2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
39 /* flags for direct write completions */
40 #define XFS_DIO_FLAG_UNWRITTEN (1 << 0)
41 #define XFS_DIO_FLAG_APPEND (1 << 1)
44 * structure owned by writepages passed to individual writepage calls
46 struct xfs_writepage_ctx
{
47 struct xfs_bmbt_irec imap
;
50 struct xfs_ioend
*ioend
;
60 struct buffer_head
*bh
, *head
;
62 *delalloc
= *unwritten
= 0;
64 bh
= head
= page_buffers(page
);
66 if (buffer_unwritten(bh
))
68 else if (buffer_delay(bh
))
70 } while ((bh
= bh
->b_this_page
) != head
);
74 xfs_find_bdev_for_inode(
77 struct xfs_inode
*ip
= XFS_I(inode
);
78 struct xfs_mount
*mp
= ip
->i_mount
;
80 if (XFS_IS_REALTIME_INODE(ip
))
81 return mp
->m_rtdev_targp
->bt_bdev
;
83 return mp
->m_ddev_targp
->bt_bdev
;
87 * We're now finished for good with this ioend structure.
88 * Update the page state via the associated buffer_heads,
89 * release holds on the inode and bio, and finally free
90 * up memory. Do not use the ioend after this.
96 struct buffer_head
*bh
, *next
;
98 for (bh
= ioend
->io_buffer_head
; bh
; bh
= next
) {
100 bh
->b_end_io(bh
, !ioend
->io_error
);
103 mempool_free(ioend
, xfs_ioend_pool
);
107 * Fast and loose check if this write could update the on-disk inode size.
109 static inline bool xfs_ioend_is_append(struct xfs_ioend
*ioend
)
111 return ioend
->io_offset
+ ioend
->io_size
>
112 XFS_I(ioend
->io_inode
)->i_d
.di_size
;
116 xfs_setfilesize_trans_alloc(
117 struct xfs_ioend
*ioend
)
119 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
120 struct xfs_trans
*tp
;
123 tp
= xfs_trans_alloc(mp
, XFS_TRANS_FSYNC_TS
);
125 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_fsyncts
, 0, 0);
127 xfs_trans_cancel(tp
);
131 ioend
->io_append_trans
= tp
;
134 * We may pass freeze protection with a transaction. So tell lockdep
137 __sb_writers_release(ioend
->io_inode
->i_sb
, SB_FREEZE_FS
);
139 * We hand off the transaction to the completion thread now, so
140 * clear the flag here.
142 current_restore_flags_nested(&tp
->t_pflags
, PF_FSTRANS
);
147 * Update on-disk file size now that data has been written to disk.
151 struct xfs_inode
*ip
,
152 struct xfs_trans
*tp
,
158 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
159 isize
= xfs_new_eof(ip
, offset
+ size
);
161 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
162 xfs_trans_cancel(tp
);
166 trace_xfs_setfilesize(ip
, offset
, size
);
168 ip
->i_d
.di_size
= isize
;
169 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
170 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
172 return xfs_trans_commit(tp
);
176 xfs_setfilesize_ioend(
177 struct xfs_ioend
*ioend
)
179 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
180 struct xfs_trans
*tp
= ioend
->io_append_trans
;
183 * The transaction may have been allocated in the I/O submission thread,
184 * thus we need to mark ourselves as being in a transaction manually.
185 * Similarly for freeze protection.
187 current_set_flags_nested(&tp
->t_pflags
, PF_FSTRANS
);
188 __sb_writers_acquired(VFS_I(ip
)->i_sb
, SB_FREEZE_FS
);
190 /* we abort the update if there was an IO error */
191 if (ioend
->io_error
) {
192 xfs_trans_cancel(tp
);
193 return ioend
->io_error
;
196 return xfs_setfilesize(ip
, tp
, ioend
->io_offset
, ioend
->io_size
);
200 * Schedule IO completion handling on the final put of an ioend.
202 * If there is no work to do we might as well call it a day and free the
207 struct xfs_ioend
*ioend
)
209 if (atomic_dec_and_test(&ioend
->io_remaining
)) {
210 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
212 if (ioend
->io_type
== XFS_IO_UNWRITTEN
)
213 queue_work(mp
->m_unwritten_workqueue
, &ioend
->io_work
);
214 else if (ioend
->io_append_trans
)
215 queue_work(mp
->m_data_workqueue
, &ioend
->io_work
);
217 xfs_destroy_ioend(ioend
);
222 * IO write completion.
226 struct work_struct
*work
)
228 xfs_ioend_t
*ioend
= container_of(work
, xfs_ioend_t
, io_work
);
229 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
233 * Set an error if the mount has shut down and proceed with end I/O
234 * processing so it can perform whatever cleanups are necessary.
236 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
237 ioend
->io_error
= -EIO
;
240 * For unwritten extents we need to issue transactions to convert a
241 * range to normal written extens after the data I/O has finished.
242 * Detecting and handling completion IO errors is done individually
243 * for each case as different cleanup operations need to be performed
246 if (ioend
->io_type
== XFS_IO_UNWRITTEN
) {
249 error
= xfs_iomap_write_unwritten(ip
, ioend
->io_offset
,
251 } else if (ioend
->io_append_trans
) {
252 error
= xfs_setfilesize_ioend(ioend
);
254 ASSERT(!xfs_ioend_is_append(ioend
));
259 ioend
->io_error
= error
;
260 xfs_destroy_ioend(ioend
);
264 * Allocate and initialise an IO completion structure.
265 * We need to track unwritten extent write completion here initially.
266 * We'll need to extend this for updating the ondisk inode size later
276 ioend
= mempool_alloc(xfs_ioend_pool
, GFP_NOFS
);
279 * Set the count to 1 initially, which will prevent an I/O
280 * completion callback from happening before we have started
281 * all the I/O from calling the completion routine too early.
