Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / include / crypto / hash.h
blob1969f1416658babc28dd6d2a75363b93da36ac63
1 /*
2 * Hash: Hash algorithms under the crypto API
3 *
4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
13 #ifndef _CRYPTO_HASH_H
14 #define _CRYPTO_HASH_H
16 #include <linux/crypto.h>
17 #include <linux/string.h>
19 struct crypto_ahash;
21 /**
22 * DOC: Message Digest Algorithm Definitions
24 * These data structures define modular message digest algorithm
25 * implementations, managed via crypto_register_ahash(),
26 * crypto_register_shash(), crypto_unregister_ahash() and
27 * crypto_unregister_shash().
30 /**
31 * struct hash_alg_common - define properties of message digest
32 * @digestsize: Size of the result of the transformation. A buffer of this size
33 * must be available to the @final and @finup calls, so they can
34 * store the resulting hash into it. For various predefined sizes,
35 * search include/crypto/ using
36 * git grep _DIGEST_SIZE include/crypto.
37 * @statesize: Size of the block for partial state of the transformation. A
38 * buffer of this size must be passed to the @export function as it
39 * will save the partial state of the transformation into it. On the
40 * other side, the @import function will load the state from a
41 * buffer of this size as well.
42 * @base: Start of data structure of cipher algorithm. The common data
43 * structure of crypto_alg contains information common to all ciphers.
44 * The hash_alg_common data structure now adds the hash-specific
45 * information.
47 struct hash_alg_common {
48 unsigned int digestsize;
49 unsigned int statesize;
51 struct crypto_alg base;
54 struct ahash_request {
55 struct crypto_async_request base;
57 unsigned int nbytes;
58 struct scatterlist *src;
59 u8 *result;
61 /* This field may only be used by the ahash API code. */
62 void *priv;
64 void *__ctx[] CRYPTO_MINALIGN_ATTR;
67 #define AHASH_REQUEST_ON_STACK(name, ahash) \
68 char __##name##_desc[sizeof(struct ahash_request) + \
69 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
70 struct ahash_request *name = (void *)__##name##_desc
72 /**
73 * struct ahash_alg - asynchronous message digest definition
74 * @init: Initialize the transformation context. Intended only to initialize the
75 * state of the HASH transformation at the beginning. This shall fill in
76 * the internal structures used during the entire duration of the whole
77 * transformation. No data processing happens at this point.
78 * @update: Push a chunk of data into the driver for transformation. This
79 * function actually pushes blocks of data from upper layers into the
80 * driver, which then passes those to the hardware as seen fit. This
81 * function must not finalize the HASH transformation by calculating the
82 * final message digest as this only adds more data into the
83 * transformation. This function shall not modify the transformation
84 * context, as this function may be called in parallel with the same
85 * transformation object. Data processing can happen synchronously
86 * [SHASH] or asynchronously [AHASH] at this point.
87 * @final: Retrieve result from the driver. This function finalizes the
88 * transformation and retrieves the resulting hash from the driver and
89 * pushes it back to upper layers. No data processing happens at this
90 * point.
91 * @finup: Combination of @update and @final. This function is effectively a
92 * combination of @update and @final calls issued in sequence. As some
93 * hardware cannot do @update and @final separately, this callback was
94 * added to allow such hardware to be used at least by IPsec. Data
95 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
96 * at this point.
97 * @digest: Combination of @init and @update and @final. This function
98 * effectively behaves as the entire chain of operations, @init,
99 * @update and @final issued in sequence. Just like @finup, this was
100 * added for hardware which cannot do even the @finup, but can only do
101 * the whole transformation in one run. Data processing can happen
102 * synchronously [SHASH] or asynchronously [AHASH] at this point.
103 * @setkey: Set optional key used by the hashing algorithm. Intended to push
104 * optional key used by the hashing algorithm from upper layers into
105 * the driver. This function can store the key in the transformation
106 * context or can outright program it into the hardware. In the former
107 * case, one must be careful to program the key into the hardware at
108 * appropriate time and one must be careful that .setkey() can be
109 * called multiple times during the existence of the transformation
110 * object. Not all hashing algorithms do implement this function as it
111 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
112 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
113 * this function. This function must be called before any other of the
114 * @init, @update, @final, @finup, @digest is called. No data
115 * processing happens at this point.
