Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / fs / xfs / xfs_inode_item.c
blobc48b5b18d771fab685e23c03613a1c6e762efcb4
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_error.h"
28 #include "xfs_trace.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_log.h"
33 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
35 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
37 return container_of(lip, struct xfs_inode_log_item, ili_item);
40 STATIC void
41 xfs_inode_item_data_fork_size(
42 struct xfs_inode_log_item *iip,
43 int *nvecs,
44 int *nbytes)
46 struct xfs_inode *ip = iip->ili_inode;
48 switch (ip->i_d.di_format) {
49 case XFS_DINODE_FMT_EXTENTS:
50 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
51 ip->i_d.di_nextents > 0 &&
52 ip->i_df.if_bytes > 0) {
53 /* worst case, doesn't subtract delalloc extents */
54 *nbytes += XFS_IFORK_DSIZE(ip);
55 *nvecs += 1;
57 break;
58 case XFS_DINODE_FMT_BTREE:
59 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
60 ip->i_df.if_broot_bytes > 0) {
61 *nbytes += ip->i_df.if_broot_bytes;
62 *nvecs += 1;
64 break;
65 case XFS_DINODE_FMT_LOCAL:
66 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
67 ip->i_df.if_bytes > 0) {
68 *nbytes += roundup(ip->i_df.if_bytes, 4);
69 *nvecs += 1;
71 break;
73 case XFS_DINODE_FMT_DEV:
74 case XFS_DINODE_FMT_UUID:
75 break;
76 default:
77 ASSERT(0);
78 break;
82 STATIC void
83 xfs_inode_item_attr_fork_size(
84 struct xfs_inode_log_item *iip,
85 int *nvecs,
86 int *nbytes)
88 struct xfs_inode *ip = iip->ili_inode;
90 switch (ip->i_d.di_aformat) {
91 case XFS_DINODE_FMT_EXTENTS:
92 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
93 ip->i_d.di_anextents > 0 &&
94 ip->i_afp->if_bytes > 0) {
95 /* worst case, doesn't subtract unused space */
96 *nbytes += XFS_IFORK_ASIZE(ip);
97 *nvecs += 1;
99 break;
100 case XFS_DINODE_FMT_BTREE:
101 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
102 ip->i_afp->if_broot_bytes > 0) {
103 *nbytes += ip->i_afp->if_broot_bytes;
104 *nvecs += 1;
106 break;
107 case XFS_DINODE_FMT_LOCAL:
108 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
109 ip->i_afp->if_bytes > 0) {
110 *nbytes += roundup(ip->i_afp->if_bytes, 4);
111 *nvecs += 1;
113 break;
114 default:
115 ASSERT(0);
116 break;
121 * This returns the number of iovecs needed to log the given inode item.
123 * We need one iovec for the inode log format structure, one for the
124 * inode core, and possibly one for the inode data/extents/b-tree root
125 * and one for the inode attribute data/extents/b-tree root.
127 STATIC void
128 xfs_inode_item_size(
129 struct xfs_log_item *lip,
130 int *nvecs,
131 int *nbytes)
133 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
134 struct xfs_inode *ip = iip->ili_inode;
136 *nvecs += 2;
137 *nbytes += sizeof(struct xfs_inode_log_format) +
138 xfs_log_dinode_size(ip->i_d.di_version);
140 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
141 if (XFS_IFORK_Q(ip))
142 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
145 STATIC void
146 xfs_inode_item_format_data_fork(
147 struct xfs_inode_log_item *iip,
148 struct xfs_inode_log_format *ilf,
149 struct xfs_log_vec *lv,
150 struct xfs_log_iovec **vecp)
152 struct xfs_inode *ip = iip->ili_inode;
153 size_t data_bytes;
155 switch (ip->i_d.di_format) {
156 case XFS_DINODE_FMT_EXTENTS:
157 iip->ili_fields &=
158 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
159 XFS_ILOG_DEV | XFS_ILOG_UUID);
161 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
162 ip->i_d.di_nextents > 0 &&
163 ip->i_df.if_bytes > 0) {
164 struct xfs_bmbt_rec *p;
166 ASSERT(ip->i_df.if_u1.if_extents != NULL);
167 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
169 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
170 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
171 xlog_finish_iovec(lv, *vecp, data_bytes);
173 ASSERT(data_bytes <= ip->i_df.if_bytes);
175 ilf->ilf_dsize = data_bytes;
176 ilf->ilf_size++;
177 } else {
178 iip->ili_fields &= ~XFS_ILOG_DEXT;
180 break;
181 case XFS_DINODE_FMT_BTREE:
182 iip->ili_fields &=
183 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
184 XFS_ILOG_DEV | XFS_ILOG_UUID);
186 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
187 ip->i_df.if_broot_bytes > 0) {
188 ASSERT(ip->i_df.if_broot != NULL);
189 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
190 ip->i_df.if_broot,
191 ip->i_df.if_broot_bytes);
192 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
193 ilf->ilf_size++;
194 } else {
195 ASSERT(!(iip->ili_fields &
196 XFS_ILOG_DBROOT));
197 iip->ili_fields &= ~XFS_ILOG_DBROOT;
199 break;
200 case XFS_DINODE_FMT_LOCAL:
201 iip->ili_fields &=
202 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
203 XFS_ILOG_DEV | XFS_ILOG_UUID);
204 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
205 ip->i_df.if_bytes > 0) {
207 * Round i_bytes up to a word boundary.
