2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
36 * The most important data for readout fits into a single 64 byte
41 struct timekeeper timekeeper
;
42 } tk_core ____cacheline_aligned
;
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock
);
45 static struct timekeeper shadow_timekeeper
;
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
54 * See @update_fast_timekeeper() below.
58 struct tk_read_base base
[2];
61 static struct tk_fast tk_fast_mono ____cacheline_aligned
;
62 static struct tk_fast tk_fast_raw ____cacheline_aligned
;
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended
;
67 static inline void tk_normalize_xtime(struct timekeeper
*tk
)
69 while (tk
->tkr_mono
.xtime_nsec
>= ((u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
)) {
70 tk
->tkr_mono
.xtime_nsec
-= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
75 static inline struct timespec64
tk_xtime(struct timekeeper
*tk
)
79 ts
.tv_sec
= tk
->xtime_sec
;
80 ts
.tv_nsec
= (long)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
84 static void tk_set_xtime(struct timekeeper
*tk
, const struct timespec64
*ts
)
86 tk
->xtime_sec
= ts
->tv_sec
;
87 tk
->tkr_mono
.xtime_nsec
= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
90 static void tk_xtime_add(struct timekeeper
*tk
, const struct timespec64
*ts
)
92 tk
->xtime_sec
+= ts
->tv_sec
;
93 tk
->tkr_mono
.xtime_nsec
+= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
94 tk_normalize_xtime(tk
);
97 static void tk_set_wall_to_mono(struct timekeeper
*tk
, struct timespec64 wtm
)
99 struct timespec64 tmp
;
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
105 set_normalized_timespec64(&tmp
, -tk
->wall_to_monotonic
.tv_sec
,
106 -tk
->wall_to_monotonic
.tv_nsec
);
107 WARN_ON_ONCE(tk
->offs_real
.tv64
!= timespec64_to_ktime(tmp
).tv64
);
108 tk
->wall_to_monotonic
= wtm
;
109 set_normalized_timespec64(&tmp
, -wtm
.tv_sec
, -wtm
.tv_nsec
);
110 tk
->offs_real
= timespec64_to_ktime(tmp
);
111 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tk
->tai_offset
, 0));
114 static inline void tk_update_sleep_time(struct timekeeper
*tk
, ktime_t delta
)
116 tk
->offs_boot
= ktime_add(tk
->offs_boot
, delta
);
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
122 static void timekeeping_check_update(struct timekeeper
*tk
, cycle_t offset
)
125 cycle_t max_cycles
= tk
->tkr_mono
.clock
->max_cycles
;
126 const char *name
= tk
->tkr_mono
.clock
->name
;
128 if (offset
> max_cycles
) {
129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 offset
, name
, max_cycles
);
131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
133 if (offset
> (max_cycles
>> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 offset
, name
, max_cycles
>> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
140 if (tk
->underflow_seen
) {
141 if (jiffies
- tk
->last_warning
> WARNING_FREQ
) {
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name
);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
145 tk
->last_warning
= jiffies
;
147 tk
->underflow_seen
= 0;
150 if (tk
->overflow_seen
) {
151 if (jiffies
- tk
->last_warning
> WARNING_FREQ
) {
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name
);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
155 tk
->last_warning
= jiffies
;
157 tk
->overflow_seen
= 0;
161 static inline cycle_t
timekeeping_get_delta(struct tk_read_base
*tkr
)
163 struct timekeeper
*tk
= &tk_core
.timekeeper
;
164 cycle_t now
, last
, mask
, max
, delta
;
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
175 seq
= read_seqcount_begin(&tk_core
.seq
);
176 now
= tkr
->read(tkr
->clock
);
177 last
= tkr
->cycle_last
;
179 max
= tkr
->clock
->max_cycles
;
180 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
182 delta
= clocksource_delta(now
, last
, mask
);
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
188 if (unlikely((~delta
& mask
) < (mask
>> 3))) {
189 tk
->underflow_seen
= 1;
193 /* Cap delta value to the max_cycles values to avoid mult overflows */
194 if (unlikely(delta
> max
)) {
195 tk
->overflow_seen
= 1;
196 delta
= tkr
->clock
->max_cycles
;
202 static inline void timekeeping_check_update(struct timekeeper
*tk
, cycle_t offset
)
205 static inline cycle_t
timekeeping_get_delta(struct tk_read_base
*tkr
)
207 cycle_t cycle_now
, delta
;
209 /* read clocksource */
210 cycle_now
= tkr
->read(tkr
->clock
);
212 /* calculate the delta since the last update_wall_time */
213 delta
= clocksource_delta(cycle_now
, tkr
->cycle_last
, tkr
->mask
);
220 * tk_setup_internals - Set up internals to use clocksource clock.
222 * @tk: The target timekeeper to setup.
223 * @clock: Pointer to clocksource.
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
228 * Unless you're the timekeeping code, you should not be using this!
230 static void tk_setup_internals(struct timekeeper
*tk
, struct clocksource
*clock
)
233 u64 tmp
, ntpinterval
;
234 struct clocksource
*old_clock
;
236 ++tk
->cs_was_changed_seq
;
237 old_clock
= tk
->tkr_mono
.clock
;
238 tk
->tkr_mono
.clock
= clock
;
239 tk
->tkr_mono
.read
= clock
->read
;
240 tk
->tkr_mono
.mask
= clock
->mask
;
241 tk
->tkr_mono
.cycle_last
= tk
->tkr_mono
.read(clock
);
243 tk
->tkr_raw
.clock
= clock
;
244 tk
->tkr_raw
.read
= clock
->read
;
245 tk
->tkr_raw
.mask
= clock
->mask
;
246 tk
->tkr_raw
.cycle_last
= tk
->tkr_mono
.cycle_last
;
248 /* Do the ns -> cycle conversion first, using original mult */
249 tmp
= NTP_INTERVAL_LENGTH
;
250 tmp
<<= clock
->shift
;
252 tmp
+= clock
->mult
/2;
253 do_div(tmp
, clock
->mult
);
257 interval
= (cycle_t
) tmp
;
258 tk
->cycle_interval
= interval
;
260 /* Go back from cycles -> shifted ns */
261 tk
->xtime_interval
= (u64
) interval
* clock
->mult
;
262 tk
->xtime_remainder
= ntpinterval
- tk
->xtime_interval
;
264 ((u64
) interval
* clock
->mult
) >> clock
->shift
;
266 /* if changing clocks, convert xtime_nsec shift units */
268 int shift_change
= clock
->shift
- old_clock
->shift
;
269 if (shift_change
< 0)
270 tk
->tkr_mono
.xtime_nsec
>>= -shift_change
;
272 tk
->tkr_mono
.xtime_nsec
<<= shift_change
;
274 tk
->tkr_raw
.xtime_nsec
= 0;
276 tk
->tkr_mono
.shift
= clock
->shift
;
277 tk
->tkr_raw
.shift
= clock
->shift
;
280 tk
->ntp_error_shift
= NTP_SCALE_SHIFT
- clock
->shift
;
281 tk
->ntp_tick
= ntpinterval
<< tk
->ntp_error_shift
;
284 * The timekeeper keeps its own mult values for the currently
285 * active clocksource. These value will be adjusted via NTP
286 * to counteract clock drifting.
288 tk
->tkr_mono
.mult
= clock
->mult
;
289 tk
->tkr_raw
.mult
= clock
->mult
;
290 tk
->ntp_err_mult
= 0;
293 /* Timekeeper helper functions. */
295 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
296 static u32
default_arch_gettimeoffset(void) { return 0; }
297 u32 (*arch_gettimeoffset
)(void) = default_arch_gettimeoffset
;
299 static inline u32
arch_gettimeoffset(void) { return 0; }
302 static inline s64
timekeeping_delta_to_ns(struct tk_read_base
*tkr
,
307 nsec
= delta
* tkr
->mult
+ tkr
->xtime_nsec
;
310 /* If arch requires, add in get_arch_timeoffset() */
311 return nsec
+ arch_gettimeoffset();
314 static inline s64
timekeeping_get_ns(struct tk_read_base
*tkr
)
318 delta
= timekeeping_get_delta(tkr
);
319 return timekeeping_delta_to_ns(tkr
, delta
);
322 static inline s64
timekeeping_cycles_to_ns(struct tk_read_base
*tkr
,
327 /* calculate the delta since the last update_wall_time */
328 delta
= clocksource_delta(cycles
, tkr
->cycle_last
, tkr
->mask
);
329 return timekeeping_delta_to_ns(tkr
, delta
);
333 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
334 * @tkr: Timekeeping readout base from which we take the update
336 * We want to use this from any context including NMI and tracing /
337 * instrumenting the timekeeping code itself.