116 * @export: Export partial state of the transformation. This function dumps the
117 * entire state of the ongoing transformation into a provided block of
118 * data so it can be @import 'ed back later on. This is useful in case
119 * you want to save partial result of the transformation after
120 * processing certain amount of data and reload this partial result
121 * multiple times later on for multiple re-use. No data processing
122 * happens at this point.
123 * @import: Import partial state of the transformation. This function loads the
124 * entire state of the ongoing transformation from a provided block of
125 * data so the transformation can continue from this point onward. No
126 * data processing happens at this point.
127 * @halg: see struct hash_alg_common
129 struct ahash_alg {
130 int (*init)(struct ahash_request *req);
131 int (*update)(struct ahash_request *req);
132 int (*final)(struct ahash_request *req);
133 int (*finup)(struct ahash_request *req);
134 int (*digest)(struct ahash_request *req);
135 int (*export)(struct ahash_request *req, void *out);
136 int (*import)(struct ahash_request *req, const void *in);
137 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
138 unsigned int keylen);
140 struct hash_alg_common halg;
143 struct shash_desc {
144 struct crypto_shash *tfm;
145 u32 flags;
147 void *__ctx[] CRYPTO_MINALIGN_ATTR;
150 #define SHASH_DESC_ON_STACK(shash, ctx) \
151 char __##shash##_desc[sizeof(struct shash_desc) + \
152 crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
153 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
156 * struct shash_alg - synchronous message digest definition
157 * @init: see struct ahash_alg
158 * @update: see struct ahash_alg
159 * @final: see struct ahash_alg
160 * @finup: see struct ahash_alg
161 * @digest: see struct ahash_alg
162 * @export: see struct ahash_alg
163 * @import: see struct ahash_alg
164 * @setkey: see struct ahash_alg
165 * @digestsize: see struct ahash_alg
166 * @statesize: see struct ahash_alg
167 * @descsize: Size of the operational state for the message digest. This state
168 * size is the memory size that needs to be allocated for
169 * shash_desc.__ctx
170 * @base: internally used
172 struct shash_alg {
173 int (*init)(struct shash_desc *desc);
174 int (*update)(struct shash_desc *desc, const u8 *data,
175 unsigned int len);
176 int (*final)(struct shash_desc *desc, u8 *out);
177 int (*finup)(struct shash_desc *desc, const u8 *data,
178 unsigned int len, u8 *out);
179 int (*digest)(struct shash_desc *desc, const u8 *data,
180 unsigned int len, u8 *out);
181 int (*export)(struct shash_desc *desc, void *out);
182 int (*import)(struct shash_desc *desc, const void *in);
183 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
184 unsigned int keylen);
186 unsigned int descsize;
188 /* These fields must match hash_alg_common. */
189 unsigned int digestsize
190 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
191 unsigned int statesize;
193 struct crypto_alg base;
196 struct crypto_ahash {
197 int (*init)(struct ahash_request *req);
198 int (*update)(struct ahash_request *req);
199 int (*final)(struct ahash_request *req);
200 int (*finup)(struct ahash_request *req);
201 int (*digest)(struct ahash_request *req);
202 int (*export)(struct ahash_request *req, void *out);
203 int (*import)(struct ahash_request *req, const void *in);
204 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
205 unsigned int keylen);
207 unsigned int reqsize;
208 bool has_setkey;
209 struct crypto_tfm base;
212 struct crypto_shash {
213 unsigned int descsize;
214 struct crypto_tfm base;
218 * DOC: Asynchronous Message Digest API
220 * The asynchronous message digest API is used with the ciphers of type
221 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
223 * The asynchronous cipher operation discussion provided for the
224 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
227 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
229 return container_of(tfm, struct crypto_ahash, base);
233 * crypto_alloc_ahash() - allocate ahash cipher handle
234 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
235 * ahash cipher
236 * @type: specifies the type of the cipher
237 * @mask: specifies the mask for the cipher
239 * Allocate a cipher handle for an ahash. The returned struct
240 * crypto_ahash is the cipher handle that is required for any subsequent
241 * API invocation for that ahash.
243 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
244 * of an error, PTR_ERR() returns the error code.