283 atomic_set(&ioend
->io_remaining
, 1);
285 INIT_LIST_HEAD(&ioend
->io_list
);
286 ioend
->io_type
= type
;
287 ioend
->io_inode
= inode
;
288 ioend
->io_buffer_head
= NULL
;
289 ioend
->io_buffer_tail
= NULL
;
290 ioend
->io_offset
= 0;
292 ioend
->io_append_trans
= NULL
;
294 INIT_WORK(&ioend
->io_work
, xfs_end_io
);
302 struct xfs_bmbt_irec
*imap
,
305 struct xfs_inode
*ip
= XFS_I(inode
);
306 struct xfs_mount
*mp
= ip
->i_mount
;
307 ssize_t count
= 1 << inode
->i_blkbits
;
308 xfs_fileoff_t offset_fsb
, end_fsb
;
310 int bmapi_flags
= XFS_BMAPI_ENTIRE
;
313 if (XFS_FORCED_SHUTDOWN(mp
))
316 if (type
== XFS_IO_UNWRITTEN
)
317 bmapi_flags
|= XFS_BMAPI_IGSTATE
;
319 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
320 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
321 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
));
322 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
324 if (offset
+ count
> mp
->m_super
->s_maxbytes
)
325 count
= mp
->m_super
->s_maxbytes
- offset
;
326 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ count
);
327 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
328 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
329 imap
, &nimaps
, bmapi_flags
);
330 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
335 if (type
== XFS_IO_DELALLOC
&&
336 (!nimaps
|| isnullstartblock(imap
->br_startblock
))) {
337 error
= xfs_iomap_write_allocate(ip
, offset
, imap
);
339 trace_xfs_map_blocks_alloc(ip
, offset
, count
, type
, imap
);
344 if (type
== XFS_IO_UNWRITTEN
) {
346 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
347 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
351 trace_xfs_map_blocks_found(ip
, offset
, count
, type
, imap
);
358 struct xfs_bmbt_irec
*imap
,
361 offset
>>= inode
->i_blkbits
;
363 return offset
>= imap
->br_startoff
&&
364 offset
< imap
->br_startoff
+ imap
->br_blockcount
;
368 * BIO completion handler for buffered IO.
374 xfs_ioend_t
*ioend
= bio
->bi_private
;
376 if (!ioend
->io_error
)
377 ioend
->io_error
= bio
->bi_error
;
379 /* Toss bio and pass work off to an xfsdatad thread */
380 bio
->bi_private
= NULL
;
381 bio
->bi_end_io
= NULL
;
384 xfs_finish_ioend(ioend
);
388 xfs_submit_ioend_bio(
389 struct writeback_control
*wbc
,
393 atomic_inc(&ioend
->io_remaining
);
394 bio
->bi_private
= ioend
;
395 bio
->bi_end_io
= xfs_end_bio
;
396 submit_bio(wbc
->sync_mode
== WB_SYNC_ALL
? WRITE_SYNC
: WRITE
, bio
);
401 struct buffer_head
*bh
)
403 struct bio
*bio
= bio_alloc(GFP_NOIO
, BIO_MAX_PAGES
);
405 ASSERT(bio
->bi_private
== NULL
);
406 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
407 bio
->bi_bdev
= bh
->b_bdev
;
412 xfs_start_buffer_writeback(
413 struct buffer_head
*bh
)
415 ASSERT(buffer_mapped(bh
));
416 ASSERT(buffer_locked(bh
));
417 ASSERT(!buffer_delay(bh
));
418 ASSERT(!buffer_unwritten(bh
));
420 mark_buffer_async_write(bh
);
421 set_buffer_uptodate(bh
);
422 clear_buffer_dirty(bh
);
426 xfs_start_page_writeback(
430 ASSERT(PageLocked(page
));
431 ASSERT(!PageWriteback(page
));
434 * if the page was not fully cleaned, we need to ensure that the higher
435 * layers come back to it correctly. That means we need to keep the page
436 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
437 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
438 * write this page in this writeback sweep will be made.
441 clear_page_dirty_for_io(page
);
442 set_page_writeback(page
);
444 set_page_writeback_keepwrite(page
);
449 static inline int xfs_bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
451 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
455 * Submit all of the bios for an ioend. We are only passed a single ioend at a
456 * time; the caller is responsible for chaining prior to submission.
458 * If @fail is non-zero, it means that we have a situation where some part of
459 * the submission process has failed after we have marked paged for writeback
460 * and unlocked them. In this situation, we need to fail the ioend chain rather
461 * than submit it to IO. This typically only happens on a filesystem shutdown.
465 struct writeback_control
*wbc
,
469 struct buffer_head
*bh
;
471 sector_t lastblock
= 0;
473 /* Reserve log space if we might write beyond the on-disk inode size. */
475 ioend
->io_type
!= XFS_IO_UNWRITTEN
&& xfs_ioend_is_append(ioend
))
476 status
= xfs_setfilesize_trans_alloc(ioend
);
478 * If we are failing the IO now, just mark the ioend with an
479 * error and finish it. This will run IO completion immediately
480 * as there is only one reference to the ioend at this point in
484 ioend
->io_error
= status
;
485 xfs_finish_ioend(ioend
);
490 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
494 bio
= xfs_alloc_ioend_bio(bh
);
495 } else if (bh
->b_blocknr
!= lastblock
+ 1) {
496 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
500 if (xfs_bio_add_buffer(bio
, bh
) != bh
->b_size
) {
501 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
505 lastblock
= bh
->b_blocknr
;
508 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
509 xfs_finish_ioend(ioend
);
514 * Test to see if we've been building up a completion structure for
515 * earlier buffers -- if so, we try to append to this ioend if we
516 * can, otherwise we finish off any current ioend and start another.
517 * Return the ioend we finished off so that the caller can submit it
518 * once it has finished processing the dirty page.
