Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / kernel / printk / printk.c
blobbfbf284e421864377f72d4d2cb22a9dde264f327
1 /*
2 * linux/kernel/printk.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/utsname.h>
47 #include <linux/ctype.h>
48 #include <linux/uio.h>
50 #include <asm/uaccess.h>
51 #include <asm-generic/sections.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/printk.h>
56 #include "console_cmdline.h"
57 #include "braille.h"
59 int console_printk[4] = {
60 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
61 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
62 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
63 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
67 * Low level drivers may need that to know if they can schedule in
68 * their unblank() callback or not. So let's export it.
70 int oops_in_progress;
71 EXPORT_SYMBOL(oops_in_progress);
74 * console_sem protects the console_drivers list, and also
75 * provides serialisation for access to the entire console
76 * driver system.
78 static DEFINE_SEMAPHORE(console_sem);
79 struct console *console_drivers;
80 EXPORT_SYMBOL_GPL(console_drivers);
82 #ifdef CONFIG_LOCKDEP
83 static struct lockdep_map console_lock_dep_map = {
84 .name = "console_lock"
86 #endif
89 * Number of registered extended console drivers.
91 * If extended consoles are present, in-kernel cont reassembly is disabled
92 * and each fragment is stored as a separate log entry with proper
93 * continuation flag so that every emitted message has full metadata. This
94 * doesn't change the result for regular consoles or /proc/kmsg. For
95 * /dev/kmsg, as long as the reader concatenates messages according to
96 * consecutive continuation flags, the end result should be the same too.
98 static int nr_ext_console_drivers;
101 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
102 * macros instead of functions so that _RET_IP_ contains useful information.
104 #define down_console_sem() do { \
105 down(&console_sem);\
106 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
107 } while (0)
109 static int __down_trylock_console_sem(unsigned long ip)
111 if (down_trylock(&console_sem))
112 return 1;
113 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
114 return 0;
116 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
118 #define up_console_sem() do { \
119 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
120 up(&console_sem);\
121 } while (0)
124 * This is used for debugging the mess that is the VT code by
125 * keeping track if we have the console semaphore held. It's
126 * definitely not the perfect debug tool (we don't know if _WE_
127 * hold it and are racing, but it helps tracking those weird code
128 * paths in the console code where we end up in places I want
129 * locked without the console sempahore held).
131 static int console_locked, console_suspended;
134 * If exclusive_console is non-NULL then only this console is to be printed to.
136 static struct console *exclusive_console;
139 * Array of consoles built from command line options (console=)
142 #define MAX_CMDLINECONSOLES 8
144 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
146 static int selected_console = -1;
147 static int preferred_console = -1;
148 int console_set_on_cmdline;
149 EXPORT_SYMBOL(console_set_on_cmdline);
151 /* Flag: console code may call schedule() */
152 static int console_may_schedule;
155 * The printk log buffer consists of a chain of concatenated variable
156 * length records. Every record starts with a record header, containing
157 * the overall length of the record.
159 * The heads to the first and last entry in the buffer, as well as the
160 * sequence numbers of these entries are maintained when messages are
161 * stored.
163 * If the heads indicate available messages, the length in the header
164 * tells the start next message. A length == 0 for the next message
165 * indicates a wrap-around to the beginning of the buffer.
167 * Every record carries the monotonic timestamp in microseconds, as well as
168 * the standard userspace syslog level and syslog facility. The usual
169 * kernel messages use LOG_KERN; userspace-injected messages always carry
170 * a matching syslog facility, by default LOG_USER. The origin of every
171 * message can be reliably determined that way.
173 * The human readable log message directly follows the message header. The
174 * length of the message text is stored in the header, the stored message
175 * is not terminated.
177 * Optionally, a message can carry a dictionary of properties (key/value pairs),
178 * to provide userspace with a machine-readable message context.
180 * Examples for well-defined, commonly used property names are:
181 * DEVICE=b12:8 device identifier
182 * b12:8 block dev_t
183 * c127:3 char dev_t
184 * n8 netdev ifindex
185 * +sound:card0 subsystem:devname
186 * SUBSYSTEM=pci driver-core subsystem name
188 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
189 * follows directly after a '=' character. Every property is terminated by
190 * a '\0' character. The last property is not terminated.
192 * Example of a message structure:
193 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
194 * 0008 34 00 record is 52 bytes long
195 * 000a 0b 00 text is 11 bytes long
196 * 000c 1f 00 dictionary is 23 bytes long
197 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
198 * 0010 69 74 27 73 20 61 20 6c "it's a l"
199 * 69 6e 65 "ine"
200 * 001b 44 45 56 49 43 "DEVIC"
201 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
202 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
203 * 67 "g"
204 * 0032 00 00 00 padding to next message header
206 * The 'struct printk_log' buffer header must never be directly exported to
207 * userspace, it is a kernel-private implementation detail that might
208 * need to be changed in the future, when the requirements change.
210 * /dev/kmsg exports the structured data in the following line format:
211 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
213 * Users of the export format should ignore possible additional values
214 * separated by ',', and find the message after the ';' character.
216 * The optional key/value pairs are attached as continuation lines starting
217 * with a space character and terminated by a newline. All possible
218 * non-prinatable characters are escaped in the "\xff" notation.
221 enum log_flags {
222 LOG_NOCONS = 1, /* already flushed, do not print to console */
223 LOG_NEWLINE = 2, /* text ended with a newline */
224 LOG_PREFIX = 4, /* text started with a prefix */
225 LOG_CONT = 8, /* text is a fragment of a continuation line */
228 struct printk_log {
229 u64 ts_nsec; /* timestamp in nanoseconds */
230 u16 len; /* length of entire record */
231 u16 text_len; /* length of text buffer */
232 u16 dict_len; /* length of dictionary buffer */
233 u8 facility; /* syslog facility */
234 u8 flags:5; /* internal record flags */
235 u8 level:3; /* syslog level */
237 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
238 __packed __aligned(4)
239 #endif
243 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
244 * within the scheduler's rq lock. It must be released before calling
245 * console_unlock() or anything else that might wake up a process.
247 static DEFINE_RAW_SPINLOCK(logbuf_lock);
249 #ifdef CONFIG_PRINTK
250 DECLARE_WAIT_QUEUE_HEAD(log_wait);
251 /* the next printk record to read by syslog(READ) or /proc/kmsg */
252 static u64 syslog_seq;
253 static u32 syslog_idx;
254 static enum log_flags syslog_prev;
255 static size_t syslog_partial;
257 /* index and sequence number of the first record stored in the buffer */
258 static u64 log_first_seq;
259 static u32 log_first_idx;
261 /* index and sequence number of the next record to store in the buffer */
262 static u64 log_next_seq;
263 static u32 log_next_idx;
265 /* the next printk record to write to the console */
266 static u64 console_seq;
267 static u32 console_idx;
268 static enum log_flags console_prev;
270 /* the next printk record to read after the last 'clear' command */
271 static u64 clear_seq;
272 static u32 clear_idx;
274 #define PREFIX_MAX 32
275 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
277 #define LOG_LEVEL(v) ((v) & 0x07)
278 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
280 /* record buffer */
281 #define LOG_ALIGN __alignof__(struct printk_log)
282 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
283 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
284 static char *log_buf = __log_buf;
285 static u32 log_buf_len = __LOG_BUF_LEN;
287 /* Return log buffer address */
288 char *log_buf_addr_get(void)
290 return log_buf;
293 /* Return log buffer size */
294 u32 log_buf_len_get(void)
296 return log_buf_len;
299 /* human readable text of the record */
300 static char *log_text(const struct printk_log *msg)
302 return (char *)msg + sizeof(struct printk_log);
305 /* optional key/value pair dictionary attached to the record */
306 static char *log_dict(const struct printk_log *msg)
308 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
311 /* get record by index; idx must point to valid msg */
312 static struct printk_log *log_from_idx(u32 idx)
314 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
317 * A length == 0 record is the end of buffer marker. Wrap around and
318 * read the message at the start of the buffer.
320 if (!msg->len)
321 return (struct printk_log *)log_buf;
322 return msg;
325 /* get next record; idx must point to valid msg */
326 static u32 log_next(u32 idx)
328 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
330 /* length == 0 indicates the end of the buffer; wrap */
332 * A length == 0 record is the end of buffer marker. Wrap around and
333 * read the message at the start of the buffer as *this* one, and
334 * return the one after that.
336 if (!msg->len) {
337 msg = (struct printk_log *)log_buf;
338 return msg->len;
340 return idx + msg->len;
344 * Check whether there is enough free space for the given message.
346 * The same values of first_idx and next_idx mean that the buffer
347 * is either empty or full.
349 * If the buffer is empty, we must respect the position of the indexes.
350 * They cannot be reset to the beginning of the buffer.
352 static int logbuf_has_space(u32 msg_size, bool empty)
354 u32 free;
356 if (log_next_idx > log_first_idx || empty)
357 free = max(log_buf_len - log_next_idx, log_first_idx);
358 else
359 free = log_first_idx - log_next_idx;
362 * We need space also for an empty header that signalizes wrapping
363 * of the buffer.
365 return free >= msg_size + sizeof(struct printk_log);
368 static int log_make_free_space(u32 msg_size)
370 while (log_first_seq < log_next_seq &&
371 !logbuf_has_space(msg_size, false)) {
372 /* drop old messages until we have enough contiguous space */
373 log_first_idx = log_next(log_first_idx);
374 log_first_seq++;
377 if (clear_seq < log_first_seq) {
378 clear_seq = log_first_seq;
379 clear_idx = log_first_idx;
382 /* sequence numbers are equal, so the log buffer is empty */
383 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
384 return 0;
386 return -ENOMEM;
389 /* compute the message size including the padding bytes */
390 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
392 u32 size;
394 size = sizeof(struct printk_log) + text_len + dict_len;
395 *pad_len = (-size) & (LOG_ALIGN - 1);
396 size += *pad_len;
398 return size;
402 * Define how much of the log buffer we could take at maximum. The value
403 * must be greater than two. Note that only half of the buffer is available
404 * when the index points to the middle.
406 #define MAX_LOG_TAKE_PART 4
407 static const char trunc_msg[] = "<truncated>";
409 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
410 u16 *dict_len, u32 *pad_len)
413 * The message should not take the whole buffer. Otherwise, it might
414 * get removed too soon.
