2 * Linux Socket Filter - Kernel level socket filtering
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
20 * Andi Kleen - Fix a few bad bugs and races.
21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
32 #include <asm/unaligned.h>
35 #define BPF_R0 regs[BPF_REG_0]
36 #define BPF_R1 regs[BPF_REG_1]
37 #define BPF_R2 regs[BPF_REG_2]
38 #define BPF_R3 regs[BPF_REG_3]
39 #define BPF_R4 regs[BPF_REG_4]
40 #define BPF_R5 regs[BPF_REG_5]
41 #define BPF_R6 regs[BPF_REG_6]
42 #define BPF_R7 regs[BPF_REG_7]
43 #define BPF_R8 regs[BPF_REG_8]
44 #define BPF_R9 regs[BPF_REG_9]
45 #define BPF_R10 regs[BPF_REG_10]
48 #define DST regs[insn->dst_reg]
49 #define SRC regs[insn->src_reg]
50 #define FP regs[BPF_REG_FP]
51 #define ARG1 regs[BPF_REG_ARG1]
52 #define CTX regs[BPF_REG_CTX]
55 /* No hurry in this branch
57 * Exported for the bpf jit load helper.
59 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff
*skb
, int k
, unsigned int size
)
64 ptr
= skb_network_header(skb
) + k
- SKF_NET_OFF
;
65 else if (k
>= SKF_LL_OFF
)
66 ptr
= skb_mac_header(skb
) + k
- SKF_LL_OFF
;
68 if (ptr
>= skb
->head
&& ptr
+ size
<= skb_tail_pointer(skb
))
74 struct bpf_prog
*bpf_prog_alloc(unsigned int size
, gfp_t gfp_extra_flags
)
76 gfp_t gfp_flags
= GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
|
78 struct bpf_prog_aux
*aux
;
81 size
= round_up(size
, PAGE_SIZE
);
82 fp
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
86 kmemcheck_annotate_bitfield(fp
, meta
);
88 aux
= kzalloc(sizeof(*aux
), GFP_KERNEL
| gfp_extra_flags
);
94 fp
->pages
= size
/ PAGE_SIZE
;
100 EXPORT_SYMBOL_GPL(bpf_prog_alloc
);
102 struct bpf_prog
*bpf_prog_realloc(struct bpf_prog
*fp_old
, unsigned int size
,
103 gfp_t gfp_extra_flags
)
105 gfp_t gfp_flags
= GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
|
109 BUG_ON(fp_old
== NULL
);
111 size
= round_up(size
, PAGE_SIZE
);
112 if (size
<= fp_old
->pages
* PAGE_SIZE
)
115 fp
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
117 kmemcheck_annotate_bitfield(fp
, meta
);
119 memcpy(fp
, fp_old
, fp_old
->pages
* PAGE_SIZE
);
120 fp
->pages
= size
/ PAGE_SIZE
;
123 /* We keep fp->aux from fp_old around in the new
124 * reallocated structure.
127 __bpf_prog_free(fp_old
);
132 EXPORT_SYMBOL_GPL(bpf_prog_realloc
);
134 void __bpf_prog_free(struct bpf_prog
*fp
)
139 EXPORT_SYMBOL_GPL(__bpf_prog_free
);
141 #ifdef CONFIG_BPF_JIT
142 struct bpf_binary_header
*
143 bpf_jit_binary_alloc(unsigned int proglen
, u8
**image_ptr
,
144 unsigned int alignment
,
145 bpf_jit_fill_hole_t bpf_fill_ill_insns
)
147 struct bpf_binary_header
*hdr
;
148 unsigned int size
, hole
, start
;
150 /* Most of BPF filters are really small, but if some of them
151 * fill a page, allow at least 128 extra bytes to insert a
152 * random section of illegal instructions.