523 struct buffer_head
*bh
,
525 struct xfs_writepage_ctx
*wpc
,
526 struct list_head
*iolist
)
528 if (!wpc
->ioend
|| wpc
->io_type
!= wpc
->ioend
->io_type
||
529 bh
->b_blocknr
!= wpc
->last_block
+ 1 ||
530 offset
!= wpc
->ioend
->io_offset
+ wpc
->ioend
->io_size
) {
531 struct xfs_ioend
*new;
534 list_add(&wpc
->ioend
->io_list
, iolist
);
536 new = xfs_alloc_ioend(inode
, wpc
->io_type
);
537 new->io_offset
= offset
;
538 new->io_buffer_head
= bh
;
539 new->io_buffer_tail
= bh
;
542 wpc
->ioend
->io_buffer_tail
->b_private
= bh
;
543 wpc
->ioend
->io_buffer_tail
= bh
;
546 bh
->b_private
= NULL
;
547 wpc
->ioend
->io_size
+= bh
->b_size
;
548 wpc
->last_block
= bh
->b_blocknr
;
549 xfs_start_buffer_writeback(bh
);
555 struct buffer_head
*bh
,
556 struct xfs_bmbt_irec
*imap
,
560 struct xfs_mount
*m
= XFS_I(inode
)->i_mount
;
561 xfs_off_t iomap_offset
= XFS_FSB_TO_B(m
, imap
->br_startoff
);
562 xfs_daddr_t iomap_bn
= xfs_fsb_to_db(XFS_I(inode
), imap
->br_startblock
);
564 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
565 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
567 bn
= (iomap_bn
>> (inode
->i_blkbits
- BBSHIFT
)) +
568 ((offset
- iomap_offset
) >> inode
->i_blkbits
);
570 ASSERT(bn
|| XFS_IS_REALTIME_INODE(XFS_I(inode
)));
573 set_buffer_mapped(bh
);
579 struct buffer_head
*bh
,
580 struct xfs_bmbt_irec
*imap
,
583 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
584 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
586 xfs_map_buffer(inode
, bh
, imap
, offset
);
587 set_buffer_mapped(bh
);
588 clear_buffer_delay(bh
);
589 clear_buffer_unwritten(bh
);
593 * Test if a given page contains at least one buffer of a given @type.
594 * If @check_all_buffers is true, then we walk all the buffers in the page to
595 * try to find one of the type passed in. If it is not set, then the caller only
596 * needs to check the first buffer on the page for a match.
602 bool check_all_buffers
)
604 struct buffer_head
*bh
;
605 struct buffer_head
*head
;
607 if (PageWriteback(page
))
611 if (!page_has_buffers(page
))
614 bh
= head
= page_buffers(page
);
616 if (buffer_unwritten(bh
)) {
617 if (type
== XFS_IO_UNWRITTEN
)
619 } else if (buffer_delay(bh
)) {
620 if (type
== XFS_IO_DELALLOC
)
622 } else if (buffer_dirty(bh
) && buffer_mapped(bh
)) {
623 if (type
== XFS_IO_OVERWRITE
)
627 /* If we are only checking the first buffer, we are done now. */
628 if (!check_all_buffers
)
630 } while ((bh
= bh
->b_this_page
) != head
);
636 xfs_vm_invalidatepage(
641 trace_xfs_invalidatepage(page
->mapping
->host
, page
, offset
,
643 block_invalidatepage(page
, offset
, length
);
647 * If the page has delalloc buffers on it, we need to punch them out before we
648 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
649 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
650 * is done on that same region - the delalloc extent is returned when none is
651 * supposed to be there.
653 * We prevent this by truncating away the delalloc regions on the page before
654 * invalidating it. Because they are delalloc, we can do this without needing a
655 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
656 * truncation without a transaction as there is no space left for block
657 * reservation (typically why we see a ENOSPC in writeback).
659 * This is not a performance critical path, so for now just do the punching a
660 * buffer head at a time.
663 xfs_aops_discard_page(
666 struct inode
*inode
= page
->mapping
->host
;
667 struct xfs_inode
*ip
= XFS_I(inode
);
668 struct buffer_head
*bh
, *head
;
669 loff_t offset
= page_offset(page
);
671 if (!xfs_check_page_type(page
, XFS_IO_DELALLOC
, true))
674 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
677 xfs_alert(ip
->i_mount
,
678 "page discard on page %p, inode 0x%llx, offset %llu.",
679 page
, ip
->i_ino
, offset
);
681 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
682 bh
= head
= page_buffers(page
);
685 xfs_fileoff_t start_fsb
;
687 if (!buffer_delay(bh
))
690 start_fsb
= XFS_B_TO_FSBT(ip
->i_mount
, offset
);
691 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
, 1);
693 /* something screwed, just bail */
694 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
695 xfs_alert(ip
->i_mount
,
696 "page discard unable to remove delalloc mapping.");
701 offset
+= 1 << inode
->i_blkbits
;
703 } while ((bh
= bh
->b_this_page
) != head
);
705 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
707 xfs_vm_invalidatepage(page
, 0, PAGE_SIZE
);
712 * We implement an immediate ioend submission policy here to avoid needing to
713 * chain multiple ioends and hence nest mempool allocations which can violate
714 * forward progress guarantees we need to provide. The current ioend we are
715 * adding buffers to is cached on the writepage context, and if the new buffer
716 * does not append to the cached ioend it will create a new ioend and cache that
719 * If a new ioend is created and cached, the old ioend is returned and queued
720 * locally for submission once the entire page is processed or an error has been
721 * detected. While ioends are submitted immediately after they are completed,
722 * batching optimisations are provided by higher level block plugging.
724 * At the end of a writeback pass, there will be a cached ioend remaining on the
725 * writepage context that the caller will need to submit.
729 struct xfs_writepage_ctx
*wpc
,
730 struct writeback_control
*wbc
,
734 __uint64_t end_offset
)
736 LIST_HEAD(submit_list
);
737 struct xfs_ioend
*ioend
, *next
;
738 struct buffer_head
*bh
, *head
;
739 ssize_t len
= 1 << inode
->i_blkbits
;
744 bh
= head
= page_buffers(page
);
745 offset
= page_offset(page
);
747 if (offset
>= end_offset
)
749 if (!buffer_uptodate(bh
))
753 * set_page_dirty dirties all buffers in a page, independent
754 * of their state. The dirty state however is entirely
755 * meaningless for holes (!mapped && uptodate), so skip
756 * buffers covering holes here.