416 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
417 if (*text_len > max_text_len)
418 *text_len = max_text_len;
419 /* enable the warning message */
420 *trunc_msg_len = strlen(trunc_msg);
421 /* disable the "dict" completely */
422 *dict_len = 0;
423 /* compute the size again, count also the warning message */
424 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
427 /* insert record into the buffer, discard old ones, update heads */
428 static int log_store(int facility, int level,
429 enum log_flags flags, u64 ts_nsec,
430 const char *dict, u16 dict_len,
431 const char *text, u16 text_len)
433 struct printk_log *msg;
434 u32 size, pad_len;
435 u16 trunc_msg_len = 0;
437 /* number of '\0' padding bytes to next message */
438 size = msg_used_size(text_len, dict_len, &pad_len);
440 if (log_make_free_space(size)) {
441 /* truncate the message if it is too long for empty buffer */
442 size = truncate_msg(&text_len, &trunc_msg_len,
443 &dict_len, &pad_len);
444 /* survive when the log buffer is too small for trunc_msg */
445 if (log_make_free_space(size))
446 return 0;
449 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
451 * This message + an additional empty header does not fit
452 * at the end of the buffer. Add an empty header with len == 0
453 * to signify a wrap around.
455 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
456 log_next_idx = 0;
459 /* fill message */
460 msg = (struct printk_log *)(log_buf + log_next_idx);
461 memcpy(log_text(msg), text, text_len);
462 msg->text_len = text_len;
463 if (trunc_msg_len) {
464 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
465 msg->text_len += trunc_msg_len;
467 memcpy(log_dict(msg), dict, dict_len);
468 msg->dict_len = dict_len;
469 msg->facility = facility;
470 msg->level = level & 7;
471 msg->flags = flags & 0x1f;
472 if (ts_nsec > 0)
473 msg->ts_nsec = ts_nsec;
474 else
475 msg->ts_nsec = local_clock();
476 memset(log_dict(msg) + dict_len, 0, pad_len);
477 msg->len = size;
479 /* insert message */
480 log_next_idx += msg->len;
481 log_next_seq++;
483 return msg->text_len;
486 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
488 static int syslog_action_restricted(int type)
490 if (dmesg_restrict)
491 return 1;
493 * Unless restricted, we allow "read all" and "get buffer size"
494 * for everybody.
496 return type != SYSLOG_ACTION_READ_ALL &&
497 type != SYSLOG_ACTION_SIZE_BUFFER;
500 int check_syslog_permissions(int type, int source)
503 * If this is from /proc/kmsg and we've already opened it, then we've
504 * already done the capabilities checks at open time.
506 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
507 goto ok;
509 if (syslog_action_restricted(type)) {
510 if (capable(CAP_SYSLOG))
511 goto ok;
513 * For historical reasons, accept CAP_SYS_ADMIN too, with
514 * a warning.
516 if (capable(CAP_SYS_ADMIN)) {
517 pr_warn_once("%s (%d): Attempt to access syslog with "
518 "CAP_SYS_ADMIN but no CAP_SYSLOG "
519 "(deprecated).\n",
520 current->comm, task_pid_nr(current));
521 goto ok;
523 return -EPERM;
526 return security_syslog(type);
528 EXPORT_SYMBOL_GPL(check_syslog_permissions);
530 static void append_char(char **pp, char *e, char c)
532 if (*pp < e)
533 *(*pp)++ = c;
536 static ssize_t msg_print_ext_header(char *buf, size_t size,
537 struct printk_log *msg, u64 seq,
538 enum log_flags prev_flags)
540 u64 ts_usec = msg->ts_nsec;
541 char cont = '-';
543 do_div(ts_usec, 1000);
546 * If we couldn't merge continuation line fragments during the print,
547 * export the stored flags to allow an optional external merge of the
548 * records. Merging the records isn't always neccessarily correct, like
549 * when we hit a race during printing. In most cases though, it produces
550 * better readable output. 'c' in the record flags mark the first
551 * fragment of a line, '+' the following.
553 if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
554 cont = 'c';
555 else if ((msg->flags & LOG_CONT) ||
556 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
557 cont = '+';
559 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
560 (msg->facility << 3) | msg->level, seq, ts_usec, cont);
563 static ssize_t msg_print_ext_body(char *buf, size_t size,
564 char *dict, size_t dict_len,
565 char *text, size_t text_len)
567 char *p = buf, *e = buf + size;
568 size_t i;
570 /* escape non-printable characters */
571 for (i = 0; i < text_len; i++) {
572 unsigned char c = text[i];
574 if (c < ' ' || c >= 127 || c == '\\')
575 p += scnprintf(p, e - p, "\\x%02x", c);
576 else
577 append_char(&p, e, c);
579 append_char(&p, e, '\n');
581 if (dict_len) {
582 bool line = true;
584 for (i = 0; i < dict_len; i++) {
585 unsigned char c = dict[i];
587 if (line) {
588 append_char(&p, e, ' ');
589 line = false;
592 if (c == '\0') {
593 append_char(&p, e, '\n');
594 line = true;
595 continue;
598 if (c < ' ' || c >= 127 || c == '\\') {
599 p += scnprintf(p, e - p, "\\x%02x", c);
600 continue;
603 append_char(&p, e, c);
605 append_char(&p, e, '\n');
608 return p - buf;
611 /* /dev/kmsg - userspace message inject/listen interface */
612 struct devkmsg_user {
613 u64 seq;
614 u32 idx;
615 enum log_flags prev;
616 struct mutex lock;
617 char buf[CONSOLE_EXT_LOG_MAX];
620 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
622 char *buf, *line;
623 int level = default_message_loglevel;
624 int facility = 1; /* LOG_USER */
625 size_t len = iov_iter_count(from);
626 ssize_t ret = len;
628 if (len > LOG_LINE_MAX)
629 return -EINVAL;
630 buf = kmalloc(len+1, GFP_KERNEL);
631 if (buf == NULL)
632 return -ENOMEM;
634 buf[len] = '\0';
635 if (copy_from_iter(buf, len, from) != len) {
636 kfree(buf);
637 return -EFAULT;
641 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
642 * the decimal value represents 32bit, the lower 3 bit are the log
643 * level, the rest are the log facility.
645 * If no prefix or no userspace facility is specified, we
646 * enforce LOG_USER, to be able to reliably distinguish
647 * kernel-generated messages from userspace-injected ones.
649 line = buf;
650 if (line[0] == '<') {
651 char *endp = NULL;
652 unsigned int u;
654 u = simple_strtoul(line + 1, &endp, 10);
655 if (endp && endp[0] == '>') {
656 level = LOG_LEVEL(u);
657 if (LOG_FACILITY(u) != 0)
658 facility = LOG_FACILITY(u);
659 endp++;
660 len -= endp - line;
661 line = endp;
665 printk_emit(facility, level, NULL, 0, "%s", line);
666 kfree(buf);
667 return ret;
670 static ssize_t devkmsg_read(struct file *file, char __user *buf,
671 size_t count, loff_t *ppos)
673 struct devkmsg_user *user = file->private_data;
674 struct printk_log *msg;
675 size_t len;
676 ssize_t ret;
678 if (!user)
679 return -EBADF;
681 ret = mutex_lock_interruptible(&user->lock);
682 if (ret)
683 return ret;
684 raw_spin_lock_irq(&logbuf_lock);
685 while (user->seq == log_next_seq) {
686 if (file->f_flags & O_NONBLOCK) {
687 ret = -EAGAIN;
688 raw_spin_unlock_irq(&logbuf_lock);
689 goto out;
692 raw_spin_unlock_irq(&logbuf_lock);
693 ret = wait_event_interruptible(log_wait,
694 user->seq != log_next_seq);
695 if (ret)
696 goto out;
697 raw_spin_lock_irq(&logbuf_lock);
700 if (user->seq < log_first_seq) {
701 /* our last seen message is gone, return error and reset */
702 user->idx = log_first_idx;
703 user->seq = log_first_seq;
704 ret = -EPIPE;
705 raw_spin_unlock_irq(&logbuf_lock);
706 goto out;
709 msg = log_from_idx(user->idx);
710 len = msg_print_ext_header(user->buf, sizeof(user->buf),
711 msg, user->seq, user->prev);
712 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
713 log_dict(msg), msg->dict_len,
714 log_text(msg), msg->text_len);
716 user->prev = msg->flags;
717 user->idx = log_next(user->idx);
718 user->seq++;
719 raw_spin_unlock_irq(&logbuf_lock);
721 if (len > count) {
722 ret = -EINVAL;
723 goto out;
726 if (copy_to_user(buf, user->buf, len)) {
727 ret = -EFAULT;
728 goto out;
730 ret = len;
731 out:
732 mutex_unlock(&user->lock);
733 return ret;
736 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
738 struct devkmsg_user *user = file->private_data;
739 loff_t ret = 0;
741 if (!user)
742 return -EBADF;
743 if (offset)
744 return -ESPIPE;
746 raw_spin_lock_irq(&logbuf_lock);
747 switch (whence) {
748 case SEEK_SET:
749 /* the first record */
750 user->idx = log_first_idx;
751 user->seq = log_first_seq;
752 break;
753 case SEEK_DATA:
755 * The first record after the last SYSLOG_ACTION_CLEAR,
756 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
757 * changes no global state, and does not clear anything.
759 user->idx = clear_idx;
760 user->seq = clear_seq;
761 break;
762 case SEEK_END:
763 /* after the last record */
764 user->idx = log_next_idx;
765 user->seq = log_next_seq;
766 break;
767 default:
768 ret = -EINVAL;
770 raw_spin_unlock_irq(&logbuf_lock);
771 return ret;
774 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
776 struct devkmsg_user *user = file->private_data;
777 int ret = 0;
779 if (!user)
780 return POLLERR|POLLNVAL;
782 poll_wait(file, &log_wait, wait);
784 raw_spin_lock_irq(&logbuf_lock);
785 if (user->seq < log_next_seq) {
786 /* return error when data has vanished underneath us */
787 if (user->seq < log_first_seq)
788 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
789 else
790 ret = POLLIN|POLLRDNORM;
792 raw_spin_unlock_irq(&logbuf_lock);
794 return ret;
797 static int devkmsg_open(struct inode *inode, struct file *file)
799 struct devkmsg_user *user;
800 int err;
802 /* write-only does not need any file context */
803 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
804 return 0;
806 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
807 SYSLOG_FROM_READER);
808 if (err)
809 return err;
811 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
812 if (!user)
813 return -ENOMEM;
815 mutex_init(&user->lock);
817 raw_spin_lock_irq(&logbuf_lock);
818 user->idx = log_first_idx;
819 user->seq = log_first_seq;
820 raw_spin_unlock_irq(&logbuf_lock);
822 file->private_data = user;
823 return 0;
826 static int devkmsg_release(struct inode *inode, struct file *file)
828 struct devkmsg_user *user = file->private_data;
830 if (!user)
831 return 0;
833 mutex_destroy(&user->lock);
834 kfree(user);
835 return 0;
838 const struct file_operations kmsg_fops = {
839 .open = devkmsg_open,
840 .read = devkmsg_read,
841 .write_iter = devkmsg_write,
842 .llseek = devkmsg_llseek,
843 .poll = devkmsg_poll,
844 .release = devkmsg_release,
847 #ifdef CONFIG_KEXEC_CORE
849 * This appends the listed symbols to /proc/vmcore
851 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
852 * obtain access to symbols that are otherwise very difficult to locate. These
853 * symbols are specifically used so that utilities can access and extract the
854 * dmesg log from a vmcore file after a crash.