154 size
= round_up(proglen
+ sizeof(*hdr
) + 128, PAGE_SIZE
);
155 hdr
= module_alloc(size
);
159 /* Fill space with illegal/arch-dep instructions. */
160 bpf_fill_ill_insns(hdr
, size
);
162 hdr
->pages
= size
/ PAGE_SIZE
;
163 hole
= min_t(unsigned int, size
- (proglen
+ sizeof(*hdr
)),
164 PAGE_SIZE
- sizeof(*hdr
));
165 start
= (prandom_u32() % hole
) & ~(alignment
- 1);
167 /* Leave a random number of instructions before BPF code. */
168 *image_ptr
= &hdr
->image
[start
];
173 void bpf_jit_binary_free(struct bpf_binary_header
*hdr
)
177 #endif /* CONFIG_BPF_JIT */
179 /* Base function for offset calculation. Needs to go into .text section,
180 * therefore keeping it non-static as well; will also be used by JITs
181 * anyway later on, so do not let the compiler omit it.
183 noinline u64
__bpf_call_base(u64 r1
, u64 r2
, u64 r3
, u64 r4
, u64 r5
)
187 EXPORT_SYMBOL_GPL(__bpf_call_base
);
190 * __bpf_prog_run - run eBPF program on a given context
191 * @ctx: is the data we are operating on
192 * @insn: is the array of eBPF instructions
194 * Decode and execute eBPF instructions.
196 static unsigned int __bpf_prog_run(void *ctx
, const struct bpf_insn
*insn
)
198 u64 stack
[MAX_BPF_STACK
/ sizeof(u64
)];
199 u64 regs
[MAX_BPF_REG
], tmp
;
200 static const void *jumptable
[256] = {
201 [0 ... 255] = &&default_label
,
202 /* Now overwrite non-defaults ... */
203 /* 32 bit ALU operations */
204 [BPF_ALU
| BPF_ADD
| BPF_X
] = &&ALU_ADD_X
,
205 [BPF_ALU
| BPF_ADD
| BPF_K
] = &&ALU_ADD_K
,
206 [BPF_ALU
| BPF_SUB
| BPF_X
] = &&ALU_SUB_X
,
207 [BPF_ALU
| BPF_SUB
| BPF_K
] = &&ALU_SUB_K
,
208 [BPF_ALU
| BPF_AND
| BPF_X
] = &&ALU_AND_X
,
209 [BPF_ALU
| BPF_AND
| BPF_K
] = &&ALU_AND_K
,
210 [BPF_ALU
| BPF_OR
| BPF_X
] = &&ALU_OR_X
,
211 [BPF_ALU
| BPF_OR
| BPF_K
] = &&ALU_OR_K
,
212 [BPF_ALU
| BPF_LSH
| BPF_X
] = &&ALU_LSH_X
,
213 [BPF_ALU
| BPF_LSH
| BPF_K
] = &&ALU_LSH_K
,
214 [BPF_ALU
| BPF_RSH
| BPF_X
] = &&ALU_RSH_X
,
215 [BPF_ALU
| BPF_RSH
| BPF_K
] = &&ALU_RSH_K
,
216 [BPF_ALU
| BPF_XOR
| BPF_X
] = &&ALU_XOR_X
,
217 [BPF_ALU
| BPF_XOR
| BPF_K
] = &&ALU_XOR_K
,
218 [BPF_ALU
| BPF_MUL
| BPF_X
] = &&ALU_MUL_X
,
219 [BPF_ALU
| BPF_MUL
| BPF_K
] = &&ALU_MUL_K
,
220 [BPF_ALU
| BPF_MOV
| BPF_X
] = &&ALU_MOV_X
,
221 [BPF_ALU
| BPF_MOV
| BPF_K
] = &&ALU_MOV_K
,
222 [BPF_ALU
| BPF_DIV
| BPF_X
] = &&ALU_DIV_X
,
223 [BPF_ALU
| BPF_DIV
| BPF_K
] = &&ALU_DIV_K
,
224 [BPF_ALU
| BPF_MOD
| BPF_X
] = &&ALU_MOD_X
,
225 [BPF_ALU
| BPF_MOD
| BPF_K
] = &&ALU_MOD_K
,
226 [BPF_ALU
| BPF_NEG
] = &&ALU_NEG
,
227 [BPF_ALU
| BPF_END
| BPF_TO_BE
] = &&ALU_END_TO_BE
,
228 [BPF_ALU
| BPF_END
| BPF_TO_LE
] = &&ALU_END_TO_LE
,
229 /* 64 bit ALU operations */
230 [BPF_ALU64
| BPF_ADD
| BPF_X
] = &&ALU64_ADD_X
,
231 [BPF_ALU64
| BPF_ADD
| BPF_K
] = &&ALU64_ADD_K
,