758 if (!buffer_mapped(bh
) && buffer_uptodate(bh
)) {
759 wpc
->imap_valid
= false;
763 if (buffer_unwritten(bh
)) {
764 if (wpc
->io_type
!= XFS_IO_UNWRITTEN
) {
765 wpc
->io_type
= XFS_IO_UNWRITTEN
;
766 wpc
->imap_valid
= false;
768 } else if (buffer_delay(bh
)) {
769 if (wpc
->io_type
!= XFS_IO_DELALLOC
) {
770 wpc
->io_type
= XFS_IO_DELALLOC
;
771 wpc
->imap_valid
= false;
773 } else if (buffer_uptodate(bh
)) {
774 if (wpc
->io_type
!= XFS_IO_OVERWRITE
) {
775 wpc
->io_type
= XFS_IO_OVERWRITE
;
776 wpc
->imap_valid
= false;
779 if (PageUptodate(page
))
780 ASSERT(buffer_mapped(bh
));
782 * This buffer is not uptodate and will not be
783 * written to disk. Ensure that we will put any
784 * subsequent writeable buffers into a new
787 wpc
->imap_valid
= false;
792 wpc
->imap_valid
= xfs_imap_valid(inode
, &wpc
->imap
,
794 if (!wpc
->imap_valid
) {
795 error
= xfs_map_blocks(inode
, offset
, &wpc
->imap
,
799 wpc
->imap_valid
= xfs_imap_valid(inode
, &wpc
->imap
,
802 if (wpc
->imap_valid
) {
804 if (wpc
->io_type
!= XFS_IO_OVERWRITE
)
805 xfs_map_at_offset(inode
, bh
, &wpc
->imap
, offset
);
806 xfs_add_to_ioend(inode
, bh
, offset
, wpc
, &submit_list
);
810 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
812 if (uptodate
&& bh
== head
)
813 SetPageUptodate(page
);
815 ASSERT(wpc
->ioend
|| list_empty(&submit_list
));
819 * On error, we have to fail the ioend here because we have locked
820 * buffers in the ioend. If we don't do this, we'll deadlock
821 * invalidating the page as that tries to lock the buffers on the page.
822 * Also, because we may have set pages under writeback, we have to make
823 * sure we run IO completion to mark the error state of the IO
824 * appropriately, so we can't cancel the ioend directly here. That means
825 * we have to mark this page as under writeback if we included any
826 * buffers from it in the ioend chain so that completion treats it
829 * If we didn't include the page in the ioend, the on error we can
830 * simply discard and unlock it as there are no other users of the page
831 * or it's buffers right now. The caller will still need to trigger
832 * submission of outstanding ioends on the writepage context so they are
833 * treated correctly on error.
836 xfs_start_page_writeback(page
, !error
);
839 * Preserve the original error if there was one, otherwise catch
840 * submission errors here and propagate into subsequent ioend
843 list_for_each_entry_safe(ioend
, next
, &submit_list
, io_list
) {
846 list_del_init(&ioend
->io_list
);
847 error2
= xfs_submit_ioend(wbc
, ioend
, error
);
848 if (error2
&& !error
)
852 xfs_aops_discard_page(page
);
853 ClearPageUptodate(page
);
857 * We can end up here with no error and nothing to write if we
858 * race with a partial page truncate on a sub-page block sized
859 * filesystem. In that case we need to mark the page clean.
861 xfs_start_page_writeback(page
, 1);
862 end_page_writeback(page
);
865 mapping_set_error(page
->mapping
, error
);
870 * Write out a dirty page.
872 * For delalloc space on the page we need to allocate space and flush it.
873 * For unwritten space on the page we need to start the conversion to
874 * regular allocated space.
875 * For any other dirty buffer heads on the page we should flush them.
880 struct writeback_control
*wbc
,
883 struct xfs_writepage_ctx
*wpc
= data
;
884 struct inode
*inode
= page
->mapping
->host
;
886 __uint64_t end_offset
;
889 trace_xfs_writepage(inode
, page
, 0, 0);
891 ASSERT(page_has_buffers(page
));
894 * Refuse to write the page out if we are called from reclaim context.
896 * This avoids stack overflows when called from deeply used stacks in
897 * random callers for direct reclaim or memcg reclaim. We explicitly
898 * allow reclaim from kswapd as the stack usage there is relatively low.
900 * This should never happen except in the case of a VM regression so
903 if (WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
)) ==
908 * Given that we do not allow direct reclaim to call us, we should
909 * never be called while in a filesystem transaction.
911 if (WARN_ON_ONCE(current
->flags
& PF_FSTRANS
))
915 * Is this page beyond the end of the file?
917 * The page index is less than the end_index, adjust the end_offset
918 * to the highest offset that this page should represent.
919 * -----------------------------------------------------
920 * | file mapping | <EOF> |
921 * -----------------------------------------------------
922 * | Page ... | Page N-2 | Page N-1 | Page N | |
923 * ^--------------------------------^----------|--------
924 * | desired writeback range | see else |
925 * ---------------------------------^------------------|
927 offset
= i_size_read(inode
);
928 end_index
= offset
>> PAGE_SHIFT
;
929 if (page
->index
< end_index
)
930 end_offset
= (xfs_off_t
)(page
->index
+ 1) << PAGE_SHIFT
;
933 * Check whether the page to write out is beyond or straddles
935 * -------------------------------------------------------
936 * | file mapping | <EOF> |
937 * -------------------------------------------------------
938 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
939 * ^--------------------------------^-----------|---------
941 * ---------------------------------^-----------|--------|
943 unsigned offset_into_page
= offset
& (PAGE_SIZE
- 1);
946 * Skip the page if it is fully outside i_size, e.g. due to a
947 * truncate operation that is in progress. We must redirty the
948 * page so that reclaim stops reclaiming it. Otherwise
949 * xfs_vm_releasepage() is called on it and gets confused.