856 void log_buf_kexec_setup(void)
858 VMCOREINFO_SYMBOL(log_buf);
859 VMCOREINFO_SYMBOL(log_buf_len);
860 VMCOREINFO_SYMBOL(log_first_idx);
861 VMCOREINFO_SYMBOL(clear_idx);
862 VMCOREINFO_SYMBOL(log_next_idx);
864 * Export struct printk_log size and field offsets. User space tools can
865 * parse it and detect any changes to structure down the line.
867 VMCOREINFO_STRUCT_SIZE(printk_log);
868 VMCOREINFO_OFFSET(printk_log, ts_nsec);
869 VMCOREINFO_OFFSET(printk_log, len);
870 VMCOREINFO_OFFSET(printk_log, text_len);
871 VMCOREINFO_OFFSET(printk_log, dict_len);
873 #endif
875 /* requested log_buf_len from kernel cmdline */
876 static unsigned long __initdata new_log_buf_len;
878 /* we practice scaling the ring buffer by powers of 2 */
879 static void __init log_buf_len_update(unsigned size)
881 if (size)
882 size = roundup_pow_of_two(size);
883 if (size > log_buf_len)
884 new_log_buf_len = size;
887 /* save requested log_buf_len since it's too early to process it */
888 static int __init log_buf_len_setup(char *str)
890 unsigned size = memparse(str, &str);
892 log_buf_len_update(size);
894 return 0;
896 early_param("log_buf_len", log_buf_len_setup);
898 #ifdef CONFIG_SMP
899 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
901 static void __init log_buf_add_cpu(void)
903 unsigned int cpu_extra;
906 * archs should set up cpu_possible_bits properly with
907 * set_cpu_possible() after setup_arch() but just in
908 * case lets ensure this is valid.
910 if (num_possible_cpus() == 1)
911 return;
913 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
915 /* by default this will only continue through for large > 64 CPUs */
916 if (cpu_extra <= __LOG_BUF_LEN / 2)
917 return;
919 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
920 __LOG_CPU_MAX_BUF_LEN);
921 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
922 cpu_extra);
923 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
925 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
927 #else /* !CONFIG_SMP */
928 static inline void log_buf_add_cpu(void) {}
929 #endif /* CONFIG_SMP */
931 void __init setup_log_buf(int early)
933 unsigned long flags;
934 char *new_log_buf;
935 int free;
937 if (log_buf != __log_buf)
938 return;
940 if (!early && !new_log_buf_len)
941 log_buf_add_cpu();
943 if (!new_log_buf_len)
944 return;
946 if (early) {
947 new_log_buf =
948 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
949 } else {
950 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
951 LOG_ALIGN);
954 if (unlikely(!new_log_buf)) {
955 pr_err("log_buf_len: %ld bytes not available\n",
956 new_log_buf_len);
957 return;
960 raw_spin_lock_irqsave(&logbuf_lock, flags);
961 log_buf_len = new_log_buf_len;
962 log_buf = new_log_buf;
963 new_log_buf_len = 0;
964 free = __LOG_BUF_LEN - log_next_idx;
965 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
966 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
968 pr_info("log_buf_len: %d bytes\n", log_buf_len);
969 pr_info("early log buf free: %d(%d%%)\n",
970 free, (free * 100) / __LOG_BUF_LEN);
973 static bool __read_mostly ignore_loglevel;
975 static int __init ignore_loglevel_setup(char *str)
977 ignore_loglevel = true;
978 pr_info("debug: ignoring loglevel setting.\n");
980 return 0;
983 early_param("ignore_loglevel", ignore_loglevel_setup);
984 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
985 MODULE_PARM_DESC(ignore_loglevel,
986 "ignore loglevel setting (prints all kernel messages to the console)");
988 #ifdef CONFIG_BOOT_PRINTK_DELAY
990 static int boot_delay; /* msecs delay after each printk during bootup */
991 static unsigned long long loops_per_msec; /* based on boot_delay */
993 static int __init boot_delay_setup(char *str)
995 unsigned long lpj;
997 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
998 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1000 get_option(&str, &boot_delay);
1001 if (boot_delay > 10 * 1000)
1002 boot_delay = 0;
1004 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1005 "HZ: %d, loops_per_msec: %llu\n",
1006 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1007 return 0;
1009 early_param("boot_delay", boot_delay_setup);
1011 static void boot_delay_msec(int level)
1013 unsigned long long k;
1014 unsigned long timeout;
1016 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1017 || (level >= console_loglevel && !ignore_loglevel)) {
1018 return;
1021 k = (unsigned long long)loops_per_msec * boot_delay;
1023 timeout = jiffies + msecs_to_jiffies(boot_delay);
1024 while (k) {
1025 k--;
1026 cpu_relax();
1028 * use (volatile) jiffies to prevent
1029 * compiler reduction; loop termination via jiffies
1030 * is secondary and may or may not happen.
1032 if (time_after(jiffies, timeout))
1033 break;
1034 touch_nmi_watchdog();
1037 #else
1038 static inline void boot_delay_msec(int level)
1041 #endif
1043 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1044 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1046 static size_t print_time(u64 ts, char *buf)
1048 unsigned long rem_nsec;
1050 if (!printk_time)
1051 return 0;
1053 rem_nsec = do_div(ts, 1000000000);
1055 if (!buf)
1056 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1058 return sprintf(buf, "[%5lu.%06lu] ",
1059 (unsigned long)ts, rem_nsec / 1000);
1062 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1064 size_t len = 0;
1065 unsigned int prefix = (msg->facility << 3) | msg->level;
1067 if (syslog) {
1068 if (buf) {
1069 len += sprintf(buf, "<%u>", prefix);
1070 } else {
1071 len += 3;
1072 if (prefix > 999)
1073 len += 3;
1074 else if (prefix > 99)
1075 len += 2;
1076 else if (prefix > 9)
1077 len++;
1081 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1082 return len;
1085 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1086 bool syslog, char *buf, size_t size)
1088 const char *text = log_text(msg);
1089 size_t text_size = msg->text_len;
1090 bool prefix = true;
1091 bool newline = true;
1092 size_t len = 0;
1094 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1095 prefix = false;
1097 if (msg->flags & LOG_CONT) {
1098 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1099 prefix = false;
1101 if (!(msg->flags & LOG_NEWLINE))
1102 newline = false;
1105 do {
1106 const char *next = memchr(text, '\n', text_size);
1107 size_t text_len;
1109 if (next) {
1110 text_len = next - text;
1111 next++;
1112 text_size -= next - text;
1113 } else {
1114 text_len = text_size;
1117 if (buf) {
1118 if (print_prefix(msg, syslog, NULL) +
1119 text_len + 1 >= size - len)
1120 break;
1122 if (prefix)
1123 len += print_prefix(msg, syslog, buf + len);
1124 memcpy(buf + len, text, text_len);
1125 len += text_len;
1126 if (next || newline)
1127 buf[len++] = '\n';
1128 } else {
1129 /* SYSLOG_ACTION_* buffer size only calculation */
1130 if (prefix)
1131 len += print_prefix(msg, syslog, NULL);
1132 len += text_len;
1133 if (next || newline)
1134 len++;
1137 prefix = true;
1138 text = next;
1139 } while (text);
1141 return len;
1144 static int syslog_print(char __user *buf, int size)
1146 char *text;
1147 struct printk_log *msg;
1148 int len = 0;
1150 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1151 if (!text)
1152 return -ENOMEM;
1154 while (size > 0) {
1155 size_t n;
1156 size_t skip;
1158 raw_spin_lock_irq(&logbuf_lock);
1159 if (syslog_seq < log_first_seq) {
1160 /* messages are gone, move to first one */
1161 syslog_seq = log_first_seq;
1162 syslog_idx = log_first_idx;
1163 syslog_prev = 0;
1164 syslog_partial = 0;
1166 if (syslog_seq == log_next_seq) {
1167 raw_spin_unlock_irq(&logbuf_lock);
1168 break;
1171 skip = syslog_partial;
1172 msg = log_from_idx(syslog_idx);
1173 n = msg_print_text(msg, syslog_prev, true, text,
1174 LOG_LINE_MAX + PREFIX_MAX);
1175 if (n - syslog_partial <= size) {
1176 /* message fits into buffer, move forward */
1177 syslog_idx = log_next(syslog_idx);
1178 syslog_seq++;
1179 syslog_prev = msg->flags;
1180 n -= syslog_partial;
1181 syslog_partial = 0;
1182 } else if (!len){
1183 /* partial read(), remember position */
1184 n = size;
1185 syslog_partial += n;
1186 } else
1187 n = 0;
1188 raw_spin_unlock_irq(&logbuf_lock);
1190 if (!n)
1191 break;
1193 if (copy_to_user(buf, text + skip, n)) {
1194 if (!len)
1195 len = -EFAULT;
1196 break;
1199 len += n;
1200 size -= n;
1201 buf += n;
1204 kfree(text);
1205 return len;
1208 static int syslog_print_all(char __user *buf, int size, bool clear)
1210 char *text;
1211 int len = 0;
1213 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1214 if (!text)
1215 return -ENOMEM;
1217 raw_spin_lock_irq(&logbuf_lock);
1218 if (buf) {
1219 u64 next_seq;
1220 u64 seq;
1221 u32 idx;
1222 enum log_flags prev;
1225 * Find first record that fits, including all following records,
1226 * into the user-provided buffer for this dump.