339 * Employ the latch technique; see @raw_write_seqcount_latch.
341 * So if a NMI hits the update of base[0] then it will use base[1]
342 * which is still consistent. In the worst case this can result is a
343 * slightly wrong timestamp (a few nanoseconds). See
344 * @ktime_get_mono_fast_ns.
346 static void update_fast_timekeeper(struct tk_read_base
*tkr
, struct tk_fast
*tkf
)
348 struct tk_read_base
*base
= tkf
->base
;
350 /* Force readers off to base[1] */
351 raw_write_seqcount_latch(&tkf
->seq
);
354 memcpy(base
, tkr
, sizeof(*base
));
356 /* Force readers back to base[0] */
357 raw_write_seqcount_latch(&tkf
->seq
);
360 memcpy(base
+ 1, base
, sizeof(*base
));
364 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
366 * This timestamp is not guaranteed to be monotonic across an update.
367 * The timestamp is calculated by:
369 * now = base_mono + clock_delta * slope
371 * So if the update lowers the slope, readers who are forced to the
372 * not yet updated second array are still using the old steeper slope.
381 * |12345678---> reader order
387 * So reader 6 will observe time going backwards versus reader 5.
389 * While other CPUs are likely to be able observe that, the only way
390 * for a CPU local observation is when an NMI hits in the middle of
391 * the update. Timestamps taken from that NMI context might be ahead
392 * of the following timestamps. Callers need to be aware of that and
395 static __always_inline u64
__ktime_get_fast_ns(struct tk_fast
*tkf
)
397 struct tk_read_base
*tkr
;
402 seq
= raw_read_seqcount_latch(&tkf
->seq
);
403 tkr
= tkf
->base
+ (seq
& 0x01);
404 now
= ktime_to_ns(tkr
->base
) + timekeeping_get_ns(tkr
);
405 } while (read_seqcount_retry(&tkf
->seq
, seq
));
410 u64
ktime_get_mono_fast_ns(void)
412 return __ktime_get_fast_ns(&tk_fast_mono
);
414 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns
);
416 u64
ktime_get_raw_fast_ns(void)
418 return __ktime_get_fast_ns(&tk_fast_raw
);
420 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns
);
422 /* Suspend-time cycles value for halted fast timekeeper. */
423 static cycle_t cycles_at_suspend
;
425 static cycle_t
dummy_clock_read(struct clocksource
*cs
)
427 return cycles_at_suspend
;
431 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
432 * @tk: Timekeeper to snapshot.
434 * It generally is unsafe to access the clocksource after timekeeping has been
435 * suspended, so take a snapshot of the readout base of @tk and use it as the
436 * fast timekeeper's readout base while suspended. It will return the same
437 * number of cycles every time until timekeeping is resumed at which time the
438 * proper readout base for the fast timekeeper will be restored automatically.
440 static void halt_fast_timekeeper(struct timekeeper
*tk
)
442 static struct tk_read_base tkr_dummy
;
443 struct tk_read_base
*tkr
= &tk
->tkr_mono
;
445 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
446 cycles_at_suspend
= tkr
->read(tkr
->clock
);
447 tkr_dummy
.read
= dummy_clock_read
;
448 update_fast_timekeeper(&tkr_dummy
, &tk_fast_mono
);
451 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
452 tkr_dummy
.read
= dummy_clock_read
;
453 update_fast_timekeeper(&tkr_dummy
, &tk_fast_raw
);
456 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
458 static inline void update_vsyscall(struct timekeeper
*tk
)
460 struct timespec xt
, wm
;
462 xt
= timespec64_to_timespec(tk_xtime(tk
));
463 wm
= timespec64_to_timespec(tk
->wall_to_monotonic
);
464 update_vsyscall_old(&xt
, &wm
, tk
->tkr_mono
.clock
, tk
->tkr_mono
.mult
,
465 tk
->tkr_mono
.cycle_last
);
468 static inline void old_vsyscall_fixup(struct timekeeper
*tk
)
473 * Store only full nanoseconds into xtime_nsec after rounding
474 * it up and add the remainder to the error difference.
475 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
476 * by truncating the remainder in vsyscalls. However, it causes
477 * additional work to be done in timekeeping_adjust(). Once
478 * the vsyscall implementations are converted to use xtime_nsec
479 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
480 * users are removed, this can be killed.
482 remainder
= tk
->tkr_mono
.xtime_nsec
& ((1ULL << tk
->tkr_mono
.shift
) - 1);
483 tk
->tkr_mono
.xtime_nsec
-= remainder
;
484 tk
->tkr_mono
.xtime_nsec
+= 1ULL << tk
->tkr_mono
.shift
;
485 tk
->ntp_error
+= remainder
<< tk
->ntp_error_shift
;
486 tk
->ntp_error
-= (1ULL << tk
->tkr_mono
.shift
) << tk
->ntp_error_shift
;
489 #define old_vsyscall_fixup(tk)
492 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain
);
494 static void update_pvclock_gtod(struct timekeeper
*tk
, bool was_set
)
496 raw_notifier_call_chain(&pvclock_gtod_chain
, was_set
, tk
);
500 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
502 int pvclock_gtod_register_notifier(struct notifier_block
*nb
)
504 struct timekeeper
*tk
= &tk_core
.timekeeper
;
508 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
509 ret
= raw_notifier_chain_register(&pvclock_gtod_chain
, nb
);
510 update_pvclock_gtod(tk
, true);
511 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
515 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier
);
518 * pvclock_gtod_unregister_notifier - unregister a pvclock
519 * timedata update listener
521 int pvclock_gtod_unregister_notifier(struct notifier_block
*nb
)
526 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
527 ret
= raw_notifier_chain_unregister(&pvclock_gtod_chain
, nb
);
528 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
532 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier
);
535 * tk_update_leap_state - helper to update the next_leap_ktime
537 static inline void tk_update_leap_state(struct timekeeper
*tk
)
539 tk
->next_leap_ktime
= ntp_get_next_leap();
540 if (tk
->next_leap_ktime
.tv64
!= KTIME_MAX
)
541 /* Convert to monotonic time */
542 tk
->next_leap_ktime
= ktime_sub(tk
->next_leap_ktime
, tk
->offs_real
);
546 * Update the ktime_t based scalar nsec members of the timekeeper
548 static inline void tk_update_ktime_data(struct timekeeper
*tk
)
554 * The xtime based monotonic readout is:
555 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
556 * The ktime based monotonic readout is:
557 * nsec = base_mono + now();
558 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
560 seconds
= (u64
)(tk
->xtime_sec
+ tk
->wall_to_monotonic
.tv_sec
);
561 nsec
= (u32
) tk
->wall_to_monotonic
.tv_nsec
;
562 tk
->tkr_mono
.base
= ns_to_ktime(seconds
* NSEC_PER_SEC
+ nsec
);
564 /* Update the monotonic raw base */
565 tk
->tkr_raw
.base
= timespec64_to_ktime(tk
->raw_time
);
568 * The sum of the nanoseconds portions of xtime and
569 * wall_to_monotonic can be greater/equal one second. Take
570 * this into account before updating tk->ktime_sec.
572 nsec
+= (u32
)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
573 if (nsec
>= NSEC_PER_SEC
)
575 tk
->ktime_sec
= seconds
;
578 /* must hold timekeeper_lock */
579 static void timekeeping_update(struct timekeeper
*tk
, unsigned int action
)
581 if (action
& TK_CLEAR_NTP
) {
586 tk_update_leap_state(tk
);
587 tk_update_ktime_data(tk
);
590 update_pvclock_gtod(tk
, action
& TK_CLOCK_WAS_SET
);
592 update_fast_timekeeper(&tk
->tkr_mono
, &tk_fast_mono
);
593 update_fast_timekeeper(&tk
->tkr_raw
, &tk_fast_raw
);
595 if (action
& TK_CLOCK_WAS_SET
)
596 tk
->clock_was_set_seq
++;
598 * The mirroring of the data to the shadow-timekeeper needs
599 * to happen last here to ensure we don't over-write the
600 * timekeeper structure on the next update with stale data
602 if (action
& TK_MIRROR
)
603 memcpy(&shadow_timekeeper
, &tk_core
.timekeeper
,
604 sizeof(tk_core
.timekeeper
));
608 * timekeeping_forward_now - update clock to the current time
610 * Forward the current clock to update its state since the last call to
611 * update_wall_time(). This is useful before significant clock changes,
612 * as it avoids having to deal with this time offset explicitly.