951 * Note that the end_index is unsigned long, it would overflow
952 * if the given offset is greater than 16TB on 32-bit system
953 * and if we do check the page is fully outside i_size or not
954 * via "if (page->index >= end_index + 1)" as "end_index + 1"
955 * will be evaluated to 0. Hence this page will be redirtied
956 * and be written out repeatedly which would result in an
957 * infinite loop, the user program that perform this operation
958 * will hang. Instead, we can verify this situation by checking
959 * if the page to write is totally beyond the i_size or if it's
960 * offset is just equal to the EOF.
962 if (page
->index
> end_index
||
963 (page
->index
== end_index
&& offset_into_page
== 0))
967 * The page straddles i_size. It must be zeroed out on each
968 * and every writepage invocation because it may be mmapped.
969 * "A file is mapped in multiples of the page size. For a file
970 * that is not a multiple of the page size, the remaining
971 * memory is zeroed when mapped, and writes to that region are
972 * not written out to the file."
974 zero_user_segment(page
, offset_into_page
, PAGE_SIZE
);
976 /* Adjust the end_offset to the end of file */
980 return xfs_writepage_map(wpc
, wbc
, inode
, page
, offset
, end_offset
);
983 redirty_page_for_writepage(wbc
, page
);
991 struct writeback_control
*wbc
)
993 struct xfs_writepage_ctx wpc
= {
994 .io_type
= XFS_IO_INVALID
,
998 ret
= xfs_do_writepage(page
, wbc
, &wpc
);
1000 ret
= xfs_submit_ioend(wbc
, wpc
.ioend
, ret
);
1006 struct address_space
*mapping
,
1007 struct writeback_control
*wbc
)
1009 struct xfs_writepage_ctx wpc
= {
1010 .io_type
= XFS_IO_INVALID
,
1014 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1015 if (dax_mapping(mapping
))
1016 return dax_writeback_mapping_range(mapping
,
1017 xfs_find_bdev_for_inode(mapping
->host
), wbc
);
1019 ret
= write_cache_pages(mapping
, wbc
, xfs_do_writepage
, &wpc
);
1021 ret
= xfs_submit_ioend(wbc
, wpc
.ioend
, ret
);
1026 * Called to move a page into cleanable state - and from there
1027 * to be released. The page should already be clean. We always
1028 * have buffer heads in this call.
1030 * Returns 1 if the page is ok to release, 0 otherwise.
1037 int delalloc
, unwritten
;
1039 trace_xfs_releasepage(page
->mapping
->host
, page
, 0, 0);
1041 xfs_count_page_state(page
, &delalloc
, &unwritten
);
1043 if (WARN_ON_ONCE(delalloc
))
1045 if (WARN_ON_ONCE(unwritten
))
1048 return try_to_free_buffers(page
);
1052 * When we map a DIO buffer, we may need to pass flags to
1053 * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1055 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1056 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1057 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1058 * extending the file size. We won't know for sure until IO completion is run
1059 * and the actual max write offset is communicated to the IO completion
1064 struct inode
*inode
,
1065 struct buffer_head
*bh_result
,
1066 struct xfs_bmbt_irec
*imap
,
1069 uintptr_t *flags
= (uintptr_t *)&bh_result
->b_private
;
1070 xfs_off_t size
= bh_result
->b_size
;
1072 trace_xfs_get_blocks_map_direct(XFS_I(inode
), offset
, size
,
1073 ISUNWRITTEN(imap
) ? XFS_IO_UNWRITTEN
: XFS_IO_OVERWRITE
, imap
);
1075 if (ISUNWRITTEN(imap
)) {
1076 *flags
|= XFS_DIO_FLAG_UNWRITTEN
;
1077 set_buffer_defer_completion(bh_result
);
1078 } else if (offset
+ size
> i_size_read(inode
) || offset
+ size
< 0) {
1079 *flags
|= XFS_DIO_FLAG_APPEND
;
1080 set_buffer_defer_completion(bh_result
);
1085 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1086 * is, so that we can avoid repeated get_blocks calls.
1088 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1089 * for blocks beyond EOF must be marked new so that sub block regions can be
1090 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1091 * was just allocated or is unwritten, otherwise the callers would overwrite
1092 * existing data with zeros. Hence we have to split the mapping into a range up
1093 * to and including EOF, and a second mapping for beyond EOF.
1097 struct inode
*inode
,
1099 struct buffer_head
*bh_result
,
1100 struct xfs_bmbt_irec
*imap
,
1104 xfs_off_t mapping_size
;
1106 mapping_size
= imap
->br_startoff
+ imap
->br_blockcount
- iblock
;
1107 mapping_size
<<= inode
->i_blkbits
;
1109 ASSERT(mapping_size
> 0);
1110 if (mapping_size
> size
)
1111 mapping_size
= size
;
1112 if (offset
< i_size_read(inode
) &&
1113 offset
+ mapping_size
>= i_size_read(inode
)) {
1114 /* limit mapping to block that spans EOF */
1115 mapping_size
= roundup_64(i_size_read(inode
) - offset
,
1116 1 << inode
->i_blkbits
);
1118 if (mapping_size
> LONG_MAX
)
1119 mapping_size
= LONG_MAX
;
1121 bh_result
->b_size
= mapping_size
;
1126 struct inode
*inode
,
1128 struct buffer_head
*bh_result
,
1133 struct xfs_inode
*ip
= XFS_I(inode
);
1134 struct xfs_mount
*mp
= ip
->i_mount
;
1135 xfs_fileoff_t offset_fsb
, end_fsb
;
1138 struct xfs_bmbt_irec imap
;
1144 if (XFS_FORCED_SHUTDOWN(mp
))
1147 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1148 ASSERT(bh_result
->b_size
>= (1 << inode
->i_blkbits
));
1149 size
= bh_result
->b_size
;
1151 if (!create
&& direct
&& offset
>= i_size_read(inode
))
1155 * Direct I/O is usually done on preallocated files, so try getting
1156 * a block mapping without an exclusive lock first. For buffered
1157 * writes we already have the exclusive iolock anyway, so avoiding
1158 * a lock roundtrip here by taking the ilock exclusive from the
1159 * beginning is a useful micro optimization.
