Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / kernel / time / timekeeping.c
blob479d25cd3d4ffc53f75c5d29912df312f609bbb1
1 /*
2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
9 */
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned;
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
47 /**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
54 * See @update_fast_timekeeper() below.
56 struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw ____cacheline_aligned;
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 tk->xtime_sec++;
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
77 struct timespec64 ts;
79 ts.tv_sec = tk->xtime_sec;
80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 return ts;
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
86 tk->xtime_sec = ts->tv_sec;
87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
92 tk->xtime_sec += ts->tv_sec;
93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 tk_normalize_xtime(tk);
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
99 struct timespec64 tmp;
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 -tk->wall_to_monotonic.tv_nsec);
107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 tk->wall_to_monotonic = wtm;
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 const char *name = tk->tkr_mono.clock->name;
128 if (offset > max_cycles) {
129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 offset, name, max_cycles);
131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 } else {
133 if (offset > (max_cycles >> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 offset, name, max_cycles >> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
140 if (tk->underflow_seen) {
141 if (jiffies - tk->last_warning > WARNING_FREQ) {
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
145 tk->last_warning = jiffies;
147 tk->underflow_seen = 0;
150 if (tk->overflow_seen) {
151 if (jiffies - tk->last_warning > WARNING_FREQ) {
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
155 tk->last_warning = jiffies;
157 tk->overflow_seen = 0;
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
163 struct timekeeper *tk = &tk_core.timekeeper;
164 cycle_t now, last, mask, max, delta;
165 unsigned int seq;
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
174 do {
175 seq = read_seqcount_begin(&tk_core.seq);
176 now = tkr->read(tkr->clock);
177 last = tkr->cycle_last;
178 mask = tkr->mask;
179 max = tkr->clock->max_cycles;
180 } while (read_seqcount_retry(&tk_core.seq, seq));
182 delta = clocksource_delta(now, last, mask);
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
188 if (unlikely((~delta & mask) < (mask >> 3))) {
189 tk->underflow_seen = 1;
190 delta = 0;
193 /* Cap delta value to the max_cycles values to avoid mult overflows */
194 if (unlikely(delta > max)) {
195 tk->overflow_seen = 1;
196 delta = tkr->clock->max_cycles;
199 return delta;
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
207 cycle_t cycle_now, delta;
209 /* read clocksource */
210 cycle_now = tkr->read(tkr->clock);
212 /* calculate the delta since the last update_wall_time */
213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
215 return delta;
217 #endif
220 * tk_setup_internals - Set up internals to use clocksource clock.
222 * @tk: The target timekeeper to setup.
223 * @clock: Pointer to clocksource.
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
228 * Unless you're the timekeeping code, you should not be using this!
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
232 cycle_t interval;
233 u64 tmp, ntpinterval;
234 struct clocksource *old_clock;
236 ++tk->cs_was_changed_seq;
237 old_clock = tk->tkr_mono.clock;
238 tk->tkr_mono.clock = clock;
239 tk->tkr_mono.read = clock->read;
240 tk->tkr_mono.mask = clock->mask;
241 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
243 tk->tkr_raw.clock = clock;
244 tk->tkr_raw.read = clock->read;
245 tk->tkr_raw.mask = clock->mask;
246 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
248 /* Do the ns -> cycle conversion first, using original mult */
249 tmp = NTP_INTERVAL_LENGTH;
250 tmp <<= clock->shift;
251 ntpinterval = tmp;
252 tmp += clock->mult/2;
253 do_div(tmp, clock->mult);
254 if (tmp == 0)
255 tmp = 1;
257 interval = (cycle_t) tmp;
258 tk->cycle_interval = interval;
260 /* Go back from cycles -> shifted ns */
261 tk->xtime_interval = (u64) interval * clock->mult;
262 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263 tk->raw_interval =
264 ((u64) interval * clock->mult) >> clock->shift;
266 /* if changing clocks, convert xtime_nsec shift units */
267 if (old_clock) {
268 int shift_change = clock->shift - old_clock->shift;
269 if (shift_change < 0)
270 tk->tkr_mono.xtime_nsec >>= -shift_change;
271 else
272 tk->tkr_mono.xtime_nsec <<= shift_change;
274 tk->tkr_raw.xtime_nsec = 0;
276 tk->tkr_mono.shift = clock->shift;
277 tk->tkr_raw.shift = clock->shift;
279 tk->ntp_error = 0;
280 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
281 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
284 * The timekeeper keeps its own mult values for the currently
285 * active clocksource. These value will be adjusted via NTP
286 * to counteract clock drifting.
288 tk->tkr_mono.mult = clock->mult;
289 tk->tkr_raw.mult = clock->mult;
290 tk->ntp_err_mult = 0;
293 /* Timekeeper helper functions. */
295 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
296 static u32 default_arch_gettimeoffset(void) { return 0; }
297 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
298 #else
299 static inline u32 arch_gettimeoffset(void) { return 0; }
300 #endif
302 static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
303 cycle_t delta)
305 s64 nsec;
307 nsec = delta * tkr->mult + tkr->xtime_nsec;
308 nsec >>= tkr->shift;
310 /* If arch requires, add in get_arch_timeoffset() */
311 return nsec + arch_gettimeoffset();
314 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
316 cycle_t delta;
318 delta = timekeeping_get_delta(tkr);
319 return timekeeping_delta_to_ns(tkr, delta);
322 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
323 cycle_t cycles)
325 cycle_t delta;
327 /* calculate the delta since the last update_wall_time */
328 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
329 return timekeeping_delta_to_ns(tkr, delta);
333 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
334 * @tkr: Timekeeping readout base from which we take the update
336 * We want to use this from any context including NMI and tracing /
337 * instrumenting the timekeeping code itself.
339 * Employ the latch technique; see @raw_write_seqcount_latch.
341 * So if a NMI hits the update of base[0] then it will use base[1]
342 * which is still consistent. In the worst case this can result is a
343 * slightly wrong timestamp (a few nanoseconds). See
344 * @ktime_get_mono_fast_ns.
346 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
348 struct tk_read_base *base = tkf->base;
350 /* Force readers off to base[1] */
351 raw_write_seqcount_latch(&tkf->seq);
353 /* Update base[0] */
354 memcpy(base, tkr, sizeof(*base));
356 /* Force readers back to base[0] */
357 raw_write_seqcount_latch(&tkf->seq);
359 /* Update base[1] */
360 memcpy(base + 1, base, sizeof(*base));
364 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
366 * This timestamp is not guaranteed to be monotonic across an update.
367 * The timestamp is calculated by:
369 * now = base_mono + clock_delta * slope
371 * So if the update lowers the slope, readers who are forced to the
372 * not yet updated second array are still using the old steeper slope.
374 * tmono
376 * | o n
377 * | o n
378 * | u
379 * | o
380 * |o
381 * |12345678---> reader order
383 * o = old slope
384 * u = update
385 * n = new slope
387 * So reader 6 will observe time going backwards versus reader 5.
389 * While other CPUs are likely to be able observe that, the only way
390 * for a CPU local observation is when an NMI hits in the middle of
391 * the update. Timestamps taken from that NMI context might be ahead
392 * of the following timestamps. Callers need to be aware of that and
393 * deal with it.