246 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
247 u32 mask);
249 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
251 return &tfm->base;
255 * crypto_free_ahash() - zeroize and free the ahash handle
256 * @tfm: cipher handle to be freed
258 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
260 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
264 * crypto_has_ahash() - Search for the availability of an ahash.
265 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
266 * ahash
267 * @type: specifies the type of the ahash
268 * @mask: specifies the mask for the ahash
270 * Return: true when the ahash is known to the kernel crypto API; false
271 * otherwise
273 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
275 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
277 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
280 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
282 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
285 static inline unsigned int crypto_ahash_alignmask(
286 struct crypto_ahash *tfm)
288 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
292 * crypto_ahash_blocksize() - obtain block size for cipher
293 * @tfm: cipher handle
295 * The block size for the message digest cipher referenced with the cipher
296 * handle is returned.
298 * Return: block size of cipher
300 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
302 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
305 static inline struct hash_alg_common *__crypto_hash_alg_common(
306 struct crypto_alg *alg)
308 return container_of(alg, struct hash_alg_common, base);
311 static inline struct hash_alg_common *crypto_hash_alg_common(
312 struct crypto_ahash *tfm)
314 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
318 * crypto_ahash_digestsize() - obtain message digest size
319 * @tfm: cipher handle
321 * The size for the message digest created by the message digest cipher
322 * referenced with the cipher handle is returned.
325 * Return: message digest size of cipher
327 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
329 return crypto_hash_alg_common(tfm)->digestsize;
332 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
334 return crypto_hash_alg_common(tfm)->statesize;
337 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
339 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
342 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
344 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
347 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
349 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
353 * crypto_ahash_reqtfm() - obtain cipher handle from request
354 * @req: asynchronous request handle that contains the reference to the ahash
355 * cipher handle
357 * Return the ahash cipher handle that is registered with the asynchronous
358 * request handle ahash_request.
360 * Return: ahash cipher handle
362 static inline struct crypto_ahash *crypto_ahash_reqtfm(
363 struct ahash_request *req)
365 return __crypto_ahash_cast(req->base.tfm);
369 * crypto_ahash_reqsize() - obtain size of the request data structure
370 * @tfm: cipher handle
372 * Return the size of the ahash state size. With the crypto_ahash_export
373 * function, the caller can export the state into a buffer whose size is
374 * defined with this function.
376 * Return: size of the ahash state
378 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
380 return tfm->reqsize;
383 static inline void *ahash_request_ctx(struct ahash_request *req)
385 return req->__ctx;
389 * crypto_ahash_setkey - set key for cipher handle
390 * @tfm: cipher handle
391 * @key: buffer holding the key
392 * @keylen: length of the key in bytes
394 * The caller provided key is set for the ahash cipher. The cipher
395 * handle must point to a keyed hash in order for this function to succeed.
397 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
399 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
400 unsigned int keylen);
402 static inline bool crypto_ahash_has_setkey(struct crypto_ahash *tfm)
404 return tfm->has_setkey;
408 * crypto_ahash_finup() - update and finalize message digest
409 * @req: reference to the ahash_request handle that holds all information
410 * needed to perform the cipher operation
412 * This function is a "short-hand" for the function calls of
413 * crypto_ahash_update and crypto_shash_final. The parameters have the same
414 * meaning as discussed for those separate functions.
416 * Return: 0 if the message digest creation was successful; < 0 if an error
417 * occurred
419 int crypto_ahash_finup(struct ahash_request *req);
422 * crypto_ahash_final() - calculate message digest
423 * @req: reference to the ahash_request handle that holds all information
424 * needed to perform the cipher operation
426 * Finalize the message digest operation and create the message digest
427 * based on all data added to the cipher handle. The message digest is placed
428 * into the output buffer registered with the ahash_request handle.
430 * Return: 0 if the message digest creation was successful; < 0 if an error
431 * occurred
433 int crypto_ahash_final(struct ahash_request *req);
436 * crypto_ahash_digest() - calculate message digest for a buffer
437 * @req: reference to the ahash_request handle that holds all information
438 * needed to perform the cipher operation
440 * This function is a "short-hand" for the function calls of crypto_ahash_init,
441 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
442 * meaning as discussed for those separate three functions.