614 static void timekeeping_forward_now(struct timekeeper
*tk
)
616 struct clocksource
*clock
= tk
->tkr_mono
.clock
;
617 cycle_t cycle_now
, delta
;
620 cycle_now
= tk
->tkr_mono
.read(clock
);
621 delta
= clocksource_delta(cycle_now
, tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
);
622 tk
->tkr_mono
.cycle_last
= cycle_now
;
623 tk
->tkr_raw
.cycle_last
= cycle_now
;
625 tk
->tkr_mono
.xtime_nsec
+= delta
* tk
->tkr_mono
.mult
;
627 /* If arch requires, add in get_arch_timeoffset() */
628 tk
->tkr_mono
.xtime_nsec
+= (u64
)arch_gettimeoffset() << tk
->tkr_mono
.shift
;
630 tk_normalize_xtime(tk
);
632 nsec
= clocksource_cyc2ns(delta
, tk
->tkr_raw
.mult
, tk
->tkr_raw
.shift
);
633 timespec64_add_ns(&tk
->raw_time
, nsec
);
637 * __getnstimeofday64 - Returns the time of day in a timespec64.
638 * @ts: pointer to the timespec to be set
640 * Updates the time of day in the timespec.
641 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
643 int __getnstimeofday64(struct timespec64
*ts
)
645 struct timekeeper
*tk
= &tk_core
.timekeeper
;
650 seq
= read_seqcount_begin(&tk_core
.seq
);
652 ts
->tv_sec
= tk
->xtime_sec
;
653 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
655 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
658 timespec64_add_ns(ts
, nsecs
);
661 * Do not bail out early, in case there were callers still using
662 * the value, even in the face of the WARN_ON.
664 if (unlikely(timekeeping_suspended
))
668 EXPORT_SYMBOL(__getnstimeofday64
);
671 * getnstimeofday64 - Returns the time of day in a timespec64.
672 * @ts: pointer to the timespec64 to be set
674 * Returns the time of day in a timespec64 (WARN if suspended).
676 void getnstimeofday64(struct timespec64
*ts
)
678 WARN_ON(__getnstimeofday64(ts
));
680 EXPORT_SYMBOL(getnstimeofday64
);
682 ktime_t
ktime_get(void)
684 struct timekeeper
*tk
= &tk_core
.timekeeper
;
689 WARN_ON(timekeeping_suspended
);
692 seq
= read_seqcount_begin(&tk_core
.seq
);
693 base
= tk
->tkr_mono
.base
;
694 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
696 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
698 return ktime_add_ns(base
, nsecs
);
700 EXPORT_SYMBOL_GPL(ktime_get
);
702 u32
ktime_get_resolution_ns(void)
704 struct timekeeper
*tk
= &tk_core
.timekeeper
;
708 WARN_ON(timekeeping_suspended
);
711 seq
= read_seqcount_begin(&tk_core
.seq
);
712 nsecs
= tk
->tkr_mono
.mult
>> tk
->tkr_mono
.shift
;
713 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
717 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns
);
719 static ktime_t
*offsets
[TK_OFFS_MAX
] = {
720 [TK_OFFS_REAL
] = &tk_core
.timekeeper
.offs_real
,
721 [TK_OFFS_BOOT
] = &tk_core
.timekeeper
.offs_boot
,
722 [TK_OFFS_TAI
] = &tk_core
.timekeeper
.offs_tai
,
725 ktime_t
ktime_get_with_offset(enum tk_offsets offs
)
727 struct timekeeper
*tk
= &tk_core
.timekeeper
;
729 ktime_t base
, *offset
= offsets
[offs
];
732 WARN_ON(timekeeping_suspended
);
735 seq
= read_seqcount_begin(&tk_core
.seq
);
736 base
= ktime_add(tk
->tkr_mono
.base
, *offset
);
737 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
739 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
741 return ktime_add_ns(base
, nsecs
);
744 EXPORT_SYMBOL_GPL(ktime_get_with_offset
);
747 * ktime_mono_to_any() - convert mononotic time to any other time
748 * @tmono: time to convert.
749 * @offs: which offset to use
751 ktime_t
ktime_mono_to_any(ktime_t tmono
, enum tk_offsets offs
)
753 ktime_t
*offset
= offsets
[offs
];
758 seq
= read_seqcount_begin(&tk_core
.seq
);
759 tconv
= ktime_add(tmono
, *offset
);
760 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
764 EXPORT_SYMBOL_GPL(ktime_mono_to_any
);
767 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
769 ktime_t
ktime_get_raw(void)
771 struct timekeeper
*tk
= &tk_core
.timekeeper
;
777 seq
= read_seqcount_begin(&tk_core
.seq
);
778 base
= tk
->tkr_raw
.base
;
779 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
781 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
783 return ktime_add_ns(base
, nsecs
);
785 EXPORT_SYMBOL_GPL(ktime_get_raw
);
788 * ktime_get_ts64 - get the monotonic clock in timespec64 format
789 * @ts: pointer to timespec variable
791 * The function calculates the monotonic clock from the realtime
792 * clock and the wall_to_monotonic offset and stores the result
793 * in normalized timespec64 format in the variable pointed to by @ts.
795 void ktime_get_ts64(struct timespec64
*ts
)
797 struct timekeeper
*tk
= &tk_core
.timekeeper
;
798 struct timespec64 tomono
;
802 WARN_ON(timekeeping_suspended
);
805 seq
= read_seqcount_begin(&tk_core
.seq
);
806 ts
->tv_sec
= tk
->xtime_sec
;
807 nsec
= timekeeping_get_ns(&tk
->tkr_mono
);
808 tomono
= tk
->wall_to_monotonic
;
810 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
812 ts
->tv_sec
+= tomono
.tv_sec
;
814 timespec64_add_ns(ts
, nsec
+ tomono
.tv_nsec
);
816 EXPORT_SYMBOL_GPL(ktime_get_ts64
);
819 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
821 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
822 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
823 * works on both 32 and 64 bit systems. On 32 bit systems the readout
824 * covers ~136 years of uptime which should be enough to prevent
825 * premature wrap arounds.
827 time64_t
ktime_get_seconds(void)
829 struct timekeeper
*tk
= &tk_core
.timekeeper
;
831 WARN_ON(timekeeping_suspended
);
832 return tk
->ktime_sec
;
834 EXPORT_SYMBOL_GPL(ktime_get_seconds
);
837 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
839 * Returns the wall clock seconds since 1970. This replaces the
840 * get_seconds() interface which is not y2038 safe on 32bit systems.
842 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
843 * 32bit systems the access must be protected with the sequence
844 * counter to provide "atomic" access to the 64bit tk->xtime_sec
847 time64_t
ktime_get_real_seconds(void)
849 struct timekeeper
*tk
= &tk_core
.timekeeper
;
853 if (IS_ENABLED(CONFIG_64BIT
))
854 return tk
->xtime_sec
;
857 seq
= read_seqcount_begin(&tk_core
.seq
);
858 seconds
= tk
->xtime_sec
;
860 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
864 EXPORT_SYMBOL_GPL(ktime_get_real_seconds
);
867 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
868 * but without the sequence counter protect. This internal function
869 * is called just when timekeeping lock is already held.