232 [BPF_ALU64
| BPF_SUB
| BPF_X
] = &&ALU64_SUB_X
,
233 [BPF_ALU64
| BPF_SUB
| BPF_K
] = &&ALU64_SUB_K
,
234 [BPF_ALU64
| BPF_AND
| BPF_X
] = &&ALU64_AND_X
,
235 [BPF_ALU64
| BPF_AND
| BPF_K
] = &&ALU64_AND_K
,
236 [BPF_ALU64
| BPF_OR
| BPF_X
] = &&ALU64_OR_X
,
237 [BPF_ALU64
| BPF_OR
| BPF_K
] = &&ALU64_OR_K
,
238 [BPF_ALU64
| BPF_LSH
| BPF_X
] = &&ALU64_LSH_X
,
239 [BPF_ALU64
| BPF_LSH
| BPF_K
] = &&ALU64_LSH_K
,
240 [BPF_ALU64
| BPF_RSH
| BPF_X
] = &&ALU64_RSH_X
,
241 [BPF_ALU64
| BPF_RSH
| BPF_K
] = &&ALU64_RSH_K
,
242 [BPF_ALU64
| BPF_XOR
| BPF_X
] = &&ALU64_XOR_X
,
243 [BPF_ALU64
| BPF_XOR
| BPF_K
] = &&ALU64_XOR_K
,
244 [BPF_ALU64
| BPF_MUL
| BPF_X
] = &&ALU64_MUL_X
,
245 [BPF_ALU64
| BPF_MUL
| BPF_K
] = &&ALU64_MUL_K
,
246 [BPF_ALU64
| BPF_MOV
| BPF_X
] = &&ALU64_MOV_X
,
247 [BPF_ALU64
| BPF_MOV
| BPF_K
] = &&ALU64_MOV_K
,
248 [BPF_ALU64
| BPF_ARSH
| BPF_X
] = &&ALU64_ARSH_X
,
249 [BPF_ALU64
| BPF_ARSH
| BPF_K
] = &&ALU64_ARSH_K
,
250 [BPF_ALU64
| BPF_DIV
| BPF_X
] = &&ALU64_DIV_X
,
251 [BPF_ALU64
| BPF_DIV
| BPF_K
] = &&ALU64_DIV_K
,
252 [BPF_ALU64
| BPF_MOD
| BPF_X
] = &&ALU64_MOD_X
,
253 [BPF_ALU64
| BPF_MOD
| BPF_K
] = &&ALU64_MOD_K
,
254 [BPF_ALU64
| BPF_NEG
] = &&ALU64_NEG
,
255 /* Call instruction */
256 [BPF_JMP
| BPF_CALL
] = &&JMP_CALL
,
257 [BPF_JMP
| BPF_CALL
| BPF_X
] = &&JMP_TAIL_CALL
,
259 [BPF_JMP
| BPF_JA
] = &&JMP_JA
,
260 [BPF_JMP
| BPF_JEQ
| BPF_X
] = &&JMP_JEQ_X
,
261 [BPF_JMP
| BPF_JEQ
| BPF_K
] = &&JMP_JEQ_K
,
262 [BPF_JMP
| BPF_JNE
| BPF_X
] = &&JMP_JNE_X
,
263 [BPF_JMP
| BPF_JNE
| BPF_K
] = &&JMP_JNE_K
,
264 [BPF_JMP
| BPF_JGT
| BPF_X
] = &&JMP_JGT_X
,
265 [BPF_JMP
| BPF_JGT
| BPF_K
] = &&JMP_JGT_K
,
266 [BPF_JMP
| BPF_JGE
| BPF_X
] = &&JMP_JGE_X
,
267 [BPF_JMP
| BPF_JGE
| BPF_K
] = &&JMP_JGE_K
,
268 [BPF_JMP
| BPF_JSGT
| BPF_X
] = &&JMP_JSGT_X
,
269 [BPF_JMP
| BPF_JSGT
| BPF_K
] = &&JMP_JSGT_K
,
270 [BPF_JMP
| BPF_JSGE
| BPF_X
] = &&JMP_JSGE_X
,
271 [BPF_JMP
| BPF_JSGE
| BPF_K
] = &&JMP_JSGE_K
,
272 [BPF_JMP
| BPF_JSET
| BPF_X
] = &&JMP_JSET_X
,
273 [BPF_JMP
| BPF_JSET
| BPF_K
] = &&JMP_JSET_K
,
275 [BPF_JMP
| BPF_EXIT
] = &&JMP_EXIT
,
276 /* Store instructions */
277 [BPF_STX
| BPF_MEM
| BPF_B
] = &&STX_MEM_B
,
278 [BPF_STX
| BPF_MEM
| BPF_H
] = &&STX_MEM_H
,
279 [BPF_STX
| BPF_MEM
| BPF_W
] = &&STX_MEM_W
,
280 [BPF_STX
| BPF_MEM
| BPF_DW
] = &&STX_MEM_DW
,
281 [BPF_STX
| BPF_XADD
| BPF_W
] = &&STX_XADD_W
,
282 [BPF_STX
| BPF_XADD
| BPF_DW
] = &&STX_XADD_DW
,
283 [BPF_ST
| BPF_MEM
| BPF_B
] = &&ST_MEM_B
,
284 [BPF_ST
| BPF_MEM
| BPF_H
] = &&ST_MEM_H
,
285 [BPF_ST
| BPF_MEM
| BPF_W
] = &&ST_MEM_W
,
286 [BPF_ST
| BPF_MEM
| BPF_DW
] = &&ST_MEM_DW
,
287 /* Load instructions */
288 [BPF_LDX
| BPF_MEM
| BPF_B
] = &&LDX_MEM_B
,
289 [BPF_LDX
| BPF_MEM
| BPF_H
] = &&LDX_MEM_H
,
290 [BPF_LDX
| BPF_MEM
| BPF_W
