Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / fs / xfs / xfs_inode.c
blob96f606deee313aed506b7e7ee229fc801ba5de80
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_inode.h"
29 #include "xfs_da_format.h"
30 #include "xfs_da_btree.h"
31 #include "xfs_dir2.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_attr.h"
34 #include "xfs_trans_space.h"
35 #include "xfs_trans.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_bmap_util.h"
41 #include "xfs_error.h"
42 #include "xfs_quota.h"
43 #include "xfs_filestream.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_symlink.h"
48 #include "xfs_trans_priv.h"
49 #include "xfs_log.h"
50 #include "xfs_bmap_btree.h"
52 kmem_zone_t *xfs_inode_zone;
55 * Used in xfs_itruncate_extents(). This is the maximum number of extents
56 * freed from a file in a single transaction.
58 #define XFS_ITRUNC_MAX_EXTENTS 2
60 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
61 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
62 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
65 * helper function to extract extent size hint from inode
67 xfs_extlen_t
68 xfs_get_extsz_hint(
69 struct xfs_inode *ip)
71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 return ip->i_d.di_extsize;
73 if (XFS_IS_REALTIME_INODE(ip))
74 return ip->i_mount->m_sb.sb_rextsize;
75 return 0;
79 * These two are wrapper routines around the xfs_ilock() routine used to
80 * centralize some grungy code. They are used in places that wish to lock the
81 * inode solely for reading the extents. The reason these places can't just
82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83 * bringing in of the extents from disk for a file in b-tree format. If the
84 * inode is in b-tree format, then we need to lock the inode exclusively until
85 * the extents are read in. Locking it exclusively all the time would limit
86 * our parallelism unnecessarily, though. What we do instead is check to see
87 * if the extents have been read in yet, and only lock the inode exclusively
88 * if they have not.
90 * The functions return a value which should be given to the corresponding
91 * xfs_iunlock() call.
93 uint
94 xfs_ilock_data_map_shared(
95 struct xfs_inode *ip)
97 uint lock_mode = XFS_ILOCK_SHARED;
99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
101 lock_mode = XFS_ILOCK_EXCL;
102 xfs_ilock(ip, lock_mode);
103 return lock_mode;
106 uint
107 xfs_ilock_attr_map_shared(
108 struct xfs_inode *ip)
110 uint lock_mode = XFS_ILOCK_SHARED;
112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 lock_mode = XFS_ILOCK_EXCL;
115 xfs_ilock(ip, lock_mode);
116 return lock_mode;
120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121 * the i_lock. This routine allows various combinations of the locks to be
122 * obtained.
124 * The 3 locks should always be ordered so that the IO lock is obtained first,
125 * the mmap lock second and the ilock last in order to prevent deadlock.
127 * Basic locking order:
129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
131 * mmap_sem locking order:
133 * i_iolock -> page lock -> mmap_sem
134 * mmap_sem -> i_mmap_lock -> page_lock
136 * The difference in mmap_sem locking order mean that we cannot hold the
137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139 * in get_user_pages() to map the user pages into the kernel address space for
140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141 * page faults already hold the mmap_sem.
143 * Hence to serialise fully against both syscall and mmap based IO, we need to
144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145 * taken in places where we need to invalidate the page cache in a race
146 * free manner (e.g. truncate, hole punch and other extent manipulation
147 * functions).
149 void
150 xfs_ilock(
151 xfs_inode_t *ip,
152 uint lock_flags)
154 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
157 * You can't set both SHARED and EXCL for the same lock,
158 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
161 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
162 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
163 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
164 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
165 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
166 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
167 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
169 if (lock_flags & XFS_IOLOCK_EXCL)
170 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
171 else if (lock_flags & XFS_IOLOCK_SHARED)
172 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
174 if (lock_flags & XFS_MMAPLOCK_EXCL)
175 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
176 else if (lock_flags & XFS_MMAPLOCK_SHARED)
177 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
179 if (lock_flags & XFS_ILOCK_EXCL)
180 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
181 else if (lock_flags & XFS_ILOCK_SHARED)
182 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
186 * This is just like xfs_ilock(), except that the caller
187 * is guaranteed not to sleep. It returns 1 if it gets
188 * the requested locks and 0 otherwise. If the IO lock is
189 * obtained but the inode lock cannot be, then the IO lock
190 * is dropped before returning.
192 * ip -- the inode being locked
193 * lock_flags -- this parameter indicates the inode's locks to be
194 * to be locked. See the comment for xfs_ilock() for a list
195 * of valid values.
198 xfs_ilock_nowait(
199 xfs_inode_t *ip,
200 uint lock_flags)
202 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
205 * You can't set both SHARED and EXCL for the same lock,
206 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
209 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
210 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
211 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
212 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
213 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
214 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
215 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
217 if (lock_flags & XFS_IOLOCK_EXCL) {
218 if (!mrtryupdate(&ip->i_iolock))
219 goto out;
220 } else if (lock_flags & XFS_IOLOCK_SHARED) {
221 if (!mrtryaccess(&ip->i_iolock))
222 goto out;
225 if (lock_flags & XFS_MMAPLOCK_EXCL) {
226 if (!mrtryupdate(&ip->i_mmaplock))
227 goto out_undo_iolock;
228 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
229 if (!mrtryaccess(&ip->i_mmaplock))
230 goto out_undo_iolock;
233 if (lock_flags & XFS_ILOCK_EXCL) {
234 if (!mrtryupdate(&ip->i_lock))
235 goto out_undo_mmaplock;
236 } else if (lock_flags & XFS_ILOCK_SHARED) {
237 if (!mrtryaccess(&ip->i_lock))
238 goto out_undo_mmaplock;
240 return 1;
242 out_undo_mmaplock:
243 if (lock_flags & XFS_MMAPLOCK_EXCL)
244 mrunlock_excl(&ip->i_mmaplock);
245 else if (lock_flags & XFS_MMAPLOCK_SHARED)
246 mrunlock_shared(&ip->i_mmaplock);
247 out_undo_iolock:
248 if (lock_flags & XFS_IOLOCK_EXCL)
249 mrunlock_excl(&ip->i_iolock);
250 else if (lock_flags & XFS_IOLOCK_SHARED)
251 mrunlock_shared(&ip->i_iolock);
252 out:
253 return 0;
257 * xfs_iunlock() is used to drop the inode locks acquired with
258 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260 * that we know which locks to drop.
262 * ip -- the inode being unlocked
263 * lock_flags -- this parameter indicates the inode's locks to be
264 * to be unlocked. See the comment for xfs_ilock() for a list
265 * of valid values for this parameter.
268 void
269 xfs_iunlock(
270 xfs_inode_t *ip,
271 uint lock_flags)
274 * You can't set both SHARED and EXCL for the same lock,
275 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
278 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
279 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
280 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
281 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
282 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
283 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
284 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
285 ASSERT(lock_flags != 0);
287 if (lock_flags & XFS_IOLOCK_EXCL)
288 mrunlock_excl(&ip->i_iolock);
289 else if (lock_flags & XFS_IOLOCK_SHARED)
290 mrunlock_shared(&ip->i_iolock);
292 if (lock_flags & XFS_MMAPLOCK_EXCL)
293 mrunlock_excl(&ip->i_mmaplock);
294 else if (lock_flags & XFS_MMAPLOCK_SHARED)
295 mrunlock_shared(&ip->i_mmaplock);
297 if (lock_flags & XFS_ILOCK_EXCL)
298 mrunlock_excl(&ip->i_lock);
299 else if (lock_flags & XFS_ILOCK_SHARED)
300 mrunlock_shared(&ip->i_lock);
302 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
306 * give up write locks. the i/o lock cannot be held nested
307 * if it is being demoted.
309 void
310 xfs_ilock_demote(
311 xfs_inode_t *ip,
312 uint lock_flags)
314 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
315 ASSERT((lock_flags &
316 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
318 if (lock_flags & XFS_ILOCK_EXCL)
319 mrdemote(&ip->i_lock);
320 if (lock_flags & XFS_MMAPLOCK_EXCL)
321 mrdemote(&ip->i_mmaplock);
322 if (lock_flags & XFS_IOLOCK_EXCL)
323 mrdemote(&ip->i_iolock);
325 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
328 #if defined(DEBUG) || defined(XFS_WARN)
330 xfs_isilocked(
331 xfs_inode_t *ip,
332 uint lock_flags)
334 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
335 if (!(lock_flags & XFS_ILOCK_SHARED))
336 return !!ip->i_lock.mr_writer;
337 return rwsem_is_locked(&ip->i_lock.mr_lock);
340 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
341 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
342 return !!ip->i_mmaplock.mr_writer;
343 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
346 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
347 if (!(lock_flags & XFS_IOLOCK_SHARED))
348 return !!ip->i_iolock.mr_writer;
349 return rwsem_is_locked(&ip->i_iolock.mr_lock);
352 ASSERT(0);
353 return 0;
355 #endif
357 #ifdef DEBUG
358 int xfs_locked_n;
359 int xfs_small_retries;
360 int xfs_middle_retries;
361 int xfs_lots_retries;
362 int xfs_lock_delays;
363 #endif
366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
369 * errors and warnings.
371 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
372 static bool
373 xfs_lockdep_subclass_ok(
374 int subclass)
376 return subclass < MAX_LOCKDEP_SUBCLASSES;
378 #else
379 #define xfs_lockdep_subclass_ok(subclass) (true)
380 #endif
383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
384 * value. This can be called for any type of inode lock combination, including
385 * parent locking. Care must be taken to ensure we don't overrun the subclass
386 * storage fields in the class mask we build.
388 static inline int
389 xfs_lock_inumorder(int lock_mode, int subclass)
391 int class = 0;
393 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
394 XFS_ILOCK_RTSUM)));
395 ASSERT(xfs_lockdep_subclass_ok(subclass));
397 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
398 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
399 ASSERT(xfs_lockdep_subclass_ok(subclass +
400 XFS_IOLOCK_PARENT_VAL));
401 class += subclass << XFS_IOLOCK_SHIFT;
402 if (lock_mode & XFS_IOLOCK_PARENT)
403 class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
406 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
407 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
408 class += subclass << XFS_MMAPLOCK_SHIFT;
411 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
412 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
413 class += subclass << XFS_ILOCK_SHIFT;
416 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
420 * The following routine will lock n inodes in exclusive mode. We assume the
421 * caller calls us with the inodes in i_ino order.
423 * We need to detect deadlock where an inode that we lock is in the AIL and we
424 * start waiting for another inode that is locked by a thread in a long running
425 * transaction (such as truncate). This can result in deadlock since the long
426 * running trans might need to wait for the inode we just locked in order to
427 * push the tail and free space in the log.
429 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
431 * lock more than one at a time, lockdep will report false positives saying we
432 * have violated locking orders.
434 void
435 xfs_lock_inodes(
436 xfs_inode_t **ips,
437 int inodes,
438 uint lock_mode)
440 int attempts = 0, i, j, try_lock;
441 xfs_log_item_t *lp;
444 * Currently supports between 2 and 5 inodes with exclusive locking. We
445 * support an arbitrary depth of locking here, but absolute limits on
446 * inodes depend on the the type of locking and the limits placed by
447 * lockdep annotations in xfs_lock_inumorder. These are all checked by
448 * the asserts.
450 ASSERT(ips && inodes >= 2 && inodes <= 5);
451 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
452 XFS_ILOCK_EXCL));
453 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
454 XFS_ILOCK_SHARED)));
455 ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
456 inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
457 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
458 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
459 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
460 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
462 if (lock_mode & XFS_IOLOCK_EXCL) {
463 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
464 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
467 try_lock = 0;
468 i = 0;
469 again:
470 for (; i < inodes; i++) {
471 ASSERT(ips[i]);
473 if (i && (ips[i] == ips[i - 1])) /* Already locked */
474 continue;
477 * If try_lock is not set yet, make sure all locked inodes are
478 * not in the AIL. If any are, set try_lock to be used later.
480 if (!try_lock) {
481 for (j = (i - 1); j >= 0 && !try_lock; j--) {
482 lp = (xfs_log_item_t *)ips[j]->i_itemp;
483 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
484 try_lock++;
489 * If any of the previous locks we have locked is in the AIL,
490 * we must TRY to get the second and subsequent locks. If
491 * we can't get any, we must release all we have
492 * and try again.