444 * Return: 0 if the message digest creation was successful; < 0 if an error
445 * occurred
447 int crypto_ahash_digest(struct ahash_request *req);
450 * crypto_ahash_export() - extract current message digest state
451 * @req: reference to the ahash_request handle whose state is exported
452 * @out: output buffer of sufficient size that can hold the hash state
454 * This function exports the hash state of the ahash_request handle into the
455 * caller-allocated output buffer out which must have sufficient size (e.g. by
456 * calling crypto_ahash_reqsize).
458 * Return: 0 if the export was successful; < 0 if an error occurred
460 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
462 return crypto_ahash_reqtfm(req)->export(req, out);
466 * crypto_ahash_import() - import message digest state
467 * @req: reference to ahash_request handle the state is imported into
468 * @in: buffer holding the state
470 * This function imports the hash state into the ahash_request handle from the
471 * input buffer. That buffer should have been generated with the
472 * crypto_ahash_export function.
474 * Return: 0 if the import was successful; < 0 if an error occurred
476 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
478 return crypto_ahash_reqtfm(req)->import(req, in);
482 * crypto_ahash_init() - (re)initialize message digest handle
483 * @req: ahash_request handle that already is initialized with all necessary
484 * data using the ahash_request_* API functions
486 * The call (re-)initializes the message digest referenced by the ahash_request
487 * handle. Any potentially existing state created by previous operations is
488 * discarded.
490 * Return: 0 if the message digest initialization was successful; < 0 if an
491 * error occurred
493 static inline int crypto_ahash_init(struct ahash_request *req)
495 return crypto_ahash_reqtfm(req)->init(req);
499 * crypto_ahash_update() - add data to message digest for processing
500 * @req: ahash_request handle that was previously initialized with the
501 * crypto_ahash_init call.
503 * Updates the message digest state of the &ahash_request handle. The input data
504 * is pointed to by the scatter/gather list registered in the &ahash_request
505 * handle
507 * Return: 0 if the message digest update was successful; < 0 if an error
508 * occurred
510 static inline int crypto_ahash_update(struct ahash_request *req)
512 return crypto_ahash_reqtfm(req)->update(req);
516 * DOC: Asynchronous Hash Request Handle
518 * The &ahash_request data structure contains all pointers to data
519 * required for the asynchronous cipher operation. This includes the cipher
520 * handle (which can be used by multiple &ahash_request instances), pointer
521 * to plaintext and the message digest output buffer, asynchronous callback
522 * function, etc. It acts as a handle to the ahash_request_* API calls in a
523 * similar way as ahash handle to the crypto_ahash_* API calls.
527 * ahash_request_set_tfm() - update cipher handle reference in request
528 * @req: request handle to be modified
529 * @tfm: cipher handle that shall be added to the request handle
531 * Allow the caller to replace the existing ahash handle in the request
532 * data structure with a different one.
534 static inline void ahash_request_set_tfm(struct ahash_request *req,
535 struct crypto_ahash *tfm)
537 req->base.tfm = crypto_ahash_tfm(tfm);
541 * ahash_request_alloc() - allocate request data structure
542 * @tfm: cipher handle to be registered with the request
543 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
545 * Allocate the request data structure that must be used with the ahash
546 * message digest API calls. During
547 * the allocation, the provided ahash handle
548 * is registered in the request data structure.
550 * Return: allocated request handle in case of success; IS_ERR() is true in case
551 * of an error, PTR_ERR() returns the error code.
