040 f2fs_put_page(page
, 1);
1041 return ERR_PTR(err
);
1045 * Caller should do after getting the following values.
1046 * 0: f2fs_put_page(page, 0)
1047 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1049 static int read_node_page(struct page
*page
, int rw
)
1051 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1052 struct node_info ni
;
1053 struct f2fs_io_info fio
= {
1058 .encrypted_page
= NULL
,
1061 get_node_info(sbi
, page
->index
, &ni
);
1063 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1064 ClearPageUptodate(page
);
1068 if (PageUptodate(page
))
1071 fio
.new_blkaddr
= fio
.old_blkaddr
= ni
.blk_addr
;
1072 return f2fs_submit_page_bio(&fio
);
1076 * Readahead a node page
1078 void ra_node_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
1085 f2fs_bug_on(sbi
, check_nid_range(sbi
, nid
));
1088 apage
= radix_tree_lookup(&NODE_MAPPING(sbi
)->page_tree
, nid
);
1093 apage
= grab_cache_page(NODE_MAPPING(sbi
), nid
);
1097 err
= read_node_page(apage
, READA
);
1098 f2fs_put_page(apage
, err
? 1 : 0);
1102 * readahead MAX_RA_NODE number of node pages.
1104 static void ra_node_pages(struct page
*parent
, int start
)
1106 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
1107 struct blk_plug plug
;
1111 blk_start_plug(&plug
);
1113 /* Then, try readahead for siblings of the desired node */
1114 end
= start
+ MAX_RA_NODE
;
1115 end
= min(end
, NIDS_PER_BLOCK
);
1116 for (i
= start
; i
< end
; i
++) {
1117 nid
= get_nid(parent
, i
, false);
1118 ra_node_page(sbi
, nid
);
1121 blk_finish_plug(&plug
);
1124 static struct page
*__get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
,
1125 struct page
*parent
, int start
)
1131 return ERR_PTR(-ENOENT
);
1132 f2fs_bug_on(sbi
, check_nid_range(sbi
, nid
));
1134 page
= grab_cache_page(NODE_MAPPING(sbi
), nid
);
1136 return ERR_PTR(-ENOMEM
);
1138 err
= read_node_page(page
, READ_SYNC
);
1140 f2fs_put_page(page
, 1);
1141 return ERR_PTR(err
);
1142 } else if (err
== LOCKED_PAGE
) {
1147 ra_node_pages(parent
, start
+ 1);
1151 if (unlikely(!PageUptodate(page
))) {
1152 f2fs_put_page(page
, 1);
1153 return ERR_PTR(-EIO
);
1155 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1156 f2fs_put_page(page
, 1);
1160 f2fs_bug_on(sbi
, nid
!= nid_of_node(page
));
1164 struct page
*get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
)
1166 return __get_node_page(sbi
, nid
, NULL
, 0);
1169 struct page
*get_node_page_ra(struct page
*parent
, int start
)
1171 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
1172 nid_t nid
= get_nid(parent
, start
, false);
1174 return __get_node_page(sbi
, nid
, parent
, start
);
1177 void sync_inode_page(struct dnode_of_data
*dn
)
1181 if (IS_INODE(dn
->node_page
) || dn
->inode_page
== dn
->node_page
) {
1182 ret
= update_inode(dn
->inode
, dn
->node_page
);
1183 } else if (dn
->inode_page
) {
1184 if (!dn
->inode_page_locked
)
1185 lock_page(dn
->inode_page
);
1186 ret
= update_inode(dn
->inode
, dn
->inode_page
);
1187 if (!dn
->inode_page_locked
)
1188 unlock_page(dn
->inode_page
);
1190 ret
= update_inode_page(dn
->inode
);
1192 dn
->node_changed
= ret
? true: false;
1195 static void flush_inline_data(struct f2fs_sb_info
*sbi
, nid_t ino
)
1197 struct inode
*inode
;
1200 /* should flush inline_data before evict_inode */
1201 inode
= ilookup(sbi
->sb
, ino
);
1205 page
= pagecache_get_page(inode
->i_mapping
, 0, FGP_NOWAIT
, 0);
1209 if (!trylock_page(page
))
1212 if (!PageUptodate(page
))
1215 if (!PageDirty(page
))
1218 if (!clear_page_dirty_for_io(page
))
1221 if (!f2fs_write_inline_data(inode
, page
))
1222 inode_dec_dirty_pages(inode
);
1224 set_page_dirty(page
);
1228 f2fs_put_page(page
, 0);
1233 int sync_node_pages(struct f2fs_sb_info
*sbi
, nid_t ino
,
1234 struct writeback_control
*wbc
)
1237 struct pagevec pvec
;
1238 int step
= ino
? 2 : 0;
1241 pagevec_init(&pvec
, 0);
1247 while (index
<= end
) {
1249 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1250 PAGECACHE_TAG_DIRTY
,
1251 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1255 for (i
= 0; i
< nr_pages
; i
++) {
1256 struct page
*page
= pvec
.pages
[i
];
1258 if (unlikely(f2fs_cp_error(sbi
))) {
1259 pagevec_release(&pvec
);
1264 * flushing sequence with step:
1269 if (step
== 0 && IS_DNODE(page
))
1271 if (step
== 1 && (!IS_DNODE(page
) ||
1272 is_cold_node(page
)))
1274 if (step
== 2 && (!IS_DNODE(page
) ||
1275 !is_cold_node(page
)))
1280 * we should not skip writing node pages.