494 if (!try_lock) {
495 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
496 continue;
499 /* try_lock means we have an inode locked that is in the AIL. */
500 ASSERT(i != 0);
501 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
502 continue;
505 * Unlock all previous guys and try again. xfs_iunlock will try
506 * to push the tail if the inode is in the AIL.
508 attempts++;
509 for (j = i - 1; j >= 0; j--) {
511 * Check to see if we've already unlocked this one. Not
512 * the first one going back, and the inode ptr is the
513 * same.
515 if (j != (i - 1) && ips[j] == ips[j + 1])
516 continue;
518 xfs_iunlock(ips[j], lock_mode);
521 if ((attempts % 5) == 0) {
522 delay(1); /* Don't just spin the CPU */
523 #ifdef DEBUG
524 xfs_lock_delays++;
525 #endif
527 i = 0;
528 try_lock = 0;
529 goto again;
532 #ifdef DEBUG
533 if (attempts) {
534 if (attempts < 5) xfs_small_retries++;
535 else if (attempts < 100) xfs_middle_retries++;
536 else xfs_lots_retries++;
537 } else {
538 xfs_locked_n++;
540 #endif
544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
546 * lock more than one at a time, lockdep will report false positives saying we
547 * have violated locking orders.
549 void
550 xfs_lock_two_inodes(
551 xfs_inode_t *ip0,
552 xfs_inode_t *ip1,
553 uint lock_mode)
555 xfs_inode_t *temp;
556 int attempts = 0;
557 xfs_log_item_t *lp;
559 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
560 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
561 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
563 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
565 ASSERT(ip0->i_ino != ip1->i_ino);
567 if (ip0->i_ino > ip1->i_ino) {
568 temp = ip0;
569 ip0 = ip1;
570 ip1 = temp;
573 again:
574 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
577 * If the first lock we have locked is in the AIL, we must TRY to get
578 * the second lock. If we can't get it, we must release the first one
579 * and try again.
581 lp = (xfs_log_item_t *)ip0->i_itemp;
582 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
583 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
584 xfs_iunlock(ip0, lock_mode);
585 if ((++attempts % 5) == 0)
586 delay(1); /* Don't just spin the CPU */
587 goto again;
589 } else {
590 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
595 void
596 __xfs_iflock(
597 struct xfs_inode *ip)
599 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
600 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
602 do {
603 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
604 if (xfs_isiflocked(ip))
605 io_schedule();
606 } while (!xfs_iflock_nowait(ip));
608 finish_wait(wq, &wait.wait);
611 STATIC uint
612 _xfs_dic2xflags(
613 __uint16_t di_flags,
614 uint64_t di_flags2,
615 bool has_attr)
617 uint flags = 0;
619 if (di_flags & XFS_DIFLAG_ANY) {
620 if (di_flags & XFS_DIFLAG_REALTIME)
621 flags |= FS_XFLAG_REALTIME;
622 if (di_flags & XFS_DIFLAG_PREALLOC)
623 flags |= FS_XFLAG_PREALLOC;
624 if (di_flags & XFS_DIFLAG_IMMUTABLE)
625 flags |= FS_XFLAG_IMMUTABLE;
626 if (di_flags & XFS_DIFLAG_APPEND)
627 flags |= FS_XFLAG_APPEND;
628 if (di_flags & XFS_DIFLAG_SYNC)
629 flags |= FS_XFLAG_SYNC;
630 if (di_flags & XFS_DIFLAG_NOATIME)
631 flags |= FS_XFLAG_NOATIME;
632 if (di_flags & XFS_DIFLAG_NODUMP)
633 flags |= FS_XFLAG_NODUMP;
634 if (di_flags & XFS_DIFLAG_RTINHERIT)
635 flags |= FS_XFLAG_RTINHERIT;
636 if (di_flags & XFS_DIFLAG_PROJINHERIT)
637 flags |= FS_XFLAG_PROJINHERIT;
638 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
639 flags |= FS_XFLAG_NOSYMLINKS;
640 if (di_flags & XFS_DIFLAG_EXTSIZE)
641 flags |= FS_XFLAG_EXTSIZE;
642 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
643 flags |= FS_XFLAG_EXTSZINHERIT;
644 if (di_flags & XFS_DIFLAG_NODEFRAG)
645 flags |= FS_XFLAG_NODEFRAG;
646 if (di_flags & XFS_DIFLAG_FILESTREAM)
647 flags |= FS_XFLAG_FILESTREAM;
650 if (di_flags2 & XFS_DIFLAG2_ANY) {
651 if (di_flags2 & XFS_DIFLAG2_DAX)
652 flags |= FS_XFLAG_DAX;
655 if (has_attr)
656 flags |= FS_XFLAG_HASATTR;
658 return flags;
661 uint
662 xfs_ip2xflags(
663 struct xfs_inode *ip)
665 struct xfs_icdinode *dic = &ip->i_d;
667 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
670 uint
671 xfs_dic2xflags(
672 struct xfs_dinode *dip)
674 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags),
675 be64_to_cpu(dip->di_flags2), XFS_DFORK_Q(dip));
679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
681 * ci_name->name will point to a the actual name (caller must free) or
682 * will be set to NULL if an exact match is found.
685 xfs_lookup(
686 xfs_inode_t *dp,
687 struct xfs_name *name,
688 xfs_inode_t **ipp,
689 struct xfs_name *ci_name)
691 xfs_ino_t inum;
692 int error;
694 trace_xfs_lookup(dp, name);
696 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
697 return -EIO;
699 xfs_ilock(dp, XFS_IOLOCK_SHARED);
700 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
701 if (error)
702 goto out_unlock;
704 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
705 if (error)
706 goto out_free_name;
708 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
709 return 0;
711 out_free_name:
712 if (ci_name)
713 kmem_free(ci_name->name);
714 out_unlock:
715 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
716 *ipp = NULL;
717 return error;
721 * Allocate an inode on disk and return a copy of its in-core version.
722 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
723 * appropriately within the inode. The uid and gid for the inode are
724 * set according to the contents of the given cred structure.
726 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
727 * has a free inode available, call xfs_iget() to obtain the in-core
728 * version of the allocated inode. Finally, fill in the inode and
729 * log its initial contents. In this case, ialloc_context would be
730 * set to NULL.
732 * If xfs_dialloc() does not have an available inode, it will replenish
733 * its supply by doing an allocation. Since we can only do one
734 * allocation within a transaction without deadlocks, we must commit
735 * the current transaction before returning the inode itself.
736 * In this case, therefore, we will set ialloc_context and return.
737 * The caller should then commit the current transaction, start a new
738 * transaction, and call xfs_ialloc() again to actually get the inode.
740 * To ensure that some other process does not grab the inode that
741 * was allocated during the first call to xfs_ialloc(), this routine
742 * also returns the [locked] bp pointing to the head of the freelist
743 * as ialloc_context. The caller should hold this buffer across
744 * the commit and pass it back into this routine on the second call.
746 * If we are allocating quota inodes, we do not have a parent inode
747 * to attach to or associate with (i.e. pip == NULL) because they
748 * are not linked into the directory structure - they are attached
749 * directly to the superblock - and so have no parent.
752 xfs_ialloc(
753 xfs_trans_t *tp,
754 xfs_inode_t *pip,
755 umode_t mode,
756 xfs_nlink_t nlink,
757 xfs_dev_t rdev,
758 prid_t prid,
759 int okalloc,
760 xfs_buf_t **ialloc_context,
761 xfs_inode_t **ipp)
763 struct xfs_mount *mp = tp->t_mountp;
764 xfs_ino_t ino;
765 xfs_inode_t *ip;
766 uint flags;
767 int error;
768 struct timespec tv;
769 struct inode *inode;
772 * Call the space management code to pick
773 * the on-disk inode to be allocated.
775 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
776 ialloc_context, &ino);
777 if (error)
778 return error;
779 if (*ialloc_context || ino == NULLFSINO) {
780 *ipp = NULL;
781 return 0;
783 ASSERT(*ialloc_context == NULL);
786 * Get the in-core inode with the lock held exclusively.
787 * This is because we're setting fields here we need
788 * to prevent others from looking at until we're done.
790 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
791 XFS_ILOCK_EXCL, &ip);
792 if (error)
793 return error;
794 ASSERT(ip != NULL);
795 inode = VFS_I(ip);
798 * We always convert v1 inodes to v2 now - we only support filesystems
799 * with >= v2 inode capability, so there is no reason for ever leaving
800 * an inode in v1 format.
802 if (ip->i_d.di_version == 1)
803 ip->i_d.di_version = 2;
805 inode->i_mode = mode;
806 set_nlink(inode, nlink);
807 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
808 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
809 xfs_set_projid(ip, prid);
811 if (pip && XFS_INHERIT_GID(pip)) {
812 ip->i_d.di_gid = pip->i_d.di_gid;
813 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
814 inode->i_mode |= S_ISGID;
818 * If the group ID of the new file does not match the effective group
819 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
820 * (and only if the irix_sgid_inherit compatibility variable is set).
822 if ((irix_sgid_inherit) &&
823 (inode->i_mode & S_ISGID) &&
824 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
825 inode->i_mode &= ~S_ISGID;
827 ip->i_d.di_size = 0;
828 ip->i_d.di_nextents = 0;
829 ASSERT(ip->i_d.di_nblocks == 0);
831 tv = current_fs_time(mp->m_super);
832 inode->i_mtime = tv;
833 inode->i_atime = tv;
834 inode->i_ctime = tv;
836 ip->i_d.di_extsize = 0;
837 ip->i_d.di_dmevmask = 0;
838 ip->i_d.di_dmstate = 0;
839 ip->i_d.di_flags = 0;
841 if (ip->i_d.di_version == 3) {
842 inode->i_version = 1;
843 ip->i_d.di_flags2 = 0;
844 ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
845 ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
849 flags = XFS_ILOG_CORE;
850 switch (mode & S_IFMT) {
851 case S_IFIFO:
852 case S_IFCHR:
853 case S_IFBLK:
854 case S_IFSOCK:
855 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
856 ip->i_df.if_u2.if_rdev = rdev;
857 ip->i_df.if_flags = 0;
858 flags |= XFS_ILOG_DEV;
859 break;
860 case S_IFREG:
861 case S_IFDIR:
862 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
863 uint64_t di_flags2 = 0;
864 uint di_flags = 0;
866 if (S_ISDIR(mode)) {
867 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
868 di_flags |= XFS_DIFLAG_RTINHERIT;
869 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
870 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
871 ip->i_d.di_extsize = pip->i_d.di_extsize;
873 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
874 di_flags |= XFS_DIFLAG_PROJINHERIT;
875 } else if (S_ISREG(mode)) {
876 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
877 di_flags |= XFS_DIFLAG_REALTIME;
878 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
879 di_flags |= XFS_DIFLAG_EXTSIZE;
880 ip->i_d.di_extsize = pip->i_d.di_extsize;
883 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
884 xfs_inherit_noatime)
885 di_flags |= XFS_DIFLAG_NOATIME;
886 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
887 xfs_inherit_nodump)
888 di_flags |= XFS_DIFLAG_NODUMP;
889 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
890 xfs_inherit_sync)
891 di_flags |= XFS_DIFLAG_SYNC;
892 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
893 xfs_inherit_nosymlinks)
894 di_flags |= XFS_DIFLAG_NOSYMLINKS;
895 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
896 xfs_inherit_nodefrag)
897 di_flags |= XFS_DIFLAG_NODEFRAG;
898 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
899 di_flags |= XFS_DIFLAG_FILESTREAM;
900 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
901 di_flags2 |= XFS_DIFLAG2_DAX;
903 ip->i_d.di_flags |= di_flags;
904 ip->i_d.di_flags2 |= di_flags2;
906 /* FALLTHROUGH */
907 case S_IFLNK:
908 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
909 ip->i_df.if_flags = XFS_IFEXTENTS;
910 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
911 ip->i_df.if_u1.if_extents = NULL;
912 break;
913 default:
914 ASSERT(0);
917 * Attribute fork settings for new inode.
