Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / fs / ntfs / inode.c
blobf40972d6df9060d154058a91d9423c2f2ad875de
1 /**
2 * inode.c - NTFS kernel inode handling.
4 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
32 #include "aops.h"
33 #include "attrib.h"
34 #include "bitmap.h"
35 #include "dir.h"
36 #include "debug.h"
37 #include "inode.h"
38 #include "lcnalloc.h"
39 #include "malloc.h"
40 #include "mft.h"
41 #include "time.h"
42 #include "ntfs.h"
44 /**
45 * ntfs_test_inode - compare two (possibly fake) inodes for equality
46 * @vi: vfs inode which to test
47 * @na: ntfs attribute which is being tested with
49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
50 * inode @vi for equality with the ntfs attribute @na.
52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
53 * @na->name and @na->name_len are then ignored.
55 * Return 1 if the attributes match and 0 if not.
57 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
58 * allowed to sleep.
60 int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
62 ntfs_inode *ni;
64 if (vi->i_ino != na->mft_no)
65 return 0;
66 ni = NTFS_I(vi);
67 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
68 if (likely(!NInoAttr(ni))) {
69 /* If not looking for a normal inode this is a mismatch. */
70 if (unlikely(na->type != AT_UNUSED))
71 return 0;
72 } else {
73 /* A fake inode describing an attribute. */
74 if (ni->type != na->type)
75 return 0;
76 if (ni->name_len != na->name_len)
77 return 0;
78 if (na->name_len && memcmp(ni->name, na->name,
79 na->name_len * sizeof(ntfschar)))
80 return 0;
82 /* Match! */
83 return 1;
86 /**
87 * ntfs_init_locked_inode - initialize an inode
88 * @vi: vfs inode to initialize
89 * @na: ntfs attribute which to initialize @vi to
91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
92 * order to enable ntfs_test_inode() to do its work.
94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
95 * In that case, @na->name and @na->name_len should be set to NULL and 0,
96 * respectively. Although that is not strictly necessary as
97 * ntfs_read_locked_inode() will fill them in later.
99 * Return 0 on success and -errno on error.
101 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
104 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
106 ntfs_inode *ni = NTFS_I(vi);
108 vi->i_ino = na->mft_no;
110 ni->type = na->type;
111 if (na->type == AT_INDEX_ALLOCATION)
112 NInoSetMstProtected(ni);
114 ni->name = na->name;
115 ni->name_len = na->name_len;
117 /* If initializing a normal inode, we are done. */
118 if (likely(na->type == AT_UNUSED)) {
119 BUG_ON(na->name);
120 BUG_ON(na->name_len);
121 return 0;
124 /* It is a fake inode. */
125 NInoSetAttr(ni);
128 * We have I30 global constant as an optimization as it is the name
129 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
130 * allocation but that is ok. And most attributes are unnamed anyway,
131 * thus the fraction of named attributes with name != I30 is actually
132 * absolutely tiny.
134 if (na->name_len && na->name != I30) {
135 unsigned int i;
137 BUG_ON(!na->name);
138 i = na->name_len * sizeof(ntfschar);
139 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
140 if (!ni->name)
141 return -ENOMEM;
142 memcpy(ni->name, na->name, i);
143 ni->name[na->name_len] = 0;
145 return 0;
148 typedef int (*set_t)(struct inode *, void *);
149 static int ntfs_read_locked_inode(struct inode *vi);
150 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
151 static int ntfs_read_locked_index_inode(struct inode *base_vi,
152 struct inode *vi);
155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
156 * @sb: super block of mounted volume
157 * @mft_no: mft record number / inode number to obtain
159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
160 * file or directory).
162 * If the inode is in the cache, it is just returned with an increased
163 * reference count. Otherwise, a new struct inode is allocated and initialized,
164 * and finally ntfs_read_locked_inode() is called to read in the inode and
165 * fill in the remainder of the inode structure.
167 * Return the struct inode on success. Check the return value with IS_ERR() and
168 * if true, the function failed and the error code is obtained from PTR_ERR().
170 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
172 struct inode *vi;
173 int err;
174 ntfs_attr na;
176 na.mft_no = mft_no;
177 na.type = AT_UNUSED;
178 na.name = NULL;
179 na.name_len = 0;
181 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
182 (set_t)ntfs_init_locked_inode, &na);
183 if (unlikely(!vi))
184 return ERR_PTR(-ENOMEM);
186 err = 0;
188 /* If this is a freshly allocated inode, need to read it now. */
189 if (vi->i_state & I_NEW) {
190 err = ntfs_read_locked_inode(vi);
191 unlock_new_inode(vi);
194 * There is no point in keeping bad inodes around if the failure was
195 * due to ENOMEM. We want to be able to retry again later.
197 if (unlikely(err == -ENOMEM)) {
198 iput(vi);
199 vi = ERR_PTR(err);
201 return vi;
205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
206 * @base_vi: vfs base inode containing the attribute
207 * @type: attribute type
208 * @name: Unicode name of the attribute (NULL if unnamed)
209 * @name_len: length of @name in Unicode characters (0 if unnamed)
211 * Obtain the (fake) struct inode corresponding to the attribute specified by
212 * @type, @name, and @name_len, which is present in the base mft record
213 * specified by the vfs inode @base_vi.
215 * If the attribute inode is in the cache, it is just returned with an
216 * increased reference count. Otherwise, a new struct inode is allocated and
217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
218 * attribute and fill in the inode structure.
220 * Note, for index allocation attributes, you need to use ntfs_index_iget()
221 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
223 * Return the struct inode of the attribute inode on success. Check the return
224 * value with IS_ERR() and if true, the function failed and the error code is
225 * obtained from PTR_ERR().
227 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
228 ntfschar *name, u32 name_len)
230 struct inode *vi;
231 int err;
232 ntfs_attr na;
234 /* Make sure no one calls ntfs_attr_iget() for indices. */
235 BUG_ON(type == AT_INDEX_ALLOCATION);
237 na.mft_no = base_vi->i_ino;
238 na.type = type;
239 na.name = name;
240 na.name_len = name_len;
242 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
243 (set_t)ntfs_init_locked_inode, &na);
244 if (unlikely(!vi))
245 return ERR_PTR(-ENOMEM);
247 err = 0;
249 /* If this is a freshly allocated inode, need to read it now. */
250 if (vi->i_state & I_NEW) {
251 err = ntfs_read_locked_attr_inode(base_vi, vi);
252 unlock_new_inode(vi);
255 * There is no point in keeping bad attribute inodes around. This also
256 * simplifies things in that we never need to check for bad attribute
257 * inodes elsewhere.
259 if (unlikely(err)) {
260 iput(vi);
261 vi = ERR_PTR(err);
263 return vi;
267 * ntfs_index_iget - obtain a struct inode corresponding to an index
268 * @base_vi: vfs base inode containing the index related attributes
269 * @name: Unicode name of the index
270 * @name_len: length of @name in Unicode characters
272 * Obtain the (fake) struct inode corresponding to the index specified by @name
273 * and @name_len, which is present in the base mft record specified by the vfs
274 * inode @base_vi.
276 * If the index inode is in the cache, it is just returned with an increased
277 * reference count. Otherwise, a new struct inode is allocated and
278 * initialized, and finally ntfs_read_locked_index_inode() is called to read
279 * the index related attributes and fill in the inode structure.
281 * Return the struct inode of the index inode on success. Check the return
282 * value with IS_ERR() and if true, the function failed and the error code is
283 * obtained from PTR_ERR().
285 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
286 u32 name_len)
288 struct inode *vi;
289 int err;
290 ntfs_attr na;
292 na.mft_no = base_vi->i_ino;
293 na.type = AT_INDEX_ALLOCATION;
294 na.name = name;
295 na.name_len = name_len;
297 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
298 (set_t)ntfs_init_locked_inode, &na);
299 if (unlikely(!vi))
300 return ERR_PTR(-ENOMEM);
302 err = 0;
304 /* If this is a freshly allocated inode, need to read it now. */
305 if (vi->i_state & I_NEW) {
306 err = ntfs_read_locked_index_inode(base_vi, vi);
307 unlock_new_inode(vi);
310 * There is no point in keeping bad index inodes around. This also
311 * simplifies things in that we never need to check for bad index
312 * inodes elsewhere.
314 if (unlikely(err)) {
315 iput(vi);
316 vi = ERR_PTR(err);
318 return vi;
321 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
323 ntfs_inode *ni;
325 ntfs_debug("Entering.");
326 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
327 if (likely(ni != NULL)) {
328 ni->state = 0;
329 return VFS_I(ni);
331 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
332 return NULL;
335 static void ntfs_i_callback(struct rcu_head *head)
337 struct inode *inode = container_of(head, struct inode, i_rcu);
338 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
341 void ntfs_destroy_big_inode(struct inode *inode)
343 ntfs_inode *ni = NTFS_I(inode);
345 ntfs_debug("Entering.");
346 BUG_ON(ni->page);
347 if (!atomic_dec_and_test(&ni->count))
348 BUG();
349 call_rcu(&inode->i_rcu, ntfs_i_callback);
352 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
354 ntfs_inode *ni;
356 ntfs_debug("Entering.");
357 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
358 if (likely(ni != NULL)) {
359 ni->state = 0;
360 return ni;
362 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
363 return NULL;
366 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
368 ntfs_debug("Entering.");
369 BUG_ON(ni->page);
370 if (!atomic_dec_and_test(&ni->count))
371 BUG();
372 kmem_cache_free(ntfs_inode_cache, ni);
376 * The attribute runlist lock has separate locking rules from the
377 * normal runlist lock, so split the two lock-classes:
379 static struct lock_class_key attr_list_rl_lock_class;
382 * __ntfs_init_inode - initialize ntfs specific part of an inode
383 * @sb: super block of mounted volume
384 * @ni: freshly allocated ntfs inode which to initialize
386 * Initialize an ntfs inode to defaults.
388 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
389 * untouched. Make sure to initialize them elsewhere.
391 * Return zero on success and -ENOMEM on error.
393 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
395 ntfs_debug("Entering.");
396 rwlock_init(&ni->size_lock);
397 ni->initialized_size = ni->allocated_size = 0;
398 ni->seq_no = 0;
399 atomic_set(&ni->count, 1);
400 ni->vol = NTFS_SB(sb);
401 ntfs_init_runlist(&ni->runlist);
402 mutex_init(&ni->mrec_lock);
403 ni->page = NULL;
404 ni->page_ofs = 0;
405 ni->attr_list_size = 0;
406 ni->attr_list = NULL;
407 ntfs_init_runlist(&ni->attr_list_rl);
408 lockdep_set_class(&ni->attr_list_rl.lock,
409 &attr_list_rl_lock_class);
410 ni->itype.index.block_size = 0;
411 ni->itype.index.vcn_size = 0;
412 ni->itype.index.collation_rule = 0;
413 ni->itype.index.block_size_bits = 0;
414 ni->itype.index.vcn_size_bits = 0;
415 mutex_init(&ni->extent_lock);
416 ni->nr_extents = 0;
417 ni->ext.base_ntfs_ino = NULL;
421 * Extent inodes get MFT-mapped in a nested way, while the base inode
422 * is still mapped. Teach this nesting to the lock validator by creating
423 * a separate class for nested inode's mrec_lock's:
425 static struct lock_class_key extent_inode_mrec_lock_key;
427 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
428 unsigned long mft_no)
430 ntfs_inode *ni = ntfs_alloc_extent_inode();
432 ntfs_debug("Entering.");
433 if (likely(ni != NULL)) {
434 __ntfs_init_inode(sb, ni);
435 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
436 ni->mft_no = mft_no;
437 ni->type = AT_UNUSED;
438 ni->name = NULL;
439 ni->name_len = 0;
441 return ni;
445 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
446 * @ctx: initialized attribute search context
448 * Search all file name attributes in the inode described by the attribute
449 * search context @ctx and check if any of the names are in the $Extend system
450 * directory.
452 * Return values:
453 * 1: file is in $Extend directory
454 * 0: file is not in $Extend directory
455 * -errno: failed to determine if the file is in the $Extend directory
457 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
459 int nr_links, err;
461 /* Restart search. */
462 ntfs_attr_reinit_search_ctx(ctx);
464 /* Get number of hard links. */
465 nr_links = le16_to_cpu(ctx->mrec->link_count);
467 /* Loop through all hard links. */
468 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
469 ctx))) {
470 FILE_NAME_ATTR *file_name_attr;
471 ATTR_RECORD *attr = ctx->attr;
472 u8 *p, *p2;
474 nr_links--;
476 * Maximum sanity checking as we are called on an inode that
477 * we suspect might be corrupt.