871 time64_t
__ktime_get_real_seconds(void)
873 struct timekeeper
*tk
= &tk_core
.timekeeper
;
875 return tk
->xtime_sec
;
879 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
880 * @systime_snapshot: pointer to struct receiving the system time snapshot
882 void ktime_get_snapshot(struct system_time_snapshot
*systime_snapshot
)
884 struct timekeeper
*tk
= &tk_core
.timekeeper
;
892 WARN_ON_ONCE(timekeeping_suspended
);
895 seq
= read_seqcount_begin(&tk_core
.seq
);
897 now
= tk
->tkr_mono
.read(tk
->tkr_mono
.clock
);
898 systime_snapshot
->cs_was_changed_seq
= tk
->cs_was_changed_seq
;
899 systime_snapshot
->clock_was_set_seq
= tk
->clock_was_set_seq
;
900 base_real
= ktime_add(tk
->tkr_mono
.base
,
901 tk_core
.timekeeper
.offs_real
);
902 base_raw
= tk
->tkr_raw
.base
;
903 nsec_real
= timekeeping_cycles_to_ns(&tk
->tkr_mono
, now
);
904 nsec_raw
= timekeeping_cycles_to_ns(&tk
->tkr_raw
, now
);
905 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
907 systime_snapshot
->cycles
= now
;
908 systime_snapshot
->real
= ktime_add_ns(base_real
, nsec_real
);
909 systime_snapshot
->raw
= ktime_add_ns(base_raw
, nsec_raw
);
911 EXPORT_SYMBOL_GPL(ktime_get_snapshot
);
913 /* Scale base by mult/div checking for overflow */
914 static int scale64_check_overflow(u64 mult
, u64 div
, u64
*base
)
918 tmp
= div64_u64_rem(*base
, div
, &rem
);
920 if (((int)sizeof(u64
)*8 - fls64(mult
) < fls64(tmp
)) ||
921 ((int)sizeof(u64
)*8 - fls64(mult
) < fls64(rem
)))
932 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
933 * @history: Snapshot representing start of history
934 * @partial_history_cycles: Cycle offset into history (fractional part)
935 * @total_history_cycles: Total history length in cycles
936 * @discontinuity: True indicates clock was set on history period
937 * @ts: Cross timestamp that should be adjusted using
938 * partial/total ratio
940 * Helper function used by get_device_system_crosststamp() to correct the
941 * crosstimestamp corresponding to the start of the current interval to the
942 * system counter value (timestamp point) provided by the driver. The
943 * total_history_* quantities are the total history starting at the provided
944 * reference point and ending at the start of the current interval. The cycle
945 * count between the driver timestamp point and the start of the current
946 * interval is partial_history_cycles.
948 static int adjust_historical_crosststamp(struct system_time_snapshot
*history
,
949 cycle_t partial_history_cycles
,
950 cycle_t total_history_cycles
,
952 struct system_device_crosststamp
*ts
)
954 struct timekeeper
*tk
= &tk_core
.timekeeper
;
955 u64 corr_raw
, corr_real
;
959 if (total_history_cycles
== 0 || partial_history_cycles
== 0)
962 /* Interpolate shortest distance from beginning or end of history */
963 interp_forward
= partial_history_cycles
> total_history_cycles
/2 ?
965 partial_history_cycles
= interp_forward
?
966 total_history_cycles
- partial_history_cycles
:
967 partial_history_cycles
;
970 * Scale the monotonic raw time delta by:
971 * partial_history_cycles / total_history_cycles
973 corr_raw
= (u64
)ktime_to_ns(
974 ktime_sub(ts
->sys_monoraw
, history
->raw
));
975 ret
= scale64_check_overflow(partial_history_cycles
,
976 total_history_cycles
, &corr_raw
);
981 * If there is a discontinuity in the history, scale monotonic raw
983 * mult(real)/mult(raw) yielding the realtime correction
984 * Otherwise, calculate the realtime correction similar to monotonic
988 corr_real
= mul_u64_u32_div
989 (corr_raw
, tk
->tkr_mono
.mult
, tk
->tkr_raw
.mult
);
991 corr_real
= (u64
)ktime_to_ns(
992 ktime_sub(ts
->sys_realtime
, history
->real
));
993 ret
= scale64_check_overflow(partial_history_cycles
,
994 total_history_cycles
, &corr_real
);
999 /* Fixup monotonic raw and real time time values */
1000 if (interp_forward
) {
1001 ts
->sys_monoraw
= ktime_add_ns(history
->raw
, corr_raw
);
1002 ts
->sys_realtime
= ktime_add_ns(history
->real
, corr_real
);
1004 ts
->sys_monoraw
= ktime_sub_ns(ts
->sys_monoraw
, corr_raw
);
1005 ts
->sys_realtime
= ktime_sub_ns(ts
->sys_realtime
, corr_real
);
1012 * cycle_between - true if test occurs chronologically between before and after
1014 static bool cycle_between(cycle_t before
, cycle_t test
, cycle_t after
)
1016 if (test
> before
&& test
< after
)
1018 if (test
< before
&& before
> after
)
1024 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1025 * @get_time_fn: Callback to get simultaneous device time and
1026 * system counter from the device driver
1027 * @ctx: Context passed to get_time_fn()
1028 * @history_begin: Historical reference point used to interpolate system
1029 * time when counter provided by the driver is before the current interval
1030 * @xtstamp: Receives simultaneously captured system and device time
1032 * Reads a timestamp from a device and correlates it to system time
1034 int get_device_system_crosststamp(int (*get_time_fn
)
1035 (ktime_t
*device_time
,
1036 struct system_counterval_t
*sys_counterval
,
1039 struct system_time_snapshot
*history_begin
,
1040 struct system_device_crosststamp
*xtstamp
)
1042 struct system_counterval_t system_counterval
;
1043 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1044 cycle_t cycles
, now
, interval_start
;
1045 unsigned int clock_was_set_seq
= 0;
1046 ktime_t base_real
, base_raw
;
1047 s64 nsec_real
, nsec_raw
;
1048 u8 cs_was_changed_seq
;
1054 seq
= read_seqcount_begin(&tk_core
.seq
);
1056 * Try to synchronously capture device time and a system
1057 * counter value calling back into the device driver
1059 ret
= get_time_fn(&xtstamp
->device
, &system_counterval
, ctx
);
1064 * Verify that the clocksource associated with the captured
1065 * system counter value is the same as the currently installed
1066 * timekeeper clocksource
1068 if (tk
->tkr_mono
.clock
!= system_counterval
.cs
)
1070 cycles
= system_counterval
.cycles
;
1073 * Check whether the system counter value provided by the
1074 * device driver is on the current timekeeping interval.
1076 now
= tk
->tkr_mono
.read(tk
->tkr_mono
.clock
);
1077 interval_start
= tk
->tkr_mono
.cycle_last
;
1078 if (!cycle_between(interval_start
, cycles
, now
)) {
1079 clock_was_set_seq
= tk
->clock_was_set_seq
;
1080 cs_was_changed_seq
= tk
->cs_was_changed_seq
;
1081 cycles
= interval_start
;
1087 base_real
= ktime_add(tk
->tkr_mono
.base
,
1088 tk_core
.timekeeper
.offs_real
);
1089 base_raw
= tk
->tkr_raw
.base
;
1091 nsec_real
= timekeeping_cycles_to_ns(&tk
->tkr_mono
,
1092 system_counterval
.cycles
);
1093 nsec_raw
= timekeeping_cycles_to_ns(&tk
->tkr_raw
,
1094 system_counterval
.cycles
);
1095 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1097 xtstamp
->sys_realtime
= ktime_add_ns(base_real
, nsec_real
);
1098 xtstamp
->sys_monoraw
= ktime_add_ns(base_raw
, nsec_raw
);
1101 * Interpolate if necessary, adjusting back from the start of the
1105 cycle_t partial_history_cycles
, total_history_cycles
;
1109 * Check that the counter value occurs after the provided
1110 * history reference and that the history doesn't cross a
1111 * clocksource change
1113 if (!history_begin
||
1114 !cycle_between(history_begin
->cycles
,
1115 system_counterval
.cycles
, cycles
) ||
1116 history_begin
->cs_was_changed_seq
!= cs_was_changed_seq
)
1118 partial_history_cycles
= cycles
- system_counterval
.cycles
;
1119 total_history_cycles
= cycles
- history_begin
->cycles
;
1121 history_begin
->clock_was_set_seq
!= clock_was_set_seq
;
1123 ret
= adjust_historical_crosststamp(history_begin
,
1124 partial_history_cycles
,
1125 total_history_cycles
,
1126 discontinuity
, xtstamp
);
1133 EXPORT_SYMBOL_GPL(get_device_system_crosststamp
);
1136 * do_gettimeofday - Returns the time of day in a timeval
1137 * @tv: pointer to the timeval to be set
1139 * NOTE: Users should be converted to using getnstimeofday()
1141 void do_gettimeofday(struct timeval
*tv
)
1143 struct timespec64 now
;
1145 getnstimeofday64(&now
);
1146 tv
->tv_sec
= now
.tv_sec
;
1147 tv
->tv_usec
= now
.tv_nsec
/1000;
1149 EXPORT_SYMBOL(do_gettimeofday
);
1152 * do_settimeofday64 - Sets the time of day.