919 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
920 ip->i_d.di_anextents = 0;
923 * Log the new values stuffed into the inode.
925 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
926 xfs_trans_log_inode(tp, ip, flags);
928 /* now that we have an i_mode we can setup the inode structure */
929 xfs_setup_inode(ip);
931 *ipp = ip;
932 return 0;
936 * Allocates a new inode from disk and return a pointer to the
937 * incore copy. This routine will internally commit the current
938 * transaction and allocate a new one if the Space Manager needed
939 * to do an allocation to replenish the inode free-list.
941 * This routine is designed to be called from xfs_create and
942 * xfs_create_dir.
946 xfs_dir_ialloc(
947 xfs_trans_t **tpp, /* input: current transaction;
948 output: may be a new transaction. */
949 xfs_inode_t *dp, /* directory within whose allocate
950 the inode. */
951 umode_t mode,
952 xfs_nlink_t nlink,
953 xfs_dev_t rdev,
954 prid_t prid, /* project id */
955 int okalloc, /* ok to allocate new space */
956 xfs_inode_t **ipp, /* pointer to inode; it will be
957 locked. */
958 int *committed)
961 xfs_trans_t *tp;
962 xfs_inode_t *ip;
963 xfs_buf_t *ialloc_context = NULL;
964 int code;
965 void *dqinfo;
966 uint tflags;
968 tp = *tpp;
969 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
972 * xfs_ialloc will return a pointer to an incore inode if
973 * the Space Manager has an available inode on the free
974 * list. Otherwise, it will do an allocation and replenish
975 * the freelist. Since we can only do one allocation per
976 * transaction without deadlocks, we will need to commit the
977 * current transaction and start a new one. We will then
978 * need to call xfs_ialloc again to get the inode.
980 * If xfs_ialloc did an allocation to replenish the freelist,
981 * it returns the bp containing the head of the freelist as
982 * ialloc_context. We will hold a lock on it across the
983 * transaction commit so that no other process can steal
984 * the inode(s) that we've just allocated.
986 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
987 &ialloc_context, &ip);
990 * Return an error if we were unable to allocate a new inode.
991 * This should only happen if we run out of space on disk or
992 * encounter a disk error.
994 if (code) {
995 *ipp = NULL;
996 return code;
998 if (!ialloc_context && !ip) {
999 *ipp = NULL;
1000 return -ENOSPC;
1004 * If the AGI buffer is non-NULL, then we were unable to get an
1005 * inode in one operation. We need to commit the current
1006 * transaction and call xfs_ialloc() again. It is guaranteed
1007 * to succeed the second time.
1009 if (ialloc_context) {
1011 * Normally, xfs_trans_commit releases all the locks.
1012 * We call bhold to hang on to the ialloc_context across
1013 * the commit. Holding this buffer prevents any other
1014 * processes from doing any allocations in this
1015 * allocation group.
1017 xfs_trans_bhold(tp, ialloc_context);
1020 * We want the quota changes to be associated with the next
1021 * transaction, NOT this one. So, detach the dqinfo from this
1022 * and attach it to the next transaction.
1024 dqinfo = NULL;
1025 tflags = 0;
1026 if (tp->t_dqinfo) {
1027 dqinfo = (void *)tp->t_dqinfo;
1028 tp->t_dqinfo = NULL;
1029 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1030 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1033 code = xfs_trans_roll(&tp, 0);
1034 if (committed != NULL)
1035 *committed = 1;
1038 * Re-attach the quota info that we detached from prev trx.
1040 if (dqinfo) {
1041 tp->t_dqinfo = dqinfo;
1042 tp->t_flags |= tflags;
1045 if (code) {
1046 xfs_buf_relse(ialloc_context);
1047 *tpp = tp;
1048 *ipp = NULL;
1049 return code;
1051 xfs_trans_bjoin(tp, ialloc_context);
1054 * Call ialloc again. Since we've locked out all
1055 * other allocations in this allocation group,
1056 * this call should always succeed.
1058 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1059 okalloc, &ialloc_context, &ip);
1062 * If we get an error at this point, return to the caller
1063 * so that the current transaction can be aborted.
1065 if (code) {
1066 *tpp = tp;
1067 *ipp = NULL;
1068 return code;
1070 ASSERT(!ialloc_context && ip);
1072 } else {
1073 if (committed != NULL)
1074 *committed = 0;
1077 *ipp = ip;
1078 *tpp = tp;
1080 return 0;
1084 * Decrement the link count on an inode & log the change. If this causes the
1085 * link count to go to zero, move the inode to AGI unlinked list so that it can
1086 * be freed when the last active reference goes away via xfs_inactive().
1088 int /* error */
1089 xfs_droplink(
1090 xfs_trans_t *tp,
1091 xfs_inode_t *ip)
1093 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1095 drop_nlink(VFS_I(ip));
1096 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1098 if (VFS_I(ip)->i_nlink)
1099 return 0;
1101 return xfs_iunlink(tp, ip);
1105 * Increment the link count on an inode & log the change.
1108 xfs_bumplink(
1109 xfs_trans_t *tp,
1110 xfs_inode_t *ip)
1112 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1114 ASSERT(ip->i_d.di_version > 1);
1115 inc_nlink(VFS_I(ip));
1116 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1117 return 0;
1121 xfs_create(
1122 xfs_inode_t *dp,
1123 struct xfs_name *name,
1124 umode_t mode,
1125 xfs_dev_t rdev,
1126 xfs_inode_t **ipp)
1128 int is_dir = S_ISDIR(mode);
1129 struct xfs_mount *mp = dp->i_mount;
1130 struct xfs_inode *ip = NULL;
1131 struct xfs_trans *tp = NULL;
1132 int error;
1133 xfs_bmap_free_t free_list;
1134 xfs_fsblock_t first_block;
1135 bool unlock_dp_on_error = false;
1136 prid_t prid;
1137 struct xfs_dquot *udqp = NULL;
1138 struct xfs_dquot *gdqp = NULL;
1139 struct xfs_dquot *pdqp = NULL;
1140 struct xfs_trans_res *tres;
1141 uint resblks;
1143 trace_xfs_create(dp, name);
1145 if (XFS_FORCED_SHUTDOWN(mp))
1146 return -EIO;
1148 prid = xfs_get_initial_prid(dp);
1151 * Make sure that we have allocated dquot(s) on disk.
1153 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1154 xfs_kgid_to_gid(current_fsgid()), prid,
1155 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1156 &udqp, &gdqp, &pdqp);
1157 if (error)
1158 return error;
1160 if (is_dir) {
1161 rdev = 0;
1162 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1163 tres = &M_RES(mp)->tr_mkdir;
1164 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1165 } else {
1166 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1167 tres = &M_RES(mp)->tr_create;
1168 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1172 * Initially assume that the file does not exist and
1173 * reserve the resources for that case. If that is not
1174 * the case we'll drop the one we have and get a more
1175 * appropriate transaction later.
1177 error = xfs_trans_reserve(tp, tres, resblks, 0);
1178 if (error == -ENOSPC) {
1179 /* flush outstanding delalloc blocks and retry */
1180 xfs_flush_inodes(mp);
1181 error = xfs_trans_reserve(tp, tres, resblks, 0);
1183 if (error == -ENOSPC) {
1184 /* No space at all so try a "no-allocation" reservation */
1185 resblks = 0;
1186 error = xfs_trans_reserve(tp, tres, 0, 0);
1188 if (error)
1189 goto out_trans_cancel;
1192 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1193 XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1194 unlock_dp_on_error = true;
1196 xfs_bmap_init(&free_list, &first_block);
1199 * Reserve disk quota and the inode.
1201 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1202 pdqp, resblks, 1, 0);
1203 if (error)
1204 goto out_trans_cancel;
1206 if (!resblks) {
1207 error = xfs_dir_canenter(tp, dp, name);
1208 if (error)
1209 goto out_trans_cancel;
1213 * A newly created regular or special file just has one directory
1214 * entry pointing to them, but a directory also the "." entry
1215 * pointing to itself.
1217 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1218 prid, resblks > 0, &ip, NULL);
1219 if (error)
1220 goto out_trans_cancel;
1223 * Now we join the directory inode to the transaction. We do not do it
1224 * earlier because xfs_dir_ialloc might commit the previous transaction
1225 * (and release all the locks). An error from here on will result in
1226 * the transaction cancel unlocking dp so don't do it explicitly in the
1227 * error path.
1229 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1230 unlock_dp_on_error = false;
1232 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1233 &first_block, &free_list, resblks ?
1234 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1235 if (error) {
1236 ASSERT(error != -ENOSPC);
1237 goto out_trans_cancel;
1239 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1240 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1242 if (is_dir) {
1243 error = xfs_dir_init(tp, ip, dp);
1244 if (error)
1245 goto out_bmap_cancel;
1247 error = xfs_bumplink(tp, dp);
1248 if (error)
1249 goto out_bmap_cancel;
1253 * If this is a synchronous mount, make sure that the
1254 * create transaction goes to disk before returning to
1255 * the user.
1257 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1258 xfs_trans_set_sync(tp);
1261 * Attach the dquot(s) to the inodes and modify them incore.
1262 * These ids of the inode couldn't have changed since the new
1263 * inode has been locked ever since it was created.
1265 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1267 error = xfs_bmap_finish(&tp, &free_list, NULL);
1268 if (error)
1269 goto out_bmap_cancel;
1271 error = xfs_trans_commit(tp);
1272 if (error)
1273 goto out_release_inode;
1275 xfs_qm_dqrele(udqp);
1276 xfs_qm_dqrele(gdqp);
1277 xfs_qm_dqrele(pdqp);
1279 *ipp = ip;
1280 return 0;
1282 out_bmap_cancel:
1283 xfs_bmap_cancel(&free_list);
1284 out_trans_cancel:
1285 xfs_trans_cancel(tp);
1286 out_release_inode:
1288 * Wait until after the current transaction is aborted to finish the
1289 * setup of the inode and release the inode. This prevents recursive
1290 * transactions and deadlocks from xfs_inactive.
1292 if (ip) {
1293 xfs_finish_inode_setup(ip);
1294 IRELE(ip);
1297 xfs_qm_dqrele(udqp);
1298 xfs_qm_dqrele(gdqp);
1299 xfs_qm_dqrele(pdqp);
1301 if (unlock_dp_on_error)
1302 xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1303 return error;
1307 xfs_create_tmpfile(
1308 struct xfs_inode *dp,
1309 struct dentry *dentry,
1310 umode_t mode,
1311 struct xfs_inode **ipp)
1313 struct xfs_mount *mp = dp->i_mount;
1314 struct xfs_inode *ip = NULL;
1315 struct xfs_trans *tp = NULL;
1316 int error;
1317 prid_t prid;
1318 struct xfs_dquot *udqp = NULL;
1319 struct xfs_dquot *gdqp = NULL;
1320 struct xfs_dquot *pdqp = NULL;
1321 struct xfs_trans_res *tres;
1322 uint resblks;
1324 if (XFS_FORCED_SHUTDOWN(mp))
1325 return -EIO;
1327 prid = xfs_get_initial_prid(dp);
1330 * Make sure that we have allocated dquot(s) on disk.
1332 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1333 xfs_kgid_to_gid(current_fsgid()), prid,
1334 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1335 &udqp, &gdqp, &pdqp);
1336 if (error)
1337 return error;
1339 resblks = XFS_IALLOC_SPACE_RES(mp);
1340 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1342 tres = &M_RES(mp)->tr_create_tmpfile;
1343 error = xfs_trans_reserve(tp, tres, resblks, 0);
1344 if (error == -ENOSPC) {
1345 /* No space at all so try a "no-allocation" reservation */
1346 resblks = 0;
1347 error = xfs_trans_reserve(tp, tres, 0, 0);
1349 if (error)
1350 goto out_trans_cancel;
1352 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1353 pdqp, resblks, 1, 0);
1354 if (error)
1355 goto out_trans_cancel;
1357 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1358 prid, resblks > 0, &ip, NULL);
1359 if (error)
1360 goto out_trans_cancel;
1362 if (mp->m_flags & XFS_MOUNT_WSYNC)
1363 xfs_trans_set_sync(tp);
1366 * Attach the dquot(s) to the inodes and modify them incore.