1161 if (create
&& !direct
) {
1162 lockmode
= XFS_ILOCK_EXCL
;
1163 xfs_ilock(ip
, lockmode
);
1165 lockmode
= xfs_ilock_data_map_shared(ip
);
1168 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
1169 if (offset
+ size
> mp
->m_super
->s_maxbytes
)
1170 size
= mp
->m_super
->s_maxbytes
- offset
;
1171 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ size
);
1172 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
1174 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
1175 &imap
, &nimaps
, XFS_BMAPI_ENTIRE
);
1179 /* for DAX, we convert unwritten extents directly */
1182 (imap
.br_startblock
== HOLESTARTBLOCK
||
1183 imap
.br_startblock
== DELAYSTARTBLOCK
) ||
1184 (IS_DAX(inode
) && ISUNWRITTEN(&imap
)))) {
1185 if (direct
|| xfs_get_extsz_hint(ip
)) {
1187 * xfs_iomap_write_direct() expects the shared lock. It
1188 * is unlocked on return.
1190 if (lockmode
== XFS_ILOCK_EXCL
)
1191 xfs_ilock_demote(ip
, lockmode
);
1193 error
= xfs_iomap_write_direct(ip
, offset
, size
,
1201 * Delalloc reservations do not require a transaction,
1202 * we can go on without dropping the lock here. If we
1203 * are allocating a new delalloc block, make sure that
1204 * we set the new flag so that we mark the buffer new so
1205 * that we know that it is newly allocated if the write
1208 if (nimaps
&& imap
.br_startblock
== HOLESTARTBLOCK
)
1210 error
= xfs_iomap_write_delay(ip
, offset
, size
, &imap
);
1214 xfs_iunlock(ip
, lockmode
);
1216 trace_xfs_get_blocks_alloc(ip
, offset
, size
,
1217 ISUNWRITTEN(&imap
) ? XFS_IO_UNWRITTEN
1218 : XFS_IO_DELALLOC
, &imap
);
1219 } else if (nimaps
) {
1220 trace_xfs_get_blocks_found(ip
, offset
, size
,
1221 ISUNWRITTEN(&imap
) ? XFS_IO_UNWRITTEN
1222 : XFS_IO_OVERWRITE
, &imap
);
1223 xfs_iunlock(ip
, lockmode
);
1225 trace_xfs_get_blocks_notfound(ip
, offset
, size
);
1229 if (IS_DAX(inode
) && create
) {
1230 ASSERT(!ISUNWRITTEN(&imap
));
1231 /* zeroing is not needed at a higher layer */
1235 /* trim mapping down to size requested */
1236 if (direct
|| size
> (1 << inode
->i_blkbits
))
1237 xfs_map_trim_size(inode
, iblock
, bh_result
,
1238 &imap
, offset
, size
);
1241 * For unwritten extents do not report a disk address in the buffered
1242 * read case (treat as if we're reading into a hole).
1244 if (imap
.br_startblock
!= HOLESTARTBLOCK
&&
1245 imap
.br_startblock
!= DELAYSTARTBLOCK
&&
1246 (create
|| !ISUNWRITTEN(&imap
))) {
1247 xfs_map_buffer(inode
, bh_result
, &imap
, offset
);
1248 if (ISUNWRITTEN(&imap
))
1249 set_buffer_unwritten(bh_result
);
1250 /* direct IO needs special help */
1251 if (create
&& direct
) {
1253 ASSERT(!ISUNWRITTEN(&imap
));
1255 xfs_map_direct(inode
, bh_result
, &imap
, offset
);
1260 * If this is a realtime file, data may be on a different device.
1261 * to that pointed to from the buffer_head b_bdev currently.
1263 bh_result
->b_bdev
= xfs_find_bdev_for_inode(inode
);
1266 * If we previously allocated a block out beyond eof and we are now
1267 * coming back to use it then we will need to flag it as new even if it
1268 * has a disk address.
1270 * With sub-block writes into unwritten extents we also need to mark
1271 * the buffer as new so that the unwritten parts of the buffer gets
1275 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1276 (offset
>= i_size_read(inode
)) ||
1277 (new || ISUNWRITTEN(&imap
))))
1278 set_buffer_new(bh_result
);
1280 if (imap
.br_startblock
== DELAYSTARTBLOCK
) {
1283 set_buffer_uptodate(bh_result
);
1284 set_buffer_mapped(bh_result
);
1285 set_buffer_delay(bh_result
);
1292 xfs_iunlock(ip
, lockmode
);
1298 struct inode
*inode
,
1300 struct buffer_head
*bh_result
,
1303 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, false, false);
1307 xfs_get_blocks_direct(
1308 struct inode
*inode
,
1310 struct buffer_head
*bh_result
,
1313 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, true, false);
1317 xfs_get_blocks_dax_fault(
1318 struct inode
*inode
,
1320 struct buffer_head
*bh_result
,
1323 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, true, true);
1327 * Complete a direct I/O write request.
1329 * xfs_map_direct passes us some flags in the private data to tell us what to
1330 * do. If no flags are set, then the write IO is an overwrite wholly within
1331 * the existing allocated file size and so there is nothing for us to do.
1333 * Note that in this case the completion can be called in interrupt context,
1334 * whereas if we have flags set we will always be called in task context
1335 * (i.e. from a workqueue).