1153 * @ts: pointer to the timespec64 variable containing the new time
1155 * Sets the time of day to the new time and update NTP and notify hrtimers
1157 int do_settimeofday64(const struct timespec64
*ts
)
1159 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1160 struct timespec64 ts_delta
, xt
;
1161 unsigned long flags
;
1164 if (!timespec64_valid_strict(ts
))
1167 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1168 write_seqcount_begin(&tk_core
.seq
);
1170 timekeeping_forward_now(tk
);
1173 ts_delta
.tv_sec
= ts
->tv_sec
- xt
.tv_sec
;
1174 ts_delta
.tv_nsec
= ts
->tv_nsec
- xt
.tv_nsec
;
1176 if (timespec64_compare(&tk
->wall_to_monotonic
, &ts_delta
) > 0) {
1181 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, ts_delta
));
1183 tk_set_xtime(tk
, ts
);
1185 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1187 write_seqcount_end(&tk_core
.seq
);
1188 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1190 /* signal hrtimers about time change */
1195 EXPORT_SYMBOL(do_settimeofday64
);
1198 * timekeeping_inject_offset - Adds or subtracts from the current time.
1199 * @tv: pointer to the timespec variable containing the offset
1201 * Adds or subtracts an offset value from the current time.
1203 int timekeeping_inject_offset(struct timespec
*ts
)
1205 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1206 unsigned long flags
;
1207 struct timespec64 ts64
, tmp
;
1210 if (!timespec_inject_offset_valid(ts
))
1213 ts64
= timespec_to_timespec64(*ts
);
1215 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1216 write_seqcount_begin(&tk_core
.seq
);
1218 timekeeping_forward_now(tk
);
1220 /* Make sure the proposed value is valid */
1221 tmp
= timespec64_add(tk_xtime(tk
), ts64
);
1222 if (timespec64_compare(&tk
->wall_to_monotonic
, &ts64
) > 0 ||
1223 !timespec64_valid_strict(&tmp
)) {
1228 tk_xtime_add(tk
, &ts64
);
1229 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, ts64
));
1231 error
: /* even if we error out, we forwarded the time, so call update */
1232 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1234 write_seqcount_end(&tk_core
.seq
);
1235 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1237 /* signal hrtimers about time change */
1242 EXPORT_SYMBOL(timekeeping_inject_offset
);
1246 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1249 s32
timekeeping_get_tai_offset(void)
1251 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1256 seq
= read_seqcount_begin(&tk_core
.seq
);
1257 ret
= tk
->tai_offset
;
1258 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1264 * __timekeeping_set_tai_offset - Lock free worker function
1267 static void __timekeeping_set_tai_offset(struct timekeeper
*tk
, s32 tai_offset
)
1269 tk
->tai_offset
= tai_offset
;
1270 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tai_offset
, 0));
1274 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1277 void timekeeping_set_tai_offset(s32 tai_offset
)
1279 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1280 unsigned long flags
;
1282 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1283 write_seqcount_begin(&tk_core
.seq
);
1284 __timekeeping_set_tai_offset(tk
, tai_offset
);
1285 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1286 write_seqcount_end(&tk_core
.seq
);
1287 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1292 * change_clocksource - Swaps clocksources if a new one is available
1294 * Accumulates current time interval and initializes new clocksource
1296 static int change_clocksource(void *data
)
1298 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1299 struct clocksource
*new, *old
;
1300 unsigned long flags
;
1302 new = (struct clocksource
*) data
;
1304 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1305 write_seqcount_begin(&tk_core
.seq
);
1307 timekeeping_forward_now(tk
);
1309 * If the cs is in module, get a module reference. Succeeds
1310 * for built-in code (owner == NULL) as well.
1312 if (try_module_get(new->owner
)) {
1313 if (!new->enable
|| new->enable(new) == 0) {
1314 old
= tk
->tkr_mono
.clock
;
1315 tk_setup_internals(tk
, new);
1318 module_put(old
->owner
);
1320 module_put(new->owner
);
1323 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1325 write_seqcount_end(&tk_core
.seq
);
1326 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1332 * timekeeping_notify - Install a new clock source
1333 * @clock: pointer to the clock source
1335 * This function is called from clocksource.c after a new, better clock
1336 * source has been registered. The caller holds the clocksource_mutex.
1338 int timekeeping_notify(struct clocksource
*clock
)
1340 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1342 if (tk
->tkr_mono
.clock
== clock
)
1344 stop_machine(change_clocksource
, clock
, NULL
);
1345 tick_clock_notify();
1346 return tk
->tkr_mono
.clock
== clock
? 0 : -1;
1350 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1351 * @ts: pointer to the timespec64 to be set
1353 * Returns the raw monotonic time (completely un-modified by ntp)
1355 void getrawmonotonic64(struct timespec64
*ts
)
1357 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1358 struct timespec64 ts64
;
1363 seq
= read_seqcount_begin(&tk_core
.seq
);
1364 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
1365 ts64
= tk
->raw_time
;
1367 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1369 timespec64_add_ns(&ts64
, nsecs
);
1372 EXPORT_SYMBOL(getrawmonotonic64
);
1376 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1378 int timekeeping_valid_for_hres(void)
1380 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1385 seq
= read_seqcount_begin(&tk_core
.seq
);
1387 ret
= tk
->tkr_mono
.clock
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
;
1389 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1395 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1397 u64
timekeeping_max_deferment(void)
1399 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1404 seq
= read_seqcount_begin(&tk_core
.seq
);
1406 ret
= tk
->tkr_mono
.clock
->max_idle_ns
;
1408 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1414 * read_persistent_clock - Return time from the persistent clock.
1416 * Weak dummy function for arches that do not yet support it.
1417 * Reads the time from the battery backed persistent clock.
1418 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1420 * XXX - Do be sure to remove it once all arches implement it.
1422 void __weak
read_persistent_clock(struct timespec
*ts
)
1428 void __weak
read_persistent_clock64(struct timespec64
*ts64
)
1432 read_persistent_clock(&ts
);
1433 *ts64
= timespec_to_timespec64(ts
);
1437 * read_boot_clock64 - Return time of the system start.
1439 * Weak dummy function for arches that do not yet support it.
1440 * Function to read the exact time the system has been started.
1441 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1443 * XXX - Do be sure to remove it once all arches implement it.
1445 void __weak
read_boot_clock64(struct timespec64
*ts
)
1451 /* Flag for if timekeeping_resume() has injected sleeptime */
1452 static bool sleeptime_injected
;
1454 /* Flag for if there is a persistent clock on this platform */
1455 static bool persistent_clock_exists
;
1458 * timekeeping_init - Initializes the clocksource and common timekeeping values
1460 void __init
timekeeping_init(void)
1462 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1463 struct clocksource
*clock
;
1464 unsigned long flags
;
1465 struct timespec64 now
, boot
, tmp
;
1467 read_persistent_clock64(&now
);
1468 if (!timespec64_valid_strict(&now
)) {
1469 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1470 " Check your CMOS/BIOS settings.\n");
1473 } else if (now
.tv_sec
|| now
.tv_nsec
)
1474 persistent_clock_exists
= true;
1476 read_boot_clock64(&boot
);
1477 if (!timespec64_valid_strict(&boot
)) {
1478 pr_warn("WARNING: Boot clock returned invalid value!\n"
1479 " Check your CMOS/BIOS settings.\n");
1484 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1485 write_seqcount_begin(&tk_core
.seq
);
1488 clock
= clocksource_default_clock();
1490 clock
->enable(clock
);
1491 tk_setup_internals(tk
, clock
);
1493 tk_set_xtime(tk
, &now
);
1494 tk
->raw_time
.tv_sec
= 0;
1495 tk
->raw_time
.tv_nsec
= 0;
1496 if (boot
.tv_sec
== 0 && boot
.tv_nsec
== 0)
1497 boot
= tk_xtime(tk
);
1499 set_normalized_timespec64(&tmp
, -boot
.tv_sec
, -boot
.tv_nsec
);
1500 tk_set_wall_to_mono(tk
, tmp
);
1502 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1504 write_seqcount_end(&tk_core
.seq
);
1505 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1508 /* time in seconds when suspend began for persistent clock */
1509 static struct timespec64 timekeeping_suspend_time
;
1512 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1513 * @delta: pointer to a timespec delta value
1515 * Takes a timespec offset measuring a suspend interval and properly
1516 * adds the sleep offset to the timekeeping variables.