479 p = (u8*)attr + le32_to_cpu(attr->length);
480 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
481 le32_to_cpu(ctx->mrec->bytes_in_use)) {
482 err_corrupt_attr:
483 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
484 "attribute. You should run chkdsk.");
485 return -EIO;
487 if (attr->non_resident) {
488 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
489 "name. You should run chkdsk.");
490 return -EIO;
492 if (attr->flags) {
493 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
494 "invalid flags. You should run "
495 "chkdsk.");
496 return -EIO;
498 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
499 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
500 "name. You should run chkdsk.");
501 return -EIO;
503 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
504 le16_to_cpu(attr->data.resident.value_offset));
505 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
506 if (p2 < (u8*)attr || p2 > p)
507 goto err_corrupt_attr;
508 /* This attribute is ok, but is it in the $Extend directory? */
509 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
510 return 1; /* YES, it's an extended system file. */
512 if (unlikely(err != -ENOENT))
513 return err;
514 if (unlikely(nr_links)) {
515 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
516 "doesn't match number of name attributes. You "
517 "should run chkdsk.");
518 return -EIO;
520 return 0; /* NO, it is not an extended system file. */
524 * ntfs_read_locked_inode - read an inode from its device
525 * @vi: inode to read
527 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
528 * described by @vi into memory from the device.
530 * The only fields in @vi that we need to/can look at when the function is
531 * called are i_sb, pointing to the mounted device's super block, and i_ino,
532 * the number of the inode to load.
534 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
535 * for reading and sets up the necessary @vi fields as well as initializing
536 * the ntfs inode.
538 * Q: What locks are held when the function is called?
539 * A: i_state has I_NEW set, hence the inode is locked, also
540 * i_count is set to 1, so it is not going to go away
541 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
542 * is allowed to write to them. We should of course be honouring them but
543 * we need to do that using the IS_* macros defined in include/linux/fs.h.
544 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
546 * Return 0 on success and -errno on error. In the error case, the inode will
547 * have had make_bad_inode() executed on it.
549 static int ntfs_read_locked_inode(struct inode *vi)
551 ntfs_volume *vol = NTFS_SB(vi->i_sb);
552 ntfs_inode *ni;
553 struct inode *bvi;
554 MFT_RECORD *m;
555 ATTR_RECORD *a;
556 STANDARD_INFORMATION *si;
557 ntfs_attr_search_ctx *ctx;
558 int err = 0;
560 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
562 /* Setup the generic vfs inode parts now. */
565 * This is for checking whether an inode has changed w.r.t. a file so
566 * that the file can be updated if necessary (compare with f_version).
568 vi->i_version = 1;
570 vi->i_uid = vol->uid;
571 vi->i_gid = vol->gid;
572 vi->i_mode = 0;
575 * Initialize the ntfs specific part of @vi special casing
576 * FILE_MFT which we need to do at mount time.
578 if (vi->i_ino != FILE_MFT)
579 ntfs_init_big_inode(vi);
580 ni = NTFS_I(vi);
582 m = map_mft_record(ni);
583 if (IS_ERR(m)) {
584 err = PTR_ERR(m);
585 goto err_out;
587 ctx = ntfs_attr_get_search_ctx(ni, m);
588 if (!ctx) {
589 err = -ENOMEM;
590 goto unm_err_out;
593 if (!(m->flags & MFT_RECORD_IN_USE)) {
594 ntfs_error(vi->i_sb, "Inode is not in use!");
595 goto unm_err_out;
597 if (m->base_mft_record) {
598 ntfs_error(vi->i_sb, "Inode is an extent inode!");
599 goto unm_err_out;
602 /* Transfer information from mft record into vfs and ntfs inodes. */
603 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
606 * FIXME: Keep in mind that link_count is two for files which have both
607 * a long file name and a short file name as separate entries, so if
608 * we are hiding short file names this will be too high. Either we need
609 * to account for the short file names by subtracting them or we need
610 * to make sure we delete files even though i_nlink is not zero which
611 * might be tricky due to vfs interactions. Need to think about this
612 * some more when implementing the unlink command.
614 set_nlink(vi, le16_to_cpu(m->link_count));
616 * FIXME: Reparse points can have the directory bit set even though
617 * they would be S_IFLNK. Need to deal with this further below when we
618 * implement reparse points / symbolic links but it will do for now.
619 * Also if not a directory, it could be something else, rather than
620 * a regular file. But again, will do for now.
622 /* Everyone gets all permissions. */
623 vi->i_mode |= S_IRWXUGO;
624 /* If read-only, no one gets write permissions. */
625 if (IS_RDONLY(vi))
626 vi->i_mode &= ~S_IWUGO;
627 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
628 vi->i_mode |= S_IFDIR;
630 * Apply the directory permissions mask set in the mount
631 * options.
633 vi->i_mode &= ~vol->dmask;
634 /* Things break without this kludge! */
635 if (vi->i_nlink > 1)
636 set_nlink(vi, 1);
637 } else {
638 vi->i_mode |= S_IFREG;
639 /* Apply the file permissions mask set in the mount options. */
640 vi->i_mode &= ~vol->fmask;
643 * Find the standard information attribute in the mft record. At this
644 * stage we haven't setup the attribute list stuff yet, so this could
645 * in fact fail if the standard information is in an extent record, but
646 * I don't think this actually ever happens.
648 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
649 ctx);
650 if (unlikely(err)) {
651 if (err == -ENOENT) {
653 * TODO: We should be performing a hot fix here (if the
654 * recover mount option is set) by creating a new
655 * attribute.
657 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
658 "is missing.");
660 goto unm_err_out;
662 a = ctx->attr;
663 /* Get the standard information attribute value. */
664 si = (STANDARD_INFORMATION*)((u8*)a +
665 le16_to_cpu(a->data.resident.value_offset));
667 /* Transfer information from the standard information into vi. */
669 * Note: The i_?times do not quite map perfectly onto the NTFS times,
670 * but they are close enough, and in the end it doesn't really matter
671 * that much...
674 * mtime is the last change of the data within the file. Not changed
675 * when only metadata is changed, e.g. a rename doesn't affect mtime.
677 vi->i_mtime = ntfs2utc(si->last_data_change_time);
679 * ctime is the last change of the metadata of the file. This obviously
680 * always changes, when mtime is changed. ctime can be changed on its
681 * own, mtime is then not changed, e.g. when a file is renamed.
683 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
685 * Last access to the data within the file. Not changed during a rename
686 * for example but changed whenever the file is written to.
688 vi->i_atime = ntfs2utc(si->last_access_time);
690 /* Find the attribute list attribute if present. */
691 ntfs_attr_reinit_search_ctx(ctx);
692 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
693 if (err) {
694 if (unlikely(err != -ENOENT)) {
695 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
696 "attribute.");
697 goto unm_err_out;
699 } else /* if (!err) */ {
700 if (vi->i_ino == FILE_MFT)
701 goto skip_attr_list_load;
702 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
703 NInoSetAttrList(ni);
704 a = ctx->attr;
705 if (a->flags & ATTR_COMPRESSION_MASK) {
706 ntfs_error(vi->i_sb, "Attribute list attribute is "
707 "compressed.");
708 goto unm_err_out;
710 if (a->flags & ATTR_IS_ENCRYPTED ||
711 a->flags & ATTR_IS_SPARSE) {
712 if (a->non_resident) {
713 ntfs_error(vi->i_sb, "Non-resident attribute "
714 "list attribute is encrypted/"
715 "sparse.");
716 goto unm_err_out;
718 ntfs_warning(vi->i_sb, "Resident attribute list "
719 "attribute in inode 0x%lx is marked "
720 "encrypted/sparse which is not true. "
721 "However, Windows allows this and "
722 "chkdsk does not detect or correct it "
723 "so we will just ignore the invalid "
724 "flags and pretend they are not set.",
725 vi->i_ino);
727 /* Now allocate memory for the attribute list. */
728 ni->attr_list_size = (u32)ntfs_attr_size(a);
729 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
730 if (!ni->attr_list) {
731 ntfs_error(vi->i_sb, "Not enough memory to allocate "
732 "buffer for attribute list.");
733 err = -ENOMEM;
734 goto unm_err_out;
736 if (a->non_resident) {
737 NInoSetAttrListNonResident(ni);
738 if (a->data.non_resident.lowest_vcn) {
739 ntfs_error(vi->i_sb, "Attribute list has non "
740 "zero lowest_vcn.");
741 goto unm_err_out;
744 * Setup the runlist. No need for locking as we have
745 * exclusive access to the inode at this time.
747 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
748 a, NULL);
749 if (IS_ERR(ni->attr_list_rl.rl)) {
750 err = PTR_ERR(ni->attr_list_rl.rl);
751 ni->attr_list_rl.rl = NULL;
752 ntfs_error(vi->i_sb, "Mapping pairs "
753 "decompression failed.");
754 goto unm_err_out;
756 /* Now load the attribute list. */
757 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
758 ni->attr_list, ni->attr_list_size,
759 sle64_to_cpu(a->data.non_resident.
760 initialized_size)))) {
761 ntfs_error(vi->i_sb, "Failed to load "
762 "attribute list attribute.");
763 goto unm_err_out;
765 } else /* if (!a->non_resident) */ {
766 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
767 + le32_to_cpu(
768 a->data.resident.value_length) >
769 (u8*)ctx->mrec + vol->mft_record_size) {
770 ntfs_error(vi->i_sb, "Corrupt attribute list "
771 "in inode.");
772 goto unm_err_out;
774 /* Now copy the attribute list. */
775 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
776 a->data.resident.value_offset),
777 le32_to_cpu(
778 a->data.resident.value_length));
781 skip_attr_list_load:
783 * If an attribute list is present we now have the attribute list value
784 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
786 if (S_ISDIR(vi->i_mode)) {
787 loff_t bvi_size;
788 ntfs_inode *bni;
789 INDEX_ROOT *ir;
790 u8 *ir_end, *index_end;
792 /* It is a directory, find index root attribute. */
793 ntfs_attr_reinit_search_ctx(ctx);
794 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
795 0, NULL, 0, ctx);
796 if (unlikely(err)) {
797 if (err == -ENOENT) {
798 // FIXME: File is corrupt! Hot-fix with empty
799 // index root attribute if recovery option is
800 // set.
801 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
802 "is missing.");
804 goto unm_err_out;
806 a = ctx->attr;
807 /* Set up the state. */
808 if (unlikely(a->non_resident)) {
809 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
810 "resident.");
811 goto unm_err_out;
813 /* Ensure the attribute name is placed before the value. */
814 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
815 le16_to_cpu(a->data.resident.value_offset)))) {
816 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
817 "placed after the attribute value.");
818 goto unm_err_out;
821 * Compressed/encrypted index root just means that the newly
822 * created files in that directory should be created compressed/
823 * encrypted. However index root cannot be both compressed and
824 * encrypted.
