4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h> /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
26 #include <asm/local.h>
28 static void update_pages_handler(struct work_struct
*work
);
31 * The ring buffer header is special. We must manually up keep it.
33 int ring_buffer_print_entry_header(struct trace_seq
*s
)
35 trace_seq_puts(s
, "# compressed entry header\n");
36 trace_seq_puts(s
, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s
, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s
, "\tarray : 32 bits\n");
39 trace_seq_putc(s
, '\n');
40 trace_seq_printf(s
, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING
);
42 trace_seq_printf(s
, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND
);
44 trace_seq_printf(s
, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
47 return !trace_seq_has_overflowed(s
);
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
64 * Here's some silly ASCII art.
67 * |reader| RING BUFFER
69 * +------+ +---+ +---+ +---+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
96 * +------------------------------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
104 * | New +---+ +---+ +---+
107 * +------------------------------+
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
114 * We will be using cmpxchg soon to make all this lockless.
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF (1 << 20)
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT 4U
125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT 0
130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
132 # define RB_FORCE_8BYTE_ALIGNMENT 1
133 # define RB_ARCH_ALIGNMENT 8U
136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
142 RB_LEN_TIME_EXTEND
= 8,
143 RB_LEN_TIME_STAMP
= 16,
146 #define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
149 static inline int rb_null_event(struct ring_buffer_event
*event
)
151 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
154 static void rb_event_set_padding(struct ring_buffer_event
*event
)
156 /* padding has a NULL time_delta */
157 event
->type_len
= RINGBUF_TYPE_PADDING
;
158 event
->time_delta
= 0;
162 rb_event_data_length(struct ring_buffer_event
*event
)
167 length
= event
->type_len
* RB_ALIGNMENT
;
169 length
= event
->array
[0];
170 return length
+ RB_EVNT_HDR_SIZE
;
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event
*event
)
181 switch (event
->type_len
) {
182 case RINGBUF_TYPE_PADDING
:
183 if (rb_null_event(event
))
186 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
188 case RINGBUF_TYPE_TIME_EXTEND
:
189 return RB_LEN_TIME_EXTEND
;
191 case RINGBUF_TYPE_TIME_STAMP
:
192 return RB_LEN_TIME_STAMP
;
194 case RINGBUF_TYPE_DATA
:
195 return rb_event_data_length(event
);
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event
*event
)
212 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
213 /* time extends include the data event after it */
214 len
= RB_LEN_TIME_EXTEND
;
215 event
= skip_time_extend(event
);
217 return len
+ rb_event_length(event
);
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
230 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
234 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
235 event
= skip_time_extend(event
);
237 length
= rb_event_length(event
);
238 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
240 length
-= RB_EVNT_HDR_SIZE
;
241 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
242 length
-= sizeof(event
->array
[0]);
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
247 /* inline for ring buffer fast paths */
249 rb_event_data(struct ring_buffer_event
*event
)
251 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
252 event
= skip_time_extend(event
);
253 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
254 /* If length is in len field, then array[0] has the data */
256 return (void *)&event
->array
[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event
->array
[1];
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
265 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
267 return rb_event_data(event
);
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
271 #define for_each_buffer_cpu(buffer, cpu) \
272 for_each_cpu(cpu, buffer->cpumask)
275 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST (~TS_MASK)
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED (1 << 30)
283 struct buffer_data_page
{
284 u64 time_stamp
; /* page time stamp */
285 local_t commit
; /* write committed index */
286 unsigned char data
[] RB_ALIGN_DATA
; /* data of buffer page */
290 * Note, the buffer_page list must be first. The buffer pages
291 * are allocated in cache lines, which means that each buffer
292 * page will be at the beginning of a cache line, and thus
293 * the least significant bits will be zero. We use this to
294 * add flags in the list struct pointers, to make the ring buffer
298 struct list_head list
; /* list of buffer pages */
299 local_t write
; /* index for next write */
300 unsigned read
; /* index for next read */
301 local_t entries
; /* entries on this page */
302 unsigned long real_end
; /* real end of data */
303 struct buffer_data_page
*page
; /* Actual data page */
307 * The buffer page counters, write and entries, must be reset
308 * atomically when crossing page boundaries. To synchronize this
309 * update, two counters are inserted into the number. One is
310 * the actual counter for the write position or count on the page.
312 * The other is a counter of updaters. Before an update happens
313 * the update partition of the counter is incremented. This will
314 * allow the updater to update the counter atomically.
316 * The counter is 20 bits, and the state data is 12.
318 #define RB_WRITE_MASK 0xfffff
319 #define RB_WRITE_INTCNT (1 << 20)
321 static void rb_init_page(struct buffer_data_page
*bpage
)
323 local_set(&bpage
->commit
, 0);
327 * ring_buffer_page_len - the size of data on the page.
328 * @page: The page to read
330 * Returns the amount of data on the page, including buffer page header.
332 size_t ring_buffer_page_len(void *page
)
334 return local_read(&((struct buffer_data_page
*)page
)->commit
)
339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
342 static void free_buffer_page(struct buffer_page
*bpage
)
344 free_page((unsigned long)bpage
->page
);
349 * We need to fit the time_stamp delta into 27 bits.
351 static inline int test_time_stamp(u64 delta
)
353 if (delta
& TS_DELTA_TEST
)
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
363 int ring_buffer_print_page_header(struct trace_seq
*s
)
365 struct buffer_data_page field
;
367 trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
368 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 (unsigned int)sizeof(field
.time_stamp
),
370 (unsigned int)is_signed_type(u64
));
372 trace_seq_printf(s
, "\tfield: local_t commit;\t"
373 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 (unsigned int)offsetof(typeof(field
), commit
),
375 (unsigned int)sizeof(field
.commit
),
376 (unsigned int)is_signed_type(long));
378 trace_seq_printf(s
, "\tfield: int overwrite;\t"
379 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)offsetof(typeof(field
), commit
),
382 (unsigned int)is_signed_type(long));
384 trace_seq_printf(s
, "\tfield: char data;\t"
385 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 (unsigned int)offsetof(typeof(field
), data
),
387 (unsigned int)BUF_PAGE_SIZE
,
388 (unsigned int)is_signed_type(char));
390 return !trace_seq_has_overflowed(s
);
394 struct irq_work work
;
395 wait_queue_head_t waiters
;
396 wait_queue_head_t full_waiters
;
397 bool waiters_pending
;
398 bool full_waiters_pending
;
403 * Structure to hold event state and handle nested events.
405 struct rb_event_info
{
408 unsigned long length
;
409 struct buffer_page
*tail_page
;
414 * Used for which event context the event is in.
420 * See trace_recursive_lock() comment below for more details.
431 * head_page == tail_page && head == tail then buffer is empty.
433 struct ring_buffer_per_cpu
{
435 atomic_t record_disabled
;
436 struct ring_buffer
*buffer
;
437 raw_spinlock_t reader_lock
; /* serialize readers */
438 arch_spinlock_t lock
;
439 struct lock_class_key lock_key
;
440 unsigned int nr_pages
;
441 unsigned int current_context
;
442 struct list_head
*pages
;
443 struct buffer_page
*head_page
; /* read from head */
444 struct buffer_page
*tail_page
; /* write to tail */
445 struct buffer_page
*commit_page
; /* committed pages */
446 struct buffer_page
*reader_page
;
447 unsigned long lost_events
;
448 unsigned long last_overrun
;
449 local_t entries_bytes
;
452 local_t commit_overrun
;
453 local_t dropped_events
;
457 unsigned long read_bytes
;
460 /* ring buffer pages to update, > 0 to add, < 0 to remove */
461 int nr_pages_to_update
;
462 struct list_head new_pages
; /* new pages to add */
463 struct work_struct update_pages_work
;
464 struct completion update_done
;
466 struct rb_irq_work irq_work
;
472 atomic_t record_disabled
;
473 atomic_t resize_disabled
;
474 cpumask_var_t cpumask
;
476 struct lock_class_key
*reader_lock_key
;
480 struct ring_buffer_per_cpu
**buffers
;
482 #ifdef CONFIG_HOTPLUG_CPU
483 struct notifier_block cpu_notify
;
487 struct rb_irq_work irq_work
;
490 struct ring_buffer_iter
{
491 struct ring_buffer_per_cpu
*cpu_buffer
;
493 struct buffer_page
*head_page
;
494 struct buffer_page
*cache_reader_page
;
495 unsigned long cache_read
;
500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
502 * Schedules a delayed work to wake up any task that is blocked on the
503 * ring buffer waiters queue.
505 static void rb_wake_up_waiters(struct irq_work
*work
)
507 struct rb_irq_work
*rbwork
= container_of(work
, struct rb_irq_work
, work
);
509 wake_up_all(&rbwork
->waiters
);
510 if (rbwork
->wakeup_full
) {
511 rbwork
->wakeup_full
= false;
512 wake_up_all(&rbwork
->full_waiters
);
517 * ring_buffer_wait - wait for input to the ring buffer
518 * @buffer: buffer to wait on
519 * @cpu: the cpu buffer to wait on
520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523 * as data is added to any of the @buffer's cpu buffers. Otherwise
524 * it will wait for data to be added to a specific cpu buffer.
526 int ring_buffer_wait(struct ring_buffer
*buffer
, int cpu
, bool full
)
528 struct ring_buffer_per_cpu
*uninitialized_var(cpu_buffer
);
530 struct rb_irq_work
*work
;
534 * Depending on what the caller is waiting for, either any
535 * data in any cpu buffer, or a specific buffer, put the
536 * caller on the appropriate wait queue.
538 if (cpu
== RING_BUFFER_ALL_CPUS
) {
539 work
= &buffer
->irq_work
;
540 /* Full only makes sense on per cpu reads */
543 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
545 cpu_buffer
= buffer
->buffers
[cpu
];
546 work
= &cpu_buffer
->irq_work
;
552 prepare_to_wait(&work
->full_waiters
, &wait
, TASK_INTERRUPTIBLE
);
554 prepare_to_wait(&work
->waiters
, &wait
, TASK_INTERRUPTIBLE
);
557 * The events can happen in critical sections where
558 * checking a work queue can cause deadlocks.
559 * After adding a task to the queue, this flag is set
560 * only to notify events to try to wake up the queue
563 * We don't clear it even if the buffer is no longer
564 * empty. The flag only causes the next event to run
565 * irq_work to do the work queue wake up. The worse
566 * that can happen if we race with !trace_empty() is that
567 * an event will cause an irq_work to try to wake up
570 * There's no reason to protect this flag either, as
571 * the work queue and irq_work logic will do the necessary
572 * synchronization for the wake ups. The only thing
573 * that is necessary is that the wake up happens after
574 * a task has been queued. It's OK for spurious wake ups.
577 work
->full_waiters_pending
= true;
579 work
->waiters_pending
= true;
581 if (signal_pending(current
)) {
586 if (cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
))
589 if (cpu
!= RING_BUFFER_ALL_CPUS
&&
590 !ring_buffer_empty_cpu(buffer
, cpu
)) {
597 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
598 pagebusy
= cpu_buffer
->reader_page
== cpu_buffer
->commit_page
;
599 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
609 finish_wait(&work
->full_waiters
, &wait
);
611 finish_wait(&work
->waiters
, &wait
);
617 * ring_buffer_poll_wait - poll on buffer input
618 * @buffer: buffer to wait on
619 * @cpu: the cpu buffer to wait on
620 * @filp: the file descriptor
621 * @poll_table: The poll descriptor
623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624 * as data is added to any of the @buffer's cpu buffers. Otherwise
625 * it will wait for data to be added to a specific cpu buffer.
627 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
630 int ring_buffer_poll_wait(struct ring_buffer
*buffer
, int cpu
,
631 struct file
*filp
, poll_table
*poll_table
)
633 struct ring_buffer_per_cpu
*cpu_buffer
;
634 struct rb_irq_work
*work
;
636 if (cpu
== RING_BUFFER_ALL_CPUS
)
637 work
= &buffer
->irq_work
;
639 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
642 cpu_buffer
= buffer
->buffers
[cpu
];
643 work
= &cpu_buffer
->irq_work
;
646 poll_wait(filp
, &work
->waiters
, poll_table
);
647 work
->waiters_pending
= true;
649 * There's a tight race between setting the waiters_pending and
650 * checking if the ring buffer is empty. Once the waiters_pending bit
651 * is set, the next event will wake the task up, but we can get stuck
652 * if there's only a single event in.
654 * FIXME: Ideally, we need a memory barrier on the writer side as well,
655 * but adding a memory barrier to all events will cause too much of a
656 * performance hit in the fast path. We only need a memory barrier when
657 * the buffer goes from empty to having content. But as this race is
658 * extremely small, and it's not a problem if another event comes in, we
663 if ((cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
)) ||
664 (cpu
!= RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty_cpu(buffer
, cpu
)))
665 return POLLIN
| POLLRDNORM
;
669 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
670 #define RB_WARN_ON(b, cond) \
672 int _____ret = unlikely(cond); \
674 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675 struct ring_buffer_per_cpu *__b = \
677 atomic_inc(&__b->buffer->record_disabled); \
679 atomic_inc(&b->record_disabled); \
685 /* Up this if you want to test the TIME_EXTENTS and normalization */
686 #define DEBUG_SHIFT 0
688 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
690 /* shift to debug/test normalization and TIME_EXTENTS */
691 return buffer
->clock() << DEBUG_SHIFT
;
694 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
698 preempt_disable_notrace();
699 time
= rb_time_stamp(buffer
);
700 preempt_enable_no_resched_notrace();
704 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
706 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
709 /* Just stupid testing the normalize function and deltas */
712 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
715 * Making the ring buffer lockless makes things tricky.
716 * Although writes only happen on the CPU that they are on,
717 * and they only need to worry about interrupts. Reads can
720 * The reader page is always off the ring buffer, but when the
721 * reader finishes with a page, it needs to swap its page with
722 * a new one from the buffer. The reader needs to take from
723 * the head (writes go to the tail). But if a writer is in overwrite
724 * mode and wraps, it must push the head page forward.
726 * Here lies the problem.
728 * The reader must be careful to replace only the head page, and
729 * not another one. As described at the top of the file in the
730 * ASCII art, the reader sets its old page to point to the next
731 * page after head. It then sets the page after head to point to
732 * the old reader page. But if the writer moves the head page
733 * during this operation, the reader could end up with the tail.
735 * We use cmpxchg to help prevent this race. We also do something
736 * special with the page before head. We set the LSB to 1.
738 * When the writer must push the page forward, it will clear the
739 * bit that points to the head page, move the head, and then set
740 * the bit that points to the new head page.