208 * The underlying memory is guaranteed to
209 * to be there by xfs_idata_realloc().
211 data_bytes = roundup(ip->i_df.if_bytes, 4);
212 ASSERT(ip->i_df.if_real_bytes == 0 ||
213 ip->i_df.if_real_bytes == data_bytes);
214 ASSERT(ip->i_df.if_u1.if_data != NULL);
215 ASSERT(ip->i_d.di_size > 0);
216 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
217 ip->i_df.if_u1.if_data, data_bytes);
218 ilf->ilf_dsize = (unsigned)data_bytes;
219 ilf->ilf_size++;
220 } else {
221 iip->ili_fields &= ~XFS_ILOG_DDATA;
223 break;
224 case XFS_DINODE_FMT_DEV:
225 iip->ili_fields &=
226 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
227 XFS_ILOG_DEXT | XFS_ILOG_UUID);
228 if (iip->ili_fields & XFS_ILOG_DEV)
229 ilf->ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev;
230 break;
231 case XFS_DINODE_FMT_UUID:
232 iip->ili_fields &=
233 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
234 XFS_ILOG_DEXT | XFS_ILOG_DEV);
235 if (iip->ili_fields & XFS_ILOG_UUID)
236 ilf->ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid;
237 break;
238 default:
239 ASSERT(0);
240 break;
244 STATIC void
245 xfs_inode_item_format_attr_fork(
246 struct xfs_inode_log_item *iip,
247 struct xfs_inode_log_format *ilf,
248 struct xfs_log_vec *lv,
249 struct xfs_log_iovec **vecp)
251 struct xfs_inode *ip = iip->ili_inode;
252 size_t data_bytes;
254 switch (ip->i_d.di_aformat) {
255 case XFS_DINODE_FMT_EXTENTS:
256 iip->ili_fields &=
257 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
259 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
260 ip->i_d.di_anextents > 0 &&
261 ip->i_afp->if_bytes > 0) {
262 struct xfs_bmbt_rec *p;
264 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
265 ip->i_d.di_anextents);
266 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
268 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
269 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
270 xlog_finish_iovec(lv, *vecp, data_bytes);
272 ilf->ilf_asize = data_bytes;
273 ilf->ilf_size++;
274 } else {
275 iip->ili_fields &= ~XFS_ILOG_AEXT;
277 break;
278 case XFS_DINODE_FMT_BTREE:
279 iip->ili_fields &=
280 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
282 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
283 ip->i_afp->if_broot_bytes > 0) {
284 ASSERT(ip->i_afp->if_broot != NULL);
286 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
287 ip->i_afp->if_broot,
288 ip->i_afp->if_broot_bytes);
289 ilf->ilf_asize = ip->i_afp->if_broot_bytes;
290 ilf->ilf_size++;
291 } else {
292 iip->ili_fields &= ~XFS_ILOG_ABROOT;
294 break;
295 case XFS_DINODE_FMT_LOCAL:
296 iip->ili_fields &=
297 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
299 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
300 ip->i_afp->if_bytes > 0) {
302 * Round i_bytes up to a word boundary.