553 static inline struct ahash_request *ahash_request_alloc(
554 struct crypto_ahash *tfm, gfp_t gfp)
556 struct ahash_request *req;
558 req = kmalloc(sizeof(struct ahash_request) +
559 crypto_ahash_reqsize(tfm), gfp);
561 if (likely(req))
562 ahash_request_set_tfm(req, tfm);
564 return req;
568 * ahash_request_free() - zeroize and free the request data structure
569 * @req: request data structure cipher handle to be freed
571 static inline void ahash_request_free(struct ahash_request *req)
573 kzfree(req);
576 static inline void ahash_request_zero(struct ahash_request *req)
578 memzero_explicit(req, sizeof(*req) +
579 crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
582 static inline struct ahash_request *ahash_request_cast(
583 struct crypto_async_request *req)
585 return container_of(req, struct ahash_request, base);
589 * ahash_request_set_callback() - set asynchronous callback function
590 * @req: request handle
591 * @flags: specify zero or an ORing of the flags
592 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
593 * increase the wait queue beyond the initial maximum size;
594 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
595 * @compl: callback function pointer to be registered with the request handle
596 * @data: The data pointer refers to memory that is not used by the kernel
597 * crypto API, but provided to the callback function for it to use. Here,
598 * the caller can provide a reference to memory the callback function can
599 * operate on. As the callback function is invoked asynchronously to the
600 * related functionality, it may need to access data structures of the
601 * related functionality which can be referenced using this pointer. The
602 * callback function can access the memory via the "data" field in the
603 * &crypto_async_request data structure provided to the callback function.
605 * This function allows setting the callback function that is triggered once
606 * the cipher operation completes.
608 * The callback function is registered with the &ahash_request handle and
609 * must comply with the following template
611 * void callback_function(struct crypto_async_request *req, int error)
613 static inline void ahash_request_set_callback(struct ahash_request *req,
614 u32 flags,
615 crypto_completion_t compl,
616 void *data)
618 req->base.complete = compl;
619 req->base.data = data;
620 req->base.flags = flags;
624 * ahash_request_set_crypt() - set data buffers
625 * @req: ahash_request handle to be updated
626 * @src: source scatter/gather list
627 * @result: buffer that is filled with the message digest -- the caller must
628 * ensure that the buffer has sufficient space by, for example, calling
629 * crypto_ahash_digestsize()
630 * @nbytes: number of bytes to process from the source scatter/gather list
632 * By using this call, the caller references the source scatter/gather list.
633 * The source scatter/gather list points to the data the message digest is to
634 * be calculated for.
636 static inline void ahash_request_set_crypt(struct ahash_request *req,
637 struct scatterlist *src, u8 *result,
638 unsigned int nbytes)
640 req->src = src;
641 req->nbytes = nbytes;
642 req->result = result;
646 * DOC: Synchronous Message Digest API
648 * The synchronous message digest API is used with the ciphers of type
649 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
651 * The message digest API is able to maintain state information for the
652 * caller.
654 * The synchronous message digest API can store user-related context in in its
655 * shash_desc request data structure.
659 * crypto_alloc_shash() - allocate message digest handle
660 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
661 * message digest cipher
662 * @type: specifies the type of the cipher
663 * @mask: specifies the mask for the cipher
665 * Allocate a cipher handle for a message digest. The returned &struct
666 * crypto_shash is the cipher handle that is required for any subsequent
667 * API invocation for that message digest.
669 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
670 * of an error, PTR_ERR() returns the error code.
672 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
673 u32 mask);
675 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
677 return &tfm->base;
681 * crypto_free_shash() - zeroize and free the message digest handle
682 * @tfm: cipher handle to be freed
684 static inline void crypto_free_shash(struct crypto_shash *tfm)
686 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
689 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
691 return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
694 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
696 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
699 static inline unsigned int crypto_shash_alignmask(
700 struct crypto_shash *tfm)
702 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
706 * crypto_shash_blocksize() - obtain block size for cipher
707 * @tfm: cipher handle
709 * The block size for the message digest cipher referenced with the cipher
710 * handle is returned.
712 * Return: block size of cipher
714 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
716 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
719 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
721 return container_of(alg, struct shash_alg, base);
724 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
726 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
730 * crypto_shash_digestsize() - obtain message digest size
731 * @tfm: cipher handle
733 * The size for the message digest created by the message digest cipher
734 * referenced with the cipher handle is returned.
736 * Return: digest size of cipher
738 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
740 return crypto_shash_alg(tfm)->digestsize;
743 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
745 return crypto_shash_alg(tfm)->statesize;
748 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
750 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
753 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
755 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
758 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
760 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
764 * crypto_shash_descsize() - obtain the operational state size
765 * @tfm: cipher handle
767 * The size of the operational state the cipher needs during operation is
768 * returned for the hash referenced with the cipher handle. This size is
769 * required to calculate the memory requirements to allow the caller allocating
770 * sufficient memory for operational state.