] = &&LDX_MEM_W
,
291 [BPF_LDX
| BPF_MEM
| BPF_DW
] = &&LDX_MEM_DW
,
292 [BPF_LD
| BPF_ABS
| BPF_W
] = &&LD_ABS_W
,
293 [BPF_LD
| BPF_ABS
| BPF_H
] = &&LD_ABS_H
,
294 [BPF_LD
| BPF_ABS
| BPF_B
] = &&LD_ABS_B
,
295 [BPF_LD
| BPF_IND
| BPF_W
] = &&LD_IND_W
,
296 [BPF_LD
| BPF_IND
| BPF_H
] = &&LD_IND_H
,
297 [BPF_LD
| BPF_IND
| BPF_B
] = &&LD_IND_B
,
298 [BPF_LD
| BPF_IMM
| BPF_DW
] = &&LD_IMM_DW
,
300 u32 tail_call_cnt
= 0;
304 #define CONT ({ insn++; goto select_insn; })
305 #define CONT_JMP ({ insn++; goto select_insn; })
307 FP
= (u64
) (unsigned long) &stack
[ARRAY_SIZE(stack
)];
308 ARG1
= (u64
) (unsigned long) ctx
;
311 goto *jumptable
[insn
->code
];
314 #define ALU(OPCODE, OP) \
315 ALU64_##OPCODE##_X: \
319 DST = (u32) DST OP (u32) SRC; \
321 ALU64_##OPCODE##_K: \
325 DST = (u32) DST OP (u32) IMM; \
356 DST
= (u64
) (u32
) insn
[0].imm
| ((u64
) (u32
) insn
[1].imm
) << 32;
360 (*(s64
*) &DST
) >>= SRC
;
363 (*(s64
*) &DST
) >>= IMM
;
366 if (unlikely(SRC
== 0))
368 div64_u64_rem(DST
, SRC
, &tmp
);
372 if (unlikely(SRC
== 0))
375 DST
= do_div(tmp
, (u32
) SRC
);
378 div64_u64_rem(DST
, IMM
, &tmp
);
383 DST
= do_div(tmp
, (u32
) IMM
);
386 if (unlikely(SRC
== 0))
388 DST
= div64_u64(DST
, SRC
);
391 if (unlikely(SRC
== 0))
394 do_div(tmp
, (u32
) SRC
);
398 DST
= div64_u64(DST
, IMM
);
402 do_div(tmp
, (u32
) IMM
);
408 DST
= (__force u16
) cpu_to_be16(DST
);
411 DST
= (__force u32
) cpu_to_be32(DST
);
414 DST
= (__force u64
) cpu_to_be64(DST
);
421 DST
= (__force u16
) cpu_to_le16(DST
);
424 DST
= (__force u32
) cpu_to_le32(DST
);
427 DST
= (__force u64
) cpu_to_le64(DST
);
434 /* Function call scratches BPF_R1-BPF_R5 registers,
435 * preserves BPF_R6-BPF_R9, and stores return value
438 BPF_R0
= (__bpf_call_base
+ insn
->imm
)(BPF_R1
, BPF_R2
, BPF_R3
,
443 struct bpf_map
*map
= (struct bpf_map
*) (unsigned long) BPF_R2
;
444 struct bpf_array
*array
= container_of(map
, struct bpf_array
, map
);
445 struct bpf_prog
*prog
;
448 if (unlikely(index
>= array
->map
.max_entries
))
451 if (unlikely(tail_call_cnt
> MAX_TAIL_CALL_CNT
))
456 prog
= READ_ONCE(array
->ptrs
[index
]);
460 /* ARG1 at this point is guaranteed to point to CTX from
461 * the verifier side due to the fact that the tail call is
462 * handeled like a helper, that is, bpf_tail_call_proto,
463 * where arg1_type is ARG_PTR_TO_CTX.
523 if (((s64
) DST
) > ((s64
) SRC
)) {
529 if (((s64
) DST
) > ((s64
) IMM
)) {
535 if (((s64
) DST
) >= ((s64
) SRC
)) {
541 if (((s64
) DST
) >= ((s64
) IMM
)) {
561 /* STX and ST and LDX*/
562 #define LDST(SIZEOP, SIZE) \
564 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
567 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
570 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
578 STX_XADD_W
: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