742 * We also don't want an interrupt coming in and moving the head
743 * page on another writer. Thus we use the second LSB to catch
746 * head->list->prev->next bit 1 bit 0
749 * Points to head page 0 1
752 * Note we can not trust the prev pointer of the head page, because:
754 * +----+ +-----+ +-----+
755 * | |------>| T |---X--->| N |
757 * +----+ +-----+ +-----+
760 * +----------| R |----------+ |
764 * Key: ---X--> HEAD flag set in pointer
769 * (see __rb_reserve_next() to see where this happens)
771 * What the above shows is that the reader just swapped out
772 * the reader page with a page in the buffer, but before it
773 * could make the new header point back to the new page added
774 * it was preempted by a writer. The writer moved forward onto
775 * the new page added by the reader and is about to move forward
778 * You can see, it is legitimate for the previous pointer of
779 * the head (or any page) not to point back to itself. But only
783 #define RB_PAGE_NORMAL 0UL
784 #define RB_PAGE_HEAD 1UL
785 #define RB_PAGE_UPDATE 2UL
788 #define RB_FLAG_MASK 3UL
790 /* PAGE_MOVED is not part of the mask */
791 #define RB_PAGE_MOVED 4UL
794 * rb_list_head - remove any bit
796 static struct list_head
*rb_list_head(struct list_head
*list
)
798 unsigned long val
= (unsigned long)list
;
800 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
804 * rb_is_head_page - test if the given page is the head page
806 * Because the reader may move the head_page pointer, we can
807 * not trust what the head page is (it may be pointing to
808 * the reader page). But if the next page is a header page,
809 * its flags will be non zero.
812 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
813 struct buffer_page
*page
, struct list_head
*list
)
817 val
= (unsigned long)list
->next
;
819 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
820 return RB_PAGE_MOVED
;
822 return val
& RB_FLAG_MASK
;
828 * The unique thing about the reader page, is that, if the
829 * writer is ever on it, the previous pointer never points
830 * back to the reader page.
832 static bool rb_is_reader_page(struct buffer_page
*page
)
834 struct list_head
*list
= page
->list
.prev
;
836 return rb_list_head(list
->next
) != &page
->list
;
840 * rb_set_list_to_head - set a list_head to be pointing to head.
842 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
843 struct list_head
*list
)
847 ptr
= (unsigned long *)&list
->next
;
848 *ptr
|= RB_PAGE_HEAD
;
849 *ptr
&= ~RB_PAGE_UPDATE
;
853 * rb_head_page_activate - sets up head page
855 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
857 struct buffer_page
*head
;
859 head
= cpu_buffer
->head_page
;
864 * Set the previous list pointer to have the HEAD flag.
866 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
869 static void rb_list_head_clear(struct list_head
*list
)
871 unsigned long *ptr
= (unsigned long *)&list
->next
;
873 *ptr
&= ~RB_FLAG_MASK
;
877 * rb_head_page_dactivate - clears head page ptr (for free list)
880 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
882 struct list_head
*hd
;
884 /* Go through the whole list and clear any pointers found. */
885 rb_list_head_clear(cpu_buffer
->pages
);
887 list_for_each(hd
, cpu_buffer
->pages
)
888 rb_list_head_clear(hd
);
891 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
892 struct buffer_page
*head
,
893 struct buffer_page
*prev
,
894 int old_flag
, int new_flag
)
896 struct list_head
*list
;
897 unsigned long val
= (unsigned long)&head
->list
;
902 val
&= ~RB_FLAG_MASK
;
904 ret
= cmpxchg((unsigned long *)&list
->next
,
905 val
| old_flag
, val
| new_flag
);
907 /* check if the reader took the page */
908 if ((ret
& ~RB_FLAG_MASK
) != val
)
909 return RB_PAGE_MOVED
;
911 return ret
& RB_FLAG_MASK
;
914 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
915 struct buffer_page
*head
,
916 struct buffer_page
*prev
,
919 return rb_head_page_set(cpu_buffer
, head
, prev
,
920 old_flag
, RB_PAGE_UPDATE
);
923 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
924 struct buffer_page
*head
,
925 struct buffer_page
*prev
,
928 return rb_head_page_set(cpu_buffer
, head
, prev
,
929 old_flag
, RB_PAGE_HEAD
);
932 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
933 struct buffer_page
*head
,
934 struct buffer_page
*prev
,
937 return rb_head_page_set(cpu_buffer
, head
, prev
,
938 old_flag
, RB_PAGE_NORMAL
);
941 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
942 struct buffer_page
**bpage
)
944 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
946 *bpage
= list_entry(p
, struct buffer_page
, list
);
949 static struct buffer_page
*
950 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
952 struct buffer_page
*head
;
953 struct buffer_page
*page
;
954 struct list_head
*list
;
957 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
961 list
= cpu_buffer
->pages
;
962 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
965 page
= head
= cpu_buffer
->head_page
;
967 * It is possible that the writer moves the header behind
968 * where we started, and we miss in one loop.
969 * A second loop should grab the header, but we'll do
970 * three loops just because I'm paranoid.
972 for (i
= 0; i
< 3; i
++) {
974 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
975 cpu_buffer
->head_page
= page
;
978 rb_inc_page(cpu_buffer
, &page
);
979 } while (page
!= head
);
982 RB_WARN_ON(cpu_buffer
, 1);
987 static int rb_head_page_replace(struct buffer_page
*old
,
988 struct buffer_page
*new)
990 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
994 val
= *ptr
& ~RB_FLAG_MASK
;
997 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
1003 * rb_tail_page_update - move the tail page forward
1005 static void rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
1006 struct buffer_page
*tail_page
,
1007 struct buffer_page
*next_page
)
1009 unsigned long old_entries
;
1010 unsigned long old_write
;
1013 * The tail page now needs to be moved forward.
1015 * We need to reset the tail page, but without messing
1016 * with possible erasing of data brought in by interrupts
1017 * that have moved the tail page and are currently on it.
1019 * We add a counter to the write field to denote this.
1021 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
1022 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
1025 * Just make sure we have seen our old_write and synchronize
1026 * with any interrupts that come in.
1031 * If the tail page is still the same as what we think
1032 * it is, then it is up to us to update the tail
1035 if (tail_page
== READ_ONCE(cpu_buffer
->tail_page
)) {
1036 /* Zero the write counter */
1037 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
1038 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
1041 * This will only succeed if an interrupt did
1042 * not come in and change it. In which case, we
1043 * do not want to modify it.
1045 * We add (void) to let the compiler know that we do not care
1046 * about the return value of these functions. We use the
1047 * cmpxchg to only update if an interrupt did not already
1048 * do it for us. If the cmpxchg fails, we don't care.
1050 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
1051 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
1054 * No need to worry about races with clearing out the commit.
1055 * it only can increment when a commit takes place. But that
1056 * only happens in the outer most nested commit.
1058 local_set(&next_page
->page
->commit
, 0);
1060 /* Again, either we update tail_page or an interrupt does */
1061 (void)cmpxchg(&cpu_buffer
->tail_page
, tail_page
, next_page
);
1065 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
1066 struct buffer_page
*bpage
)
1068 unsigned long val
= (unsigned long)bpage
;
1070 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
1077 * rb_check_list - make sure a pointer to a list has the last bits zero
1079 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
1080 struct list_head
*list
)
1082 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
1084 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
1090 * rb_check_pages - integrity check of buffer pages
1091 * @cpu_buffer: CPU buffer with pages to test
1093 * As a safety measure we check to make sure the data pages have not
1096 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1098 struct list_head
*head
= cpu_buffer
->pages
;
1099 struct buffer_page
*bpage
, *tmp
;
1101 /* Reset the head page if it exists */
1102 if (cpu_buffer
->head_page
)
1103 rb_set_head_page(cpu_buffer
);
1105 rb_head_page_deactivate(cpu_buffer
);
1107 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
1109 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
1112 if (rb_check_list(cpu_buffer
, head
))
1115 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1116 if (RB_WARN_ON(cpu_buffer
,
1117 bpage
->list
.next
->prev
!= &bpage
->list
))
1119 if (RB_WARN_ON(cpu_buffer
,
1120 bpage
->list
.prev
->next
!= &bpage
->list
))
1122 if (rb_check_list(cpu_buffer
, &bpage
->list
))
1126 rb_head_page_activate(cpu_buffer
);
1131 static int __rb_allocate_pages(int nr_pages
, struct list_head
*pages
, int cpu
)
1134 struct buffer_page
*bpage
, *tmp
;
1136 for (i
= 0; i
< nr_pages
; i
++) {
1139 * __GFP_NORETRY flag makes sure that the allocation fails
1140 * gracefully without invoking oom-killer and the system is
1143 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1144 GFP_KERNEL
| __GFP_NORETRY
,
1149 list_add(&bpage
->list
, pages
);
1151 page
= alloc_pages_node(cpu_to_node(cpu
),
1152 GFP_KERNEL
| __GFP_NORETRY
, 0);
1155 bpage
->page
= page_address(page
);
1156 rb_init_page(bpage
->page
);
1162 list_for_each_entry_safe(bpage
, tmp
, pages
, list
) {
1163 list_del_init(&bpage
->list
);
1164 free_buffer_page(bpage
);
1170 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1177 if (__rb_allocate_pages(nr_pages
, &pages
, cpu_buffer
->cpu
))
1181 * The ring buffer page list is a circular list that does not
1182 * start and end with a list head. All page list items point to
1185 cpu_buffer
->pages
= pages
.next
;
1188 cpu_buffer
->nr_pages
= nr_pages
;
1190 rb_check_pages(cpu_buffer
);
1195 static struct ring_buffer_per_cpu
*
1196 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, int nr_pages
, int cpu
)
1198 struct ring_buffer_per_cpu
*cpu_buffer
;
1199 struct buffer_page
*bpage
;
1203 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1204 GFP_KERNEL
, cpu_to_node(cpu
));
1208 cpu_buffer
->cpu
= cpu
;
1209 cpu_buffer
->buffer
= buffer
;
1210 raw_spin_lock_init(&cpu_buffer
->reader_lock
);
1211 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1212 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1213 INIT_WORK(&cpu_buffer
->update_pages_work
, update_pages_handler
);
1214 init_completion(&cpu_buffer
->update_done
);
1215 init_irq_work(&cpu_buffer
->irq_work
.work
, rb_wake_up_waiters
);
1216 init_waitqueue_head(&cpu_buffer
->irq_work
.waiters
);
1217 init_waitqueue_head(&cpu_buffer
->irq_work
.full_waiters
);
1219 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1220 GFP_KERNEL
, cpu_to_node(cpu
));
1222 goto fail_free_buffer
;
1224 rb_check_bpage(cpu_buffer
, bpage
);
1226 cpu_buffer
->reader_page
= bpage
;
1227 page
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, 0);
1229 goto fail_free_reader
;
1230 bpage
->page
= page_address(page
);
1231 rb_init_page(bpage
->page
);
1233 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1234 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1236 ret
= rb_allocate_pages(cpu_buffer
, nr_pages
);
1238 goto fail_free_reader
;
1240 cpu_buffer
->head_page
1241 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1242 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1244 rb_head_page_activate(cpu_buffer
);
1249 free_buffer_page(cpu_buffer
->reader_page
);
1256 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1258 struct list_head
*head
= cpu_buffer
->pages
;
1259 struct buffer_page
*bpage
, *tmp
;
1261 free_buffer_page(cpu_buffer
->reader_page
);
1263 rb_head_page_deactivate(cpu_buffer
);
1266 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1267 list_del_init(&bpage
->list
);
1268 free_buffer_page(bpage
);
1270 bpage
= list_entry(head
, struct buffer_page
, list
);
1271 free_buffer_page(bpage
);
1277 #ifdef CONFIG_HOTPLUG_CPU
1278 static int rb_cpu_notify(struct notifier_block
*self
,
1279 unsigned long action
, void *hcpu
);
1283 * __ring_buffer_alloc - allocate a new ring_buffer
1284 * @size: the size in bytes per cpu that is needed.
1285 * @flags: attributes to set for the ring buffer.
1287 * Currently the only flag that is available is the RB_FL_OVERWRITE
1288 * flag. This flag means that the buffer will overwrite old data
1289 * when the buffer wraps. If this flag is not set, the buffer will
1290 * drop data when the tail hits the head.
1292 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1293 struct lock_class_key
*key
)
1295 struct ring_buffer
*buffer
;
1299 /* keep it in its own cache line */
1300 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1305 if (!alloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1306 goto fail_free_buffer
;
1308 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1309 buffer
->flags
= flags
;
1310 buffer
->clock
= trace_clock_local
;
1311 buffer
->reader_lock_key
= key
;
1313 init_irq_work(&buffer
->irq_work
.work
, rb_wake_up_waiters
);
1314 init_waitqueue_head(&buffer
->irq_work
.waiters
);
1316 /* need at least two pages */
1321 * In case of non-hotplug cpu, if the ring-buffer is allocated
1322 * in early initcall, it will not be notified of secondary cpus.
1323 * In that off case, we need to allocate for all possible cpus.
1325 #ifdef CONFIG_HOTPLUG_CPU
1326 cpu_notifier_register_begin();
1327 cpumask_copy(buffer
->cpumask
, cpu_online_mask
);
1329 cpumask_copy(buffer
->cpumask
, cpu_possible_mask
);
1331 buffer
->cpus
= nr_cpu_ids
;
1333 bsize
= sizeof(void *) * nr_cpu_ids
;
1334 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1336 if (!buffer
->buffers
)
1337 goto fail_free_cpumask
;
1339 for_each_buffer_cpu(buffer
, cpu
) {
1340 buffer
->buffers
[cpu
] =
1341 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
1342 if (!buffer
->buffers
[cpu
])
1343 goto fail_free_buffers
;
1346 #ifdef CONFIG_HOTPLUG_CPU
1347 buffer
->cpu_notify
.notifier_call
= rb_cpu_notify
;
1348 buffer
->cpu_notify
.priority
= 0;
1349 __register_cpu_notifier(&buffer
->cpu_notify
);
1350 cpu_notifier_register_done();
1353 mutex_init(&buffer
->mutex
);
1358 for_each_buffer_cpu(buffer
, cpu
) {
1359 if (buffer
->buffers
[cpu
])
1360 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1362 kfree(buffer
->buffers
);
1365 free_cpumask_var(buffer
->cpumask
);
1366 #ifdef CONFIG_HOTPLUG_CPU
1367 cpu_notifier_register_done();
1374 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1377 * ring_buffer_free - free a ring buffer.
1378 * @buffer: the buffer to free.
1381 ring_buffer_free(struct ring_buffer
*buffer
)
1385 #ifdef CONFIG_HOTPLUG_CPU
1386 cpu_notifier_register_begin();
1387 __unregister_cpu_notifier(&buffer
->cpu_notify
);
1390 for_each_buffer_cpu(buffer
, cpu
)
1391 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1393 #ifdef CONFIG_HOTPLUG_CPU
1394 cpu_notifier_register_done();
1397 kfree(buffer
->buffers
);
1398 free_cpumask_var(buffer
->cpumask
);
1402 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1404 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1407 buffer
->clock
= clock
;
1410 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1412 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1414 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1417 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1419 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1423 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned int nr_pages
)
1425 struct list_head
*tail_page
, *to_remove
, *next_page
;
1426 struct buffer_page
*to_remove_page
, *tmp_iter_page
;
1427 struct buffer_page
*last_page
, *first_page
;
1428 unsigned int nr_removed
;
1429 unsigned long head_bit
;
1434 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1435 atomic_inc(&cpu_buffer
->record_disabled
);
1437 * We don't race with the readers since we have acquired the reader
1438 * lock. We also don't race with writers after disabling recording.