1367 * These ids of the inode couldn't have changed since the new
1368 * inode has been locked ever since it was created.
1370 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1372 error = xfs_iunlink(tp, ip);
1373 if (error)
1374 goto out_trans_cancel;
1376 error = xfs_trans_commit(tp);
1377 if (error)
1378 goto out_release_inode;
1380 xfs_qm_dqrele(udqp);
1381 xfs_qm_dqrele(gdqp);
1382 xfs_qm_dqrele(pdqp);
1384 *ipp = ip;
1385 return 0;
1387 out_trans_cancel:
1388 xfs_trans_cancel(tp);
1389 out_release_inode:
1391 * Wait until after the current transaction is aborted to finish the
1392 * setup of the inode and release the inode. This prevents recursive
1393 * transactions and deadlocks from xfs_inactive.
1395 if (ip) {
1396 xfs_finish_inode_setup(ip);
1397 IRELE(ip);
1400 xfs_qm_dqrele(udqp);
1401 xfs_qm_dqrele(gdqp);
1402 xfs_qm_dqrele(pdqp);
1404 return error;
1408 xfs_link(
1409 xfs_inode_t *tdp,
1410 xfs_inode_t *sip,
1411 struct xfs_name *target_name)
1413 xfs_mount_t *mp = tdp->i_mount;
1414 xfs_trans_t *tp;
1415 int error;
1416 xfs_bmap_free_t free_list;
1417 xfs_fsblock_t first_block;
1418 int resblks;
1420 trace_xfs_link(tdp, target_name);
1422 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1424 if (XFS_FORCED_SHUTDOWN(mp))
1425 return -EIO;
1427 error = xfs_qm_dqattach(sip, 0);
1428 if (error)
1429 goto std_return;
1431 error = xfs_qm_dqattach(tdp, 0);
1432 if (error)
1433 goto std_return;
1435 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1436 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1437 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1438 if (error == -ENOSPC) {
1439 resblks = 0;
1440 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1442 if (error)
1443 goto error_return;
1445 xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1446 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1448 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1449 xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1452 * If we are using project inheritance, we only allow hard link
1453 * creation in our tree when the project IDs are the same; else
1454 * the tree quota mechanism could be circumvented.
1456 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1457 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1458 error = -EXDEV;
1459 goto error_return;
1462 if (!resblks) {
1463 error = xfs_dir_canenter(tp, tdp, target_name);
1464 if (error)
1465 goto error_return;
1468 xfs_bmap_init(&free_list, &first_block);
1471 * Handle initial link state of O_TMPFILE inode
1473 if (VFS_I(sip)->i_nlink == 0) {
1474 error = xfs_iunlink_remove(tp, sip);
1475 if (error)
1476 goto error_return;
1479 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1480 &first_block, &free_list, resblks);
1481 if (error)
1482 goto error_return;
1483 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1484 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1486 error = xfs_bumplink(tp, sip);
1487 if (error)
1488 goto error_return;
1491 * If this is a synchronous mount, make sure that the
1492 * link transaction goes to disk before returning to
1493 * the user.
1495 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1496 xfs_trans_set_sync(tp);
1498 error = xfs_bmap_finish(&tp, &free_list, NULL);
1499 if (error) {
1500 xfs_bmap_cancel(&free_list);
1501 goto error_return;
1504 return xfs_trans_commit(tp);
1506 error_return:
1507 xfs_trans_cancel(tp);
1508 std_return:
1509 return error;
1513 * Free up the underlying blocks past new_size. The new size must be smaller
1514 * than the current size. This routine can be used both for the attribute and
1515 * data fork, and does not modify the inode size, which is left to the caller.
1517 * The transaction passed to this routine must have made a permanent log
1518 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1519 * given transaction and start new ones, so make sure everything involved in
1520 * the transaction is tidy before calling here. Some transaction will be
1521 * returned to the caller to be committed. The incoming transaction must
1522 * already include the inode, and both inode locks must be held exclusively.
1523 * The inode must also be "held" within the transaction. On return the inode
1524 * will be "held" within the returned transaction. This routine does NOT
1525 * require any disk space to be reserved for it within the transaction.
1527 * If we get an error, we must return with the inode locked and linked into the
1528 * current transaction. This keeps things simple for the higher level code,
1529 * because it always knows that the inode is locked and held in the transaction
1530 * that returns to it whether errors occur or not. We don't mark the inode
1531 * dirty on error so that transactions can be easily aborted if possible.
1534 xfs_itruncate_extents(
1535 struct xfs_trans **tpp,
1536 struct xfs_inode *ip,
1537 int whichfork,
1538 xfs_fsize_t new_size)
1540 struct xfs_mount *mp = ip->i_mount;
1541 struct xfs_trans *tp = *tpp;
1542 xfs_bmap_free_t free_list;
1543 xfs_fsblock_t first_block;
1544 xfs_fileoff_t first_unmap_block;
1545 xfs_fileoff_t last_block;
1546 xfs_filblks_t unmap_len;
1547 int error = 0;
1548 int done = 0;
1550 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1551 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1552 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1553 ASSERT(new_size <= XFS_ISIZE(ip));
1554 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1555 ASSERT(ip->i_itemp != NULL);
1556 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1557 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1559 trace_xfs_itruncate_extents_start(ip, new_size);
1562 * Since it is possible for space to become allocated beyond
1563 * the end of the file (in a crash where the space is allocated
1564 * but the inode size is not yet updated), simply remove any
1565 * blocks which show up between the new EOF and the maximum
1566 * possible file size. If the first block to be removed is
1567 * beyond the maximum file size (ie it is the same as last_block),
1568 * then there is nothing to do.
1570 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1571 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1572 if (first_unmap_block == last_block)
1573 return 0;
1575 ASSERT(first_unmap_block < last_block);
1576 unmap_len = last_block - first_unmap_block + 1;
1577 while (!done) {
1578 xfs_bmap_init(&free_list, &first_block);
1579 error = xfs_bunmapi(tp, ip,
1580 first_unmap_block, unmap_len,
1581 xfs_bmapi_aflag(whichfork),
1582 XFS_ITRUNC_MAX_EXTENTS,
1583 &first_block, &free_list,
1584 &done);
1585 if (error)
1586 goto out_bmap_cancel;
1589 * Duplicate the transaction that has the permanent
1590 * reservation and commit the old transaction.
1592 error = xfs_bmap_finish(&tp, &free_list, ip);
1593 if (error)
1594 goto out_bmap_cancel;
1596 error = xfs_trans_roll(&tp, ip);
1597 if (error)
1598 goto out;
1602 * Always re-log the inode so that our permanent transaction can keep
1603 * on rolling it forward in the log.
1605 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1607 trace_xfs_itruncate_extents_end(ip, new_size);
1609 out:
1610 *tpp = tp;
1611 return error;
1612 out_bmap_cancel:
1614 * If the bunmapi call encounters an error, return to the caller where
1615 * the transaction can be properly aborted. We just need to make sure
1616 * we're not holding any resources that we were not when we came in.
1618 xfs_bmap_cancel(&free_list);
1619 goto out;
1623 xfs_release(
1624 xfs_inode_t *ip)
1626 xfs_mount_t *mp = ip->i_mount;
1627 int error;
1629 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1630 return 0;
1632 /* If this is a read-only mount, don't do this (would generate I/O) */
1633 if (mp->m_flags & XFS_MOUNT_RDONLY)
1634 return 0;
1636 if (!XFS_FORCED_SHUTDOWN(mp)) {
1637 int truncated;
1640 * If we previously truncated this file and removed old data
1641 * in the process, we want to initiate "early" writeout on
1642 * the last close. This is an attempt to combat the notorious
1643 * NULL files problem which is particularly noticeable from a
1644 * truncate down, buffered (re-)write (delalloc), followed by
1645 * a crash. What we are effectively doing here is
1646 * significantly reducing the time window where we'd otherwise
1647 * be exposed to that problem.
1649 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1650 if (truncated) {
1651 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1652 if (ip->i_delayed_blks > 0) {
1653 error = filemap_flush(VFS_I(ip)->i_mapping);
1654 if (error)
1655 return error;
1660 if (VFS_I(ip)->i_nlink == 0)
1661 return 0;
1663 if (xfs_can_free_eofblocks(ip, false)) {
1666 * If we can't get the iolock just skip truncating the blocks
1667 * past EOF because we could deadlock with the mmap_sem
1668 * otherwise. We'll get another chance to drop them once the
1669 * last reference to the inode is dropped, so we'll never leak
1670 * blocks permanently.
1672 * Further, check if the inode is being opened, written and
1673 * closed frequently and we have delayed allocation blocks
1674 * outstanding (e.g. streaming writes from the NFS server),
1675 * truncating the blocks past EOF will cause fragmentation to
1676 * occur.
1678 * In this case don't do the truncation, either, but we have to
1679 * be careful how we detect this case. Blocks beyond EOF show
1680 * up as i_delayed_blks even when the inode is clean, so we
1681 * need to truncate them away first before checking for a dirty
1682 * release. Hence on the first dirty close we will still remove
1683 * the speculative allocation, but after that we will leave it
1684 * in place.
1686 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1687 return 0;
1689 error = xfs_free_eofblocks(mp, ip, true);
1690 if (error && error != -EAGAIN)
1691 return error;
1693 /* delalloc blocks after truncation means it really is dirty */
1694 if (ip->i_delayed_blks)
1695 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1697 return 0;
1701 * xfs_inactive_truncate
1703 * Called to perform a truncate when an inode becomes unlinked.
1705 STATIC int
1706 xfs_inactive_truncate(
1707 struct xfs_inode *ip)
1709 struct xfs_mount *mp = ip->i_mount;
1710 struct xfs_trans *tp;
1711 int error;
1713 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1714 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1715 if (error) {
1716 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1717 xfs_trans_cancel(tp);
1718 return error;
1721 xfs_ilock(ip, XFS_ILOCK_EXCL);
1722 xfs_trans_ijoin(tp, ip, 0);
1725 * Log the inode size first to prevent stale data exposure in the event
1726 * of a system crash before the truncate completes. See the related
1727 * comment in xfs_setattr_size() for details.
1729 ip->i_d.di_size = 0;
1730 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1732 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1733 if (error)
1734 goto error_trans_cancel;
1736 ASSERT(ip->i_d.di_nextents == 0);
1738 error = xfs_trans_commit(tp);
1739 if (error)
1740 goto error_unlock;
1742 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1743 return 0;
1745 error_trans_cancel:
1746 xfs_trans_cancel(tp);
1747 error_unlock:
1748 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1749 return error;
1753 * xfs_inactive_ifree()
1755 * Perform the inode free when an inode is unlinked.
1757 STATIC int
1758 xfs_inactive_ifree(
1759 struct xfs_inode *ip)
1761 xfs_bmap_free_t free_list;
1762 xfs_fsblock_t first_block;
1763 struct xfs_mount *mp = ip->i_mount;
1764 struct xfs_trans *tp;
1765 int error;
1767 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1770 * The ifree transaction might need to allocate blocks for record
1771 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1772 * allow ifree to dip into the reserved block pool if necessary.
1774 * Freeing large sets of inodes generally means freeing inode chunks,
1775 * directory and file data blocks, so this should be relatively safe.
1776 * Only under severe circumstances should it be possible to free enough
1777 * inodes to exhaust the reserve block pool via finobt expansion while
1778 * at the same time not creating free space in the filesystem.
1780 * Send a warning if the reservation does happen to fail, as the inode
1781 * now remains allocated and sits on the unlinked list until the fs is
1782 * repaired.
1784 tp->t_flags |= XFS_TRANS_RESERVE;
1785 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1786 XFS_IFREE_SPACE_RES(mp), 0);
1787 if (error) {
1788 if (error == -ENOSPC) {
1789 xfs_warn_ratelimited(mp,
1790 "Failed to remove inode(s) from unlinked list. "
1791 "Please free space, unmount and run xfs_repair.");
1792 } else {
1793 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1795 xfs_trans_cancel(tp);
1796 return error;
1799 xfs_ilock(ip, XFS_ILOCK_EXCL);
1800 xfs_trans_ijoin(tp, ip, 0);
1802 xfs_bmap_init(&free_list, &first_block);
1803 error = xfs_ifree(tp, ip, &free_list);
1804 if (error) {
1806 * If we fail to free the inode, shut down. The cancel
1807 * might do that, we need to make sure. Otherwise the
1808 * inode might be lost for a long time or forever.