579 atomic_add((u32
) SRC
, (atomic_t
*)(unsigned long)
582 STX_XADD_DW
: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
583 atomic64_add((u64
) SRC
, (atomic64_t
*)(unsigned long)
586 LD_ABS_W
: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
589 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
590 * only appearing in the programs where ctx ==
591 * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
592 * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
593 * internal BPF verifier will check that BPF_R6 ==
596 * BPF_ABS and BPF_IND are wrappers of function calls,
597 * so they scratch BPF_R1-BPF_R5 registers, preserve
598 * BPF_R6-BPF_R9, and store return value into BPF_R0.
601 * ctx == skb == BPF_R6 == CTX
604 * SRC == any register
605 * IMM == 32-bit immediate
608 * BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
611 ptr
= bpf_load_pointer((struct sk_buff
*) (unsigned long) CTX
, off
, 4, &tmp
);
612 if (likely(ptr
!= NULL
)) {
613 BPF_R0
= get_unaligned_be32(ptr
);
618 LD_ABS_H
: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
621 ptr
= bpf_load_pointer((struct sk_buff
*) (unsigned long) CTX
, off
, 2, &tmp
);
622 if (likely(ptr
!= NULL
)) {
623 BPF_R0
= get_unaligned_be16(ptr
);
628 LD_ABS_B
: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
631 ptr
= bpf_load_pointer((struct sk_buff
*) (unsigned long) CTX
, off
, 1, &tmp
);
632 if (likely(ptr
!= NULL
)) {
638 LD_IND_W
: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
641 LD_IND_H
: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
644 LD_IND_B
: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
649 /* If we ever reach this, we have a bug somewhere. */
650 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn
->code
);
653 STACK_FRAME_NON_STANDARD(__bpf_prog_run
); /* jump table */
655 bool bpf_prog_array_compatible(struct bpf_array
*array
,
656 const struct bpf_prog
*fp
)
658 if (!array
->owner_prog_type
) {
659 /* There's no owner yet where we could check for
662 array
->owner_prog_type
= fp
->type
;
663 array
->owner_jited
= fp
->jited
;
668 return array
->owner_prog_type
== fp
->type
&&
669 array
->owner_jited
== fp
->jited
;
672 static int bpf_check_tail_call(const struct bpf_prog
*fp
)
674 struct bpf_prog_aux
*aux
= fp
->aux
;
677 for (i
= 0; i
< aux
->used_map_cnt
; i
++) {
678 struct bpf_map
*map
= aux
->used_maps
[i
];
679 struct bpf_array
*array
;
681 if (map
->map_type
!= BPF_MAP_TYPE_PROG_ARRAY
)
684 array
= container_of(map
, struct bpf_array
, map
);
685 if (!bpf_prog_array_compatible(array
, fp
))
693 * bpf_prog_select_runtime - select exec runtime for BPF program
694 * @fp: bpf_prog populated with internal BPF program
696 * Try to JIT eBPF program, if JIT is not available, use interpreter.