1439 * This makes it easy to figure out the first and the last page to be
1440 * removed from the list. We unlink all the pages in between including
1441 * the first and last pages. This is done in a busy loop so that we
1442 * lose the least number of traces.
1443 * The pages are freed after we restart recording and unlock readers.
1445 tail_page
= &cpu_buffer
->tail_page
->list
;
1448 * tail page might be on reader page, we remove the next page
1449 * from the ring buffer
1451 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
1452 tail_page
= rb_list_head(tail_page
->next
);
1453 to_remove
= tail_page
;
1455 /* start of pages to remove */
1456 first_page
= list_entry(rb_list_head(to_remove
->next
),
1457 struct buffer_page
, list
);
1459 for (nr_removed
= 0; nr_removed
< nr_pages
; nr_removed
++) {
1460 to_remove
= rb_list_head(to_remove
)->next
;
1461 head_bit
|= (unsigned long)to_remove
& RB_PAGE_HEAD
;
1464 next_page
= rb_list_head(to_remove
)->next
;
1467 * Now we remove all pages between tail_page and next_page.
1468 * Make sure that we have head_bit value preserved for the
1471 tail_page
->next
= (struct list_head
*)((unsigned long)next_page
|
1473 next_page
= rb_list_head(next_page
);
1474 next_page
->prev
= tail_page
;
1476 /* make sure pages points to a valid page in the ring buffer */
1477 cpu_buffer
->pages
= next_page
;
1479 /* update head page */
1481 cpu_buffer
->head_page
= list_entry(next_page
,
1482 struct buffer_page
, list
);
1485 * change read pointer to make sure any read iterators reset
1488 cpu_buffer
->read
= 0;
1490 /* pages are removed, resume tracing and then free the pages */
1491 atomic_dec(&cpu_buffer
->record_disabled
);
1492 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1494 RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
));
1496 /* last buffer page to remove */
1497 last_page
= list_entry(rb_list_head(to_remove
), struct buffer_page
,
1499 tmp_iter_page
= first_page
;
1502 to_remove_page
= tmp_iter_page
;
1503 rb_inc_page(cpu_buffer
, &tmp_iter_page
);
1505 /* update the counters */
1506 page_entries
= rb_page_entries(to_remove_page
);
1509 * If something was added to this page, it was full
1510 * since it is not the tail page. So we deduct the
1511 * bytes consumed in ring buffer from here.
1512 * Increment overrun to account for the lost events.
1514 local_add(page_entries
, &cpu_buffer
->overrun
);
1515 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1519 * We have already removed references to this list item, just
1520 * free up the buffer_page and its page
1522 free_buffer_page(to_remove_page
);
1525 } while (to_remove_page
!= last_page
);
1527 RB_WARN_ON(cpu_buffer
, nr_removed
);
1529 return nr_removed
== 0;
1533 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1535 struct list_head
*pages
= &cpu_buffer
->new_pages
;
1536 int retries
, success
;
1538 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1540 * We are holding the reader lock, so the reader page won't be swapped
1541 * in the ring buffer. Now we are racing with the writer trying to
1542 * move head page and the tail page.
1543 * We are going to adapt the reader page update process where:
1544 * 1. We first splice the start and end of list of new pages between
1545 * the head page and its previous page.
1546 * 2. We cmpxchg the prev_page->next to point from head page to the
1547 * start of new pages list.
1548 * 3. Finally, we update the head->prev to the end of new list.
1550 * We will try this process 10 times, to make sure that we don't keep
1556 struct list_head
*head_page
, *prev_page
, *r
;
1557 struct list_head
*last_page
, *first_page
;
1558 struct list_head
*head_page_with_bit
;
1560 head_page
= &rb_set_head_page(cpu_buffer
)->list
;
1563 prev_page
= head_page
->prev
;
1565 first_page
= pages
->next
;
1566 last_page
= pages
->prev
;
1568 head_page_with_bit
= (struct list_head
*)
1569 ((unsigned long)head_page
| RB_PAGE_HEAD
);
1571 last_page
->next
= head_page_with_bit
;
1572 first_page
->prev
= prev_page
;
1574 r
= cmpxchg(&prev_page
->next
, head_page_with_bit
, first_page
);
1576 if (r
== head_page_with_bit
) {
1578 * yay, we replaced the page pointer to our new list,
1579 * now, we just have to update to head page's prev
1580 * pointer to point to end of list
1582 head_page
->prev
= last_page
;
1589 INIT_LIST_HEAD(pages
);
1591 * If we weren't successful in adding in new pages, warn and stop
1594 RB_WARN_ON(cpu_buffer
, !success
);
1595 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1597 /* free pages if they weren't inserted */
1599 struct buffer_page
*bpage
, *tmp
;
1600 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1602 list_del_init(&bpage
->list
);
1603 free_buffer_page(bpage
);
1609 static void rb_update_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1613 if (cpu_buffer
->nr_pages_to_update
> 0)
1614 success
= rb_insert_pages(cpu_buffer
);
1616 success
= rb_remove_pages(cpu_buffer
,
1617 -cpu_buffer
->nr_pages_to_update
);
1620 cpu_buffer
->nr_pages
+= cpu_buffer
->nr_pages_to_update
;
1623 static void update_pages_handler(struct work_struct
*work
)
1625 struct ring_buffer_per_cpu
*cpu_buffer
= container_of(work
,
1626 struct ring_buffer_per_cpu
, update_pages_work
);
1627 rb_update_pages(cpu_buffer
);
1628 complete(&cpu_buffer
->update_done
);
1632 * ring_buffer_resize - resize the ring buffer
1633 * @buffer: the buffer to resize.
1634 * @size: the new size.
1635 * @cpu_id: the cpu buffer to resize
1637 * Minimum size is 2 * BUF_PAGE_SIZE.
1639 * Returns 0 on success and < 0 on failure.
1641 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
,
1644 struct ring_buffer_per_cpu
*cpu_buffer
;
1649 * Always succeed at resizing a non-existent buffer:
1654 /* Make sure the requested buffer exists */
1655 if (cpu_id
!= RING_BUFFER_ALL_CPUS
&&
1656 !cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1659 size
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1660 size
*= BUF_PAGE_SIZE
;
1662 /* we need a minimum of two pages */
1663 if (size
< BUF_PAGE_SIZE
* 2)
1664 size
= BUF_PAGE_SIZE
* 2;
1666 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1669 * Don't succeed if resizing is disabled, as a reader might be
1670 * manipulating the ring buffer and is expecting a sane state while
1673 if (atomic_read(&buffer
->resize_disabled
))
1676 /* prevent another thread from changing buffer sizes */
1677 mutex_lock(&buffer
->mutex
);
1679 if (cpu_id
== RING_BUFFER_ALL_CPUS
) {
1680 /* calculate the pages to update */
1681 for_each_buffer_cpu(buffer
, cpu
) {
1682 cpu_buffer
= buffer
->buffers
[cpu
];
1684 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1685 cpu_buffer
->nr_pages
;
1687 * nothing more to do for removing pages or no update
1689 if (cpu_buffer
->nr_pages_to_update
<= 0)
1692 * to add pages, make sure all new pages can be
1693 * allocated without receiving ENOMEM
1695 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1696 if (__rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1697 &cpu_buffer
->new_pages
, cpu
)) {
1698 /* not enough memory for new pages */
1706 * Fire off all the required work handlers
1707 * We can't schedule on offline CPUs, but it's not necessary
1708 * since we can change their buffer sizes without any race.
1710 for_each_buffer_cpu(buffer
, cpu
) {
1711 cpu_buffer
= buffer
->buffers
[cpu
];
1712 if (!cpu_buffer
->nr_pages_to_update
)
1715 /* Can't run something on an offline CPU. */
1716 if (!cpu_online(cpu
)) {
1717 rb_update_pages(cpu_buffer
);
1718 cpu_buffer
->nr_pages_to_update
= 0;
1720 schedule_work_on(cpu
,
1721 &cpu_buffer
->update_pages_work
);
1725 /* wait for all the updates to complete */
1726 for_each_buffer_cpu(buffer
, cpu
) {
1727 cpu_buffer
= buffer
->buffers
[cpu
];
1728 if (!cpu_buffer
->nr_pages_to_update
)
1731 if (cpu_online(cpu
))
1732 wait_for_completion(&cpu_buffer
->update_done
);
1733 cpu_buffer
->nr_pages_to_update
= 0;
1738 /* Make sure this CPU has been intitialized */
1739 if (!cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1742 cpu_buffer
= buffer
->buffers
[cpu_id
];
1744 if (nr_pages
== cpu_buffer
->nr_pages
)
1747 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1748 cpu_buffer
->nr_pages
;
1750 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1751 if (cpu_buffer
->nr_pages_to_update
> 0 &&
1752 __rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1753 &cpu_buffer
->new_pages
, cpu_id
)) {
1760 /* Can't run something on an offline CPU. */
1761 if (!cpu_online(cpu_id
))
1762 rb_update_pages(cpu_buffer
);
1764 schedule_work_on(cpu_id
,
1765 &cpu_buffer
->update_pages_work
);
1766 wait_for_completion(&cpu_buffer
->update_done
);
1769 cpu_buffer
->nr_pages_to_update
= 0;
1775 * The ring buffer resize can happen with the ring buffer
1776 * enabled, so that the update disturbs the tracing as little
1777 * as possible. But if the buffer is disabled, we do not need
1778 * to worry about that, and we can take the time to verify
1779 * that the buffer is not corrupt.
1781 if (atomic_read(&buffer
->record_disabled
)) {
1782 atomic_inc(&buffer
->record_disabled
);
1784 * Even though the buffer was disabled, we must make sure
1785 * that it is truly disabled before calling rb_check_pages.
1786 * There could have been a race between checking
1787 * record_disable and incrementing it.
1789 synchronize_sched();
1790 for_each_buffer_cpu(buffer
, cpu
) {
1791 cpu_buffer
= buffer
->buffers
[cpu
];
1792 rb_check_pages(cpu_buffer
);
1794 atomic_dec(&buffer
->record_disabled
);
1797 mutex_unlock(&buffer
->mutex
);
1801 for_each_buffer_cpu(buffer
, cpu
) {
1802 struct buffer_page
*bpage
, *tmp
;
1804 cpu_buffer
= buffer
->buffers
[cpu
];
1805 cpu_buffer
->nr_pages_to_update
= 0;
1807 if (list_empty(&cpu_buffer
->new_pages
))
1810 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1812 list_del_init(&bpage
->list
);
1813 free_buffer_page(bpage
);
1816 mutex_unlock(&buffer
->mutex
);
1819 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1821 void ring_buffer_change_overwrite(struct ring_buffer
*buffer
, int val
)
1823 mutex_lock(&buffer
->mutex
);
1825 buffer
->flags
|= RB_FL_OVERWRITE
;
1827 buffer
->flags
&= ~RB_FL_OVERWRITE
;
1828 mutex_unlock(&buffer
->mutex
);
1830 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite
);
1832 static inline void *
1833 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
1835 return bpage
->data
+ index
;
1838 static inline void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1840 return bpage
->page
->data
+ index
;
1843 static inline struct ring_buffer_event
*
1844 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1846 return __rb_page_index(cpu_buffer
->reader_page
,
1847 cpu_buffer
->reader_page
->read
);
1850 static inline struct ring_buffer_event
*
1851 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1853 return __rb_page_index(iter
->head_page
, iter
->head
);
1856 static inline unsigned rb_page_commit(struct buffer_page
*bpage
)
1858 return local_read(&bpage
->page
->commit
);
1861 /* Size is determined by what has been committed */
1862 static inline unsigned rb_page_size(struct buffer_page
*bpage
)
1864 return rb_page_commit(bpage
);
1867 static inline unsigned
1868 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1870 return rb_page_commit(cpu_buffer
->commit_page
);
1873 static inline unsigned
1874 rb_event_index(struct ring_buffer_event
*event
)
1876 unsigned long addr
= (unsigned long)event
;
1878 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1881 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1883 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1886 * The iterator could be on the reader page (it starts there).
1887 * But the head could have moved, since the reader was
1888 * found. Check for this case and assign the iterator
1889 * to the head page instead of next.
1891 if (iter
->head_page
== cpu_buffer
->reader_page
)
1892 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1894 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1896 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1901 * rb_handle_head_page - writer hit the head page
1903 * Returns: +1 to retry page
1908 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
1909 struct buffer_page
*tail_page
,
1910 struct buffer_page
*next_page
)
1912 struct buffer_page
*new_head
;
1917 entries
= rb_page_entries(next_page
);
1920 * The hard part is here. We need to move the head
1921 * forward, and protect against both readers on
1922 * other CPUs and writers coming in via interrupts.
1924 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
1928 * type can be one of four:
1929 * NORMAL - an interrupt already moved it for us
1930 * HEAD - we are the first to get here.
1931 * UPDATE - we are the interrupt interrupting
1933 * MOVED - a reader on another CPU moved the next
1934 * pointer to its reader page. Give up
1941 * We changed the head to UPDATE, thus
1942 * it is our responsibility to update
1945 local_add(entries
, &cpu_buffer
->overrun
);
1946 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1949 * The entries will be zeroed out when we move the
1953 /* still more to do */
1956 case RB_PAGE_UPDATE
:
1958 * This is an interrupt that interrupt the
1959 * previous update. Still more to do.
1962 case RB_PAGE_NORMAL
:
1964 * An interrupt came in before the update
1965 * and processed this for us.
1966 * Nothing left to do.
1971 * The reader is on another CPU and just did
1972 * a swap with our next_page.
1977 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
1982 * Now that we are here, the old head pointer is
1983 * set to UPDATE. This will keep the reader from
1984 * swapping the head page with the reader page.
1985 * The reader (on another CPU) will spin till
1988 * We just need to protect against interrupts
1989 * doing the job. We will set the next pointer
1990 * to HEAD. After that, we set the old pointer
1991 * to NORMAL, but only if it was HEAD before.
1992 * otherwise we are an interrupt, and only
1993 * want the outer most commit to reset it.
1995 new_head
= next_page
;
1996 rb_inc_page(cpu_buffer
, &new_head
);
1998 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
2002 * Valid returns are:
2003 * HEAD - an interrupt came in and already set it.
2004 * NORMAL - One of two things:
2005 * 1) We really set it.
2006 * 2) A bunch of interrupts came in and moved
2007 * the page forward again.
