Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / kernel / rcu / update.c
blobca828b41c938b24e5b11b33e421ea4b4e2366f1f
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2001
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * Papers:
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
29 * For detailed explanation of Read-Copy Update mechanism see -
30 * http://lse.sourceforge.net/locking/rcupdate.html
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/percpu.h>
43 #include <linux/notifier.h>
44 #include <linux/cpu.h>
45 #include <linux/mutex.h>
46 #include <linux/export.h>
47 #include <linux/hardirq.h>
48 #include <linux/delay.h>
49 #include <linux/module.h>
50 #include <linux/kthread.h>
51 #include <linux/tick.h>
53 #define CREATE_TRACE_POINTS
55 #include "rcu.h"
57 MODULE_ALIAS("rcupdate");
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
60 #endif
61 #define MODULE_PARAM_PREFIX "rcupdate."
63 #ifndef CONFIG_TINY_RCU
64 module_param(rcu_expedited, int, 0);
65 module_param(rcu_normal, int, 0);
66 static int rcu_normal_after_boot;
67 module_param(rcu_normal_after_boot, int, 0);
68 #endif /* #ifndef CONFIG_TINY_RCU */
70 #if defined(CONFIG_DEBUG_LOCK_ALLOC) && defined(CONFIG_PREEMPT_COUNT)
71 /**
72 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
74 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
75 * RCU-sched read-side critical section. In absence of
76 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
77 * critical section unless it can prove otherwise. Note that disabling
78 * of preemption (including disabling irqs) counts as an RCU-sched
79 * read-side critical section. This is useful for debug checks in functions
80 * that required that they be called within an RCU-sched read-side
81 * critical section.
83 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
84 * and while lockdep is disabled.
86 * Note that if the CPU is in the idle loop from an RCU point of
87 * view (ie: that we are in the section between rcu_idle_enter() and
88 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
89 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
90 * that are in such a section, considering these as in extended quiescent
91 * state, so such a CPU is effectively never in an RCU read-side critical
92 * section regardless of what RCU primitives it invokes. This state of
93 * affairs is required --- we need to keep an RCU-free window in idle
94 * where the CPU may possibly enter into low power mode. This way we can
95 * notice an extended quiescent state to other CPUs that started a grace
96 * period. Otherwise we would delay any grace period as long as we run in
97 * the idle task.
99 * Similarly, we avoid claiming an SRCU read lock held if the current
100 * CPU is offline.
102 int rcu_read_lock_sched_held(void)
104 int lockdep_opinion = 0;
106 if (!debug_lockdep_rcu_enabled())
107 return 1;
108 if (!rcu_is_watching())
109 return 0;
110 if (!rcu_lockdep_current_cpu_online())
111 return 0;
112 if (debug_locks)
113 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
114 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
116 EXPORT_SYMBOL(rcu_read_lock_sched_held);
117 #endif
119 #ifndef CONFIG_TINY_RCU
122 * Should expedited grace-period primitives always fall back to their
123 * non-expedited counterparts? Intended for use within RCU. Note
124 * that if the user specifies both rcu_expedited and rcu_normal, then
125 * rcu_normal wins.
127 bool rcu_gp_is_normal(void)
129 return READ_ONCE(rcu_normal);
131 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
133 static atomic_t rcu_expedited_nesting =
134 ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0);
137 * Should normal grace-period primitives be expedited? Intended for
138 * use within RCU. Note that this function takes the rcu_expedited
139 * sysfs/boot variable into account as well as the rcu_expedite_gp()
140 * nesting. So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited()
141 * returns false is a -really- bad idea.
143 bool rcu_gp_is_expedited(void)
145 return rcu_expedited || atomic_read(&rcu_expedited_nesting);
147 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
150 * rcu_expedite_gp - Expedite future RCU grace periods
152 * After a call to this function, future calls to synchronize_rcu() and
153 * friends act as the corresponding synchronize_rcu_expedited() function
154 * had instead been called.
156 void rcu_expedite_gp(void)
158 atomic_inc(&rcu_expedited_nesting);
160 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
163 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
165 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
166 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
167 * and if the rcu_expedited sysfs/boot parameter is not set, then all
168 * subsequent calls to synchronize_rcu() and friends will return to
169 * their normal non-expedited behavior.