1228 seq = clear_seq;
1229 idx = clear_idx;
1230 prev = 0;
1231 while (seq < log_next_seq) {
1232 struct printk_log *msg = log_from_idx(idx);
1234 len += msg_print_text(msg, prev, true, NULL, 0);
1235 prev = msg->flags;
1236 idx = log_next(idx);
1237 seq++;
1240 /* move first record forward until length fits into the buffer */
1241 seq = clear_seq;
1242 idx = clear_idx;
1243 prev = 0;
1244 while (len > size && seq < log_next_seq) {
1245 struct printk_log *msg = log_from_idx(idx);
1247 len -= msg_print_text(msg, prev, true, NULL, 0);
1248 prev = msg->flags;
1249 idx = log_next(idx);
1250 seq++;
1253 /* last message fitting into this dump */
1254 next_seq = log_next_seq;
1256 len = 0;
1257 while (len >= 0 && seq < next_seq) {
1258 struct printk_log *msg = log_from_idx(idx);
1259 int textlen;
1261 textlen = msg_print_text(msg, prev, true, text,
1262 LOG_LINE_MAX + PREFIX_MAX);
1263 if (textlen < 0) {
1264 len = textlen;
1265 break;
1267 idx = log_next(idx);
1268 seq++;
1269 prev = msg->flags;
1271 raw_spin_unlock_irq(&logbuf_lock);
1272 if (copy_to_user(buf + len, text, textlen))
1273 len = -EFAULT;
1274 else
1275 len += textlen;
1276 raw_spin_lock_irq(&logbuf_lock);
1278 if (seq < log_first_seq) {
1279 /* messages are gone, move to next one */
1280 seq = log_first_seq;
1281 idx = log_first_idx;
1282 prev = 0;
1287 if (clear) {
1288 clear_seq = log_next_seq;
1289 clear_idx = log_next_idx;
1291 raw_spin_unlock_irq(&logbuf_lock);
1293 kfree(text);
1294 return len;
1297 int do_syslog(int type, char __user *buf, int len, int source)
1299 bool clear = false;
1300 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1301 int error;
1303 error = check_syslog_permissions(type, source);
1304 if (error)
1305 goto out;
1307 switch (type) {
1308 case SYSLOG_ACTION_CLOSE: /* Close log */
1309 break;
1310 case SYSLOG_ACTION_OPEN: /* Open log */
1311 break;
1312 case SYSLOG_ACTION_READ: /* Read from log */
1313 error = -EINVAL;
1314 if (!buf || len < 0)
1315 goto out;
1316 error = 0;
1317 if (!len)
1318 goto out;
1319 if (!access_ok(VERIFY_WRITE, buf, len)) {
1320 error = -EFAULT;
1321 goto out;
1323 error = wait_event_interruptible(log_wait,
1324 syslog_seq != log_next_seq);
1325 if (error)
1326 goto out;
1327 error = syslog_print(buf, len);
1328 break;
1329 /* Read/clear last kernel messages */
1330 case SYSLOG_ACTION_READ_CLEAR:
1331 clear = true;
1332 /* FALL THRU */
1333 /* Read last kernel messages */
1334 case SYSLOG_ACTION_READ_ALL:
1335 error = -EINVAL;
1336 if (!buf || len < 0)
1337 goto out;
1338 error = 0;
1339 if (!len)
1340 goto out;
1341 if (!access_ok(VERIFY_WRITE, buf, len)) {
1342 error = -EFAULT;
1343 goto out;
1345 error = syslog_print_all(buf, len, clear);
1346 break;
1347 /* Clear ring buffer */
1348 case SYSLOG_ACTION_CLEAR:
1349 syslog_print_all(NULL, 0, true);
1350 break;
1351 /* Disable logging to console */
1352 case SYSLOG_ACTION_CONSOLE_OFF:
1353 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1354 saved_console_loglevel = console_loglevel;
1355 console_loglevel = minimum_console_loglevel;
1356 break;
1357 /* Enable logging to console */
1358 case SYSLOG_ACTION_CONSOLE_ON:
1359 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1360 console_loglevel = saved_console_loglevel;
1361 saved_console_loglevel = LOGLEVEL_DEFAULT;
1363 break;
1364 /* Set level of messages printed to console */
1365 case SYSLOG_ACTION_CONSOLE_LEVEL:
1366 error = -EINVAL;
1367 if (len < 1 || len > 8)
1368 goto out;
1369 if (len < minimum_console_loglevel)
1370 len = minimum_console_loglevel;
1371 console_loglevel = len;
1372 /* Implicitly re-enable logging to console */
1373 saved_console_loglevel = LOGLEVEL_DEFAULT;
1374 error = 0;
1375 break;
1376 /* Number of chars in the log buffer */
1377 case SYSLOG_ACTION_SIZE_UNREAD:
1378 raw_spin_lock_irq(&logbuf_lock);
1379 if (syslog_seq < log_first_seq) {
1380 /* messages are gone, move to first one */
1381 syslog_seq = log_first_seq;
1382 syslog_idx = log_first_idx;
1383 syslog_prev = 0;
1384 syslog_partial = 0;
1386 if (source == SYSLOG_FROM_PROC) {
1388 * Short-cut for poll(/"proc/kmsg") which simply checks
1389 * for pending data, not the size; return the count of
1390 * records, not the length.
1392 error = log_next_seq - syslog_seq;
1393 } else {
1394 u64 seq = syslog_seq;
1395 u32 idx = syslog_idx;
1396 enum log_flags prev = syslog_prev;
1398 error = 0;
1399 while (seq < log_next_seq) {
1400 struct printk_log *msg = log_from_idx(idx);
1402 error += msg_print_text(msg, prev, true, NULL, 0);
1403 idx = log_next(idx);
1404 seq++;
1405 prev = msg->flags;
1407 error -= syslog_partial;
1409 raw_spin_unlock_irq(&logbuf_lock);
1410 break;
1411 /* Size of the log buffer */
1412 case SYSLOG_ACTION_SIZE_BUFFER:
1413 error = log_buf_len;
1414 break;
1415 default:
1416 error = -EINVAL;
1417 break;
1419 out:
1420 return error;
1423 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1425 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1429 * Call the console drivers, asking them to write out
1430 * log_buf[start] to log_buf[end - 1].
1431 * The console_lock must be held.
1433 static void call_console_drivers(int level,
1434 const char *ext_text, size_t ext_len,
1435 const char *text, size_t len)
1437 struct console *con;
1439 trace_console(text, len);
1441 if (level >= console_loglevel && !ignore_loglevel)
1442 return;
1443 if (!console_drivers)
1444 return;
1446 for_each_console(con) {
1447 if (exclusive_console && con != exclusive_console)
1448 continue;
1449 if (!(con->flags & CON_ENABLED))
1450 continue;
1451 if (!con->write)
1452 continue;
1453 if (!cpu_online(smp_processor_id()) &&
1454 !(con->flags & CON_ANYTIME))
1455 continue;
1456 if (con->flags & CON_EXTENDED)
1457 con->write(con, ext_text, ext_len);
1458 else
1459 con->write(con, text, len);
1464 * Zap console related locks when oopsing.
1465 * To leave time for slow consoles to print a full oops,
1466 * only zap at most once every 30 seconds.
1468 static void zap_locks(void)
1470 static unsigned long oops_timestamp;
1472 if (time_after_eq(jiffies, oops_timestamp) &&
1473 !time_after(jiffies, oops_timestamp + 30 * HZ))
1474 return;
1476 oops_timestamp = jiffies;
1478 debug_locks_off();
1479 /* If a crash is occurring, make sure we can't deadlock */
1480 raw_spin_lock_init(&logbuf_lock);
1481 /* And make sure that we print immediately */
1482 sema_init(&console_sem, 1);
1485 int printk_delay_msec __read_mostly;
1487 static inline void printk_delay(void)
1489 if (unlikely(printk_delay_msec)) {
1490 int m = printk_delay_msec;
1492 while (m--) {
1493 mdelay(1);
1494 touch_nmi_watchdog();
1500 * Continuation lines are buffered, and not committed to the record buffer
1501 * until the line is complete, or a race forces it. The line fragments
1502 * though, are printed immediately to the consoles to ensure everything has
1503 * reached the console in case of a kernel crash.
1505 static struct cont {
1506 char buf[LOG_LINE_MAX];
1507 size_t len; /* length == 0 means unused buffer */
1508 size_t cons; /* bytes written to console */
1509 struct task_struct *owner; /* task of first print*/
1510 u64 ts_nsec; /* time of first print */
1511 u8 level; /* log level of first message */
1512 u8 facility; /* log facility of first message */
1513 enum log_flags flags; /* prefix, newline flags */
1514 bool flushed:1; /* buffer sealed and committed */
1515 } cont;
1517 static void cont_flush(enum log_flags flags)
1519 if (cont.flushed)
1520 return;
1521 if (cont.len == 0)
1522 return;
1524 if (cont.cons) {
1526 * If a fragment of this line was directly flushed to the
1527 * console; wait for the console to pick up the rest of the
1528 * line. LOG_NOCONS suppresses a duplicated output.
1530 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1531 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1532 cont.flags = flags;
1533 cont.flushed = true;
1534 } else {
1536 * If no fragment of this line ever reached the console,
1537 * just submit it to the store and free the buffer.
1539 log_store(cont.facility, cont.level, flags, 0,
1540 NULL, 0, cont.buf, cont.len);
1541 cont.len = 0;
1545 static bool cont_add(int facility, int level, const char *text, size_t len)
1547 if (cont.len && cont.flushed)
1548 return false;
1551 * If ext consoles are present, flush and skip in-kernel
1552 * continuation. See nr_ext_console_drivers definition. Also, if
1553 * the line gets too long, split it up in separate records.
1555 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1556 cont_flush(LOG_CONT);
1557 return false;
1560 if (!cont.len) {
1561 cont.facility = facility;
1562 cont.level = level;
1563 cont.owner = current;
1564 cont.ts_nsec = local_clock();
1565 cont.flags = 0;
1566 cont.cons = 0;
1567 cont.flushed = false;
1570 memcpy(cont.buf + cont.len, text, len);
1571 cont.len += len;
1573 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1574 cont_flush(LOG_CONT);
1576 return true;
1579 static size_t cont_print_text(char *text, size_t size)
1581 size_t textlen = 0;
1582 size_t len;
1584 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1585 textlen += print_time(cont.ts_nsec, text);
1586 size -= textlen;
1589 len = cont.len - cont.cons;
1590 if (len > 0) {
1591 if (len+1 > size)
1592 len = size-1;
1593 memcpy(text + textlen, cont.buf + cont.cons, len);
1594 textlen += len;
1595 cont.cons = cont.len;
1598 if (cont.flushed) {
1599 if (cont.flags & LOG_NEWLINE)
1600 text[textlen++] = '\n';
1601 /* got everything, release buffer */
1602 cont.len = 0;
1604 return textlen;
1607 asmlinkage int vprintk_emit(int facility, int level,
1608 const char *dict, size_t dictlen,
1609 const char *fmt, va_list args)
1611 static bool recursion_bug;
1612 static char textbuf[LOG_LINE_MAX];
1613 char *text = textbuf;
1614 size_t text_len = 0;
1615 enum log_flags lflags = 0;
1616 unsigned long flags;
1617 int this_cpu;
1618 int printed_len = 0;
1619 bool in_sched = false;
1620 /* cpu currently holding logbuf_lock in this function */
1621 static unsigned int logbuf_cpu = UINT_MAX;
1623 if (level == LOGLEVEL_SCHED) {
1624 level = LOGLEVEL_DEFAULT;
1625 in_sched = true;
1628 boot_delay_msec(level);
1629 printk_delay();
1631 local_irq_save(flags);
1632 this_cpu = smp_processor_id();
1635 * Ouch, printk recursed into itself!