826 if (a->flags & ATTR_COMPRESSION_MASK)
827 NInoSetCompressed(ni);
828 if (a->flags & ATTR_IS_ENCRYPTED) {
829 if (a->flags & ATTR_COMPRESSION_MASK) {
830 ntfs_error(vi->i_sb, "Found encrypted and "
831 "compressed attribute.");
832 goto unm_err_out;
834 NInoSetEncrypted(ni);
836 if (a->flags & ATTR_IS_SPARSE)
837 NInoSetSparse(ni);
838 ir = (INDEX_ROOT*)((u8*)a +
839 le16_to_cpu(a->data.resident.value_offset));
840 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
841 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
842 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
843 "corrupt.");
844 goto unm_err_out;
846 index_end = (u8*)&ir->index +
847 le32_to_cpu(ir->index.index_length);
848 if (index_end > ir_end) {
849 ntfs_error(vi->i_sb, "Directory index is corrupt.");
850 goto unm_err_out;
852 if (ir->type != AT_FILE_NAME) {
853 ntfs_error(vi->i_sb, "Indexed attribute is not "
854 "$FILE_NAME.");
855 goto unm_err_out;
857 if (ir->collation_rule != COLLATION_FILE_NAME) {
858 ntfs_error(vi->i_sb, "Index collation rule is not "
859 "COLLATION_FILE_NAME.");
860 goto unm_err_out;
862 ni->itype.index.collation_rule = ir->collation_rule;
863 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
864 if (ni->itype.index.block_size &
865 (ni->itype.index.block_size - 1)) {
866 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
867 "power of two.",
868 ni->itype.index.block_size);
869 goto unm_err_out;
871 if (ni->itype.index.block_size > PAGE_SIZE) {
872 ntfs_error(vi->i_sb, "Index block size (%u) > "
873 "PAGE_SIZE (%ld) is not "
874 "supported. Sorry.",
875 ni->itype.index.block_size,
876 PAGE_SIZE);
877 err = -EOPNOTSUPP;
878 goto unm_err_out;
880 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
881 ntfs_error(vi->i_sb, "Index block size (%u) < "
882 "NTFS_BLOCK_SIZE (%i) is not "
883 "supported. Sorry.",
884 ni->itype.index.block_size,
885 NTFS_BLOCK_SIZE);
886 err = -EOPNOTSUPP;
887 goto unm_err_out;
889 ni->itype.index.block_size_bits =
890 ffs(ni->itype.index.block_size) - 1;
891 /* Determine the size of a vcn in the directory index. */
892 if (vol->cluster_size <= ni->itype.index.block_size) {
893 ni->itype.index.vcn_size = vol->cluster_size;
894 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
895 } else {
896 ni->itype.index.vcn_size = vol->sector_size;
897 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
900 /* Setup the index allocation attribute, even if not present. */
901 NInoSetMstProtected(ni);
902 ni->type = AT_INDEX_ALLOCATION;
903 ni->name = I30;
904 ni->name_len = 4;
906 if (!(ir->index.flags & LARGE_INDEX)) {
907 /* No index allocation. */
908 vi->i_size = ni->initialized_size =
909 ni->allocated_size = 0;
910 /* We are done with the mft record, so we release it. */
911 ntfs_attr_put_search_ctx(ctx);
912 unmap_mft_record(ni);
913 m = NULL;
914 ctx = NULL;
915 goto skip_large_dir_stuff;
916 } /* LARGE_INDEX: Index allocation present. Setup state. */
917 NInoSetIndexAllocPresent(ni);
918 /* Find index allocation attribute. */
919 ntfs_attr_reinit_search_ctx(ctx);
920 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
921 CASE_SENSITIVE, 0, NULL, 0, ctx);
922 if (unlikely(err)) {
923 if (err == -ENOENT)
924 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
925 "attribute is not present but "
926 "$INDEX_ROOT indicated it is.");
927 else
928 ntfs_error(vi->i_sb, "Failed to lookup "
929 "$INDEX_ALLOCATION "
930 "attribute.");
931 goto unm_err_out;
933 a = ctx->attr;
934 if (!a->non_resident) {
935 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
936 "is resident.");
937 goto unm_err_out;
940 * Ensure the attribute name is placed before the mapping pairs
941 * array.
943 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
944 le16_to_cpu(
945 a->data.non_resident.mapping_pairs_offset)))) {
946 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
947 "is placed after the mapping pairs "
948 "array.");
949 goto unm_err_out;
951 if (a->flags & ATTR_IS_ENCRYPTED) {
952 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
953 "is encrypted.");
954 goto unm_err_out;
956 if (a->flags & ATTR_IS_SPARSE) {
957 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
958 "is sparse.");
959 goto unm_err_out;
961 if (a->flags & ATTR_COMPRESSION_MASK) {
962 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
963 "is compressed.");
964 goto unm_err_out;
966 if (a->data.non_resident.lowest_vcn) {
967 ntfs_error(vi->i_sb, "First extent of "
968 "$INDEX_ALLOCATION attribute has non "
969 "zero lowest_vcn.");
970 goto unm_err_out;
972 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
973 ni->initialized_size = sle64_to_cpu(
974 a->data.non_resident.initialized_size);
975 ni->allocated_size = sle64_to_cpu(
976 a->data.non_resident.allocated_size);
978 * We are done with the mft record, so we release it. Otherwise
979 * we would deadlock in ntfs_attr_iget().
981 ntfs_attr_put_search_ctx(ctx);
982 unmap_mft_record(ni);
983 m = NULL;
984 ctx = NULL;
985 /* Get the index bitmap attribute inode. */
986 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
987 if (IS_ERR(bvi)) {
988 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
989 err = PTR_ERR(bvi);
990 goto unm_err_out;
992 bni = NTFS_I(bvi);
993 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
994 NInoSparse(bni)) {
995 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
996 "and/or encrypted and/or sparse.");
997 goto iput_unm_err_out;
999 /* Consistency check bitmap size vs. index allocation size. */
1000 bvi_size = i_size_read(bvi);
1001 if ((bvi_size << 3) < (vi->i_size >>
1002 ni->itype.index.block_size_bits)) {
1003 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
1004 "for index allocation (0x%llx).",
1005 bvi_size << 3, vi->i_size);
1006 goto iput_unm_err_out;
1008 /* No longer need the bitmap attribute inode. */
1009 iput(bvi);
1010 skip_large_dir_stuff:
1011 /* Setup the operations for this inode. */
1012 vi->i_op = &ntfs_dir_inode_ops;
1013 vi->i_fop = &ntfs_dir_ops;
1014 vi->i_mapping->a_ops = &ntfs_mst_aops;
1015 } else {
1016 /* It is a file. */
1017 ntfs_attr_reinit_search_ctx(ctx);
1019 /* Setup the data attribute, even if not present. */
1020 ni->type = AT_DATA;
1021 ni->name = NULL;
1022 ni->name_len = 0;
1024 /* Find first extent of the unnamed data attribute. */
1025 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1026 if (unlikely(err)) {
1027 vi->i_size = ni->initialized_size =
1028 ni->allocated_size = 0;
1029 if (err != -ENOENT) {
1030 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1031 "attribute.");
1032 goto unm_err_out;
1035 * FILE_Secure does not have an unnamed $DATA
1036 * attribute, so we special case it here.
1038 if (vi->i_ino == FILE_Secure)
1039 goto no_data_attr_special_case;
1041 * Most if not all the system files in the $Extend
1042 * system directory do not have unnamed data
1043 * attributes so we need to check if the parent
1044 * directory of the file is FILE_Extend and if it is
1045 * ignore this error. To do this we need to get the
1046 * name of this inode from the mft record as the name
1047 * contains the back reference to the parent directory.
1049 if (ntfs_is_extended_system_file(ctx) > 0)
1050 goto no_data_attr_special_case;
1051 // FIXME: File is corrupt! Hot-fix with empty data
1052 // attribute if recovery option is set.
1053 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1054 goto unm_err_out;
1056 a = ctx->attr;
1057 /* Setup the state. */
1058 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1059 if (a->flags & ATTR_COMPRESSION_MASK) {
1060 NInoSetCompressed(ni);
1061 if (vol->cluster_size > 4096) {
1062 ntfs_error(vi->i_sb, "Found "
1063 "compressed data but "
1064 "compression is "
1065 "disabled due to "
1066 "cluster size (%i) > "
1067 "4kiB.",
1068 vol->cluster_size);
1069 goto unm_err_out;
1071 if ((a->flags & ATTR_COMPRESSION_MASK)
1072 != ATTR_IS_COMPRESSED) {
1073 ntfs_error(vi->i_sb, "Found unknown "
1074 "compression method "
1075 "or corrupt file.");
1076 goto unm_err_out;
1079 if (a->flags & ATTR_IS_SPARSE)
1080 NInoSetSparse(ni);
1082 if (a->flags & ATTR_IS_ENCRYPTED) {
1083 if (NInoCompressed(ni)) {
1084 ntfs_error(vi->i_sb, "Found encrypted and "
1085 "compressed data.");
1086 goto unm_err_out;
1088 NInoSetEncrypted(ni);
1090 if (a->non_resident) {
1091 NInoSetNonResident(ni);
1092 if (NInoCompressed(ni) || NInoSparse(ni)) {
1093 if (NInoCompressed(ni) && a->data.non_resident.
1094 compression_unit != 4) {
1095 ntfs_error(vi->i_sb, "Found "
1096 "non-standard "
1097 "compression unit (%u "
1098 "instead of 4). "
1099 "Cannot handle this.",
1100 a->data.non_resident.
1101 compression_unit);
1102 err = -EOPNOTSUPP;
1103 goto unm_err_out;
1105 if (a->data.non_resident.compression_unit) {
1106 ni->itype.compressed.block_size = 1U <<
1107 (a->data.non_resident.
1108 compression_unit +
1109 vol->cluster_size_bits);
1110 ni->itype.compressed.block_size_bits =
1111 ffs(ni->itype.
1112 compressed.
1113 block_size) - 1;
1114 ni->itype.compressed.block_clusters =
1115 1U << a->data.
1116 non_resident.
1117 compression_unit;
1118 } else {
1119 ni->itype.compressed.block_size = 0;
1120 ni->itype.compressed.block_size_bits =
1122 ni->itype.compressed.block_clusters =
1125 ni->itype.compressed.size = sle64_to_cpu(
1126 a->data.non_resident.
1127 compressed_size);
1129 if (a->data.non_resident.lowest_vcn) {
1130 ntfs_error(vi->i_sb, "First extent of $DATA "
1131 "attribute has non zero "
1132 "lowest_vcn.");
1133 goto unm_err_out;
1135 vi->i_size = sle64_to_cpu(
1136 a->data.non_resident.data_size);
1137 ni->initialized_size = sle64_to_cpu(
1138 a->data.non_resident.initialized_size);
1139 ni->allocated_size = sle64_to_cpu(
1140 a->data.non_resident.allocated_size);
1141 } else { /* Resident attribute. */
1142 vi->i_size = ni->initialized_size = le32_to_cpu(
1143 a->data.resident.value_length);
1144 ni->allocated_size = le32_to_cpu(a->length) -
1145 le16_to_cpu(
1146 a->data.resident.value_offset);
1147 if (vi->i_size > ni->allocated_size) {
1148 ntfs_error(vi->i_sb, "Resident data attribute "
1149 "is corrupt (size exceeds "
1150 "allocation).");
1151 goto unm_err_out;
1154 no_data_attr_special_case:
1155 /* We are done with the mft record, so we release it. */
1156 ntfs_attr_put_search_ctx(ctx);
1157 unmap_mft_record(ni);
1158 m = NULL;
1159 ctx = NULL;
1160 /* Setup the operations for this inode. */
1161 vi->i_op = &ntfs_file_inode_ops;
1162 vi->i_fop = &ntfs_file_ops;
1163 vi->i_mapping->a_ops = &ntfs_normal_aops;
1164 if (NInoMstProtected(ni))
1165 vi->i_mapping->a_ops = &ntfs_mst_aops;
1166 else if (NInoCompressed(ni))
1167 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1170 * The number of 512-byte blocks used on disk (for stat). This is in so
1171 * far inaccurate as it doesn't account for any named streams or other
1172 * special non-resident attributes, but that is how Windows works, too,
1173 * so we are at least consistent with Windows, if not entirely
1174 * consistent with the Linux Way. Doing it the Linux Way would cause a
1175 * significant slowdown as it would involve iterating over all
1176 * attributes in the mft record and adding the allocated/compressed
1177 * sizes of all non-resident attributes present to give us the Linux
1178 * correct size that should go into i_blocks (after division by 512).
1180 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1181 vi->i_blocks = ni->itype.compressed.size >> 9;
1182 else
1183 vi->i_blocks = ni->allocated_size >> 9;
1184 ntfs_debug("Done.");
1185 return 0;
1186 iput_unm_err_out:
1187 iput(bvi);
1188 unm_err_out:
1189 if (!err)
1190 err = -EIO;
1191 if (ctx)
1192 ntfs_attr_put_search_ctx(ctx);
1193 if (m)
1194 unmap_mft_record(ni);
1195 err_out:
1196 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1197 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1198 make_bad_inode(vi);
1199 if (err != -EOPNOTSUPP && err != -ENOMEM)
1200 NVolSetErrors(vol);
1201 return err;
1205 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1206 * @base_vi: base inode
1207 * @vi: attribute inode to read
1209 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1210 * attribute inode described by @vi into memory from the base mft record
1211 * described by @base_ni.
1213 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1214 * reading and looks up the attribute described by @vi before setting up the
1215 * necessary fields in @vi as well as initializing the ntfs inode.
1217 * Q: What locks are held when the function is called?
1218 * A: i_state has I_NEW set, hence the inode is locked, also
1219 * i_count is set to 1, so it is not going to go away
1221 * Return 0 on success and -errno on error. In the error case, the inode will
1222 * have had make_bad_inode() executed on it.
1224 * Note this cannot be called for AT_INDEX_ALLOCATION.