303 * The underlying memory is guaranteed to
304 * to be there by xfs_idata_realloc().
306 data_bytes = roundup(ip->i_afp->if_bytes, 4);
307 ASSERT(ip->i_afp->if_real_bytes == 0 ||
308 ip->i_afp->if_real_bytes == data_bytes);
309 ASSERT(ip->i_afp->if_u1.if_data != NULL);
310 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
311 ip->i_afp->if_u1.if_data,
312 data_bytes);
313 ilf->ilf_asize = (unsigned)data_bytes;
314 ilf->ilf_size++;
315 } else {
316 iip->ili_fields &= ~XFS_ILOG_ADATA;
318 break;
319 default:
320 ASSERT(0);
321 break;
325 static void
326 xfs_inode_to_log_dinode(
327 struct xfs_inode *ip,
328 struct xfs_log_dinode *to,
329 xfs_lsn_t lsn)
331 struct xfs_icdinode *from = &ip->i_d;
332 struct inode *inode = VFS_I(ip);
334 to->di_magic = XFS_DINODE_MAGIC;
336 to->di_version = from->di_version;
337 to->di_format = from->di_format;
338 to->di_uid = from->di_uid;
339 to->di_gid = from->di_gid;
340 to->di_projid_lo = from->di_projid_lo;
341 to->di_projid_hi = from->di_projid_hi;
343 memset(to->di_pad, 0, sizeof(to->di_pad));
344 memset(to->di_pad3, 0, sizeof(to->di_pad3));
345 to->di_atime.t_sec = inode->i_atime.tv_sec;
346 to->di_atime.t_nsec = inode->i_atime.tv_nsec;
347 to->di_mtime.t_sec = inode->i_mtime.tv_sec;
348 to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
349 to->di_ctime.t_sec = inode->i_ctime.tv_sec;
350 to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
351 to->di_nlink = inode->i_nlink;
352 to->di_gen = inode->i_generation;
353 to->di_mode = inode->i_mode;
355 to->di_size = from->di_size;
356 to->di_nblocks = from->di_nblocks;
357 to->di_extsize = from->di_extsize;
358 to->di_nextents = from->di_nextents;
359 to->di_anextents = from->di_anextents;
360 to->di_forkoff = from->di_forkoff;
361 to->di_aformat = from->di_aformat;
362 to->di_dmevmask = from->di_dmevmask;
363 to->di_dmstate = from->di_dmstate;
364 to->di_flags = from->di_flags;
366 if (from->di_version == 3) {
367 to->di_changecount = inode->i_version;
368 to->di_crtime.t_sec = from->di_crtime.t_sec;
369 to->di_crtime.t_nsec = from->di_crtime.t_nsec;
370 to->di_flags2 = from->di_flags2;
372 to->di_ino = ip->i_ino;
373 to->di_lsn = lsn;
374 memset(to->di_pad2, 0, sizeof(to->di_pad2));
375 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
376 to->di_flushiter = 0;
377 } else {
378 to->di_flushiter = from->di_flushiter;
383 * Format the inode core. Current timestamp data is only in the VFS inode
384 * fields, so we need to grab them from there. Hence rather than just copying
385 * the XFS inode core structure, format the fields directly into the iovec.
387 static void
388 xfs_inode_item_format_core(
389 struct xfs_inode *ip,
390 struct xfs_log_vec *lv,
391 struct xfs_log_iovec **vecp)
393 struct xfs_log_dinode *dic;
395 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
396 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
397 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version));
401 * This is called to fill in the vector of log iovecs for the given inode
402 * log item. It fills the first item with an inode log format structure,
403 * the second with the on-disk inode structure, and a possible third and/or
404 * fourth with the inode data/extents/b-tree root and inode attributes
405 * data/extents/b-tree root.