1810 if (!XFS_FORCED_SHUTDOWN(mp)) {
1811 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1812 __func__, error);
1813 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1815 xfs_trans_cancel(tp);
1816 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1817 return error;
1821 * Credit the quota account(s). The inode is gone.
1823 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1826 * Just ignore errors at this point. There is nothing we can do except
1827 * to try to keep going. Make sure it's not a silent error.
1829 error = xfs_bmap_finish(&tp, &free_list, NULL);
1830 if (error) {
1831 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1832 __func__, error);
1833 xfs_bmap_cancel(&free_list);
1835 error = xfs_trans_commit(tp);
1836 if (error)
1837 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1838 __func__, error);
1840 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1841 return 0;
1845 * xfs_inactive
1847 * This is called when the vnode reference count for the vnode
1848 * goes to zero. If the file has been unlinked, then it must
1849 * now be truncated. Also, we clear all of the read-ahead state
1850 * kept for the inode here since the file is now closed.
1852 void
1853 xfs_inactive(
1854 xfs_inode_t *ip)
1856 struct xfs_mount *mp;
1857 int error;
1858 int truncate = 0;
1861 * If the inode is already free, then there can be nothing
1862 * to clean up here.
1864 if (VFS_I(ip)->i_mode == 0) {
1865 ASSERT(ip->i_df.if_real_bytes == 0);
1866 ASSERT(ip->i_df.if_broot_bytes == 0);
1867 return;
1870 mp = ip->i_mount;
1872 /* If this is a read-only mount, don't do this (would generate I/O) */
1873 if (mp->m_flags & XFS_MOUNT_RDONLY)
1874 return;
1876 if (VFS_I(ip)->i_nlink != 0) {
1878 * force is true because we are evicting an inode from the
1879 * cache. Post-eof blocks must be freed, lest we end up with
1880 * broken free space accounting.
1882 if (xfs_can_free_eofblocks(ip, true))
1883 xfs_free_eofblocks(mp, ip, false);
1885 return;
1888 if (S_ISREG(VFS_I(ip)->i_mode) &&
1889 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1890 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1891 truncate = 1;
1893 error = xfs_qm_dqattach(ip, 0);
1894 if (error)
1895 return;
1897 if (S_ISLNK(VFS_I(ip)->i_mode))
1898 error = xfs_inactive_symlink(ip);
1899 else if (truncate)
1900 error = xfs_inactive_truncate(ip);
1901 if (error)
1902 return;
1905 * If there are attributes associated with the file then blow them away
1906 * now. The code calls a routine that recursively deconstructs the
1907 * attribute fork. If also blows away the in-core attribute fork.
1909 if (XFS_IFORK_Q(ip)) {
1910 error = xfs_attr_inactive(ip);
1911 if (error)
1912 return;
1915 ASSERT(!ip->i_afp);
1916 ASSERT(ip->i_d.di_anextents == 0);
1917 ASSERT(ip->i_d.di_forkoff == 0);
1920 * Free the inode.
1922 error = xfs_inactive_ifree(ip);
1923 if (error)
1924 return;
1927 * Release the dquots held by inode, if any.
1929 xfs_qm_dqdetach(ip);
1933 * This is called when the inode's link count goes to 0 or we are creating a
1934 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1935 * set to true as the link count is dropped to zero by the VFS after we've
1936 * created the file successfully, so we have to add it to the unlinked list
1937 * while the link count is non-zero.
1939 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1940 * list when the inode is freed.
1942 STATIC int
1943 xfs_iunlink(
1944 struct xfs_trans *tp,
1945 struct xfs_inode *ip)
1947 xfs_mount_t *mp = tp->t_mountp;
1948 xfs_agi_t *agi;
1949 xfs_dinode_t *dip;
1950 xfs_buf_t *agibp;
1951 xfs_buf_t *ibp;
1952 xfs_agino_t agino;
1953 short bucket_index;
1954 int offset;
1955 int error;
1957 ASSERT(VFS_I(ip)->i_mode != 0);
1960 * Get the agi buffer first. It ensures lock ordering
1961 * on the list.
1963 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1964 if (error)
1965 return error;
1966 agi = XFS_BUF_TO_AGI(agibp);
1969 * Get the index into the agi hash table for the
1970 * list this inode will go on.
1972 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1973 ASSERT(agino != 0);
1974 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1975 ASSERT(agi->agi_unlinked[bucket_index]);
1976 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1978 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1980 * There is already another inode in the bucket we need
1981 * to add ourselves to. Add us at the front of the list.
1982 * Here we put the head pointer into our next pointer,
1983 * and then we fall through to point the head at us.
1985 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1986 0, 0);
1987 if (error)
1988 return error;
1990 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1991 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1992 offset = ip->i_imap.im_boffset +
1993 offsetof(xfs_dinode_t, di_next_unlinked);
1995 /* need to recalc the inode CRC if appropriate */
1996 xfs_dinode_calc_crc(mp, dip);
1998 xfs_trans_inode_buf(tp, ibp);
1999 xfs_trans_log_buf(tp, ibp, offset,
2000 (offset + sizeof(xfs_agino_t) - 1));
2001 xfs_inobp_check(mp, ibp);
2005 * Point the bucket head pointer at the inode being inserted.
2007 ASSERT(agino != 0);
2008 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2009 offset = offsetof(xfs_agi_t, agi_unlinked) +
2010 (sizeof(xfs_agino_t) * bucket_index);
2011 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2012 xfs_trans_log_buf(tp, agibp, offset,
2013 (offset + sizeof(xfs_agino_t) - 1));
2014 return 0;
2018 * Pull the on-disk inode from the AGI unlinked list.
2020 STATIC int
2021 xfs_iunlink_remove(
2022 xfs_trans_t *tp,
2023 xfs_inode_t *ip)
2025 xfs_ino_t next_ino;
2026 xfs_mount_t *mp;
2027 xfs_agi_t *agi;
2028 xfs_dinode_t *dip;
2029 xfs_buf_t *agibp;
2030 xfs_buf_t *ibp;
2031 xfs_agnumber_t agno;
2032 xfs_agino_t agino;
2033 xfs_agino_t next_agino;
2034 xfs_buf_t *last_ibp;
2035 xfs_dinode_t *last_dip = NULL;
2036 short bucket_index;
2037 int offset, last_offset = 0;
2038 int error;
2040 mp = tp->t_mountp;
2041 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2044 * Get the agi buffer first. It ensures lock ordering
2045 * on the list.
2047 error = xfs_read_agi(mp, tp, agno, &agibp);
2048 if (error)
2049 return error;
2051 agi = XFS_BUF_TO_AGI(agibp);
2054 * Get the index into the agi hash table for the
2055 * list this inode will go on.
2057 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2058 ASSERT(agino != 0);
2059 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2060 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2061 ASSERT(agi->agi_unlinked[bucket_index]);
2063 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2065 * We're at the head of the list. Get the inode's on-disk
2066 * buffer to see if there is anyone after us on the list.
2067 * Only modify our next pointer if it is not already NULLAGINO.
2068 * This saves us the overhead of dealing with the buffer when
2069 * there is no need to change it.
2071 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2072 0, 0);
2073 if (error) {
2074 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2075 __func__, error);
2076 return error;
2078 next_agino = be32_to_cpu(dip->di_next_unlinked);
2079 ASSERT(next_agino != 0);
2080 if (next_agino != NULLAGINO) {
2081 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2082 offset = ip->i_imap.im_boffset +
2083 offsetof(xfs_dinode_t, di_next_unlinked);
2085 /* need to recalc the inode CRC if appropriate */
2086 xfs_dinode_calc_crc(mp, dip);
2088 xfs_trans_inode_buf(tp, ibp);
2089 xfs_trans_log_buf(tp, ibp, offset,
2090 (offset + sizeof(xfs_agino_t) - 1));
2091 xfs_inobp_check(mp, ibp);
2092 } else {
2093 xfs_trans_brelse(tp, ibp);
2096 * Point the bucket head pointer at the next inode.
2098 ASSERT(next_agino != 0);
2099 ASSERT(next_agino != agino);
2100 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2101 offset = offsetof(xfs_agi_t, agi_unlinked) +
2102 (sizeof(xfs_agino_t) * bucket_index);
2103 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2104 xfs_trans_log_buf(tp, agibp, offset,
2105 (offset + sizeof(xfs_agino_t) - 1));
2106 } else {
2108 * We need to search the list for the inode being freed.
2110 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2111 last_ibp = NULL;
2112 while (next_agino != agino) {
2113 struct xfs_imap imap;
2115 if (last_ibp)
2116 xfs_trans_brelse(tp, last_ibp);
2118 imap.im_blkno = 0;
2119 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2121 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2122 if (error) {
2123 xfs_warn(mp,
2124 "%s: xfs_imap returned error %d.",
2125 __func__, error);
2126 return error;
2129 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2130 &last_ibp, 0, 0);
2131 if (error) {
2132 xfs_warn(mp,
2133 "%s: xfs_imap_to_bp returned error %d.",
2134 __func__, error);
2135 return error;
2138 last_offset = imap.im_boffset;
2139 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2140 ASSERT(next_agino != NULLAGINO);
2141 ASSERT(next_agino != 0);
2145 * Now last_ibp points to the buffer previous to us on the
2146 * unlinked list. Pull us from the list.
2148 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2149 0, 0);
2150 if (error) {
2151 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2152 __func__, error);
2153 return error;
2155 next_agino = be32_to_cpu(dip->di_next_unlinked);
2156 ASSERT(next_agino != 0);
2157 ASSERT(next_agino != agino);
2158 if (next_agino != NULLAGINO) {
2159 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2160 offset = ip->i_imap.im_boffset +
2161 offsetof(xfs_dinode_t, di_next_unlinked);
2163 /* need to recalc the inode CRC if appropriate */
2164 xfs_dinode_calc_crc(mp, dip);
2166 xfs_trans_inode_buf(tp, ibp);
2167 xfs_trans_log_buf(tp, ibp, offset,
2168 (offset + sizeof(xfs_agino_t) - 1));
2169 xfs_inobp_check(mp, ibp);
2170 } else {
2171 xfs_trans_brelse(tp, ibp);
2174 * Point the previous inode on the list to the next inode.
2176 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2177 ASSERT(next_agino != 0);
2178 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2180 /* need to recalc the inode CRC if appropriate */
2181 xfs_dinode_calc_crc(mp, last_dip);
2183 xfs_trans_inode_buf(tp, last_ibp);
2184 xfs_trans_log_buf(tp, last_ibp, offset,
2185 (offset + sizeof(xfs_agino_t) - 1));
2186 xfs_inobp_check(mp, last_ibp);
2188 return 0;
2192 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2193 * inodes that are in memory - they all must be marked stale and attached to
2194 * the cluster buffer.
2196 STATIC int
2197 xfs_ifree_cluster(
2198 xfs_inode_t *free_ip,
2199 xfs_trans_t *tp,
2200 struct xfs_icluster *xic)
2202 xfs_mount_t *mp = free_ip->i_mount;
2203 int blks_per_cluster;
2204 int inodes_per_cluster;
2205 int nbufs;
2206 int i, j;
2207 int ioffset;
2208 xfs_daddr_t blkno;
2209 xfs_buf_t *bp;
2210 xfs_inode_t *ip;
2211 xfs_inode_log_item_t *iip;
2212 xfs_log_item_t *lip;
2213 struct xfs_perag *pag;
2214 xfs_ino_t inum;
2216 inum = xic->first_ino;
2217 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2218 blks_per_cluster = xfs_icluster_size_fsb(mp);
2219 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2220 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2222 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2224 * The allocation bitmap tells us which inodes of the chunk were
2225 * physically allocated. Skip the cluster if an inode falls into
2226 * a sparse region.