1283 if (ino
&& ino_of_node(page
) == ino
)
1285 else if (!trylock_page(page
))
1288 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1293 if (ino
&& ino_of_node(page
) != ino
)
1294 goto continue_unlock
;
1296 if (!PageDirty(page
)) {
1297 /* someone wrote it for us */
1298 goto continue_unlock
;
1301 /* flush inline_data */
1302 if (!ino
&& is_inline_node(page
)) {
1303 clear_inline_node(page
);
1305 flush_inline_data(sbi
, ino_of_node(page
));
1309 f2fs_wait_on_page_writeback(page
, NODE
, true);
1311 BUG_ON(PageWriteback(page
));
1312 if (!clear_page_dirty_for_io(page
))
1313 goto continue_unlock
;
1315 /* called by fsync() */
1316 if (ino
&& IS_DNODE(page
)) {
1317 set_fsync_mark(page
, 1);
1319 set_dentry_mark(page
,
1320 need_dentry_mark(sbi
, ino
));
1323 set_fsync_mark(page
, 0);
1324 set_dentry_mark(page
, 0);
1327 if (NODE_MAPPING(sbi
)->a_ops
->writepage(page
, wbc
))
1330 if (--wbc
->nr_to_write
== 0)
1333 pagevec_release(&pvec
);
1336 if (wbc
->nr_to_write
== 0) {
1349 int wait_on_node_pages_writeback(struct f2fs_sb_info
*sbi
, nid_t ino
)
1351 pgoff_t index
= 0, end
= ULONG_MAX
;
1352 struct pagevec pvec
;
1353 int ret2
= 0, ret
= 0;
1355 pagevec_init(&pvec
, 0);
1357 while (index
<= end
) {
1359 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1360 PAGECACHE_TAG_WRITEBACK
,
1361 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1365 for (i
= 0; i
< nr_pages
; i
++) {
1366 struct page
*page
= pvec
.pages
[i
];
1368 /* until radix tree lookup accepts end_index */
1369 if (unlikely(page
->index
> end
))
1372 if (ino
&& ino_of_node(page
) == ino
) {
1373 f2fs_wait_on_page_writeback(page
, NODE
, true);
1374 if (TestClearPageError(page
))
1378 pagevec_release(&pvec
);
1382 if (unlikely(test_and_clear_bit(AS_ENOSPC
, &NODE_MAPPING(sbi
)->flags
)))
1384 if (unlikely(test_and_clear_bit(AS_EIO
, &NODE_MAPPING(sbi
)->flags
)))
1391 static int f2fs_write_node_page(struct page
*page
,
1392 struct writeback_control
*wbc
)
1394 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1396 struct node_info ni
;
1397 struct f2fs_io_info fio
= {
1400 .rw
= (wbc
->sync_mode
== WB_SYNC_ALL
) ? WRITE_SYNC
: WRITE
,
1402 .encrypted_page
= NULL
,
1405 trace_f2fs_writepage(page
, NODE
);
1407 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1409 if (unlikely(f2fs_cp_error(sbi
)))
1412 /* get old block addr of this node page */
1413 nid
= nid_of_node(page
);
1414 f2fs_bug_on(sbi
, page
->index
!= nid
);
1416 if (wbc
->for_reclaim
) {
1417 if (!down_read_trylock(&sbi
->node_write
))
1420 down_read(&sbi
->node_write
);
1423 get_node_info(sbi
, nid
, &ni
);
1425 /* This page is already truncated */
1426 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1427 ClearPageUptodate(page
);
1428 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1429 up_read(&sbi
->node_write
);
1434 set_page_writeback(page
);
1435 fio
.old_blkaddr
= ni
.blk_addr
;
1436 write_node_page(nid
, &fio
);
1437 set_node_addr(sbi
, &ni
, fio
.new_blkaddr
, is_fsync_dnode(page
));
1438 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1439 up_read(&sbi
->node_write
);
1441 if (wbc
->for_reclaim
)
1442 f2fs_submit_merged_bio_cond(sbi
, NULL
, page
, 0, NODE
, WRITE
);
1446 if (unlikely(f2fs_cp_error(sbi
)))
1447 f2fs_submit_merged_bio(sbi
, NODE
, WRITE
);
1452 redirty_page_for_writepage(wbc
, page
);
1453 return AOP_WRITEPAGE_ACTIVATE