407 STATIC void
408 xfs_inode_item_format(
409 struct xfs_log_item *lip,
410 struct xfs_log_vec *lv)
412 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
413 struct xfs_inode *ip = iip->ili_inode;
414 struct xfs_inode_log_format *ilf;
415 struct xfs_log_iovec *vecp = NULL;
417 ASSERT(ip->i_d.di_version > 1);
419 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
420 ilf->ilf_type = XFS_LI_INODE;
421 ilf->ilf_ino = ip->i_ino;
422 ilf->ilf_blkno = ip->i_imap.im_blkno;
423 ilf->ilf_len = ip->i_imap.im_len;
424 ilf->ilf_boffset = ip->i_imap.im_boffset;
425 ilf->ilf_fields = XFS_ILOG_CORE;
426 ilf->ilf_size = 2; /* format + core */
427 xlog_finish_iovec(lv, vecp, sizeof(struct xfs_inode_log_format));
429 xfs_inode_item_format_core(ip, lv, &vecp);
430 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
431 if (XFS_IFORK_Q(ip)) {
432 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
433 } else {
434 iip->ili_fields &=
435 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
438 /* update the format with the exact fields we actually logged */
439 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
443 * This is called to pin the inode associated with the inode log
444 * item in memory so it cannot be written out.
446 STATIC void
447 xfs_inode_item_pin(
448 struct xfs_log_item *lip)
450 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
452 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
454 trace_xfs_inode_pin(ip, _RET_IP_);
455 atomic_inc(&ip->i_pincount);
460 * This is called to unpin the inode associated with the inode log
461 * item which was previously pinned with a call to xfs_inode_item_pin().
463 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
465 STATIC void
466 xfs_inode_item_unpin(
467 struct xfs_log_item *lip,
468 int remove)
470 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
472 trace_xfs_inode_unpin(ip, _RET_IP_);
473 ASSERT(atomic_read(&ip->i_pincount) > 0);
474 if (atomic_dec_and_test(&ip->i_pincount))
475 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
478 STATIC uint
479 xfs_inode_item_push(
480 struct xfs_log_item *lip,
481 struct list_head *buffer_list)
483 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
484 struct xfs_inode *ip = iip->ili_inode;
485 struct xfs_buf *bp = NULL;
486 uint rval = XFS_ITEM_SUCCESS;
487 int error;
489 if (xfs_ipincount(ip) > 0)
490 return XFS_ITEM_PINNED;
492 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
493 return XFS_ITEM_LOCKED;
496 * Re-check the pincount now that we stabilized the value by
497 * taking the ilock.
499 if (xfs_ipincount(ip) > 0) {
500 rval = XFS_ITEM_PINNED;
501 goto out_unlock;
505 * Stale inode items should force out the iclog.
507 if (ip->i_flags & XFS_ISTALE) {
508 rval = XFS_ITEM_PINNED;
509 goto out_unlock;
513 * Someone else is already flushing the inode. Nothing we can do
514 * here but wait for the flush to finish and remove the item from
515 * the AIL.
517 if (!xfs_iflock_nowait(ip)) {
518 rval = XFS_ITEM_FLUSHING;
519 goto out_unlock;
522 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
523 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
525 spin_unlock(&lip->li_ailp->xa_lock);
527 error = xfs_iflush(ip, &bp);
528 if (!error) {
529 if (!xfs_buf_delwri_queue(bp, buffer_list))
530 rval = XFS_ITEM_FLUSHING;
531 xfs_buf_relse(bp);
534 spin_lock(&lip->li_ailp->xa_lock);
535 out_unlock:
536 xfs_iunlock(ip, XFS_ILOCK_SHARED);
537 return rval;
541 * Unlock the inode associated with the inode log item.
542 * Clear the fields of the inode and inode log item that
543 * are specific to the current transaction. If the
544 * hold flags is set, do not unlock the inode.
546 STATIC void
547 xfs_inode_item_unlock(
548 struct xfs_log_item *lip)
550 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
551 struct xfs_inode *ip = iip->ili_inode;
552 unsigned short lock_flags;
554 ASSERT(ip->i_itemp != NULL);
555 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
557 lock_flags = iip->ili_lock_flags;
558 iip->ili_lock_flags = 0;
559 if (lock_flags)
560 xfs_iunlock(ip, lock_flags);
564 * This is called to find out where the oldest active copy of the inode log
565 * item in the on disk log resides now that the last log write of it completed
566 * at the given lsn. Since we always re-log all dirty data in an inode, the
567 * latest copy in the on disk log is the only one that matters. Therefore,
568 * simply return the given lsn.