171 void rcu_unexpedite_gp(void)
173 atomic_dec(&rcu_expedited_nesting);
175 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
178 * Inform RCU of the end of the in-kernel boot sequence.
180 void rcu_end_inkernel_boot(void)
182 if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT))
183 rcu_unexpedite_gp();
184 if (rcu_normal_after_boot)
185 WRITE_ONCE(rcu_normal, 1);
188 #endif /* #ifndef CONFIG_TINY_RCU */
190 #ifdef CONFIG_PREEMPT_RCU
193 * Preemptible RCU implementation for rcu_read_lock().
194 * Just increment ->rcu_read_lock_nesting, shared state will be updated
195 * if we block.
197 void __rcu_read_lock(void)
199 current->rcu_read_lock_nesting++;
200 barrier(); /* critical section after entry code. */
202 EXPORT_SYMBOL_GPL(__rcu_read_lock);
205 * Preemptible RCU implementation for rcu_read_unlock().
206 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
207 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
208 * invoke rcu_read_unlock_special() to clean up after a context switch
209 * in an RCU read-side critical section and other special cases.
211 void __rcu_read_unlock(void)
213 struct task_struct *t = current;
215 if (t->rcu_read_lock_nesting != 1) {
216 --t->rcu_read_lock_nesting;
217 } else {
218 barrier(); /* critical section before exit code. */
219 t->rcu_read_lock_nesting = INT_MIN;
220 barrier(); /* assign before ->rcu_read_unlock_special load */
221 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
222 rcu_read_unlock_special(t);
223 barrier(); /* ->rcu_read_unlock_special load before assign */
224 t->rcu_read_lock_nesting = 0;
226 #ifdef CONFIG_PROVE_LOCKING
228 int rrln = READ_ONCE(t->rcu_read_lock_nesting);
230 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
232 #endif /* #ifdef CONFIG_PROVE_LOCKING */
234 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
236 #endif /* #ifdef CONFIG_PREEMPT_RCU */
238 #ifdef CONFIG_DEBUG_LOCK_ALLOC
239 static struct lock_class_key rcu_lock_key;
240 struct lockdep_map rcu_lock_map =
241 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
242 EXPORT_SYMBOL_GPL(rcu_lock_map);
244 static struct lock_class_key rcu_bh_lock_key;
245 struct lockdep_map rcu_bh_lock_map =
246 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
247 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
249 static struct lock_class_key rcu_sched_lock_key;
250 struct lockdep_map rcu_sched_lock_map =
251 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
252 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
254 static struct lock_class_key rcu_callback_key;
255 struct lockdep_map rcu_callback_map =
256 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
257 EXPORT_SYMBOL_GPL(rcu_callback_map);
259 int notrace debug_lockdep_rcu_enabled(void)
261 return rcu_scheduler_active && debug_locks &&
262 current->lockdep_recursion == 0;
264 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
267 * rcu_read_lock_held() - might we be in RCU read-side critical section?
269 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
270 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
271 * this assumes we are in an RCU read-side critical section unless it can
272 * prove otherwise. This is useful for debug checks in functions that
273 * require that they be called within an RCU read-side critical section.
275 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
276 * and while lockdep is disabled.
278 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
279 * occur in the same context, for example, it is illegal to invoke
280 * rcu_read_unlock() in process context if the matching rcu_read_lock()
281 * was invoked from within an irq handler.
283 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
284 * offline from an RCU perspective, so check for those as well.
286 int rcu_read_lock_held(void)
288 if (!debug_lockdep_rcu_enabled())
289 return 1;
290 if (!rcu_is_watching())
291 return 0;
292 if (!rcu_lockdep_current_cpu_online())
293 return 0;
294 return lock_is_held(&rcu_lock_map);
296 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
299 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
301 * Check for bottom half being disabled, which covers both the
302 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
303 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
304 * will show the situation. This is useful for debug checks in functions
305 * that require that they be called within an RCU read-side critical
306 * section.
308 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
310 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
311 * offline from an RCU perspective, so check for those as well.