;
1456 static int f2fs_write_node_pages(struct address_space
*mapping
,
1457 struct writeback_control
*wbc
)
1459 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
1462 /* balancing f2fs's metadata in background */
1463 f2fs_balance_fs_bg(sbi
);
1465 /* collect a number of dirty node pages and write together */
1466 if (get_pages(sbi
, F2FS_DIRTY_NODES
) < nr_pages_to_skip(sbi
, NODE
))
1469 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1471 diff
= nr_pages_to_write(sbi
, NODE
, wbc
);
1472 wbc
->sync_mode
= WB_SYNC_NONE
;
1473 sync_node_pages(sbi
, 0, wbc
);
1474 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- diff
);
1478 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_NODES
);
1479 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1483 static int f2fs_set_node_page_dirty(struct page
*page
)
1485 trace_f2fs_set_page_dirty(page
, NODE
);
1487 SetPageUptodate(page
);
1488 if (!PageDirty(page
)) {
1489 __set_page_dirty_nobuffers(page
);
1490 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_NODES
);
1491 SetPagePrivate(page
);
1492 f2fs_trace_pid(page
);
1499 * Structure of the f2fs node operations
1501 const struct address_space_operations f2fs_node_aops
= {
1502 .writepage
= f2fs_write_node_page
,
1503 .writepages
= f2fs_write_node_pages
,
1504 .set_page_dirty
= f2fs_set_node_page_dirty
,
1505 .invalidatepage
= f2fs_invalidate_page
,
1506 .releasepage
= f2fs_release_page
,
1509 static struct free_nid
*__lookup_free_nid_list(struct f2fs_nm_info
*nm_i
,
1512 return radix_tree_lookup(&nm_i
->free_nid_root
, n
);
1515 static void __del_from_free_nid_list(struct f2fs_nm_info
*nm_i
,
1519 radix_tree_delete(&nm_i
->free_nid_root
, i
->nid
);
1522 static int add_free_nid(struct f2fs_sb_info
*sbi
, nid_t nid
, bool build
)
1524 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1526 struct nat_entry
*ne
;
1527 bool allocated
= false;
1529 if (!available_free_memory(sbi
, FREE_NIDS
))
1532 /* 0 nid should not be used */
1533 if (unlikely(nid
== 0))
1537 /* do not add allocated nids */
1538 ne
= __lookup_nat_cache(nm_i
, nid
);
1539 if (ne
&& (!get_nat_flag(ne
, IS_CHECKPOINTED
) ||
1540 nat_get_blkaddr(ne
) != NULL_ADDR
))
1546 i
= f2fs_kmem_cache_alloc(free_nid_slab
, GFP_NOFS
);
1550 if (radix_tree_preload(GFP_NOFS
)) {
1551 kmem_cache_free(free_nid_slab
, i
);
1555 spin_lock(&nm_i
->free_nid_list_lock
);
1556 if (radix_tree_insert(&nm_i
->free_nid_root
, i
->nid
, i
)) {
1557 spin_unlock(&nm_i
->free_nid_list_lock
);
1558 radix_tree_preload_end();
1559 kmem_cache_free(free_nid_slab
, i
);
1562 list_add_tail(&i
->list
, &nm_i
->free_nid_list
);
1564 spin_unlock(&nm_i
->free_nid_list_lock
);
1565 radix_tree_preload_end();
1569 static void remove_free_nid(struct f2fs_nm_info
*nm_i
, nid_t nid
)
1572 bool need_free
= false;
1574 spin_lock(&nm_i
->free_nid_list_lock
);
1575 i
= __lookup_free_nid_list(nm_i
, nid
);
1576 if (i
&& i
->state
== NID_NEW
) {
1577 __del_from_free_nid_list(nm_i
, i
);
1581 spin_unlock(&nm_i
->free_nid_list_lock
);
1584 kmem_cache_free(free_nid_slab
, i
);
1587 static void scan_nat_page(struct f2fs_sb_info
*sbi
,
1588 struct page
*nat_page
, nid_t start_nid
)
1590 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1591 struct f2fs_nat_block
*nat_blk
= page_address(nat_page
);
1595 i
= start_nid
% NAT_ENTRY_PER_BLOCK
;
1597 for (; i