2228 ioffset = inum - xic->first_ino;
2229 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2230 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2231 continue;
2234 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2235 XFS_INO_TO_AGBNO(mp, inum));
2238 * We obtain and lock the backing buffer first in the process
2239 * here, as we have to ensure that any dirty inode that we
2240 * can't get the flush lock on is attached to the buffer.
2241 * If we scan the in-memory inodes first, then buffer IO can
2242 * complete before we get a lock on it, and hence we may fail
2243 * to mark all the active inodes on the buffer stale.
2245 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2246 mp->m_bsize * blks_per_cluster,
2247 XBF_UNMAPPED);
2249 if (!bp)
2250 return -ENOMEM;
2253 * This buffer may not have been correctly initialised as we
2254 * didn't read it from disk. That's not important because we are
2255 * only using to mark the buffer as stale in the log, and to
2256 * attach stale cached inodes on it. That means it will never be
2257 * dispatched for IO. If it is, we want to know about it, and we
2258 * want it to fail. We can acheive this by adding a write
2259 * verifier to the buffer.
2261 bp->b_ops = &xfs_inode_buf_ops;
2264 * Walk the inodes already attached to the buffer and mark them
2265 * stale. These will all have the flush locks held, so an
2266 * in-memory inode walk can't lock them. By marking them all
2267 * stale first, we will not attempt to lock them in the loop
2268 * below as the XFS_ISTALE flag will be set.
2270 lip = bp->b_fspriv;
2271 while (lip) {
2272 if (lip->li_type == XFS_LI_INODE) {
2273 iip = (xfs_inode_log_item_t *)lip;
2274 ASSERT(iip->ili_logged == 1);
2275 lip->li_cb = xfs_istale_done;
2276 xfs_trans_ail_copy_lsn(mp->m_ail,
2277 &iip->ili_flush_lsn,
2278 &iip->ili_item.li_lsn);
2279 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2281 lip = lip->li_bio_list;
2286 * For each inode in memory attempt to add it to the inode
2287 * buffer and set it up for being staled on buffer IO
2288 * completion. This is safe as we've locked out tail pushing
2289 * and flushing by locking the buffer.
2291 * We have already marked every inode that was part of a
2292 * transaction stale above, which means there is no point in
2293 * even trying to lock them.
2295 for (i = 0; i < inodes_per_cluster; i++) {
2296 retry:
2297 rcu_read_lock();
2298 ip = radix_tree_lookup(&pag->pag_ici_root,
2299 XFS_INO_TO_AGINO(mp, (inum + i)));
2301 /* Inode not in memory, nothing to do */
2302 if (!ip) {
2303 rcu_read_unlock();
2304 continue;
2308 * because this is an RCU protected lookup, we could
2309 * find a recently freed or even reallocated inode
2310 * during the lookup. We need to check under the
2311 * i_flags_lock for a valid inode here. Skip it if it
2312 * is not valid, the wrong inode or stale.
2314 spin_lock(&ip->i_flags_lock);
2315 if (ip->i_ino != inum + i ||
2316 __xfs_iflags_test(ip, XFS_ISTALE)) {
2317 spin_unlock(&ip->i_flags_lock);
2318 rcu_read_unlock();
2319 continue;
2321 spin_unlock(&ip->i_flags_lock);
2324 * Don't try to lock/unlock the current inode, but we
2325 * _cannot_ skip the other inodes that we did not find
2326 * in the list attached to the buffer and are not
2327 * already marked stale. If we can't lock it, back off
2328 * and retry.
2330 if (ip != free_ip &&
2331 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2332 rcu_read_unlock();
2333 delay(1);
2334 goto retry;
2336 rcu_read_unlock();
2338 xfs_iflock(ip);
2339 xfs_iflags_set(ip, XFS_ISTALE);
2342 * we don't need to attach clean inodes or those only
2343 * with unlogged changes (which we throw away, anyway).
2345 iip = ip->i_itemp;
2346 if (!iip || xfs_inode_clean(ip)) {
2347 ASSERT(ip != free_ip);
2348 xfs_ifunlock(ip);
2349 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2350 continue;
2353 iip->ili_last_fields = iip->ili_fields;
2354 iip->ili_fields = 0;
2355 iip->ili_fsync_fields = 0;
2356 iip->ili_logged = 1;
2357 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2358 &iip->ili_item.li_lsn);
2360 xfs_buf_attach_iodone(bp, xfs_istale_done,
2361 &iip->ili_item);
2363 if (ip != free_ip)
2364 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2367 xfs_trans_stale_inode_buf(tp, bp);
2368 xfs_trans_binval(tp, bp);
2371 xfs_perag_put(pag);
2372 return 0;
2376 * This is called to return an inode to the inode free list.
2377 * The inode should already be truncated to 0 length and have
2378 * no pages associated with it. This routine also assumes that
2379 * the inode is already a part of the transaction.
2381 * The on-disk copy of the inode will have been added to the list
2382 * of unlinked inodes in the AGI. We need to remove the inode from
2383 * that list atomically with respect to freeing it here.
2386 xfs_ifree(
2387 xfs_trans_t *tp,
2388 xfs_inode_t *ip,
2389 xfs_bmap_free_t *flist)
2391 int error;
2392 struct xfs_icluster xic = { 0 };
2394 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2395 ASSERT(VFS_I(ip)->i_nlink == 0);
2396 ASSERT(ip->i_d.di_nextents == 0);
2397 ASSERT(ip->i_d.di_anextents == 0);
2398 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2399 ASSERT(ip->i_d.di_nblocks == 0);
2402 * Pull the on-disk inode from the AGI unlinked list.
2404 error = xfs_iunlink_remove(tp, ip);
2405 if (error)
2406 return error;
2408 error = xfs_difree(tp, ip->i_ino, flist, &xic);
2409 if (error)
2410 return error;
2412 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2413 ip->i_d.di_flags = 0;
2414 ip->i_d.di_dmevmask = 0;
2415 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2416 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2417 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2419 * Bump the generation count so no one will be confused
2420 * by reincarnations of this inode.
2422 VFS_I(ip)->i_generation++;
2423 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2425 if (xic.deleted)
2426 error = xfs_ifree_cluster(ip, tp, &xic);
2428 return error;
2432 * This is called to unpin an inode. The caller must have the inode locked
2433 * in at least shared mode so that the buffer cannot be subsequently pinned
2434 * once someone is waiting for it to be unpinned.
2436 static void
2437 xfs_iunpin(
2438 struct xfs_inode *ip)
2440 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2442 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2444 /* Give the log a push to start the unpinning I/O */
2445 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2449 static void
2450 __xfs_iunpin_wait(
2451 struct xfs_inode *ip)
2453 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2454 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2456 xfs_iunpin(ip);
2458 do {
2459 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2460 if (xfs_ipincount(ip))
2461 io_schedule();
2462 } while (xfs_ipincount(ip));
2463 finish_wait(wq, &wait.wait);
2466 void
2467 xfs_iunpin_wait(
2468 struct xfs_inode *ip)
2470 if (xfs_ipincount(ip))
2471 __xfs_iunpin_wait(ip);
2475 * Removing an inode from the namespace involves removing the directory entry
2476 * and dropping the link count on the inode. Removing the directory entry can
2477 * result in locking an AGF (directory blocks were freed) and removing a link
2478 * count can result in placing the inode on an unlinked list which results in
2479 * locking an AGI.
2481 * The big problem here is that we have an ordering constraint on AGF and AGI
2482 * locking - inode allocation locks the AGI, then can allocate a new extent for
2483 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2484 * removes the inode from the unlinked list, requiring that we lock the AGI
2485 * first, and then freeing the inode can result in an inode chunk being freed
2486 * and hence freeing disk space requiring that we lock an AGF.
2488 * Hence the ordering that is imposed by other parts of the code is AGI before
2489 * AGF. This means we cannot remove the directory entry before we drop the inode
2490 * reference count and put it on the unlinked list as this results in a lock
2491 * order of AGF then AGI, and this can deadlock against inode allocation and
2492 * freeing. Therefore we must drop the link counts before we remove the
2493 * directory entry.
2495 * This is still safe from a transactional point of view - it is not until we
2496 * get to xfs_bmap_finish() that we have the possibility of multiple
2497 * transactions in this operation. Hence as long as we remove the directory
2498 * entry and drop the link count in the first transaction of the remove
2499 * operation, there are no transactional constraints on the ordering here.
2502 xfs_remove(
2503 xfs_inode_t *dp,
2504 struct xfs_name *name,
2505 xfs_inode_t *ip)
2507 xfs_mount_t *mp = dp->i_mount;
2508 xfs_trans_t *tp = NULL;
2509 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2510 int error = 0;
2511 xfs_bmap_free_t free_list;
2512 xfs_fsblock_t first_block;
2513 uint resblks;
2515 trace_xfs_remove(dp, name);
2517 if (XFS_FORCED_SHUTDOWN(mp))
2518 return -EIO;
2520 error = xfs_qm_dqattach(dp, 0);
2521 if (error)
2522 goto std_return;
2524 error = xfs_qm_dqattach(ip, 0);
2525 if (error)
2526 goto std_return;
2528 if (is_dir)
2529 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2530 else
2531 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2534 * We try to get the real space reservation first,
2535 * allowing for directory btree deletion(s) implying
2536 * possible bmap insert(s). If we can't get the space
2537 * reservation then we use 0 instead, and avoid the bmap
2538 * btree insert(s) in the directory code by, if the bmap
2539 * insert tries to happen, instead trimming the LAST
2540 * block from the directory.
2542 resblks = XFS_REMOVE_SPACE_RES(mp);
2543 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2544 if (error == -ENOSPC) {
2545 resblks = 0;
2546 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2548 if (error) {
2549 ASSERT(error != -ENOSPC);
2550 goto out_trans_cancel;
2553 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2554 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2556 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2557 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2560 * If we're removing a directory perform some additional validation.
2562 if (is_dir) {
2563 ASSERT(VFS_I(ip)->i_nlink >= 2);
2564 if (VFS_I(ip)->i_nlink != 2) {
2565 error = -ENOTEMPTY;
2566 goto out_trans_cancel;
2568 if (!xfs_dir_isempty(ip)) {
2569 error = -ENOTEMPTY;
2570 goto out_trans_cancel;
2573 /* Drop the link from ip's "..". */
2574 error = xfs_droplink(tp, dp);
2575 if (error)
2576 goto out_trans_cancel;
2578 /* Drop the "." link from ip to self. */
2579 error = xfs_droplink(tp, ip);
2580 if (error)
2581 goto out_trans_cancel;
2582 } else {
2584 * When removing a non-directory we need to log the parent
2585 * inode here. For a directory this is done implicitly
2586 * by the xfs_droplink call for the ".." entry.
2588 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2590 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2592 /* Drop the link from dp to ip. */
2593 error = xfs_droplink(tp, ip);
2594 if (error)
2595 goto out_trans_cancel;
2597 xfs_bmap_init(&free_list, &first_block);
2598 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2599 &first_block, &free_list, resblks);
2600 if (error) {
2601 ASSERT(error != -ENOENT);
2602 goto out_bmap_cancel;
2606 * If this is a synchronous mount, make sure that the
2607 * remove transaction goes to disk before returning to
2608 * the user.
2610 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2611 xfs_trans_set_sync(tp);
2613 error = xfs_bmap_finish(&tp, &free_list, NULL);
2614 if (error)
2615 goto out_bmap_cancel;
2617 error = xfs_trans_commit(tp);
2618 if (error)
2619 goto std_return;
2621 if (is_dir && xfs_inode_is_filestream(ip))
2622 xfs_filestream_deassociate(ip);
2624 return 0;
2626 out_bmap_cancel:
2627 xfs_bmap_cancel(&free_list);
2628 out_trans_cancel:
2629 xfs_trans_cancel(tp);
2630 std_return:
2631 return error;
2635 * Enter all inodes for a rename transaction into a sorted array.