313 int rcu_read_lock_bh_held(void)
315 if (!debug_lockdep_rcu_enabled())
316 return 1;
317 if (!rcu_is_watching())
318 return 0;
319 if (!rcu_lockdep_current_cpu_online())
320 return 0;
321 return in_softirq() || irqs_disabled();
323 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
325 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
328 * wakeme_after_rcu() - Callback function to awaken a task after grace period
329 * @head: Pointer to rcu_head member within rcu_synchronize structure
331 * Awaken the corresponding task now that a grace period has elapsed.
333 void wakeme_after_rcu(struct rcu_head *head)
335 struct rcu_synchronize *rcu;
337 rcu = container_of(head, struct rcu_synchronize, head);
338 complete(&rcu->completion);
340 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
342 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
343 struct rcu_synchronize *rs_array)
345 int i;
347 /* Initialize and register callbacks for each flavor specified. */
348 for (i = 0; i < n; i++) {
349 if (checktiny &&
350 (crcu_array[i] == call_rcu ||
351 crcu_array[i] == call_rcu_bh)) {
352 might_sleep();
353 continue;
355 init_rcu_head_on_stack(&rs_array[i].head);
356 init_completion(&rs_array[i].completion);
357 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
360 /* Wait for all callbacks to be invoked. */
361 for (i = 0; i < n; i++) {
362 if (checktiny &&
363 (crcu_array[i] == call_rcu ||
364 crcu_array[i] == call_rcu_bh))
365 continue;
366 wait_for_completion(&rs_array[i].completion);
367 destroy_rcu_head_on_stack(&rs_array[i].head);
370 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
372 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
373 void init_rcu_head(struct rcu_head *head)
375 debug_object_init(head, &rcuhead_debug_descr);
378 void destroy_rcu_head(struct rcu_head *head)
380 debug_object_free(head, &rcuhead_debug_descr);
384 * fixup_activate is called when:
385 * - an active object is activated
386 * - an unknown object is activated (might be a statically initialized object)
387 * Activation is performed internally by call_rcu().
389 static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state)
391 struct rcu_head *head = addr;
393 switch (state) {
395 case ODEBUG_STATE_NOTAVAILABLE:
397 * This is not really a fixup. We just make sure that it is
398 * tracked in the object tracker.
400 debug_object_init(head, &rcuhead_debug_descr);
401 debug_object_activate(head, &rcuhead_debug_descr);
402 return 0;
403 default:
404 return 1;
409 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
410 * @head: pointer to rcu_head structure to be initialized
412 * This function informs debugobjects of a new rcu_head structure that
413 * has been allocated as an auto variable on the stack. This function
414 * is not required for rcu_head structures that are statically defined or
415 * that are dynamically allocated on the heap. This function has no
416 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
418 void init_rcu_head_on_stack(struct rcu_head *head)
420 debug_object_init_on_stack(head, &rcuhead_debug_descr);
422 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
425 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
426 * @head: pointer to rcu_head structure to be initialized
428 * This function informs debugobjects that an on-stack rcu_head structure
429 * is about to go out of scope. As with init_rcu_head_on_stack(), this
430 * function is not required for rcu_head structures that are statically
431 * defined or that are dynamically allocated on the heap. Also as with
432 * init_rcu_head_on_stack(), this function has no effect for
433 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
435 void destroy_rcu_head_on_stack(struct rcu_head *head)
437 debug_object_free(head, &rcuhead_debug_descr);
439 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
441 struct debug_obj_descr rcuhead_debug_descr = {
442 .name = "rcu_head",
443 .fixup_activate = rcuhead_fixup_activate,
445 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
446 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
448 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
449 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
450 unsigned long secs,
451 unsigned long c_old, unsigned long c)
453 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
455 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
456 #else
457 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
458 do { } while (0)
459 #endif
461 #ifdef CONFIG_RCU_STALL_COMMON
463 #ifdef CONFIG_PROVE_RCU
464 #define RCU_STALL_DELAY_DELTA (5 * HZ)
465 #else
466 #define RCU_STALL_DELAY_DELTA 0
467 #endif
469 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
470 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
472 module_param(rcu_cpu_stall_suppress, int, 0644);
473 module_param(rcu_cpu_stall_timeout, int, 0644);
475 int rcu_jiffies_till_stall_check(void)
477 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
480 * Limit check must be consistent with the Kconfig limits
481 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