2011 case RB_PAGE_NORMAL
:
2015 RB_WARN_ON(cpu_buffer
, 1);
2020 * It is possible that an interrupt came in,
2021 * set the head up, then more interrupts came in
2022 * and moved it again. When we get back here,
2023 * the page would have been set to NORMAL but we
2024 * just set it back to HEAD.
2026 * How do you detect this? Well, if that happened
2027 * the tail page would have moved.
2029 if (ret
== RB_PAGE_NORMAL
) {
2030 struct buffer_page
*buffer_tail_page
;
2032 buffer_tail_page
= READ_ONCE(cpu_buffer
->tail_page
);
2034 * If the tail had moved passed next, then we need
2035 * to reset the pointer.
2037 if (buffer_tail_page
!= tail_page
&&
2038 buffer_tail_page
!= next_page
)
2039 rb_head_page_set_normal(cpu_buffer
, new_head
,
2045 * If this was the outer most commit (the one that
2046 * changed the original pointer from HEAD to UPDATE),
2047 * then it is up to us to reset it to NORMAL.
2049 if (type
== RB_PAGE_HEAD
) {
2050 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
2053 if (RB_WARN_ON(cpu_buffer
,
2054 ret
!= RB_PAGE_UPDATE
))
2062 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2063 unsigned long tail
, struct rb_event_info
*info
)
2065 struct buffer_page
*tail_page
= info
->tail_page
;
2066 struct ring_buffer_event
*event
;
2067 unsigned long length
= info
->length
;
2070 * Only the event that crossed the page boundary
2071 * must fill the old tail_page with padding.
2073 if (tail
>= BUF_PAGE_SIZE
) {
2075 * If the page was filled, then we still need
2076 * to update the real_end. Reset it to zero
2077 * and the reader will ignore it.
2079 if (tail
== BUF_PAGE_SIZE
)
2080 tail_page
->real_end
= 0;
2082 local_sub(length
, &tail_page
->write
);
2086 event
= __rb_page_index(tail_page
, tail
);
2087 kmemcheck_annotate_bitfield(event
, bitfield
);
2089 /* account for padding bytes */
2090 local_add(BUF_PAGE_SIZE
- tail
, &cpu_buffer
->entries_bytes
);
2093 * Save the original length to the meta data.
2094 * This will be used by the reader to add lost event
2097 tail_page
->real_end
= tail
;
2100 * If this event is bigger than the minimum size, then
2101 * we need to be careful that we don't subtract the
2102 * write counter enough to allow another writer to slip
2104 * We put in a discarded commit instead, to make sure
2105 * that this space is not used again.
2107 * If we are less than the minimum size, we don't need to
2110 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
2111 /* No room for any events */
2113 /* Mark the rest of the page with padding */
2114 rb_event_set_padding(event
);
2116 /* Set the write back to the previous setting */
2117 local_sub(length
, &tail_page
->write
);
2121 /* Put in a discarded event */
2122 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
2123 event
->type_len
= RINGBUF_TYPE_PADDING
;
2124 /* time delta must be non zero */
2125 event
->time_delta
= 1;
2127 /* Set write to end of buffer */
2128 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
2129 local_sub(length
, &tail_page
->write
);
2132 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
);
2135 * This is the slow path, force gcc not to inline it.
2137 static noinline
struct ring_buffer_event
*
2138 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2139 unsigned long tail
, struct rb_event_info
*info
)
2141 struct buffer_page
*tail_page
= info
->tail_page
;
2142 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
2143 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
2144 struct buffer_page
*next_page
;
2147 next_page
= tail_page
;
2149 rb_inc_page(cpu_buffer
, &next_page
);
2152 * If for some reason, we had an interrupt storm that made
2153 * it all the way around the buffer, bail, and warn
2156 if (unlikely(next_page
== commit_page
)) {
2157 local_inc(&cpu_buffer
->commit_overrun
);
2162 * This is where the fun begins!
2164 * We are fighting against races between a reader that
2165 * could be on another CPU trying to swap its reader
2166 * page with the buffer head.
2168 * We are also fighting against interrupts coming in and
2169 * moving the head or tail on us as well.
2171 * If the next page is the head page then we have filled
2172 * the buffer, unless the commit page is still on the
2175 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
2178 * If the commit is not on the reader page, then
2179 * move the header page.
2181 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
2183 * If we are not in overwrite mode,
2184 * this is easy, just stop here.
2186 if (!(buffer
->flags
& RB_FL_OVERWRITE
)) {
2187 local_inc(&cpu_buffer
->dropped_events
);
2191 ret
= rb_handle_head_page(cpu_buffer
,
2200 * We need to be careful here too. The
2201 * commit page could still be on the reader
2202 * page. We could have a small buffer, and
2203 * have filled up the buffer with events
2204 * from interrupts and such, and wrapped.
2206 * Note, if the tail page is also the on the
2207 * reader_page, we let it move out.
2209 if (unlikely((cpu_buffer
->commit_page
!=
2210 cpu_buffer
->tail_page
) &&
2211 (cpu_buffer
->commit_page
==
2212 cpu_buffer
->reader_page
))) {
2213 local_inc(&cpu_buffer
->commit_overrun
);
2219 rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
2223 rb_reset_tail(cpu_buffer
, tail
, info
);
2225 /* Commit what we have for now. */
2226 rb_end_commit(cpu_buffer
);
2227 /* rb_end_commit() decs committing */
2228 local_inc(&cpu_buffer
->committing
);
2230 /* fail and let the caller try again */
2231 return ERR_PTR(-EAGAIN
);
2235 rb_reset_tail(cpu_buffer
, tail
, info
);
2240 /* Slow path, do not inline */
2241 static noinline
struct ring_buffer_event
*
2242 rb_add_time_stamp(struct ring_buffer_event
*event
, u64 delta
)
2244 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
2246 /* Not the first event on the page? */
2247 if (rb_event_index(event
)) {
2248 event
->time_delta
= delta
& TS_MASK
;
2249 event
->array
[0] = delta
>> TS_SHIFT
;
2251 /* nope, just zero it */
2252 event
->time_delta
= 0;
2253 event
->array
[0] = 0;
2256 return skip_time_extend(event
);
2259 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2260 struct ring_buffer_event
*event
);
2263 * rb_update_event - update event type and data
2264 * @event: the event to update
2265 * @type: the type of event
2266 * @length: the size of the event field in the ring buffer
2268 * Update the type and data fields of the event. The length
2269 * is the actual size that is written to the ring buffer,
2270 * and with this, we can determine what to place into the
2274 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
2275 struct ring_buffer_event
*event
,
2276 struct rb_event_info
*info
)
2278 unsigned length
= info
->length
;
2279 u64 delta
= info
->delta
;
2281 /* Only a commit updates the timestamp */
2282 if (unlikely(!rb_event_is_commit(cpu_buffer
, event
)))
2286 * If we need to add a timestamp, then we
2287 * add it to the start of the resevered space.
2289 if (unlikely(info
->add_timestamp
)) {
2290 event
= rb_add_time_stamp(event
, delta
);
2291 length
-= RB_LEN_TIME_EXTEND
;
2295 event
->time_delta
= delta
;
2296 length
-= RB_EVNT_HDR_SIZE
;
2297 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
) {
2298 event
->type_len
= 0;
2299 event
->array
[0] = length
;
2301 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
2304 static unsigned rb_calculate_event_length(unsigned length
)
2306 struct ring_buffer_event event
; /* Used only for sizeof array */
2308 /* zero length can cause confusions */
2312 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
2313 length
+= sizeof(event
.array
[0]);
2315 length
+= RB_EVNT_HDR_SIZE
;
2316 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
2319 * In case the time delta is larger than the 27 bits for it
2320 * in the header, we need to add a timestamp. If another
2321 * event comes in when trying to discard this one to increase
2322 * the length, then the timestamp will be added in the allocated
2323 * space of this event. If length is bigger than the size needed
2324 * for the TIME_EXTEND, then padding has to be used. The events
2325 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2326 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2327 * As length is a multiple of 4, we only need to worry if it
2328 * is 12 (RB_LEN_TIME_EXTEND + 4).
2330 if (length
== RB_LEN_TIME_EXTEND
+ RB_ALIGNMENT
)
2331 length
+= RB_ALIGNMENT
;
2336 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2337 static inline bool sched_clock_stable(void)
2344 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
2345 struct ring_buffer_event
*event
)
2347 unsigned long new_index
, old_index
;
2348 struct buffer_page
*bpage
;
2349 unsigned long index
;
2352 new_index
= rb_event_index(event
);
2353 old_index
= new_index
+ rb_event_ts_length(event
);
2354 addr
= (unsigned long)event
;
2357 bpage
= READ_ONCE(cpu_buffer
->tail_page
);
2359 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
2360 unsigned long write_mask
=
2361 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
2362 unsigned long event_length
= rb_event_length(event
);
2364 * This is on the tail page. It is possible that
2365 * a write could come in and move the tail page
2366 * and write to the next page. That is fine
2367 * because we just shorten what is on this page.
2369 old_index
+= write_mask
;
2370 new_index
+= write_mask
;
2371 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
2372 if (index
== old_index
) {
2373 /* update counters */
2374 local_sub(event_length
, &cpu_buffer
->entries_bytes
);
2379 /* could not discard */
2383 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2385 local_inc(&cpu_buffer
->committing
);
2386 local_inc(&cpu_buffer
->commits
);
2390 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
2392 unsigned long max_count
;
2395 * We only race with interrupts and NMIs on this CPU.
2396 * If we own the commit event, then we can commit
2397 * all others that interrupted us, since the interruptions
2398 * are in stack format (they finish before they come
2399 * back to us). This allows us to do a simple loop to
2400 * assign the commit to the tail.
2403 max_count
= cpu_buffer
->nr_pages
* 100;
2405 while (cpu_buffer
->commit_page
!= READ_ONCE(cpu_buffer
->tail_page
)) {
2406 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
2408 if (RB_WARN_ON(cpu_buffer
,
2409 rb_is_reader_page(cpu_buffer
->tail_page
)))
2411 local_set(&cpu_buffer
->commit_page
->page
->commit
,
2412 rb_page_write(cpu_buffer
->commit_page
));
2413 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
2414 /* Only update the write stamp if the page has an event */
2415 if (rb_page_write(cpu_buffer
->commit_page
))
2416 cpu_buffer
->write_stamp
=
2417 cpu_buffer
->commit_page
->page
->time_stamp
;
2418 /* add barrier to keep gcc from optimizing too much */
2421 while (rb_commit_index(cpu_buffer
) !=
2422 rb_page_write(cpu_buffer
->commit_page
)) {
2424 local_set(&cpu_buffer
->commit_page
->page
->commit
,
2425 rb_page_write(cpu_buffer
->commit_page
));
2426 RB_WARN_ON(cpu_buffer
,
2427 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
2432 /* again, keep gcc from optimizing */
2436 * If an interrupt came in just after the first while loop
2437 * and pushed the tail page forward, we will be left with
2438 * a dangling commit that will never go forward.
2440 if (unlikely(cpu_buffer
->commit_page
!= READ_ONCE(cpu_buffer
->tail_page
)))
2444 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2446 unsigned long commits
;
2448 if (RB_WARN_ON(cpu_buffer
,
2449 !local_read(&cpu_buffer
->committing
)))
2453 commits
= local_read(&cpu_buffer
->commits
);
2454 /* synchronize with interrupts */
2456 if (local_read(&cpu_buffer
->committing
) == 1)
2457 rb_set_commit_to_write(cpu_buffer
);
2459 local_dec(&cpu_buffer
->committing
);
2461 /* synchronize with interrupts */
2465 * Need to account for interrupts coming in between the
2466 * updating of the commit page and the clearing of the
2467 * committing counter.
2469 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2470 !local_read(&cpu_buffer
->committing
)) {
2471 local_inc(&cpu_buffer
->committing
);
2476 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2478 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
2479 event
= skip_time_extend(event
);
2481 /* array[0] holds the actual length for the discarded event */
2482 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2483 event
->type_len
= RINGBUF_TYPE_PADDING
;
2484 /* time delta must be non zero */
2485 if (!event
->time_delta
)
2486 event
->time_delta
= 1;
2490 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2491 struct ring_buffer_event
*event
)
2493 unsigned long addr
= (unsigned long)event
;
2494 unsigned long index
;
2496 index
= rb_event_index(event
);
2499 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
2500 rb_commit_index(cpu_buffer
) == index
;
2504 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2505 struct ring_buffer_event
*event
)
2510 * The event first in the commit queue updates the
2513 if (rb_event_is_commit(cpu_buffer
, event
)) {
2515 * A commit event that is first on a page
2516 * updates the write timestamp with the page stamp
2518 if (!rb_event_index(event
))
2519 cpu_buffer
->write_stamp
=
2520 cpu_buffer
->commit_page
->page
->time_stamp
;
2521 else if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
2522 delta
= event
->array
[0];
2524 delta
+= event
->time_delta
;
2525 cpu_buffer
->write_stamp
+= delta
;
2527 cpu_buffer
->write_stamp
+= event
->time_delta
;
2531 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2532 struct ring_buffer_event
*event
)
2534 local_inc(&cpu_buffer
->entries
);
2535 rb_update_write_stamp(cpu_buffer
, event
);
2536 rb_end_commit(cpu_buffer
);
2539 static __always_inline
void
2540 rb_wakeups(struct ring_buffer
*buffer
, struct ring_buffer_per_cpu
*cpu_buffer
)
2544 if (buffer
->irq_work
.waiters_pending
) {
2545 buffer
->irq_work
.waiters_pending
= false;
2546 /* irq_work_queue() supplies it's own memory barriers */
2547 irq_work_queue(&buffer
->irq_work
.work
);
2550 if (cpu_buffer
->irq_work
.waiters_pending
) {
2551 cpu_buffer
->irq_work
.waiters_pending
= false;
2552 /* irq_work_queue() supplies it's own memory barriers */
2553 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2556 pagebusy
= cpu_buffer
->reader_page
== cpu_buffer
->commit_page
;
2558 if (!pagebusy
&& cpu_buffer
->irq_work
.full_waiters_pending
) {
2559 cpu_buffer
->irq_work
.wakeup_full
= true;
2560 cpu_buffer
->irq_work
.full_waiters_pending
= false;
2561 /* irq_work_queue() supplies it's own memory barriers */
2562 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2567 * The lock and unlock are done within a preempt disable section.
2568 * The current_context per_cpu variable can only be modified
2569 * by the current task between lock and unlock. But it can
2570 * be modified more than once via an interrupt. To pass this
2571 * information from the lock to the unlock without having to
2572 * access the 'in_interrupt()' functions again (which do show
2573 * a bit of overhead in something as critical as function tracing,
2574 * we use a bitmask trick.
2576 * bit 0 = NMI context
2577 * bit 1 = IRQ context
2578 * bit 2 = SoftIRQ context
2579 * bit 3 = normal context.