1518 static void __timekeeping_inject_sleeptime(struct timekeeper
*tk
,
1519 struct timespec64
*delta
)
1521 if (!timespec64_valid_strict(delta
)) {
1522 printk_deferred(KERN_WARNING
1523 "__timekeeping_inject_sleeptime: Invalid "
1524 "sleep delta value!\n");
1527 tk_xtime_add(tk
, delta
);
1528 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, *delta
));
1529 tk_update_sleep_time(tk
, timespec64_to_ktime(*delta
));
1530 tk_debug_account_sleep_time(delta
);
1533 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1535 * We have three kinds of time sources to use for sleep time
1536 * injection, the preference order is:
1537 * 1) non-stop clocksource
1538 * 2) persistent clock (ie: RTC accessible when irqs are off)
1541 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1542 * If system has neither 1) nor 2), 3) will be used finally.
1545 * If timekeeping has injected sleeptime via either 1) or 2),
1546 * 3) becomes needless, so in this case we don't need to call
1547 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1550 bool timekeeping_rtc_skipresume(void)
1552 return sleeptime_injected
;
1556 * 1) can be determined whether to use or not only when doing
1557 * timekeeping_resume() which is invoked after rtc_suspend(),
1558 * so we can't skip rtc_suspend() surely if system has 1).
1560 * But if system has 2), 2) will definitely be used, so in this
1561 * case we don't need to call rtc_suspend(), and this is what
1562 * timekeeping_rtc_skipsuspend() means.
1564 bool timekeeping_rtc_skipsuspend(void)
1566 return persistent_clock_exists
;
1570 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1571 * @delta: pointer to a timespec64 delta value
1573 * This hook is for architectures that cannot support read_persistent_clock64
1574 * because their RTC/persistent clock is only accessible when irqs are enabled.
1575 * and also don't have an effective nonstop clocksource.
1577 * This function should only be called by rtc_resume(), and allows
1578 * a suspend offset to be injected into the timekeeping values.
1580 void timekeeping_inject_sleeptime64(struct timespec64
*delta
)
1582 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1583 unsigned long flags
;
1585 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1586 write_seqcount_begin(&tk_core
.seq
);
1588 timekeeping_forward_now(tk
);
1590 __timekeeping_inject_sleeptime(tk
, delta
);
1592 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1594 write_seqcount_end(&tk_core
.seq
);
1595 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1597 /* signal hrtimers about time change */
1603 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1605 void timekeeping_resume(void)
1607 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1608 struct clocksource
*clock
= tk
->tkr_mono
.clock
;
1609 unsigned long flags
;
1610 struct timespec64 ts_new
, ts_delta
;
1611 cycle_t cycle_now
, cycle_delta
;
1613 sleeptime_injected
= false;
1614 read_persistent_clock64(&ts_new
);
1616 clockevents_resume();
1617 clocksource_resume();
1619 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1620 write_seqcount_begin(&tk_core
.seq
);
1623 * After system resumes, we need to calculate the suspended time and
1624 * compensate it for the OS time. There are 3 sources that could be
1625 * used: Nonstop clocksource during suspend, persistent clock and rtc
1628 * One specific platform may have 1 or 2 or all of them, and the
1629 * preference will be:
1630 * suspend-nonstop clocksource -> persistent clock -> rtc
1631 * The less preferred source will only be tried if there is no better
1632 * usable source. The rtc part is handled separately in rtc core code.
1634 cycle_now
= tk
->tkr_mono
.read(clock
);
1635 if ((clock
->flags
& CLOCK_SOURCE_SUSPEND_NONSTOP
) &&
1636 cycle_now
> tk
->tkr_mono
.cycle_last
) {
1637 u64 num
, max
= ULLONG_MAX
;
1638 u32 mult
= clock
->mult
;
1639 u32 shift
= clock
->shift
;
1642 cycle_delta
= clocksource_delta(cycle_now
, tk
->tkr_mono
.cycle_last
,
1646 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1647 * suspended time is too long. In that case we need do the
1648 * 64 bits math carefully
1651 if (cycle_delta
> max
) {
1652 num
= div64_u64(cycle_delta
, max
);
1653 nsec
= (((u64
) max
* mult
) >> shift
) * num
;
1654 cycle_delta
-= num
* max
;
1656 nsec
+= ((u64
) cycle_delta
* mult
) >> shift
;
1658 ts_delta
= ns_to_timespec64(nsec
);
1659 sleeptime_injected
= true;
1660 } else if (timespec64_compare(&ts_new
, &timekeeping_suspend_time
) > 0) {
1661 ts_delta
= timespec64_sub(ts_new
, timekeeping_suspend_time
);
1662 sleeptime_injected
= true;
1665 if (sleeptime_injected
)
1666 __timekeeping_inject_sleeptime(tk
, &ts_delta
);
1668 /* Re-base the last cycle value */
1669 tk
->tkr_mono
.cycle_last
= cycle_now
;
1670 tk
->tkr_raw
.cycle_last
= cycle_now
;
1673 timekeeping_suspended
= 0;
1674 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1675 write_seqcount_end(&tk_core
.seq
);
1676 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1678 touch_softlockup_watchdog();
1684 int timekeeping_suspend(void)
1686 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1687 unsigned long flags
;
1688 struct timespec64 delta
, delta_delta
;
1689 static struct timespec64 old_delta
;
1691 read_persistent_clock64(&timekeeping_suspend_time
);
1694 * On some systems the persistent_clock can not be detected at
1695 * timekeeping_init by its return value, so if we see a valid
1696 * value returned, update the persistent_clock_exists flag.
1698 if (timekeeping_suspend_time
.tv_sec
|| timekeeping_suspend_time
.tv_nsec
)
1699 persistent_clock_exists
= true;
1701 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1702 write_seqcount_begin(&tk_core
.seq
);
1703 timekeeping_forward_now(tk
);
1704 timekeeping_suspended
= 1;
1706 if (persistent_clock_exists
) {
1708 * To avoid drift caused by repeated suspend/resumes,
1709 * which each can add ~1 second drift error,
1710 * try to compensate so the difference in system time
1711 * and persistent_clock time stays close to constant.
1713 delta
= timespec64_sub(tk_xtime(tk
), timekeeping_suspend_time
);
1714 delta_delta
= timespec64_sub(delta
, old_delta
);
1715 if (abs(delta_delta
.tv_sec
) >= 2) {
1717 * if delta_delta is too large, assume time correction
1718 * has occurred and set old_delta to the current delta.
1722 /* Otherwise try to adjust old_system to compensate */
1723 timekeeping_suspend_time
=
1724 timespec64_add(timekeeping_suspend_time
, delta_delta
);
1728 timekeeping_update(tk
, TK_MIRROR
);
1729 halt_fast_timekeeper(tk
);
1730 write_seqcount_end(&tk_core
.seq
);
1731 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1734 clocksource_suspend();
1735 clockevents_suspend();
1740 /* sysfs resume/suspend bits for timekeeping */
1741 static struct syscore_ops timekeeping_syscore_ops
= {
1742 .resume
= timekeeping_resume
,
1743 .suspend
= timekeeping_suspend
,
1746 static int __init
timekeeping_init_ops(void)
1748 register_syscore_ops(&timekeeping_syscore_ops
);
1751 device_initcall(timekeeping_init_ops
);
1754 * Apply a multiplier adjustment to the timekeeper
1756 static __always_inline
void timekeeping_apply_adjustment(struct timekeeper
*tk
,
1761 s64 interval
= tk
->cycle_interval
;
1765 mult_adj
= -mult_adj
;
1766 interval
= -interval
;
1769 mult_adj
<<= adj_scale
;
1770 interval
<<= adj_scale
;
1771 offset
<<= adj_scale
;
1774 * So the following can be confusing.
1776 * To keep things simple, lets assume mult_adj == 1 for now.
1778 * When mult_adj != 1, remember that the interval and offset values
1779 * have been appropriately scaled so the math is the same.
1781 * The basic idea here is that we're increasing the multiplier
1782 * by one, this causes the xtime_interval to be incremented by
1783 * one cycle_interval. This is because:
1784 * xtime_interval = cycle_interval * mult
1785 * So if mult is being incremented by one:
1786 * xtime_interval = cycle_interval * (mult + 1)
1788 * xtime_interval = (cycle_interval * mult) + cycle_interval
1789 * Which can be shortened to:
1790 * xtime_interval += cycle_interval
1792 * So offset stores the non-accumulated cycles. Thus the current
1793 * time (in shifted nanoseconds) is:
1794 * now = (offset * adj) + xtime_nsec
1795 * Now, even though we're adjusting the clock frequency, we have
1796 * to keep time consistent. In other words, we can't jump back
1797 * in time, and we also want to avoid jumping forward in time.