2637 #define __XFS_SORT_INODES 5
2638 STATIC void
2639 xfs_sort_for_rename(
2640 struct xfs_inode *dp1, /* in: old (source) directory inode */
2641 struct xfs_inode *dp2, /* in: new (target) directory inode */
2642 struct xfs_inode *ip1, /* in: inode of old entry */
2643 struct xfs_inode *ip2, /* in: inode of new entry */
2644 struct xfs_inode *wip, /* in: whiteout inode */
2645 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2646 int *num_inodes) /* in/out: inodes in array */
2648 int i, j;
2650 ASSERT(*num_inodes == __XFS_SORT_INODES);
2651 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2654 * i_tab contains a list of pointers to inodes. We initialize
2655 * the table here & we'll sort it. We will then use it to
2656 * order the acquisition of the inode locks.
2658 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2660 i = 0;
2661 i_tab[i++] = dp1;
2662 i_tab[i++] = dp2;
2663 i_tab[i++] = ip1;
2664 if (ip2)
2665 i_tab[i++] = ip2;
2666 if (wip)
2667 i_tab[i++] = wip;
2668 *num_inodes = i;
2671 * Sort the elements via bubble sort. (Remember, there are at
2672 * most 5 elements to sort, so this is adequate.)
2674 for (i = 0; i < *num_inodes; i++) {
2675 for (j = 1; j < *num_inodes; j++) {
2676 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2677 struct xfs_inode *temp = i_tab[j];
2678 i_tab[j] = i_tab[j-1];
2679 i_tab[j-1] = temp;
2685 static int
2686 xfs_finish_rename(
2687 struct xfs_trans *tp,
2688 struct xfs_bmap_free *free_list)
2690 int error;
2693 * If this is a synchronous mount, make sure that the rename transaction
2694 * goes to disk before returning to the user.
2696 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2697 xfs_trans_set_sync(tp);
2699 error = xfs_bmap_finish(&tp, free_list, NULL);
2700 if (error) {
2701 xfs_bmap_cancel(free_list);
2702 xfs_trans_cancel(tp);
2703 return error;
2706 return xfs_trans_commit(tp);
2710 * xfs_cross_rename()
2712 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2714 STATIC int
2715 xfs_cross_rename(
2716 struct xfs_trans *tp,
2717 struct xfs_inode *dp1,
2718 struct xfs_name *name1,
2719 struct xfs_inode *ip1,
2720 struct xfs_inode *dp2,
2721 struct xfs_name *name2,
2722 struct xfs_inode *ip2,
2723 struct xfs_bmap_free *free_list,
2724 xfs_fsblock_t *first_block,
2725 int spaceres)
2727 int error = 0;
2728 int ip1_flags = 0;
2729 int ip2_flags = 0;
2730 int dp2_flags = 0;
2732 /* Swap inode number for dirent in first parent */
2733 error = xfs_dir_replace(tp, dp1, name1,
2734 ip2->i_ino,
2735 first_block, free_list, spaceres);
2736 if (error)
2737 goto out_trans_abort;
2739 /* Swap inode number for dirent in second parent */
2740 error = xfs_dir_replace(tp, dp2, name2,
2741 ip1->i_ino,
2742 first_block, free_list, spaceres);
2743 if (error)
2744 goto out_trans_abort;
2747 * If we're renaming one or more directories across different parents,
2748 * update the respective ".." entries (and link counts) to match the new
2749 * parents.
2751 if (dp1 != dp2) {
2752 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2754 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2755 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2756 dp1->i_ino, first_block,
2757 free_list, spaceres);
2758 if (error)
2759 goto out_trans_abort;
2761 /* transfer ip2 ".." reference to dp1 */
2762 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2763 error = xfs_droplink(tp, dp2);
2764 if (error)
2765 goto out_trans_abort;
2766 error = xfs_bumplink(tp, dp1);
2767 if (error)
2768 goto out_trans_abort;
2772 * Although ip1 isn't changed here, userspace needs
2773 * to be warned about the change, so that applications
2774 * relying on it (like backup ones), will properly
2775 * notify the change
2777 ip1_flags |= XFS_ICHGTIME_CHG;
2778 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2781 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2782 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2783 dp2->i_ino, first_block,
2784 free_list, spaceres);
2785 if (error)
2786 goto out_trans_abort;
2788 /* transfer ip1 ".." reference to dp2 */
2789 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2790 error = xfs_droplink(tp, dp1);
2791 if (error)
2792 goto out_trans_abort;
2793 error = xfs_bumplink(tp, dp2);
2794 if (error)
2795 goto out_trans_abort;
2799 * Although ip2 isn't changed here, userspace needs
2800 * to be warned about the change, so that applications
2801 * relying on it (like backup ones), will properly
2802 * notify the change
2804 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2805 ip2_flags |= XFS_ICHGTIME_CHG;
2809 if (ip1_flags) {
2810 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2811 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2813 if (ip2_flags) {
2814 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2815 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2817 if (dp2_flags) {
2818 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2819 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2821 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2822 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2823 return xfs_finish_rename(tp, free_list);
2825 out_trans_abort:
2826 xfs_bmap_cancel(free_list);
2827 xfs_trans_cancel(tp);
2828 return error;
2832 * xfs_rename_alloc_whiteout()
2834 * Return a referenced, unlinked, unlocked inode that that can be used as a
2835 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2836 * crash between allocating the inode and linking it into the rename transaction
2837 * recovery will free the inode and we won't leak it.
2839 static int
2840 xfs_rename_alloc_whiteout(
2841 struct xfs_inode *dp,
2842 struct xfs_inode **wip)
2844 struct xfs_inode *tmpfile;
2845 int error;
2847 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2848 if (error)
2849 return error;
2852 * Prepare the tmpfile inode as if it were created through the VFS.
2853 * Otherwise, the link increment paths will complain about nlink 0->1.
2854 * Drop the link count as done by d_tmpfile(), complete the inode setup
2855 * and flag it as linkable.
2857 drop_nlink(VFS_I(tmpfile));
2858 xfs_finish_inode_setup(tmpfile);
2859 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2861 *wip = tmpfile;
2862 return 0;
2866 * xfs_rename
2869 xfs_rename(
2870 struct xfs_inode *src_dp,
2871 struct xfs_name *src_name,
2872 struct xfs_inode *src_ip,
2873 struct xfs_inode *target_dp,
2874 struct xfs_name *target_name,
2875 struct xfs_inode *target_ip,
2876 unsigned int flags)
2878 struct xfs_mount *mp = src_dp->i_mount;
2879 struct xfs_trans *tp;
2880 struct xfs_bmap_free free_list;
2881 xfs_fsblock_t first_block;
2882 struct xfs_inode *wip = NULL; /* whiteout inode */
2883 struct xfs_inode *inodes[__XFS_SORT_INODES];
2884 int num_inodes = __XFS_SORT_INODES;
2885 bool new_parent = (src_dp != target_dp);
2886 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2887 int spaceres;
2888 int error;
2890 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2892 if ((flags & RENAME_EXCHANGE) && !target_ip)
2893 return -EINVAL;
2896 * If we are doing a whiteout operation, allocate the whiteout inode
2897 * we will be placing at the target and ensure the type is set
2898 * appropriately.
2900 if (flags & RENAME_WHITEOUT) {
2901 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2902 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2903 if (error)
2904 return error;
2906 /* setup target dirent info as whiteout */
2907 src_name->type = XFS_DIR3_FT_CHRDEV;
2910 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2911 inodes, &num_inodes);
2913 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2914 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2915 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2916 if (error == -ENOSPC) {
2917 spaceres = 0;
2918 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2920 if (error)
2921 goto out_trans_cancel;
2924 * Attach the dquots to the inodes
2926 error = xfs_qm_vop_rename_dqattach(inodes);
2927 if (error)
2928 goto out_trans_cancel;
2931 * Lock all the participating inodes. Depending upon whether
2932 * the target_name exists in the target directory, and
2933 * whether the target directory is the same as the source
2934 * directory, we can lock from 2 to 4 inodes.
2936 if (!new_parent)
2937 xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2938 else
2939 xfs_lock_two_inodes(src_dp, target_dp,
2940 XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2942 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2945 * Join all the inodes to the transaction. From this point on,
2946 * we can rely on either trans_commit or trans_cancel to unlock
2947 * them.
2949 xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2950 if (new_parent)
2951 xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2952 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2953 if (target_ip)
2954 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2955 if (wip)
2956 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2959 * If we are using project inheritance, we only allow renames
2960 * into our tree when the project IDs are the same; else the
2961 * tree quota mechanism would be circumvented.
2963 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2964 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2965 error = -EXDEV;
2966 goto out_trans_cancel;
2969 xfs_bmap_init(&free_list, &first_block);
2971 /* RENAME_EXCHANGE is unique from here on. */
2972 if (flags & RENAME_EXCHANGE)
2973 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2974 target_dp, target_name, target_ip,
2975 &free_list, &first_block, spaceres);
2978 * Set up the target.
2980 if (target_ip == NULL) {
2982 * If there's no space reservation, check the entry will
2983 * fit before actually inserting it.
2985 if (!spaceres) {
2986 error = xfs_dir_canenter(tp, target_dp, target_name);
2987 if (error)
2988 goto out_trans_cancel;
2991 * If target does not exist and the rename crosses
2992 * directories, adjust the target directory link count
2993 * to account for the ".." reference from the new entry.
2995 error = xfs_dir_createname(tp, target_dp, target_name,
2996 src_ip->i_ino, &first_block,
2997 &free_list, spaceres);
2998 if (error)
2999 goto out_bmap_cancel;
3001 xfs_trans_ichgtime(tp, target_dp,
3002 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3004 if (new_parent && src_is_directory) {
3005 error = xfs_bumplink(tp, target_dp);
3006 if (error)
3007 goto out_bmap_cancel;
3009 } else { /* target_ip != NULL */
3011 * If target exists and it's a directory, check that both
3012 * target and source are directories and that target can be
3013 * destroyed, or that neither is a directory.
3015 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3017 * Make sure target dir is empty.
3019 if (!(xfs_dir_isempty(target_ip)) ||
3020 (VFS_I(target_ip)->i_nlink > 2)) {
3021 error = -EEXIST;
3022 goto out_trans_cancel;
3027 * Link the source inode under the target name.
3028 * If the source inode is a directory and we are moving
3029 * it across directories, its ".." entry will be
3030 * inconsistent until we replace that down below.
3032 * In case there is already an entry with the same
3033 * name at the destination directory, remove it first.
3035 error = xfs_dir_replace(tp, target_dp, target_name,
3036 src_ip->i_ino,
3037 &first_block, &free_list, spaceres);
3038 if (error)
3039 goto out_bmap_cancel;
3041 xfs_trans_ichgtime(tp, target_dp,
3042 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3045 * Decrement the link count on the target since the target
3046 * dir no longer points to it.
3048 error = xfs_droplink(tp, target_ip);
3049 if (error)
3050 goto out_bmap_cancel;
3052 if (src_is_directory) {
3054 * Drop the link from the old "." entry.
3056 error = xfs_droplink(tp, target_ip);
3057 if (error)
3058 goto out_bmap_cancel;
3060 } /* target_ip != NULL */
3063 * Remove the source.
3065 if (new_parent && src_is_directory) {
3067 * Rewrite the ".." entry to point to the new
3068 * directory.
3070 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3071 target_dp->i_ino,
3072 &first_block, &free_list, spaceres);
3073 ASSERT(error != -EEXIST);
3074 if (error)
3075 goto out_bmap_cancel;
3079 * We always want to hit the ctime on the source inode.
3081 * This isn't strictly required by the standards since the source
3082 * inode isn't really being changed, but old unix file systems did
3083 * it and some incremental backup programs won't work without it.
3085 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3086 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3089 * Adjust the link count on src_dp. This is necessary when
3090 * renaming a directory, either within one parent when
3091 * the target existed, or across two parent directories.
3093 if (src_is_directory && (new_parent || target_ip != NULL)) {
3096 * Decrement link count on src_directory since the
3097 * entry that's moved no longer points to it.
3099 error = xfs_droplink(tp, src_dp);
3100 if (error)
3101 goto out_bmap_cancel;
3105 * For whiteouts, we only need to update the source dirent with the
3106 * inode number of the whiteout inode rather than removing it
3107 * altogether.