2581 * This works because this is the order of contexts that can
2582 * preempt other contexts. A SoftIRQ never preempts an IRQ
2585 * When the context is determined, the corresponding bit is
2586 * checked and set (if it was set, then a recursion of that context
2589 * On unlock, we need to clear this bit. To do so, just subtract
2590 * 1 from the current_context and AND it to itself.
2594 * 101 & 100 = 100 (clearing bit zero)
2597 * 1010 & 1001 = 1000 (clearing bit 1)
2599 * The least significant bit can be cleared this way, and it
2600 * just so happens that it is the same bit corresponding to
2601 * the current context.
2604 static __always_inline
int
2605 trace_recursive_lock(struct ring_buffer_per_cpu
*cpu_buffer
)
2607 unsigned int val
= cpu_buffer
->current_context
;
2610 if (in_interrupt()) {
2616 bit
= RB_CTX_SOFTIRQ
;
2618 bit
= RB_CTX_NORMAL
;
2620 if (unlikely(val
& (1 << bit
)))
2624 cpu_buffer
->current_context
= val
;
2629 static __always_inline
void
2630 trace_recursive_unlock(struct ring_buffer_per_cpu
*cpu_buffer
)
2632 cpu_buffer
->current_context
&= cpu_buffer
->current_context
- 1;
2636 * ring_buffer_unlock_commit - commit a reserved
2637 * @buffer: The buffer to commit to
2638 * @event: The event pointer to commit.
2640 * This commits the data to the ring buffer, and releases any locks held.
2642 * Must be paired with ring_buffer_lock_reserve.
2644 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2645 struct ring_buffer_event
*event
)
2647 struct ring_buffer_per_cpu
*cpu_buffer
;
2648 int cpu
= raw_smp_processor_id();
2650 cpu_buffer
= buffer
->buffers
[cpu
];
2652 rb_commit(cpu_buffer
, event
);
2654 rb_wakeups(buffer
, cpu_buffer
);
2656 trace_recursive_unlock(cpu_buffer
);
2658 preempt_enable_notrace();
2662 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2664 static noinline
void
2665 rb_handle_timestamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2666 struct rb_event_info
*info
)
2668 WARN_ONCE(info
->delta
> (1ULL << 59),
2669 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2670 (unsigned long long)info
->delta
,
2671 (unsigned long long)info
->ts
,
2672 (unsigned long long)cpu_buffer
->write_stamp
,
2673 sched_clock_stable() ? "" :
2674 "If you just came from a suspend/resume,\n"
2675 "please switch to the trace global clock:\n"
2676 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2677 info
->add_timestamp
= 1;
2680 static struct ring_buffer_event
*
2681 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
2682 struct rb_event_info
*info
)
2684 struct ring_buffer_event
*event
;
2685 struct buffer_page
*tail_page
;
2686 unsigned long tail
, write
;
2689 * If the time delta since the last event is too big to
2690 * hold in the time field of the event, then we append a
2691 * TIME EXTEND event ahead of the data event.
2693 if (unlikely(info
->add_timestamp
))
2694 info
->length
+= RB_LEN_TIME_EXTEND
;
2696 /* Don't let the compiler play games with cpu_buffer->tail_page */
2697 tail_page
= info
->tail_page
= READ_ONCE(cpu_buffer
->tail_page
);
2698 write
= local_add_return(info
->length
, &tail_page
->write
);
2700 /* set write to only the index of the write */
2701 write
&= RB_WRITE_MASK
;
2702 tail
= write
- info
->length
;
2705 * If this is the first commit on the page, then it has the same
2706 * timestamp as the page itself.
2711 /* See if we shot pass the end of this buffer page */
2712 if (unlikely(write
> BUF_PAGE_SIZE
))
2713 return rb_move_tail(cpu_buffer
, tail
, info
);
2715 /* We reserved something on the buffer */
2717 event
= __rb_page_index(tail_page
, tail
);
2718 kmemcheck_annotate_bitfield(event
, bitfield
);
2719 rb_update_event(cpu_buffer
, event
, info
);
2721 local_inc(&tail_page
->entries
);
2724 * If this is the first commit on the page, then update
2728 tail_page
->page
->time_stamp
= info
->ts
;
2730 /* account for these added bytes */
2731 local_add(info
->length
, &cpu_buffer
->entries_bytes
);
2736 static struct ring_buffer_event
*
2737 rb_reserve_next_event(struct ring_buffer
*buffer
,
2738 struct ring_buffer_per_cpu
*cpu_buffer
,
2739 unsigned long length
)
2741 struct ring_buffer_event
*event
;
2742 struct rb_event_info info
;
2746 rb_start_commit(cpu_buffer
);
2748 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2750 * Due to the ability to swap a cpu buffer from a buffer
2751 * it is possible it was swapped before we committed.
2752 * (committing stops a swap). We check for it here and
2753 * if it happened, we have to fail the write.
2756 if (unlikely(ACCESS_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2757 local_dec(&cpu_buffer
->committing
);
2758 local_dec(&cpu_buffer
->commits
);
2763 info
.length
= rb_calculate_event_length(length
);
2765 info
.add_timestamp
= 0;
2769 * We allow for interrupts to reenter here and do a trace.
2770 * If one does, it will cause this original code to loop
2771 * back here. Even with heavy interrupts happening, this
2772 * should only happen a few times in a row. If this happens
2773 * 1000 times in a row, there must be either an interrupt
2774 * storm or we have something buggy.
2777 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2780 info
.ts
= rb_time_stamp(cpu_buffer
->buffer
);
2781 diff
= info
.ts
- cpu_buffer
->write_stamp
;
2783 /* make sure this diff is calculated here */
2786 /* Did the write stamp get updated already? */
2787 if (likely(info
.ts
>= cpu_buffer
->write_stamp
)) {
2789 if (unlikely(test_time_stamp(info
.delta
)))
2790 rb_handle_timestamp(cpu_buffer
, &info
);
2793 event
= __rb_reserve_next(cpu_buffer
, &info
);
2795 if (unlikely(PTR_ERR(event
) == -EAGAIN
)) {
2796 if (info
.add_timestamp
)
2797 info
.length
-= RB_LEN_TIME_EXTEND
;
2807 rb_end_commit(cpu_buffer
);
2812 * ring_buffer_lock_reserve - reserve a part of the buffer
2813 * @buffer: the ring buffer to reserve from
2814 * @length: the length of the data to reserve (excluding event header)
2816 * Returns a reseverd event on the ring buffer to copy directly to.
2817 * The user of this interface will need to get the body to write into
2818 * and can use the ring_buffer_event_data() interface.
2820 * The length is the length of the data needed, not the event length
2821 * which also includes the event header.
2823 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2824 * If NULL is returned, then nothing has been allocated or locked.
2826 struct ring_buffer_event
*
2827 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2829 struct ring_buffer_per_cpu
*cpu_buffer
;
2830 struct ring_buffer_event
*event
;
2833 /* If we are tracing schedule, we don't want to recurse */
2834 preempt_disable_notrace();
2836 if (unlikely(atomic_read(&buffer
->record_disabled
)))
2839 cpu
= raw_smp_processor_id();
2841 if (unlikely(!cpumask_test_cpu(cpu
, buffer
->cpumask
)))
2844 cpu_buffer
= buffer
->buffers
[cpu
];
2846 if (unlikely(atomic_read(&cpu_buffer
->record_disabled
)))
2849 if (unlikely(length
> BUF_MAX_DATA_SIZE
))
2852 if (unlikely(trace_recursive_lock(cpu_buffer
)))
2855 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2862 trace_recursive_unlock(cpu_buffer
);
2864 preempt_enable_notrace();
2867 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2870 * Decrement the entries to the page that an event is on.
2871 * The event does not even need to exist, only the pointer
2872 * to the page it is on. This may only be called before the commit
2876 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2877 struct ring_buffer_event
*event
)
2879 unsigned long addr
= (unsigned long)event
;
2880 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2881 struct buffer_page
*start
;
2885 /* Do the likely case first */
2886 if (likely(bpage
->page
== (void *)addr
)) {
2887 local_dec(&bpage
->entries
);
2892 * Because the commit page may be on the reader page we
2893 * start with the next page and check the end loop there.
2895 rb_inc_page(cpu_buffer
, &bpage
);
2898 if (bpage
->page
== (void *)addr
) {
2899 local_dec(&bpage
->entries
);
2902 rb_inc_page(cpu_buffer
, &bpage
);
2903 } while (bpage
!= start
);
2905 /* commit not part of this buffer?? */
2906 RB_WARN_ON(cpu_buffer
, 1);
2910 * ring_buffer_commit_discard - discard an event that has not been committed
2911 * @buffer: the ring buffer
2912 * @event: non committed event to discard
2914 * Sometimes an event that is in the ring buffer needs to be ignored.
2915 * This function lets the user discard an event in the ring buffer
2916 * and then that event will not be read later.
2918 * This function only works if it is called before the the item has been
2919 * committed. It will try to free the event from the ring buffer
2920 * if another event has not been added behind it.
2922 * If another event has been added behind it, it will set the event
2923 * up as discarded, and perform the commit.
2925 * If this function is called, do not call ring_buffer_unlock_commit on
2928 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
2929 struct ring_buffer_event
*event
)
2931 struct ring_buffer_per_cpu
*cpu_buffer
;
2934 /* The event is discarded regardless */
2935 rb_event_discard(event
);
2937 cpu
= smp_processor_id();
2938 cpu_buffer
= buffer
->buffers
[cpu
];
2941 * This must only be called if the event has not been
2942 * committed yet. Thus we can assume that preemption
2943 * is still disabled.
2945 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
2947 rb_decrement_entry(cpu_buffer
, event
);
2948 if (rb_try_to_discard(cpu_buffer
, event
))
2952 * The commit is still visible by the reader, so we
2953 * must still update the timestamp.
2955 rb_update_write_stamp(cpu_buffer
, event
);
2957 rb_end_commit(cpu_buffer
);
2959 trace_recursive_unlock(cpu_buffer
);
2961 preempt_enable_notrace();
2964 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
2967 * ring_buffer_write - write data to the buffer without reserving
2968 * @buffer: The ring buffer to write to.
2969 * @length: The length of the data being written (excluding the event header)
2970 * @data: The data to write to the buffer.
2972 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2973 * one function. If you already have the data to write to the buffer, it
2974 * may be easier to simply call this function.
2976 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2977 * and not the length of the event which would hold the header.
2979 int ring_buffer_write(struct ring_buffer
*buffer
,
2980 unsigned long length
,
2983 struct ring_buffer_per_cpu
*cpu_buffer
;
2984 struct ring_buffer_event
*event
;
2989 preempt_disable_notrace();
2991 if (atomic_read(&buffer
->record_disabled
))
2994 cpu
= raw_smp_processor_id();
2996 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2999 cpu_buffer
= buffer
->buffers
[cpu
];
3001 if (atomic_read(&cpu_buffer
->record_disabled
))
3004 if (length
> BUF_MAX_DATA_SIZE
)
3007 if (unlikely(trace_recursive_lock(cpu_buffer
)))
3010 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
3014 body
= rb_event_data(event
);
3016 memcpy(body
, data
, length
);
3018 rb_commit(cpu_buffer
, event
);
3020 rb_wakeups(buffer
, cpu_buffer
);
3025 trace_recursive_unlock(cpu_buffer
);
3028 preempt_enable_notrace();
3032 EXPORT_SYMBOL_GPL(ring_buffer_write
);
3034 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
3036 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
3037 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
3038 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
3040 /* In case of error, head will be NULL */
3041 if (unlikely(!head
))
3044 return reader
->read
== rb_page_commit(reader
) &&
3045 (commit
== reader
||
3047 head
->read
== rb_page_commit(commit
)));
3051 * ring_buffer_record_disable - stop all writes into the buffer
3052 * @buffer: The ring buffer to stop writes to.
3054 * This prevents all writes to the buffer. Any attempt to write
3055 * to the buffer after this will fail and return NULL.
3057 * The caller should call synchronize_sched() after this.
3059 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
3061 atomic_inc(&buffer
->record_disabled
);
3063 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
3066 * ring_buffer_record_enable - enable writes to the buffer
3067 * @buffer: The ring buffer to enable writes
3069 * Note, multiple disables will need the same number of enables
3070 * to truly enable the writing (much like preempt_disable).
3072 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
3074 atomic_dec(&buffer
->record_disabled
);
3076 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
3079 * ring_buffer_record_off - stop all writes into the buffer
3080 * @buffer: The ring buffer to stop writes to.
3082 * This prevents all writes to the buffer. Any attempt to write
3083 * to the buffer after this will fail and return NULL.
3085 * This is different than ring_buffer_record_disable() as
3086 * it works like an on/off switch, where as the disable() version
3087 * must be paired with a enable().
3089 void ring_buffer_record_off(struct ring_buffer
*buffer
)
3092 unsigned int new_rd
;
3095 rd
= atomic_read(&buffer
->record_disabled
);
3096 new_rd
= rd
| RB_BUFFER_OFF
;
3097 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3099 EXPORT_SYMBOL_GPL(ring_buffer_record_off
);
3102 * ring_buffer_record_on - restart writes into the buffer
3103 * @buffer: The ring buffer to start writes to.
3105 * This enables all writes to the buffer that was disabled by
3106 * ring_buffer_record_off().
3108 * This is different than ring_buffer_record_enable() as
3109 * it works like an on/off switch, where as the enable() version
3110 * must be paired with a disable().
3112 void ring_buffer_record_on(struct ring_buffer
*buffer
)
3115 unsigned int new_rd
;
3118 rd
= atomic_read(&buffer
->record_disabled
);
3119 new_rd
= rd
& ~RB_BUFFER_OFF
;
3120 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3122 EXPORT_SYMBOL_GPL(ring_buffer_record_on
);
3125 * ring_buffer_record_is_on - return true if the ring buffer can write
3126 * @buffer: The ring buffer to see if write is enabled
3128 * Returns true if the ring buffer is in a state that it accepts writes.
3130 int ring_buffer_record_is_on(struct ring_buffer
*buffer
)
3132 return !atomic_read(&buffer
->record_disabled
);
3136 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3137 * @buffer: The ring buffer to stop writes to.
3138 * @cpu: The CPU buffer to stop
3140 * This prevents all writes to the buffer. Any attempt to write
3141 * to the buffer after this will fail and return NULL.
3143 * The caller should call synchronize_sched() after this.
3145 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
3147 struct ring_buffer_per_cpu
*cpu_buffer
;
3149 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3152 cpu_buffer
= buffer
->buffers
[cpu
];
3153 atomic_inc(&cpu_buffer
->record_disabled
);
3155 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
3158 * ring_buffer_record_enable_cpu - enable writes to the buffer
3159 * @buffer: The ring buffer to enable writes
3160 * @cpu: The CPU to enable.
3162 * Note, multiple disables will need the same number of enables
3163 * to truly enable the writing (much like preempt_disable).