1799 * So given the same offset value, we need the time to be the same
1800 * both before and after the freq adjustment.
1801 * now = (offset * adj_1) + xtime_nsec_1
1802 * now = (offset * adj_2) + xtime_nsec_2
1804 * (offset * adj_1) + xtime_nsec_1 =
1805 * (offset * adj_2) + xtime_nsec_2
1809 * (offset * adj_1) + xtime_nsec_1 =
1810 * (offset * (adj_1+1)) + xtime_nsec_2
1811 * (offset * adj_1) + xtime_nsec_1 =
1812 * (offset * adj_1) + offset + xtime_nsec_2
1813 * Canceling the sides:
1814 * xtime_nsec_1 = offset + xtime_nsec_2
1816 * xtime_nsec_2 = xtime_nsec_1 - offset
1817 * Which simplfies to:
1818 * xtime_nsec -= offset
1820 * XXX - TODO: Doc ntp_error calculation.
1822 if ((mult_adj
> 0) && (tk
->tkr_mono
.mult
+ mult_adj
< mult_adj
)) {
1823 /* NTP adjustment caused clocksource mult overflow */
1828 tk
->tkr_mono
.mult
+= mult_adj
;
1829 tk
->xtime_interval
+= interval
;
1830 tk
->tkr_mono
.xtime_nsec
-= offset
;
1831 tk
->ntp_error
-= (interval
- offset
) << tk
->ntp_error_shift
;
1835 * Calculate the multiplier adjustment needed to match the frequency
1838 static __always_inline
void timekeeping_freqadjust(struct timekeeper
*tk
,
1841 s64 interval
= tk
->cycle_interval
;
1842 s64 xinterval
= tk
->xtime_interval
;
1843 u32 base
= tk
->tkr_mono
.clock
->mult
;
1844 u32 max
= tk
->tkr_mono
.clock
->maxadj
;
1845 u32 cur_adj
= tk
->tkr_mono
.mult
;
1850 /* Remove any current error adj from freq calculation */
1851 if (tk
->ntp_err_mult
)
1852 xinterval
-= tk
->cycle_interval
;
1854 tk
->ntp_tick
= ntp_tick_length();
1856 /* Calculate current error per tick */
1857 tick_error
= ntp_tick_length() >> tk
->ntp_error_shift
;
1858 tick_error
-= (xinterval
+ tk
->xtime_remainder
);
1860 /* Don't worry about correcting it if its small */
1861 if (likely((tick_error
>= 0) && (tick_error
<= interval
)))
1864 /* preserve the direction of correction */
1865 negative
= (tick_error
< 0);
1867 /* If any adjustment would pass the max, just return */
1868 if (negative
&& (cur_adj
- 1) <= (base
- max
))
1870 if (!negative
&& (cur_adj
+ 1) >= (base
+ max
))
1873 * Sort out the magnitude of the correction, but
1874 * avoid making so large a correction that we go
1875 * over the max adjustment.
1878 tick_error
= abs(tick_error
);
1879 while (tick_error
> interval
) {
1880 u32 adj
= 1 << (adj_scale
+ 1);
1882 /* Check if adjustment gets us within 1 unit from the max */
1883 if (negative
&& (cur_adj
- adj
) <= (base
- max
))
1885 if (!negative
&& (cur_adj
+ adj
) >= (base
+ max
))
1892 /* scale the corrections */
1893 timekeeping_apply_adjustment(tk
, offset
, negative
, adj_scale
);
1897 * Adjust the timekeeper's multiplier to the correct frequency
1898 * and also to reduce the accumulated error value.
1900 static void timekeeping_adjust(struct timekeeper
*tk
, s64 offset
)
1902 /* Correct for the current frequency error */
1903 timekeeping_freqadjust(tk
, offset
);
1905 /* Next make a small adjustment to fix any cumulative error */
1906 if (!tk
->ntp_err_mult
&& (tk
->ntp_error
> 0)) {
1907 tk
->ntp_err_mult
= 1;
1908 timekeeping_apply_adjustment(tk
, offset
, 0, 0);
1909 } else if (tk
->ntp_err_mult
&& (tk
->ntp_error
<= 0)) {
1910 /* Undo any existing error adjustment */
1911 timekeeping_apply_adjustment(tk
, offset
, 1, 0);
1912 tk
->ntp_err_mult
= 0;
1915 if (unlikely(tk
->tkr_mono
.clock
->maxadj
&&
1916 (abs(tk
->tkr_mono
.mult
- tk
->tkr_mono
.clock
->mult
)
1917 > tk
->tkr_mono
.clock
->maxadj
))) {
1918 printk_once(KERN_WARNING
1919 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1920 tk
->tkr_mono
.clock
->name
, (long)tk
->tkr_mono
.mult
,
1921 (long)tk
->tkr_mono
.clock
->mult
+ tk
->tkr_mono
.clock
->maxadj
);
1925 * It may be possible that when we entered this function, xtime_nsec
1926 * was very small. Further, if we're slightly speeding the clocksource
1927 * in the code above, its possible the required corrective factor to
1928 * xtime_nsec could cause it to underflow.
1930 * Now, since we already accumulated the second, cannot simply roll
1931 * the accumulated second back, since the NTP subsystem has been
1932 * notified via second_overflow. So instead we push xtime_nsec forward
1933 * by the amount we underflowed, and add that amount into the error.
1935 * We'll correct this error next time through this function, when
1936 * xtime_nsec is not as small.
1938 if (unlikely((s64
)tk
->tkr_mono
.xtime_nsec
< 0)) {
1939 s64 neg
= -(s64
)tk
->tkr_mono
.xtime_nsec
;
1940 tk
->tkr_mono
.xtime_nsec
= 0;
1941 tk
->ntp_error
+= neg
<< tk
->ntp_error_shift
;
1946 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1948 * Helper function that accumulates the nsecs greater than a second
1949 * from the xtime_nsec field to the xtime_secs field.
1950 * It also calls into the NTP code to handle leapsecond processing.
1953 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper
*tk
)
1955 u64 nsecps
= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
1956 unsigned int clock_set
= 0;
1958 while (tk
->tkr_mono
.xtime_nsec
>= nsecps
) {
1961 tk
->tkr_mono
.xtime_nsec
-= nsecps
;
1964 /* Figure out if its a leap sec and apply if needed */
1965 leap
= second_overflow(tk
->xtime_sec
);
1966 if (unlikely(leap
)) {
1967 struct timespec64 ts
;
1969 tk
->xtime_sec
+= leap
;
1973 tk_set_wall_to_mono(tk
,
1974 timespec64_sub(tk
->wall_to_monotonic
, ts
));
1976 __timekeeping_set_tai_offset(tk
, tk
->tai_offset
- leap
);
1978 clock_set
= TK_CLOCK_WAS_SET
;
1985 * logarithmic_accumulation - shifted accumulation of cycles
1987 * This functions accumulates a shifted interval of cycles into
1988 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1991 * Returns the unconsumed cycles.