< NAT_ENTRY_PER_BLOCK
; i
++, start_nid
++) {
1599 if (unlikely(start_nid
>= nm_i
->max_nid
))
1602 blk_addr
= le32_to_cpu(nat_blk
->entries
[i
].block_addr
);
1603 f2fs_bug_on(sbi
, blk_addr
== NEW_ADDR
);
1604 if (blk_addr
== NULL_ADDR
) {
1605 if (add_free_nid(sbi
, start_nid
, true) < 0)
1611 static void build_free_nids(struct f2fs_sb_info
*sbi
)
1613 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1614 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1615 struct f2fs_journal
*journal
= curseg
->journal
;
1617 nid_t nid
= nm_i
->next_scan_nid
;
1619 /* Enough entries */
1620 if (nm_i
->fcnt
> NAT_ENTRY_PER_BLOCK
)
1623 /* readahead nat pages to be scanned */
1624 ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nid
), FREE_NID_PAGES
,
1627 down_read(&nm_i
->nat_tree_lock
);
1630 struct page
*page
= get_current_nat_page(sbi
, nid
);
1632 scan_nat_page(sbi
, page
, nid
);
1633 f2fs_put_page(page
, 1);
1635 nid
+= (NAT_ENTRY_PER_BLOCK
- (nid
% NAT_ENTRY_PER_BLOCK
));
1636 if (unlikely(nid
>= nm_i
->max_nid
))
1639 if (++i
>= FREE_NID_PAGES
)
1643 /* go to the next free nat pages to find free nids abundantly */
1644 nm_i
->next_scan_nid
= nid
;
1646 /* find free nids from current sum_pages */
1647 down_read(&curseg
->journal_rwsem
);
1648 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
1651 addr
= le32_to_cpu(nat_in_journal(journal
, i
).block_addr
);
1652 nid
= le32_to_cpu(nid_in_journal(journal
, i
));
1653 if (addr
== NULL_ADDR
)
1654 add_free_nid(sbi
, nid
, true);
1656 remove_free_nid(nm_i
, nid
);
1658 up_read(&curseg
->journal_rwsem
);
1659 up_read(&nm_i
->nat_tree_lock
);
1661 ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nm_i
->next_scan_nid
),
1662 nm_i
->ra_nid_pages
, META_NAT
, false);
1666 * If this function returns success, caller can obtain a new nid
1667 * from second parameter of this function.
1668 * The returned nid could be used ino as well as nid when inode is created.
1670 bool alloc_nid(struct f2fs_sb_info
*sbi
, nid_t
*nid
)
1672 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1673 struct free_nid
*i
= NULL
;
1675 if (unlikely(sbi
->total_valid_node_count
+ 1 > nm_i
->available_nids
))
1678 spin_lock(&nm_i
->free_nid_list_lock
);
1680 /* We should not use stale free nids created by build_free_nids */
1681 if (nm_i
->fcnt
&& !on_build_free_nids(nm_i
)) {
1682 f2fs_bug_on(sbi
, list_empty(&nm_i
->free_nid_list
));
1683 list_for_each_entry(i
, &nm_i
->free_nid_list
, list
)
1684 if (i
->state
== NID_NEW
)
1687 f2fs_bug_on(sbi
, i
->state
!= NID_NEW
);
1689 i
->state
= NID_ALLOC
;
1691 spin_unlock(&nm_i
->free_nid_list_lock
);
1694 spin_unlock(&nm_i
->free_nid_list_lock
);
1696 /* Let's scan nat pages and its caches to get free nids */
1697 mutex_lock(&nm_i
->build_lock
);
1698 build_free_nids(sbi
);
1699 mutex_unlock(&nm_i
->build_lock
);
1704 * alloc_nid() should be called prior to this function.
1706 void alloc_nid_done(struct f2fs_sb_info
*sbi
, nid_t nid
)
1708 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1711 spin_lock(&nm_i
->free_nid_list_lock
);
1712 i
= __lookup_free_nid_list(nm_i
, nid
);
1713 f2fs_bug_on(sbi
, !i
|| i
->state
!= NID_ALLOC
);
1714 __del_from_free_nid_list(nm_i
, i
);
1715 spin_unlock(&nm_i
->free_nid_list_lock
);
1717 kmem_cache_free(free_nid_slab
, i
);
1721 * alloc_nid() should be called prior to this function.