1637 if (unlikely(logbuf_cpu == this_cpu)) {
1639 * If a crash is occurring during printk() on this CPU,
1640 * then try to get the crash message out but make sure
1641 * we can't deadlock. Otherwise just return to avoid the
1642 * recursion and return - but flag the recursion so that
1643 * it can be printed at the next appropriate moment:
1645 if (!oops_in_progress && !lockdep_recursing(current)) {
1646 recursion_bug = true;
1647 local_irq_restore(flags);
1648 return 0;
1650 zap_locks();
1653 lockdep_off();
1654 /* This stops the holder of console_sem just where we want him */
1655 raw_spin_lock(&logbuf_lock);
1656 logbuf_cpu = this_cpu;
1658 if (unlikely(recursion_bug)) {
1659 static const char recursion_msg[] =
1660 "BUG: recent printk recursion!";
1662 recursion_bug = false;
1663 /* emit KERN_CRIT message */
1664 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1665 NULL, 0, recursion_msg,
1666 strlen(recursion_msg));
1670 * The printf needs to come first; we need the syslog
1671 * prefix which might be passed-in as a parameter.
1673 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1675 /* mark and strip a trailing newline */
1676 if (text_len && text[text_len-1] == '\n') {
1677 text_len--;
1678 lflags |= LOG_NEWLINE;
1681 /* strip kernel syslog prefix and extract log level or control flags */
1682 if (facility == 0) {
1683 int kern_level = printk_get_level(text);
1685 if (kern_level) {
1686 const char *end_of_header = printk_skip_level(text);
1687 switch (kern_level) {
1688 case '0' ... '7':
1689 if (level == LOGLEVEL_DEFAULT)
1690 level = kern_level - '0';
1691 /* fallthrough */
1692 case 'd': /* KERN_DEFAULT */
1693 lflags |= LOG_PREFIX;
1696 * No need to check length here because vscnprintf
1697 * put '\0' at the end of the string. Only valid and
1698 * newly printed level is detected.
1700 text_len -= end_of_header - text;
1701 text = (char *)end_of_header;
1705 if (level == LOGLEVEL_DEFAULT)
1706 level = default_message_loglevel;
1708 if (dict)
1709 lflags |= LOG_PREFIX|LOG_NEWLINE;
1711 if (!(lflags & LOG_NEWLINE)) {
1713 * Flush the conflicting buffer. An earlier newline was missing,
1714 * or another task also prints continuation lines.
1716 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1717 cont_flush(LOG_NEWLINE);
1719 /* buffer line if possible, otherwise store it right away */
1720 if (cont_add(facility, level, text, text_len))
1721 printed_len += text_len;
1722 else
1723 printed_len += log_store(facility, level,
1724 lflags | LOG_CONT, 0,
1725 dict, dictlen, text, text_len);
1726 } else {
1727 bool stored = false;
1730 * If an earlier newline was missing and it was the same task,
1731 * either merge it with the current buffer and flush, or if
1732 * there was a race with interrupts (prefix == true) then just
1733 * flush it out and store this line separately.
1734 * If the preceding printk was from a different task and missed
1735 * a newline, flush and append the newline.
1737 if (cont.len) {
1738 if (cont.owner == current && !(lflags & LOG_PREFIX))
1739 stored = cont_add(facility, level, text,
1740 text_len);
1741 cont_flush(LOG_NEWLINE);
1744 if (stored)
1745 printed_len += text_len;
1746 else
1747 printed_len += log_store(facility, level, lflags, 0,
1748 dict, dictlen, text, text_len);
1751 logbuf_cpu = UINT_MAX;
1752 raw_spin_unlock(&logbuf_lock);
1753 lockdep_on();
1754 local_irq_restore(flags);
1756 /* If called from the scheduler, we can not call up(). */
1757 if (!in_sched) {
1758 lockdep_off();
1760 * Try to acquire and then immediately release the console
1761 * semaphore. The release will print out buffers and wake up
1762 * /dev/kmsg and syslog() users.
1764 if (console_trylock())
1765 console_unlock();
1766 lockdep_on();
1769 return printed_len;
1771 EXPORT_SYMBOL(vprintk_emit);
1773 asmlinkage int vprintk(const char *fmt, va_list args)
1775 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1777 EXPORT_SYMBOL(vprintk);
1779 asmlinkage int printk_emit(int facility, int level,
1780 const char *dict, size_t dictlen,
1781 const char *fmt, ...)
1783 va_list args;
1784 int r;
1786 va_start(args, fmt);
1787 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1788 va_end(args);
1790 return r;
1792 EXPORT_SYMBOL(printk_emit);
1794 int vprintk_default(const char *fmt, va_list args)
1796 int r;
1798 #ifdef CONFIG_KGDB_KDB
1799 if (unlikely(kdb_trap_printk)) {
1800 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1801 return r;
1803 #endif
1804 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1806 return r;
1808 EXPORT_SYMBOL_GPL(vprintk_default);
1811 * This allows printk to be diverted to another function per cpu.
1812 * This is useful for calling printk functions from within NMI
1813 * without worrying about race conditions that can lock up the
1814 * box.
1816 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1819 * printk - print a kernel message
1820 * @fmt: format string
1822 * This is printk(). It can be called from any context. We want it to work.
1824 * We try to grab the console_lock. If we succeed, it's easy - we log the
1825 * output and call the console drivers. If we fail to get the semaphore, we
1826 * place the output into the log buffer and return. The current holder of
1827 * the console_sem will notice the new output in console_unlock(); and will
1828 * send it to the consoles before releasing the lock.
1830 * One effect of this deferred printing is that code which calls printk() and
1831 * then changes console_loglevel may break. This is because console_loglevel
1832 * is inspected when the actual printing occurs.
1834 * See also:
1835 * printf(3)
1837 * See the vsnprintf() documentation for format string extensions over C99.
1839 asmlinkage __visible int printk(const char *fmt, ...)
1841 printk_func_t vprintk_func;
1842 va_list args;
1843 int r;
1845 va_start(args, fmt);
1848 * If a caller overrides the per_cpu printk_func, then it needs
1849 * to disable preemption when calling printk(). Otherwise
1850 * the printk_func should be set to the default. No need to
1851 * disable preemption here.
1853 vprintk_func = this_cpu_read(printk_func);
1854 r = vprintk_func(fmt, args);
1856 va_end(args);
1858 return r;
1860 EXPORT_SYMBOL(printk);
1862 #else /* CONFIG_PRINTK */
1864 #define LOG_LINE_MAX 0
1865 #define PREFIX_MAX 0
1867 static u64 syslog_seq;
1868 static u32 syslog_idx;
1869 static u64 console_seq;
1870 static u32 console_idx;
1871 static enum log_flags syslog_prev;
1872 static u64 log_first_seq;
1873 static u32 log_first_idx;
1874 static u64 log_next_seq;
1875 static enum log_flags console_prev;
1876 static struct cont {
1877 size_t len;
1878 size_t cons;
1879 u8 level;
1880 bool flushed:1;
1881 } cont;
1882 static char *log_text(const struct printk_log *msg) { return NULL; }
1883 static char *log_dict(const struct printk_log *msg) { return NULL; }
1884 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1885 static u32 log_next(u32 idx) { return 0; }
1886 static ssize_t msg_print_ext_header(char *buf, size_t size,
1887 struct printk_log *msg, u64 seq,
1888 enum log_flags prev_flags) { return 0; }
1889 static ssize_t msg_print_ext_body(char *buf, size_t size,
1890 char *dict, size_t dict_len,
1891 char *text, size_t text_len) { return 0; }
1892 static void call_console_drivers(int level,
1893 const char *ext_text, size_t ext_len,
1894 const char *text, size_t len) {}
1895 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1896 bool syslog, char *buf, size_t size) { return 0; }
1897 static size_t cont_print_text(char *text, size_t size) { return 0; }
1899 /* Still needs to be defined for users */
1900 DEFINE_PER_CPU(printk_func_t, printk_func);
1902 #endif /* CONFIG_PRINTK */
1904 #ifdef CONFIG_EARLY_PRINTK
1905 struct console *early_console;
1907 asmlinkage __visible void early_printk(const char *fmt, ...)
1909 va_list ap;
1910 char buf[512];
1911 int n;
1913 if (!early_console)
1914 return;
1916 va_start(ap, fmt);
1917 n = vscnprintf(buf, sizeof(buf), fmt, ap);
1918 va_end(ap);
1920 early_console->write(early_console, buf, n);
1922 #endif
1924 static int __add_preferred_console(char *name, int idx, char *options,
1925 char *brl_options)
1927 struct console_cmdline *c;
1928 int i;
1931 * See if this tty is not yet registered, and
1932 * if we have a slot free.
1934 for (i = 0, c = console_cmdline;
1935 i < MAX_CMDLINECONSOLES && c->name[0];
1936 i++, c++) {
1937 if (strcmp(c->name, name) == 0 && c->index == idx) {
1938 if (!brl_options)
1939 selected_console = i;
1940 return 0;
1943 if (i == MAX_CMDLINECONSOLES)
1944 return -E2BIG;
1945 if (!brl_options)
1946 selected_console = i;
1947 strlcpy(c->name, name, sizeof(c->name));
1948 c->options = options;
1949 braille_set_options(c, brl_options);
1951 c->index = idx;
1952 return 0;
1955 * Set up a console. Called via do_early_param() in init/main.c
1956 * for each "console=" parameter in the boot command line.
1958 static int __init console_setup(char *str)
1960 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1961 char *s, *options, *brl_options = NULL;
1962 int idx;
1964 if (_braille_console_setup(&str, &brl_options))
1965 return 1;
1968 * Decode str into name, index, options.
1970 if (str[0] >= '0' && str[0] <= '9') {
1971 strcpy(buf, "ttyS");
1972 strncpy(buf + 4, str, sizeof(buf) - 5);
1973 } else {
1974 strncpy(buf, str, sizeof(buf) - 1);
1976 buf[sizeof(buf) - 1] = 0;
1977 options = strchr(str, ',');
1978 if (options)
1979 *(options++) = 0;
1980 #ifdef __sparc__
1981 if (!strcmp(str, "ttya"))
1982 strcpy(buf, "ttyS0");
1983 if (!strcmp(str, "ttyb"))
1984 strcpy(buf, "ttyS1");
1985 #endif
1986 for (s = buf; *s; s++)
1987 if (isdigit(*s) || *s == ',')
1988 break;
1989 idx = simple_strtoul(s, NULL, 10);
1990 *s = 0;
1992 __add_preferred_console(buf, idx, options, brl_options);
1993 console_set_on_cmdline = 1;
1994 return 1;
1996 __setup("console=", console_setup);
1999 * add_preferred_console - add a device to the list of preferred consoles.