3109 if (wip) {
3110 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3111 &first_block, &free_list, spaceres);
3112 } else
3113 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3114 &first_block, &free_list, spaceres);
3115 if (error)
3116 goto out_bmap_cancel;
3119 * For whiteouts, we need to bump the link count on the whiteout inode.
3120 * This means that failures all the way up to this point leave the inode
3121 * on the unlinked list and so cleanup is a simple matter of dropping
3122 * the remaining reference to it. If we fail here after bumping the link
3123 * count, we're shutting down the filesystem so we'll never see the
3124 * intermediate state on disk.
3126 if (wip) {
3127 ASSERT(VFS_I(wip)->i_nlink == 0);
3128 error = xfs_bumplink(tp, wip);
3129 if (error)
3130 goto out_bmap_cancel;
3131 error = xfs_iunlink_remove(tp, wip);
3132 if (error)
3133 goto out_bmap_cancel;
3134 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3137 * Now we have a real link, clear the "I'm a tmpfile" state
3138 * flag from the inode so it doesn't accidentally get misused in
3139 * future.
3141 VFS_I(wip)->i_state &= ~I_LINKABLE;
3144 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3145 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3146 if (new_parent)
3147 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3149 error = xfs_finish_rename(tp, &free_list);
3150 if (wip)
3151 IRELE(wip);
3152 return error;
3154 out_bmap_cancel:
3155 xfs_bmap_cancel(&free_list);
3156 out_trans_cancel:
3157 xfs_trans_cancel(tp);
3158 if (wip)
3159 IRELE(wip);
3160 return error;
3163 STATIC int
3164 xfs_iflush_cluster(
3165 xfs_inode_t *ip,
3166 xfs_buf_t *bp)
3168 xfs_mount_t *mp = ip->i_mount;
3169 struct xfs_perag *pag;
3170 unsigned long first_index, mask;
3171 unsigned long inodes_per_cluster;
3172 int ilist_size;
3173 xfs_inode_t **ilist;
3174 xfs_inode_t *iq;
3175 int nr_found;
3176 int clcount = 0;
3177 int bufwasdelwri;
3178 int i;
3180 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3182 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3183 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3184 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3185 if (!ilist)
3186 goto out_put;
3188 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3189 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3190 rcu_read_lock();
3191 /* really need a gang lookup range call here */
3192 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3193 first_index, inodes_per_cluster);
3194 if (nr_found == 0)
3195 goto out_free;
3197 for (i = 0; i < nr_found; i++) {
3198 iq = ilist[i];
3199 if (iq == ip)
3200 continue;
3203 * because this is an RCU protected lookup, we could find a
3204 * recently freed or even reallocated inode during the lookup.
3205 * We need to check under the i_flags_lock for a valid inode
3206 * here. Skip it if it is not valid or the wrong inode.
3208 spin_lock(&ip->i_flags_lock);
3209 if (!ip->i_ino ||
3210 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3211 spin_unlock(&ip->i_flags_lock);
3212 continue;
3214 spin_unlock(&ip->i_flags_lock);
3217 * Do an un-protected check to see if the inode is dirty and
3218 * is a candidate for flushing. These checks will be repeated
3219 * later after the appropriate locks are acquired.
3221 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3222 continue;
3225 * Try to get locks. If any are unavailable or it is pinned,
3226 * then this inode cannot be flushed and is skipped.
3229 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3230 continue;
3231 if (!xfs_iflock_nowait(iq)) {
3232 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3233 continue;
3235 if (xfs_ipincount(iq)) {
3236 xfs_ifunlock(iq);
3237 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3238 continue;
3242 * arriving here means that this inode can be flushed. First
3243 * re-check that it's dirty before flushing.
3245 if (!xfs_inode_clean(iq)) {
3246 int error;
3247 error = xfs_iflush_int(iq, bp);
3248 if (error) {
3249 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3250 goto cluster_corrupt_out;
3252 clcount++;
3253 } else {
3254 xfs_ifunlock(iq);
3256 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3259 if (clcount) {
3260 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3261 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3264 out_free:
3265 rcu_read_unlock();
3266 kmem_free(ilist);
3267 out_put:
3268 xfs_perag_put(pag);
3269 return 0;
3272 cluster_corrupt_out:
3274 * Corruption detected in the clustering loop. Invalidate the
3275 * inode buffer and shut down the filesystem.
3277 rcu_read_unlock();
3279 * Clean up the buffer. If it was delwri, just release it --
3280 * brelse can handle it with no problems. If not, shut down the
3281 * filesystem before releasing the buffer.
3283 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3284 if (bufwasdelwri)
3285 xfs_buf_relse(bp);
3287 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3289 if (!bufwasdelwri) {
3291 * Just like incore_relse: if we have b_iodone functions,
3292 * mark the buffer as an error and call them. Otherwise
3293 * mark it as stale and brelse.
3295 if (bp->b_iodone) {
3296 bp->b_flags &= ~XBF_DONE;
3297 xfs_buf_stale(bp);
3298 xfs_buf_ioerror(bp, -EIO);
3299 xfs_buf_ioend(bp);
3300 } else {
3301 xfs_buf_stale(bp);
3302 xfs_buf_relse(bp);
3307 * Unlocks the flush lock
3309 xfs_iflush_abort(iq, false);
3310 kmem_free(ilist);
3311 xfs_perag_put(pag);
3312 return -EFSCORRUPTED;
3316 * Flush dirty inode metadata into the backing buffer.
3318 * The caller must have the inode lock and the inode flush lock held. The
3319 * inode lock will still be held upon return to the caller, and the inode
3320 * flush lock will be released after the inode has reached the disk.
3322 * The caller must write out the buffer returned in *bpp and release it.
3325 xfs_iflush(
3326 struct xfs_inode *ip,
3327 struct xfs_buf **bpp)
3329 struct xfs_mount *mp = ip->i_mount;
3330 struct xfs_buf *bp;
3331 struct xfs_dinode *dip;
3332 int error;
3334 XFS_STATS_INC(mp, xs_iflush_count);
3336 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3337 ASSERT(xfs_isiflocked(ip));
3338 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3339 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3341 *bpp = NULL;
3343 xfs_iunpin_wait(ip);
3346 * For stale inodes we cannot rely on the backing buffer remaining
3347 * stale in cache for the remaining life of the stale inode and so
3348 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3349 * inodes below. We have to check this after ensuring the inode is
3350 * unpinned so that it is safe to reclaim the stale inode after the
3351 * flush call.
3353 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3354 xfs_ifunlock(ip);
3355 return 0;
3359 * This may have been unpinned because the filesystem is shutting
3360 * down forcibly. If that's the case we must not write this inode
3361 * to disk, because the log record didn't make it to disk.
3363 * We also have to remove the log item from the AIL in this case,
3364 * as we wait for an empty AIL as part of the unmount process.
3366 if (XFS_FORCED_SHUTDOWN(mp)) {
3367 error = -EIO;
3368 goto abort_out;
3372 * Get the buffer containing the on-disk inode.
3374 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3376 if (error || !bp) {
3377 xfs_ifunlock(ip);
3378 return error;
3382 * First flush out the inode that xfs_iflush was called with.
3384 error = xfs_iflush_int(ip, bp);
3385 if (error)
3386 goto corrupt_out;
3389 * If the buffer is pinned then push on the log now so we won't
3390 * get stuck waiting in the write for too long.
3392 if (xfs_buf_ispinned(bp))
3393 xfs_log_force(mp, 0);
3396 * inode clustering:
3397 * see if other inodes can be gathered into this write
3399 error = xfs_iflush_cluster(ip, bp);
3400 if (error)
3401 goto cluster_corrupt_out;
3403 *bpp = bp;
3404 return 0;
3406 corrupt_out:
3407 xfs_buf_relse(bp);
3408 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3409 cluster_corrupt_out:
3410 error = -EFSCORRUPTED;
3411 abort_out:
3413 * Unlocks the flush lock
3415 xfs_iflush_abort(ip, false);
3416 return error;
3419 STATIC int
3420 xfs_iflush_int(
3421 struct xfs_inode *ip,
3422 struct xfs_buf *bp)
3424 struct xfs_inode_log_item *iip = ip->i_itemp;
3425 struct xfs_dinode *dip;
3426 struct xfs_mount *mp = ip->i_mount;
3428 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3429 ASSERT(xfs_isiflocked(ip));
3430 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3431 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3432 ASSERT(iip != NULL && iip->ili_fields != 0);
3433 ASSERT(ip->i_d.di_version > 1);
3435 /* set *dip = inode's place in the buffer */
3436 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3438 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3439 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3440 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3441 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3442 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3443 goto corrupt_out;
3445 if (S_ISREG(VFS_I(ip)->i_mode)) {
3446 if (XFS_TEST_ERROR(
3447 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3448 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3449 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3450 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3451 "%s: Bad regular inode %Lu, ptr 0x%p",
3452 __func__, ip->i_ino, ip);
3453 goto corrupt_out;
3455 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3456 if (XFS_TEST_ERROR(
3457 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3458 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3459 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3460 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3461 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3462 "%s: Bad directory inode %Lu, ptr 0x%p",
3463 __func__, ip->i_ino, ip);
3464 goto corrupt_out;
3467 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3468 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3469 XFS_RANDOM_IFLUSH_5)) {
3470 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3471 "%s: detected corrupt incore inode %Lu, "
3472 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3473 __func__, ip->i_ino,
3474 ip->i_d.di_nextents + ip->i_d.di_anextents,
3475 ip->i_d.di_nblocks, ip);
3476 goto corrupt_out;
3478 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3479 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3480 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3481 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3482 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3483 goto corrupt_out;
3487 * Inode item log recovery for v2 inodes are dependent on the
3488 * di_flushiter count for correct sequencing. We bump the flush
3489 * iteration count so we can detect flushes which postdate a log record
3490 * during recovery. This is redundant as we now log every change and
3491 * hence this can't happen but we need to still do it to ensure
3492 * backwards compatibility with old kernels that predate logging all
3493 * inode changes.
3495 if (ip->i_d.di_version < 3)
3496 ip->i_d.di_flushiter++;
3499 * Copy the dirty parts of the inode into the on-disk inode. We always
3500 * copy out the core of the inode, because if the inode is dirty at all
3501 * the core must be.
3503 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3505 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3506 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3507 ip->i_d.di_flushiter = 0;
3509 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3510 if (XFS_IFORK_Q(ip))
3511 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3512 xfs_inobp_check(mp, bp);
3515 * We've recorded everything logged in the inode, so we'd like to clear
3516 * the ili_fields bits so we don't log and flush things unnecessarily.
3517 * However, we can't stop logging all this information until the data
3518 * we've copied into the disk buffer is written to disk. If we did we
3519 * might overwrite the copy of the inode in the log with all the data
3520 * after re-logging only part of it, and in the face of a crash we
3521 * wouldn't have all the data we need to recover.
3523 * What we do is move the bits to the ili_last_fields field. When
3524 * logging the inode, these bits are moved back to the ili_fields field.
3525 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3526 * know that the information those bits represent is permanently on
3527 * disk. As long as the flush completes before the inode is logged
3528 * again, then both ili_fields and ili_last_fields will be cleared.
3530 * We can play with the ili_fields bits here, because the inode lock
3531 * must be held exclusively in order to set bits there and the flush
3532 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3533 * done routine can tell whether or not to look in the AIL. Also, store
3534 * the current LSN of the inode so that we can tell whether the item has
3535 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3536 * need the AIL lock, because it is a 64 bit value that cannot be read
3537 * atomically.
3539 iip->ili_last_fields = iip->ili_fields;
3540 iip->ili_fields = 0;
3541 iip->ili_fsync_fields = 0;
3542 iip->ili_logged = 1;
3544 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3545 &iip->ili_item.li_lsn);
3548 * Attach the function xfs_iflush_done to the inode's
3549 * buffer. This will remove the inode from the AIL
3550 * and unlock the inode's flush lock when the inode is
3551 * completely written to disk.
3553 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3555 /* generate the checksum. */
3556 xfs_dinode_calc_crc(mp, dip);
3558 ASSERT(bp->b_fspriv != NULL);
3559 ASSERT(bp->b_iodone != NULL);
3560 return 0;
3562 corrupt_out:
3563 return -EFSCORRUPTED;