483 if (till_stall_check < 3) {
484 WRITE_ONCE(rcu_cpu_stall_timeout, 3);
485 till_stall_check = 3;
486 } else if (till_stall_check > 300) {
487 WRITE_ONCE(rcu_cpu_stall_timeout, 300);
488 till_stall_check = 300;
490 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
493 void rcu_sysrq_start(void)
495 if (!rcu_cpu_stall_suppress)
496 rcu_cpu_stall_suppress = 2;
499 void rcu_sysrq_end(void)
501 if (rcu_cpu_stall_suppress == 2)
502 rcu_cpu_stall_suppress = 0;
505 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
507 rcu_cpu_stall_suppress = 1;
508 return NOTIFY_DONE;
511 static struct notifier_block rcu_panic_block = {
512 .notifier_call = rcu_panic,
515 static int __init check_cpu_stall_init(void)
517 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
518 return 0;
520 early_initcall(check_cpu_stall_init);
522 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
524 #ifdef CONFIG_TASKS_RCU
527 * Simple variant of RCU whose quiescent states are voluntary context switch,
528 * user-space execution, and idle. As such, grace periods can take one good
529 * long time. There are no read-side primitives similar to rcu_read_lock()
530 * and rcu_read_unlock() because this implementation is intended to get
531 * the system into a safe state for some of the manipulations involved in
532 * tracing and the like. Finally, this implementation does not support
533 * high call_rcu_tasks() rates from multiple CPUs. If this is required,
534 * per-CPU callback lists will be needed.
537 /* Global list of callbacks and associated lock. */
538 static struct rcu_head *rcu_tasks_cbs_head;
539 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
540 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
541 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
543 /* Track exiting tasks in order to allow them to be waited for. */
544 DEFINE_SRCU(tasks_rcu_exit_srcu);
546 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
547 static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
548 module_param(rcu_task_stall_timeout, int, 0644);
550 static void rcu_spawn_tasks_kthread(void);
553 * Post an RCU-tasks callback. First call must be from process context
554 * after the scheduler if fully operational.
556 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
558 unsigned long flags;
559 bool needwake;
561 rhp->next = NULL;
562 rhp->func = func;
563 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
564 needwake = !rcu_tasks_cbs_head;
565 *rcu_tasks_cbs_tail = rhp;
566 rcu_tasks_cbs_tail = &rhp->next;
567 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
568 if (needwake) {
569 rcu_spawn_tasks_kthread();
570 wake_up(&rcu_tasks_cbs_wq);
573 EXPORT_SYMBOL_GPL(call_rcu_tasks);
576 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
578 * Control will return to the caller some time after a full rcu-tasks
579 * grace period has elapsed, in other words after all currently
580 * executing rcu-tasks read-side critical sections have elapsed. These
581 * read-side critical sections are delimited by calls to schedule(),
582 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
583 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
585 * This is a very specialized primitive, intended only for a few uses in
586 * tracing and other situations requiring manipulation of function
587 * preambles and profiling hooks. The synchronize_rcu_tasks() function
588 * is not (yet) intended for heavy use from multiple CPUs.
590 * Note that this guarantee implies further memory-ordering guarantees.
591 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
592 * each CPU is guaranteed to have executed a full memory barrier since the
593 * end of its last RCU-tasks read-side critical section whose beginning
594 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
595 * having an RCU-tasks read-side critical section that extends beyond
596 * the return from synchronize_rcu_tasks() is guaranteed to have executed
597 * a full memory barrier after the beginning of synchronize_rcu_tasks()
598 * and before the beginning of that RCU-tasks read-side critical section.
599 * Note that these guarantees include CPUs that are offline, idle, or
600 * executing in user mode, as well as CPUs that are executing in the kernel.
602 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
603 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
604 * to have executed a full memory barrier during the execution of
605 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
606 * (but again only if the system has more than one CPU).
608 void synchronize_rcu_tasks(void)
610 /* Complain if the scheduler has not started. */
611 RCU_LOCKDEP_WARN(!rcu_scheduler_active,
612 "synchronize_rcu_tasks called too soon");
614 /* Wait for the grace period. */
615 wait_rcu_gp(call_rcu_tasks);
617 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
620 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
622 * Although the current implementation is guaranteed to wait, it is not
623 * obligated to, for example, if there are no pending callbacks.