2000 * @name: device name
2001 * @idx: device index
2002 * @options: options for this console
2004 * The last preferred console added will be used for kernel messages
2005 * and stdin/out/err for init. Normally this is used by console_setup
2006 * above to handle user-supplied console arguments; however it can also
2007 * be used by arch-specific code either to override the user or more
2008 * commonly to provide a default console (ie from PROM variables) when
2009 * the user has not supplied one.
2011 int add_preferred_console(char *name, int idx, char *options)
2013 return __add_preferred_console(name, idx, options, NULL);
2016 bool console_suspend_enabled = true;
2017 EXPORT_SYMBOL(console_suspend_enabled);
2019 static int __init console_suspend_disable(char *str)
2021 console_suspend_enabled = false;
2022 return 1;
2024 __setup("no_console_suspend", console_suspend_disable);
2025 module_param_named(console_suspend, console_suspend_enabled,
2026 bool, S_IRUGO | S_IWUSR);
2027 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2028 " and hibernate operations");
2031 * suspend_console - suspend the console subsystem
2033 * This disables printk() while we go into suspend states
2035 void suspend_console(void)
2037 if (!console_suspend_enabled)
2038 return;
2039 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2040 console_lock();
2041 console_suspended = 1;
2042 up_console_sem();
2045 void resume_console(void)
2047 if (!console_suspend_enabled)
2048 return;
2049 down_console_sem();
2050 console_suspended = 0;
2051 console_unlock();
2055 * console_cpu_notify - print deferred console messages after CPU hotplug
2056 * @self: notifier struct
2057 * @action: CPU hotplug event
2058 * @hcpu: unused
2060 * If printk() is called from a CPU that is not online yet, the messages
2061 * will be spooled but will not show up on the console. This function is
2062 * called when a new CPU comes online (or fails to come up), and ensures
2063 * that any such output gets printed.
2065 static int console_cpu_notify(struct notifier_block *self,
2066 unsigned long action, void *hcpu)
2068 switch (action) {
2069 case CPU_ONLINE:
2070 case CPU_DEAD:
2071 case CPU_DOWN_FAILED:
2072 case CPU_UP_CANCELED:
2073 console_lock();
2074 console_unlock();
2076 return NOTIFY_OK;
2080 * console_lock - lock the console system for exclusive use.
2082 * Acquires a lock which guarantees that the caller has
2083 * exclusive access to the console system and the console_drivers list.
2085 * Can sleep, returns nothing.
2087 void console_lock(void)
2089 might_sleep();
2091 down_console_sem();
2092 if (console_suspended)
2093 return;
2094 console_locked = 1;
2095 console_may_schedule = 1;
2097 EXPORT_SYMBOL(console_lock);
2100 * console_trylock - try to lock the console system for exclusive use.
2102 * Try to acquire a lock which guarantees that the caller has exclusive
2103 * access to the console system and the console_drivers list.
2105 * returns 1 on success, and 0 on failure to acquire the lock.
2107 int console_trylock(void)
2109 if (down_trylock_console_sem())
2110 return 0;
2111 if (console_suspended) {
2112 up_console_sem();
2113 return 0;
2115 console_locked = 1;
2117 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2118 * safe to schedule (e.g. calling printk while holding a spin_lock),
2119 * because preempt_disable()/preempt_enable() are just barriers there
2120 * and preempt_count() is always 0.
2122 * RCU read sections have a separate preemption counter when
2123 * PREEMPT_RCU enabled thus we must take extra care and check
2124 * rcu_preempt_depth(), otherwise RCU read sections modify
2125 * preempt_count().
2127 console_may_schedule = !oops_in_progress &&
2128 preemptible() &&
2129 !rcu_preempt_depth();
2130 return 1;
2132 EXPORT_SYMBOL(console_trylock);
2134 int is_console_locked(void)
2136 return console_locked;
2140 * Check if we have any console that is capable of printing while cpu is
2141 * booting or shutting down. Requires console_sem.
2143 static int have_callable_console(void)
2145 struct console *con;
2147 for_each_console(con)
2148 if ((con->flags & CON_ENABLED) &&
2149 (con->flags & CON_ANYTIME))
2150 return 1;
2152 return 0;
2156 * Can we actually use the console at this time on this cpu?
2158 * Console drivers may assume that per-cpu resources have been allocated. So
2159 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2160 * call them until this CPU is officially up.
2162 static inline int can_use_console(void)
2164 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2167 static void console_cont_flush(char *text, size_t size)
2169 unsigned long flags;
2170 size_t len;
2172 raw_spin_lock_irqsave(&logbuf_lock, flags);
2174 if (!cont.len)
2175 goto out;
2178 * We still queue earlier records, likely because the console was
2179 * busy. The earlier ones need to be printed before this one, we
2180 * did not flush any fragment so far, so just let it queue up.
2182 if (console_seq < log_next_seq && !cont.cons)
2183 goto out;
2185 len = cont_print_text(text, size);
2186 raw_spin_unlock(&logbuf_lock);
2187 stop_critical_timings();
2188 call_console_drivers(cont.level, NULL, 0, text, len);
2189 start_critical_timings();
2190 local_irq_restore(flags);
2191 return;
2192 out:
2193 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2197 * console_unlock - unlock the console system
2199 * Releases the console_lock which the caller holds on the console system
2200 * and the console driver list.
2202 * While the console_lock was held, console output may have been buffered
2203 * by printk(). If this is the case, console_unlock(); emits
2204 * the output prior to releasing the lock.
2206 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2208 * console_unlock(); may be called from any context.
2210 void console_unlock(void)
2212 static char ext_text[CONSOLE_EXT_LOG_MAX];
2213 static char text[LOG_LINE_MAX + PREFIX_MAX];
2214 static u64 seen_seq;
2215 unsigned long flags;
2216 bool wake_klogd = false;
2217 bool do_cond_resched, retry;
2219 if (console_suspended) {
2220 up_console_sem();
2221 return;
2225 * Console drivers are called under logbuf_lock, so
2226 * @console_may_schedule should be cleared before; however, we may
2227 * end up dumping a lot of lines, for example, if called from
2228 * console registration path, and should invoke cond_resched()
2229 * between lines if allowable. Not doing so can cause a very long
2230 * scheduling stall on a slow console leading to RCU stall and
2231 * softlockup warnings which exacerbate the issue with more
2232 * messages practically incapacitating the system.
2234 do_cond_resched = console_may_schedule;
2235 console_may_schedule = 0;
2237 again:
2239 * We released the console_sem lock, so we need to recheck if
2240 * cpu is online and (if not) is there at least one CON_ANYTIME
2241 * console.
2243 if (!can_use_console()) {
2244 console_locked = 0;
2245 up_console_sem();
2246 return;
2249 /* flush buffered message fragment immediately to console */
2250 console_cont_flush(text, sizeof(text));
2252 for (;;) {
2253 struct printk_log *msg;
2254 size_t ext_len = 0;
2255 size_t len;
2256 int level;
2258 raw_spin_lock_irqsave(&logbuf_lock, flags);
2259 if (seen_seq != log_next_seq) {
2260 wake_klogd = true;
2261 seen_seq = log_next_seq;
2264 if (console_seq < log_first_seq) {
2265 len = sprintf(text, "** %u printk messages dropped ** ",
2266 (unsigned)(log_first_seq - console_seq));
2268 /* messages are gone, move to first one */
2269 console_seq = log_first_seq;
2270 console_idx = log_first_idx;
2271 console_prev = 0;
2272 } else {
2273 len = 0;
2275 skip:
2276 if (console_seq == log_next_seq)
2277 break;
2279 msg = log_from_idx(console_idx);
2280 if (msg->flags & LOG_NOCONS) {
2282 * Skip record we have buffered and already printed
2283 * directly to the console when we received it.
2285 console_idx = log_next(console_idx);
2286 console_seq++;
2288 * We will get here again when we register a new
2289 * CON_PRINTBUFFER console. Clear the flag so we
2290 * will properly dump everything later.
2292 msg->flags &= ~LOG_NOCONS;
2293 console_prev = msg->flags;
2294 goto skip;
2297 level = msg->level;
2298 len += msg_print_text(msg, console_prev, false,
2299 text + len, sizeof(text) - len);
2300 if (nr_ext_console_drivers) {
2301 ext_len = msg_print_ext_header(ext_text,
2302 sizeof(ext_text),
2303 msg, console_seq, console_prev);
2304 ext_len += msg_print_ext_body(ext_text + ext_len,
2305 sizeof(ext_text) - ext_len,
2306 log_dict(msg), msg->dict_len,
2307 log_text(msg), msg->text_len);
2309 console_idx = log_next(console_idx);
2310 console_seq++;
2311 console_prev = msg->flags;
2312 raw_spin_unlock(&logbuf_lock);
2314 stop_critical_timings(); /* don't trace print latency */
2315 call_console_drivers(level, ext_text, ext_len, text, len);
2316 start_critical_timings();
2317 local_irq_restore(flags);
2319 if (do_cond_resched)
2320 cond_resched();
2322 console_locked = 0;
2324 /* Release the exclusive_console once it is used */
2325 if (unlikely(exclusive_console))
2326 exclusive_console = NULL;
2328 raw_spin_unlock(&logbuf_lock);
2330 up_console_sem();
2333 * Someone could have filled up the buffer again, so re-check if there's
2334 * something to flush. In case we cannot trylock the console_sem again,
2335 * there's a new owner and the console_unlock() from them will do the
2336 * flush, no worries.
2338 raw_spin_lock(&logbuf_lock);
2339 retry = console_seq != log_next_seq;
2340 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2342 if (retry && console_trylock())
2343 goto again;
2345 if (wake_klogd)
2346 wake_up_klogd();
2348 EXPORT_SYMBOL(console_unlock);
2351 * console_conditional_schedule - yield the CPU if required
2353 * If the console code is currently allowed to sleep, and
2354 * if this CPU should yield the CPU to another task, do
2355 * so here.
2357 * Must be called within console_lock();.
2359 void __sched console_conditional_schedule(void)
2361 if (console_may_schedule)
2362 cond_resched();
2364 EXPORT_SYMBOL(console_conditional_schedule);
2366 void console_unblank(void)
2368 struct console *c;
2371 * console_unblank can no longer be called in interrupt context unless
2372 * oops_in_progress is set to 1..
2374 if (oops_in_progress) {
2375 if (down_trylock_console_sem() != 0)
2376 return;
2377 } else
2378 console_lock();
2380 console_locked = 1;
2381 console_may_schedule = 0;
2382 for_each_console(c)
2383 if ((c->flags & CON_ENABLED) && c->unblank)
2384 c->unblank();
2385 console_unlock();
2389 * console_flush_on_panic - flush console content on panic
2391 * Immediately output all pending messages no matter what.