1993 static cycle_t
logarithmic_accumulation(struct timekeeper
*tk
, cycle_t offset
,
1995 unsigned int *clock_set
)
1997 cycle_t interval
= tk
->cycle_interval
<< shift
;
2000 /* If the offset is smaller than a shifted interval, do nothing */
2001 if (offset
< interval
)
2004 /* Accumulate one shifted interval */
2006 tk
->tkr_mono
.cycle_last
+= interval
;
2007 tk
->tkr_raw
.cycle_last
+= interval
;
2009 tk
->tkr_mono
.xtime_nsec
+= tk
->xtime_interval
<< shift
;
2010 *clock_set
|= accumulate_nsecs_to_secs(tk
);
2012 /* Accumulate raw time */
2013 raw_nsecs
= (u64
)tk
->raw_interval
<< shift
;
2014 raw_nsecs
+= tk
->raw_time
.tv_nsec
;
2015 if (raw_nsecs
>= NSEC_PER_SEC
) {
2016 u64 raw_secs
= raw_nsecs
;
2017 raw_nsecs
= do_div(raw_secs
, NSEC_PER_SEC
);
2018 tk
->raw_time
.tv_sec
+= raw_secs
;
2020 tk
->raw_time
.tv_nsec
= raw_nsecs
;
2022 /* Accumulate error between NTP and clock interval */
2023 tk
->ntp_error
+= tk
->ntp_tick
<< shift
;
2024 tk
->ntp_error
-= (tk
->xtime_interval
+ tk
->xtime_remainder
) <<
2025 (tk
->ntp_error_shift
+ shift
);
2031 * update_wall_time - Uses the current clocksource to increment the wall time
2034 void update_wall_time(void)
2036 struct timekeeper
*real_tk
= &tk_core
.timekeeper
;
2037 struct timekeeper
*tk
= &shadow_timekeeper
;
2039 int shift
= 0, maxshift
;
2040 unsigned int clock_set
= 0;
2041 unsigned long flags
;
2043 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2045 /* Make sure we're fully resumed: */
2046 if (unlikely(timekeeping_suspended
))
2049 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2050 offset
= real_tk
->cycle_interval
;
2052 offset
= clocksource_delta(tk
->tkr_mono
.read(tk
->tkr_mono
.clock
),
2053 tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
);
2056 /* Check if there's really nothing to do */
2057 if (offset
< real_tk
->cycle_interval
)
2060 /* Do some additional sanity checking */
2061 timekeeping_check_update(real_tk
, offset
);
2064 * With NO_HZ we may have to accumulate many cycle_intervals
2065 * (think "ticks") worth of time at once. To do this efficiently,
2066 * we calculate the largest doubling multiple of cycle_intervals
2067 * that is smaller than the offset. We then accumulate that
2068 * chunk in one go, and then try to consume the next smaller
2071 shift
= ilog2(offset
) - ilog2(tk
->cycle_interval
);
2072 shift
= max(0, shift
);
2073 /* Bound shift to one less than what overflows tick_length */
2074 maxshift
= (64 - (ilog2(ntp_tick_length())+1)) - 1;
2075 shift
= min(shift
, maxshift
);
2076 while (offset
>= tk
->cycle_interval
) {
2077 offset
= logarithmic_accumulation(tk
, offset
, shift
,
2079 if (offset
< tk
->cycle_interval
<<shift
)
2083 /* correct the clock when NTP error is too big */
2084 timekeeping_adjust(tk
, offset
);
2087 * XXX This can be killed once everyone converts
2088 * to the new update_vsyscall.
2090 old_vsyscall_fixup(tk
);
2093 * Finally, make sure that after the rounding
2094 * xtime_nsec isn't larger than NSEC_PER_SEC
2096 clock_set
|= accumulate_nsecs_to_secs(tk
);
2098 write_seqcount_begin(&tk_core
.seq
);
2100 * Update the real timekeeper.
2102 * We could avoid this memcpy by switching pointers, but that
2103 * requires changes to all other timekeeper usage sites as
2104 * well, i.e. move the timekeeper pointer getter into the
2105 * spinlocked/seqcount protected sections. And we trade this
2106 * memcpy under the tk_core.seq against one before we start
2109 timekeeping_update(tk
, clock_set
);
2110 memcpy(real_tk
, tk
, sizeof(*tk
));
2111 /* The memcpy must come last. Do not put anything here! */
2112 write_seqcount_end(&tk_core
.seq
);
2114 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2116 /* Have to call _delayed version, since in irq context*/
2117 clock_was_set_delayed();
2121 * getboottime64 - Return the real time of system boot.
2122 * @ts: pointer to the timespec64 to be set
2124 * Returns the wall-time of boot in a timespec64.
2126 * This is based on the wall_to_monotonic offset and the total suspend
2127 * time. Calls to settimeofday will affect the value returned (which
2128 * basically means that however wrong your real time clock is at boot time,
2129 * you get the right time here).
2131 void getboottime64(struct timespec64
*ts
)
2133 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2134 ktime_t t
= ktime_sub(tk
->offs_real
, tk
->offs_boot
);
2136 *ts
= ktime_to_timespec64(t
);
2138 EXPORT_SYMBOL_GPL(getboottime64
);
2140 unsigned long get_seconds(void)
2142 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2144 return tk
->xtime_sec
;
2146 EXPORT_SYMBOL(get_seconds
);
2148 struct timespec
__current_kernel_time(void)
2150 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2152 return timespec64_to_timespec(tk_xtime(tk
));
2155 struct timespec64
current_kernel_time64(void)
2157 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2158 struct timespec64 now
;
2162 seq
= read_seqcount_begin(&tk_core
.seq
);
2165 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2169 EXPORT_SYMBOL(current_kernel_time64
);
2171 struct timespec64
get_monotonic_coarse64(void)
2173 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2174 struct timespec64 now
, mono
;
2178 seq
= read_seqcount_begin(&tk_core
.seq
);
2181 mono
= tk
->wall_to_monotonic
;
2182 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2184 set_normalized_timespec64(&now
, now
.tv_sec
+ mono
.tv_sec
,
2185 now
.tv_nsec
+ mono
.tv_nsec
);
2191 * Must hold jiffies_lock
2193 void do_timer(unsigned long ticks
)
2195 jiffies_64
+= ticks
;
2196 calc_global_load(ticks
);
2200 * ktime_get_update_offsets_now - hrtimer helper
2201 * @cwsseq: pointer to check and store the clock was set sequence number
2202 * @offs_real: pointer to storage for monotonic -> realtime offset
2203 * @offs_boot: pointer to storage for monotonic -> boottime offset
2204 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2206 * Returns current monotonic time and updates the offsets if the
2207 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2210 * Called from hrtimer_interrupt() or retrigger_next_event()
2212 ktime_t
ktime_get_update_offsets_now(unsigned int *cwsseq
, ktime_t
*offs_real
,
2213 ktime_t
*offs_boot
, ktime_t
*offs_tai
)
2215 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2221 seq
= read_seqcount_begin(&tk_core
.seq
);
2223 base
= tk
->tkr_mono
.base
;
2224 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
2225 base
= ktime_add_ns(base
, nsecs
);
2227 if (*cwsseq
!= tk
->clock_was_set_seq
) {
2228 *cwsseq
= tk
->clock_was_set_seq
;
2229 *offs_real
= tk
->offs_real
;
2230 *offs_boot
= tk
->offs_boot
;
2231 *offs_tai
= tk
->offs_tai
;
2234 /* Handle leapsecond insertion adjustments */
2235 if (unlikely(base
.tv64
>= tk
->next_leap_ktime
.tv64
))
2236 *offs_real
= ktime_sub(tk
->offs_real
, ktime_set(1, 0));
2238 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2244 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2246 int do_adjtimex(struct timex
*txc
)
2248 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2249 unsigned long flags
;
2250 struct timespec64 ts
;
2254 /* Validate the data before disabling interrupts */
2255 ret
= ntp_validate_timex(txc
);
2259 if (txc
->modes
& ADJ_SETOFFSET
) {
2260 struct timespec delta
;
2261 delta
.tv_sec
= txc
->time
.tv_sec
;
2262 delta
.tv_nsec
= txc
->time
.tv_usec
;
2263 if (!(txc
->modes
& ADJ_NANO
))
2264 delta
.tv_nsec
*= 1000;
2265 ret
= timekeeping_inject_offset(&delta
);
2270 getnstimeofday64(&ts
);
2272 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2273 write_seqcount_begin(&tk_core
.seq
);
2275 orig_tai
= tai
= tk
->tai_offset
;
2276 ret
= __do_adjtimex(txc
, &ts
, &tai
);
2278 if (tai
!= orig_tai
) {
2279 __timekeeping_set_tai_offset(tk
, tai
);
2280 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
2282 tk_update_leap_state(tk
);
2284 write_seqcount_end(&tk_core
.seq
);
2285 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2287 if (tai
!= orig_tai
)
2290 ntp_notify_cmos_timer();
2295 #ifdef CONFIG_NTP_PPS
2297 * hardpps() - Accessor function to NTP __hardpps function
2299 void hardpps(const struct timespec64
*phase_ts
, const struct timespec64
*raw_ts
)
2301 unsigned long flags
;
2303 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2304 write_seqcount_begin(&tk_core
.seq
);
2306 __hardpps(phase_ts
, raw_ts
);
2308 write_seqcount_end(&tk_core
.seq
);
2309 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2311 EXPORT_SYMBOL(hardpps
);
2315 * xtime_update() - advances the timekeeping infrastructure
2316 * @ticks: number of ticks, that have elapsed since the last call.
2318 * Must be called with interrupts disabled.
2320 void xtime_update(unsigned long ticks
)
2322 write_seqlock(&jiffies_lock
);
2324 write_sequnlock(&jiffies_lock
);