697 * The BPF program will be executed via BPF_PROG_RUN() macro.
699 int bpf_prog_select_runtime(struct bpf_prog
*fp
)
701 fp
->bpf_func
= (void *) __bpf_prog_run
;
703 bpf_int_jit_compile(fp
);
704 bpf_prog_lock_ro(fp
);
706 /* The tail call compatibility check can only be done at
707 * this late stage as we need to determine, if we deal
708 * with JITed or non JITed program concatenations and not
709 * all eBPF JITs might immediately support all features.
711 return bpf_check_tail_call(fp
);
713 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime
);
715 static void bpf_prog_free_deferred(struct work_struct
*work
)
717 struct bpf_prog_aux
*aux
;
719 aux
= container_of(work
, struct bpf_prog_aux
, work
);
720 bpf_jit_free(aux
->prog
);
723 /* Free internal BPF program */
724 void bpf_prog_free(struct bpf_prog
*fp
)
726 struct bpf_prog_aux
*aux
= fp
->aux
;
728 INIT_WORK(&aux
->work
, bpf_prog_free_deferred
);
729 schedule_work(&aux
->work
);
731 EXPORT_SYMBOL_GPL(bpf_prog_free
);
733 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
734 static DEFINE_PER_CPU(struct rnd_state
, bpf_user_rnd_state
);
736 void bpf_user_rnd_init_once(void)
738 prandom_init_once(&bpf_user_rnd_state
);
741 u64
bpf_user_rnd_u32(u64 r1
, u64 r2
, u64 r3
, u64 r4
, u64 r5
)
743 /* Should someone ever have the rather unwise idea to use some
744 * of the registers passed into this function, then note that
745 * this function is called from native eBPF and classic-to-eBPF
746 * transformations. Register assignments from both sides are
747 * different, f.e. classic always sets fn(ctx, A, X) here.
749 struct rnd_state
*state
;
752 state
= &get_cpu_var(bpf_user_rnd_state
);
753 res
= prandom_u32_state(state
);
759 /* Weak definitions of helper functions in case we don't have bpf syscall. */
760 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak
;
761 const struct bpf_func_proto bpf_map_update_elem_proto __weak
;
762 const struct bpf_func_proto bpf_map_delete_elem_proto __weak
;
764 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak
;
765 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak
;
766 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak
;
767 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak
;
768 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak
;
769 const struct bpf_func_proto bpf_get_current_comm_proto __weak
;
770 const struct bpf_func_proto
* __weak
bpf_get_trace_printk_proto(void)
775 /* Always built-in helper functions. */
776 const struct bpf_func_proto bpf_tail_call_proto
= {
779 .ret_type
= RET_VOID
,
780 .arg1_type
= ARG_PTR_TO_CTX
,
781 .arg2_type
= ARG_CONST_MAP_PTR
,
782 .arg3_type
= ARG_ANYTHING
,
785 /* For classic BPF JITs that don't implement bpf_int_jit_compile(). */
786 void __weak
bpf_int_jit_compile(struct bpf_prog
*prog
)
790 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
791 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
793 int __weak
skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
,