3165 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
3167 struct ring_buffer_per_cpu
*cpu_buffer
;
3169 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3172 cpu_buffer
= buffer
->buffers
[cpu
];
3173 atomic_dec(&cpu_buffer
->record_disabled
);
3175 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
3178 * The total entries in the ring buffer is the running counter
3179 * of entries entered into the ring buffer, minus the sum of
3180 * the entries read from the ring buffer and the number of
3181 * entries that were overwritten.
3183 static inline unsigned long
3184 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
3186 return local_read(&cpu_buffer
->entries
) -
3187 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
3191 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3192 * @buffer: The ring buffer
3193 * @cpu: The per CPU buffer to read from.
3195 u64
ring_buffer_oldest_event_ts(struct ring_buffer
*buffer
, int cpu
)
3197 unsigned long flags
;
3198 struct ring_buffer_per_cpu
*cpu_buffer
;
3199 struct buffer_page
*bpage
;
3202 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3205 cpu_buffer
= buffer
->buffers
[cpu
];
3206 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3208 * if the tail is on reader_page, oldest time stamp is on the reader
3211 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
3212 bpage
= cpu_buffer
->reader_page
;
3214 bpage
= rb_set_head_page(cpu_buffer
);
3216 ret
= bpage
->page
->time_stamp
;
3217 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3221 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts
);
3224 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3225 * @buffer: The ring buffer
3226 * @cpu: The per CPU buffer to read from.
3228 unsigned long ring_buffer_bytes_cpu(struct ring_buffer
*buffer
, int cpu
)
3230 struct ring_buffer_per_cpu
*cpu_buffer
;
3233 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3236 cpu_buffer
= buffer
->buffers
[cpu
];
3237 ret
= local_read(&cpu_buffer
->entries_bytes
) - cpu_buffer
->read_bytes
;
3241 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu
);
3244 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3245 * @buffer: The ring buffer
3246 * @cpu: The per CPU buffer to get the entries from.
3248 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
3250 struct ring_buffer_per_cpu
*cpu_buffer
;
3252 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3255 cpu_buffer
= buffer
->buffers
[cpu
];
3257 return rb_num_of_entries(cpu_buffer
);
3259 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
3262 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3263 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3264 * @buffer: The ring buffer
3265 * @cpu: The per CPU buffer to get the number of overruns from
3267 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3269 struct ring_buffer_per_cpu
*cpu_buffer
;
3272 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3275 cpu_buffer
= buffer
->buffers
[cpu
];
3276 ret
= local_read(&cpu_buffer
->overrun
);
3280 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
3283 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3284 * commits failing due to the buffer wrapping around while there are uncommitted
3285 * events, such as during an interrupt storm.
3286 * @buffer: The ring buffer
3287 * @cpu: The per CPU buffer to get the number of overruns from
3290 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3292 struct ring_buffer_per_cpu
*cpu_buffer
;
3295 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3298 cpu_buffer
= buffer
->buffers
[cpu
];
3299 ret
= local_read(&cpu_buffer
->commit_overrun
);
3303 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
3306 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3307 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3308 * @buffer: The ring buffer
3309 * @cpu: The per CPU buffer to get the number of overruns from
3312 ring_buffer_dropped_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3314 struct ring_buffer_per_cpu
*cpu_buffer
;
3317 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3320 cpu_buffer
= buffer
->buffers
[cpu
];
3321 ret
= local_read(&cpu_buffer
->dropped_events
);
3325 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu
);
3328 * ring_buffer_read_events_cpu - get the number of events successfully read
3329 * @buffer: The ring buffer
3330 * @cpu: The per CPU buffer to get the number of events read
3333 ring_buffer_read_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3335 struct ring_buffer_per_cpu
*cpu_buffer
;
3337 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3340 cpu_buffer
= buffer
->buffers
[cpu
];
3341 return cpu_buffer
->read
;
3343 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu
);
3346 * ring_buffer_entries - get the number of entries in a buffer
3347 * @buffer: The ring buffer
3349 * Returns the total number of entries in the ring buffer
3352 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
3354 struct ring_buffer_per_cpu
*cpu_buffer
;
3355 unsigned long entries
= 0;
3358 /* if you care about this being correct, lock the buffer */
3359 for_each_buffer_cpu(buffer
, cpu
) {
3360 cpu_buffer
= buffer
->buffers
[cpu
];
3361 entries
+= rb_num_of_entries(cpu_buffer
);
3366 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
3369 * ring_buffer_overruns - get the number of overruns in buffer
3370 * @buffer: The ring buffer
3372 * Returns the total number of overruns in the ring buffer
3375 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
3377 struct ring_buffer_per_cpu
*cpu_buffer
;
3378 unsigned long overruns
= 0;
3381 /* if you care about this being correct, lock the buffer */
3382 for_each_buffer_cpu(buffer
, cpu
) {
3383 cpu_buffer
= buffer
->buffers
[cpu
];
3384 overruns
+= local_read(&cpu_buffer
->overrun
);
3389 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
3391 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
3393 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3395 /* Iterator usage is expected to have record disabled */
3396 iter
->head_page
= cpu_buffer
->reader_page
;
3397 iter
->head
= cpu_buffer
->reader_page
->read
;
3399 iter
->cache_reader_page
= iter
->head_page
;
3400 iter
->cache_read
= cpu_buffer
->read
;
3403 iter
->read_stamp
= cpu_buffer
->read_stamp
;
3405 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
3409 * ring_buffer_iter_reset - reset an iterator
3410 * @iter: The iterator to reset
3412 * Resets the iterator, so that it will start from the beginning
3415 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
3417 struct ring_buffer_per_cpu
*cpu_buffer
;
3418 unsigned long flags
;
3423 cpu_buffer
= iter
->cpu_buffer
;
3425 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3426 rb_iter_reset(iter
);
3427 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3429 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
3432 * ring_buffer_iter_empty - check if an iterator has no more to read
3433 * @iter: The iterator to check
3435 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
3437 struct ring_buffer_per_cpu
*cpu_buffer
;
3439 cpu_buffer
= iter
->cpu_buffer
;
3441 return iter
->head_page
== cpu_buffer
->commit_page
&&
3442 iter
->head
== rb_commit_index(cpu_buffer
);
3444 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
3447 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
3448 struct ring_buffer_event
*event
)
3452 switch (event
->type_len
) {
3453 case RINGBUF_TYPE_PADDING
:
3456 case RINGBUF_TYPE_TIME_EXTEND
:
3457 delta
= event
->array
[0];
3459 delta
+= event
->time_delta
;
3460 cpu_buffer
->read_stamp
+= delta
;
3463 case RINGBUF_TYPE_TIME_STAMP
:
3464 /* FIXME: not implemented */
3467 case RINGBUF_TYPE_DATA
:
3468 cpu_buffer
->read_stamp
+= event
->time_delta
;
3478 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
3479 struct ring_buffer_event
*event
)
3483 switch (event
->type_len
) {
3484 case RINGBUF_TYPE_PADDING
:
3487 case RINGBUF_TYPE_TIME_EXTEND
:
3488 delta
= event
->array
[0];
3490 delta
+= event
->time_delta
;
3491 iter
->read_stamp
+= delta
;
3494 case RINGBUF_TYPE_TIME_STAMP
:
3495 /* FIXME: not implemented */
3498 case RINGBUF_TYPE_DATA
:
3499 iter
->read_stamp
+= event
->time_delta
;
3508 static struct buffer_page
*
3509 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
3511 struct buffer_page
*reader
= NULL
;
3512 unsigned long overwrite
;
3513 unsigned long flags
;
3517 local_irq_save(flags
);
3518 arch_spin_lock(&cpu_buffer
->lock
);
3522 * This should normally only loop twice. But because the
3523 * start of the reader inserts an empty page, it causes
3524 * a case where we will loop three times. There should be no
3525 * reason to loop four times (that I know of).
3527 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
3532 reader
= cpu_buffer
->reader_page
;
3534 /* If there's more to read, return this page */
3535 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
3538 /* Never should we have an index greater than the size */
3539 if (RB_WARN_ON(cpu_buffer
,
3540 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
3543 /* check if we caught up to the tail */
3545 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
3548 /* Don't bother swapping if the ring buffer is empty */
3549 if (rb_num_of_entries(cpu_buffer
) == 0)
3553 * Reset the reader page to size zero.
3555 local_set(&cpu_buffer
->reader_page
->write
, 0);
3556 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3557 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3558 cpu_buffer
->reader_page
->real_end
= 0;
3562 * Splice the empty reader page into the list around the head.
3564 reader
= rb_set_head_page(cpu_buffer
);
3567 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
3568 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
3571 * cpu_buffer->pages just needs to point to the buffer, it
3572 * has no specific buffer page to point to. Lets move it out
3573 * of our way so we don't accidentally swap it.
3575 cpu_buffer
->pages
= reader
->list
.prev
;
3577 /* The reader page will be pointing to the new head */
3578 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
3581 * We want to make sure we read the overruns after we set up our
3582 * pointers to the next object. The writer side does a
3583 * cmpxchg to cross pages which acts as the mb on the writer
3584 * side. Note, the reader will constantly fail the swap
3585 * while the writer is updating the pointers, so this
3586 * guarantees that the overwrite recorded here is the one we
3587 * want to compare with the last_overrun.
3590 overwrite
= local_read(&(cpu_buffer
->overrun
));
3593 * Here's the tricky part.
3595 * We need to move the pointer past the header page.
3596 * But we can only do that if a writer is not currently
3597 * moving it. The page before the header page has the
3598 * flag bit '1' set if it is pointing to the page we want.
3599 * but if the writer is in the process of moving it
3600 * than it will be '2' or already moved '0'.
3603 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
3606 * If we did not convert it, then we must try again.
3612 * Yeah! We succeeded in replacing the page.
3614 * Now make the new head point back to the reader page.
3616 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
3617 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
3619 /* Finally update the reader page to the new head */
3620 cpu_buffer
->reader_page
= reader
;
3621 cpu_buffer
->reader_page
->read
= 0;
3623 if (overwrite
!= cpu_buffer
->last_overrun
) {
3624 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
3625 cpu_buffer
->last_overrun
= overwrite
;
3631 /* Update the read_stamp on the first event */
3632 if (reader
&& reader
->read
== 0)
3633 cpu_buffer
->read_stamp
= reader
->page
->time_stamp
;
3635 arch_spin_unlock(&cpu_buffer
->lock
);
3636 local_irq_restore(flags
);
3641 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
3643 struct ring_buffer_event
*event
;
3644 struct buffer_page
*reader
;
3647 reader
= rb_get_reader_page(cpu_buffer
);
3649 /* This function should not be called when buffer is empty */
3650 if (RB_WARN_ON(cpu_buffer
, !reader
))
3653 event
= rb_reader_event(cpu_buffer
);
3655 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
3658 rb_update_read_stamp(cpu_buffer
, event
);
3660 length
= rb_event_length(event
);
3661 cpu_buffer
->reader_page
->read
+= length
;
3664 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3666 struct ring_buffer_per_cpu
*cpu_buffer
;
3667 struct ring_buffer_event
*event
;
3670 cpu_buffer
= iter
->cpu_buffer
;
3673 * Check if we are at the end of the buffer.
3675 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3676 /* discarded commits can make the page empty */
3677 if (iter
->head_page
== cpu_buffer
->commit_page
)
3683 event
= rb_iter_head_event(iter
);
3685 length
= rb_event_length(event
);
3688 * This should not be called to advance the header if we are
3689 * at the tail of the buffer.
3691 if (RB_WARN_ON(cpu_buffer
,
3692 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3693 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3696 rb_update_iter_read_stamp(iter
, event
);
3698 iter
->head
+= length
;
3700 /* check for end of page padding */
3701 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3702 (iter
->head_page
!= cpu_buffer
->commit_page
))
3706 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3708 return cpu_buffer
->lost_events
;
3711 static struct ring_buffer_event
*
3712 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3713 unsigned long *lost_events
)
3715 struct ring_buffer_event
*event
;
3716 struct buffer_page
*reader
;
3721 * We repeat when a time extend is encountered.
3722 * Since the time extend is always attached to a data event,
3723 * we should never loop more than once.
3724 * (We never hit the following condition more than twice).
3726 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3729 reader
= rb_get_reader_page(cpu_buffer
);
3733 event
= rb_reader_event(cpu_buffer
);
3735 switch (event
->type_len
) {
3736 case RINGBUF_TYPE_PADDING
:
3737 if (rb_null_event(event
))
3738 RB_WARN_ON(cpu_buffer
, 1);
3740 * Because the writer could be discarding every
3741 * event it creates (which would probably be bad)
3742 * if we were to go back to "again" then we may never
3743 * catch up, and will trigger the warn on, or lock
3744 * the box. Return the padding, and we will release
3745 * the current locks, and try again.
3749 case RINGBUF_TYPE_TIME_EXTEND
:
3750 /* Internal data, OK to advance */
3751 rb_advance_reader(cpu_buffer
);
3754 case RINGBUF_TYPE_TIME_STAMP
:
3755 /* FIXME: not implemented */
3756 rb_advance_reader(cpu_buffer
);
3759 case RINGBUF_TYPE_DATA
:
3761 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3762 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3763 cpu_buffer
->cpu
, ts
);
3766 *lost_events
= rb_lost_events(cpu_buffer
);
3775 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3777 static struct ring_buffer_event
*
3778 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3780 struct ring_buffer
*buffer
;
3781 struct ring_buffer_per_cpu
*cpu_buffer
;
3782 struct ring_buffer_event
*event
;
3785 cpu_buffer
= iter
->cpu_buffer
;
3786 buffer
= cpu_buffer
->buffer
;
3789 * Check if someone performed a consuming read to
3790 * the buffer. A consuming read invalidates the iterator
3791 * and we need to reset the iterator in this case.
3793 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3794 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3795 rb_iter_reset(iter
);
3798 if (ring_buffer_iter_empty(iter
))
3802 * We repeat when a time extend is encountered or we hit
3803 * the end of the page. Since the time extend is always attached
3804 * to a data event, we should never loop more than three times.
3805 * Once for going to next page, once on time extend, and
3806 * finally once to get the event.
3807 * (We never hit the following condition more than thrice).
3809 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3))
3812 if (rb_per_cpu_empty(cpu_buffer
))
3815 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3820 event
= rb_iter_head_event(iter
);
3822 switch (event
->type_len
) {
3823 case RINGBUF_TYPE_PADDING
:
3824 if (rb_null_event(event
)) {
3828 rb_advance_iter(iter
);
3831 case RINGBUF_TYPE_TIME_EXTEND
:
3832 /* Internal data, OK to advance */
3833 rb_advance_iter(iter
);
3836 case RINGBUF_TYPE_TIME_STAMP
:
3837 /* FIXME: not implemented */
3838 rb_advance_iter(iter
);
3841 case RINGBUF_TYPE_DATA
:
3843 *ts
= iter
->read_stamp
+ event
->time_delta
;
3844 ring_buffer_normalize_time_stamp(buffer
,
3845 cpu_buffer
->cpu
, ts
);
3855 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3857 static inline bool rb_reader_lock(struct ring_buffer_per_cpu
*cpu_buffer
)
3859 if (likely(!in_nmi())) {
3860 raw_spin_lock(&cpu_buffer
->reader_lock
);
3865 * If an NMI die dumps out the content of the ring buffer
3866 * trylock must be used to prevent a deadlock if the NMI
3867 * preempted a task that holds the ring buffer locks. If
3868 * we get the lock then all is fine, if not, then continue
3869 * to do the read, but this can corrupt the ring buffer,
3870 * so it must be permanently disabled from future writes.