772 * The operational state is defined with struct shash_desc where the size of
773 * that data structure is to be calculated as
774 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
776 * Return: size of the operational state
778 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
780 return tfm->descsize;
783 static inline void *shash_desc_ctx(struct shash_desc *desc)
785 return desc->__ctx;
789 * crypto_shash_setkey() - set key for message digest
790 * @tfm: cipher handle
791 * @key: buffer holding the key
792 * @keylen: length of the key in bytes
794 * The caller provided key is set for the keyed message digest cipher. The
795 * cipher handle must point to a keyed message digest cipher in order for this
796 * function to succeed.
798 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
800 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
801 unsigned int keylen);
804 * crypto_shash_digest() - calculate message digest for buffer
805 * @desc: see crypto_shash_final()
806 * @data: see crypto_shash_update()
807 * @len: see crypto_shash_update()
808 * @out: see crypto_shash_final()
810 * This function is a "short-hand" for the function calls of crypto_shash_init,
811 * crypto_shash_update and crypto_shash_final. The parameters have the same
812 * meaning as discussed for those separate three functions.
814 * Return: 0 if the message digest creation was successful; < 0 if an error
815 * occurred
817 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
818 unsigned int len, u8 *out);
821 * crypto_shash_export() - extract operational state for message digest
822 * @desc: reference to the operational state handle whose state is exported
823 * @out: output buffer of sufficient size that can hold the hash state
825 * This function exports the hash state of the operational state handle into the
826 * caller-allocated output buffer out which must have sufficient size (e.g. by
827 * calling crypto_shash_descsize).
829 * Return: 0 if the export creation was successful; < 0 if an error occurred
831 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
833 return crypto_shash_alg(desc->tfm)->export(desc, out);
837 * crypto_shash_import() - import operational state
838 * @desc: reference to the operational state handle the state imported into
839 * @in: buffer holding the state
841 * This function imports the hash state into the operational state handle from
842 * the input buffer. That buffer should have been generated with the
843 * crypto_ahash_export function.
845 * Return: 0 if the import was successful; < 0 if an error occurred
847 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
849 return crypto_shash_alg(desc->tfm)->import(desc, in);
853 * crypto_shash_init() - (re)initialize message digest
854 * @desc: operational state handle that is already filled
856 * The call (re-)initializes the message digest referenced by the
857 * operational state handle. Any potentially existing state created by
858 * previous operations is discarded.
860 * Return: 0 if the message digest initialization was successful; < 0 if an
861 * error occurred
863 static inline int crypto_shash_init(struct shash_desc *desc)
865 return crypto_shash_alg(desc->tfm)->init(desc);
869 * crypto_shash_update() - add data to message digest for processing
870 * @desc: operational state handle that is already initialized
871 * @data: input data to be added to the message digest
872 * @len: length of the input data
874 * Updates the message digest state of the operational state handle.
876 * Return: 0 if the message digest update was successful; < 0 if an error
877 * occurred
879 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
880 unsigned int len);
883 * crypto_shash_final() - calculate message digest
884 * @desc: operational state handle that is already filled with data
885 * @out: output buffer filled with the message digest
887 * Finalize the message digest operation and create the message digest
888 * based on all data added to the cipher handle. The message digest is placed
889 * into the output buffer. The caller must ensure that the output buffer is
890 * large enough by using crypto_shash_digestsize.
892 * Return: 0 if the message digest creation was successful; < 0 if an error
893 * occurred
895 int crypto_shash_final(struct shash_desc *desc, u8 *out);
898 * crypto_shash_finup() - calculate message digest of buffer
899 * @desc: see crypto_shash_final()
900 * @data: see crypto_shash_update()
901 * @len: see crypto_shash_update()
902 * @out: see crypto_shash_final()
904 * This function is a "short-hand" for the function calls of
905 * crypto_shash_update and crypto_shash_final. The parameters have the same
906 * meaning as discussed for those separate functions.
908 * Return: 0 if the message digest creation was successful; < 0 if an error
909 * occurred
911 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
912 unsigned int len, u8 *out);
914 static inline void shash_desc_zero(struct shash_desc *desc)
916 memzero_explicit(desc,
917 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
920 #endif /* _CRYPTO_HASH_H */