625 void rcu_barrier_tasks(void)
627 /* There is only one callback queue, so this is easy. ;-) */
628 synchronize_rcu_tasks();
630 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
632 /* See if tasks are still holding out, complain if so. */
633 static void check_holdout_task(struct task_struct *t,
634 bool needreport, bool *firstreport)
636 int cpu;
638 if (!READ_ONCE(t->rcu_tasks_holdout) ||
639 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
640 !READ_ONCE(t->on_rq) ||
641 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
642 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
643 WRITE_ONCE(t->rcu_tasks_holdout, false);
644 list_del_init(&t->rcu_tasks_holdout_list);
645 put_task_struct(t);
646 return;
648 if (!needreport)
649 return;
650 if (*firstreport) {
651 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
652 *firstreport = false;
654 cpu = task_cpu(t);
655 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
656 t, ".I"[is_idle_task(t)],
657 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
658 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
659 t->rcu_tasks_idle_cpu, cpu);
660 sched_show_task(t);
663 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
664 static int __noreturn rcu_tasks_kthread(void *arg)
666 unsigned long flags;
667 struct task_struct *g, *t;
668 unsigned long lastreport;
669 struct rcu_head *list;
670 struct rcu_head *next;
671 LIST_HEAD(rcu_tasks_holdouts);
673 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
674 housekeeping_affine(current);
677 * Each pass through the following loop makes one check for
678 * newly arrived callbacks, and, if there are some, waits for
679 * one RCU-tasks grace period and then invokes the callbacks.
680 * This loop is terminated by the system going down. ;-)
682 for (;;) {
684 /* Pick up any new callbacks. */
685 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
686 list = rcu_tasks_cbs_head;
687 rcu_tasks_cbs_head = NULL;
688 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
689 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
691 /* If there were none, wait a bit and start over. */
692 if (!list) {
693 wait_event_interruptible(rcu_tasks_cbs_wq,
694 rcu_tasks_cbs_head);
695 if (!rcu_tasks_cbs_head) {
696 WARN_ON(signal_pending(current));
697 schedule_timeout_interruptible(HZ/10);
699 continue;
703 * Wait for all pre-existing t->on_rq and t->nvcsw
704 * transitions to complete. Invoking synchronize_sched()
705 * suffices because all these transitions occur with
706 * interrupts disabled. Without this synchronize_sched(),
707 * a read-side critical section that started before the
708 * grace period might be incorrectly seen as having started
709 * after the grace period.
711 * This synchronize_sched() also dispenses with the
712 * need for a memory barrier on the first store to
713 * ->rcu_tasks_holdout, as it forces the store to happen
714 * after the beginning of the grace period.
716 synchronize_sched();
719 * There were callbacks, so we need to wait for an
720 * RCU-tasks grace period. Start off by scanning
721 * the task list for tasks that are not already
722 * voluntarily blocked. Mark these tasks and make
723 * a list of them in rcu_tasks_holdouts.
725 rcu_read_lock();
726 for_each_process_thread(g, t) {
727 if (t != current && READ_ONCE(t->on_rq) &&
728 !is_idle_task(t)) {
729 get_task_struct(t);
730 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
731 WRITE_ONCE(t->rcu_tasks_holdout, true);
732 list_add(&t->rcu_tasks_holdout_list,
733 &rcu_tasks_holdouts);
736 rcu_read_unlock();
739 * Wait for tasks that are in the process of exiting.
740 * This does only part of the job, ensuring that all
741 * tasks that were previously exiting reach the point
742 * where they have disabled preemption, allowing the
743 * later synchronize_sched() to finish the job.
745 synchronize_srcu(&tasks_rcu_exit_srcu);
748 * Each pass through the following loop scans the list
749 * of holdout tasks, removing any that are no longer
750 * holdouts. When the list is empty, we are done.
752 lastreport = jiffies;
753 while (!list_empty(&rcu_tasks_holdouts)) {
754 bool firstreport;
755 bool needreport;
756 int rtst;
757 struct task_struct *t1;
759 schedule_timeout_interruptible(HZ);
760 rtst = READ_ONCE(rcu_task_stall_timeout);
761 needreport = rtst > 0 &&
762 time_after(jiffies, lastreport + rtst);
763 if (needreport)
764 lastreport = jiffies;
765 firstreport = true;
766 WARN_ON(signal_pending(current));
767 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
768 rcu_tasks_holdout_list) {
769 check_holdout_task(t, needreport, &firstreport);
770 cond_resched();
775 * Because ->on_rq and ->nvcsw are not guaranteed
776 * to have a full memory barriers prior to them in the
777 * schedule() path, memory reordering on other CPUs could
778 * cause their RCU-tasks read-side critical sections to
779 * extend past the end of the grace period. However,
780 * because these ->nvcsw updates are carried out with
781 * interrupts disabled, we can use synchronize_sched()
782 * to force the needed ordering on all such CPUs.
784 * This synchronize_sched() also confines all
785 * ->rcu_tasks_holdout accesses to be within the grace
786 * period, avoiding the need for memory barriers for
787 * ->rcu_tasks_holdout accesses.
789 * In addition, this synchronize_sched() waits for exiting
790 * tasks to complete their final preempt_disable() region
791 * of execution, cleaning up after the synchronize_srcu()
792 * above.
794 synchronize_sched();
796 /* Invoke the callbacks. */
797 while (list) {
798 next = list->next;
799 local_bh_disable();
800 list->func(list);
801 local_bh_enable();
802 list = next;
803 cond_resched();
805 schedule_timeout_uninterruptible(HZ/10);
809 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
810 static void rcu_spawn_tasks_kthread(void)
812 static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
813 static struct task_struct *rcu_tasks_kthread_ptr;
814 struct task_struct *t;
816 if (READ_ONCE(rcu_tasks_kthread_ptr)) {
817 smp_mb(); /* Ensure caller sees full kthread. */
818 return;
820 mutex_lock(&rcu_tasks_kthread_mutex);
821 if (rcu_tasks_kthread_ptr) {
822 mutex_unlock(&rcu_tasks_kthread_mutex);
823 return;
825 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
826 BUG_ON(IS_ERR(t));
827 smp_mb(); /* Ensure others see full kthread. */
828 WRITE_ONCE(rcu_tasks_kthread_ptr, t);
829 mutex_unlock(&rcu_tasks_kthread_mutex);
832 #endif /* #ifdef CONFIG_TASKS_RCU */
834 #ifdef CONFIG_PROVE_RCU
837 * Early boot self test parameters, one for each flavor
839 static bool rcu_self_test;
840 static bool rcu_self_test_bh;
841 static bool rcu_self_test_sched;
843 module_param(rcu_self_test, bool, 0444);
844 module_param(rcu_self_test_bh, bool, 0444);
845 module_param(rcu_self_test_sched, bool, 0444);
847 static int rcu_self_test_counter;
849 static void test_callback(struct rcu_head *r)
851 rcu_self_test_counter++;
852 pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
855 static void early_boot_test_call_rcu(void)
857 static struct rcu_head head;
859 call_rcu(&head, test_callback);
862 static void early_boot_test_call_rcu_bh(void)
864 static struct rcu_head head;
866 call_rcu_bh(&head, test_callback);
869 static void early_boot_test_call_rcu_sched(void)
871 static struct rcu_head head;
873 call_rcu_sched(&head, test_callback);
876 void rcu_early_boot_tests(void)
878 pr_info("Running RCU self tests\n");
880 if (rcu_self_test)
881 early_boot_test_call_rcu();
882 if (rcu_self_test_bh)
883 early_boot_test_call_rcu_bh();
884 if (rcu_self_test_sched)
885 early_boot_test_call_rcu_sched();
888 static int rcu_verify_early_boot_tests(void)
890 int ret = 0;
891 int early_boot_test_counter = 0;
893 if (rcu_self_test) {
894 early_boot_test_counter++;
895 rcu_barrier();
897 if (rcu_self_test_bh) {
898 early_boot_test_counter++;
899 rcu_barrier_bh();
901 if (rcu_self_test_sched) {
902 early_boot_test_counter++;
903 rcu_barrier_sched();
906 if (rcu_self_test_counter != early_boot_test_counter) {
907 WARN_ON(1);
908 ret = -1;
911 return ret;
913 late_initcall(rcu_verify_early_boot_tests);
914 #else
915 void rcu_early_boot_tests(void) {}
916 #endif /* CONFIG_PROVE_RCU */