2393 void console_flush_on_panic(void)
2396 * If someone else is holding the console lock, trylock will fail
2397 * and may_schedule may be set. Ignore and proceed to unlock so
2398 * that messages are flushed out. As this can be called from any
2399 * context and we don't want to get preempted while flushing,
2400 * ensure may_schedule is cleared.
2402 console_trylock();
2403 console_may_schedule = 0;
2404 console_unlock();
2408 * Return the console tty driver structure and its associated index
2410 struct tty_driver *console_device(int *index)
2412 struct console *c;
2413 struct tty_driver *driver = NULL;
2415 console_lock();
2416 for_each_console(c) {
2417 if (!c->device)
2418 continue;
2419 driver = c->device(c, index);
2420 if (driver)
2421 break;
2423 console_unlock();
2424 return driver;
2428 * Prevent further output on the passed console device so that (for example)
2429 * serial drivers can disable console output before suspending a port, and can
2430 * re-enable output afterwards.
2432 void console_stop(struct console *console)
2434 console_lock();
2435 console->flags &= ~CON_ENABLED;
2436 console_unlock();
2438 EXPORT_SYMBOL(console_stop);
2440 void console_start(struct console *console)
2442 console_lock();
2443 console->flags |= CON_ENABLED;
2444 console_unlock();
2446 EXPORT_SYMBOL(console_start);
2448 static int __read_mostly keep_bootcon;
2450 static int __init keep_bootcon_setup(char *str)
2452 keep_bootcon = 1;
2453 pr_info("debug: skip boot console de-registration.\n");
2455 return 0;
2458 early_param("keep_bootcon", keep_bootcon_setup);
2461 * The console driver calls this routine during kernel initialization
2462 * to register the console printing procedure with printk() and to
2463 * print any messages that were printed by the kernel before the
2464 * console driver was initialized.
2466 * This can happen pretty early during the boot process (because of
2467 * early_printk) - sometimes before setup_arch() completes - be careful
2468 * of what kernel features are used - they may not be initialised yet.
2470 * There are two types of consoles - bootconsoles (early_printk) and
2471 * "real" consoles (everything which is not a bootconsole) which are
2472 * handled differently.
2473 * - Any number of bootconsoles can be registered at any time.
2474 * - As soon as a "real" console is registered, all bootconsoles
2475 * will be unregistered automatically.
2476 * - Once a "real" console is registered, any attempt to register a
2477 * bootconsoles will be rejected
2479 void register_console(struct console *newcon)
2481 int i;
2482 unsigned long flags;
2483 struct console *bcon = NULL;
2484 struct console_cmdline *c;
2486 if (console_drivers)
2487 for_each_console(bcon)
2488 if (WARN(bcon == newcon,
2489 "console '%s%d' already registered\n",
2490 bcon->name, bcon->index))
2491 return;
2494 * before we register a new CON_BOOT console, make sure we don't
2495 * already have a valid console
2497 if (console_drivers && newcon->flags & CON_BOOT) {
2498 /* find the last or real console */
2499 for_each_console(bcon) {
2500 if (!(bcon->flags & CON_BOOT)) {
2501 pr_info("Too late to register bootconsole %s%d\n",
2502 newcon->name, newcon->index);
2503 return;
2508 if (console_drivers && console_drivers->flags & CON_BOOT)
2509 bcon = console_drivers;
2511 if (preferred_console < 0 || bcon || !console_drivers)
2512 preferred_console = selected_console;
2515 * See if we want to use this console driver. If we
2516 * didn't select a console we take the first one
2517 * that registers here.
2519 if (preferred_console < 0) {
2520 if (newcon->index < 0)
2521 newcon->index = 0;
2522 if (newcon->setup == NULL ||
2523 newcon->setup(newcon, NULL) == 0) {
2524 newcon->flags |= CON_ENABLED;
2525 if (newcon->device) {
2526 newcon->flags |= CON_CONSDEV;
2527 preferred_console = 0;
2533 * See if this console matches one we selected on
2534 * the command line.
2536 for (i = 0, c = console_cmdline;
2537 i < MAX_CMDLINECONSOLES && c->name[0];
2538 i++, c++) {
2539 if (!newcon->match ||
2540 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2541 /* default matching */
2542 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2543 if (strcmp(c->name, newcon->name) != 0)
2544 continue;
2545 if (newcon->index >= 0 &&
2546 newcon->index != c->index)
2547 continue;
2548 if (newcon->index < 0)
2549 newcon->index = c->index;
2551 if (_braille_register_console(newcon, c))
2552 return;
2554 if (newcon->setup &&
2555 newcon->setup(newcon, c->options) != 0)
2556 break;
2559 newcon->flags |= CON_ENABLED;
2560 if (i == selected_console) {
2561 newcon->flags |= CON_CONSDEV;
2562 preferred_console = selected_console;
2564 break;
2567 if (!(newcon->flags & CON_ENABLED))
2568 return;
2571 * If we have a bootconsole, and are switching to a real console,
2572 * don't print everything out again, since when the boot console, and
2573 * the real console are the same physical device, it's annoying to
2574 * see the beginning boot messages twice
2576 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2577 newcon->flags &= ~CON_PRINTBUFFER;
2580 * Put this console in the list - keep the
2581 * preferred driver at the head of the list.
2583 console_lock();
2584 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2585 newcon->next = console_drivers;
2586 console_drivers = newcon;
2587 if (newcon->next)
2588 newcon->next->flags &= ~CON_CONSDEV;
2589 } else {
2590 newcon->next = console_drivers->next;
2591 console_drivers->next = newcon;
2594 if (newcon->flags & CON_EXTENDED)
2595 if (!nr_ext_console_drivers++)
2596 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2598 if (newcon->flags & CON_PRINTBUFFER) {
2600 * console_unlock(); will print out the buffered messages
2601 * for us.
2603 raw_spin_lock_irqsave(&logbuf_lock, flags);
2604 console_seq = syslog_seq;
2605 console_idx = syslog_idx;
2606 console_prev = syslog_prev;
2607 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2609 * We're about to replay the log buffer. Only do this to the
2610 * just-registered console to avoid excessive message spam to
2611 * the already-registered consoles.
2613 exclusive_console = newcon;
2615 console_unlock();
2616 console_sysfs_notify();
2619 * By unregistering the bootconsoles after we enable the real console
2620 * we get the "console xxx enabled" message on all the consoles -
2621 * boot consoles, real consoles, etc - this is to ensure that end
2622 * users know there might be something in the kernel's log buffer that
2623 * went to the bootconsole (that they do not see on the real console)
2625 pr_info("%sconsole [%s%d] enabled\n",
2626 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2627 newcon->name, newcon->index);
2628 if (bcon &&
2629 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2630 !keep_bootcon) {
2631 /* We need to iterate through all boot consoles, to make
2632 * sure we print everything out, before we unregister them.
2634 for_each_console(bcon)
2635 if (bcon->flags & CON_BOOT)
2636 unregister_console(bcon);
2639 EXPORT_SYMBOL(register_console);
2641 int unregister_console(struct console *console)
2643 struct console *a, *b;
2644 int res;
2646 pr_info("%sconsole [%s%d] disabled\n",
2647 (console->flags & CON_BOOT) ? "boot" : "" ,
2648 console->name, console->index);
2650 res = _braille_unregister_console(console);
2651 if (res)
2652 return res;
2654 res = 1;
2655 console_lock();
2656 if (console_drivers == console) {
2657 console_drivers=console->next;
2658 res = 0;
2659 } else if (console_drivers) {
2660 for (a=console_drivers->next, b=console_drivers ;
2661 a; b=a, a=b->next) {
2662 if (a == console) {
2663 b->next = a->next;
2664 res = 0;
2665 break;
2670 if (!res && (console->flags & CON_EXTENDED))
2671 nr_ext_console_drivers--;
2674 * If this isn't the last console and it has CON_CONSDEV set, we
2675 * need to set it on the next preferred console.
2677 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2678 console_drivers->flags |= CON_CONSDEV;
2680 console->flags &= ~CON_ENABLED;
2681 console_unlock();
2682 console_sysfs_notify();
2683 return res;
2685 EXPORT_SYMBOL(unregister_console);
2688 * Some boot consoles access data that is in the init section and which will
2689 * be discarded after the initcalls have been run. To make sure that no code
2690 * will access this data, unregister the boot consoles in a late initcall.
2692 * If for some reason, such as deferred probe or the driver being a loadable
2693 * module, the real console hasn't registered yet at this point, there will
2694 * be a brief interval in which no messages are logged to the console, which
2695 * makes it difficult to diagnose problems that occur during this time.
2697 * To mitigate this problem somewhat, only unregister consoles whose memory
2698 * intersects with the init section. Note that code exists elsewhere to get
2699 * rid of the boot console as soon as the proper console shows up, so there
2700 * won't be side-effects from postponing the removal.
2702 static int __init printk_late_init(void)
2704 struct console *con;
2706 for_each_console(con) {
2707 if (!keep_bootcon && con->flags & CON_BOOT) {
2709 * Make sure to unregister boot consoles whose data
2710 * resides in the init section before the init section
2711 * is discarded. Boot consoles whose data will stick
2712 * around will automatically be unregistered when the
2713 * proper console replaces them.
2715 if (init_section_intersects(con, sizeof(*con)))
2716 unregister_console(con);
2719 hotcpu_notifier(console_cpu_notify, 0);
2720 return 0;
2722 late_initcall(printk_late_init);
2724 #if defined CONFIG_PRINTK
2726 * Delayed printk version, for scheduler-internal messages:
2728 #define PRINTK_PENDING_WAKEUP 0x01
2729 #define PRINTK_PENDING_OUTPUT 0x02
2731 static DEFINE_PER_CPU(int, printk_pending);
2733 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2735 int pending = __this_cpu_xchg(printk_pending, 0);
2737 if (pending & PRINTK_PENDING_OUTPUT) {
2738 /* If trylock fails, someone else is doing the printing */
2739 if (console_trylock())
2740 console_unlock();
2743 if (pending & PRINTK_PENDING_WAKEUP)
2744 wake_up_interruptible(&log_wait);
2747 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2748 .func = wake_up_klogd_work_func,
2749 .flags = IRQ_WORK_LAZY,
2752 void wake_up_klogd(void)
2754 preempt_disable();
2755 if (waitqueue_active(&log_wait)) {
2756 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2757 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2759 preempt_enable();
2762 int printk_deferred(const char *fmt, ...)
2764 va_list args;
2765 int r;
2767 preempt_disable();
2768 va_start(args, fmt);
2769 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2770 va_end(args);
2772 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2773 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2774 preempt_enable();
2776 return r;
2780 * printk rate limiting, lifted from the networking subsystem.
2782 * This enforces a rate limit: not more than 10 kernel messages
2783 * every 5s to make a denial-of-service attack impossible.