570 * If the inode has been marked stale because the cluster is being freed, we
571 * don't want to (re-)insert this inode into the AIL. There is a race condition
572 * where the cluster buffer may be unpinned before the inode is inserted into
573 * the AIL during transaction committed processing. If the buffer is unpinned
574 * before the inode item has been committed and inserted, then it is possible
575 * for the buffer to be written and IO completes before the inode is inserted
576 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
577 * AIL which will never get removed. It will, however, get reclaimed which
578 * triggers an assert in xfs_inode_free() complaining about freein an inode
579 * still in the AIL.
581 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
582 * transaction committed code knows that it does not need to do any further
583 * processing on the item.
585 STATIC xfs_lsn_t
586 xfs_inode_item_committed(
587 struct xfs_log_item *lip,
588 xfs_lsn_t lsn)
590 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
591 struct xfs_inode *ip = iip->ili_inode;
593 if (xfs_iflags_test(ip, XFS_ISTALE)) {
594 xfs_inode_item_unpin(lip, 0);
595 return -1;
597 return lsn;
601 * XXX rcc - this one really has to do something. Probably needs
602 * to stamp in a new field in the incore inode.
604 STATIC void
605 xfs_inode_item_committing(
606 struct xfs_log_item *lip,
607 xfs_lsn_t lsn)
609 INODE_ITEM(lip)->ili_last_lsn = lsn;
613 * This is the ops vector shared by all buf log items.
615 static const struct xfs_item_ops xfs_inode_item_ops = {
616 .iop_size = xfs_inode_item_size,
617 .iop_format = xfs_inode_item_format,
618 .iop_pin = xfs_inode_item_pin,
619 .iop_unpin = xfs_inode_item_unpin,
620 .iop_unlock = xfs_inode_item_unlock,
621 .iop_committed = xfs_inode_item_committed,
622 .iop_push = xfs_inode_item_push,
623 .iop_committing = xfs_inode_item_committing
628 * Initialize the inode log item for a newly allocated (in-core) inode.
630 void
631 xfs_inode_item_init(
632 struct xfs_inode *ip,
633 struct xfs_mount *mp)
635 struct xfs_inode_log_item *iip;
637 ASSERT(ip->i_itemp == NULL);
638 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
640 iip->ili_inode = ip;
641 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
642 &xfs_inode_item_ops);
646 * Free the inode log item and any memory hanging off of it.
648 void
649 xfs_inode_item_destroy(
650 xfs_inode_t *ip)
652 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
657 * This is the inode flushing I/O completion routine. It is called
658 * from interrupt level when the buffer containing the inode is
659 * flushed to disk. It is responsible for removing the inode item
660 * from the AIL if it has not been re-logged, and unlocking the inode's
661 * flush lock.
663 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
664 * list for other inodes that will run this function. We remove them from the
665 * buffer list so we can process all the inode IO completions in one AIL lock
666 * traversal.
668 void
669 xfs_iflush_done(
670 struct xfs_buf *bp,
671 struct xfs_log_item *lip)
673 struct xfs_inode_log_item *iip;
674 struct xfs_log_item *blip;
675 struct xfs_log_item *next;
676 struct xfs_log_item *prev;
677 struct xfs_ail *ailp = lip->li_ailp;
678 int need_ail = 0;
681 * Scan the buffer IO completions for other inodes being completed and
682 * attach them to the current inode log item.
684 blip = bp->b_fspriv;
685 prev = NULL;
686 while (blip != NULL) {
687 if (blip->li_cb != xfs_iflush_done) {
688 prev = blip;
689 blip = blip->li_bio_list;
690 continue;
693 /* remove from list */
694 next = blip->li_bio_list;
695 if (!prev) {
696 bp->b_fspriv = next;
697 } else {
698 prev->li_bio_list = next;
701 /* add to current list */
702 blip->li_bio_list = lip->li_bio_list;
703 lip->li_bio_list = blip;
706 * while we have the item, do the unlocked check for needing
707 * the AIL lock.
709 iip = INODE_ITEM(blip);
710 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
711 need_ail++;
713 blip = next;
716 /* make sure we capture the state of the initial inode. */
717 iip = INODE_ITEM(lip);
718 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
719 need_ail++;
722 * We only want to pull the item from the AIL if it is
723 * actually there and its location in the log has not
724 * changed since we started the flush. Thus, we only bother
725 * if the ili_logged flag is set and the inode's lsn has not
726 * changed. First we check the lsn outside
727 * the lock since it's cheaper, and then we recheck while
728 * holding the lock before removing the inode from the AIL.