1723 void alloc_nid_failed(struct f2fs_sb_info
*sbi
, nid_t nid
)
1725 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1727 bool need_free
= false;
1732 spin_lock(&nm_i
->free_nid_list_lock
);
1733 i
= __lookup_free_nid_list(nm_i
, nid
);
1734 f2fs_bug_on(sbi
, !i
|| i
->state
!= NID_ALLOC
);
1735 if (!available_free_memory(sbi
, FREE_NIDS
)) {
1736 __del_from_free_nid_list(nm_i
, i
);
1742 spin_unlock(&nm_i
->free_nid_list_lock
);
1745 kmem_cache_free(free_nid_slab
, i
);
1748 int try_to_free_nids(struct f2fs_sb_info
*sbi
, int nr_shrink
)
1750 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1751 struct free_nid
*i
, *next
;
1754 if (!mutex_trylock(&nm_i
->build_lock
))
1757 spin_lock(&nm_i
->free_nid_list_lock
);
1758 list_for_each_entry_safe(i
, next
, &nm_i
->free_nid_list
, list
) {
1759 if (nr_shrink
<= 0 || nm_i
->fcnt
<= NAT_ENTRY_PER_BLOCK
)
1761 if (i
->state
== NID_ALLOC
)
1763 __del_from_free_nid_list(nm_i
, i
);
1764 kmem_cache_free(free_nid_slab
, i
);
1768 spin_unlock(&nm_i
->free_nid_list_lock
);
1769 mutex_unlock(&nm_i
->build_lock
);
1771 return nr
- nr_shrink
;
1774 void recover_inline_xattr(struct inode
*inode
, struct page
*page
)
1776 void *src_addr
, *dst_addr
;
1779 struct f2fs_inode
*ri
;
1781 ipage
= get_node_page(F2FS_I_SB(inode
), inode
->i_ino
);
1782 f2fs_bug_on(F2FS_I_SB(inode
), IS_ERR(ipage
));
1784 ri
= F2FS_INODE(page
);
1785 if (!(ri
->i_inline
& F2FS_INLINE_XATTR
)) {
1786 clear_inode_flag(F2FS_I(inode
), FI_INLINE_XATTR
);
1790 dst_addr
= inline_xattr_addr(ipage
);
1791 src_addr
= inline_xattr_addr(page
);
1792 inline_size
= inline_xattr_size(inode
);
1794 f2fs_wait_on_page_writeback(ipage
, NODE
, true);
1795 memcpy(dst_addr
, src_addr
, inline_size
);
1797 update_inode(inode
, ipage
);
1798 f2fs_put_page(ipage
, 1);
1801 void recover_xattr_data(struct inode
*inode
, struct page
*page
, block_t blkaddr
)
1803 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1804 nid_t prev_xnid
= F2FS_I(inode
)->i_xattr_nid
;
1805 nid_t new_xnid
= nid_of_node(page
);
1806 struct node_info ni
;
1808 /* 1: invalidate the previous xattr nid */
1812 /* Deallocate node address */
1813 get_node_info(sbi
, prev_xnid
, &ni
);
1814 f2fs_bug_on(sbi
, ni
.blk_addr
== NULL_ADDR
);
1815 invalidate_blocks(sbi
, ni
.blk_addr
);
1816 dec_valid_node_count(sbi
, inode
);
1817 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
1820 /* 2: allocate new xattr nid */
1821 if (unlikely(!inc_valid_node_count(sbi
, inode
)))
1822 f2fs_bug_on(sbi
, 1);
1824 remove_free_nid(NM_I(sbi
), new_xnid
);
1825 get_node_info(sbi
, new_xnid
, &ni
);
1826 ni
.ino
= inode
->i_ino
;
1827 set_node_addr(sbi
, &ni
, NEW_ADDR
, false);
1828 F2FS_I(inode
)->i_xattr_nid
= new_xnid
;
1830 /* 3: update xattr blkaddr */
1831 refresh_sit_entry(sbi
, NEW_ADDR
, blkaddr
);
1832 set_node_addr(sbi
, &ni
, blkaddr
, false);
1834 update_inode_page(inode
);
1837 int recover_inode_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
1839 struct f2fs_inode
*src
, *dst
;
1840 nid_t ino
= ino_of_node(page
);
1841 struct node_info old_ni
, new_ni
;
1844 get_node_info(sbi
, ino
, &old_ni
);
1846 if (unlikely(old_ni
.blk_addr
!= NULL_ADDR
))
1849 ipage
= grab_cache_page(NODE_MAPPING(sbi
), ino
);
1853 /* Should not use this inode from free nid list */