1338 xfs_end_io_direct_write(
1344 struct inode
*inode
= file_inode(iocb
->ki_filp
);
1345 struct xfs_inode
*ip
= XFS_I(inode
);
1346 struct xfs_mount
*mp
= ip
->i_mount
;
1347 uintptr_t flags
= (uintptr_t)private;
1350 trace_xfs_end_io_direct_write(ip
, offset
, size
);
1352 if (XFS_FORCED_SHUTDOWN(mp
))
1359 * The flags tell us whether we are doing unwritten extent conversions
1360 * or an append transaction that updates the on-disk file size. These
1361 * cases are the only cases where we should *potentially* be needing
1362 * to update the VFS inode size.
1365 ASSERT(offset
+ size
<= i_size_read(inode
));
1370 * We need to update the in-core inode size here so that we don't end up
1371 * with the on-disk inode size being outside the in-core inode size. We
1372 * have no other method of updating EOF for AIO, so always do it here
1375 * We need to lock the test/set EOF update as we can be racing with
1376 * other IO completions here to update the EOF. Failing to serialise
1377 * here can result in EOF moving backwards and Bad Things Happen when
1380 spin_lock(&ip
->i_flags_lock
);
1381 if (offset
+ size
> i_size_read(inode
))
1382 i_size_write(inode
, offset
+ size
);
1383 spin_unlock(&ip
->i_flags_lock
);
1385 if (flags
& XFS_DIO_FLAG_UNWRITTEN
) {
1386 trace_xfs_end_io_direct_write_unwritten(ip
, offset
, size
);
1388 error
= xfs_iomap_write_unwritten(ip
, offset
, size
);
1389 } else if (flags
& XFS_DIO_FLAG_APPEND
) {
1390 struct xfs_trans
*tp
;
1392 trace_xfs_end_io_direct_write_append(ip
, offset
, size
);
1394 tp
= xfs_trans_alloc(mp
, XFS_TRANS_FSYNC_TS
);
1395 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_fsyncts
, 0, 0);
1397 xfs_trans_cancel(tp
);
1400 error
= xfs_setfilesize(ip
, tp
, offset
, size
);
1409 struct iov_iter
*iter
,
1412 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
1413 dio_iodone_t
*endio
= NULL
;
1415 struct block_device
*bdev
;
1417 if (iov_iter_rw(iter
) == WRITE
) {
1418 endio
= xfs_end_io_direct_write
;
1419 flags
= DIO_ASYNC_EXTEND
;
1422 if (IS_DAX(inode
)) {
1423 return dax_do_io(iocb
, inode
, iter
, offset
,
1424 xfs_get_blocks_direct
, endio
, 0);
1427 bdev
= xfs_find_bdev_for_inode(inode
);
1428 return __blockdev_direct_IO(iocb
, inode
, bdev
, iter
, offset
,
1429 xfs_get_blocks_direct
, endio
, NULL
, flags
);
1433 * Punch out the delalloc blocks we have already allocated.
1435 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1436 * as the page is still locked at this point.
1439 xfs_vm_kill_delalloc_range(
1440 struct inode
*inode
,
1444 struct xfs_inode
*ip
= XFS_I(inode
);
1445 xfs_fileoff_t start_fsb
;
1446 xfs_fileoff_t end_fsb
;
1449 start_fsb
= XFS_B_TO_FSB(ip
->i_mount
, start
);
1450 end_fsb
= XFS_B_TO_FSB(ip
->i_mount
, end
);
1451 if (end_fsb
<= start_fsb
)
1454 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1455 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
,
1456 end_fsb
- start_fsb
);
1458 /* something screwed, just bail */
1459 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
1460 xfs_alert(ip
->i_mount
,
1461 "xfs_vm_write_failed: unable to clean up ino %lld",
1465 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1469 xfs_vm_write_failed(
1470 struct inode
*inode
,
1475 loff_t block_offset
;
1478 loff_t from
= pos
& (PAGE_SIZE
- 1);
1479 loff_t to
= from
+ len
;
1480 struct buffer_head
*bh
, *head
;
1481 struct xfs_mount
*mp
= XFS_I(inode
)->i_mount
;
1484 * The request pos offset might be 32 or 64 bit, this is all fine
1485 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1486 * platform, the high 32-bit will be masked off if we evaluate the
1487 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1488 * 0xfffff000 as an unsigned long, hence the result is incorrect
1489 * which could cause the following ASSERT failed in most cases.
1490 * In order to avoid this, we can evaluate the block_offset of the
1491 * start of the page by using shifts rather than masks the mismatch
1494 block_offset
= (pos
>> PAGE_SHIFT
) << PAGE_SHIFT
;
1496 ASSERT(block_offset
+ from
== pos
);
1498 head
= page_buffers(page
);
1500 for (bh
= head
; bh
!= head
|| !block_start
;
1501 bh
= bh
->b_this_page
, block_start
= block_end
,
1502 block_offset
+= bh
->b_size
) {
1503 block_end
= block_start
+ bh
->b_size
;
1505 /* skip buffers before the write */
1506 if (block_end
<= from
)
1509 /* if the buffer is after the write, we're done */
1510 if (block_start
>= to
)
1514 * Process delalloc and unwritten buffers beyond EOF. We can
1515 * encounter unwritten buffers in the event that a file has
1516 * post-EOF unwritten extents and an extending write happens to
1517 * fail (e.g., an unaligned write that also involves a delalloc
1518 * to the same page).
1520 if (!buffer_delay(bh
) && !buffer_unwritten(bh
))
1523 if (!xfs_mp_fail_writes(mp
) && !buffer_new(bh
) &&
1524 block_offset
< i_size_read(inode
))
1527 if (buffer_delay(bh
))
1528 xfs_vm_kill_delalloc_range(inode
, block_offset
,
1529 block_offset
+ bh
->b_size
);
1532 * This buffer does not contain data anymore. make sure anyone
1533 * who finds it knows that for certain.