2785 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2787 int __printk_ratelimit(const char *func)
2789 return ___ratelimit(&printk_ratelimit_state, func);
2791 EXPORT_SYMBOL(__printk_ratelimit);
2794 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2795 * @caller_jiffies: pointer to caller's state
2796 * @interval_msecs: minimum interval between prints
2798 * printk_timed_ratelimit() returns true if more than @interval_msecs
2799 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2800 * returned true.
2802 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2803 unsigned int interval_msecs)
2805 unsigned long elapsed = jiffies - *caller_jiffies;
2807 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2808 return false;
2810 *caller_jiffies = jiffies;
2811 return true;
2813 EXPORT_SYMBOL(printk_timed_ratelimit);
2815 static DEFINE_SPINLOCK(dump_list_lock);
2816 static LIST_HEAD(dump_list);
2819 * kmsg_dump_register - register a kernel log dumper.
2820 * @dumper: pointer to the kmsg_dumper structure
2822 * Adds a kernel log dumper to the system. The dump callback in the
2823 * structure will be called when the kernel oopses or panics and must be
2824 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2826 int kmsg_dump_register(struct kmsg_dumper *dumper)
2828 unsigned long flags;
2829 int err = -EBUSY;
2831 /* The dump callback needs to be set */
2832 if (!dumper->dump)
2833 return -EINVAL;
2835 spin_lock_irqsave(&dump_list_lock, flags);
2836 /* Don't allow registering multiple times */
2837 if (!dumper->registered) {
2838 dumper->registered = 1;
2839 list_add_tail_rcu(&dumper->list, &dump_list);
2840 err = 0;
2842 spin_unlock_irqrestore(&dump_list_lock, flags);
2844 return err;
2846 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2849 * kmsg_dump_unregister - unregister a kmsg dumper.
2850 * @dumper: pointer to the kmsg_dumper structure
2852 * Removes a dump device from the system. Returns zero on success and
2853 * %-EINVAL otherwise.
2855 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2857 unsigned long flags;
2858 int err = -EINVAL;
2860 spin_lock_irqsave(&dump_list_lock, flags);
2861 if (dumper->registered) {
2862 dumper->registered = 0;
2863 list_del_rcu(&dumper->list);
2864 err = 0;
2866 spin_unlock_irqrestore(&dump_list_lock, flags);
2867 synchronize_rcu();
2869 return err;
2871 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2873 static bool always_kmsg_dump;
2874 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2877 * kmsg_dump - dump kernel log to kernel message dumpers.
2878 * @reason: the reason (oops, panic etc) for dumping
2880 * Call each of the registered dumper's dump() callback, which can
2881 * retrieve the kmsg records with kmsg_dump_get_line() or
2882 * kmsg_dump_get_buffer().
2884 void kmsg_dump(enum kmsg_dump_reason reason)
2886 struct kmsg_dumper *dumper;
2887 unsigned long flags;
2889 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2890 return;
2892 rcu_read_lock();
2893 list_for_each_entry_rcu(dumper, &dump_list, list) {
2894 if (dumper->max_reason && reason > dumper->max_reason)
2895 continue;
2897 /* initialize iterator with data about the stored records */
2898 dumper->active = true;
2900 raw_spin_lock_irqsave(&logbuf_lock, flags);
2901 dumper->cur_seq = clear_seq;
2902 dumper->cur_idx = clear_idx;
2903 dumper->next_seq = log_next_seq;
2904 dumper->next_idx = log_next_idx;
2905 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2907 /* invoke dumper which will iterate over records */
2908 dumper->dump(dumper, reason);
2910 /* reset iterator */
2911 dumper->active = false;
2913 rcu_read_unlock();
2917 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2918 * @dumper: registered kmsg dumper
2919 * @syslog: include the "<4>" prefixes
2920 * @line: buffer to copy the line to
2921 * @size: maximum size of the buffer
2922 * @len: length of line placed into buffer
2924 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2925 * record, and copy one record into the provided buffer.
2927 * Consecutive calls will return the next available record moving
2928 * towards the end of the buffer with the youngest messages.
2930 * A return value of FALSE indicates that there are no more records to
2931 * read.
2933 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2935 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2936 char *line, size_t size, size_t *len)
2938 struct printk_log *msg;
2939 size_t l = 0;
2940 bool ret = false;
2942 if (!dumper->active)
2943 goto out;
2945 if (dumper->cur_seq < log_first_seq) {
2946 /* messages are gone, move to first available one */
2947 dumper->cur_seq = log_first_seq;
2948 dumper->cur_idx = log_first_idx;
2951 /* last entry */
2952 if (dumper->cur_seq >= log_next_seq)
2953 goto out;
2955 msg = log_from_idx(dumper->cur_idx);
2956 l = msg_print_text(msg, 0, syslog, line, size);
2958 dumper->cur_idx = log_next(dumper->cur_idx);
2959 dumper->cur_seq++;
2960 ret = true;
2961 out:
2962 if (len)
2963 *len = l;
2964 return ret;
2968 * kmsg_dump_get_line - retrieve one kmsg log line
2969 * @dumper: registered kmsg dumper
2970 * @syslog: include the "<4>" prefixes
2971 * @line: buffer to copy the line to
2972 * @size: maximum size of the buffer
2973 * @len: length of line placed into buffer
2975 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2976 * record, and copy one record into the provided buffer.
2978 * Consecutive calls will return the next available record moving
2979 * towards the end of the buffer with the youngest messages.
2981 * A return value of FALSE indicates that there are no more records to
2982 * read.
2984 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2985 char *line, size_t size, size_t *len)
2987 unsigned long flags;
2988 bool ret;
2990 raw_spin_lock_irqsave(&logbuf_lock, flags);
2991 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2992 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2994 return ret;
2996 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2999 * kmsg_dump_get_buffer - copy kmsg log lines
3000 * @dumper: registered kmsg dumper
3001 * @syslog: include the "<4>" prefixes
3002 * @buf: buffer to copy the line to
3003 * @size: maximum size of the buffer
3004 * @len: length of line placed into buffer
3006 * Start at the end of the kmsg buffer and fill the provided buffer
3007 * with as many of the the *youngest* kmsg records that fit into it.
3008 * If the buffer is large enough, all available kmsg records will be
3009 * copied with a single call.
3011 * Consecutive calls will fill the buffer with the next block of
3012 * available older records, not including the earlier retrieved ones.
3014 * A return value of FALSE indicates that there are no more records to
3015 * read.
3017 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3018 char *buf, size_t size, size_t *len)
3020 unsigned long flags;
3021 u64 seq;
3022 u32 idx;
3023 u64 next_seq;
3024 u32 next_idx;
3025 enum log_flags prev;
3026 size_t l = 0;
3027 bool ret = false;
3029 if (!dumper->active)
3030 goto out;
3032 raw_spin_lock_irqsave(&logbuf_lock, flags);
3033 if (dumper->cur_seq < log_first_seq) {
3034 /* messages are gone, move to first available one */
3035 dumper->cur_seq = log_first_seq;
3036 dumper->cur_idx = log_first_idx;
3039 /* last entry */
3040 if (dumper->cur_seq >= dumper->next_seq) {
3041 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3042 goto out;
3045 /* calculate length of entire buffer */
3046 seq = dumper->cur_seq;
3047 idx = dumper->cur_idx;
3048 prev = 0;
3049 while (seq < dumper->next_seq) {
3050 struct printk_log *msg = log_from_idx(idx);
3052 l += msg_print_text(msg, prev, true, NULL, 0);
3053 idx = log_next(idx);
3054 seq++;
3055 prev = msg->flags;
3058 /* move first record forward until length fits into the buffer */
3059 seq = dumper->cur_seq;
3060 idx = dumper->cur_idx;
3061 prev = 0;
3062 while (l > size && seq < dumper->next_seq) {
3063 struct printk_log *msg = log_from_idx(idx);
3065 l -= msg_print_text(msg, prev, true, NULL, 0);
3066 idx = log_next(idx);
3067 seq++;
3068 prev = msg->flags;
3071 /* last message in next interation */
3072 next_seq = seq;
3073 next_idx = idx;
3075 l = 0;
3076 while (seq < dumper->next_seq) {
3077 struct printk_log *msg = log_from_idx(idx);
3079 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3080 idx = log_next(idx);
3081 seq++;
3082 prev = msg->flags;
3085 dumper->next_seq = next_seq;
3086 dumper->next_idx = next_idx;
3087 ret = true;
3088 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3089 out:
3090 if (len)
3091 *len = l;
3092 return ret;
3094 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3097 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3098 * @dumper: registered kmsg dumper
3100 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3101 * kmsg_dump_get_buffer() can be called again and used multiple
3102 * times within the same dumper.dump() callback.
3104 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3106 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3108 dumper->cur_seq = clear_seq;
3109 dumper->cur_idx = clear_idx;
3110 dumper->next_seq = log_next_seq;
3111 dumper->next_idx = log_next_idx;
3115 * kmsg_dump_rewind - reset the interator
3116 * @dumper: registered kmsg dumper
3118 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3119 * kmsg_dump_get_buffer() can be called again and used multiple
3120 * times within the same dumper.dump() callback.
3122 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3124 unsigned long flags;
3126 raw_spin_lock_irqsave(&logbuf_lock, flags);
3127 kmsg_dump_rewind_nolock(dumper);
3128 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3130 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3132 static char dump_stack_arch_desc_str[128];
3135 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3136 * @fmt: printf-style format string
3137 * @...: arguments for the format string
3139 * The configured string will be printed right after utsname during task
3140 * dumps. Usually used to add arch-specific system identifiers. If an
3141 * arch wants to make use of such an ID string, it should initialize this
3142 * as soon as possible during boot.
3144 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3146 va_list args;
3148 va_start(args, fmt);
3149 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3150 fmt, args);
3151 va_end(args);
3155 * dump_stack_print_info - print generic debug info for dump_stack()
3156 * @log_lvl: log level
3158 * Arch-specific dump_stack() implementations can use this function to
3159 * print out the same debug information as the generic dump_stack().
3161 void dump_stack_print_info(const char *log_lvl)
3163 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3164 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3165 print_tainted(), init_utsname()->release,
3166 (int)strcspn(init_utsname()->version, " "),
3167 init_utsname()->version);
3169 if (dump_stack_arch_desc_str[0] != '\0')
3170 printk("%sHardware name: %s\n",
3171 log_lvl, dump_stack_arch_desc_str);
3173 print_worker_info(log_lvl, current);
3177 * show_regs_print_info - print generic debug info for show_regs()
3178 * @log_lvl: log level
3180 * show_regs() implementations can use this function to print out generic
3181 * debug information.
3183 void show_regs_print_info(const char *log_lvl)
3185 dump_stack_print_info(log_lvl);
3187 printk("%stask: %p ti: %p task.ti: %p\n",
3188 log_lvl, current, current_thread_info(),
3189 task_thread_info(current));
3192 #endif