1854 remove_free_nid(NM_I(sbi
), ino
);
1856 SetPageUptodate(ipage
);
1857 fill_node_footer(ipage
, ino
, ino
, 0, true);
1859 src
= F2FS_INODE(page
);
1860 dst
= F2FS_INODE(ipage
);
1862 memcpy(dst
, src
, (unsigned long)&src
->i_ext
- (unsigned long)src
);
1864 dst
->i_blocks
= cpu_to_le64(1);
1865 dst
->i_links
= cpu_to_le32(1);
1866 dst
->i_xattr_nid
= 0;
1867 dst
->i_inline
= src
->i_inline
& F2FS_INLINE_XATTR
;
1872 if (unlikely(!inc_valid_node_count(sbi
, NULL
)))
1874 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
1875 inc_valid_inode_count(sbi
);
1876 set_page_dirty(ipage
);
1877 f2fs_put_page(ipage
, 1);
1881 int restore_node_summary(struct f2fs_sb_info
*sbi
,
1882 unsigned int segno
, struct f2fs_summary_block
*sum
)
1884 struct f2fs_node
*rn
;
1885 struct f2fs_summary
*sum_entry
;
1887 int bio_blocks
= MAX_BIO_BLOCKS(sbi
);
1888 int i
, idx
, last_offset
, nrpages
;
1890 /* scan the node segment */
1891 last_offset
= sbi
->blocks_per_seg
;
1892 addr
= START_BLOCK(sbi
, segno
);
1893 sum_entry
= &sum
->entries
[0];
1895 for (i
= 0; i
< last_offset
; i
+= nrpages
, addr
+= nrpages
) {
1896 nrpages
= min(last_offset
- i
, bio_blocks
);
1898 /* readahead node pages */
1899 ra_meta_pages(sbi
, addr
, nrpages
, META_POR
, true);
1901 for (idx
= addr
; idx
< addr
+ nrpages
; idx
++) {
1902 struct page
*page
= get_tmp_page(sbi
, idx
);
1904 rn
= F2FS_NODE(page
);
1905 sum_entry
->nid
= rn
->footer
.nid
;
1906 sum_entry
->version
= 0;
1907 sum_entry
->ofs_in_node
= 0;
1909 f2fs_put_page(page
, 1);
1912 invalidate_mapping_pages(META_MAPPING(sbi
), addr
,
1918 static void remove_nats_in_journal(struct f2fs_sb_info
*sbi
)
1920 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1921 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1922 struct f2fs_journal
*journal
= curseg
->journal
;
1925 down_write(&curseg
->journal_rwsem
);
1926 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
1927 struct nat_entry
*ne
;
1928 struct f2fs_nat_entry raw_ne
;
1929 nid_t nid
= le32_to_cpu(nid_in_journal(journal
, i
));
1931 raw_ne
= nat_in_journal(journal
, i
);
1933 ne
= __lookup_nat_cache(nm_i
, nid
);
1935 ne
= grab_nat_entry(nm_i
, nid
);
1936 node_info_from_raw_nat(&ne
->ni
, &raw_ne
);
1938 __set_nat_cache_dirty(nm_i
, ne
);
1940 update_nats_in_cursum(journal
, -i
);
1941 up_write(&curseg
->journal_rwsem
);
1944 static void __adjust_nat_entry_set(struct nat_entry_set
*nes
,
1945 struct list_head
*head
, int max
)
1947 struct nat_entry_set
*cur
;
1949 if (nes
->entry_cnt
>= max
)
1952 list_for_each_entry(cur
, head
, set_list
) {
1953 if (cur
->entry_cnt
>= nes
->entry_cnt
) {
1954 list_add(&nes
->set_list
, cur
->set_list
.prev
);
1959 list_add_tail(&nes
->set_list
, head
);
1962 static void __flush_nat_entry_set(struct f2fs_sb_info
*sbi
,
1963 struct nat_entry_set
*set
)
1965 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1966 struct f2fs_journal
*journal
= curseg
->journal
;
1967 nid_t start_nid
= set
->set
* NAT_ENTRY_PER_BLOCK
;
1968 bool to_journal
= true;
1969 struct f2fs_nat_block
*nat_blk
;
1970 struct nat_entry
*ne
, *cur
;
1971 struct page
*page
= NULL
;
1974 * there are two steps to flush nat entries:
1975 * #1, flush nat entries to journal in current hot data summary block.
1976 * #2, flush nat entries to nat page.
1978 if (!__has_cursum_space(journal
, set
->entry_cnt
, NAT_JOURNAL
))
1982 down_write(&curseg
->journal_rwsem
);
1984 page
= get_next_nat_page(sbi
, start_nid
);
1985 nat_blk
= page_address(page
);
1986 f2fs_bug_on(sbi
, !nat_blk
);
1989 /* flush dirty nats in nat entry set */
1990 list_for_each_entry_safe(ne
, cur
, &set
->entry_list
, list
) {
1991 struct f2fs_nat_entry
*raw_ne
;
1992 nid_t nid
= nat_get_nid(ne
);
1995 if (nat_get_blkaddr(ne
) == NEW_ADDR
)
1999 offset
= lookup_journal_in_cursum(journal
,
2000 NAT_JOURNAL
, nid
, 1);
2001 f2fs_bug_on(sbi
, offset
< 0);
2002 raw_ne
= &nat_in_journal(journal
, offset
);
2003 nid_in_journal(journal
, offset
) = cpu_to_le32(nid
);
2005 raw_ne
= &nat_blk
->entries
[nid
- start_nid
];
2007 raw_nat_from_node_info(raw_ne
, &ne
->ni
);
2009 __clear_nat_cache_dirty(NM_I(sbi
), ne
);
2010 if (nat_get_blkaddr(ne
) == NULL_ADDR
)
2011 add_free_nid(sbi
, nid
, false);
2015 up_write(&curseg
->journal_rwsem
);
2017 f2fs_put_page(page
, 1);
2019 f2fs_bug_on(sbi
, set
->entry_cnt
);
2021 radix_tree_delete(&NM_I(sbi
)->nat_set_root
, set
->set
);
2022 kmem_cache_free(nat_entry_set_slab
, set
);
2026 * This function is called during the checkpointing process.
2028 void flush_nat_entries(struct f2fs_sb_info
*sbi
)
2030 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2031 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2032 struct f2fs_journal
*journal
= curseg
->journal
;
2033 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2034 struct nat_entry_set
*set
, *tmp
;
2039 if (!nm_i
->dirty_nat_cnt
)
2042 down_write(&nm_i
->nat_tree_lock
);
2045 * if there are no enough space in journal to store dirty nat
2046 * entries, remove all entries from journal and merge them
2047 * into nat entry set.
2049 if (!__has_cursum_space(journal
, nm_i
->dirty_nat_cnt
, NAT_JOURNAL
))
2050 remove_nats_in_journal(sbi
);
2052 while ((found
= __gang_lookup_nat_set(nm_i
,
2053 set_idx
, SETVEC_SIZE
, setvec
))) {
2055 set_idx
= setvec
[found
- 1]->set
+ 1;
2056 for (idx
= 0; idx
< found
; idx
++)
2057 __adjust_nat_entry_set(setvec
[idx
], &sets
,
2058 MAX_NAT_JENTRIES(journal
));
2061 /* flush dirty nats in nat entry set */
2062 list_for_each_entry_safe(set
, tmp
, &sets
, set_list
)
2063 __flush_nat_entry_set(sbi
, set
);
2065 up_write(&nm_i
->nat_tree_lock
);
2067 f2fs_bug_on(sbi
, nm_i
->dirty_nat_cnt
);
2070 static int init_node_manager(struct f2fs_sb_info
*sbi
)
2072 struct f2fs_super_block
*sb_raw
= F2FS_RAW_SUPER(sbi
);
2073 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2074 unsigned char *version_bitmap
;
2075 unsigned int nat_segs
, nat_blocks
;
2077 nm_i
->nat_blkaddr
= le32_to_cpu(sb_raw
->nat_blkaddr
);
2079 /* segment_count_nat includes pair segment so divide to 2. */
2080 nat_segs
= le32_to_cpu(sb_raw
->segment_count_nat
) >> 1;
2081 nat_blocks
= nat_segs
<< le32_to_cpu(sb_raw
->log_blocks_per_seg
);
2083 nm_i
->max_nid
= NAT_ENTRY_PER_BLOCK
* nat_blocks
;
2085 /* not used nids: 0, node, meta, (and root counted as valid node) */
2086 nm_i
->available_nids
= nm_i
->max_nid
- F2FS_RESERVED_NODE_NUM
;
2089 nm_i
->ram_thresh
= DEF_RAM_THRESHOLD
;
2090 nm_i
->ra_nid_pages
= DEF_RA_NID_PAGES
;
2091 nm_i
->dirty_nats_ratio
= DEF_DIRTY_NAT_RATIO_THRESHOLD
;
2093 INIT_RADIX_TREE(&nm_i
->free_nid_root
, GFP_ATOMIC
);
2094 INIT_LIST_HEAD(&nm_i
->free_nid_list
);
2095 INIT_RADIX_TREE(&nm_i
->nat_root
, GFP_NOIO
);
2096 INIT_RADIX_TREE(&nm_i
->nat_set_root
, GFP_NOIO
);
2097 INIT_LIST_HEAD(&nm_i
->nat_entries
);
2099 mutex_init(&nm_i
->build_lock
);
2100 spin_lock_init(&nm_i
->free_nid_list_lock
);
2101 init_rwsem(&nm_i
->nat_tree_lock
);
2103 nm_i
->next_scan_nid
= le32_to_cpu(sbi
->ckpt
->next_free_nid
);
2104 nm_i
->bitmap_size
= __bitmap_size(sbi
, NAT_BITMAP
);
2105 version_bitmap
= __bitmap_ptr(sbi
, NAT_BITMAP
);
2106 if (!version_bitmap
)
2109 nm_i
->nat_bitmap
= kmemdup(version_bitmap
, nm_i
->bitmap_size
,
2111 if (!nm_i
->nat_bitmap
)
2116 int build_node_manager(struct f2fs_sb_info
*sbi
)
2120 sbi
->nm_info
= kzalloc(sizeof(struct f2fs_nm_info
), GFP_KERNEL
);
2124 err
= init_node_manager(sbi
);
2128 build_free_nids(sbi
);
2132 void destroy_node_manager(struct f2fs_sb_info
*sbi
)
2134 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2135 struct free_nid
*i
, *next_i
;
2136 struct nat_entry
*natvec
[NATVEC_SIZE
];
2137 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2144 /* destroy free nid list */
2145 spin_lock(&nm_i
->free_nid_list_lock
);
2146 list_for_each_entry_safe(i
, next_i
, &nm_i
->free_nid_list
, list
) {
2147 f2fs_bug_on(sbi
, i
->state
== NID_ALLOC
);
2148 __del_from_free_nid_list(nm_i
, i
);
2150 spin_unlock(&nm_i
->free_nid_list_lock
);
2151 kmem_cache_free(free_nid_slab
, i
);
2152 spin_lock(&nm_i
->free_nid_list_lock
);
2154 f2fs_bug_on(sbi
, nm_i
->fcnt
);
2155 spin_unlock(&nm_i
->free_nid_list_lock
);
2157 /* destroy nat cache */
2158 down_write(&nm_i
->nat_tree_lock
);
2159 while ((found
= __gang_lookup_nat_cache(nm_i
,
2160 nid
, NATVEC_SIZE
, natvec
))) {
2163 nid
= nat_get_nid(natvec
[found
- 1]) + 1;
2164 for (idx
= 0; idx
< found
; idx
++)
2165 __del_from_nat_cache(nm_i
, natvec
[idx
]);
2167 f2fs_bug_on(sbi
, nm_i
->nat_cnt
);
2169 /* destroy nat set cache */
2171 while ((found
= __gang_lookup_nat_set(nm_i
,
2172 nid
, SETVEC_SIZE
, setvec
))) {
2175 nid
= setvec
[found
- 1]->set
+ 1;
2176 for (idx
= 0; idx
< found
; idx
++) {
2177 /* entry_cnt is not zero, when cp_error was occurred */
2178 f2fs_bug_on(sbi
, !list_empty(&setvec
[idx
]->entry_list
));
2179 radix_tree_delete(&nm_i
->nat_set_root
, setvec
[idx
]->set
);
2180 kmem_cache_free(nat_entry_set_slab
, setvec
[idx
]);
2183 up_write(&nm_i
->nat_tree_lock
);
2185 kfree(nm_i
->nat_bitmap
);
2186 sbi
->nm_info
= NULL
;
2190 int __init
create_node_manager_caches(void)
2192 nat_entry_slab
= f2fs_kmem_cache_create("nat_entry",
2193 sizeof(struct nat_entry
));
2194 if (!nat_entry_slab
)
2197 free_nid_slab
= f2fs_kmem_cache_create("free_nid",
2198 sizeof(struct free_nid
));
2200 goto destroy_nat_entry
;
2202 nat_entry_set_slab
= f2fs_kmem_cache_create("nat_entry_set",
2203 sizeof(struct nat_entry_set
));
2204 if (!nat_entry_set_slab
)
2205 goto destroy_free_nid
;
2209 kmem_cache_destroy(free_nid_slab
);
2211 kmem_cache_destroy(nat_entry_slab
);
2216 void destroy_node_manager_caches(void)
2218 kmem_cache_destroy(nat_entry_set_slab
);
2219 kmem_cache_destroy(free_nid_slab
);
2220 kmem_cache_destroy(nat_entry_slab
);