1535 clear_buffer_delay(bh
);
1536 clear_buffer_uptodate(bh
);
1537 clear_buffer_mapped(bh
);
1538 clear_buffer_new(bh
);
1539 clear_buffer_dirty(bh
);
1540 clear_buffer_unwritten(bh
);
1546 * This used to call block_write_begin(), but it unlocks and releases the page
1547 * on error, and we need that page to be able to punch stale delalloc blocks out
1548 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1549 * the appropriate point.
1554 struct address_space
*mapping
,
1558 struct page
**pagep
,
1561 pgoff_t index
= pos
>> PAGE_SHIFT
;
1564 struct xfs_mount
*mp
= XFS_I(mapping
->host
)->i_mount
;
1566 ASSERT(len
<= PAGE_SIZE
);
1568 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1572 status
= __block_write_begin(page
, pos
, len
, xfs_get_blocks
);
1573 if (xfs_mp_fail_writes(mp
))
1575 if (unlikely(status
)) {
1576 struct inode
*inode
= mapping
->host
;
1577 size_t isize
= i_size_read(inode
);
1579 xfs_vm_write_failed(inode
, page
, pos
, len
);
1583 * If the write is beyond EOF, we only want to kill blocks
1584 * allocated in this write, not blocks that were previously
1585 * written successfully.
1587 if (xfs_mp_fail_writes(mp
))
1589 if (pos
+ len
> isize
) {
1590 ssize_t start
= max_t(ssize_t
, pos
, isize
);
1592 truncate_pagecache_range(inode
, start
, pos
+ len
);
1604 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1605 * this specific write because they will never be written. Previous writes
1606 * beyond EOF where block allocation succeeded do not need to be trashed, so
1607 * only new blocks from this write should be trashed. For blocks within
1608 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1609 * written with all the other valid data.
1614 struct address_space
*mapping
,
1623 ASSERT(len
<= PAGE_SIZE
);
1625 ret
= generic_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1626 if (unlikely(ret
< len
)) {
1627 struct inode
*inode
= mapping
->host
;
1628 size_t isize
= i_size_read(inode
);
1629 loff_t to
= pos
+ len
;
1632 /* only kill blocks in this write beyond EOF */
1635 xfs_vm_kill_delalloc_range(inode
, isize
, to
);
1636 truncate_pagecache_range(inode
, isize
, to
);
1644 struct address_space
*mapping
,
1647 struct inode
*inode
= (struct inode
*)mapping
->host
;
1648 struct xfs_inode
*ip
= XFS_I(inode
);
1650 trace_xfs_vm_bmap(XFS_I(inode
));
1651 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
1652 filemap_write_and_wait(mapping
);
1653 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
1654 return generic_block_bmap(mapping
, block
, xfs_get_blocks
);
1659 struct file
*unused
,
1662 trace_xfs_vm_readpage(page
->mapping
->host
, 1);
1663 return mpage_readpage(page
, xfs_get_blocks
);
1668 struct file
*unused
,
1669 struct address_space
*mapping
,
1670 struct list_head
*pages
,
1673 trace_xfs_vm_readpages(mapping
->host
, nr_pages
);
1674 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1678 * This is basically a copy of __set_page_dirty_buffers() with one
1679 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1680 * dirty, we'll never be able to clean them because we don't write buffers
1681 * beyond EOF, and that means we can't invalidate pages that span EOF
1682 * that have been marked dirty. Further, the dirty state can leak into
1683 * the file interior if the file is extended, resulting in all sorts of
1684 * bad things happening as the state does not match the underlying data.
1686 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1687 * this only exist because of bufferheads and how the generic code manages them.
1690 xfs_vm_set_page_dirty(
1693 struct address_space
*mapping
= page
->mapping
;
1694 struct inode
*inode
= mapping
->host
;
1699 if (unlikely(!mapping
))
1700 return !TestSetPageDirty(page
);
1702 end_offset
= i_size_read(inode
);
1703 offset
= page_offset(page
);
1705 spin_lock(&mapping
->private_lock
);
1706 if (page_has_buffers(page
)) {
1707 struct buffer_head
*head
= page_buffers(page
);
1708 struct buffer_head
*bh
= head
;
1711 if (offset
< end_offset
)
1712 set_buffer_dirty(bh
);
1713 bh
= bh
->b_this_page
;
1714 offset
+= 1 << inode
->i_blkbits
;
1715 } while (bh
!= head
);
1718 * Lock out page->mem_cgroup migration to keep PageDirty
1719 * synchronized with per-memcg dirty page counters.
1721 lock_page_memcg(page
);
1722 newly_dirty
= !TestSetPageDirty(page
);
1723 spin_unlock(&mapping
->private_lock
);
1726 /* sigh - __set_page_dirty() is static, so copy it here, too */
1727 unsigned long flags
;
1729 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1730 if (page
->mapping
) { /* Race with truncate? */
1731 WARN_ON_ONCE(!PageUptodate(page
));
1732 account_page_dirtied(page
, mapping
);
1733 radix_tree_tag_set(&mapping
->page_tree
,
1734 page_index(page
), PAGECACHE_TAG_DIRTY
);
1736 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1738 unlock_page_memcg(page
);
1740 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1744 const struct address_space_operations xfs_address_space_operations
= {
1745 .readpage
= xfs_vm_readpage
,
1746 .readpages
= xfs_vm_readpages
,
1747 .writepage
= xfs_vm_writepage
,
1748 .writepages
= xfs_vm_writepages
,
1749 .set_page_dirty
= xfs_vm_set_page_dirty
,
1750 .releasepage
= xfs_vm_releasepage
,
1751 .invalidatepage
= xfs_vm_invalidatepage
,
1752 .write_begin
= xfs_vm_write_begin
,
1753 .write_end
= xfs_vm_write_end
,
1754 .bmap
= xfs_vm_bmap
,
1755 .direct_IO
= xfs_vm_direct_IO
,
1756 .migratepage
= buffer_migrate_page
,
1757 .is_partially_uptodate
= block_is_partially_uptodate
,
1758 .error_remove_page
= generic_error_remove_page
,