730 if (need_ail) {
731 struct xfs_log_item *log_items[need_ail];
732 int i = 0;
733 spin_lock(&ailp->xa_lock);
734 for (blip = lip; blip; blip = blip->li_bio_list) {
735 iip = INODE_ITEM(blip);
736 if (iip->ili_logged &&
737 blip->li_lsn == iip->ili_flush_lsn) {
738 log_items[i++] = blip;
740 ASSERT(i <= need_ail);
742 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
743 xfs_trans_ail_delete_bulk(ailp, log_items, i,
744 SHUTDOWN_CORRUPT_INCORE);
749 * clean up and unlock the flush lock now we are done. We can clear the
750 * ili_last_fields bits now that we know that the data corresponding to
751 * them is safely on disk.
753 for (blip = lip; blip; blip = next) {
754 next = blip->li_bio_list;
755 blip->li_bio_list = NULL;
757 iip = INODE_ITEM(blip);
758 iip->ili_logged = 0;
759 iip->ili_last_fields = 0;
760 xfs_ifunlock(iip->ili_inode);
765 * This is the inode flushing abort routine. It is called from xfs_iflush when
766 * the filesystem is shutting down to clean up the inode state. It is
767 * responsible for removing the inode item from the AIL if it has not been
768 * re-logged, and unlocking the inode's flush lock.
770 void
771 xfs_iflush_abort(
772 xfs_inode_t *ip,
773 bool stale)
775 xfs_inode_log_item_t *iip = ip->i_itemp;
777 if (iip) {
778 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
779 xfs_trans_ail_remove(&iip->ili_item,
780 stale ? SHUTDOWN_LOG_IO_ERROR :
781 SHUTDOWN_CORRUPT_INCORE);
783 iip->ili_logged = 0;
785 * Clear the ili_last_fields bits now that we know that the
786 * data corresponding to them is safely on disk.
788 iip->ili_last_fields = 0;
790 * Clear the inode logging fields so no more flushes are
791 * attempted.
793 iip->ili_fields = 0;
794 iip->ili_fsync_fields = 0;
797 * Release the inode's flush lock since we're done with it.
799 xfs_ifunlock(ip);
802 void
803 xfs_istale_done(
804 struct xfs_buf *bp,
805 struct xfs_log_item *lip)
807 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
811 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
812 * (which can have different field alignments) to the native version
815 xfs_inode_item_format_convert(
816 xfs_log_iovec_t *buf,
817 xfs_inode_log_format_t *in_f)
819 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
820 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
822 in_f->ilf_type = in_f32->ilf_type;
823 in_f->ilf_size = in_f32->ilf_size;
824 in_f->ilf_fields = in_f32->ilf_fields;
825 in_f->ilf_asize = in_f32->ilf_asize;
826 in_f->ilf_dsize = in_f32->ilf_dsize;
827 in_f->ilf_ino = in_f32->ilf_ino;
828 /* copy biggest field of ilf_u */
829 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
830 in_f32->ilf_u.ilfu_uuid.__u_bits,
831 sizeof(uuid_t));
832 in_f->ilf_blkno = in_f32->ilf_blkno;
833 in_f->ilf_len = in_f32->ilf_len;
834 in_f->ilf_boffset = in_f32->ilf_boffset;
835 return 0;
836 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
837 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
839 in_f->ilf_type = in_f64->ilf_type;
840 in_f->ilf_size = in_f64->ilf_size;
841 in_f->ilf_fields = in_f64->ilf_fields;
842 in_f->ilf_asize = in_f64->ilf_asize;
843 in_f->ilf_dsize = in_f64->ilf_dsize;
844 in_f->ilf_ino = in_f64->ilf_ino;
845 /* copy biggest field of ilf_u */
846 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
847 in_f64->ilf_u.ilfu_uuid.__u_bits,
848 sizeof(uuid_t));
849 in_f->ilf_blkno = in_f64->ilf_blkno;
850 in_f->ilf_len = in_f64->ilf_len;
851 in_f->ilf_boffset = in_f64->ilf_boffset;
852 return 0;
854 return -EFSCORRUPTED;