3871 * Reading from NMI is a oneshot deal.
3873 if (raw_spin_trylock(&cpu_buffer
->reader_lock
))
3876 /* Continue without locking, but disable the ring buffer */
3877 atomic_inc(&cpu_buffer
->record_disabled
);
3882 rb_reader_unlock(struct ring_buffer_per_cpu
*cpu_buffer
, bool locked
)
3885 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3890 * ring_buffer_peek - peek at the next event to be read
3891 * @buffer: The ring buffer to read
3892 * @cpu: The cpu to peak at
3893 * @ts: The timestamp counter of this event.
3894 * @lost_events: a variable to store if events were lost (may be NULL)
3896 * This will return the event that will be read next, but does
3897 * not consume the data.
3899 struct ring_buffer_event
*
3900 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3901 unsigned long *lost_events
)
3903 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3904 struct ring_buffer_event
*event
;
3905 unsigned long flags
;
3908 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3912 local_irq_save(flags
);
3913 dolock
= rb_reader_lock(cpu_buffer
);
3914 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3915 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3916 rb_advance_reader(cpu_buffer
);
3917 rb_reader_unlock(cpu_buffer
, dolock
);
3918 local_irq_restore(flags
);
3920 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3927 * ring_buffer_iter_peek - peek at the next event to be read
3928 * @iter: The ring buffer iterator
3929 * @ts: The timestamp counter of this event.
3931 * This will return the event that will be read next, but does
3932 * not increment the iterator.
3934 struct ring_buffer_event
*
3935 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3937 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3938 struct ring_buffer_event
*event
;
3939 unsigned long flags
;
3942 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3943 event
= rb_iter_peek(iter
, ts
);
3944 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3946 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3953 * ring_buffer_consume - return an event and consume it
3954 * @buffer: The ring buffer to get the next event from
3955 * @cpu: the cpu to read the buffer from
3956 * @ts: a variable to store the timestamp (may be NULL)
3957 * @lost_events: a variable to store if events were lost (may be NULL)
3959 * Returns the next event in the ring buffer, and that event is consumed.
3960 * Meaning, that sequential reads will keep returning a different event,
3961 * and eventually empty the ring buffer if the producer is slower.
3963 struct ring_buffer_event
*
3964 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3965 unsigned long *lost_events
)
3967 struct ring_buffer_per_cpu
*cpu_buffer
;
3968 struct ring_buffer_event
*event
= NULL
;
3969 unsigned long flags
;
3973 /* might be called in atomic */
3976 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3979 cpu_buffer
= buffer
->buffers
[cpu
];
3980 local_irq_save(flags
);
3981 dolock
= rb_reader_lock(cpu_buffer
);
3983 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3985 cpu_buffer
->lost_events
= 0;
3986 rb_advance_reader(cpu_buffer
);
3989 rb_reader_unlock(cpu_buffer
, dolock
);
3990 local_irq_restore(flags
);
3995 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4000 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
4003 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4004 * @buffer: The ring buffer to read from
4005 * @cpu: The cpu buffer to iterate over
4007 * This performs the initial preparations necessary to iterate
4008 * through the buffer. Memory is allocated, buffer recording
4009 * is disabled, and the iterator pointer is returned to the caller.
4011 * Disabling buffer recordng prevents the reading from being
4012 * corrupted. This is not a consuming read, so a producer is not
4015 * After a sequence of ring_buffer_read_prepare calls, the user is
4016 * expected to make at least one call to ring_buffer_read_prepare_sync.
4017 * Afterwards, ring_buffer_read_start is invoked to get things going
4020 * This overall must be paired with ring_buffer_read_finish.
4022 struct ring_buffer_iter
*
4023 ring_buffer_read_prepare(struct ring_buffer
*buffer
, int cpu
)
4025 struct ring_buffer_per_cpu
*cpu_buffer
;
4026 struct ring_buffer_iter
*iter
;
4028 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4031 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
4035 cpu_buffer
= buffer
->buffers
[cpu
];
4037 iter
->cpu_buffer
= cpu_buffer
;
4039 atomic_inc(&buffer
->resize_disabled
);
4040 atomic_inc(&cpu_buffer
->record_disabled
);
4044 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
4047 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4049 * All previously invoked ring_buffer_read_prepare calls to prepare
4050 * iterators will be synchronized. Afterwards, read_buffer_read_start
4051 * calls on those iterators are allowed.
4054 ring_buffer_read_prepare_sync(void)
4056 synchronize_sched();
4058 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
4061 * ring_buffer_read_start - start a non consuming read of the buffer
4062 * @iter: The iterator returned by ring_buffer_read_prepare
4064 * This finalizes the startup of an iteration through the buffer.
4065 * The iterator comes from a call to ring_buffer_read_prepare and
4066 * an intervening ring_buffer_read_prepare_sync must have been
4069 * Must be paired with ring_buffer_read_finish.
4072 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
4074 struct ring_buffer_per_cpu
*cpu_buffer
;
4075 unsigned long flags
;
4080 cpu_buffer
= iter
->cpu_buffer
;
4082 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4083 arch_spin_lock(&cpu_buffer
->lock
);
4084 rb_iter_reset(iter
);
4085 arch_spin_unlock(&cpu_buffer
->lock
);
4086 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4088 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
4091 * ring_buffer_read_finish - finish reading the iterator of the buffer
4092 * @iter: The iterator retrieved by ring_buffer_start
4094 * This re-enables the recording to the buffer, and frees the
4098 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
4100 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4101 unsigned long flags
;
4104 * Ring buffer is disabled from recording, here's a good place
4105 * to check the integrity of the ring buffer.
4106 * Must prevent readers from trying to read, as the check
4107 * clears the HEAD page and readers require it.
4109 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4110 rb_check_pages(cpu_buffer
);
4111 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4113 atomic_dec(&cpu_buffer
->record_disabled
);
4114 atomic_dec(&cpu_buffer
->buffer
->resize_disabled
);
4117 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
4120 * ring_buffer_read - read the next item in the ring buffer by the iterator
4121 * @iter: The ring buffer iterator
4122 * @ts: The time stamp of the event read.
4124 * This reads the next event in the ring buffer and increments the iterator.
4126 struct ring_buffer_event
*
4127 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
4129 struct ring_buffer_event
*event
;
4130 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4131 unsigned long flags
;
4133 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4135 event
= rb_iter_peek(iter
, ts
);
4139 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
4142 rb_advance_iter(iter
);
4144 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4148 EXPORT_SYMBOL_GPL(ring_buffer_read
);
4151 * ring_buffer_size - return the size of the ring buffer (in bytes)
4152 * @buffer: The ring buffer.
4154 unsigned long ring_buffer_size(struct ring_buffer
*buffer
, int cpu
)
4157 * Earlier, this method returned
4158 * BUF_PAGE_SIZE * buffer->nr_pages
4159 * Since the nr_pages field is now removed, we have converted this to
4160 * return the per cpu buffer value.
4162 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4165 return BUF_PAGE_SIZE
* buffer
->buffers
[cpu
]->nr_pages
;
4167 EXPORT_SYMBOL_GPL(ring_buffer_size
);
4170 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
4172 rb_head_page_deactivate(cpu_buffer
);
4174 cpu_buffer
->head_page
4175 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
4176 local_set(&cpu_buffer
->head_page
->write
, 0);
4177 local_set(&cpu_buffer
->head_page
->entries
, 0);
4178 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
4180 cpu_buffer
->head_page
->read
= 0;
4182 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
4183 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
4185 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
4186 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
4187 local_set(&cpu_buffer
->reader_page
->write
, 0);
4188 local_set(&cpu_buffer
->reader_page
->entries
, 0);
4189 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
4190 cpu_buffer
->reader_page
->read
= 0;
4192 local_set(&cpu_buffer
->entries_bytes
, 0);
4193 local_set(&cpu_buffer
->overrun
, 0);
4194 local_set(&cpu_buffer
->commit_overrun
, 0);
4195 local_set(&cpu_buffer
->dropped_events
, 0);
4196 local_set(&cpu_buffer
->entries
, 0);
4197 local_set(&cpu_buffer
->committing
, 0);
4198 local_set(&cpu_buffer
->commits
, 0);
4199 cpu_buffer
->read
= 0;
4200 cpu_buffer
->read_bytes
= 0;
4202 cpu_buffer
->write_stamp
= 0;
4203 cpu_buffer
->read_stamp
= 0;
4205 cpu_buffer
->lost_events
= 0;
4206 cpu_buffer
->last_overrun
= 0;
4208 rb_head_page_activate(cpu_buffer
);
4212 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4213 * @buffer: The ring buffer to reset a per cpu buffer of
4214 * @cpu: The CPU buffer to be reset
4216 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
4218 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4219 unsigned long flags
;
4221 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4224 atomic_inc(&buffer
->resize_disabled
);
4225 atomic_inc(&cpu_buffer
->record_disabled
);
4227 /* Make sure all commits have finished */
4228 synchronize_sched();
4230 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4232 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
4235 arch_spin_lock(&cpu_buffer
->lock
);
4237 rb_reset_cpu(cpu_buffer
);
4239 arch_spin_unlock(&cpu_buffer
->lock
);
4242 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4244 atomic_dec(&cpu_buffer
->record_disabled
);
4245 atomic_dec(&buffer
->resize_disabled
);
4247 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
4250 * ring_buffer_reset - reset a ring buffer
4251 * @buffer: The ring buffer to reset all cpu buffers
4253 void ring_buffer_reset(struct ring_buffer
*buffer
)
4257 for_each_buffer_cpu(buffer
, cpu
)
4258 ring_buffer_reset_cpu(buffer
, cpu
);
4260 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
4263 * rind_buffer_empty - is the ring buffer empty?
4264 * @buffer: The ring buffer to test
4266 bool ring_buffer_empty(struct ring_buffer
*buffer
)
4268 struct ring_buffer_per_cpu
*cpu_buffer
;
4269 unsigned long flags
;
4274 /* yes this is racy, but if you don't like the race, lock the buffer */
4275 for_each_buffer_cpu(buffer
, cpu
) {
4276 cpu_buffer
= buffer
->buffers
[cpu
];
4277 local_irq_save(flags
);
4278 dolock
= rb_reader_lock(cpu_buffer
);
4279 ret
= rb_per_cpu_empty(cpu_buffer
);
4280 rb_reader_unlock(cpu_buffer
, dolock
);
4281 local_irq_restore(flags
);
4289 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
4292 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4293 * @buffer: The ring buffer
4294 * @cpu: The CPU buffer to test
4296 bool ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
4298 struct ring_buffer_per_cpu
*cpu_buffer
;
4299 unsigned long flags
;
4303 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4306 cpu_buffer
= buffer
->buffers
[cpu
];
4307 local_irq_save(flags
);
4308 dolock
= rb_reader_lock(cpu_buffer
);
4309 ret
= rb_per_cpu_empty(cpu_buffer
);
4310 rb_reader_unlock(cpu_buffer
, dolock
);
4311 local_irq_restore(flags
);
4315 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
4317 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4319 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4320 * @buffer_a: One buffer to swap with
4321 * @buffer_b: The other buffer to swap with
4323 * This function is useful for tracers that want to take a "snapshot"
4324 * of a CPU buffer and has another back up buffer lying around.
4325 * it is expected that the tracer handles the cpu buffer not being
4326 * used at the moment.
4328 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
4329 struct ring_buffer
*buffer_b
, int cpu
)
4331 struct ring_buffer_per_cpu
*cpu_buffer_a
;
4332 struct ring_buffer_per_cpu
*cpu_buffer_b
;
4335 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
4336 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
4339 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
4340 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
4342 /* At least make sure the two buffers are somewhat the same */
4343 if (cpu_buffer_a
->nr_pages
!= cpu_buffer_b
->nr_pages
)
4348 if (atomic_read(&buffer_a
->record_disabled
))
4351 if (atomic_read(&buffer_b
->record_disabled
))
4354 if (atomic_read(&cpu_buffer_a
->record_disabled
))
4357 if (atomic_read(&cpu_buffer_b
->record_disabled
))
4361 * We can't do a synchronize_sched here because this
4362 * function can be called in atomic context.
4363 * Normally this will be called from the same CPU as cpu.
4364 * If not it's up to the caller to protect this.
4366 atomic_inc(&cpu_buffer_a
->record_disabled
);
4367 atomic_inc(&cpu_buffer_b
->record_disabled
);
4370 if (local_read(&cpu_buffer_a
->committing
))
4372 if (local_read(&cpu_buffer_b
->committing
))
4375 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
4376 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
4378 cpu_buffer_b
->buffer
= buffer_a
;
4379 cpu_buffer_a
->buffer
= buffer_b
;
4384 atomic_dec(&cpu_buffer_a
->record_disabled
);
4385 atomic_dec(&cpu_buffer_b
->record_disabled
);
4389 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
4390 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4393 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4394 * @buffer: the buffer to allocate for.
4395 * @cpu: the cpu buffer to allocate.
4397 * This function is used in conjunction with ring_buffer_read_page.
4398 * When reading a full page from the ring buffer, these functions
4399 * can be used to speed up the process. The calling function should
4400 * allocate a few pages first with this function. Then when it
4401 * needs to get pages from the ring buffer, it passes the result
4402 * of this function into ring_buffer_read_page, which will swap
4403 * the page that was allocated, with the read page of the buffer.
4406 * The page allocated, or NULL on error.
4408 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
, int cpu
)
4410 struct buffer_data_page
*bpage
;
4413 page
= alloc_pages_node(cpu_to_node(cpu
),
4414 GFP_KERNEL
| __GFP_NORETRY
, 0);
4418 bpage
= page_address(page
);
4420 rb_init_page(bpage
);
4424 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
4427 * ring_buffer_free_read_page - free an allocated read page
4428 * @buffer: the buffer the page was allocate for
4429 * @data: the page to free
4431 * Free a page allocated from ring_buffer_alloc_read_page.
4433 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
4435 free_page((unsigned long)data
);
4437 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
4440 * ring_buffer_read_page - extract a page from the ring buffer
4441 * @buffer: buffer to extract from
4442 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4443 * @len: amount to extract
4444 * @cpu: the cpu of the buffer to extract
4445 * @full: should the extraction only happen when the page is full.
4447 * This function will pull out a page from the ring buffer and consume it.
4448 * @data_page must be the address of the variable that was returned
4449 * from ring_buffer_alloc_read_page. This is because the page might be used
4450 * to swap with a page in the ring buffer.