1226 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1228 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1229 ntfs_inode *ni, *base_ni;
1230 MFT_RECORD *m;
1231 ATTR_RECORD *a;
1232 ntfs_attr_search_ctx *ctx;
1233 int err = 0;
1235 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1237 ntfs_init_big_inode(vi);
1239 ni = NTFS_I(vi);
1240 base_ni = NTFS_I(base_vi);
1242 /* Just mirror the values from the base inode. */
1243 vi->i_version = base_vi->i_version;
1244 vi->i_uid = base_vi->i_uid;
1245 vi->i_gid = base_vi->i_gid;
1246 set_nlink(vi, base_vi->i_nlink);
1247 vi->i_mtime = base_vi->i_mtime;
1248 vi->i_ctime = base_vi->i_ctime;
1249 vi->i_atime = base_vi->i_atime;
1250 vi->i_generation = ni->seq_no = base_ni->seq_no;
1252 /* Set inode type to zero but preserve permissions. */
1253 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1255 m = map_mft_record(base_ni);
1256 if (IS_ERR(m)) {
1257 err = PTR_ERR(m);
1258 goto err_out;
1260 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1261 if (!ctx) {
1262 err = -ENOMEM;
1263 goto unm_err_out;
1265 /* Find the attribute. */
1266 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1267 CASE_SENSITIVE, 0, NULL, 0, ctx);
1268 if (unlikely(err))
1269 goto unm_err_out;
1270 a = ctx->attr;
1271 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1272 if (a->flags & ATTR_COMPRESSION_MASK) {
1273 NInoSetCompressed(ni);
1274 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1275 ni->name_len)) {
1276 ntfs_error(vi->i_sb, "Found compressed "
1277 "non-data or named data "
1278 "attribute. Please report "
1279 "you saw this message to "
1280 "linux-ntfs-dev@lists."
1281 "sourceforge.net");
1282 goto unm_err_out;
1284 if (vol->cluster_size > 4096) {
1285 ntfs_error(vi->i_sb, "Found compressed "
1286 "attribute but compression is "
1287 "disabled due to cluster size "
1288 "(%i) > 4kiB.",
1289 vol->cluster_size);
1290 goto unm_err_out;
1292 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1293 ATTR_IS_COMPRESSED) {
1294 ntfs_error(vi->i_sb, "Found unknown "
1295 "compression method.");
1296 goto unm_err_out;
1300 * The compressed/sparse flag set in an index root just means
1301 * to compress all files.
1303 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1304 ntfs_error(vi->i_sb, "Found mst protected attribute "
1305 "but the attribute is %s. Please "
1306 "report you saw this message to "
1307 "linux-ntfs-dev@lists.sourceforge.net",
1308 NInoCompressed(ni) ? "compressed" :
1309 "sparse");
1310 goto unm_err_out;
1312 if (a->flags & ATTR_IS_SPARSE)
1313 NInoSetSparse(ni);
1315 if (a->flags & ATTR_IS_ENCRYPTED) {
1316 if (NInoCompressed(ni)) {
1317 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1318 "data.");
1319 goto unm_err_out;
1322 * The encryption flag set in an index root just means to
1323 * encrypt all files.
1325 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1326 ntfs_error(vi->i_sb, "Found mst protected attribute "
1327 "but the attribute is encrypted. "
1328 "Please report you saw this message "
1329 "to linux-ntfs-dev@lists.sourceforge."
1330 "net");
1331 goto unm_err_out;
1333 if (ni->type != AT_DATA) {
1334 ntfs_error(vi->i_sb, "Found encrypted non-data "
1335 "attribute.");
1336 goto unm_err_out;
1338 NInoSetEncrypted(ni);
1340 if (!a->non_resident) {
1341 /* Ensure the attribute name is placed before the value. */
1342 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1343 le16_to_cpu(a->data.resident.value_offset)))) {
1344 ntfs_error(vol->sb, "Attribute name is placed after "
1345 "the attribute value.");
1346 goto unm_err_out;
1348 if (NInoMstProtected(ni)) {
1349 ntfs_error(vi->i_sb, "Found mst protected attribute "
1350 "but the attribute is resident. "
1351 "Please report you saw this message to "
1352 "linux-ntfs-dev@lists.sourceforge.net");
1353 goto unm_err_out;
1355 vi->i_size = ni->initialized_size = le32_to_cpu(
1356 a->data.resident.value_length);
1357 ni->allocated_size = le32_to_cpu(a->length) -
1358 le16_to_cpu(a->data.resident.value_offset);
1359 if (vi->i_size > ni->allocated_size) {
1360 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1361 "(size exceeds allocation).");
1362 goto unm_err_out;
1364 } else {
1365 NInoSetNonResident(ni);
1367 * Ensure the attribute name is placed before the mapping pairs
1368 * array.
1370 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1371 le16_to_cpu(
1372 a->data.non_resident.mapping_pairs_offset)))) {
1373 ntfs_error(vol->sb, "Attribute name is placed after "
1374 "the mapping pairs array.");
1375 goto unm_err_out;
1377 if (NInoCompressed(ni) || NInoSparse(ni)) {
1378 if (NInoCompressed(ni) && a->data.non_resident.
1379 compression_unit != 4) {
1380 ntfs_error(vi->i_sb, "Found non-standard "
1381 "compression unit (%u instead "
1382 "of 4). Cannot handle this.",
1383 a->data.non_resident.
1384 compression_unit);
1385 err = -EOPNOTSUPP;
1386 goto unm_err_out;
1388 if (a->data.non_resident.compression_unit) {
1389 ni->itype.compressed.block_size = 1U <<
1390 (a->data.non_resident.
1391 compression_unit +
1392 vol->cluster_size_bits);
1393 ni->itype.compressed.block_size_bits =
1394 ffs(ni->itype.compressed.
1395 block_size) - 1;
1396 ni->itype.compressed.block_clusters = 1U <<
1397 a->data.non_resident.
1398 compression_unit;
1399 } else {
1400 ni->itype.compressed.block_size = 0;
1401 ni->itype.compressed.block_size_bits = 0;
1402 ni->itype.compressed.block_clusters = 0;
1404 ni->itype.compressed.size = sle64_to_cpu(
1405 a->data.non_resident.compressed_size);
1407 if (a->data.non_resident.lowest_vcn) {
1408 ntfs_error(vi->i_sb, "First extent of attribute has "
1409 "non-zero lowest_vcn.");
1410 goto unm_err_out;
1412 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1413 ni->initialized_size = sle64_to_cpu(
1414 a->data.non_resident.initialized_size);
1415 ni->allocated_size = sle64_to_cpu(
1416 a->data.non_resident.allocated_size);
1418 vi->i_mapping->a_ops = &ntfs_normal_aops;
1419 if (NInoMstProtected(ni))
1420 vi->i_mapping->a_ops = &ntfs_mst_aops;
1421 else if (NInoCompressed(ni))
1422 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1423 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1424 vi->i_blocks = ni->itype.compressed.size >> 9;
1425 else
1426 vi->i_blocks = ni->allocated_size >> 9;
1428 * Make sure the base inode does not go away and attach it to the
1429 * attribute inode.
1431 igrab(base_vi);
1432 ni->ext.base_ntfs_ino = base_ni;
1433 ni->nr_extents = -1;
1435 ntfs_attr_put_search_ctx(ctx);
1436 unmap_mft_record(base_ni);
1438 ntfs_debug("Done.");
1439 return 0;
1441 unm_err_out:
1442 if (!err)
1443 err = -EIO;
1444 if (ctx)
1445 ntfs_attr_put_search_ctx(ctx);
1446 unmap_mft_record(base_ni);
1447 err_out:
1448 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1449 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1450 "Marking corrupt inode and base inode 0x%lx as bad. "
1451 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1452 base_vi->i_ino);
1453 make_bad_inode(vi);
1454 if (err != -ENOMEM)
1455 NVolSetErrors(vol);
1456 return err;
1460 * ntfs_read_locked_index_inode - read an index inode from its base inode
1461 * @base_vi: base inode
1462 * @vi: index inode to read
1464 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1465 * index inode described by @vi into memory from the base mft record described
1466 * by @base_ni.
1468 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1469 * reading and looks up the attributes relating to the index described by @vi
1470 * before setting up the necessary fields in @vi as well as initializing the
1471 * ntfs inode.
1473 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1474 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1475 * are setup like directory inodes since directories are a special case of
1476 * indices ao they need to be treated in much the same way. Most importantly,
1477 * for small indices the index allocation attribute might not actually exist.
1478 * However, the index root attribute always exists but this does not need to
1479 * have an inode associated with it and this is why we define a new inode type
1480 * index. Also, like for directories, we need to have an attribute inode for
1481 * the bitmap attribute corresponding to the index allocation attribute and we
1482 * can store this in the appropriate field of the inode, just like we do for
1483 * normal directory inodes.
1485 * Q: What locks are held when the function is called?
1486 * A: i_state has I_NEW set, hence the inode is locked, also
1487 * i_count is set to 1, so it is not going to go away
1489 * Return 0 on success and -errno on error. In the error case, the inode will
1490 * have had make_bad_inode() executed on it.
1492 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1494 loff_t bvi_size;
1495 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1496 ntfs_inode *ni, *base_ni, *bni;
1497 struct inode *bvi;
1498 MFT_RECORD *m;
1499 ATTR_RECORD *a;
1500 ntfs_attr_search_ctx *ctx;
1501 INDEX_ROOT *ir;
1502 u8 *ir_end, *index_end;
1503 int err = 0;
1505 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1506 ntfs_init_big_inode(vi);
1507 ni = NTFS_I(vi);
1508 base_ni = NTFS_I(base_vi);
1509 /* Just mirror the values from the base inode. */
1510 vi->i_version = base_vi->i_version;
1511 vi->i_uid = base_vi->i_uid;
1512 vi->i_gid = base_vi->i_gid;
1513 set_nlink(vi, base_vi->i_nlink);
1514 vi->i_mtime = base_vi->i_mtime;
1515 vi->i_ctime = base_vi->i_ctime;
1516 vi->i_atime = base_vi->i_atime;
1517 vi->i_generation = ni->seq_no = base_ni->seq_no;
1518 /* Set inode type to zero but preserve permissions. */
1519 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1520 /* Map the mft record for the base inode. */
1521 m = map_mft_record(base_ni);
1522 if (IS_ERR(m)) {
1523 err = PTR_ERR(m);
1524 goto err_out;
1526 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1527 if (!ctx) {
1528 err = -ENOMEM;
1529 goto unm_err_out;
1531 /* Find the index root attribute. */
1532 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1533 CASE_SENSITIVE, 0, NULL, 0, ctx);
1534 if (unlikely(err)) {
1535 if (err == -ENOENT)
1536 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1537 "missing.");
1538 goto unm_err_out;
1540 a = ctx->attr;
1541 /* Set up the state. */
1542 if (unlikely(a->non_resident)) {
1543 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1544 goto unm_err_out;
1546 /* Ensure the attribute name is placed before the value. */
1547 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1548 le16_to_cpu(a->data.resident.value_offset)))) {
1549 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1550 "after the attribute value.");
1551 goto unm_err_out;
1554 * Compressed/encrypted/sparse index root is not allowed, except for
1555 * directories of course but those are not dealt with here.
1557 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1558 ATTR_IS_SPARSE)) {
1559 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1560 "root attribute.");
1561 goto unm_err_out;
1563 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1564 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1565 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1566 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1567 goto unm_err_out;
1569 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1570 if (index_end > ir_end) {
1571 ntfs_error(vi->i_sb, "Index is corrupt.");
1572 goto unm_err_out;
1574 if (ir->type) {
1575 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1576 le32_to_cpu(ir->type));
1577 goto unm_err_out;
1579 ni->itype.index.collation_rule = ir->collation_rule;
1580 ntfs_debug("Index collation rule is 0x%x.",
1581 le32_to_cpu(ir->collation_rule));
1582 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1583 if (!is_power_of_2(ni->itype.index.block_size)) {
1584 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1585 "two.", ni->itype.index.block_size);
1586 goto unm_err_out;
1588 if (ni->itype.index.block_size > PAGE_SIZE) {
1589 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1590 "(%ld) is not supported. Sorry.",
1591 ni->itype.index.block_size, PAGE_SIZE);
1592 err = -EOPNOTSUPP;
1593 goto unm_err_out;
1595 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1596 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1597 "(%i) is not supported. Sorry.",
1598 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1599 err = -EOPNOTSUPP;
1600 goto unm_err_out;
1602 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1603 /* Determine the size of a vcn in the index. */
1604 if (vol->cluster_size <= ni->itype.index.block_size) {
1605 ni->itype.index.vcn_size = vol->cluster_size;
1606 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1607 } else {
1608 ni->itype.index.vcn_size = vol->sector_size;
1609 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1611 /* Check for presence of index allocation attribute. */
1612 if (!(ir->index.flags & LARGE_INDEX)) {
1613 /* No index allocation. */
1614 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1615 /* We are done with the mft record, so we release it. */
1616 ntfs_attr_put_search_ctx(ctx);
1617 unmap_mft_record(base_ni);
1618 m = NULL;
1619 ctx = NULL;
1620 goto skip_large_index_stuff;
1621 } /* LARGE_INDEX: Index allocation present. Setup state. */
1622 NInoSetIndexAllocPresent(ni);
1623 /* Find index allocation attribute. */
1624 ntfs_attr_reinit_search_ctx(ctx);
1625 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1626 CASE_SENSITIVE, 0, NULL, 0, ctx);
1627 if (unlikely(err)) {
1628 if (err == -ENOENT)
1629 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1630 "not present but $INDEX_ROOT "
1631 "indicated it is.");
1632 else
1633 ntfs_error(vi->i_sb, "Failed to lookup "
1634 "$INDEX_ALLOCATION attribute.");
1635 goto unm_err_out;
1637 a = ctx->attr;
1638 if (!a->non_resident) {
1639 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1640 "resident.");
1641 goto unm_err_out;
1644 * Ensure the attribute name is placed before the mapping pairs array.
1646 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1647 le16_to_cpu(
1648 a->data.non_resident.mapping_pairs_offset)))) {
1649 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1650 "placed after the mapping pairs array.");
1651 goto unm_err_out;
1653 if (a->flags & ATTR_IS_ENCRYPTED) {
1654 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1655 "encrypted.");
1656 goto unm_err_out;
1658 if (a->flags & ATTR_IS_SPARSE) {
1659 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1660 goto unm_err_out;
1662 if (a->flags & ATTR_COMPRESSION_MASK) {
1663 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1664 "compressed.");
1665 goto unm_err_out;
1667 if (a->data.non_resident.lowest_vcn) {
1668 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1669 "attribute has non zero lowest_vcn.");
1670 goto unm_err_out;
1672 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1673 ni->initialized_size = sle64_to_cpu(
1674 a->data.non_resident.initialized_size);
1675 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1677 * We are done with the mft record, so we release it. Otherwise
1678 * we would deadlock in ntfs_attr_iget().
1680 ntfs_attr_put_search_ctx(ctx);
1681 unmap_mft_record(base_ni);
1682 m = NULL;
1683 ctx = NULL;
1684 /* Get the index bitmap attribute inode. */
1685 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1686 if (IS_ERR(bvi)) {
1687 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1688 err = PTR_ERR(bvi);
1689 goto unm_err_out;
1691 bni = NTFS_I(bvi);
1692 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1693 NInoSparse(bni)) {
1694 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1695 "encrypted and/or sparse.");
1696 goto iput_unm_err_out;
1698 /* Consistency check bitmap size vs. index allocation size. */
1699 bvi_size = i_size_read(bvi);
1700 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1701 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1702 "index allocation (0x%llx).", bvi_size << 3,
1703 vi->i_size);
1704 goto iput_unm_err_out;
1706 iput(bvi);
1707 skip_large_index_stuff:
1708 /* Setup the operations for this index inode. */
1709 vi->i_mapping->a_ops = &ntfs_mst_aops;
1710 vi->i_blocks = ni->allocated_size >> 9;
1712 * Make sure the base inode doesn't go away and attach it to the
1713 * index inode.
1715 igrab(base_vi);
1716 ni->ext.base_ntfs_ino = base_ni;
1717 ni->nr_extents = -1;
1719 ntfs_debug("Done.");
1720 return 0;
1721 iput_unm_err_out:
1722 iput(bvi);
1723 unm_err_out:
1724 if (!err)
1725 err = -EIO;
1726 if (ctx)
1727 ntfs_attr_put_search_ctx(ctx);
1728 if (m)
1729 unmap_mft_record(base_ni);
1730 err_out:
1731 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1732 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1733 ni->name_len);
1734 make_bad_inode(vi);
1735 if (err != -EOPNOTSUPP && err != -ENOMEM)
1736 NVolSetErrors(vol);
1737 return err;
1741 * The MFT inode has special locking, so teach the lock validator
1742 * about this by splitting off the locking rules of the MFT from
1743 * the locking rules of other inodes. The MFT inode can never be
1744 * accessed from the VFS side (or even internally), only by the
1745 * map_mft functions.
1747 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1750 * ntfs_read_inode_mount - special read_inode for mount time use only
1751 * @vi: inode to read
1753 * Read inode FILE_MFT at mount time, only called with super_block lock
1754 * held from within the read_super() code path.
1756 * This function exists because when it is called the page cache for $MFT/$DATA
1757 * is not initialized and hence we cannot get at the contents of mft records
1758 * by calling map_mft_record*().
1760 * Further it needs to cope with the circular references problem, i.e. cannot
1761 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1762 * we do not know where the other extent mft records are yet and again, because
1763 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1764 * attribute list is actually present in $MFT inode.
1766 * We solve these problems by starting with the $DATA attribute before anything
1767 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1768 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1769 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1770 * sufficient information for the next step to complete.
1772 * This should work but there are two possible pit falls (see inline comments
1773 * below), but only time will tell if they are real pits or just smoke...
1775 int ntfs_read_inode_mount(struct inode *vi)
1777 VCN next_vcn, last_vcn, highest_vcn;
1778 s64 block;
1779 struct super_block *sb = vi->i_sb;
1780 ntfs_volume *vol = NTFS_SB(sb);
1781 struct buffer_head *bh;
1782 ntfs_inode *ni;
1783 MFT_RECORD *m = NULL;
1784 ATTR_RECORD *a;
1785 ntfs_attr_search_ctx *ctx;
1786 unsigned int i, nr_blocks;
1787 int err;
1789 ntfs_debug("Entering.");
1791 /* Initialize the ntfs specific part of @vi. */
1792 ntfs_init_big_inode(vi);
1794 ni = NTFS_I(vi);
1796 /* Setup the data attribute. It is special as it is mst protected. */
1797 NInoSetNonResident(ni);
1798 NInoSetMstProtected(ni);
1799 NInoSetSparseDisabled(ni);
1800 ni->type = AT_DATA;
1801 ni->name = NULL;
1802 ni->name_len = 0;
1804 * This sets up our little cheat allowing us to reuse the async read io
1805 * completion handler for directories.
1807 ni->itype.index.block_size = vol->mft_record_size;
1808 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1810 /* Very important! Needed to be able to call map_mft_record*(). */
1811 vol->mft_ino = vi;
1813 /* Allocate enough memory to read the first mft record. */
1814 if (vol->mft_record_size > 64 * 1024) {
1815 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1816 vol->mft_record_size);
1817 goto err_out;
1819 i = vol->mft_record_size;
1820 if (i < sb->s_blocksize)
1821 i = sb->s_blocksize;
1822 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1823 if (!m) {
1824 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1825 goto err_out;
1828 /* Determine the first block of the $MFT/$DATA attribute. */
1829 block = vol->mft_lcn << vol->cluster_size_bits >>
1830 sb->s_blocksize_bits;
1831 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1832 if (!nr_blocks)
1833 nr_blocks = 1;
1835 /* Load $MFT/$DATA's first mft record. */
1836 for (i = 0; i < nr_blocks; i++) {
1837 bh = sb_bread(sb, block++);
1838 if (!bh) {
1839 ntfs_error(sb, "Device read failed.");
1840 goto err_out;
1842 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1843 sb->s_blocksize);
1844 brelse(bh);
1847 /* Apply the mst fixups. */
1848 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1849 /* FIXME: Try to use the $MFTMirr now. */
1850 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1851 goto err_out;
1854 /* Need this to sanity check attribute list references to $MFT. */
1855 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1857 /* Provides readpage() and sync_page() for map_mft_record(). */
1858 vi->i_mapping->a_ops = &ntfs_mst_aops;
1860 ctx = ntfs_attr_get_search_ctx(ni, m);
1861 if (!ctx) {
1862 err = -ENOMEM;
1863 goto err_out;
1866 /* Find the attribute list attribute if present. */
1867 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1868 if (err) {
1869 if (unlikely(err != -ENOENT)) {
1870 ntfs_error(sb, "Failed to lookup attribute list "
1871 "attribute. You should run chkdsk.");
1872 goto put_err_out;
1874 } else /* if (!err) */ {
1875 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1876 u8 *al_end;
1877 static const char *es = " Not allowed. $MFT is corrupt. "
1878 "You should run chkdsk.";
1880 ntfs_debug("Attribute list attribute found in $MFT.");
1881 NInoSetAttrList(ni);
1882 a = ctx->attr;
1883 if (a->flags & ATTR_COMPRESSION_MASK) {
1884 ntfs_error(sb, "Attribute list attribute is "
1885 "compressed.%s", es);
1886 goto put_err_out;
1888 if (a->flags & ATTR_IS_ENCRYPTED ||
1889 a->flags & ATTR_IS_SPARSE) {
1890 if (a->non_resident) {
1891 ntfs_error(sb, "Non-resident attribute list "
1892 "attribute is encrypted/"
1893 "sparse.%s", es);
1894 goto put_err_out;
1896 ntfs_warning(sb, "Resident attribute list attribute "
1897 "in $MFT system file is marked "
1898 "encrypted/sparse which is not true. "
1899 "However, Windows allows this and "
1900 "chkdsk does not detect or correct it "
1901 "so we will just ignore the invalid "
1902 "flags and pretend they are not set.");
1904 /* Now allocate memory for the attribute list. */
1905 ni->attr_list_size = (u32)ntfs_attr_size(a);
1906 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1907 if (!ni->attr_list) {
1908 ntfs_error(sb, "Not enough memory to allocate buffer "
1909 "for attribute list.");
1910 goto put_err_out;
1912 if (a->non_resident) {
1913 NInoSetAttrListNonResident(ni);
1914 if (a->data.non_resident.lowest_vcn) {
1915 ntfs_error(sb, "Attribute list has non zero "
1916 "lowest_vcn. $MFT is corrupt. "
1917 "You should run chkdsk.");
1918 goto put_err_out;
1920 /* Setup the runlist. */
1921 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1922 a, NULL);
1923 if (IS_ERR(ni->attr_list_rl.rl)) {
1924 err = PTR_ERR(ni->attr_list_rl.rl);
1925 ni->attr_list_rl.rl = NULL;
1926 ntfs_error(sb, "Mapping pairs decompression "
1927 "failed with error code %i.",
1928 -err);
1929 goto put_err_out;
1931 /* Now load the attribute list. */
1932 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1933 ni->attr_list, ni->attr_list_size,
1934 sle64_to_cpu(a->data.
1935 non_resident.initialized_size)))) {
1936 ntfs_error(sb, "Failed to load attribute list "
1937 "attribute with error code %i.",
1938 -err);
1939 goto put_err_out;
1941 } else /* if (!ctx.attr->non_resident) */ {
1942 if ((u8*)a + le16_to_cpu(
1943 a->data.resident.value_offset) +
1944 le32_to_cpu(
1945 a->data.resident.value_length) >
1946 (u8*)ctx->mrec + vol->mft_record_size) {
1947 ntfs_error(sb, "Corrupt attribute list "
1948 "attribute.");
1949 goto put_err_out;
1951 /* Now copy the attribute list. */
1952 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1953 a->data.resident.value_offset),
1954 le32_to_cpu(
1955 a->data.resident.value_length));
1957 /* The attribute list is now setup in memory. */
1959 * FIXME: I don't know if this case is actually possible.
1960 * According to logic it is not possible but I have seen too
1961 * many weird things in MS software to rely on logic... Thus we
1962 * perform a manual search and make sure the first $MFT/$DATA
1963 * extent is in the base inode. If it is not we abort with an
1964 * error and if we ever see a report of this error we will need
1965 * to do some magic in order to have the necessary mft record
1966 * loaded and in the right place in the page cache. But
1967 * hopefully logic will prevail and this never happens...
1969 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1970 al_end = (u8*)al_entry + ni->attr_list_size;
1971 for (;; al_entry = next_al_entry) {
1972 /* Out of bounds check. */
1973 if ((u8*)al_entry < ni->attr_list ||
1974 (u8*)al_entry > al_end)
1975 goto em_put_err_out;
1976 /* Catch the end of the attribute list. */
1977 if ((u8*)al_entry == al_end)
1978 goto em_put_err_out;
1979 if (!al_entry->length)
1980 goto em_put_err_out;
1981 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1982 le16_to_cpu(al_entry->length) > al_end)
1983 goto em_put_err_out;
1984 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1985 le16_to_cpu(al_entry->length));
1986 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1987 goto em_put_err_out;
1988 if (AT_DATA != al_entry->type)
1989 continue;
1990 /* We want an unnamed attribute. */
1991 if (al_entry->name_length)
1992 goto em_put_err_out;
1993 /* Want the first entry, i.e. lowest_vcn == 0. */
1994 if (al_entry->lowest_vcn)
1995 goto em_put_err_out;
1996 /* First entry has to be in the base mft record. */
1997 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1998 /* MFT references do not match, logic fails. */
1999 ntfs_error(sb, "BUG: The first $DATA extent "
2000 "of $MFT is not in the base "
2001 "mft record. Please report "
2002 "you saw this message to "
2003 "linux-ntfs-dev@lists."
2004 "sourceforge.net");
2005 goto put_err_out;
2006 } else {
2007 /* Sequence numbers must match. */
2008 if (MSEQNO_LE(al_entry->mft_reference) !=
2009 ni->seq_no)
2010 goto em_put_err_out;
2011 /* Got it. All is ok. We can stop now. */
2012 break;
2017 ntfs_attr_reinit_search_ctx(ctx);
2019 /* Now load all attribute extents. */
2020 a = NULL;
2021 next_vcn = last_vcn = highest_vcn = 0;
2022 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2023 ctx))) {
2024 runlist_element *nrl;
2026 /* Cache the current attribute. */
2027 a = ctx->attr;
2028 /* $MFT must be non-resident. */
2029 if (!a->non_resident) {
2030 ntfs_error(sb, "$MFT must be non-resident but a "
2031 "resident extent was found. $MFT is "
2032 "corrupt. Run chkdsk.");
2033 goto put_err_out;
2035 /* $MFT must be uncompressed and unencrypted. */
2036 if (a->flags & ATTR_COMPRESSION_MASK ||
2037 a->flags & ATTR_IS_ENCRYPTED ||
2038 a->flags & ATTR_IS_SPARSE) {
2039 ntfs_error(sb, "$MFT must be uncompressed, "
2040 "non-sparse, and unencrypted but a "
2041 "compressed/sparse/encrypted extent "
2042 "was found. $MFT is corrupt. Run "
2043 "chkdsk.");
2044 goto put_err_out;
2047 * Decompress the mapping pairs array of this extent and merge
2048 * the result into the existing runlist. No need for locking
2049 * as we have exclusive access to the inode at this time and we
2050 * are a mount in progress task, too.
2052 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2053 if (IS_ERR(nrl)) {
2054 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2055 "failed with error code %ld. $MFT is "
2056 "corrupt.", PTR_ERR(nrl));
2057 goto put_err_out;
2059 ni->runlist.rl = nrl;
2061 /* Are we in the first extent? */
2062 if (!next_vcn) {
2063 if (a->data.non_resident.lowest_vcn) {
2064 ntfs_error(sb, "First extent of $DATA "
2065 "attribute has non zero "
2066 "lowest_vcn. $MFT is corrupt. "
2067 "You should run chkdsk.");
2068 goto put_err_out;
2070 /* Get the last vcn in the $DATA attribute. */
2071 last_vcn = sle64_to_cpu(
2072 a->data.non_resident.allocated_size)
2073 >> vol->cluster_size_bits;
2074 /* Fill in the inode size. */
2075 vi->i_size = sle64_to_cpu(
2076 a->data.non_resident.data_size);
2077 ni->initialized_size = sle64_to_cpu(
2078 a->data.non_resident.initialized_size);
2079 ni->allocated_size = sle64_to_cpu(
2080 a->data.non_resident.allocated_size);
2082 * Verify the number of mft records does not exceed
2083 * 2^32 - 1.
2085 if ((vi->i_size >> vol->mft_record_size_bits) >=
2086 (1ULL << 32)) {
2087 ntfs_error(sb, "$MFT is too big! Aborting.");
2088 goto put_err_out;
2091 * We have got the first extent of the runlist for
2092 * $MFT which means it is now relatively safe to call
2093 * the normal ntfs_read_inode() function.
2094 * Complete reading the inode, this will actually
2095 * re-read the mft record for $MFT, this time entering
2096 * it into the page cache with which we complete the
2097 * kick start of the volume. It should be safe to do
2098 * this now as the first extent of $MFT/$DATA is
2099 * already known and we would hope that we don't need
2100 * further extents in order to find the other
2101 * attributes belonging to $MFT. Only time will tell if
2102 * this is really the case. If not we will have to play
2103 * magic at this point, possibly duplicating a lot of
2104 * ntfs_read_inode() at this point. We will need to
2105 * ensure we do enough of its work to be able to call
2106 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2107 * hope this never happens...
2109 ntfs_read_locked_inode(vi);
2110 if (is_bad_inode(vi)) {
2111 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2112 "failed. BUG or corrupt $MFT. "
2113 "Run chkdsk and if no errors "
2114 "are found, please report you "
2115 "saw this message to "
2116 "linux-ntfs-dev@lists."
2117 "sourceforge.net");
2118 ntfs_attr_put_search_ctx(ctx);
2119 /* Revert to the safe super operations. */
2120 ntfs_free(m);
2121 return -1;
2124 * Re-initialize some specifics about $MFT's inode as
2125 * ntfs_read_inode() will have set up the default ones.
2127 /* Set uid and gid to root. */
2128 vi->i_uid = GLOBAL_ROOT_UID;
2129 vi->i_gid = GLOBAL_ROOT_GID;
2130 /* Regular file. No access for anyone. */
2131 vi->i_mode = S_IFREG;
2132 /* No VFS initiated operations allowed for $MFT. */
2133 vi->i_op = &ntfs_empty_inode_ops;
2134 vi->i_fop = &ntfs_empty_file_ops;
2137 /* Get the lowest vcn for the next extent. */
2138 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2139 next_vcn = highest_vcn + 1;
2141 /* Only one extent or error, which we catch below. */
2142 if (next_vcn <= 0)
2143 break;
2145 /* Avoid endless loops due to corruption. */
2146 if (next_vcn < sle64_to_cpu(
2147 a->data.non_resident.lowest_vcn)) {
2148 ntfs_error(sb, "$MFT has corrupt attribute list "
2149 "attribute. Run chkdsk.");
2150 goto put_err_out;
2153 if (err != -ENOENT) {
2154 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2155 "$MFT is corrupt. Run chkdsk.");
2156 goto put_err_out;
2158 if (!a) {
2159 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2160 "corrupt. Run chkdsk.");
2161 goto put_err_out;
2163 if (highest_vcn && highest_vcn != last_vcn - 1) {
2164 ntfs_error(sb, "Failed to load the complete runlist for "
2165 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2166 "Run chkdsk.");
2167 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2168 (unsigned long long)highest_vcn,
2169 (unsigned long long)last_vcn - 1);
2170 goto put_err_out;
2172 ntfs_attr_put_search_ctx(ctx);
2173 ntfs_debug("Done.");
2174 ntfs_free(m);
2177 * Split the locking rules of the MFT inode from the
2178 * locking rules of other inodes:
2180 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2181 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2183 return 0;
2185 em_put_err_out:
2186 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2187 "attribute list. $MFT is corrupt. Run chkdsk.");
2188 put_err_out:
2189 ntfs_attr_put_search_ctx(ctx);
2190 err_out:
2191 ntfs_error(sb, "Failed. Marking inode as bad.");
2192 make_bad_inode(vi);
2193 ntfs_free(m);
2194 return -1;
2197 static void __ntfs_clear_inode(ntfs_inode *ni)
2199 /* Free all alocated memory. */
2200 down_write(&ni->runlist.lock);
2201 if (ni->runlist.rl) {
2202 ntfs_free(ni->runlist.rl);
2203 ni->runlist.rl = NULL;
2205 up_write(&ni->runlist.lock);
2207 if (ni->attr_list) {
2208 ntfs_free(ni->attr_list);
2209 ni->attr_list = NULL;
2212 down_write(&ni->attr_list_rl.lock);
2213 if (ni->attr_list_rl.rl) {
2214 ntfs_free(ni->attr_list_rl.rl);
2215 ni->attr_list_rl.rl = NULL;
2217 up_write(&ni->attr_list_rl.lock);
2219 if (ni->name_len && ni->name != I30) {
2220 /* Catch bugs... */
2221 BUG_ON(!ni->name);
2222 kfree(ni->name);
2226 void ntfs_clear_extent_inode(ntfs_inode *ni)
2228 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2230 BUG_ON(NInoAttr(ni));
2231 BUG_ON(ni->nr_extents != -1);
2233 #ifdef NTFS_RW
2234 if (NInoDirty(ni)) {
2235 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2236 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2237 "Losing data! This is a BUG!!!");
2238 // FIXME: Do something!!!
2240 #endif /* NTFS_RW */
2242 __ntfs_clear_inode(ni);
2244 /* Bye, bye... */
2245 ntfs_destroy_extent_inode(ni);
2249 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2250 * @vi: vfs inode pending annihilation
2252 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2253 * is called, which deallocates all memory belonging to the NTFS specific part
2254 * of the inode and returns.
2256 * If the MFT record is dirty, we commit it before doing anything else.
2258 void ntfs_evict_big_inode(struct inode *vi)
2260 ntfs_inode *ni = NTFS_I(vi);
2262 truncate_inode_pages_final(&vi->i_data);
2263 clear_inode(vi);
2265 #ifdef NTFS_RW
2266 if (NInoDirty(ni)) {
2267 bool was_bad = (is_bad_inode(vi));
2269 /* Committing the inode also commits all extent inodes. */
2270 ntfs_commit_inode(vi);
2272 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2273 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2274 "0x%lx. Losing data!", vi->i_ino);
2275 // FIXME: Do something!!!
2278 #endif /* NTFS_RW */
2280 /* No need to lock at this stage as no one else has a reference. */
2281 if (ni->nr_extents > 0) {
2282 int i;
2284 for (i = 0; i < ni->nr_extents; i++)
2285 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2286 kfree(ni->ext.extent_ntfs_inos);
2289 __ntfs_clear_inode(ni);
2291 if (NInoAttr(ni)) {
2292 /* Release the base inode if we are holding it. */
2293 if (ni->nr_extents == -1) {
2294 iput(VFS_I(ni->ext.base_ntfs_ino));
2295 ni->nr_extents = 0;
2296 ni->ext.base_ntfs_ino = NULL;
2299 return;
2303 * ntfs_show_options - show mount options in /proc/mounts
2304 * @sf: seq_file in which to write our mount options
2305 * @root: root of the mounted tree whose mount options to display
2307 * Called by the VFS once for each mounted ntfs volume when someone reads
2308 * /proc/mounts in order to display the NTFS specific mount options of each
2309 * mount. The mount options of fs specified by @root are written to the seq file
2310 * @sf and success is returned.
2312 int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2314 ntfs_volume *vol = NTFS_SB(root->d_sb);
2315 int i;
2317 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2318 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2319 if (vol->fmask == vol->dmask)
2320 seq_printf(sf, ",umask=0%o", vol->fmask);
2321 else {
2322 seq_printf(sf, ",fmask=0%o", vol->fmask);
2323 seq_printf(sf, ",dmask=0%o", vol->dmask);
2325 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2326 if (NVolCaseSensitive(vol))
2327 seq_printf(sf, ",case_sensitive");
2328 if (NVolShowSystemFiles(vol))
2329 seq_printf(sf, ",show_sys_files");
2330 if (!NVolSparseEnabled(vol))
2331 seq_printf(sf, ",disable_sparse");
2332 for (i = 0; on_errors_arr[i].val; i++) {
2333 if (on_errors_arr[i].val & vol->on_errors)
2334 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2336 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2337 return 0;
2340 #ifdef NTFS_RW
2342 static const char *es = " Leaving inconsistent metadata. Unmount and run "
2343 "chkdsk.";
2346 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2347 * @vi: inode for which the i_size was changed
2349 * We only support i_size changes for normal files at present, i.e. not
2350 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2351 * below.
2353 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2354 * that the change is allowed.
2356 * This implies for us that @vi is a file inode rather than a directory, index,
2357 * or attribute inode as well as that @vi is a base inode.
2359 * Returns 0 on success or -errno on error.
2361 * Called with ->i_mutex held.
2363 int ntfs_truncate(struct inode *vi)
2365 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2366 VCN highest_vcn;
2367 unsigned long flags;
2368 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2369 ntfs_volume *vol = ni->vol;
2370 ntfs_attr_search_ctx *ctx;
2371 MFT_RECORD *m;
2372 ATTR_RECORD *a;
2373 const char *te = " Leaving file length out of sync with i_size.";
2374 int err, mp_size, size_change, alloc_change;
2375 u32 attr_len;
2377 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2378 BUG_ON(NInoAttr(ni));
2379 BUG_ON(S_ISDIR(vi->i_mode));
2380 BUG_ON(NInoMstProtected(ni));
2381 BUG_ON(ni->nr_extents < 0);
2382 retry_truncate:
2384 * Lock the runlist for writing and map the mft record to ensure it is
2385 * safe to mess with the attribute runlist and sizes.
2387 down_write(&ni->runlist.lock);
2388 if (!NInoAttr(ni))
2389 base_ni = ni;
2390 else
2391 base_ni = ni->ext.base_ntfs_ino;
2392 m = map_mft_record(base_ni);
2393 if (IS_ERR(m)) {
2394 err = PTR_ERR(m);
2395 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2396 "(error code %d).%s", vi->i_ino, err, te);
2397 ctx = NULL;
2398 m = NULL;
2399 goto old_bad_out;
2401 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2402 if (unlikely(!ctx)) {
2403 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2404 "inode 0x%lx (not enough memory).%s",
2405 vi->i_ino, te);
2406 err = -ENOMEM;
2407 goto old_bad_out;
2409 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2410 CASE_SENSITIVE, 0, NULL, 0, ctx);
2411 if (unlikely(err)) {
2412 if (err == -ENOENT) {
2413 ntfs_error(vi->i_sb, "Open attribute is missing from "
2414 "mft record. Inode 0x%lx is corrupt. "
2415 "Run chkdsk.%s", vi->i_ino, te);
2416 err = -EIO;
2417 } else
2418 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2419 "inode 0x%lx (error code %d).%s",
2420 vi->i_ino, err, te);
2421 goto old_bad_out;
2423 m = ctx->mrec;
2424 a = ctx->attr;
2426 * The i_size of the vfs inode is the new size for the attribute value.
2428 new_size = i_size_read(vi);
2429 /* The current size of the attribute value is the old size. */
2430 old_size = ntfs_attr_size(a);
2431 /* Calculate the new allocated size. */
2432 if (NInoNonResident(ni))
2433 new_alloc_size = (new_size + vol->cluster_size - 1) &
2434 ~(s64)vol->cluster_size_mask;
2435 else
2436 new_alloc_size = (new_size + 7) & ~7;
2437 /* The current allocated size is the old allocated size. */
2438 read_lock_irqsave(&ni->size_lock, flags);
2439 old_alloc_size = ni->allocated_size;
2440 read_unlock_irqrestore(&ni->size_lock, flags);
2442 * The change in the file size. This will be 0 if no change, >0 if the
2443 * size is growing, and <0 if the size is shrinking.
2445 size_change = -1;
2446 if (new_size - old_size >= 0) {
2447 size_change = 1;
2448 if (new_size == old_size)
2449 size_change = 0;
2451 /* As above for the allocated size. */
2452 alloc_change = -1;
2453 if (new_alloc_size - old_alloc_size >= 0) {
2454 alloc_change = 1;
2455 if (new_alloc_size == old_alloc_size)
2456 alloc_change = 0;
2459 * If neither the size nor the allocation are being changed there is
2460 * nothing to do.
2462 if (!size_change && !alloc_change)
2463 goto unm_done;
2464 /* If the size is changing, check if new size is allowed in $AttrDef. */
2465 if (size_change) {
2466 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2467 if (unlikely(err)) {
2468 if (err == -ERANGE) {
2469 ntfs_error(vol->sb, "Truncate would cause the "
2470 "inode 0x%lx to %simum size "
2471 "for its attribute type "
2472 "(0x%x). Aborting truncate.",
2473 vi->i_ino,
2474 new_size > old_size ? "exceed "
2475 "the max" : "go under the min",
2476 le32_to_cpu(ni->type));
2477 err = -EFBIG;
2478 } else {
2479 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2480 "attribute type 0x%x. "
2481 "Aborting truncate.",
2482 vi->i_ino,
2483 le32_to_cpu(ni->type));
2484 err = -EIO;
2486 /* Reset the vfs inode size to the old size. */
2487 i_size_write(vi, old_size);
2488 goto err_out;
2491 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2492 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2493 "supported yet for %s files, ignoring.",
2494 NInoCompressed(ni) ? "compressed" :
2495 "encrypted");
2496 err = -EOPNOTSUPP;
2497 goto bad_out;
2499 if (a->non_resident)
2500 goto do_non_resident_truncate;
2501 BUG_ON(NInoNonResident(ni));
2502 /* Resize the attribute record to best fit the new attribute size. */
2503 if (new_size < vol->mft_record_size &&
2504 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2505 /* The resize succeeded! */
2506 flush_dcache_mft_record_page(ctx->ntfs_ino);
2507 mark_mft_record_dirty(ctx->ntfs_ino);
2508 write_lock_irqsave(&ni->size_lock, flags);
2509 /* Update the sizes in the ntfs inode and all is done. */
2510 ni->allocated_size = le32_to_cpu(a->length) -
2511 le16_to_cpu(a->data.resident.value_offset);
2513 * Note ntfs_resident_attr_value_resize() has already done any
2514 * necessary data clearing in the attribute record. When the
2515 * file is being shrunk vmtruncate() will already have cleared
2516 * the top part of the last partial page, i.e. since this is
2517 * the resident case this is the page with index 0. However,
2518 * when the file is being expanded, the page cache page data
2519 * between the old data_size, i.e. old_size, and the new_size
2520 * has not been zeroed. Fortunately, we do not need to zero it
2521 * either since on one hand it will either already be zero due
2522 * to both readpage and writepage clearing partial page data
2523 * beyond i_size in which case there is nothing to do or in the
2524 * case of the file being mmap()ped at the same time, POSIX
2525 * specifies that the behaviour is unspecified thus we do not
2526 * have to do anything. This means that in our implementation
2527 * in the rare case that the file is mmap()ped and a write
2528 * occurred into the mmap()ped region just beyond the file size
2529 * and writepage has not yet been called to write out the page
2530 * (which would clear the area beyond the file size) and we now
2531 * extend the file size to incorporate this dirty region
2532 * outside the file size, a write of the page would result in
2533 * this data being written to disk instead of being cleared.
2534 * Given both POSIX and the Linux mmap(2) man page specify that
2535 * this corner case is undefined, we choose to leave it like
2536 * that as this is much simpler for us as we cannot lock the
2537 * relevant page now since we are holding too many ntfs locks
2538 * which would result in a lock reversal deadlock.
2540 ni->initialized_size = new_size;
2541 write_unlock_irqrestore(&ni->size_lock, flags);
2542 goto unm_done;
2544 /* If the above resize failed, this must be an attribute extension. */
2545 BUG_ON(size_change < 0);
2547 * We have to drop all the locks so we can call
2548 * ntfs_attr_make_non_resident(). This could be optimised by try-
2549 * locking the first page cache page and only if that fails dropping
2550 * the locks, locking the page, and redoing all the locking and
2551 * lookups. While this would be a huge optimisation, it is not worth
2552 * it as this is definitely a slow code path as it only ever can happen
2553 * once for any given file.
2555 ntfs_attr_put_search_ctx(ctx);
2556 unmap_mft_record(base_ni);
2557 up_write(&ni->runlist.lock);
2559 * Not enough space in the mft record, try to make the attribute
2560 * non-resident and if successful restart the truncation process.
2562 err = ntfs_attr_make_non_resident(ni, old_size);
2563 if (likely(!err))
2564 goto retry_truncate;
2566 * Could not make non-resident. If this is due to this not being
2567 * permitted for this attribute type or there not being enough space,
2568 * try to make other attributes non-resident. Otherwise fail.
2570 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2571 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2572 "type 0x%x, because the conversion from "
2573 "resident to non-resident attribute failed "
2574 "with error code %i.", vi->i_ino,
2575 (unsigned)le32_to_cpu(ni->type), err);
2576 if (err != -ENOMEM)
2577 err = -EIO;
2578 goto conv_err_out;
2580 /* TODO: Not implemented from here, abort. */
2581 if (err == -ENOSPC)
2582 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2583 "disk for the non-resident attribute value. "
2584 "This case is not implemented yet.");
2585 else /* if (err == -EPERM) */
2586 ntfs_error(vol->sb, "This attribute type may not be "
2587 "non-resident. This case is not implemented "
2588 "yet.");
2589 err = -EOPNOTSUPP;
2590 goto conv_err_out;
2591 #if 0
2592 // TODO: Attempt to make other attributes non-resident.
2593 if (!err)
2594 goto do_resident_extend;
2596 * Both the attribute list attribute and the standard information
2597 * attribute must remain in the base inode. Thus, if this is one of
2598 * these attributes, we have to try to move other attributes out into
2599 * extent mft records instead.
2601 if (ni->type == AT_ATTRIBUTE_LIST ||
2602 ni->type == AT_STANDARD_INFORMATION) {
2603 // TODO: Attempt to move other attributes into extent mft
2604 // records.
2605 err = -EOPNOTSUPP;
2606 if (!err)
2607 goto do_resident_extend;
2608 goto err_out;
2610 // TODO: Attempt to move this attribute to an extent mft record, but
2611 // only if it is not already the only attribute in an mft record in
2612 // which case there would be nothing to gain.
2613 err = -EOPNOTSUPP;
2614 if (!err)
2615 goto do_resident_extend;
2616 /* There is nothing we can do to make enough space. )-: */
2617 goto err_out;
2618 #endif
2619 do_non_resident_truncate:
2620 BUG_ON(!NInoNonResident(ni));
2621 if (alloc_change < 0) {
2622 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2623 if (highest_vcn > 0 &&
2624 old_alloc_size >> vol->cluster_size_bits >
2625 highest_vcn + 1) {
2627 * This attribute has multiple extents. Not yet
2628 * supported.
2630 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2631 "attribute type 0x%x, because the "
2632 "attribute is highly fragmented (it "
2633 "consists of multiple extents) and "
2634 "this case is not implemented yet.",
2635 vi->i_ino,
2636 (unsigned)le32_to_cpu(ni->type));
2637 err = -EOPNOTSUPP;
2638 goto bad_out;
2642 * If the size is shrinking, need to reduce the initialized_size and
2643 * the data_size before reducing the allocation.
2645 if (size_change < 0) {
2647 * Make the valid size smaller (i_size is already up-to-date).
2649 write_lock_irqsave(&ni->size_lock, flags);
2650 if (new_size < ni->initialized_size) {
2651 ni->initialized_size = new_size;
2652 a->data.non_resident.initialized_size =
2653 cpu_to_sle64(new_size);
2655 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2656 write_unlock_irqrestore(&ni->size_lock, flags);
2657 flush_dcache_mft_record_page(ctx->ntfs_ino);
2658 mark_mft_record_dirty(ctx->ntfs_ino);
2659 /* If the allocated size is not changing, we are done. */
2660 if (!alloc_change)
2661 goto unm_done;
2663 * If the size is shrinking it makes no sense for the
2664 * allocation to be growing.
2666 BUG_ON(alloc_change > 0);
2667 } else /* if (size_change >= 0) */ {
2669 * The file size is growing or staying the same but the
2670 * allocation can be shrinking, growing or staying the same.
2672 if (alloc_change > 0) {
2674 * We need to extend the allocation and possibly update
2675 * the data size. If we are updating the data size,
2676 * since we are not touching the initialized_size we do
2677 * not need to worry about the actual data on disk.
2678 * And as far as the page cache is concerned, there
2679 * will be no pages beyond the old data size and any
2680 * partial region in the last page between the old and
2681 * new data size (or the end of the page if the new
2682 * data size is outside the page) does not need to be
2683 * modified as explained above for the resident
2684 * attribute truncate case. To do this, we simply drop
2685 * the locks we hold and leave all the work to our
2686 * friendly helper ntfs_attr_extend_allocation().
2688 ntfs_attr_put_search_ctx(ctx);
2689 unmap_mft_record(base_ni);
2690 up_write(&ni->runlist.lock);
2691 err = ntfs_attr_extend_allocation(ni, new_size,
2692 size_change > 0 ? new_size : -1, -1);
2694 * ntfs_attr_extend_allocation() will have done error
2695 * output already.
2697 goto done;
2699 if (!alloc_change)
2700 goto alloc_done;
2702 /* alloc_change < 0 */
2703 /* Free the clusters. */
2704 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2705 vol->cluster_size_bits, -1, ctx);
2706 m = ctx->mrec;
2707 a = ctx->attr;
2708 if (unlikely(nr_freed < 0)) {
2709 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2710 "%lli). Unmount and run chkdsk to recover "
2711 "the lost cluster(s).", (long long)nr_freed);
2712 NVolSetErrors(vol);
2713 nr_freed = 0;
2715 /* Truncate the runlist. */
2716 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2717 new_alloc_size >> vol->cluster_size_bits);
2719 * If the runlist truncation failed and/or the search context is no
2720 * longer valid, we cannot resize the attribute record or build the
2721 * mapping pairs array thus we mark the inode bad so that no access to
2722 * the freed clusters can happen.
2724 if (unlikely(err || IS_ERR(m))) {
2725 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2726 IS_ERR(m) ?
2727 "restore attribute search context" :
2728 "truncate attribute runlist",
2729 IS_ERR(m) ? PTR_ERR(m) : err, es);
2730 err = -EIO;
2731 goto bad_out;
2733 /* Get the size for the shrunk mapping pairs array for the runlist. */
2734 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2735 if (unlikely(mp_size <= 0)) {
2736 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2737 "attribute type 0x%x, because determining the "
2738 "size for the mapping pairs failed with error "
2739 "code %i.%s", vi->i_ino,
2740 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2741 err = -EIO;
2742 goto bad_out;
2745 * Shrink the attribute record for the new mapping pairs array. Note,
2746 * this cannot fail since we are making the attribute smaller thus by
2747 * definition there is enough space to do so.
2749 attr_len = le32_to_cpu(a->length);
2750 err = ntfs_attr_record_resize(m, a, mp_size +
2751 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2752 BUG_ON(err);
2754 * Generate the mapping pairs array directly into the attribute record.
2756 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2757 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2758 mp_size, ni->runlist.rl, 0, -1, NULL);
2759 if (unlikely(err)) {
2760 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2761 "attribute type 0x%x, because building the "
2762 "mapping pairs failed with error code %i.%s",
2763 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2764 err, es);
2765 err = -EIO;
2766 goto bad_out;
2768 /* Update the allocated/compressed size as well as the highest vcn. */
2769 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2770 vol->cluster_size_bits) - 1);
2771 write_lock_irqsave(&ni->size_lock, flags);
2772 ni->allocated_size = new_alloc_size;
2773 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2774 if (NInoSparse(ni) || NInoCompressed(ni)) {
2775 if (nr_freed) {
2776 ni->itype.compressed.size -= nr_freed <<
2777 vol->cluster_size_bits;
2778 BUG_ON(ni->itype.compressed.size < 0);
2779 a->data.non_resident.compressed_size = cpu_to_sle64(
2780 ni->itype.compressed.size);
2781 vi->i_blocks = ni->itype.compressed.size >> 9;
2783 } else
2784 vi->i_blocks = new_alloc_size >> 9;
2785 write_unlock_irqrestore(&ni->size_lock, flags);
2787 * We have shrunk the allocation. If this is a shrinking truncate we
2788 * have already dealt with the initialized_size and the data_size above
2789 * and we are done. If the truncate is only changing the allocation
2790 * and not the data_size, we are also done. If this is an extending
2791 * truncate, need to extend the data_size now which is ensured by the
2792 * fact that @size_change is positive.
2794 alloc_done:
2796 * If the size is growing, need to update it now. If it is shrinking,
2797 * we have already updated it above (before the allocation change).
2799 if (size_change > 0)
2800 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2801 /* Ensure the modified mft record is written out. */
2802 flush_dcache_mft_record_page(ctx->ntfs_ino);
2803 mark_mft_record_dirty(ctx->ntfs_ino);
2804 unm_done:
2805 ntfs_attr_put_search_ctx(ctx);
2806 unmap_mft_record(base_ni);
2807 up_write(&ni->runlist.lock);
2808 done:
2809 /* Update the mtime and ctime on the base inode. */
2810 /* normally ->truncate shouldn't update ctime or mtime,
2811 * but ntfs did before so it got a copy & paste version
2812 * of file_update_time. one day someone should fix this
2813 * for real.
2815 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2816 struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb);
2817 int sync_it = 0;
2819 if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2820 !timespec_equal(&VFS_I(base_ni)->i_ctime, &now))
2821 sync_it = 1;
2822 VFS_I(base_ni)->i_mtime = now;
2823 VFS_I(base_ni)->i_ctime = now;
2825 if (sync_it)
2826 mark_inode_dirty_sync(VFS_I(base_ni));
2829 if (likely(!err)) {
2830 NInoClearTruncateFailed(ni);
2831 ntfs_debug("Done.");
2833 return err;
2834 old_bad_out:
2835 old_size = -1;
2836 bad_out:
2837 if (err != -ENOMEM && err != -EOPNOTSUPP)
2838 NVolSetErrors(vol);
2839 if (err != -EOPNOTSUPP)
2840 NInoSetTruncateFailed(ni);
2841 else if (old_size >= 0)
2842 i_size_write(vi, old_size);
2843 err_out:
2844 if (ctx)
2845 ntfs_attr_put_search_ctx(ctx);
2846 if (m)
2847 unmap_mft_record(base_ni);
2848 up_write(&ni->runlist.lock);
2849 out:
2850 ntfs_debug("Failed. Returning error code %i.", err);
2851 return err;
2852 conv_err_out:
2853 if (err != -ENOMEM && err != -EOPNOTSUPP)
2854 NVolSetErrors(vol);
2855 if (err != -EOPNOTSUPP)
2856 NInoSetTruncateFailed(ni);
2857 else
2858 i_size_write(vi, old_size);
2859 goto out;
2863 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2864 * @vi: inode for which the i_size was changed
2866 * Wrapper for ntfs_truncate() that has no return value.
2868 * See ntfs_truncate() description above for details.
2870 #ifdef NTFS_RW
2871 void ntfs_truncate_vfs(struct inode *vi) {
2872 ntfs_truncate(vi);
2874 #endif
2877 * ntfs_setattr - called from notify_change() when an attribute is being changed
2878 * @dentry: dentry whose attributes to change
2879 * @attr: structure describing the attributes and the changes
2881 * We have to trap VFS attempts to truncate the file described by @dentry as
2882 * soon as possible, because we do not implement changes in i_size yet. So we
2883 * abort all i_size changes here.
2885 * We also abort all changes of user, group, and mode as we do not implement
2886 * the NTFS ACLs yet.
2888 * Called with ->i_mutex held.
2890 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2892 struct inode *vi = d_inode(dentry);
2893 int err;
2894 unsigned int ia_valid = attr->ia_valid;
2896 err = inode_change_ok(vi, attr);
2897 if (err)
2898 goto out;
2899 /* We do not support NTFS ACLs yet. */
2900 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2901 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2902 "supported yet, ignoring.");
2903 err = -EOPNOTSUPP;
2904 goto out;
2906 if (ia_valid & ATTR_SIZE) {
2907 if (attr->ia_size != i_size_read(vi)) {
2908 ntfs_inode *ni = NTFS_I(vi);
2910 * FIXME: For now we do not support resizing of
2911 * compressed or encrypted files yet.
2913 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2914 ntfs_warning(vi->i_sb, "Changes in inode size "
2915 "are not supported yet for "
2916 "%s files, ignoring.",
2917 NInoCompressed(ni) ?
2918 "compressed" : "encrypted");
2919 err = -EOPNOTSUPP;
2920 } else {
2921 truncate_setsize(vi, attr->ia_size);
2922 ntfs_truncate_vfs(vi);
2924 if (err || ia_valid == ATTR_SIZE)
2925 goto out;
2926 } else {
2928 * We skipped the truncate but must still update
2929 * timestamps.
2931 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2934 if (ia_valid & ATTR_ATIME)
2935 vi->i_atime = timespec_trunc(attr->ia_atime,
2936 vi->i_sb->s_time_gran);
2937 if (ia_valid & ATTR_MTIME)
2938 vi->i_mtime = timespec_trunc(attr->ia_mtime,
2939 vi->i_sb->s_time_gran);
2940 if (ia_valid & ATTR_CTIME)
2941 vi->i_ctime = timespec_trunc(attr->ia_ctime,
2942 vi->i_sb->s_time_gran);
2943 mark_inode_dirty(vi);
2944 out:
2945 return err;
2949 * ntfs_write_inode - write out a dirty inode
2950 * @vi: inode to write out
2951 * @sync: if true, write out synchronously
2953 * Write out a dirty inode to disk including any extent inodes if present.
2955 * If @sync is true, commit the inode to disk and wait for io completion. This
2956 * is done using write_mft_record().
2958 * If @sync is false, just schedule the write to happen but do not wait for i/o
2959 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2960 * marking the page (and in this case mft record) dirty but we do not implement
2961 * this yet as write_mft_record() largely ignores the @sync parameter and
2962 * always performs synchronous writes.
2964 * Return 0 on success and -errno on error.
2966 int __ntfs_write_inode(struct inode *vi, int sync)
2968 sle64 nt;
2969 ntfs_inode *ni = NTFS_I(vi);
2970 ntfs_attr_search_ctx *ctx;
2971 MFT_RECORD *m;
2972 STANDARD_INFORMATION *si;
2973 int err = 0;
2974 bool modified = false;
2976 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2977 vi->i_ino);
2979 * Dirty attribute inodes are written via their real inodes so just
2980 * clean them here. Access time updates are taken care off when the
2981 * real inode is written.
2983 if (NInoAttr(ni)) {
2984 NInoClearDirty(ni);
2985 ntfs_debug("Done.");
2986 return 0;
2988 /* Map, pin, and lock the mft record belonging to the inode. */
2989 m = map_mft_record(ni);
2990 if (IS_ERR(m)) {
2991 err = PTR_ERR(m);
2992 goto err_out;
2994 /* Update the access times in the standard information attribute. */
2995 ctx = ntfs_attr_get_search_ctx(ni, m);
2996 if (unlikely(!ctx)) {
2997 err = -ENOMEM;
2998 goto unm_err_out;
3000 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
3001 CASE_SENSITIVE, 0, NULL, 0, ctx);
3002 if (unlikely(err)) {
3003 ntfs_attr_put_search_ctx(ctx);
3004 goto unm_err_out;
3006 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
3007 le16_to_cpu(ctx->attr->data.resident.value_offset));
3008 /* Update the access times if they have changed. */
3009 nt = utc2ntfs(vi->i_mtime);
3010 if (si->last_data_change_time != nt) {
3011 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3012 "new = 0x%llx", vi->i_ino, (long long)
3013 sle64_to_cpu(si->last_data_change_time),
3014 (long long)sle64_to_cpu(nt));
3015 si->last_data_change_time = nt;
3016 modified = true;
3018 nt = utc2ntfs(vi->i_ctime);
3019 if (si->last_mft_change_time != nt) {
3020 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3021 "new = 0x%llx", vi->i_ino, (long long)
3022 sle64_to_cpu(si->last_mft_change_time),
3023 (long long)sle64_to_cpu(nt));
3024 si->last_mft_change_time = nt;
3025 modified = true;
3027 nt = utc2ntfs(vi->i_atime);
3028 if (si->last_access_time != nt) {
3029 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3030 "new = 0x%llx", vi->i_ino,
3031 (long long)sle64_to_cpu(si->last_access_time),
3032 (long long)sle64_to_cpu(nt));
3033 si->last_access_time = nt;
3034 modified = true;
3037 * If we just modified the standard information attribute we need to
3038 * mark the mft record it is in dirty. We do this manually so that
3039 * mark_inode_dirty() is not called which would redirty the inode and
3040 * hence result in an infinite loop of trying to write the inode.
3041 * There is no need to mark the base inode nor the base mft record
3042 * dirty, since we are going to write this mft record below in any case
3043 * and the base mft record may actually not have been modified so it
3044 * might not need to be written out.
3045 * NOTE: It is not a problem when the inode for $MFT itself is being
3046 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3047 * on the $MFT inode and hence ntfs_write_inode() will not be
3048 * re-invoked because of it which in turn is ok since the dirtied mft
3049 * record will be cleaned and written out to disk below, i.e. before
3050 * this function returns.
3052 if (modified) {
3053 flush_dcache_mft_record_page(ctx->ntfs_ino);
3054 if (!NInoTestSetDirty(ctx->ntfs_ino))
3055 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3056 ctx->ntfs_ino->page_ofs);
3058 ntfs_attr_put_search_ctx(ctx);
3059 /* Now the access times are updated, write the base mft record. */
3060 if (NInoDirty(ni))
3061 err = write_mft_record(ni, m, sync);
3062 /* Write all attached extent mft records. */
3063 mutex_lock(&ni->extent_lock);
3064 if (ni->nr_extents > 0) {
3065 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3066 int i;
3068 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3069 for (i = 0; i < ni->nr_extents; i++) {
3070 ntfs_inode *tni = extent_nis[i];
3072 if (NInoDirty(tni)) {
3073 MFT_RECORD *tm = map_mft_record(tni);
3074 int ret;
3076 if (IS_ERR(tm)) {
3077 if (!err || err == -ENOMEM)
3078 err = PTR_ERR(tm);
3079 continue;
3081 ret = write_mft_record(tni, tm, sync);
3082 unmap_mft_record(tni);
3083 if (unlikely(ret)) {
3084 if (!err || err == -ENOMEM)
3085 err = ret;
3090 mutex_unlock(&ni->extent_lock);
3091 unmap_mft_record(ni);
3092 if (unlikely(err))
3093 goto err_out;
3094 ntfs_debug("Done.");
3095 return 0;
3096 unm_err_out:
3097 unmap_mft_record(ni);
3098 err_out:
3099 if (err == -ENOMEM) {
3100 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3101 "Marking the inode dirty again, so the VFS "
3102 "retries later.");
3103 mark_inode_dirty(vi);
3104 } else {
3105 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3106 NVolSetErrors(ni->vol);
3108 return err;
3111 #endif /* NTFS_RW */