395 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
397 struct tk_read_base *tkr;
398 unsigned int seq;
399 u64 now;
401 do {
402 seq = raw_read_seqcount_latch(&tkf->seq);
403 tkr = tkf->base + (seq & 0x01);
404 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
405 } while (read_seqcount_retry(&tkf->seq, seq));
407 return now;
410 u64 ktime_get_mono_fast_ns(void)
412 return __ktime_get_fast_ns(&tk_fast_mono);
414 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
416 u64 ktime_get_raw_fast_ns(void)
418 return __ktime_get_fast_ns(&tk_fast_raw);
420 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
422 /* Suspend-time cycles value for halted fast timekeeper. */
423 static cycle_t cycles_at_suspend;
425 static cycle_t dummy_clock_read(struct clocksource *cs)
427 return cycles_at_suspend;
431 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
432 * @tk: Timekeeper to snapshot.
434 * It generally is unsafe to access the clocksource after timekeeping has been
435 * suspended, so take a snapshot of the readout base of @tk and use it as the
436 * fast timekeeper's readout base while suspended. It will return the same
437 * number of cycles every time until timekeeping is resumed at which time the
438 * proper readout base for the fast timekeeper will be restored automatically.
440 static void halt_fast_timekeeper(struct timekeeper *tk)
442 static struct tk_read_base tkr_dummy;
443 struct tk_read_base *tkr = &tk->tkr_mono;
445 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
446 cycles_at_suspend = tkr->read(tkr->clock);
447 tkr_dummy.read = dummy_clock_read;
448 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
450 tkr = &tk->tkr_raw;
451 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
452 tkr_dummy.read = dummy_clock_read;
453 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
456 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
458 static inline void update_vsyscall(struct timekeeper *tk)
460 struct timespec xt, wm;
462 xt = timespec64_to_timespec(tk_xtime(tk));
463 wm = timespec64_to_timespec(tk->wall_to_monotonic);
464 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
465 tk->tkr_mono.cycle_last);
468 static inline void old_vsyscall_fixup(struct timekeeper *tk)
470 s64 remainder;
473 * Store only full nanoseconds into xtime_nsec after rounding
474 * it up and add the remainder to the error difference.
475 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
476 * by truncating the remainder in vsyscalls. However, it causes
477 * additional work to be done in timekeeping_adjust(). Once
478 * the vsyscall implementations are converted to use xtime_nsec
479 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
480 * users are removed, this can be killed.
482 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
483 tk->tkr_mono.xtime_nsec -= remainder;
484 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
485 tk->ntp_error += remainder << tk->ntp_error_shift;
486 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
488 #else
489 #define old_vsyscall_fixup(tk)
490 #endif
492 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
494 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
496 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
500 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
502 int pvclock_gtod_register_notifier(struct notifier_block *nb)
504 struct timekeeper *tk = &tk_core.timekeeper;
505 unsigned long flags;
506 int ret;
508 raw_spin_lock_irqsave(&timekeeper_lock, flags);
509 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
510 update_pvclock_gtod(tk, true);
511 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
513 return ret;
515 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
518 * pvclock_gtod_unregister_notifier - unregister a pvclock
519 * timedata update listener
521 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
523 unsigned long flags;
524 int ret;
526 raw_spin_lock_irqsave(&timekeeper_lock, flags);
527 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
528 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
530 return ret;
532 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
535 * tk_update_leap_state - helper to update the next_leap_ktime
537 static inline void tk_update_leap_state(struct timekeeper *tk)
539 tk->next_leap_ktime = ntp_get_next_leap();
540 if (tk->next_leap_ktime.tv64 != KTIME_MAX)
541 /* Convert to monotonic time */
542 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
546 * Update the ktime_t based scalar nsec members of the timekeeper
548 static inline void tk_update_ktime_data(struct timekeeper *tk)
550 u64 seconds;
551 u32 nsec;
554 * The xtime based monotonic readout is:
555 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
556 * The ktime based monotonic readout is:
557 * nsec = base_mono + now();
558 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
560 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
561 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
562 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
564 /* Update the monotonic raw base */
565 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
568 * The sum of the nanoseconds portions of xtime and
569 * wall_to_monotonic can be greater/equal one second. Take
570 * this into account before updating tk->ktime_sec.
572 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
573 if (nsec >= NSEC_PER_SEC)
574 seconds++;
575 tk->ktime_sec = seconds;
578 /* must hold timekeeper_lock */
579 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
581 if (action & TK_CLEAR_NTP) {
582 tk->ntp_error = 0;
583 ntp_clear();
586 tk_update_leap_state(tk);
587 tk_update_ktime_data(tk);
589 update_vsyscall(tk);
590 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
592 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
593 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
595 if (action & TK_CLOCK_WAS_SET)
596 tk->clock_was_set_seq++;
598 * The mirroring of the data to the shadow-timekeeper needs
599 * to happen last here to ensure we don't over-write the
600 * timekeeper structure on the next update with stale data
602 if (action & TK_MIRROR)
603 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
604 sizeof(tk_core.timekeeper));
608 * timekeeping_forward_now - update clock to the current time
610 * Forward the current clock to update its state since the last call to
611 * update_wall_time(). This is useful before significant clock changes,
612 * as it avoids having to deal with this time offset explicitly.
614 static void timekeeping_forward_now(struct timekeeper *tk)
616 struct clocksource *clock = tk->tkr_mono.clock;
617 cycle_t cycle_now, delta;
618 s64 nsec;
620 cycle_now = tk->tkr_mono.read(clock);
621 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
622 tk->tkr_mono.cycle_last = cycle_now;
623 tk->tkr_raw.cycle_last = cycle_now;
625 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
627 /* If arch requires, add in get_arch_timeoffset() */
628 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
630 tk_normalize_xtime(tk);
632 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
633 timespec64_add_ns(&tk->raw_time, nsec);
637 * __getnstimeofday64 - Returns the time of day in a timespec64.
638 * @ts: pointer to the timespec to be set
640 * Updates the time of day in the timespec.
641 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
643 int __getnstimeofday64(struct timespec64 *ts)
645 struct timekeeper *tk = &tk_core.timekeeper;
646 unsigned long seq;
647 s64 nsecs = 0;
649 do {
650 seq = read_seqcount_begin(&tk_core.seq);
652 ts->tv_sec = tk->xtime_sec;
653 nsecs = timekeeping_get_ns(&tk->tkr_mono);
655 } while (read_seqcount_retry(&tk_core.seq, seq));
657 ts->tv_nsec = 0;
658 timespec64_add_ns(ts, nsecs);
661 * Do not bail out early, in case there were callers still using
662 * the value, even in the face of the WARN_ON.
664 if (unlikely(timekeeping_suspended))
665 return -EAGAIN;
666 return 0;
668 EXPORT_SYMBOL(__getnstimeofday64);
671 * getnstimeofday64 - Returns the time of day in a timespec64.
672 * @ts: pointer to the timespec64 to be set
674 * Returns the time of day in a timespec64 (WARN if suspended).
676 void getnstimeofday64(struct timespec64 *ts)
678 WARN_ON(__getnstimeofday64(ts));
680 EXPORT_SYMBOL(getnstimeofday64);
682 ktime_t ktime_get(void)
684 struct timekeeper *tk = &tk_core.timekeeper;
685 unsigned int seq;
686 ktime_t base;
687 s64 nsecs;
689 WARN_ON(timekeeping_suspended);
691 do {
692 seq = read_seqcount_begin(&tk_core.seq);
693 base = tk->tkr_mono.base;
694 nsecs = timekeeping_get_ns(&tk->tkr_mono);
696 } while (read_seqcount_retry(&tk_core.seq, seq));
698 return ktime_add_ns(base, nsecs);
700 EXPORT_SYMBOL_GPL(ktime_get);
702 u32 ktime_get_resolution_ns(void)
704 struct timekeeper *tk = &tk_core.timekeeper;
705 unsigned int seq;
706 u32 nsecs;
708 WARN_ON(timekeeping_suspended);
710 do {
711 seq = read_seqcount_begin(&tk_core.seq);
712 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
713 } while (read_seqcount_retry(&tk_core.seq, seq));
715 return nsecs;
717 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
719 static ktime_t *offsets[TK_OFFS_MAX] = {
720 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
721 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
722 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
725 ktime_t ktime_get_with_offset(enum tk_offsets offs)
727 struct timekeeper *tk = &tk_core.timekeeper;
728 unsigned int seq;
729 ktime_t base, *offset = offsets[offs];
730 s64 nsecs;
732 WARN_ON(timekeeping_suspended);
734 do {
735 seq = read_seqcount_begin(&tk_core.seq);
736 base = ktime_add(tk->tkr_mono.base, *offset);
737 nsecs = timekeeping_get_ns(&tk->tkr_mono);
739 } while (read_seqcount_retry(&tk_core.seq, seq));
741 return ktime_add_ns(base, nsecs);
744 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
747 * ktime_mono_to_any() - convert mononotic time to any other time
748 * @tmono: time to convert.
749 * @offs: which offset to use
751 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
753 ktime_t *offset = offsets[offs];
754 unsigned long seq;
755 ktime_t tconv;
757 do {
758 seq = read_seqcount_begin(&tk_core.seq);
759 tconv = ktime_add(tmono, *offset);
760 } while (read_seqcount_retry(&tk_core.seq, seq));
762 return tconv;
764 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
767 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
769 ktime_t ktime_get_raw(void)
771 struct timekeeper *tk = &tk_core.timekeeper;
772 unsigned int seq;
773 ktime_t base;
774 s64 nsecs;
776 do {
777 seq = read_seqcount_begin(&tk_core.seq);
778 base = tk->tkr_raw.base;
779 nsecs = timekeeping_get_ns(&tk->tkr_raw);
781 } while (read_seqcount_retry(&tk_core.seq, seq));
783 return ktime_add_ns(base, nsecs);
785 EXPORT_SYMBOL_GPL(ktime_get_raw);
788 * ktime_get_ts64 - get the monotonic clock in timespec64 format
789 * @ts: pointer to timespec variable
791 * The function calculates the monotonic clock from the realtime
792 * clock and the wall_to_monotonic offset and stores the result
793 * in normalized timespec64 format in the variable pointed to by @ts.
795 void ktime_get_ts64(struct timespec64 *ts)
797 struct timekeeper *tk = &tk_core.timekeeper;
798 struct timespec64 tomono;
799 s64 nsec;
800 unsigned int seq;
802 WARN_ON(timekeeping_suspended);
804 do {
805 seq = read_seqcount_begin(&tk_core.seq);
806 ts->tv_sec = tk->xtime_sec;
807 nsec = timekeeping_get_ns(&tk->tkr_mono);
808 tomono = tk->wall_to_monotonic;
810 } while (read_seqcount_retry(&tk_core.seq, seq));
812 ts->tv_sec += tomono.tv_sec;
813 ts->tv_nsec = 0;
814 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
816 EXPORT_SYMBOL_GPL(ktime_get_ts64);
819 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
821 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
822 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
823 * works on both 32 and 64 bit systems. On 32 bit systems the readout
824 * covers ~136 years of uptime which should be enough to prevent
825 * premature wrap arounds.
827 time64_t ktime_get_seconds(void)
829 struct timekeeper *tk = &tk_core.timekeeper;
831 WARN_ON(timekeeping_suspended);
832 return tk->ktime_sec;
834 EXPORT_SYMBOL_GPL(ktime_get_seconds);
837 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
839 * Returns the wall clock seconds since 1970. This replaces the
840 * get_seconds() interface which is not y2038 safe on 32bit systems.
842 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
843 * 32bit systems the access must be protected with the sequence
844 * counter to provide "atomic" access to the 64bit tk->xtime_sec
845 * value.
847 time64_t ktime_get_real_seconds(void)
849 struct timekeeper *tk = &tk_core.timekeeper;
850 time64_t seconds;
851 unsigned int seq;
853 if (IS_ENABLED(CONFIG_64BIT))
854 return tk->xtime_sec;
856 do {
857 seq = read_seqcount_begin(&tk_core.seq);
858 seconds = tk->xtime_sec;
860 } while (read_seqcount_retry(&tk_core.seq, seq));
862 return seconds;
864 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
867 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
868 * but without the sequence counter protect. This internal function
869 * is called just when timekeeping lock is already held.
871 time64_t __ktime_get_real_seconds(void)
873 struct timekeeper *tk = &tk_core.timekeeper;
875 return tk->xtime_sec;
879 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
880 * @systime_snapshot: pointer to struct receiving the system time snapshot
882 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
884 struct timekeeper *tk = &tk_core.timekeeper;
885 unsigned long seq;
886 ktime_t base_raw;
887 ktime_t base_real;
888 s64 nsec_raw;
889 s64 nsec_real;
890 cycle_t now;
892 WARN_ON_ONCE(timekeeping_suspended);
894 do {
895 seq = read_seqcount_begin(&tk_core.seq);
897 now = tk->tkr_mono.read(tk->tkr_mono.clock);
898 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
899 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
900 base_real = ktime_add(tk->tkr_mono.base,
901 tk_core.timekeeper.offs_real);
902 base_raw = tk->tkr_raw.base;
903 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
904 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
905 } while (read_seqcount_retry(&tk_core.seq, seq));
907 systime_snapshot->cycles = now;
908 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
909 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
911 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
913 /* Scale base by mult/div checking for overflow */
914 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
916 u64 tmp, rem;
918 tmp = div64_u64_rem(*base, div, &rem);
920 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
921 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
922 return -EOVERFLOW;
923 tmp *= mult;
924 rem *= mult;
926 do_div(rem, div);
927 *base = tmp + rem;
928 return 0;
932 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
933 * @history: Snapshot representing start of history
934 * @partial_history_cycles: Cycle offset into history (fractional part)
935 * @total_history_cycles: Total history length in cycles
936 * @discontinuity: True indicates clock was set on history period
937 * @ts: Cross timestamp that should be adjusted using
938 * partial/total ratio
940 * Helper function used by get_device_system_crosststamp() to correct the
941 * crosstimestamp corresponding to the start of the current interval to the
942 * system counter value (timestamp point) provided by the driver. The
943 * total_history_* quantities are the total history starting at the provided
944 * reference point and ending at the start of the current interval. The cycle
945 * count between the driver timestamp point and the start of the current
946 * interval is partial_history_cycles.
948 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
949 cycle_t partial_history_cycles,
950 cycle_t total_history_cycles,
951 bool discontinuity,
952 struct system_device_crosststamp *ts)
954 struct timekeeper *tk = &tk_core.timekeeper;
955 u64 corr_raw, corr_real;
956 bool interp_forward;
957 int ret;
959 if (total_history_cycles == 0 || partial_history_cycles == 0)
960 return 0;
962 /* Interpolate shortest distance from beginning or end of history */
963 interp_forward = partial_history_cycles > total_history_cycles/2 ?
964 true : false;
965 partial_history_cycles = interp_forward ?
966 total_history_cycles - partial_history_cycles :
967 partial_history_cycles;
970 * Scale the monotonic raw time delta by:
971 * partial_history_cycles / total_history_cycles
973 corr_raw = (u64)ktime_to_ns(
974 ktime_sub(ts->sys_monoraw, history->raw));
975 ret = scale64_check_overflow(partial_history_cycles,
976 total_history_cycles, &corr_raw);
977 if (ret)
978 return ret;
981 * If there is a discontinuity in the history, scale monotonic raw
982 * correction by:
983 * mult(real)/mult(raw) yielding the realtime correction
984 * Otherwise, calculate the realtime correction similar to monotonic
985 * raw calculation
987 if (discontinuity) {
988 corr_real = mul_u64_u32_div
989 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
990 } else {
991 corr_real = (u64)ktime_to_ns(
992 ktime_sub(ts->sys_realtime, history->real));
993 ret = scale64_check_overflow(partial_history_cycles,
994 total_history_cycles, &corr_real);
995 if (ret)
996 return ret;
999 /* Fixup monotonic raw and real time time values */
1000 if (interp_forward) {
1001 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1002 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1003 } else {
1004 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1005 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1008 return 0;
1012 * cycle_between - true if test occurs chronologically between before and after
1014 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1016 if (test > before && test < after)
1017 return true;
1018 if (test < before && before > after)
1019 return true;
1020 return false;
1024 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1025 * @get_time_fn: Callback to get simultaneous device time and
1026 * system counter from the device driver
1027 * @ctx: Context passed to get_time_fn()
1028 * @history_begin: Historical reference point used to interpolate system
1029 * time when counter provided by the driver is before the current interval
1030 * @xtstamp: Receives simultaneously captured system and device time
1032 * Reads a timestamp from a device and correlates it to system time
1034 int get_device_system_crosststamp(int (*get_time_fn)
1035 (ktime_t *device_time,
1036 struct system_counterval_t *sys_counterval,
1037 void *ctx),
1038 void *ctx,
1039 struct system_time_snapshot *history_begin,
1040 struct system_device_crosststamp *xtstamp)
1042 struct system_counterval_t system_counterval;
1043 struct timekeeper *tk = &tk_core.timekeeper;
1044 cycle_t cycles, now, interval_start;
1045 unsigned int clock_was_set_seq = 0;
1046 ktime_t base_real, base_raw;
1047 s64 nsec_real, nsec_raw;
1048 u8 cs_was_changed_seq;
1049 unsigned long seq;
1050 bool do_interp;
1051 int ret;
1053 do {
1054 seq = read_seqcount_begin(&tk_core.seq);
1056 * Try to synchronously capture device time and a system
1057 * counter value calling back into the device driver
1059 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1060 if (ret)
1061 return ret;
1064 * Verify that the clocksource associated with the captured
1065 * system counter value is the same as the currently installed
1066 * timekeeper clocksource
1068 if (tk->tkr_mono.clock != system_counterval.cs)
1069 return -ENODEV;
1070 cycles = system_counterval.cycles;
1073 * Check whether the system counter value provided by the
1074 * device driver is on the current timekeeping interval.
1076 now = tk->tkr_mono.read(tk->tkr_mono.clock);
1077 interval_start = tk->tkr_mono.cycle_last;
1078 if (!cycle_between(interval_start, cycles, now)) {
1079 clock_was_set_seq = tk->clock_was_set_seq;
1080 cs_was_changed_seq = tk->cs_was_changed_seq;
1081 cycles = interval_start;
1082 do_interp = true;
1083 } else {
1084 do_interp = false;
1087 base_real = ktime_add(tk->tkr_mono.base,
1088 tk_core.timekeeper.offs_real);
1089 base_raw = tk->tkr_raw.base;
1091 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1092 system_counterval.cycles);
1093 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1094 system_counterval.cycles);
1095 } while (read_seqcount_retry(&tk_core.seq, seq));
1097 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1098 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1101 * Interpolate if necessary, adjusting back from the start of the
1102 * current interval
1104 if (do_interp) {
1105 cycle_t partial_history_cycles, total_history_cycles;
1106 bool discontinuity;
1109 * Check that the counter value occurs after the provided
1110 * history reference and that the history doesn't cross a
1111 * clocksource change
1113 if (!history_begin ||
1114 !cycle_between(history_begin->cycles,
1115 system_counterval.cycles, cycles) ||
1116 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1117 return -EINVAL;
1118 partial_history_cycles = cycles - system_counterval.cycles;
1119 total_history_cycles = cycles - history_begin->cycles;
1120 discontinuity =
1121 history_begin->clock_was_set_seq != clock_was_set_seq;
1123 ret = adjust_historical_crosststamp(history_begin,
1124 partial_history_cycles,
1125 total_history_cycles,
1126 discontinuity, xtstamp);
1127 if (ret)
1128 return ret;
1131 return 0;
1133 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1136 * do_gettimeofday - Returns the time of day in a timeval
1137 * @tv: pointer to the timeval to be set
1139 * NOTE: Users should be converted to using getnstimeofday()
1141 void do_gettimeofday(struct timeval *tv)
1143 struct timespec64 now;
1145 getnstimeofday64(&now);
1146 tv->tv_sec = now.tv_sec;
1147 tv->tv_usec = now.tv_nsec/1000;
1149 EXPORT_SYMBOL(do_gettimeofday);
1152 * do_settimeofday64 - Sets the time of day.
1153 * @ts: pointer to the timespec64 variable containing the new time
1155 * Sets the time of day to the new time and update NTP and notify hrtimers
1157 int do_settimeofday64(const struct timespec64 *ts)
1159 struct timekeeper *tk = &tk_core.timekeeper;
1160 struct timespec64 ts_delta, xt;
1161 unsigned long flags;
1162 int ret = 0;
1164 if (!timespec64_valid_strict(ts))
1165 return -EINVAL;
1167 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1168 write_seqcount_begin(&tk_core.seq);
1170 timekeeping_forward_now(tk);
1172 xt = tk_xtime(tk);
1173 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1174 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1176 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1177 ret = -EINVAL;
1178 goto out;
1181 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1183 tk_set_xtime(tk, ts);
1184 out:
1185 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1187 write_seqcount_end(&tk_core.seq);
1188 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1190 /* signal hrtimers about time change */
1191 clock_was_set();
1193 return ret;
1195 EXPORT_SYMBOL(do_settimeofday64);
1198 * timekeeping_inject_offset - Adds or subtracts from the current time.
1199 * @tv: pointer to the timespec variable containing the offset
1201 * Adds or subtracts an offset value from the current time.
1203 int timekeeping_inject_offset(struct timespec *ts)
1205 struct timekeeper *tk = &tk_core.timekeeper;
1206 unsigned long flags;
1207 struct timespec64 ts64, tmp;
1208 int ret = 0;
1210 if (!timespec_inject_offset_valid(ts))
1211 return -EINVAL;
1213 ts64 = timespec_to_timespec64(*ts);
1215 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1216 write_seqcount_begin(&tk_core.seq);
1218 timekeeping_forward_now(tk);
1220 /* Make sure the proposed value is valid */
1221 tmp = timespec64_add(tk_xtime(tk), ts64);
1222 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1223 !timespec64_valid_strict(&tmp)) {
1224 ret = -EINVAL;
1225 goto error;
1228 tk_xtime_add(tk, &ts64);
1229 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1231 error: /* even if we error out, we forwarded the time, so call update */
1232 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1234 write_seqcount_end(&tk_core.seq);
1235 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1237 /* signal hrtimers about time change */
1238 clock_was_set();
1240 return ret;
1242 EXPORT_SYMBOL(timekeeping_inject_offset);
1246 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1249 s32 timekeeping_get_tai_offset(void)
1251 struct timekeeper *tk = &tk_core.timekeeper;
1252 unsigned int seq;
1253 s32 ret;
1255 do {
1256 seq = read_seqcount_begin(&tk_core.seq);
1257 ret = tk->tai_offset;
1258 } while (read_seqcount_retry(&tk_core.seq, seq));
1260 return ret;
1264 * __timekeeping_set_tai_offset - Lock free worker function
1267 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1269 tk->tai_offset = tai_offset;
1270 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1274 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1277 void timekeeping_set_tai_offset(s32 tai_offset)
1279 struct timekeeper *tk = &tk_core.timekeeper;
1280 unsigned long flags;
1282 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1283 write_seqcount_begin(&tk_core.seq);
1284 __timekeeping_set_tai_offset(tk, tai_offset);
1285 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1286 write_seqcount_end(&tk_core.seq);
1287 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1288 clock_was_set();
1292 * change_clocksource - Swaps clocksources if a new one is available
1294 * Accumulates current time interval and initializes new clocksource
1296 static int change_clocksource(void *data)
1298 struct timekeeper *tk = &tk_core.timekeeper;
1299 struct clocksource *new, *old;
1300 unsigned long flags;
1302 new = (struct clocksource *) data;
1304 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1305 write_seqcount_begin(&tk_core.seq);
1307 timekeeping_forward_now(tk);
1309 * If the cs is in module, get a module reference. Succeeds
1310 * for built-in code (owner == NULL) as well.
1312 if (try_module_get(new->owner)) {
1313 if (!new->enable || new->enable(new) == 0) {
1314 old = tk->tkr_mono.clock;
1315 tk_setup_internals(tk, new);
1316 if (old->disable)
1317 old->disable(old);
1318 module_put(old->owner);
1319 } else {
1320 module_put(new->owner);
1323 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1325 write_seqcount_end(&tk_core.seq);
1326 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1328 return 0;
1332 * timekeeping_notify - Install a new clock source
1333 * @clock: pointer to the clock source
1335 * This function is called from clocksource.c after a new, better clock
1336 * source has been registered. The caller holds the clocksource_mutex.
1338 int timekeeping_notify(struct clocksource *clock)
1340 struct timekeeper *tk = &tk_core.timekeeper;
1342 if (tk->tkr_mono.clock == clock)
1343 return 0;
1344 stop_machine(change_clocksource, clock, NULL);
1345 tick_clock_notify();
1346 return tk->tkr_mono.clock == clock ? 0 : -1;
1350 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1351 * @ts: pointer to the timespec64 to be set
1353 * Returns the raw monotonic time (completely un-modified by ntp)
1355 void getrawmonotonic64(struct timespec64 *ts)
1357 struct timekeeper *tk = &tk_core.timekeeper;
1358 struct timespec64 ts64;
1359 unsigned long seq;
1360 s64 nsecs;
1362 do {
1363 seq = read_seqcount_begin(&tk_core.seq);
1364 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1365 ts64 = tk->raw_time;
1367 } while (read_seqcount_retry(&tk_core.seq, seq));
1369 timespec64_add_ns(&ts64, nsecs);
1370 *ts = ts64;
1372 EXPORT_SYMBOL(getrawmonotonic64);
1376 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1378 int timekeeping_valid_for_hres(void)
1380 struct timekeeper *tk = &tk_core.timekeeper;
1381 unsigned long seq;
1382 int ret;
1384 do {
1385 seq = read_seqcount_begin(&tk_core.seq);
1387 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1389 } while (read_seqcount_retry(&tk_core.seq, seq));
1391 return ret;
1395 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1397 u64 timekeeping_max_deferment(void)
1399 struct timekeeper *tk = &tk_core.timekeeper;
1400 unsigned long seq;
1401 u64 ret;
1403 do {
1404 seq = read_seqcount_begin(&tk_core.seq);
1406 ret = tk->tkr_mono.clock->max_idle_ns;
1408 } while (read_seqcount_retry(&tk_core.seq, seq));
1410 return ret;
1414 * read_persistent_clock - Return time from the persistent clock.
1416 * Weak dummy function for arches that do not yet support it.
1417 * Reads the time from the battery backed persistent clock.
1418 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1420 * XXX - Do be sure to remove it once all arches implement it.
1422 void __weak read_persistent_clock(struct timespec *ts)
1424 ts->tv_sec = 0;
1425 ts->tv_nsec = 0;
1428 void __weak read_persistent_clock64(struct timespec64 *ts64)
1430 struct timespec ts;
1432 read_persistent_clock(&ts);
1433 *ts64 = timespec_to_timespec64(ts);
1437 * read_boot_clock64 - Return time of the system start.
1439 * Weak dummy function for arches that do not yet support it.
1440 * Function to read the exact time the system has been started.
1441 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1443 * XXX - Do be sure to remove it once all arches implement it.
1445 void __weak read_boot_clock64(struct timespec64 *ts)
1447 ts->tv_sec = 0;
1448 ts->tv_nsec = 0;
1451 /* Flag for if timekeeping_resume() has injected sleeptime */
1452 static bool sleeptime_injected;
1454 /* Flag for if there is a persistent clock on this platform */
1455 static bool persistent_clock_exists;
1458 * timekeeping_init - Initializes the clocksource and common timekeeping values
1460 void __init timekeeping_init(void)
1462 struct timekeeper *tk = &tk_core.timekeeper;
1463 struct clocksource *clock;
1464 unsigned long flags;
1465 struct timespec64 now, boot, tmp;
1467 read_persistent_clock64(&now);
1468 if (!timespec64_valid_strict(&now)) {
1469 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1470 " Check your CMOS/BIOS settings.\n");
1471 now.tv_sec = 0;
1472 now.tv_nsec = 0;
1473 } else if (now.tv_sec || now.tv_nsec)
1474 persistent_clock_exists = true;
1476 read_boot_clock64(&boot);
1477 if (!timespec64_valid_strict(&boot)) {
1478 pr_warn("WARNING: Boot clock returned invalid value!\n"
1479 " Check your CMOS/BIOS settings.\n");
1480 boot.tv_sec = 0;
1481 boot.tv_nsec = 0;
1484 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1485 write_seqcount_begin(&tk_core.seq);
1486 ntp_init();
1488 clock = clocksource_default_clock();
1489 if (clock->enable)
1490 clock->enable(clock);
1491 tk_setup_internals(tk, clock);
1493 tk_set_xtime(tk, &now);
1494 tk->raw_time.tv_sec = 0;
1495 tk->raw_time.tv_nsec = 0;
1496 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1497 boot = tk_xtime(tk);
1499 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1500 tk_set_wall_to_mono(tk, tmp);
1502 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1504 write_seqcount_end(&tk_core.seq);
1505 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1508 /* time in seconds when suspend began for persistent clock */
1509 static struct timespec64 timekeeping_suspend_time;
1512 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1513 * @delta: pointer to a timespec delta value
1515 * Takes a timespec offset measuring a suspend interval and properly
1516 * adds the sleep offset to the timekeeping variables.
1518 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1519 struct timespec64 *delta)
1521 if (!timespec64_valid_strict(delta)) {
1522 printk_deferred(KERN_WARNING
1523 "__timekeeping_inject_sleeptime: Invalid "
1524 "sleep delta value!\n");
1525 return;
1527 tk_xtime_add(tk, delta);
1528 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1529 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1530 tk_debug_account_sleep_time(delta);
1533 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1535 * We have three kinds of time sources to use for sleep time
1536 * injection, the preference order is:
1537 * 1) non-stop clocksource
1538 * 2) persistent clock (ie: RTC accessible when irqs are off)
1539 * 3) RTC
1541 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1542 * If system has neither 1) nor 2), 3) will be used finally.
1545 * If timekeeping has injected sleeptime via either 1) or 2),
1546 * 3) becomes needless, so in this case we don't need to call
1547 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1548 * means.
1550 bool timekeeping_rtc_skipresume(void)
1552 return sleeptime_injected;
1556 * 1) can be determined whether to use or not only when doing
1557 * timekeeping_resume() which is invoked after rtc_suspend(),
1558 * so we can't skip rtc_suspend() surely if system has 1).
1560 * But if system has 2), 2) will definitely be used, so in this
1561 * case we don't need to call rtc_suspend(), and this is what
1562 * timekeeping_rtc_skipsuspend() means.
1564 bool timekeeping_rtc_skipsuspend(void)
1566 return persistent_clock_exists;
1570 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1571 * @delta: pointer to a timespec64 delta value
1573 * This hook is for architectures that cannot support read_persistent_clock64
1574 * because their RTC/persistent clock is only accessible when irqs are enabled.
1575 * and also don't have an effective nonstop clocksource.
1577 * This function should only be called by rtc_resume(), and allows
1578 * a suspend offset to be injected into the timekeeping values.
1580 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1582 struct timekeeper *tk = &tk_core.timekeeper;
1583 unsigned long flags;
1585 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1586 write_seqcount_begin(&tk_core.seq);
1588 timekeeping_forward_now(tk);
1590 __timekeeping_inject_sleeptime(tk, delta);
1592 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1594 write_seqcount_end(&tk_core.seq);
1595 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1597 /* signal hrtimers about time change */
1598 clock_was_set();
1600 #endif
1603 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1605 void timekeeping_resume(void)
1607 struct timekeeper *tk = &tk_core.timekeeper;
1608 struct clocksource *clock = tk->tkr_mono.clock;
1609 unsigned long flags;
1610 struct timespec64 ts_new, ts_delta;
1611 cycle_t cycle_now, cycle_delta;
1613 sleeptime_injected = false;
1614 read_persistent_clock64(&ts_new);
1616 clockevents_resume();
1617 clocksource_resume();
1619 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1620 write_seqcount_begin(&tk_core.seq);
1623 * After system resumes, we need to calculate the suspended time and
1624 * compensate it for the OS time. There are 3 sources that could be
1625 * used: Nonstop clocksource during suspend, persistent clock and rtc
1626 * device.
1628 * One specific platform may have 1 or 2 or all of them, and the
1629 * preference will be:
1630 * suspend-nonstop clocksource -> persistent clock -> rtc
1631 * The less preferred source will only be tried if there is no better
1632 * usable source. The rtc part is handled separately in rtc core code.
1634 cycle_now = tk->tkr_mono.read(clock);
1635 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1636 cycle_now > tk->tkr_mono.cycle_last) {
1637 u64 num, max = ULLONG_MAX;
1638 u32 mult = clock->mult;
1639 u32 shift = clock->shift;
1640 s64 nsec = 0;
1642 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1643 tk->tkr_mono.mask);
1646 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1647 * suspended time is too long. In that case we need do the
1648 * 64 bits math carefully
1650 do_div(max, mult);
1651 if (cycle_delta > max) {
1652 num = div64_u64(cycle_delta, max);
1653 nsec = (((u64) max * mult) >> shift) * num;
1654 cycle_delta -= num * max;
1656 nsec += ((u64) cycle_delta * mult) >> shift;
1658 ts_delta = ns_to_timespec64(nsec);
1659 sleeptime_injected = true;
1660 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1661 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1662 sleeptime_injected = true;
1665 if (sleeptime_injected)
1666 __timekeeping_inject_sleeptime(tk, &ts_delta);
1668 /* Re-base the last cycle value */
1669 tk->tkr_mono.cycle_last = cycle_now;
1670 tk->tkr_raw.cycle_last = cycle_now;
1672 tk->ntp_error = 0;
1673 timekeeping_suspended = 0;
1674 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1675 write_seqcount_end(&tk_core.seq);
1676 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1678 touch_softlockup_watchdog();
1680 tick_resume();
1681 hrtimers_resume();
1684 int timekeeping_suspend(void)
1686 struct timekeeper *tk = &tk_core.timekeeper;
1687 unsigned long flags;
1688 struct timespec64 delta, delta_delta;
1689 static struct timespec64 old_delta;
1691 read_persistent_clock64(&timekeeping_suspend_time);
1694 * On some systems the persistent_clock can not be detected at
1695 * timekeeping_init by its return value, so if we see a valid
1696 * value returned, update the persistent_clock_exists flag.
1698 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1699 persistent_clock_exists = true;
1701 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1702 write_seqcount_begin(&tk_core.seq);
1703 timekeeping_forward_now(tk);
1704 timekeeping_suspended = 1;
1706 if (persistent_clock_exists) {
1708 * To avoid drift caused by repeated suspend/resumes,
1709 * which each can add ~1 second drift error,
1710 * try to compensate so the difference in system time
1711 * and persistent_clock time stays close to constant.
1713 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1714 delta_delta = timespec64_sub(delta, old_delta);
1715 if (abs(delta_delta.tv_sec) >= 2) {
1717 * if delta_delta is too large, assume time correction
1718 * has occurred and set old_delta to the current delta.
1720 old_delta = delta;
1721 } else {
1722 /* Otherwise try to adjust old_system to compensate */
1723 timekeeping_suspend_time =
1724 timespec64_add(timekeeping_suspend_time, delta_delta);
1728 timekeeping_update(tk, TK_MIRROR);
1729 halt_fast_timekeeper(tk);
1730 write_seqcount_end(&tk_core.seq);
1731 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1733 tick_suspend();
1734 clocksource_suspend();
1735 clockevents_suspend();
1737 return 0;
1740 /* sysfs resume/suspend bits for timekeeping */
1741 static struct syscore_ops timekeeping_syscore_ops = {
1742 .resume = timekeeping_resume,
1743 .suspend = timekeeping_suspend,
1746 static int __init timekeeping_init_ops(void)
1748 register_syscore_ops(&timekeeping_syscore_ops);
1749 return 0;
1751 device_initcall(timekeeping_init_ops);
1754 * Apply a multiplier adjustment to the timekeeper
1756 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1757 s64 offset,
1758 bool negative,
1759 int adj_scale)
1761 s64 interval = tk->cycle_interval;
1762 s32 mult_adj = 1;
1764 if (negative) {
1765 mult_adj = -mult_adj;
1766 interval = -interval;
1767 offset = -offset;
1769 mult_adj <<= adj_scale;
1770 interval <<= adj_scale;
1771 offset <<= adj_scale;
1774 * So the following can be confusing.
1776 * To keep things simple, lets assume mult_adj == 1 for now.
1778 * When mult_adj != 1, remember that the interval and offset values
1779 * have been appropriately scaled so the math is the same.
1781 * The basic idea here is that we're increasing the multiplier
1782 * by one, this causes the xtime_interval to be incremented by
1783 * one cycle_interval. This is because:
1784 * xtime_interval = cycle_interval * mult
1785 * So if mult is being incremented by one:
1786 * xtime_interval = cycle_interval * (mult + 1)
1787 * Its the same as:
1788 * xtime_interval = (cycle_interval * mult) + cycle_interval
1789 * Which can be shortened to:
1790 * xtime_interval += cycle_interval
1792 * So offset stores the non-accumulated cycles. Thus the current
1793 * time (in shifted nanoseconds) is:
1794 * now = (offset * adj) + xtime_nsec
1795 * Now, even though we're adjusting the clock frequency, we have
1796 * to keep time consistent. In other words, we can't jump back
1797 * in time, and we also want to avoid jumping forward in time.
1799 * So given the same offset value, we need the time to be the same
1800 * both before and after the freq adjustment.
1801 * now = (offset * adj_1) + xtime_nsec_1
1802 * now = (offset * adj_2) + xtime_nsec_2
1803 * So:
1804 * (offset * adj_1) + xtime_nsec_1 =
1805 * (offset * adj_2) + xtime_nsec_2
1806 * And we know:
1807 * adj_2 = adj_1 + 1
1808 * So:
1809 * (offset * adj_1) + xtime_nsec_1 =
1810 * (offset * (adj_1+1)) + xtime_nsec_2
1811 * (offset * adj_1) + xtime_nsec_1 =
1812 * (offset * adj_1) + offset + xtime_nsec_2
1813 * Canceling the sides:
1814 * xtime_nsec_1 = offset + xtime_nsec_2
1815 * Which gives us:
1816 * xtime_nsec_2 = xtime_nsec_1 - offset
1817 * Which simplfies to:
1818 * xtime_nsec -= offset
1820 * XXX - TODO: Doc ntp_error calculation.
1822 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1823 /* NTP adjustment caused clocksource mult overflow */
1824 WARN_ON_ONCE(1);
1825 return;
1828 tk->tkr_mono.mult += mult_adj;
1829 tk->xtime_interval += interval;
1830 tk->tkr_mono.xtime_nsec -= offset;
1831 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1835 * Calculate the multiplier adjustment needed to match the frequency
1836 * specified by NTP
1838 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1839 s64 offset)
1841 s64 interval = tk->cycle_interval;
1842 s64 xinterval = tk->xtime_interval;
1843 u32 base = tk->tkr_mono.clock->mult;
1844 u32 max = tk->tkr_mono.clock->maxadj;
1845 u32 cur_adj = tk->tkr_mono.mult;
1846 s64 tick_error;
1847 bool negative;
1848 u32 adj_scale;
1850 /* Remove any current error adj from freq calculation */
1851 if (tk->ntp_err_mult)
1852 xinterval -= tk->cycle_interval;
1854 tk->ntp_tick = ntp_tick_length();
1856 /* Calculate current error per tick */
1857 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1858 tick_error -= (xinterval + tk->xtime_remainder);
1860 /* Don't worry about correcting it if its small */
1861 if (likely((tick_error >= 0) && (tick_error <= interval)))
1862 return;
1864 /* preserve the direction of correction */
1865 negative = (tick_error < 0);
1867 /* If any adjustment would pass the max, just return */
1868 if (negative && (cur_adj - 1) <= (base - max))
1869 return;
1870 if (!negative && (cur_adj + 1) >= (base + max))
1871 return;
1873 * Sort out the magnitude of the correction, but
1874 * avoid making so large a correction that we go
1875 * over the max adjustment.
1877 adj_scale = 0;
1878 tick_error = abs(tick_error);
1879 while (tick_error > interval) {
1880 u32 adj = 1 << (adj_scale + 1);
1882 /* Check if adjustment gets us within 1 unit from the max */
1883 if (negative && (cur_adj - adj) <= (base - max))
1884 break;
1885 if (!negative && (cur_adj + adj) >= (base + max))
1886 break;
1888 adj_scale++;
1889 tick_error >>= 1;
1892 /* scale the corrections */
1893 timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1897 * Adjust the timekeeper's multiplier to the correct frequency
1898 * and also to reduce the accumulated error value.
1900 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1902 /* Correct for the current frequency error */
1903 timekeeping_freqadjust(tk, offset);
1905 /* Next make a small adjustment to fix any cumulative error */
1906 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1907 tk->ntp_err_mult = 1;
1908 timekeeping_apply_adjustment(tk, offset, 0, 0);
1909 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1910 /* Undo any existing error adjustment */
1911 timekeeping_apply_adjustment(tk, offset, 1, 0);
1912 tk->ntp_err_mult = 0;
1915 if (unlikely(tk->tkr_mono.clock->maxadj &&
1916 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1917 > tk->tkr_mono.clock->maxadj))) {
1918 printk_once(KERN_WARNING
1919 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1920 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1921 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1925 * It may be possible that when we entered this function, xtime_nsec
1926 * was very small. Further, if we're slightly speeding the clocksource
1927 * in the code above, its possible the required corrective factor to
1928 * xtime_nsec could cause it to underflow.
1930 * Now, since we already accumulated the second, cannot simply roll
1931 * the accumulated second back, since the NTP subsystem has been
1932 * notified via second_overflow. So instead we push xtime_nsec forward
1933 * by the amount we underflowed, and add that amount into the error.
1935 * We'll correct this error next time through this function, when
1936 * xtime_nsec is not as small.
1938 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1939 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1940 tk->tkr_mono.xtime_nsec = 0;
1941 tk->ntp_error += neg << tk->ntp_error_shift;
1946 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1948 * Helper function that accumulates the nsecs greater than a second
1949 * from the xtime_nsec field to the xtime_secs field.
1950 * It also calls into the NTP code to handle leapsecond processing.
1953 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1955 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1956 unsigned int clock_set = 0;
1958 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1959 int leap;
1961 tk->tkr_mono.xtime_nsec -= nsecps;
1962 tk->xtime_sec++;
1964 /* Figure out if its a leap sec and apply if needed */
1965 leap = second_overflow(tk->xtime_sec);
1966 if (unlikely(leap)) {
1967 struct timespec64 ts;
1969 tk->xtime_sec += leap;
1971 ts.tv_sec = leap;
1972 ts.tv_nsec = 0;
1973 tk_set_wall_to_mono(tk,
1974 timespec64_sub(tk->wall_to_monotonic, ts));
1976 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1978 clock_set = TK_CLOCK_WAS_SET;
1981 return clock_set;
1985 * logarithmic_accumulation - shifted accumulation of cycles
1987 * This functions accumulates a shifted interval of cycles into
1988 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1989 * loop.
1991 * Returns the unconsumed cycles.
1993 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1994 u32 shift,
1995 unsigned int *clock_set)
1997 cycle_t interval = tk->cycle_interval << shift;
1998 u64 raw_nsecs;
2000 /* If the offset is smaller than a shifted interval, do nothing */
2001 if (offset < interval)
2002 return offset;
2004 /* Accumulate one shifted interval */
2005 offset -= interval;
2006 tk->tkr_mono.cycle_last += interval;
2007 tk->tkr_raw.cycle_last += interval;
2009 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2010 *clock_set |= accumulate_nsecs_to_secs(tk);
2012 /* Accumulate raw time */
2013 raw_nsecs = (u64)tk->raw_interval << shift;
2014 raw_nsecs += tk->raw_time.tv_nsec;
2015 if (raw_nsecs >= NSEC_PER_SEC) {
2016 u64 raw_secs = raw_nsecs;
2017 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2018 tk->raw_time.tv_sec += raw_secs;
2020 tk->raw_time.tv_nsec = raw_nsecs;
2022 /* Accumulate error between NTP and clock interval */
2023 tk->ntp_error += tk->ntp_tick << shift;
2024 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2025 (tk->ntp_error_shift + shift);
2027 return offset;
2031 * update_wall_time - Uses the current clocksource to increment the wall time
2034 void update_wall_time(void)
2036 struct timekeeper *real_tk = &tk_core.timekeeper;
2037 struct timekeeper *tk = &shadow_timekeeper;
2038 cycle_t offset;
2039 int shift = 0, maxshift;
2040 unsigned int clock_set = 0;
2041 unsigned long flags;
2043 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2045 /* Make sure we're fully resumed: */
2046 if (unlikely(timekeeping_suspended))
2047 goto out;
2049 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2050 offset = real_tk->cycle_interval;
2051 #else
2052 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2053 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2054 #endif
2056 /* Check if there's really nothing to do */
2057 if (offset < real_tk->cycle_interval)
2058 goto out;
2060 /* Do some additional sanity checking */
2061 timekeeping_check_update(real_tk, offset);
2064 * With NO_HZ we may have to accumulate many cycle_intervals
2065 * (think "ticks") worth of time at once. To do this efficiently,
2066 * we calculate the largest doubling multiple of cycle_intervals
2067 * that is smaller than the offset. We then accumulate that
2068 * chunk in one go, and then try to consume the next smaller
2069 * doubled multiple.
2071 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2072 shift = max(0, shift);
2073 /* Bound shift to one less than what overflows tick_length */
2074 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2075 shift = min(shift, maxshift);
2076 while (offset >= tk->cycle_interval) {
2077 offset = logarithmic_accumulation(tk, offset, shift,
2078 &clock_set);
2079 if (offset < tk->cycle_interval<<shift)
2080 shift--;
2083 /* correct the clock when NTP error is too big */
2084 timekeeping_adjust(tk, offset);
2087 * XXX This can be killed once everyone converts
2088 * to the new update_vsyscall.
2090 old_vsyscall_fixup(tk);
2093 * Finally, make sure that after the rounding
2094 * xtime_nsec isn't larger than NSEC_PER_SEC
2096 clock_set |= accumulate_nsecs_to_secs(tk);
2098 write_seqcount_begin(&tk_core.seq);
2100 * Update the real timekeeper.
2102 * We could avoid this memcpy by switching pointers, but that
2103 * requires changes to all other timekeeper usage sites as
2104 * well, i.e. move the timekeeper pointer getter into the
2105 * spinlocked/seqcount protected sections. And we trade this
2106 * memcpy under the tk_core.seq against one before we start
2107 * updating.
2109 timekeeping_update(tk, clock_set);
2110 memcpy(real_tk, tk, sizeof(*tk));
2111 /* The memcpy must come last. Do not put anything here! */
2112 write_seqcount_end(&tk_core.seq);
2113 out:
2114 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2115 if (clock_set)
2116 /* Have to call _delayed version, since in irq context*/
2117 clock_was_set_delayed();
2121 * getboottime64 - Return the real time of system boot.
2122 * @ts: pointer to the timespec64 to be set
2124 * Returns the wall-time of boot in a timespec64.
2126 * This is based on the wall_to_monotonic offset and the total suspend
2127 * time. Calls to settimeofday will affect the value returned (which
2128 * basically means that however wrong your real time clock is at boot time,
2129 * you get the right time here).
2131 void getboottime64(struct timespec64 *ts)
2133 struct timekeeper *tk = &tk_core.timekeeper;
2134 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2136 *ts = ktime_to_timespec64(t);
2138 EXPORT_SYMBOL_GPL(getboottime64);
2140 unsigned long get_seconds(void)
2142 struct timekeeper *tk = &tk_core.timekeeper;
2144 return tk->xtime_sec;
2146 EXPORT_SYMBOL(get_seconds);
2148 struct timespec __current_kernel_time(void)
2150 struct timekeeper *tk = &tk_core.timekeeper;
2152 return timespec64_to_timespec(tk_xtime(tk));
2155 struct timespec64 current_kernel_time64(void)
2157 struct timekeeper *tk = &tk_core.timekeeper;
2158 struct timespec64 now;
2159 unsigned long seq;
2161 do {
2162 seq = read_seqcount_begin(&tk_core.seq);
2164 now = tk_xtime(tk);
2165 } while (read_seqcount_retry(&tk_core.seq, seq));
2167 return now;
2169 EXPORT_SYMBOL(current_kernel_time64);
2171 struct timespec64 get_monotonic_coarse64(void)
2173 struct timekeeper *tk = &tk_core.timekeeper;
2174 struct timespec64 now, mono;
2175 unsigned long seq;
2177 do {
2178 seq = read_seqcount_begin(&tk_core.seq);
2180 now = tk_xtime(tk);
2181 mono = tk->wall_to_monotonic;
2182 } while (read_seqcount_retry(&tk_core.seq, seq));
2184 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2185 now.tv_nsec + mono.tv_nsec);
2187 return now;
2191 * Must hold jiffies_lock
2193 void do_timer(unsigned long ticks)
2195 jiffies_64 += ticks;
2196 calc_global_load(ticks);
2200 * ktime_get_update_offsets_now - hrtimer helper
2201 * @cwsseq: pointer to check and store the clock was set sequence number
2202 * @offs_real: pointer to storage for monotonic -> realtime offset
2203 * @offs_boot: pointer to storage for monotonic -> boottime offset
2204 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2206 * Returns current monotonic time and updates the offsets if the
2207 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2208 * different.
2210 * Called from hrtimer_interrupt() or retrigger_next_event()
2212 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2213 ktime_t *offs_boot, ktime_t *offs_tai)
2215 struct timekeeper *tk = &tk_core.timekeeper;
2216 unsigned int seq;
2217 ktime_t base;
2218 u64 nsecs;
2220 do {
2221 seq = read_seqcount_begin(&tk_core.seq);
2223 base = tk->tkr_mono.base;
2224 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2225 base = ktime_add_ns(base, nsecs);
2227 if (*cwsseq != tk->clock_was_set_seq) {
2228 *cwsseq = tk->clock_was_set_seq;
2229 *offs_real = tk->offs_real;
2230 *offs_boot = tk->offs_boot;
2231 *offs_tai = tk->offs_tai;
2234 /* Handle leapsecond insertion adjustments */
2235 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2236 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2238 } while (read_seqcount_retry(&tk_core.seq, seq));
2240 return base;
2244 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2246 int do_adjtimex(struct timex *txc)
2248 struct timekeeper *tk = &tk_core.timekeeper;
2249 unsigned long flags;
2250 struct timespec64 ts;
2251 s32 orig_tai, tai;
2252 int ret;
2254 /* Validate the data before disabling interrupts */
2255 ret = ntp_validate_timex(txc);
2256 if (ret)
2257 return ret;
2259 if (txc->modes & ADJ_SETOFFSET) {
2260 struct timespec delta;
2261 delta.tv_sec = txc->time.tv_sec;
2262 delta.tv_nsec = txc->time.tv_usec;
2263 if (!(txc->modes & ADJ_NANO))
2264 delta.tv_nsec *= 1000;
2265 ret = timekeeping_inject_offset(&delta);
2266 if (ret)
2267 return ret;
2270 getnstimeofday64(&ts);
2272 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2273 write_seqcount_begin(&tk_core.seq);
2275 orig_tai = tai = tk->tai_offset;
2276 ret = __do_adjtimex(txc, &ts, &tai);
2278 if (tai != orig_tai) {
2279 __timekeeping_set_tai_offset(tk, tai);
2280 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2282 tk_update_leap_state(tk);
2284 write_seqcount_end(&tk_core.seq);
2285 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2287 if (tai != orig_tai)
2288 clock_was_set();
2290 ntp_notify_cmos_timer();
2292 return ret;
2295 #ifdef CONFIG_NTP_PPS
2297 * hardpps() - Accessor function to NTP __hardpps function
2299 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2301 unsigned long flags;
2303 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2304 write_seqcount_begin(&tk_core.seq);
2306 __hardpps(phase_ts, raw_ts);
2308 write_seqcount_end(&tk_core.seq);
2309 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2311 EXPORT_SYMBOL(hardpps);
2312 #endif
2315 * xtime_update() - advances the timekeeping infrastructure
2316 * @ticks: number of ticks, that have elapsed since the last call.
2318 * Must be called with interrupts disabled.
2320 void xtime_update(unsigned long ticks)
2322 write_seqlock(&jiffies_lock);
2323 do_timer(ticks);
2324 write_sequnlock(&jiffies_lock);
2325 update_wall_time();