4453 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4456 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4458 * process_page(rpage, ret);
4460 * When @full is set, the function will not return true unless
4461 * the writer is off the reader page.
4463 * Note: it is up to the calling functions to handle sleeps and wakeups.
4464 * The ring buffer can be used anywhere in the kernel and can not
4465 * blindly call wake_up. The layer that uses the ring buffer must be
4466 * responsible for that.
4469 * >=0 if data has been transferred, returns the offset of consumed data.
4470 * <0 if no data has been transferred.
4472 int ring_buffer_read_page(struct ring_buffer
*buffer
,
4473 void **data_page
, size_t len
, int cpu
, int full
)
4475 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4476 struct ring_buffer_event
*event
;
4477 struct buffer_data_page
*bpage
;
4478 struct buffer_page
*reader
;
4479 unsigned long missed_events
;
4480 unsigned long flags
;
4481 unsigned int commit
;
4486 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4490 * If len is not big enough to hold the page header, then
4491 * we can not copy anything.
4493 if (len
<= BUF_PAGE_HDR_SIZE
)
4496 len
-= BUF_PAGE_HDR_SIZE
;
4505 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4507 reader
= rb_get_reader_page(cpu_buffer
);
4511 event
= rb_reader_event(cpu_buffer
);
4513 read
= reader
->read
;
4514 commit
= rb_page_commit(reader
);
4516 /* Check if any events were dropped */
4517 missed_events
= cpu_buffer
->lost_events
;
4520 * If this page has been partially read or
4521 * if len is not big enough to read the rest of the page or
4522 * a writer is still on the page, then
4523 * we must copy the data from the page to the buffer.
4524 * Otherwise, we can simply swap the page with the one passed in.
4526 if (read
|| (len
< (commit
- read
)) ||
4527 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
4528 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
4529 unsigned int rpos
= read
;
4530 unsigned int pos
= 0;
4536 if (len
> (commit
- read
))
4537 len
= (commit
- read
);
4539 /* Always keep the time extend and data together */
4540 size
= rb_event_ts_length(event
);
4545 /* save the current timestamp, since the user will need it */
4546 save_timestamp
= cpu_buffer
->read_stamp
;
4548 /* Need to copy one event at a time */
4550 /* We need the size of one event, because
4551 * rb_advance_reader only advances by one event,
4552 * whereas rb_event_ts_length may include the size of
4553 * one or two events.
4554 * We have already ensured there's enough space if this
4555 * is a time extend. */
4556 size
= rb_event_length(event
);
4557 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
4561 rb_advance_reader(cpu_buffer
);
4562 rpos
= reader
->read
;
4568 event
= rb_reader_event(cpu_buffer
);
4569 /* Always keep the time extend and data together */
4570 size
= rb_event_ts_length(event
);
4571 } while (len
>= size
);
4574 local_set(&bpage
->commit
, pos
);
4575 bpage
->time_stamp
= save_timestamp
;
4577 /* we copied everything to the beginning */
4580 /* update the entry counter */
4581 cpu_buffer
->read
+= rb_page_entries(reader
);
4582 cpu_buffer
->read_bytes
+= BUF_PAGE_SIZE
;
4584 /* swap the pages */
4585 rb_init_page(bpage
);
4586 bpage
= reader
->page
;
4587 reader
->page
= *data_page
;
4588 local_set(&reader
->write
, 0);
4589 local_set(&reader
->entries
, 0);
4594 * Use the real_end for the data size,
4595 * This gives us a chance to store the lost events
4598 if (reader
->real_end
)
4599 local_set(&bpage
->commit
, reader
->real_end
);
4603 cpu_buffer
->lost_events
= 0;
4605 commit
= local_read(&bpage
->commit
);
4607 * Set a flag in the commit field if we lost events
4609 if (missed_events
) {
4610 /* If there is room at the end of the page to save the
4611 * missed events, then record it there.
4613 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
4614 memcpy(&bpage
->data
[commit
], &missed_events
,
4615 sizeof(missed_events
));
4616 local_add(RB_MISSED_STORED
, &bpage
->commit
);
4617 commit
+= sizeof(missed_events
);
4619 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
4623 * This page may be off to user land. Zero it out here.
4625 if (commit
< BUF_PAGE_SIZE
)
4626 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
4629 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4634 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
4636 #ifdef CONFIG_HOTPLUG_CPU
4637 static int rb_cpu_notify(struct notifier_block
*self
,
4638 unsigned long action
, void *hcpu
)
4640 struct ring_buffer
*buffer
=
4641 container_of(self
, struct ring_buffer
, cpu_notify
);
4642 long cpu
= (long)hcpu
;
4643 int cpu_i
, nr_pages_same
;
4644 unsigned int nr_pages
;
4647 case CPU_UP_PREPARE
:
4648 case CPU_UP_PREPARE_FROZEN
:
4649 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4654 /* check if all cpu sizes are same */
4655 for_each_buffer_cpu(buffer
, cpu_i
) {
4656 /* fill in the size from first enabled cpu */
4658 nr_pages
= buffer
->buffers
[cpu_i
]->nr_pages
;
4659 if (nr_pages
!= buffer
->buffers
[cpu_i
]->nr_pages
) {
4664 /* allocate minimum pages, user can later expand it */
4667 buffer
->buffers
[cpu
] =
4668 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
4669 if (!buffer
->buffers
[cpu
]) {
4670 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4675 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4677 case CPU_DOWN_PREPARE
:
4678 case CPU_DOWN_PREPARE_FROZEN
:
4681 * If we were to free the buffer, then the user would
4682 * lose any trace that was in the buffer.
4692 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4694 * This is a basic integrity check of the ring buffer.
4695 * Late in the boot cycle this test will run when configured in.
4696 * It will kick off a thread per CPU that will go into a loop
4697 * writing to the per cpu ring buffer various sizes of data.
4698 * Some of the data will be large items, some small.
4700 * Another thread is created that goes into a spin, sending out
4701 * IPIs to the other CPUs to also write into the ring buffer.
4702 * this is to test the nesting ability of the buffer.
4704 * Basic stats are recorded and reported. If something in the
4705 * ring buffer should happen that's not expected, a big warning
4706 * is displayed and all ring buffers are disabled.
4708 static struct task_struct
*rb_threads
[NR_CPUS
] __initdata
;
4710 struct rb_test_data
{
4711 struct ring_buffer
*buffer
;
4712 unsigned long events
;
4713 unsigned long bytes_written
;
4714 unsigned long bytes_alloc
;
4715 unsigned long bytes_dropped
;
4716 unsigned long events_nested
;
4717 unsigned long bytes_written_nested
;
4718 unsigned long bytes_alloc_nested
;
4719 unsigned long bytes_dropped_nested
;
4720 int min_size_nested
;
4721 int max_size_nested
;
4728 static struct rb_test_data rb_data
[NR_CPUS
] __initdata
;
4731 #define RB_TEST_BUFFER_SIZE 1048576
4733 static char rb_string
[] __initdata
=
4734 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4735 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4736 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4738 static bool rb_test_started __initdata
;
4745 static __init
int rb_write_something(struct rb_test_data
*data
, bool nested
)
4747 struct ring_buffer_event
*event
;
4748 struct rb_item
*item
;
4755 /* Have nested writes different that what is written */
4756 cnt
= data
->cnt
+ (nested
? 27 : 0);
4758 /* Multiply cnt by ~e, to make some unique increment */
4759 size
= (data
->cnt
* 68 / 25) % (sizeof(rb_string
) - 1);
4761 len
= size
+ sizeof(struct rb_item
);
4763 started
= rb_test_started
;
4764 /* read rb_test_started before checking buffer enabled */
4767 event
= ring_buffer_lock_reserve(data
->buffer
, len
);
4769 /* Ignore dropped events before test starts. */
4772 data
->bytes_dropped
+= len
;
4774 data
->bytes_dropped_nested
+= len
;
4779 event_len
= ring_buffer_event_length(event
);
4781 if (RB_WARN_ON(data
->buffer
, event_len
< len
))
4784 item
= ring_buffer_event_data(event
);
4786 memcpy(item
->str
, rb_string
, size
);
4789 data
->bytes_alloc_nested
+= event_len
;
4790 data
->bytes_written_nested
+= len
;
4791 data
->events_nested
++;
4792 if (!data
->min_size_nested
|| len
< data
->min_size_nested
)
4793 data
->min_size_nested
= len
;
4794 if (len
> data
->max_size_nested
)
4795 data
->max_size_nested
= len
;
4797 data
->bytes_alloc
+= event_len
;
4798 data
->bytes_written
+= len
;
4800 if (!data
->min_size
|| len
< data
->min_size
)
4801 data
->max_size
= len
;
4802 if (len
> data
->max_size
)
4803 data
->max_size
= len
;
4807 ring_buffer_unlock_commit(data
->buffer
, event
);
4812 static __init
int rb_test(void *arg
)
4814 struct rb_test_data
*data
= arg
;
4816 while (!kthread_should_stop()) {
4817 rb_write_something(data
, false);
4820 set_current_state(TASK_INTERRUPTIBLE
);
4821 /* Now sleep between a min of 100-300us and a max of 1ms */
4822 usleep_range(((data
->cnt
% 3) + 1) * 100, 1000);
4828 static __init
void rb_ipi(void *ignore
)
4830 struct rb_test_data
*data
;
4831 int cpu
= smp_processor_id();
4833 data
= &rb_data
[cpu
];
4834 rb_write_something(data
, true);
4837 static __init
int rb_hammer_test(void *arg
)
4839 while (!kthread_should_stop()) {
4841 /* Send an IPI to all cpus to write data! */
4842 smp_call_function(rb_ipi
, NULL
, 1);
4843 /* No sleep, but for non preempt, let others run */
4850 static __init
int test_ringbuffer(void)
4852 struct task_struct
*rb_hammer
;
4853 struct ring_buffer
*buffer
;
4857 pr_info("Running ring buffer tests...\n");
4859 buffer
= ring_buffer_alloc(RB_TEST_BUFFER_SIZE
, RB_FL_OVERWRITE
);
4860 if (WARN_ON(!buffer
))
4863 /* Disable buffer so that threads can't write to it yet */
4864 ring_buffer_record_off(buffer
);
4866 for_each_online_cpu(cpu
) {
4867 rb_data
[cpu
].buffer
= buffer
;
4868 rb_data
[cpu
].cpu
= cpu
;
4869 rb_data
[cpu
].cnt
= cpu
;
4870 rb_threads
[cpu
] = kthread_create(rb_test
, &rb_data
[cpu
],
4871 "rbtester/%d", cpu
);
4872 if (WARN_ON(!rb_threads
[cpu
])) {
4873 pr_cont("FAILED\n");
4878 kthread_bind(rb_threads
[cpu
], cpu
);
4879 wake_up_process(rb_threads
[cpu
]);
4882 /* Now create the rb hammer! */
4883 rb_hammer
= kthread_run(rb_hammer_test
, NULL
, "rbhammer");
4884 if (WARN_ON(!rb_hammer
)) {
4885 pr_cont("FAILED\n");
4890 ring_buffer_record_on(buffer
);
4892 * Show buffer is enabled before setting rb_test_started.
4893 * Yes there's a small race window where events could be
4894 * dropped and the thread wont catch it. But when a ring
4895 * buffer gets enabled, there will always be some kind of
4896 * delay before other CPUs see it. Thus, we don't care about
4897 * those dropped events. We care about events dropped after
4898 * the threads see that the buffer is active.
4901 rb_test_started
= true;
4903 set_current_state(TASK_INTERRUPTIBLE
);
4904 /* Just run for 10 seconds */;
4905 schedule_timeout(10 * HZ
);
4907 kthread_stop(rb_hammer
);
4910 for_each_online_cpu(cpu
) {
4911 if (!rb_threads
[cpu
])
4913 kthread_stop(rb_threads
[cpu
]);
4916 ring_buffer_free(buffer
);
4921 pr_info("finished\n");
4922 for_each_online_cpu(cpu
) {
4923 struct ring_buffer_event
*event
;
4924 struct rb_test_data
*data
= &rb_data
[cpu
];
4925 struct rb_item
*item
;
4926 unsigned long total_events
;
4927 unsigned long total_dropped
;
4928 unsigned long total_written
;
4929 unsigned long total_alloc
;
4930 unsigned long total_read
= 0;
4931 unsigned long total_size
= 0;
4932 unsigned long total_len
= 0;
4933 unsigned long total_lost
= 0;
4936 int small_event_size
;
4940 total_events
= data
->events
+ data
->events_nested
;
4941 total_written
= data
->bytes_written
+ data
->bytes_written_nested
;
4942 total_alloc
= data
->bytes_alloc
+ data
->bytes_alloc_nested
;
4943 total_dropped
= data
->bytes_dropped
+ data
->bytes_dropped_nested
;
4945 big_event_size
= data
->max_size
+ data
->max_size_nested
;
4946 small_event_size
= data
->min_size
+ data
->min_size_nested
;
4948 pr_info("CPU %d:\n", cpu
);
4949 pr_info(" events: %ld\n", total_events
);
4950 pr_info(" dropped bytes: %ld\n", total_dropped
);
4951 pr_info(" alloced bytes: %ld\n", total_alloc
);
4952 pr_info(" written bytes: %ld\n", total_written
);
4953 pr_info(" biggest event: %d\n", big_event_size
);
4954 pr_info(" smallest event: %d\n", small_event_size
);
4956 if (RB_WARN_ON(buffer
, total_dropped
))
4961 while ((event
= ring_buffer_consume(buffer
, cpu
, NULL
, &lost
))) {
4963 item
= ring_buffer_event_data(event
);
4964 total_len
+= ring_buffer_event_length(event
);
4965 total_size
+= item
->size
+ sizeof(struct rb_item
);
4966 if (memcmp(&item
->str
[0], rb_string
, item
->size
) != 0) {
4967 pr_info("FAILED!\n");
4968 pr_info("buffer had: %.*s\n", item
->size
, item
->str
);
4969 pr_info("expected: %.*s\n", item
->size
, rb_string
);
4970 RB_WARN_ON(buffer
, 1);
4981 pr_info(" read events: %ld\n", total_read
);
4982 pr_info(" lost events: %ld\n", total_lost
);
4983 pr_info(" total events: %ld\n", total_lost
+ total_read
);
4984 pr_info(" recorded len bytes: %ld\n", total_len
);
4985 pr_info(" recorded size bytes: %ld\n", total_size
);
4987 pr_info(" With dropped events, record len and size may not match\n"
4988 " alloced and written from above\n");
4990 if (RB_WARN_ON(buffer
, total_len
!= total_alloc
||
4991 total_size
!= total_written
))
4994 if (RB_WARN_ON(buffer
, total_lost
+ total_read
!= total_events
))
5000 pr_info("Ring buffer PASSED!\n");
5002 ring_buffer_free(buffer
);
5006 late_initcall(test_ringbuffer
);
5007 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */