Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / net / ipv4 / tcp_input.c
blobc124c3c12f7c5c848d11e2a59d9e17ba93597411
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
98 int sysctl_tcp_thin_dupack __read_mostly;
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
110 #define FLAG_ECE 0x40 /* ECE in this ACK */
111 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
127 #define REXMIT_NONE 0 /* no loss recovery to do */
128 #define REXMIT_LOST 1 /* retransmit packets marked lost */
129 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
131 /* Adapt the MSS value used to make delayed ack decision to the
132 * real world.
134 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
136 struct inet_connection_sock *icsk = inet_csk(sk);
137 const unsigned int lss = icsk->icsk_ack.last_seg_size;
138 unsigned int len;
140 icsk->icsk_ack.last_seg_size = 0;
142 /* skb->len may jitter because of SACKs, even if peer
143 * sends good full-sized frames.
145 len = skb_shinfo(skb)->gso_size ? : skb->len;
146 if (len >= icsk->icsk_ack.rcv_mss) {
147 icsk->icsk_ack.rcv_mss = len;
148 } else {
149 /* Otherwise, we make more careful check taking into account,
150 * that SACKs block is variable.
152 * "len" is invariant segment length, including TCP header.
154 len += skb->data - skb_transport_header(skb);
155 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
156 /* If PSH is not set, packet should be
157 * full sized, provided peer TCP is not badly broken.
158 * This observation (if it is correct 8)) allows
159 * to handle super-low mtu links fairly.
161 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
162 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
163 /* Subtract also invariant (if peer is RFC compliant),
164 * tcp header plus fixed timestamp option length.
165 * Resulting "len" is MSS free of SACK jitter.
167 len -= tcp_sk(sk)->tcp_header_len;
168 icsk->icsk_ack.last_seg_size = len;
169 if (len == lss) {
170 icsk->icsk_ack.rcv_mss = len;
171 return;
174 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
175 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
176 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
180 static void tcp_incr_quickack(struct sock *sk)
182 struct inet_connection_sock *icsk = inet_csk(sk);
183 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
185 if (quickacks == 0)
186 quickacks = 2;
187 if (quickacks > icsk->icsk_ack.quick)
188 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
191 static void tcp_enter_quickack_mode(struct sock *sk)
193 struct inet_connection_sock *icsk = inet_csk(sk);
194 tcp_incr_quickack(sk);
195 icsk->icsk_ack.pingpong = 0;
196 icsk->icsk_ack.ato = TCP_ATO_MIN;
199 /* Send ACKs quickly, if "quick" count is not exhausted
200 * and the session is not interactive.
203 static bool tcp_in_quickack_mode(struct sock *sk)
205 const struct inet_connection_sock *icsk = inet_csk(sk);
206 const struct dst_entry *dst = __sk_dst_get(sk);
208 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
209 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
212 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
214 if (tp->ecn_flags & TCP_ECN_OK)
215 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
218 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
220 if (tcp_hdr(skb)->cwr)
221 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
224 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
226 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
229 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
231 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
232 case INET_ECN_NOT_ECT:
233 /* Funny extension: if ECT is not set on a segment,
234 * and we already seen ECT on a previous segment,
235 * it is probably a retransmit.
237 if (tp->ecn_flags & TCP_ECN_SEEN)
238 tcp_enter_quickack_mode((struct sock *)tp);
239 break;
240 case INET_ECN_CE:
241 if (tcp_ca_needs_ecn((struct sock *)tp))
242 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
244 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
245 /* Better not delay acks, sender can have a very low cwnd */
246 tcp_enter_quickack_mode((struct sock *)tp);
247 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
249 tp->ecn_flags |= TCP_ECN_SEEN;
250 break;
251 default:
252 if (tcp_ca_needs_ecn((struct sock *)tp))
253 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
254 tp->ecn_flags |= TCP_ECN_SEEN;
255 break;
259 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
261 if (tp->ecn_flags & TCP_ECN_OK)
262 __tcp_ecn_check_ce(tp, skb);
265 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
268 tp->ecn_flags &= ~TCP_ECN_OK;
271 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
273 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
274 tp->ecn_flags &= ~TCP_ECN_OK;
277 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
279 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
280 return true;
281 return false;
284 /* Buffer size and advertised window tuning.
286 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
289 static void tcp_sndbuf_expand(struct sock *sk)
291 const struct tcp_sock *tp = tcp_sk(sk);
292 int sndmem, per_mss;
293 u32 nr_segs;
295 /* Worst case is non GSO/TSO : each frame consumes one skb
296 * and skb->head is kmalloced using power of two area of memory
298 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
299 MAX_TCP_HEADER +
300 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
302 per_mss = roundup_pow_of_two(per_mss) +
303 SKB_DATA_ALIGN(sizeof(struct sk_buff));
305 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
306 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
308 /* Fast Recovery (RFC 5681 3.2) :
309 * Cubic needs 1.7 factor, rounded to 2 to include
310 * extra cushion (application might react slowly to POLLOUT)
312 sndmem = 2 * nr_segs * per_mss;
314 if (sk->sk_sndbuf < sndmem)
315 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
318 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
320 * All tcp_full_space() is split to two parts: "network" buffer, allocated
321 * forward and advertised in receiver window (tp->rcv_wnd) and
322 * "application buffer", required to isolate scheduling/application
323 * latencies from network.
324 * window_clamp is maximal advertised window. It can be less than
325 * tcp_full_space(), in this case tcp_full_space() - window_clamp
326 * is reserved for "application" buffer. The less window_clamp is
327 * the smoother our behaviour from viewpoint of network, but the lower
328 * throughput and the higher sensitivity of the connection to losses. 8)
330 * rcv_ssthresh is more strict window_clamp used at "slow start"
331 * phase to predict further behaviour of this connection.
332 * It is used for two goals:
333 * - to enforce header prediction at sender, even when application
334 * requires some significant "application buffer". It is check #1.
335 * - to prevent pruning of receive queue because of misprediction
336 * of receiver window. Check #2.
338 * The scheme does not work when sender sends good segments opening
339 * window and then starts to feed us spaghetti. But it should work
340 * in common situations. Otherwise, we have to rely on queue collapsing.
343 /* Slow part of check#2. */
344 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
346 struct tcp_sock *tp = tcp_sk(sk);
347 /* Optimize this! */
348 int truesize = tcp_win_from_space(skb->truesize) >> 1;
349 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
351 while (tp->rcv_ssthresh <= window) {
352 if (truesize <= skb->len)
353 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
355 truesize >>= 1;
356 window >>= 1;
358 return 0;
361 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
363 struct tcp_sock *tp = tcp_sk(sk);
365 /* Check #1 */
366 if (tp->rcv_ssthresh < tp->window_clamp &&
367 (int)tp->rcv_ssthresh < tcp_space(sk) &&
368 !tcp_under_memory_pressure(sk)) {
369 int incr;
371 /* Check #2. Increase window, if skb with such overhead
372 * will fit to rcvbuf in future.
374 if (tcp_win_from_space(skb->truesize) <= skb->len)
375 incr = 2 * tp->advmss;
376 else
377 incr = __tcp_grow_window(sk, skb);
379 if (incr) {
380 incr = max_t(int, incr, 2 * skb->len);
381 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
382 tp->window_clamp);
383 inet_csk(sk)->icsk_ack.quick |= 1;
388 /* 3. Tuning rcvbuf, when connection enters established state. */
389 static void tcp_fixup_rcvbuf(struct sock *sk)
391 u32 mss = tcp_sk(sk)->advmss;
392 int rcvmem;
394 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
395 tcp_default_init_rwnd(mss);
397 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
398 * Allow enough cushion so that sender is not limited by our window
400 if (sysctl_tcp_moderate_rcvbuf)
401 rcvmem <<= 2;
403 if (sk->sk_rcvbuf < rcvmem)
404 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
407 /* 4. Try to fixup all. It is made immediately after connection enters
408 * established state.
410 void tcp_init_buffer_space(struct sock *sk)
412 struct tcp_sock *tp = tcp_sk(sk);
413 int maxwin;
415 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
416 tcp_fixup_rcvbuf(sk);
417 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
418 tcp_sndbuf_expand(sk);
420 tp->rcvq_space.space = tp->rcv_wnd;
421 tp->rcvq_space.time = tcp_time_stamp;
422 tp->rcvq_space.seq = tp->copied_seq;
424 maxwin = tcp_full_space(sk);
426 if (tp->window_clamp >= maxwin) {
427 tp->window_clamp = maxwin;
429 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
430 tp->window_clamp = max(maxwin -
431 (maxwin >> sysctl_tcp_app_win),
432 4 * tp->advmss);
435 /* Force reservation of one segment. */
436 if (sysctl_tcp_app_win &&
437 tp->window_clamp > 2 * tp->advmss &&
438 tp->window_clamp + tp->advmss > maxwin)
439 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
441 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
442 tp->snd_cwnd_stamp = tcp_time_stamp;
445 /* 5. Recalculate window clamp after socket hit its memory bounds. */
446 static void tcp_clamp_window(struct sock *sk)
448 struct tcp_sock *tp = tcp_sk(sk);
449 struct inet_connection_sock *icsk = inet_csk(sk);
451 icsk->icsk_ack.quick = 0;
453 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
454 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
455 !tcp_under_memory_pressure(sk) &&
456 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
457 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
458 sysctl_tcp_rmem[2]);
460 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
461 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
464 /* Initialize RCV_MSS value.
465 * RCV_MSS is an our guess about MSS used by the peer.
466 * We haven't any direct information about the MSS.
467 * It's better to underestimate the RCV_MSS rather than overestimate.
468 * Overestimations make us ACKing less frequently than needed.
469 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
471 void tcp_initialize_rcv_mss(struct sock *sk)
473 const struct tcp_sock *tp = tcp_sk(sk);
474 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
476 hint = min(hint, tp->rcv_wnd / 2);
477 hint = min(hint, TCP_MSS_DEFAULT);
478 hint = max(hint, TCP_MIN_MSS);
480 inet_csk(sk)->icsk_ack.rcv_mss = hint;
482 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
484 /* Receiver "autotuning" code.
486 * The algorithm for RTT estimation w/o timestamps is based on
487 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
488 * <http://public.lanl.gov/radiant/pubs.html#DRS>
490 * More detail on this code can be found at
491 * <http://staff.psc.edu/jheffner/>,
492 * though this reference is out of date. A new paper
493 * is pending.
495 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
497 u32 new_sample = tp->rcv_rtt_est.rtt;
498 long m = sample;
500 if (m == 0)
501 m = 1;
503 if (new_sample != 0) {
504 /* If we sample in larger samples in the non-timestamp
505 * case, we could grossly overestimate the RTT especially
506 * with chatty applications or bulk transfer apps which
507 * are stalled on filesystem I/O.
509 * Also, since we are only going for a minimum in the
510 * non-timestamp case, we do not smooth things out
511 * else with timestamps disabled convergence takes too
512 * long.
514 if (!win_dep) {
515 m -= (new_sample >> 3);
516 new_sample += m;
517 } else {
518 m <<= 3;
519 if (m < new_sample)
520 new_sample = m;
522 } else {
523 /* No previous measure. */
524 new_sample = m << 3;
527 if (tp->rcv_rtt_est.rtt != new_sample)
528 tp->rcv_rtt_est.rtt = new_sample;
531 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
533 if (tp->rcv_rtt_est.time == 0)
534 goto new_measure;
535 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
536 return;
537 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
539 new_measure:
540 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
541 tp->rcv_rtt_est.time = tcp_time_stamp;
544 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
545 const struct sk_buff *skb)
547 struct tcp_sock *tp = tcp_sk(sk);
548 if (tp->rx_opt.rcv_tsecr &&
549 (TCP_SKB_CB(skb)->end_seq -
550 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
551 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
555 * This function should be called every time data is copied to user space.
556 * It calculates the appropriate TCP receive buffer space.
558 void tcp_rcv_space_adjust(struct sock *sk)
560 struct tcp_sock *tp = tcp_sk(sk);
561 int time;
562 int copied;
564 time = tcp_time_stamp - tp->rcvq_space.time;
565 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
566 return;
568 /* Number of bytes copied to user in last RTT */
569 copied = tp->copied_seq - tp->rcvq_space.seq;
570 if (copied <= tp->rcvq_space.space)
571 goto new_measure;
573 /* A bit of theory :
574 * copied = bytes received in previous RTT, our base window
575 * To cope with packet losses, we need a 2x factor
576 * To cope with slow start, and sender growing its cwin by 100 %
577 * every RTT, we need a 4x factor, because the ACK we are sending
578 * now is for the next RTT, not the current one :
579 * <prev RTT . ><current RTT .. ><next RTT .... >
582 if (sysctl_tcp_moderate_rcvbuf &&
583 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
584 int rcvwin, rcvmem, rcvbuf;
586 /* minimal window to cope with packet losses, assuming
587 * steady state. Add some cushion because of small variations.
589 rcvwin = (copied << 1) + 16 * tp->advmss;
591 /* If rate increased by 25%,
592 * assume slow start, rcvwin = 3 * copied
593 * If rate increased by 50%,
594 * assume sender can use 2x growth, rcvwin = 4 * copied
596 if (copied >=
597 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
598 if (copied >=
599 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
600 rcvwin <<= 1;
601 else
602 rcvwin += (rcvwin >> 1);
605 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
606 while (tcp_win_from_space(rcvmem) < tp->advmss)
607 rcvmem += 128;
609 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
610 if (rcvbuf > sk->sk_rcvbuf) {
611 sk->sk_rcvbuf = rcvbuf;
613 /* Make the window clamp follow along. */
614 tp->window_clamp = rcvwin;
617 tp->rcvq_space.space = copied;
619 new_measure:
620 tp->rcvq_space.seq = tp->copied_seq;
621 tp->rcvq_space.time = tcp_time_stamp;
624 /* There is something which you must keep in mind when you analyze the
625 * behavior of the tp->ato delayed ack timeout interval. When a
626 * connection starts up, we want to ack as quickly as possible. The
627 * problem is that "good" TCP's do slow start at the beginning of data
628 * transmission. The means that until we send the first few ACK's the
629 * sender will sit on his end and only queue most of his data, because
630 * he can only send snd_cwnd unacked packets at any given time. For
631 * each ACK we send, he increments snd_cwnd and transmits more of his
632 * queue. -DaveM
634 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
636 struct tcp_sock *tp = tcp_sk(sk);
637 struct inet_connection_sock *icsk = inet_csk(sk);
638 u32 now;
640 inet_csk_schedule_ack(sk);
642 tcp_measure_rcv_mss(sk, skb);
644 tcp_rcv_rtt_measure(tp);
646 now = tcp_time_stamp;
648 if (!icsk->icsk_ack.ato) {
649 /* The _first_ data packet received, initialize
650 * delayed ACK engine.
652 tcp_incr_quickack(sk);
653 icsk->icsk_ack.ato = TCP_ATO_MIN;
654 } else {
655 int m = now - icsk->icsk_ack.lrcvtime;
657 if (m <= TCP_ATO_MIN / 2) {
658 /* The fastest case is the first. */
659 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
660 } else if (m < icsk->icsk_ack.ato) {
661 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
662 if (icsk->icsk_ack.ato > icsk->icsk_rto)
663 icsk->icsk_ack.ato = icsk->icsk_rto;
664 } else if (m > icsk->icsk_rto) {
665 /* Too long gap. Apparently sender failed to
666 * restart window, so that we send ACKs quickly.
668 tcp_incr_quickack(sk);
669 sk_mem_reclaim(sk);
672 icsk->icsk_ack.lrcvtime = now;
674 tcp_ecn_check_ce(tp, skb);
676 if (skb->len >= 128)
677 tcp_grow_window(sk, skb);
680 /* Called to compute a smoothed rtt estimate. The data fed to this
681 * routine either comes from timestamps, or from segments that were
682 * known _not_ to have been retransmitted [see Karn/Partridge
683 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
684 * piece by Van Jacobson.
685 * NOTE: the next three routines used to be one big routine.
686 * To save cycles in the RFC 1323 implementation it was better to break
687 * it up into three procedures. -- erics
689 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
691 struct tcp_sock *tp = tcp_sk(sk);
692 long m = mrtt_us; /* RTT */
693 u32 srtt = tp->srtt_us;
695 /* The following amusing code comes from Jacobson's
696 * article in SIGCOMM '88. Note that rtt and mdev
697 * are scaled versions of rtt and mean deviation.
698 * This is designed to be as fast as possible
699 * m stands for "measurement".
701 * On a 1990 paper the rto value is changed to:
702 * RTO = rtt + 4 * mdev
704 * Funny. This algorithm seems to be very broken.
705 * These formulae increase RTO, when it should be decreased, increase
706 * too slowly, when it should be increased quickly, decrease too quickly
707 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
708 * does not matter how to _calculate_ it. Seems, it was trap
709 * that VJ failed to avoid. 8)
711 if (srtt != 0) {
712 m -= (srtt >> 3); /* m is now error in rtt est */
713 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
714 if (m < 0) {
715 m = -m; /* m is now abs(error) */
716 m -= (tp->mdev_us >> 2); /* similar update on mdev */
717 /* This is similar to one of Eifel findings.
718 * Eifel blocks mdev updates when rtt decreases.
719 * This solution is a bit different: we use finer gain
720 * for mdev in this case (alpha*beta).
721 * Like Eifel it also prevents growth of rto,
722 * but also it limits too fast rto decreases,
723 * happening in pure Eifel.
725 if (m > 0)
726 m >>= 3;
727 } else {
728 m -= (tp->mdev_us >> 2); /* similar update on mdev */
730 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
731 if (tp->mdev_us > tp->mdev_max_us) {
732 tp->mdev_max_us = tp->mdev_us;
733 if (tp->mdev_max_us > tp->rttvar_us)
734 tp->rttvar_us = tp->mdev_max_us;
736 if (after(tp->snd_una, tp->rtt_seq)) {
737 if (tp->mdev_max_us < tp->rttvar_us)
738 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
739 tp->rtt_seq = tp->snd_nxt;
740 tp->mdev_max_us = tcp_rto_min_us(sk);
742 } else {
743 /* no previous measure. */
744 srtt = m << 3; /* take the measured time to be rtt */
745 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
746 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
747 tp->mdev_max_us = tp->rttvar_us;
748 tp->rtt_seq = tp->snd_nxt;
750 tp->srtt_us = max(1U, srtt);
753 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
754 * Note: TCP stack does not yet implement pacing.
755 * FQ packet scheduler can be used to implement cheap but effective
756 * TCP pacing, to smooth the burst on large writes when packets
757 * in flight is significantly lower than cwnd (or rwin)
759 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
760 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
762 static void tcp_update_pacing_rate(struct sock *sk)
764 const struct tcp_sock *tp = tcp_sk(sk);
765 u64 rate;
767 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
768 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
770 /* current rate is (cwnd * mss) / srtt
771 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
772 * In Congestion Avoidance phase, set it to 120 % the current rate.
774 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
775 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
776 * end of slow start and should slow down.
778 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
779 rate *= sysctl_tcp_pacing_ss_ratio;
780 else
781 rate *= sysctl_tcp_pacing_ca_ratio;
783 rate *= max(tp->snd_cwnd, tp->packets_out);
785 if (likely(tp->srtt_us))
786 do_div(rate, tp->srtt_us);
788 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
789 * without any lock. We want to make sure compiler wont store
790 * intermediate values in this location.
792 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
793 sk->sk_max_pacing_rate);
796 /* Calculate rto without backoff. This is the second half of Van Jacobson's
797 * routine referred to above.
799 static void tcp_set_rto(struct sock *sk)
801 const struct tcp_sock *tp = tcp_sk(sk);
802 /* Old crap is replaced with new one. 8)
804 * More seriously:
805 * 1. If rtt variance happened to be less 50msec, it is hallucination.
806 * It cannot be less due to utterly erratic ACK generation made
807 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
808 * to do with delayed acks, because at cwnd>2 true delack timeout
809 * is invisible. Actually, Linux-2.4 also generates erratic
810 * ACKs in some circumstances.
812 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
814 /* 2. Fixups made earlier cannot be right.
815 * If we do not estimate RTO correctly without them,
816 * all the algo is pure shit and should be replaced
817 * with correct one. It is exactly, which we pretend to do.
820 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
821 * guarantees that rto is higher.
823 tcp_bound_rto(sk);
826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
828 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
830 if (!cwnd)
831 cwnd = TCP_INIT_CWND;
832 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
836 * Packet counting of FACK is based on in-order assumptions, therefore TCP
837 * disables it when reordering is detected
839 void tcp_disable_fack(struct tcp_sock *tp)
841 /* RFC3517 uses different metric in lost marker => reset on change */
842 if (tcp_is_fack(tp))
843 tp->lost_skb_hint = NULL;
844 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
847 /* Take a notice that peer is sending D-SACKs */
848 static void tcp_dsack_seen(struct tcp_sock *tp)
850 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
853 static void tcp_update_reordering(struct sock *sk, const int metric,
854 const int ts)
856 struct tcp_sock *tp = tcp_sk(sk);
857 if (metric > tp->reordering) {
858 int mib_idx;
860 tp->reordering = min(sysctl_tcp_max_reordering, metric);
862 /* This exciting event is worth to be remembered. 8) */
863 if (ts)
864 mib_idx = LINUX_MIB_TCPTSREORDER;
865 else if (tcp_is_reno(tp))
866 mib_idx = LINUX_MIB_TCPRENOREORDER;
867 else if (tcp_is_fack(tp))
868 mib_idx = LINUX_MIB_TCPFACKREORDER;
869 else
870 mib_idx = LINUX_MIB_TCPSACKREORDER;
872 NET_INC_STATS_BH(sock_net(sk), mib_idx);
873 #if FASTRETRANS_DEBUG > 1
874 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
875 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
876 tp->reordering,
877 tp->fackets_out,
878 tp->sacked_out,
879 tp->undo_marker ? tp->undo_retrans : 0);
880 #endif
881 tcp_disable_fack(tp);
884 if (metric > 0)
885 tcp_disable_early_retrans(tp);
886 tp->rack.reord = 1;
889 /* This must be called before lost_out is incremented */
890 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
892 if (!tp->retransmit_skb_hint ||
893 before(TCP_SKB_CB(skb)->seq,
894 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
895 tp->retransmit_skb_hint = skb;
897 if (!tp->lost_out ||
898 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
899 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
902 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
904 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
905 tcp_verify_retransmit_hint(tp, skb);
907 tp->lost_out += tcp_skb_pcount(skb);
908 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
912 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
914 tcp_verify_retransmit_hint(tp, skb);
916 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
917 tp->lost_out += tcp_skb_pcount(skb);
918 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
922 /* This procedure tags the retransmission queue when SACKs arrive.
924 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
925 * Packets in queue with these bits set are counted in variables
926 * sacked_out, retrans_out and lost_out, correspondingly.
928 * Valid combinations are:
929 * Tag InFlight Description
930 * 0 1 - orig segment is in flight.
931 * S 0 - nothing flies, orig reached receiver.
932 * L 0 - nothing flies, orig lost by net.
933 * R 2 - both orig and retransmit are in flight.
934 * L|R 1 - orig is lost, retransmit is in flight.
935 * S|R 1 - orig reached receiver, retrans is still in flight.
936 * (L|S|R is logically valid, it could occur when L|R is sacked,
937 * but it is equivalent to plain S and code short-curcuits it to S.
938 * L|S is logically invalid, it would mean -1 packet in flight 8))
940 * These 6 states form finite state machine, controlled by the following events:
941 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
942 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
943 * 3. Loss detection event of two flavors:
944 * A. Scoreboard estimator decided the packet is lost.
945 * A'. Reno "three dupacks" marks head of queue lost.
946 * A''. Its FACK modification, head until snd.fack is lost.
947 * B. SACK arrives sacking SND.NXT at the moment, when the
948 * segment was retransmitted.
949 * 4. D-SACK added new rule: D-SACK changes any tag to S.
951 * It is pleasant to note, that state diagram turns out to be commutative,
952 * so that we are allowed not to be bothered by order of our actions,
953 * when multiple events arrive simultaneously. (see the function below).
955 * Reordering detection.
956 * --------------------
957 * Reordering metric is maximal distance, which a packet can be displaced
958 * in packet stream. With SACKs we can estimate it:
960 * 1. SACK fills old hole and the corresponding segment was not
961 * ever retransmitted -> reordering. Alas, we cannot use it
962 * when segment was retransmitted.
963 * 2. The last flaw is solved with D-SACK. D-SACK arrives
964 * for retransmitted and already SACKed segment -> reordering..
965 * Both of these heuristics are not used in Loss state, when we cannot
966 * account for retransmits accurately.
968 * SACK block validation.
969 * ----------------------
971 * SACK block range validation checks that the received SACK block fits to
972 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
973 * Note that SND.UNA is not included to the range though being valid because
974 * it means that the receiver is rather inconsistent with itself reporting
975 * SACK reneging when it should advance SND.UNA. Such SACK block this is
976 * perfectly valid, however, in light of RFC2018 which explicitly states
977 * that "SACK block MUST reflect the newest segment. Even if the newest
978 * segment is going to be discarded ...", not that it looks very clever
979 * in case of head skb. Due to potentional receiver driven attacks, we
980 * choose to avoid immediate execution of a walk in write queue due to
981 * reneging and defer head skb's loss recovery to standard loss recovery
982 * procedure that will eventually trigger (nothing forbids us doing this).
984 * Implements also blockage to start_seq wrap-around. Problem lies in the
985 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
986 * there's no guarantee that it will be before snd_nxt (n). The problem
987 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
988 * wrap (s_w):
990 * <- outs wnd -> <- wrapzone ->
991 * u e n u_w e_w s n_w
992 * | | | | | | |
993 * |<------------+------+----- TCP seqno space --------------+---------->|
994 * ...-- <2^31 ->| |<--------...
995 * ...---- >2^31 ------>| |<--------...
997 * Current code wouldn't be vulnerable but it's better still to discard such
998 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
999 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1000 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1001 * equal to the ideal case (infinite seqno space without wrap caused issues).
1003 * With D-SACK the lower bound is extended to cover sequence space below
1004 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1005 * again, D-SACK block must not to go across snd_una (for the same reason as
1006 * for the normal SACK blocks, explained above). But there all simplicity
1007 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1008 * fully below undo_marker they do not affect behavior in anyway and can
1009 * therefore be safely ignored. In rare cases (which are more or less
1010 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1011 * fragmentation and packet reordering past skb's retransmission. To consider
1012 * them correctly, the acceptable range must be extended even more though
1013 * the exact amount is rather hard to quantify. However, tp->max_window can
1014 * be used as an exaggerated estimate.
1016 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1017 u32 start_seq, u32 end_seq)
1019 /* Too far in future, or reversed (interpretation is ambiguous) */
1020 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1021 return false;
1023 /* Nasty start_seq wrap-around check (see comments above) */
1024 if (!before(start_seq, tp->snd_nxt))
1025 return false;
1027 /* In outstanding window? ...This is valid exit for D-SACKs too.
1028 * start_seq == snd_una is non-sensical (see comments above)
1030 if (after(start_seq, tp->snd_una))
1031 return true;
1033 if (!is_dsack || !tp->undo_marker)
1034 return false;
1036 /* ...Then it's D-SACK, and must reside below snd_una completely */
1037 if (after(end_seq, tp->snd_una))
1038 return false;
1040 if (!before(start_seq, tp->undo_marker))
1041 return true;
1043 /* Too old */
1044 if (!after(end_seq, tp->undo_marker))
1045 return false;
1047 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1048 * start_seq < undo_marker and end_seq >= undo_marker.
1050 return !before(start_seq, end_seq - tp->max_window);
1053 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1054 struct tcp_sack_block_wire *sp, int num_sacks,
1055 u32 prior_snd_una)
1057 struct tcp_sock *tp = tcp_sk(sk);
1058 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1059 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1060 bool dup_sack = false;
1062 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1063 dup_sack = true;
1064 tcp_dsack_seen(tp);
1065 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1066 } else if (num_sacks > 1) {
1067 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1068 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1070 if (!after(end_seq_0, end_seq_1) &&
1071 !before(start_seq_0, start_seq_1)) {
1072 dup_sack = true;
1073 tcp_dsack_seen(tp);
1074 NET_INC_STATS_BH(sock_net(sk),
1075 LINUX_MIB_TCPDSACKOFORECV);
1079 /* D-SACK for already forgotten data... Do dumb counting. */
1080 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1081 !after(end_seq_0, prior_snd_una) &&
1082 after(end_seq_0, tp->undo_marker))
1083 tp->undo_retrans--;
1085 return dup_sack;
1088 struct tcp_sacktag_state {
1089 int reord;
1090 int fack_count;
1091 /* Timestamps for earliest and latest never-retransmitted segment
1092 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1093 * but congestion control should still get an accurate delay signal.
1095 struct skb_mstamp first_sackt;
1096 struct skb_mstamp last_sackt;
1097 int flag;
1100 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1101 * the incoming SACK may not exactly match but we can find smaller MSS
1102 * aligned portion of it that matches. Therefore we might need to fragment
1103 * which may fail and creates some hassle (caller must handle error case
1104 * returns).
1106 * FIXME: this could be merged to shift decision code
1108 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1109 u32 start_seq, u32 end_seq)
1111 int err;
1112 bool in_sack;
1113 unsigned int pkt_len;
1114 unsigned int mss;
1116 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1117 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1119 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1120 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1121 mss = tcp_skb_mss(skb);
1122 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1124 if (!in_sack) {
1125 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1126 if (pkt_len < mss)
1127 pkt_len = mss;
1128 } else {
1129 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1130 if (pkt_len < mss)
1131 return -EINVAL;
1134 /* Round if necessary so that SACKs cover only full MSSes
1135 * and/or the remaining small portion (if present)
1137 if (pkt_len > mss) {
1138 unsigned int new_len = (pkt_len / mss) * mss;
1139 if (!in_sack && new_len < pkt_len) {
1140 new_len += mss;
1141 if (new_len >= skb->len)
1142 return 0;
1144 pkt_len = new_len;
1146 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1147 if (err < 0)
1148 return err;
1151 return in_sack;
1154 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1155 static u8 tcp_sacktag_one(struct sock *sk,
1156 struct tcp_sacktag_state *state, u8 sacked,
1157 u32 start_seq, u32 end_seq,
1158 int dup_sack, int pcount,
1159 const struct skb_mstamp *xmit_time)
1161 struct tcp_sock *tp = tcp_sk(sk);
1162 int fack_count = state->fack_count;
1164 /* Account D-SACK for retransmitted packet. */
1165 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1166 if (tp->undo_marker && tp->undo_retrans > 0 &&
1167 after(end_seq, tp->undo_marker))
1168 tp->undo_retrans--;
1169 if (sacked & TCPCB_SACKED_ACKED)
1170 state->reord = min(fack_count, state->reord);
1173 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1174 if (!after(end_seq, tp->snd_una))
1175 return sacked;
1177 if (!(sacked & TCPCB_SACKED_ACKED)) {
1178 tcp_rack_advance(tp, xmit_time, sacked);
1180 if (sacked & TCPCB_SACKED_RETRANS) {
1181 /* If the segment is not tagged as lost,
1182 * we do not clear RETRANS, believing
1183 * that retransmission is still in flight.
1185 if (sacked & TCPCB_LOST) {
1186 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1187 tp->lost_out -= pcount;
1188 tp->retrans_out -= pcount;
1190 } else {
1191 if (!(sacked & TCPCB_RETRANS)) {
1192 /* New sack for not retransmitted frame,
1193 * which was in hole. It is reordering.
1195 if (before(start_seq,
1196 tcp_highest_sack_seq(tp)))
1197 state->reord = min(fack_count,
1198 state->reord);
1199 if (!after(end_seq, tp->high_seq))
1200 state->flag |= FLAG_ORIG_SACK_ACKED;
1201 if (state->first_sackt.v64 == 0)
1202 state->first_sackt = *xmit_time;
1203 state->last_sackt = *xmit_time;
1206 if (sacked & TCPCB_LOST) {
1207 sacked &= ~TCPCB_LOST;
1208 tp->lost_out -= pcount;
1212 sacked |= TCPCB_SACKED_ACKED;
1213 state->flag |= FLAG_DATA_SACKED;
1214 tp->sacked_out += pcount;
1215 tp->delivered += pcount; /* Out-of-order packets delivered */
1217 fack_count += pcount;
1219 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1220 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1221 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1222 tp->lost_cnt_hint += pcount;
1224 if (fack_count > tp->fackets_out)
1225 tp->fackets_out = fack_count;
1228 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1229 * frames and clear it. undo_retrans is decreased above, L|R frames
1230 * are accounted above as well.
1232 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1233 sacked &= ~TCPCB_SACKED_RETRANS;
1234 tp->retrans_out -= pcount;
1237 return sacked;
1240 /* Shift newly-SACKed bytes from this skb to the immediately previous
1241 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1243 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1244 struct tcp_sacktag_state *state,
1245 unsigned int pcount, int shifted, int mss,
1246 bool dup_sack)
1248 struct tcp_sock *tp = tcp_sk(sk);
1249 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1250 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1251 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1253 BUG_ON(!pcount);
1255 /* Adjust counters and hints for the newly sacked sequence
1256 * range but discard the return value since prev is already
1257 * marked. We must tag the range first because the seq
1258 * advancement below implicitly advances
1259 * tcp_highest_sack_seq() when skb is highest_sack.
1261 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1262 start_seq, end_seq, dup_sack, pcount,
1263 &skb->skb_mstamp);
1265 if (skb == tp->lost_skb_hint)
1266 tp->lost_cnt_hint += pcount;
1268 TCP_SKB_CB(prev)->end_seq += shifted;
1269 TCP_SKB_CB(skb)->seq += shifted;
1271 tcp_skb_pcount_add(prev, pcount);
1272 BUG_ON(tcp_skb_pcount(skb) < pcount);
1273 tcp_skb_pcount_add(skb, -pcount);
1275 /* When we're adding to gso_segs == 1, gso_size will be zero,
1276 * in theory this shouldn't be necessary but as long as DSACK
1277 * code can come after this skb later on it's better to keep
1278 * setting gso_size to something.
1280 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1281 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1283 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1284 if (tcp_skb_pcount(skb) <= 1)
1285 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1287 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1288 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1290 if (skb->len > 0) {
1291 BUG_ON(!tcp_skb_pcount(skb));
1292 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1293 return false;
1296 /* Whole SKB was eaten :-) */
1298 if (skb == tp->retransmit_skb_hint)
1299 tp->retransmit_skb_hint = prev;
1300 if (skb == tp->lost_skb_hint) {
1301 tp->lost_skb_hint = prev;
1302 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1305 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1306 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1307 TCP_SKB_CB(prev)->end_seq++;
1309 if (skb == tcp_highest_sack(sk))
1310 tcp_advance_highest_sack(sk, skb);
1312 tcp_skb_collapse_tstamp(prev, skb);
1313 tcp_unlink_write_queue(skb, sk);
1314 sk_wmem_free_skb(sk, skb);
1316 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1318 return true;
1321 /* I wish gso_size would have a bit more sane initialization than
1322 * something-or-zero which complicates things
1324 static int tcp_skb_seglen(const struct sk_buff *skb)
1326 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1329 /* Shifting pages past head area doesn't work */
1330 static int skb_can_shift(const struct sk_buff *skb)
1332 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1335 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1336 * skb.
1338 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1339 struct tcp_sacktag_state *state,
1340 u32 start_seq, u32 end_seq,
1341 bool dup_sack)
1343 struct tcp_sock *tp = tcp_sk(sk);
1344 struct sk_buff *prev;
1345 int mss;
1346 int pcount = 0;
1347 int len;
1348 int in_sack;
1350 if (!sk_can_gso(sk))
1351 goto fallback;
1353 /* Normally R but no L won't result in plain S */
1354 if (!dup_sack &&
1355 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1356 goto fallback;
1357 if (!skb_can_shift(skb))
1358 goto fallback;
1359 /* This frame is about to be dropped (was ACKed). */
1360 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1361 goto fallback;
1363 /* Can only happen with delayed DSACK + discard craziness */
1364 if (unlikely(skb == tcp_write_queue_head(sk)))
1365 goto fallback;
1366 prev = tcp_write_queue_prev(sk, skb);
1368 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1369 goto fallback;
1371 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1372 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1374 if (in_sack) {
1375 len = skb->len;
1376 pcount = tcp_skb_pcount(skb);
1377 mss = tcp_skb_seglen(skb);
1379 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1380 * drop this restriction as unnecessary
1382 if (mss != tcp_skb_seglen(prev))
1383 goto fallback;
1384 } else {
1385 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1386 goto noop;
1387 /* CHECKME: This is non-MSS split case only?, this will
1388 * cause skipped skbs due to advancing loop btw, original
1389 * has that feature too
1391 if (tcp_skb_pcount(skb) <= 1)
1392 goto noop;
1394 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1395 if (!in_sack) {
1396 /* TODO: head merge to next could be attempted here
1397 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1398 * though it might not be worth of the additional hassle
1400 * ...we can probably just fallback to what was done
1401 * previously. We could try merging non-SACKed ones
1402 * as well but it probably isn't going to buy off
1403 * because later SACKs might again split them, and
1404 * it would make skb timestamp tracking considerably
1405 * harder problem.
1407 goto fallback;
1410 len = end_seq - TCP_SKB_CB(skb)->seq;
1411 BUG_ON(len < 0);
1412 BUG_ON(len > skb->len);
1414 /* MSS boundaries should be honoured or else pcount will
1415 * severely break even though it makes things bit trickier.
1416 * Optimize common case to avoid most of the divides
1418 mss = tcp_skb_mss(skb);
1420 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1421 * drop this restriction as unnecessary
1423 if (mss != tcp_skb_seglen(prev))
1424 goto fallback;
1426 if (len == mss) {
1427 pcount = 1;
1428 } else if (len < mss) {
1429 goto noop;
1430 } else {
1431 pcount = len / mss;
1432 len = pcount * mss;
1436 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1437 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1438 goto fallback;
1440 if (!skb_shift(prev, skb, len))
1441 goto fallback;
1442 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1443 goto out;
1445 /* Hole filled allows collapsing with the next as well, this is very
1446 * useful when hole on every nth skb pattern happens
1448 if (prev == tcp_write_queue_tail(sk))
1449 goto out;
1450 skb = tcp_write_queue_next(sk, prev);
1452 if (!skb_can_shift(skb) ||
1453 (skb == tcp_send_head(sk)) ||
1454 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1455 (mss != tcp_skb_seglen(skb)))
1456 goto out;
1458 len = skb->len;
1459 if (skb_shift(prev, skb, len)) {
1460 pcount += tcp_skb_pcount(skb);
1461 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1464 out:
1465 state->fack_count += pcount;
1466 return prev;
1468 noop:
1469 return skb;
1471 fallback:
1472 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1473 return NULL;
1476 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1477 struct tcp_sack_block *next_dup,
1478 struct tcp_sacktag_state *state,
1479 u32 start_seq, u32 end_seq,
1480 bool dup_sack_in)
1482 struct tcp_sock *tp = tcp_sk(sk);
1483 struct sk_buff *tmp;
1485 tcp_for_write_queue_from(skb, sk) {
1486 int in_sack = 0;
1487 bool dup_sack = dup_sack_in;
1489 if (skb == tcp_send_head(sk))
1490 break;
1492 /* queue is in-order => we can short-circuit the walk early */
1493 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1494 break;
1496 if (next_dup &&
1497 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1498 in_sack = tcp_match_skb_to_sack(sk, skb,
1499 next_dup->start_seq,
1500 next_dup->end_seq);
1501 if (in_sack > 0)
1502 dup_sack = true;
1505 /* skb reference here is a bit tricky to get right, since
1506 * shifting can eat and free both this skb and the next,
1507 * so not even _safe variant of the loop is enough.
1509 if (in_sack <= 0) {
1510 tmp = tcp_shift_skb_data(sk, skb, state,
1511 start_seq, end_seq, dup_sack);
1512 if (tmp) {
1513 if (tmp != skb) {
1514 skb = tmp;
1515 continue;
1518 in_sack = 0;
1519 } else {
1520 in_sack = tcp_match_skb_to_sack(sk, skb,
1521 start_seq,
1522 end_seq);
1526 if (unlikely(in_sack < 0))
1527 break;
1529 if (in_sack) {
1530 TCP_SKB_CB(skb)->sacked =
1531 tcp_sacktag_one(sk,
1532 state,
1533 TCP_SKB_CB(skb)->sacked,
1534 TCP_SKB_CB(skb)->seq,
1535 TCP_SKB_CB(skb)->end_seq,
1536 dup_sack,
1537 tcp_skb_pcount(skb),
1538 &skb->skb_mstamp);
1540 if (!before(TCP_SKB_CB(skb)->seq,
1541 tcp_highest_sack_seq(tp)))
1542 tcp_advance_highest_sack(sk, skb);
1545 state->fack_count += tcp_skb_pcount(skb);
1547 return skb;
1550 /* Avoid all extra work that is being done by sacktag while walking in
1551 * a normal way
1553 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1554 struct tcp_sacktag_state *state,
1555 u32 skip_to_seq)
1557 tcp_for_write_queue_from(skb, sk) {
1558 if (skb == tcp_send_head(sk))
1559 break;
1561 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1562 break;
1564 state->fack_count += tcp_skb_pcount(skb);
1566 return skb;
1569 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1570 struct sock *sk,
1571 struct tcp_sack_block *next_dup,
1572 struct tcp_sacktag_state *state,
1573 u32 skip_to_seq)
1575 if (!next_dup)
1576 return skb;
1578 if (before(next_dup->start_seq, skip_to_seq)) {
1579 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1580 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1581 next_dup->start_seq, next_dup->end_seq,
1585 return skb;
1588 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1590 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1593 static int
1594 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1595 u32 prior_snd_una, struct tcp_sacktag_state *state)
1597 struct tcp_sock *tp = tcp_sk(sk);
1598 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1599 TCP_SKB_CB(ack_skb)->sacked);
1600 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1601 struct tcp_sack_block sp[TCP_NUM_SACKS];
1602 struct tcp_sack_block *cache;
1603 struct sk_buff *skb;
1604 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1605 int used_sacks;
1606 bool found_dup_sack = false;
1607 int i, j;
1608 int first_sack_index;
1610 state->flag = 0;
1611 state->reord = tp->packets_out;
1613 if (!tp->sacked_out) {
1614 if (WARN_ON(tp->fackets_out))
1615 tp->fackets_out = 0;
1616 tcp_highest_sack_reset(sk);
1619 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1620 num_sacks, prior_snd_una);
1621 if (found_dup_sack)
1622 state->flag |= FLAG_DSACKING_ACK;
1624 /* Eliminate too old ACKs, but take into
1625 * account more or less fresh ones, they can
1626 * contain valid SACK info.
1628 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1629 return 0;
1631 if (!tp->packets_out)
1632 goto out;
1634 used_sacks = 0;
1635 first_sack_index = 0;
1636 for (i = 0; i < num_sacks; i++) {
1637 bool dup_sack = !i && found_dup_sack;
1639 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1640 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1642 if (!tcp_is_sackblock_valid(tp, dup_sack,
1643 sp[used_sacks].start_seq,
1644 sp[used_sacks].end_seq)) {
1645 int mib_idx;
1647 if (dup_sack) {
1648 if (!tp->undo_marker)
1649 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1650 else
1651 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1652 } else {
1653 /* Don't count olds caused by ACK reordering */
1654 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1655 !after(sp[used_sacks].end_seq, tp->snd_una))
1656 continue;
1657 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1660 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1661 if (i == 0)
1662 first_sack_index = -1;
1663 continue;
1666 /* Ignore very old stuff early */
1667 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1668 continue;
1670 used_sacks++;
1673 /* order SACK blocks to allow in order walk of the retrans queue */
1674 for (i = used_sacks - 1; i > 0; i--) {
1675 for (j = 0; j < i; j++) {
1676 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1677 swap(sp[j], sp[j + 1]);
1679 /* Track where the first SACK block goes to */
1680 if (j == first_sack_index)
1681 first_sack_index = j + 1;
1686 skb = tcp_write_queue_head(sk);
1687 state->fack_count = 0;
1688 i = 0;
1690 if (!tp->sacked_out) {
1691 /* It's already past, so skip checking against it */
1692 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1693 } else {
1694 cache = tp->recv_sack_cache;
1695 /* Skip empty blocks in at head of the cache */
1696 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1697 !cache->end_seq)
1698 cache++;
1701 while (i < used_sacks) {
1702 u32 start_seq = sp[i].start_seq;
1703 u32 end_seq = sp[i].end_seq;
1704 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1705 struct tcp_sack_block *next_dup = NULL;
1707 if (found_dup_sack && ((i + 1) == first_sack_index))
1708 next_dup = &sp[i + 1];
1710 /* Skip too early cached blocks */
1711 while (tcp_sack_cache_ok(tp, cache) &&
1712 !before(start_seq, cache->end_seq))
1713 cache++;
1715 /* Can skip some work by looking recv_sack_cache? */
1716 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1717 after(end_seq, cache->start_seq)) {
1719 /* Head todo? */
1720 if (before(start_seq, cache->start_seq)) {
1721 skb = tcp_sacktag_skip(skb, sk, state,
1722 start_seq);
1723 skb = tcp_sacktag_walk(skb, sk, next_dup,
1724 state,
1725 start_seq,
1726 cache->start_seq,
1727 dup_sack);
1730 /* Rest of the block already fully processed? */
1731 if (!after(end_seq, cache->end_seq))
1732 goto advance_sp;
1734 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1735 state,
1736 cache->end_seq);
1738 /* ...tail remains todo... */
1739 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1740 /* ...but better entrypoint exists! */
1741 skb = tcp_highest_sack(sk);
1742 if (!skb)
1743 break;
1744 state->fack_count = tp->fackets_out;
1745 cache++;
1746 goto walk;
1749 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1750 /* Check overlap against next cached too (past this one already) */
1751 cache++;
1752 continue;
1755 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1756 skb = tcp_highest_sack(sk);
1757 if (!skb)
1758 break;
1759 state->fack_count = tp->fackets_out;
1761 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1763 walk:
1764 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1765 start_seq, end_seq, dup_sack);
1767 advance_sp:
1768 i++;
1771 /* Clear the head of the cache sack blocks so we can skip it next time */
1772 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1773 tp->recv_sack_cache[i].start_seq = 0;
1774 tp->recv_sack_cache[i].end_seq = 0;
1776 for (j = 0; j < used_sacks; j++)
1777 tp->recv_sack_cache[i++] = sp[j];
1779 if ((state->reord < tp->fackets_out) &&
1780 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1781 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1783 tcp_verify_left_out(tp);
1784 out:
1786 #if FASTRETRANS_DEBUG > 0
1787 WARN_ON((int)tp->sacked_out < 0);
1788 WARN_ON((int)tp->lost_out < 0);
1789 WARN_ON((int)tp->retrans_out < 0);
1790 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1791 #endif
1792 return state->flag;
1795 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1796 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1798 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1800 u32 holes;
1802 holes = max(tp->lost_out, 1U);
1803 holes = min(holes, tp->packets_out);
1805 if ((tp->sacked_out + holes) > tp->packets_out) {
1806 tp->sacked_out = tp->packets_out - holes;
1807 return true;
1809 return false;
1812 /* If we receive more dupacks than we expected counting segments
1813 * in assumption of absent reordering, interpret this as reordering.
1814 * The only another reason could be bug in receiver TCP.
1816 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1818 struct tcp_sock *tp = tcp_sk(sk);
1819 if (tcp_limit_reno_sacked(tp))
1820 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1823 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1825 static void tcp_add_reno_sack(struct sock *sk)
1827 struct tcp_sock *tp = tcp_sk(sk);
1828 u32 prior_sacked = tp->sacked_out;
1830 tp->sacked_out++;
1831 tcp_check_reno_reordering(sk, 0);
1832 if (tp->sacked_out > prior_sacked)
1833 tp->delivered++; /* Some out-of-order packet is delivered */
1834 tcp_verify_left_out(tp);
1837 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1839 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1841 struct tcp_sock *tp = tcp_sk(sk);
1843 if (acked > 0) {
1844 /* One ACK acked hole. The rest eat duplicate ACKs. */
1845 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1846 if (acked - 1 >= tp->sacked_out)
1847 tp->sacked_out = 0;
1848 else
1849 tp->sacked_out -= acked - 1;
1851 tcp_check_reno_reordering(sk, acked);
1852 tcp_verify_left_out(tp);
1855 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1857 tp->sacked_out = 0;
1860 void tcp_clear_retrans(struct tcp_sock *tp)
1862 tp->retrans_out = 0;
1863 tp->lost_out = 0;
1864 tp->undo_marker = 0;
1865 tp->undo_retrans = -1;
1866 tp->fackets_out = 0;
1867 tp->sacked_out = 0;
1870 static inline void tcp_init_undo(struct tcp_sock *tp)
1872 tp->undo_marker = tp->snd_una;
1873 /* Retransmission still in flight may cause DSACKs later. */
1874 tp->undo_retrans = tp->retrans_out ? : -1;
1877 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1878 * and reset tags completely, otherwise preserve SACKs. If receiver
1879 * dropped its ofo queue, we will know this due to reneging detection.
1881 void tcp_enter_loss(struct sock *sk)
1883 const struct inet_connection_sock *icsk = inet_csk(sk);
1884 struct tcp_sock *tp = tcp_sk(sk);
1885 struct net *net = sock_net(sk);
1886 struct sk_buff *skb;
1887 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1888 bool is_reneg; /* is receiver reneging on SACKs? */
1890 /* Reduce ssthresh if it has not yet been made inside this window. */
1891 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1892 !after(tp->high_seq, tp->snd_una) ||
1893 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1894 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1895 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1896 tcp_ca_event(sk, CA_EVENT_LOSS);
1897 tcp_init_undo(tp);
1899 tp->snd_cwnd = 1;
1900 tp->snd_cwnd_cnt = 0;
1901 tp->snd_cwnd_stamp = tcp_time_stamp;
1903 tp->retrans_out = 0;
1904 tp->lost_out = 0;
1906 if (tcp_is_reno(tp))
1907 tcp_reset_reno_sack(tp);
1909 skb = tcp_write_queue_head(sk);
1910 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1911 if (is_reneg) {
1912 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1913 tp->sacked_out = 0;
1914 tp->fackets_out = 0;
1916 tcp_clear_all_retrans_hints(tp);
1918 tcp_for_write_queue(skb, sk) {
1919 if (skb == tcp_send_head(sk))
1920 break;
1922 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1923 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1924 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1925 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1926 tp->lost_out += tcp_skb_pcount(skb);
1927 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1930 tcp_verify_left_out(tp);
1932 /* Timeout in disordered state after receiving substantial DUPACKs
1933 * suggests that the degree of reordering is over-estimated.
1935 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1936 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1937 tp->reordering = min_t(unsigned int, tp->reordering,
1938 net->ipv4.sysctl_tcp_reordering);
1939 tcp_set_ca_state(sk, TCP_CA_Loss);
1940 tp->high_seq = tp->snd_nxt;
1941 tcp_ecn_queue_cwr(tp);
1943 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1944 * loss recovery is underway except recurring timeout(s) on
1945 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1947 tp->frto = sysctl_tcp_frto &&
1948 (new_recovery || icsk->icsk_retransmits) &&
1949 !inet_csk(sk)->icsk_mtup.probe_size;
1952 /* If ACK arrived pointing to a remembered SACK, it means that our
1953 * remembered SACKs do not reflect real state of receiver i.e.
1954 * receiver _host_ is heavily congested (or buggy).
1956 * To avoid big spurious retransmission bursts due to transient SACK
1957 * scoreboard oddities that look like reneging, we give the receiver a
1958 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1959 * restore sanity to the SACK scoreboard. If the apparent reneging
1960 * persists until this RTO then we'll clear the SACK scoreboard.
1962 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1964 if (flag & FLAG_SACK_RENEGING) {
1965 struct tcp_sock *tp = tcp_sk(sk);
1966 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1967 msecs_to_jiffies(10));
1969 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1970 delay, TCP_RTO_MAX);
1971 return true;
1973 return false;
1976 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1978 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1981 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1982 * counter when SACK is enabled (without SACK, sacked_out is used for
1983 * that purpose).
1985 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1986 * segments up to the highest received SACK block so far and holes in
1987 * between them.
1989 * With reordering, holes may still be in flight, so RFC3517 recovery
1990 * uses pure sacked_out (total number of SACKed segments) even though
1991 * it violates the RFC that uses duplicate ACKs, often these are equal
1992 * but when e.g. out-of-window ACKs or packet duplication occurs,
1993 * they differ. Since neither occurs due to loss, TCP should really
1994 * ignore them.
1996 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1998 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2001 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2003 struct tcp_sock *tp = tcp_sk(sk);
2004 unsigned long delay;
2006 /* Delay early retransmit and entering fast recovery for
2007 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2008 * available, or RTO is scheduled to fire first.
2010 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2011 (flag & FLAG_ECE) || !tp->srtt_us)
2012 return false;
2014 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2015 msecs_to_jiffies(2));
2017 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2018 return false;
2020 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2021 TCP_RTO_MAX);
2022 return true;
2025 /* Linux NewReno/SACK/FACK/ECN state machine.
2026 * --------------------------------------
2028 * "Open" Normal state, no dubious events, fast path.
2029 * "Disorder" In all the respects it is "Open",
2030 * but requires a bit more attention. It is entered when
2031 * we see some SACKs or dupacks. It is split of "Open"
2032 * mainly to move some processing from fast path to slow one.
2033 * "CWR" CWND was reduced due to some Congestion Notification event.
2034 * It can be ECN, ICMP source quench, local device congestion.
2035 * "Recovery" CWND was reduced, we are fast-retransmitting.
2036 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2038 * tcp_fastretrans_alert() is entered:
2039 * - each incoming ACK, if state is not "Open"
2040 * - when arrived ACK is unusual, namely:
2041 * * SACK
2042 * * Duplicate ACK.
2043 * * ECN ECE.
2045 * Counting packets in flight is pretty simple.
2047 * in_flight = packets_out - left_out + retrans_out
2049 * packets_out is SND.NXT-SND.UNA counted in packets.
2051 * retrans_out is number of retransmitted segments.
2053 * left_out is number of segments left network, but not ACKed yet.
2055 * left_out = sacked_out + lost_out
2057 * sacked_out: Packets, which arrived to receiver out of order
2058 * and hence not ACKed. With SACKs this number is simply
2059 * amount of SACKed data. Even without SACKs
2060 * it is easy to give pretty reliable estimate of this number,
2061 * counting duplicate ACKs.
2063 * lost_out: Packets lost by network. TCP has no explicit
2064 * "loss notification" feedback from network (for now).
2065 * It means that this number can be only _guessed_.
2066 * Actually, it is the heuristics to predict lossage that
2067 * distinguishes different algorithms.
2069 * F.e. after RTO, when all the queue is considered as lost,
2070 * lost_out = packets_out and in_flight = retrans_out.
2072 * Essentially, we have now two algorithms counting
2073 * lost packets.
2075 * FACK: It is the simplest heuristics. As soon as we decided
2076 * that something is lost, we decide that _all_ not SACKed
2077 * packets until the most forward SACK are lost. I.e.
2078 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2079 * It is absolutely correct estimate, if network does not reorder
2080 * packets. And it loses any connection to reality when reordering
2081 * takes place. We use FACK by default until reordering
2082 * is suspected on the path to this destination.
2084 * NewReno: when Recovery is entered, we assume that one segment
2085 * is lost (classic Reno). While we are in Recovery and
2086 * a partial ACK arrives, we assume that one more packet
2087 * is lost (NewReno). This heuristics are the same in NewReno
2088 * and SACK.
2090 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2091 * deflation etc. CWND is real congestion window, never inflated, changes
2092 * only according to classic VJ rules.
2094 * Really tricky (and requiring careful tuning) part of algorithm
2095 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2096 * The first determines the moment _when_ we should reduce CWND and,
2097 * hence, slow down forward transmission. In fact, it determines the moment
2098 * when we decide that hole is caused by loss, rather than by a reorder.
2100 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2101 * holes, caused by lost packets.
2103 * And the most logically complicated part of algorithm is undo
2104 * heuristics. We detect false retransmits due to both too early
2105 * fast retransmit (reordering) and underestimated RTO, analyzing
2106 * timestamps and D-SACKs. When we detect that some segments were
2107 * retransmitted by mistake and CWND reduction was wrong, we undo
2108 * window reduction and abort recovery phase. This logic is hidden
2109 * inside several functions named tcp_try_undo_<something>.
2112 /* This function decides, when we should leave Disordered state
2113 * and enter Recovery phase, reducing congestion window.
2115 * Main question: may we further continue forward transmission
2116 * with the same cwnd?
2118 static bool tcp_time_to_recover(struct sock *sk, int flag)
2120 struct tcp_sock *tp = tcp_sk(sk);
2121 __u32 packets_out;
2122 int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2124 /* Trick#1: The loss is proven. */
2125 if (tp->lost_out)
2126 return true;
2128 /* Not-A-Trick#2 : Classic rule... */
2129 if (tcp_dupack_heuristics(tp) > tp->reordering)
2130 return true;
2132 /* Trick#4: It is still not OK... But will it be useful to delay
2133 * recovery more?
2135 packets_out = tp->packets_out;
2136 if (packets_out <= tp->reordering &&
2137 tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2138 !tcp_may_send_now(sk)) {
2139 /* We have nothing to send. This connection is limited
2140 * either by receiver window or by application.
2142 return true;
2145 /* If a thin stream is detected, retransmit after first
2146 * received dupack. Employ only if SACK is supported in order
2147 * to avoid possible corner-case series of spurious retransmissions
2148 * Use only if there are no unsent data.
2150 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2151 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2152 tcp_is_sack(tp) && !tcp_send_head(sk))
2153 return true;
2155 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2156 * retransmissions due to small network reorderings, we implement
2157 * Mitigation A.3 in the RFC and delay the retransmission for a short
2158 * interval if appropriate.
2160 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2161 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2162 !tcp_may_send_now(sk))
2163 return !tcp_pause_early_retransmit(sk, flag);
2165 return false;
2168 /* Detect loss in event "A" above by marking head of queue up as lost.
2169 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2170 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2171 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2172 * the maximum SACKed segments to pass before reaching this limit.
2174 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2176 struct tcp_sock *tp = tcp_sk(sk);
2177 struct sk_buff *skb;
2178 int cnt, oldcnt, lost;
2179 unsigned int mss;
2180 /* Use SACK to deduce losses of new sequences sent during recovery */
2181 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2183 WARN_ON(packets > tp->packets_out);
2184 if (tp->lost_skb_hint) {
2185 skb = tp->lost_skb_hint;
2186 cnt = tp->lost_cnt_hint;
2187 /* Head already handled? */
2188 if (mark_head && skb != tcp_write_queue_head(sk))
2189 return;
2190 } else {
2191 skb = tcp_write_queue_head(sk);
2192 cnt = 0;
2195 tcp_for_write_queue_from(skb, sk) {
2196 if (skb == tcp_send_head(sk))
2197 break;
2198 /* TODO: do this better */
2199 /* this is not the most efficient way to do this... */
2200 tp->lost_skb_hint = skb;
2201 tp->lost_cnt_hint = cnt;
2203 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2204 break;
2206 oldcnt = cnt;
2207 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2208 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2209 cnt += tcp_skb_pcount(skb);
2211 if (cnt > packets) {
2212 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2213 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2214 (oldcnt >= packets))
2215 break;
2217 mss = tcp_skb_mss(skb);
2218 /* If needed, chop off the prefix to mark as lost. */
2219 lost = (packets - oldcnt) * mss;
2220 if (lost < skb->len &&
2221 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2222 break;
2223 cnt = packets;
2226 tcp_skb_mark_lost(tp, skb);
2228 if (mark_head)
2229 break;
2231 tcp_verify_left_out(tp);
2234 /* Account newly detected lost packet(s) */
2236 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2238 struct tcp_sock *tp = tcp_sk(sk);
2240 if (tcp_is_reno(tp)) {
2241 tcp_mark_head_lost(sk, 1, 1);
2242 } else if (tcp_is_fack(tp)) {
2243 int lost = tp->fackets_out - tp->reordering;
2244 if (lost <= 0)
2245 lost = 1;
2246 tcp_mark_head_lost(sk, lost, 0);
2247 } else {
2248 int sacked_upto = tp->sacked_out - tp->reordering;
2249 if (sacked_upto >= 0)
2250 tcp_mark_head_lost(sk, sacked_upto, 0);
2251 else if (fast_rexmit)
2252 tcp_mark_head_lost(sk, 1, 1);
2256 /* CWND moderation, preventing bursts due to too big ACKs
2257 * in dubious situations.
2259 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2261 tp->snd_cwnd = min(tp->snd_cwnd,
2262 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2263 tp->snd_cwnd_stamp = tcp_time_stamp;
2266 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2268 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2269 before(tp->rx_opt.rcv_tsecr, when);
2272 /* skb is spurious retransmitted if the returned timestamp echo
2273 * reply is prior to the skb transmission time
2275 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2276 const struct sk_buff *skb)
2278 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2279 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2282 /* Nothing was retransmitted or returned timestamp is less
2283 * than timestamp of the first retransmission.
2285 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2287 return !tp->retrans_stamp ||
2288 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2291 /* Undo procedures. */
2293 /* We can clear retrans_stamp when there are no retransmissions in the
2294 * window. It would seem that it is trivially available for us in
2295 * tp->retrans_out, however, that kind of assumptions doesn't consider
2296 * what will happen if errors occur when sending retransmission for the
2297 * second time. ...It could the that such segment has only
2298 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2299 * the head skb is enough except for some reneging corner cases that
2300 * are not worth the effort.
2302 * Main reason for all this complexity is the fact that connection dying
2303 * time now depends on the validity of the retrans_stamp, in particular,
2304 * that successive retransmissions of a segment must not advance
2305 * retrans_stamp under any conditions.
2307 static bool tcp_any_retrans_done(const struct sock *sk)
2309 const struct tcp_sock *tp = tcp_sk(sk);
2310 struct sk_buff *skb;
2312 if (tp->retrans_out)
2313 return true;
2315 skb = tcp_write_queue_head(sk);
2316 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2317 return true;
2319 return false;
2322 #if FASTRETRANS_DEBUG > 1
2323 static void DBGUNDO(struct sock *sk, const char *msg)
2325 struct tcp_sock *tp = tcp_sk(sk);
2326 struct inet_sock *inet = inet_sk(sk);
2328 if (sk->sk_family == AF_INET) {
2329 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2330 msg,
2331 &inet->inet_daddr, ntohs(inet->inet_dport),
2332 tp->snd_cwnd, tcp_left_out(tp),
2333 tp->snd_ssthresh, tp->prior_ssthresh,
2334 tp->packets_out);
2336 #if IS_ENABLED(CONFIG_IPV6)
2337 else if (sk->sk_family == AF_INET6) {
2338 struct ipv6_pinfo *np = inet6_sk(sk);
2339 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2340 msg,
2341 &np->daddr, ntohs(inet->inet_dport),
2342 tp->snd_cwnd, tcp_left_out(tp),
2343 tp->snd_ssthresh, tp->prior_ssthresh,
2344 tp->packets_out);
2346 #endif
2348 #else
2349 #define DBGUNDO(x...) do { } while (0)
2350 #endif
2352 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2354 struct tcp_sock *tp = tcp_sk(sk);
2356 if (unmark_loss) {
2357 struct sk_buff *skb;
2359 tcp_for_write_queue(skb, sk) {
2360 if (skb == tcp_send_head(sk))
2361 break;
2362 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2364 tp->lost_out = 0;
2365 tcp_clear_all_retrans_hints(tp);
2368 if (tp->prior_ssthresh) {
2369 const struct inet_connection_sock *icsk = inet_csk(sk);
2371 if (icsk->icsk_ca_ops->undo_cwnd)
2372 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2373 else
2374 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2376 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2377 tp->snd_ssthresh = tp->prior_ssthresh;
2378 tcp_ecn_withdraw_cwr(tp);
2381 tp->snd_cwnd_stamp = tcp_time_stamp;
2382 tp->undo_marker = 0;
2385 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2387 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2390 /* People celebrate: "We love our President!" */
2391 static bool tcp_try_undo_recovery(struct sock *sk)
2393 struct tcp_sock *tp = tcp_sk(sk);
2395 if (tcp_may_undo(tp)) {
2396 int mib_idx;
2398 /* Happy end! We did not retransmit anything
2399 * or our original transmission succeeded.
2401 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2402 tcp_undo_cwnd_reduction(sk, false);
2403 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2404 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2405 else
2406 mib_idx = LINUX_MIB_TCPFULLUNDO;
2408 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2410 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2411 /* Hold old state until something *above* high_seq
2412 * is ACKed. For Reno it is MUST to prevent false
2413 * fast retransmits (RFC2582). SACK TCP is safe. */
2414 tcp_moderate_cwnd(tp);
2415 if (!tcp_any_retrans_done(sk))
2416 tp->retrans_stamp = 0;
2417 return true;
2419 tcp_set_ca_state(sk, TCP_CA_Open);
2420 return false;
2423 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2424 static bool tcp_try_undo_dsack(struct sock *sk)
2426 struct tcp_sock *tp = tcp_sk(sk);
2428 if (tp->undo_marker && !tp->undo_retrans) {
2429 DBGUNDO(sk, "D-SACK");
2430 tcp_undo_cwnd_reduction(sk, false);
2431 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2432 return true;
2434 return false;
2437 /* Undo during loss recovery after partial ACK or using F-RTO. */
2438 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2440 struct tcp_sock *tp = tcp_sk(sk);
2442 if (frto_undo || tcp_may_undo(tp)) {
2443 tcp_undo_cwnd_reduction(sk, true);
2445 DBGUNDO(sk, "partial loss");
2446 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2447 if (frto_undo)
2448 NET_INC_STATS_BH(sock_net(sk),
2449 LINUX_MIB_TCPSPURIOUSRTOS);
2450 inet_csk(sk)->icsk_retransmits = 0;
2451 if (frto_undo || tcp_is_sack(tp))
2452 tcp_set_ca_state(sk, TCP_CA_Open);
2453 return true;
2455 return false;
2458 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2459 * It computes the number of packets to send (sndcnt) based on packets newly
2460 * delivered:
2461 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2462 * cwnd reductions across a full RTT.
2463 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2464 * But when the retransmits are acked without further losses, PRR
2465 * slow starts cwnd up to ssthresh to speed up the recovery.
2467 static void tcp_init_cwnd_reduction(struct sock *sk)
2469 struct tcp_sock *tp = tcp_sk(sk);
2471 tp->high_seq = tp->snd_nxt;
2472 tp->tlp_high_seq = 0;
2473 tp->snd_cwnd_cnt = 0;
2474 tp->prior_cwnd = tp->snd_cwnd;
2475 tp->prr_delivered = 0;
2476 tp->prr_out = 0;
2477 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2478 tcp_ecn_queue_cwr(tp);
2481 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2482 int flag)
2484 struct tcp_sock *tp = tcp_sk(sk);
2485 int sndcnt = 0;
2486 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2488 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2489 return;
2491 tp->prr_delivered += newly_acked_sacked;
2492 if (delta < 0) {
2493 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2494 tp->prior_cwnd - 1;
2495 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2496 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2497 !(flag & FLAG_LOST_RETRANS)) {
2498 sndcnt = min_t(int, delta,
2499 max_t(int, tp->prr_delivered - tp->prr_out,
2500 newly_acked_sacked) + 1);
2501 } else {
2502 sndcnt = min(delta, newly_acked_sacked);
2504 /* Force a fast retransmit upon entering fast recovery */
2505 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2506 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2509 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2511 struct tcp_sock *tp = tcp_sk(sk);
2513 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2514 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2515 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2516 tp->snd_cwnd = tp->snd_ssthresh;
2517 tp->snd_cwnd_stamp = tcp_time_stamp;
2519 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2522 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2523 void tcp_enter_cwr(struct sock *sk)
2525 struct tcp_sock *tp = tcp_sk(sk);
2527 tp->prior_ssthresh = 0;
2528 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2529 tp->undo_marker = 0;
2530 tcp_init_cwnd_reduction(sk);
2531 tcp_set_ca_state(sk, TCP_CA_CWR);
2534 EXPORT_SYMBOL(tcp_enter_cwr);
2536 static void tcp_try_keep_open(struct sock *sk)
2538 struct tcp_sock *tp = tcp_sk(sk);
2539 int state = TCP_CA_Open;
2541 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2542 state = TCP_CA_Disorder;
2544 if (inet_csk(sk)->icsk_ca_state != state) {
2545 tcp_set_ca_state(sk, state);
2546 tp->high_seq = tp->snd_nxt;
2550 static void tcp_try_to_open(struct sock *sk, int flag)
2552 struct tcp_sock *tp = tcp_sk(sk);
2554 tcp_verify_left_out(tp);
2556 if (!tcp_any_retrans_done(sk))
2557 tp->retrans_stamp = 0;
2559 if (flag & FLAG_ECE)
2560 tcp_enter_cwr(sk);
2562 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2563 tcp_try_keep_open(sk);
2567 static void tcp_mtup_probe_failed(struct sock *sk)
2569 struct inet_connection_sock *icsk = inet_csk(sk);
2571 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2572 icsk->icsk_mtup.probe_size = 0;
2573 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2576 static void tcp_mtup_probe_success(struct sock *sk)
2578 struct tcp_sock *tp = tcp_sk(sk);
2579 struct inet_connection_sock *icsk = inet_csk(sk);
2581 /* FIXME: breaks with very large cwnd */
2582 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2583 tp->snd_cwnd = tp->snd_cwnd *
2584 tcp_mss_to_mtu(sk, tp->mss_cache) /
2585 icsk->icsk_mtup.probe_size;
2586 tp->snd_cwnd_cnt = 0;
2587 tp->snd_cwnd_stamp = tcp_time_stamp;
2588 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2590 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2591 icsk->icsk_mtup.probe_size = 0;
2592 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2593 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2596 /* Do a simple retransmit without using the backoff mechanisms in
2597 * tcp_timer. This is used for path mtu discovery.
2598 * The socket is already locked here.
2600 void tcp_simple_retransmit(struct sock *sk)
2602 const struct inet_connection_sock *icsk = inet_csk(sk);
2603 struct tcp_sock *tp = tcp_sk(sk);
2604 struct sk_buff *skb;
2605 unsigned int mss = tcp_current_mss(sk);
2606 u32 prior_lost = tp->lost_out;
2608 tcp_for_write_queue(skb, sk) {
2609 if (skb == tcp_send_head(sk))
2610 break;
2611 if (tcp_skb_seglen(skb) > mss &&
2612 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2613 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2614 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2615 tp->retrans_out -= tcp_skb_pcount(skb);
2617 tcp_skb_mark_lost_uncond_verify(tp, skb);
2621 tcp_clear_retrans_hints_partial(tp);
2623 if (prior_lost == tp->lost_out)
2624 return;
2626 if (tcp_is_reno(tp))
2627 tcp_limit_reno_sacked(tp);
2629 tcp_verify_left_out(tp);
2631 /* Don't muck with the congestion window here.
2632 * Reason is that we do not increase amount of _data_
2633 * in network, but units changed and effective
2634 * cwnd/ssthresh really reduced now.
2636 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2637 tp->high_seq = tp->snd_nxt;
2638 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2639 tp->prior_ssthresh = 0;
2640 tp->undo_marker = 0;
2641 tcp_set_ca_state(sk, TCP_CA_Loss);
2643 tcp_xmit_retransmit_queue(sk);
2645 EXPORT_SYMBOL(tcp_simple_retransmit);
2647 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2649 struct tcp_sock *tp = tcp_sk(sk);
2650 int mib_idx;
2652 if (tcp_is_reno(tp))
2653 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2654 else
2655 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2657 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2659 tp->prior_ssthresh = 0;
2660 tcp_init_undo(tp);
2662 if (!tcp_in_cwnd_reduction(sk)) {
2663 if (!ece_ack)
2664 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2665 tcp_init_cwnd_reduction(sk);
2667 tcp_set_ca_state(sk, TCP_CA_Recovery);
2670 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2671 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2673 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2674 int *rexmit)
2676 struct tcp_sock *tp = tcp_sk(sk);
2677 bool recovered = !before(tp->snd_una, tp->high_seq);
2679 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2680 tcp_try_undo_loss(sk, false))
2681 return;
2683 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2684 /* Step 3.b. A timeout is spurious if not all data are
2685 * lost, i.e., never-retransmitted data are (s)acked.
2687 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2688 tcp_try_undo_loss(sk, true))
2689 return;
2691 if (after(tp->snd_nxt, tp->high_seq)) {
2692 if (flag & FLAG_DATA_SACKED || is_dupack)
2693 tp->frto = 0; /* Step 3.a. loss was real */
2694 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2695 tp->high_seq = tp->snd_nxt;
2696 /* Step 2.b. Try send new data (but deferred until cwnd
2697 * is updated in tcp_ack()). Otherwise fall back to
2698 * the conventional recovery.
2700 if (tcp_send_head(sk) &&
2701 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2702 *rexmit = REXMIT_NEW;
2703 return;
2705 tp->frto = 0;
2709 if (recovered) {
2710 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2711 tcp_try_undo_recovery(sk);
2712 return;
2714 if (tcp_is_reno(tp)) {
2715 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2716 * delivered. Lower inflight to clock out (re)tranmissions.
2718 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2719 tcp_add_reno_sack(sk);
2720 else if (flag & FLAG_SND_UNA_ADVANCED)
2721 tcp_reset_reno_sack(tp);
2723 *rexmit = REXMIT_LOST;
2726 /* Undo during fast recovery after partial ACK. */
2727 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2729 struct tcp_sock *tp = tcp_sk(sk);
2731 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2732 /* Plain luck! Hole if filled with delayed
2733 * packet, rather than with a retransmit.
2735 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2737 /* We are getting evidence that the reordering degree is higher
2738 * than we realized. If there are no retransmits out then we
2739 * can undo. Otherwise we clock out new packets but do not
2740 * mark more packets lost or retransmit more.
2742 if (tp->retrans_out)
2743 return true;
2745 if (!tcp_any_retrans_done(sk))
2746 tp->retrans_stamp = 0;
2748 DBGUNDO(sk, "partial recovery");
2749 tcp_undo_cwnd_reduction(sk, true);
2750 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2751 tcp_try_keep_open(sk);
2752 return true;
2754 return false;
2757 /* Process an event, which can update packets-in-flight not trivially.
2758 * Main goal of this function is to calculate new estimate for left_out,
2759 * taking into account both packets sitting in receiver's buffer and
2760 * packets lost by network.
2762 * Besides that it updates the congestion state when packet loss or ECN
2763 * is detected. But it does not reduce the cwnd, it is done by the
2764 * congestion control later.
2766 * It does _not_ decide what to send, it is made in function
2767 * tcp_xmit_retransmit_queue().
2769 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2770 bool is_dupack, int *ack_flag, int *rexmit)
2772 struct inet_connection_sock *icsk = inet_csk(sk);
2773 struct tcp_sock *tp = tcp_sk(sk);
2774 int fast_rexmit = 0, flag = *ack_flag;
2775 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2776 (tcp_fackets_out(tp) > tp->reordering));
2778 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2779 tp->sacked_out = 0;
2780 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2781 tp->fackets_out = 0;
2783 /* Now state machine starts.
2784 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2785 if (flag & FLAG_ECE)
2786 tp->prior_ssthresh = 0;
2788 /* B. In all the states check for reneging SACKs. */
2789 if (tcp_check_sack_reneging(sk, flag))
2790 return;
2792 /* C. Check consistency of the current state. */
2793 tcp_verify_left_out(tp);
2795 /* D. Check state exit conditions. State can be terminated
2796 * when high_seq is ACKed. */
2797 if (icsk->icsk_ca_state == TCP_CA_Open) {
2798 WARN_ON(tp->retrans_out != 0);
2799 tp->retrans_stamp = 0;
2800 } else if (!before(tp->snd_una, tp->high_seq)) {
2801 switch (icsk->icsk_ca_state) {
2802 case TCP_CA_CWR:
2803 /* CWR is to be held something *above* high_seq
2804 * is ACKed for CWR bit to reach receiver. */
2805 if (tp->snd_una != tp->high_seq) {
2806 tcp_end_cwnd_reduction(sk);
2807 tcp_set_ca_state(sk, TCP_CA_Open);
2809 break;
2811 case TCP_CA_Recovery:
2812 if (tcp_is_reno(tp))
2813 tcp_reset_reno_sack(tp);
2814 if (tcp_try_undo_recovery(sk))
2815 return;
2816 tcp_end_cwnd_reduction(sk);
2817 break;
2821 /* Use RACK to detect loss */
2822 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2823 tcp_rack_mark_lost(sk)) {
2824 flag |= FLAG_LOST_RETRANS;
2825 *ack_flag |= FLAG_LOST_RETRANS;
2828 /* E. Process state. */
2829 switch (icsk->icsk_ca_state) {
2830 case TCP_CA_Recovery:
2831 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2832 if (tcp_is_reno(tp) && is_dupack)
2833 tcp_add_reno_sack(sk);
2834 } else {
2835 if (tcp_try_undo_partial(sk, acked))
2836 return;
2837 /* Partial ACK arrived. Force fast retransmit. */
2838 do_lost = tcp_is_reno(tp) ||
2839 tcp_fackets_out(tp) > tp->reordering;
2841 if (tcp_try_undo_dsack(sk)) {
2842 tcp_try_keep_open(sk);
2843 return;
2845 break;
2846 case TCP_CA_Loss:
2847 tcp_process_loss(sk, flag, is_dupack, rexmit);
2848 if (icsk->icsk_ca_state != TCP_CA_Open &&
2849 !(flag & FLAG_LOST_RETRANS))
2850 return;
2851 /* Change state if cwnd is undone or retransmits are lost */
2852 default:
2853 if (tcp_is_reno(tp)) {
2854 if (flag & FLAG_SND_UNA_ADVANCED)
2855 tcp_reset_reno_sack(tp);
2856 if (is_dupack)
2857 tcp_add_reno_sack(sk);
2860 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2861 tcp_try_undo_dsack(sk);
2863 if (!tcp_time_to_recover(sk, flag)) {
2864 tcp_try_to_open(sk, flag);
2865 return;
2868 /* MTU probe failure: don't reduce cwnd */
2869 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2870 icsk->icsk_mtup.probe_size &&
2871 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2872 tcp_mtup_probe_failed(sk);
2873 /* Restores the reduction we did in tcp_mtup_probe() */
2874 tp->snd_cwnd++;
2875 tcp_simple_retransmit(sk);
2876 return;
2879 /* Otherwise enter Recovery state */
2880 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2881 fast_rexmit = 1;
2884 if (do_lost)
2885 tcp_update_scoreboard(sk, fast_rexmit);
2886 *rexmit = REXMIT_LOST;
2889 /* Kathleen Nichols' algorithm for tracking the minimum value of
2890 * a data stream over some fixed time interval. (E.g., the minimum
2891 * RTT over the past five minutes.) It uses constant space and constant
2892 * time per update yet almost always delivers the same minimum as an
2893 * implementation that has to keep all the data in the window.
2895 * The algorithm keeps track of the best, 2nd best & 3rd best min
2896 * values, maintaining an invariant that the measurement time of the
2897 * n'th best >= n-1'th best. It also makes sure that the three values
2898 * are widely separated in the time window since that bounds the worse
2899 * case error when that data is monotonically increasing over the window.
2901 * Upon getting a new min, we can forget everything earlier because it
2902 * has no value - the new min is <= everything else in the window by
2903 * definition and it's the most recent. So we restart fresh on every new min
2904 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2905 * best.
2907 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2909 const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2910 struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2911 struct rtt_meas rttm = {
2912 .rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1),
2913 .ts = now,
2915 u32 elapsed;
2917 /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2918 if (unlikely(rttm.rtt <= m[0].rtt))
2919 m[0] = m[1] = m[2] = rttm;
2920 else if (rttm.rtt <= m[1].rtt)
2921 m[1] = m[2] = rttm;
2922 else if (rttm.rtt <= m[2].rtt)
2923 m[2] = rttm;
2925 elapsed = now - m[0].ts;
2926 if (unlikely(elapsed > wlen)) {
2927 /* Passed entire window without a new min so make 2nd choice
2928 * the new min & 3rd choice the new 2nd. So forth and so on.
2930 m[0] = m[1];
2931 m[1] = m[2];
2932 m[2] = rttm;
2933 if (now - m[0].ts > wlen) {
2934 m[0] = m[1];
2935 m[1] = rttm;
2936 if (now - m[0].ts > wlen)
2937 m[0] = rttm;
2939 } else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2940 /* Passed a quarter of the window without a new min so
2941 * take 2nd choice from the 2nd quarter of the window.
2943 m[2] = m[1] = rttm;
2944 } else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2945 /* Passed half the window without a new min so take the 3rd
2946 * choice from the last half of the window.
2948 m[2] = rttm;
2952 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2953 long seq_rtt_us, long sack_rtt_us,
2954 long ca_rtt_us)
2956 const struct tcp_sock *tp = tcp_sk(sk);
2958 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2959 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2960 * Karn's algorithm forbids taking RTT if some retransmitted data
2961 * is acked (RFC6298).
2963 if (seq_rtt_us < 0)
2964 seq_rtt_us = sack_rtt_us;
2966 /* RTTM Rule: A TSecr value received in a segment is used to
2967 * update the averaged RTT measurement only if the segment
2968 * acknowledges some new data, i.e., only if it advances the
2969 * left edge of the send window.
2970 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2972 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2973 flag & FLAG_ACKED)
2974 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2975 tp->rx_opt.rcv_tsecr);
2976 if (seq_rtt_us < 0)
2977 return false;
2979 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2980 * always taken together with ACK, SACK, or TS-opts. Any negative
2981 * values will be skipped with the seq_rtt_us < 0 check above.
2983 tcp_update_rtt_min(sk, ca_rtt_us);
2984 tcp_rtt_estimator(sk, seq_rtt_us);
2985 tcp_set_rto(sk);
2987 /* RFC6298: only reset backoff on valid RTT measurement. */
2988 inet_csk(sk)->icsk_backoff = 0;
2989 return true;
2992 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2993 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2995 long rtt_us = -1L;
2997 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2998 struct skb_mstamp now;
3000 skb_mstamp_get(&now);
3001 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
3004 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
3008 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3010 const struct inet_connection_sock *icsk = inet_csk(sk);
3012 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3013 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3016 /* Restart timer after forward progress on connection.
3017 * RFC2988 recommends to restart timer to now+rto.
3019 void tcp_rearm_rto(struct sock *sk)
3021 const struct inet_connection_sock *icsk = inet_csk(sk);
3022 struct tcp_sock *tp = tcp_sk(sk);
3024 /* If the retrans timer is currently being used by Fast Open
3025 * for SYN-ACK retrans purpose, stay put.
3027 if (tp->fastopen_rsk)
3028 return;
3030 if (!tp->packets_out) {
3031 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3032 } else {
3033 u32 rto = inet_csk(sk)->icsk_rto;
3034 /* Offset the time elapsed after installing regular RTO */
3035 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3036 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3037 struct sk_buff *skb = tcp_write_queue_head(sk);
3038 const u32 rto_time_stamp =
3039 tcp_skb_timestamp(skb) + rto;
3040 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3041 /* delta may not be positive if the socket is locked
3042 * when the retrans timer fires and is rescheduled.
3044 if (delta > 0)
3045 rto = delta;
3047 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3048 TCP_RTO_MAX);
3052 /* This function is called when the delayed ER timer fires. TCP enters
3053 * fast recovery and performs fast-retransmit.
3055 void tcp_resume_early_retransmit(struct sock *sk)
3057 struct tcp_sock *tp = tcp_sk(sk);
3059 tcp_rearm_rto(sk);
3061 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3062 if (!tp->do_early_retrans)
3063 return;
3065 tcp_enter_recovery(sk, false);
3066 tcp_update_scoreboard(sk, 1);
3067 tcp_xmit_retransmit_queue(sk);
3070 /* If we get here, the whole TSO packet has not been acked. */
3071 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3073 struct tcp_sock *tp = tcp_sk(sk);
3074 u32 packets_acked;
3076 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3078 packets_acked = tcp_skb_pcount(skb);
3079 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3080 return 0;
3081 packets_acked -= tcp_skb_pcount(skb);
3083 if (packets_acked) {
3084 BUG_ON(tcp_skb_pcount(skb) == 0);
3085 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3088 return packets_acked;
3091 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3092 u32 prior_snd_una)
3094 const struct skb_shared_info *shinfo;
3096 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3097 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3098 return;
3100 shinfo = skb_shinfo(skb);
3101 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3102 !before(shinfo->tskey, prior_snd_una) &&
3103 before(shinfo->tskey, tcp_sk(sk)->snd_una))
3104 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3107 /* Remove acknowledged frames from the retransmission queue. If our packet
3108 * is before the ack sequence we can discard it as it's confirmed to have
3109 * arrived at the other end.
3111 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3112 u32 prior_snd_una, int *acked,
3113 struct tcp_sacktag_state *sack)
3115 const struct inet_connection_sock *icsk = inet_csk(sk);
3116 struct skb_mstamp first_ackt, last_ackt, now;
3117 struct tcp_sock *tp = tcp_sk(sk);
3118 u32 prior_sacked = tp->sacked_out;
3119 u32 reord = tp->packets_out;
3120 bool fully_acked = true;
3121 long sack_rtt_us = -1L;
3122 long seq_rtt_us = -1L;
3123 long ca_rtt_us = -1L;
3124 struct sk_buff *skb;
3125 u32 pkts_acked = 0;
3126 bool rtt_update;
3127 int flag = 0;
3129 first_ackt.v64 = 0;
3131 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3132 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3133 u8 sacked = scb->sacked;
3134 u32 acked_pcount;
3136 tcp_ack_tstamp(sk, skb, prior_snd_una);
3138 /* Determine how many packets and what bytes were acked, tso and else */
3139 if (after(scb->end_seq, tp->snd_una)) {
3140 if (tcp_skb_pcount(skb) == 1 ||
3141 !after(tp->snd_una, scb->seq))
3142 break;
3144 acked_pcount = tcp_tso_acked(sk, skb);
3145 if (!acked_pcount)
3146 break;
3148 fully_acked = false;
3149 } else {
3150 /* Speedup tcp_unlink_write_queue() and next loop */
3151 prefetchw(skb->next);
3152 acked_pcount = tcp_skb_pcount(skb);
3155 if (unlikely(sacked & TCPCB_RETRANS)) {
3156 if (sacked & TCPCB_SACKED_RETRANS)
3157 tp->retrans_out -= acked_pcount;
3158 flag |= FLAG_RETRANS_DATA_ACKED;
3159 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3160 last_ackt = skb->skb_mstamp;
3161 WARN_ON_ONCE(last_ackt.v64 == 0);
3162 if (!first_ackt.v64)
3163 first_ackt = last_ackt;
3165 reord = min(pkts_acked, reord);
3166 if (!after(scb->end_seq, tp->high_seq))
3167 flag |= FLAG_ORIG_SACK_ACKED;
3170 if (sacked & TCPCB_SACKED_ACKED) {
3171 tp->sacked_out -= acked_pcount;
3172 } else if (tcp_is_sack(tp)) {
3173 tp->delivered += acked_pcount;
3174 if (!tcp_skb_spurious_retrans(tp, skb))
3175 tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3177 if (sacked & TCPCB_LOST)
3178 tp->lost_out -= acked_pcount;
3180 tp->packets_out -= acked_pcount;
3181 pkts_acked += acked_pcount;
3183 /* Initial outgoing SYN's get put onto the write_queue
3184 * just like anything else we transmit. It is not
3185 * true data, and if we misinform our callers that
3186 * this ACK acks real data, we will erroneously exit
3187 * connection startup slow start one packet too
3188 * quickly. This is severely frowned upon behavior.
3190 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3191 flag |= FLAG_DATA_ACKED;
3192 } else {
3193 flag |= FLAG_SYN_ACKED;
3194 tp->retrans_stamp = 0;
3197 if (!fully_acked)
3198 break;
3200 tcp_unlink_write_queue(skb, sk);
3201 sk_wmem_free_skb(sk, skb);
3202 if (unlikely(skb == tp->retransmit_skb_hint))
3203 tp->retransmit_skb_hint = NULL;
3204 if (unlikely(skb == tp->lost_skb_hint))
3205 tp->lost_skb_hint = NULL;
3208 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3209 tp->snd_up = tp->snd_una;
3211 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3212 flag |= FLAG_SACK_RENEGING;
3214 skb_mstamp_get(&now);
3215 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3216 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3217 ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3219 if (sack->first_sackt.v64) {
3220 sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3221 ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3224 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3225 ca_rtt_us);
3227 if (flag & FLAG_ACKED) {
3228 tcp_rearm_rto(sk);
3229 if (unlikely(icsk->icsk_mtup.probe_size &&
3230 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3231 tcp_mtup_probe_success(sk);
3234 if (tcp_is_reno(tp)) {
3235 tcp_remove_reno_sacks(sk, pkts_acked);
3236 } else {
3237 int delta;
3239 /* Non-retransmitted hole got filled? That's reordering */
3240 if (reord < prior_fackets)
3241 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3243 delta = tcp_is_fack(tp) ? pkts_acked :
3244 prior_sacked - tp->sacked_out;
3245 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3248 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3250 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3251 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3252 /* Do not re-arm RTO if the sack RTT is measured from data sent
3253 * after when the head was last (re)transmitted. Otherwise the
3254 * timeout may continue to extend in loss recovery.
3256 tcp_rearm_rto(sk);
3259 if (icsk->icsk_ca_ops->pkts_acked)
3260 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
3262 #if FASTRETRANS_DEBUG > 0
3263 WARN_ON((int)tp->sacked_out < 0);
3264 WARN_ON((int)tp->lost_out < 0);
3265 WARN_ON((int)tp->retrans_out < 0);
3266 if (!tp->packets_out && tcp_is_sack(tp)) {
3267 icsk = inet_csk(sk);
3268 if (tp->lost_out) {
3269 pr_debug("Leak l=%u %d\n",
3270 tp->lost_out, icsk->icsk_ca_state);
3271 tp->lost_out = 0;
3273 if (tp->sacked_out) {
3274 pr_debug("Leak s=%u %d\n",
3275 tp->sacked_out, icsk->icsk_ca_state);
3276 tp->sacked_out = 0;
3278 if (tp->retrans_out) {
3279 pr_debug("Leak r=%u %d\n",
3280 tp->retrans_out, icsk->icsk_ca_state);
3281 tp->retrans_out = 0;
3284 #endif
3285 *acked = pkts_acked;
3286 return flag;
3289 static void tcp_ack_probe(struct sock *sk)
3291 const struct tcp_sock *tp = tcp_sk(sk);
3292 struct inet_connection_sock *icsk = inet_csk(sk);
3294 /* Was it a usable window open? */
3296 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3297 icsk->icsk_backoff = 0;
3298 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3299 /* Socket must be waked up by subsequent tcp_data_snd_check().
3300 * This function is not for random using!
3302 } else {
3303 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3305 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3306 when, TCP_RTO_MAX);
3310 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3312 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3313 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3316 /* Decide wheather to run the increase function of congestion control. */
3317 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3319 /* If reordering is high then always grow cwnd whenever data is
3320 * delivered regardless of its ordering. Otherwise stay conservative
3321 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3322 * new SACK or ECE mark may first advance cwnd here and later reduce
3323 * cwnd in tcp_fastretrans_alert() based on more states.
3325 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3326 return flag & FLAG_FORWARD_PROGRESS;
3328 return flag & FLAG_DATA_ACKED;
3331 /* The "ultimate" congestion control function that aims to replace the rigid
3332 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3333 * It's called toward the end of processing an ACK with precise rate
3334 * information. All transmission or retransmission are delayed afterwards.
3336 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3337 int flag)
3339 if (tcp_in_cwnd_reduction(sk)) {
3340 /* Reduce cwnd if state mandates */
3341 tcp_cwnd_reduction(sk, acked_sacked, flag);
3342 } else if (tcp_may_raise_cwnd(sk, flag)) {
3343 /* Advance cwnd if state allows */
3344 tcp_cong_avoid(sk, ack, acked_sacked);
3346 tcp_update_pacing_rate(sk);
3349 /* Check that window update is acceptable.
3350 * The function assumes that snd_una<=ack<=snd_next.
3352 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3353 const u32 ack, const u32 ack_seq,
3354 const u32 nwin)
3356 return after(ack, tp->snd_una) ||
3357 after(ack_seq, tp->snd_wl1) ||
3358 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3361 /* If we update tp->snd_una, also update tp->bytes_acked */
3362 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3364 u32 delta = ack - tp->snd_una;
3366 u64_stats_update_begin(&tp->syncp);
3367 tp->bytes_acked += delta;
3368 u64_stats_update_end(&tp->syncp);
3369 tp->snd_una = ack;
3372 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3373 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3375 u32 delta = seq - tp->rcv_nxt;
3377 u64_stats_update_begin(&tp->syncp);
3378 tp->bytes_received += delta;
3379 u64_stats_update_end(&tp->syncp);
3380 tp->rcv_nxt = seq;
3383 /* Update our send window.
3385 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3386 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3388 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3389 u32 ack_seq)
3391 struct tcp_sock *tp = tcp_sk(sk);
3392 int flag = 0;
3393 u32 nwin = ntohs(tcp_hdr(skb)->window);
3395 if (likely(!tcp_hdr(skb)->syn))
3396 nwin <<= tp->rx_opt.snd_wscale;
3398 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3399 flag |= FLAG_WIN_UPDATE;
3400 tcp_update_wl(tp, ack_seq);
3402 if (tp->snd_wnd != nwin) {
3403 tp->snd_wnd = nwin;
3405 /* Note, it is the only place, where
3406 * fast path is recovered for sending TCP.
3408 tp->pred_flags = 0;
3409 tcp_fast_path_check(sk);
3411 if (tcp_send_head(sk))
3412 tcp_slow_start_after_idle_check(sk);
3414 if (nwin > tp->max_window) {
3415 tp->max_window = nwin;
3416 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3421 tcp_snd_una_update(tp, ack);
3423 return flag;
3426 /* Return true if we're currently rate-limiting out-of-window ACKs and
3427 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3428 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3429 * attacks that send repeated SYNs or ACKs for the same connection. To
3430 * do this, we do not send a duplicate SYNACK or ACK if the remote
3431 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3433 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3434 int mib_idx, u32 *last_oow_ack_time)
3436 /* Data packets without SYNs are not likely part of an ACK loop. */
3437 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3438 !tcp_hdr(skb)->syn)
3439 goto not_rate_limited;
3441 if (*last_oow_ack_time) {
3442 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3444 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3445 NET_INC_STATS_BH(net, mib_idx);
3446 return true; /* rate-limited: don't send yet! */
3450 *last_oow_ack_time = tcp_time_stamp;
3452 not_rate_limited:
3453 return false; /* not rate-limited: go ahead, send dupack now! */
3456 /* RFC 5961 7 [ACK Throttling] */
3457 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3459 /* unprotected vars, we dont care of overwrites */
3460 static u32 challenge_timestamp;
3461 static unsigned int challenge_count;
3462 struct tcp_sock *tp = tcp_sk(sk);
3463 u32 now;
3465 /* First check our per-socket dupack rate limit. */
3466 if (tcp_oow_rate_limited(sock_net(sk), skb,
3467 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3468 &tp->last_oow_ack_time))
3469 return;
3471 /* Then check the check host-wide RFC 5961 rate limit. */
3472 now = jiffies / HZ;
3473 if (now != challenge_timestamp) {
3474 challenge_timestamp = now;
3475 challenge_count = 0;
3477 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3478 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3479 tcp_send_ack(sk);
3483 static void tcp_store_ts_recent(struct tcp_sock *tp)
3485 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3486 tp->rx_opt.ts_recent_stamp = get_seconds();
3489 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3491 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3492 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3493 * extra check below makes sure this can only happen
3494 * for pure ACK frames. -DaveM
3496 * Not only, also it occurs for expired timestamps.
3499 if (tcp_paws_check(&tp->rx_opt, 0))
3500 tcp_store_ts_recent(tp);
3504 /* This routine deals with acks during a TLP episode.
3505 * We mark the end of a TLP episode on receiving TLP dupack or when
3506 * ack is after tlp_high_seq.
3507 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3509 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3511 struct tcp_sock *tp = tcp_sk(sk);
3513 if (before(ack, tp->tlp_high_seq))
3514 return;
3516 if (flag & FLAG_DSACKING_ACK) {
3517 /* This DSACK means original and TLP probe arrived; no loss */
3518 tp->tlp_high_seq = 0;
3519 } else if (after(ack, tp->tlp_high_seq)) {
3520 /* ACK advances: there was a loss, so reduce cwnd. Reset
3521 * tlp_high_seq in tcp_init_cwnd_reduction()
3523 tcp_init_cwnd_reduction(sk);
3524 tcp_set_ca_state(sk, TCP_CA_CWR);
3525 tcp_end_cwnd_reduction(sk);
3526 tcp_try_keep_open(sk);
3527 NET_INC_STATS_BH(sock_net(sk),
3528 LINUX_MIB_TCPLOSSPROBERECOVERY);
3529 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3530 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3531 /* Pure dupack: original and TLP probe arrived; no loss */
3532 tp->tlp_high_seq = 0;
3536 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3538 const struct inet_connection_sock *icsk = inet_csk(sk);
3540 if (icsk->icsk_ca_ops->in_ack_event)
3541 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3544 /* Congestion control has updated the cwnd already. So if we're in
3545 * loss recovery then now we do any new sends (for FRTO) or
3546 * retransmits (for CA_Loss or CA_recovery) that make sense.
3548 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3550 struct tcp_sock *tp = tcp_sk(sk);
3552 if (rexmit == REXMIT_NONE)
3553 return;
3555 if (unlikely(rexmit == 2)) {
3556 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3557 TCP_NAGLE_OFF);
3558 if (after(tp->snd_nxt, tp->high_seq))
3559 return;
3560 tp->frto = 0;
3562 tcp_xmit_retransmit_queue(sk);
3565 /* This routine deals with incoming acks, but not outgoing ones. */
3566 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3568 struct inet_connection_sock *icsk = inet_csk(sk);
3569 struct tcp_sock *tp = tcp_sk(sk);
3570 struct tcp_sacktag_state sack_state;
3571 u32 prior_snd_una = tp->snd_una;
3572 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3573 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3574 bool is_dupack = false;
3575 u32 prior_fackets;
3576 int prior_packets = tp->packets_out;
3577 u32 prior_delivered = tp->delivered;
3578 int acked = 0; /* Number of packets newly acked */
3579 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3581 sack_state.first_sackt.v64 = 0;
3583 /* We very likely will need to access write queue head. */
3584 prefetchw(sk->sk_write_queue.next);
3586 /* If the ack is older than previous acks
3587 * then we can probably ignore it.
3589 if (before(ack, prior_snd_una)) {
3590 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3591 if (before(ack, prior_snd_una - tp->max_window)) {
3592 tcp_send_challenge_ack(sk, skb);
3593 return -1;
3595 goto old_ack;
3598 /* If the ack includes data we haven't sent yet, discard
3599 * this segment (RFC793 Section 3.9).
3601 if (after(ack, tp->snd_nxt))
3602 goto invalid_ack;
3604 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3605 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3606 tcp_rearm_rto(sk);
3608 if (after(ack, prior_snd_una)) {
3609 flag |= FLAG_SND_UNA_ADVANCED;
3610 icsk->icsk_retransmits = 0;
3613 prior_fackets = tp->fackets_out;
3615 /* ts_recent update must be made after we are sure that the packet
3616 * is in window.
3618 if (flag & FLAG_UPDATE_TS_RECENT)
3619 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3621 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3622 /* Window is constant, pure forward advance.
3623 * No more checks are required.
3624 * Note, we use the fact that SND.UNA>=SND.WL2.
3626 tcp_update_wl(tp, ack_seq);
3627 tcp_snd_una_update(tp, ack);
3628 flag |= FLAG_WIN_UPDATE;
3630 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3632 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3633 } else {
3634 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3636 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3637 flag |= FLAG_DATA;
3638 else
3639 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3641 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3643 if (TCP_SKB_CB(skb)->sacked)
3644 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3645 &sack_state);
3647 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3648 flag |= FLAG_ECE;
3649 ack_ev_flags |= CA_ACK_ECE;
3652 if (flag & FLAG_WIN_UPDATE)
3653 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3655 tcp_in_ack_event(sk, ack_ev_flags);
3658 /* We passed data and got it acked, remove any soft error
3659 * log. Something worked...
3661 sk->sk_err_soft = 0;
3662 icsk->icsk_probes_out = 0;
3663 tp->rcv_tstamp = tcp_time_stamp;
3664 if (!prior_packets)
3665 goto no_queue;
3667 /* See if we can take anything off of the retransmit queue. */
3668 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3669 &sack_state);
3671 if (tcp_ack_is_dubious(sk, flag)) {
3672 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3673 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3675 if (tp->tlp_high_seq)
3676 tcp_process_tlp_ack(sk, ack, flag);
3678 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3679 struct dst_entry *dst = __sk_dst_get(sk);
3680 if (dst)
3681 dst_confirm(dst);
3684 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3685 tcp_schedule_loss_probe(sk);
3686 tcp_cong_control(sk, ack, tp->delivered - prior_delivered, flag);
3687 tcp_xmit_recovery(sk, rexmit);
3688 return 1;
3690 no_queue:
3691 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3692 if (flag & FLAG_DSACKING_ACK)
3693 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3694 /* If this ack opens up a zero window, clear backoff. It was
3695 * being used to time the probes, and is probably far higher than
3696 * it needs to be for normal retransmission.
3698 if (tcp_send_head(sk))
3699 tcp_ack_probe(sk);
3701 if (tp->tlp_high_seq)
3702 tcp_process_tlp_ack(sk, ack, flag);
3703 return 1;
3705 invalid_ack:
3706 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3707 return -1;
3709 old_ack:
3710 /* If data was SACKed, tag it and see if we should send more data.
3711 * If data was DSACKed, see if we can undo a cwnd reduction.
3713 if (TCP_SKB_CB(skb)->sacked) {
3714 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3715 &sack_state);
3716 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3717 tcp_xmit_recovery(sk, rexmit);
3720 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3721 return 0;
3724 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3725 bool syn, struct tcp_fastopen_cookie *foc,
3726 bool exp_opt)
3728 /* Valid only in SYN or SYN-ACK with an even length. */
3729 if (!foc || !syn || len < 0 || (len & 1))
3730 return;
3732 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3733 len <= TCP_FASTOPEN_COOKIE_MAX)
3734 memcpy(foc->val, cookie, len);
3735 else if (len != 0)
3736 len = -1;
3737 foc->len = len;
3738 foc->exp = exp_opt;
3741 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3742 * But, this can also be called on packets in the established flow when
3743 * the fast version below fails.
3745 void tcp_parse_options(const struct sk_buff *skb,
3746 struct tcp_options_received *opt_rx, int estab,
3747 struct tcp_fastopen_cookie *foc)
3749 const unsigned char *ptr;
3750 const struct tcphdr *th = tcp_hdr(skb);
3751 int length = (th->doff * 4) - sizeof(struct tcphdr);
3753 ptr = (const unsigned char *)(th + 1);
3754 opt_rx->saw_tstamp = 0;
3756 while (length > 0) {
3757 int opcode = *ptr++;
3758 int opsize;
3760 switch (opcode) {
3761 case TCPOPT_EOL:
3762 return;
3763 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3764 length--;
3765 continue;
3766 default:
3767 opsize = *ptr++;
3768 if (opsize < 2) /* "silly options" */
3769 return;
3770 if (opsize > length)
3771 return; /* don't parse partial options */
3772 switch (opcode) {
3773 case TCPOPT_MSS:
3774 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3775 u16 in_mss = get_unaligned_be16(ptr);
3776 if (in_mss) {
3777 if (opt_rx->user_mss &&
3778 opt_rx->user_mss < in_mss)
3779 in_mss = opt_rx->user_mss;
3780 opt_rx->mss_clamp = in_mss;
3783 break;
3784 case TCPOPT_WINDOW:
3785 if (opsize == TCPOLEN_WINDOW && th->syn &&
3786 !estab && sysctl_tcp_window_scaling) {
3787 __u8 snd_wscale = *(__u8 *)ptr;
3788 opt_rx->wscale_ok = 1;
3789 if (snd_wscale > 14) {
3790 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3791 __func__,
3792 snd_wscale);
3793 snd_wscale = 14;
3795 opt_rx->snd_wscale = snd_wscale;
3797 break;
3798 case TCPOPT_TIMESTAMP:
3799 if ((opsize == TCPOLEN_TIMESTAMP) &&
3800 ((estab && opt_rx->tstamp_ok) ||
3801 (!estab && sysctl_tcp_timestamps))) {
3802 opt_rx->saw_tstamp = 1;
3803 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3804 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3806 break;
3807 case TCPOPT_SACK_PERM:
3808 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3809 !estab && sysctl_tcp_sack) {
3810 opt_rx->sack_ok = TCP_SACK_SEEN;
3811 tcp_sack_reset(opt_rx);
3813 break;
3815 case TCPOPT_SACK:
3816 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3817 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3818 opt_rx->sack_ok) {
3819 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3821 break;
3822 #ifdef CONFIG_TCP_MD5SIG
3823 case TCPOPT_MD5SIG:
3825 * The MD5 Hash has already been
3826 * checked (see tcp_v{4,6}_do_rcv()).
3828 break;
3829 #endif
3830 case TCPOPT_FASTOPEN:
3831 tcp_parse_fastopen_option(
3832 opsize - TCPOLEN_FASTOPEN_BASE,
3833 ptr, th->syn, foc, false);
3834 break;
3836 case TCPOPT_EXP:
3837 /* Fast Open option shares code 254 using a
3838 * 16 bits magic number.
3840 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3841 get_unaligned_be16(ptr) ==
3842 TCPOPT_FASTOPEN_MAGIC)
3843 tcp_parse_fastopen_option(opsize -
3844 TCPOLEN_EXP_FASTOPEN_BASE,
3845 ptr + 2, th->syn, foc, true);
3846 break;
3849 ptr += opsize-2;
3850 length -= opsize;
3854 EXPORT_SYMBOL(tcp_parse_options);
3856 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3858 const __be32 *ptr = (const __be32 *)(th + 1);
3860 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3861 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3862 tp->rx_opt.saw_tstamp = 1;
3863 ++ptr;
3864 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3865 ++ptr;
3866 if (*ptr)
3867 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3868 else
3869 tp->rx_opt.rcv_tsecr = 0;
3870 return true;
3872 return false;
3875 /* Fast parse options. This hopes to only see timestamps.
3876 * If it is wrong it falls back on tcp_parse_options().
3878 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3879 const struct tcphdr *th, struct tcp_sock *tp)
3881 /* In the spirit of fast parsing, compare doff directly to constant
3882 * values. Because equality is used, short doff can be ignored here.
3884 if (th->doff == (sizeof(*th) / 4)) {
3885 tp->rx_opt.saw_tstamp = 0;
3886 return false;
3887 } else if (tp->rx_opt.tstamp_ok &&
3888 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3889 if (tcp_parse_aligned_timestamp(tp, th))
3890 return true;
3893 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3894 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3895 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3897 return true;
3900 #ifdef CONFIG_TCP_MD5SIG
3902 * Parse MD5 Signature option
3904 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3906 int length = (th->doff << 2) - sizeof(*th);
3907 const u8 *ptr = (const u8 *)(th + 1);
3909 /* If the TCP option is too short, we can short cut */
3910 if (length < TCPOLEN_MD5SIG)
3911 return NULL;
3913 while (length > 0) {
3914 int opcode = *ptr++;
3915 int opsize;
3917 switch (opcode) {
3918 case TCPOPT_EOL:
3919 return NULL;
3920 case TCPOPT_NOP:
3921 length--;
3922 continue;
3923 default:
3924 opsize = *ptr++;
3925 if (opsize < 2 || opsize > length)
3926 return NULL;
3927 if (opcode == TCPOPT_MD5SIG)
3928 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3930 ptr += opsize - 2;
3931 length -= opsize;
3933 return NULL;
3935 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3936 #endif
3938 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3940 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3941 * it can pass through stack. So, the following predicate verifies that
3942 * this segment is not used for anything but congestion avoidance or
3943 * fast retransmit. Moreover, we even are able to eliminate most of such
3944 * second order effects, if we apply some small "replay" window (~RTO)
3945 * to timestamp space.
3947 * All these measures still do not guarantee that we reject wrapped ACKs
3948 * on networks with high bandwidth, when sequence space is recycled fastly,
3949 * but it guarantees that such events will be very rare and do not affect
3950 * connection seriously. This doesn't look nice, but alas, PAWS is really
3951 * buggy extension.
3953 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3954 * states that events when retransmit arrives after original data are rare.
3955 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3956 * the biggest problem on large power networks even with minor reordering.
3957 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3958 * up to bandwidth of 18Gigabit/sec. 8) ]
3961 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3963 const struct tcp_sock *tp = tcp_sk(sk);
3964 const struct tcphdr *th = tcp_hdr(skb);
3965 u32 seq = TCP_SKB_CB(skb)->seq;
3966 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3968 return (/* 1. Pure ACK with correct sequence number. */
3969 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3971 /* 2. ... and duplicate ACK. */
3972 ack == tp->snd_una &&
3974 /* 3. ... and does not update window. */
3975 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3977 /* 4. ... and sits in replay window. */
3978 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3981 static inline bool tcp_paws_discard(const struct sock *sk,
3982 const struct sk_buff *skb)
3984 const struct tcp_sock *tp = tcp_sk(sk);
3986 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3987 !tcp_disordered_ack(sk, skb);
3990 /* Check segment sequence number for validity.
3992 * Segment controls are considered valid, if the segment
3993 * fits to the window after truncation to the window. Acceptability
3994 * of data (and SYN, FIN, of course) is checked separately.
3995 * See tcp_data_queue(), for example.
3997 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3998 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3999 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4000 * (borrowed from freebsd)
4003 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4005 return !before(end_seq, tp->rcv_wup) &&
4006 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4009 /* When we get a reset we do this. */
4010 void tcp_reset(struct sock *sk)
4012 /* We want the right error as BSD sees it (and indeed as we do). */
4013 switch (sk->sk_state) {
4014 case TCP_SYN_SENT:
4015 sk->sk_err = ECONNREFUSED;
4016 break;
4017 case TCP_CLOSE_WAIT:
4018 sk->sk_err = EPIPE;
4019 break;
4020 case TCP_CLOSE:
4021 return;
4022 default:
4023 sk->sk_err = ECONNRESET;
4025 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4026 smp_wmb();
4028 if (!sock_flag(sk, SOCK_DEAD))
4029 sk->sk_error_report(sk);
4031 tcp_done(sk);
4035 * Process the FIN bit. This now behaves as it is supposed to work
4036 * and the FIN takes effect when it is validly part of sequence
4037 * space. Not before when we get holes.
4039 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4040 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4041 * TIME-WAIT)
4043 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4044 * close and we go into CLOSING (and later onto TIME-WAIT)
4046 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4048 void tcp_fin(struct sock *sk)
4050 struct tcp_sock *tp = tcp_sk(sk);
4052 inet_csk_schedule_ack(sk);
4054 sk->sk_shutdown |= RCV_SHUTDOWN;
4055 sock_set_flag(sk, SOCK_DONE);
4057 switch (sk->sk_state) {
4058 case TCP_SYN_RECV:
4059 case TCP_ESTABLISHED:
4060 /* Move to CLOSE_WAIT */
4061 tcp_set_state(sk, TCP_CLOSE_WAIT);
4062 inet_csk(sk)->icsk_ack.pingpong = 1;
4063 break;
4065 case TCP_CLOSE_WAIT:
4066 case TCP_CLOSING:
4067 /* Received a retransmission of the FIN, do
4068 * nothing.
4070 break;
4071 case TCP_LAST_ACK:
4072 /* RFC793: Remain in the LAST-ACK state. */
4073 break;
4075 case TCP_FIN_WAIT1:
4076 /* This case occurs when a simultaneous close
4077 * happens, we must ack the received FIN and
4078 * enter the CLOSING state.
4080 tcp_send_ack(sk);
4081 tcp_set_state(sk, TCP_CLOSING);
4082 break;
4083 case TCP_FIN_WAIT2:
4084 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4085 tcp_send_ack(sk);
4086 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4087 break;
4088 default:
4089 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4090 * cases we should never reach this piece of code.
4092 pr_err("%s: Impossible, sk->sk_state=%d\n",
4093 __func__, sk->sk_state);
4094 break;
4097 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4098 * Probably, we should reset in this case. For now drop them.
4100 __skb_queue_purge(&tp->out_of_order_queue);
4101 if (tcp_is_sack(tp))
4102 tcp_sack_reset(&tp->rx_opt);
4103 sk_mem_reclaim(sk);
4105 if (!sock_flag(sk, SOCK_DEAD)) {
4106 sk->sk_state_change(sk);
4108 /* Do not send POLL_HUP for half duplex close. */
4109 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4110 sk->sk_state == TCP_CLOSE)
4111 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4112 else
4113 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4117 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4118 u32 end_seq)
4120 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4121 if (before(seq, sp->start_seq))
4122 sp->start_seq = seq;
4123 if (after(end_seq, sp->end_seq))
4124 sp->end_seq = end_seq;
4125 return true;
4127 return false;
4130 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4132 struct tcp_sock *tp = tcp_sk(sk);
4134 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4135 int mib_idx;
4137 if (before(seq, tp->rcv_nxt))
4138 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4139 else
4140 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4142 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4144 tp->rx_opt.dsack = 1;
4145 tp->duplicate_sack[0].start_seq = seq;
4146 tp->duplicate_sack[0].end_seq = end_seq;
4150 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4152 struct tcp_sock *tp = tcp_sk(sk);
4154 if (!tp->rx_opt.dsack)
4155 tcp_dsack_set(sk, seq, end_seq);
4156 else
4157 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4160 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4162 struct tcp_sock *tp = tcp_sk(sk);
4164 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4165 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4166 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4167 tcp_enter_quickack_mode(sk);
4169 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4170 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4172 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4173 end_seq = tp->rcv_nxt;
4174 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4178 tcp_send_ack(sk);
4181 /* These routines update the SACK block as out-of-order packets arrive or
4182 * in-order packets close up the sequence space.
4184 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4186 int this_sack;
4187 struct tcp_sack_block *sp = &tp->selective_acks[0];
4188 struct tcp_sack_block *swalk = sp + 1;
4190 /* See if the recent change to the first SACK eats into
4191 * or hits the sequence space of other SACK blocks, if so coalesce.
4193 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4194 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4195 int i;
4197 /* Zap SWALK, by moving every further SACK up by one slot.
4198 * Decrease num_sacks.
4200 tp->rx_opt.num_sacks--;
4201 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4202 sp[i] = sp[i + 1];
4203 continue;
4205 this_sack++, swalk++;
4209 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4211 struct tcp_sock *tp = tcp_sk(sk);
4212 struct tcp_sack_block *sp = &tp->selective_acks[0];
4213 int cur_sacks = tp->rx_opt.num_sacks;
4214 int this_sack;
4216 if (!cur_sacks)
4217 goto new_sack;
4219 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4220 if (tcp_sack_extend(sp, seq, end_seq)) {
4221 /* Rotate this_sack to the first one. */
4222 for (; this_sack > 0; this_sack--, sp--)
4223 swap(*sp, *(sp - 1));
4224 if (cur_sacks > 1)
4225 tcp_sack_maybe_coalesce(tp);
4226 return;
4230 /* Could not find an adjacent existing SACK, build a new one,
4231 * put it at the front, and shift everyone else down. We
4232 * always know there is at least one SACK present already here.
4234 * If the sack array is full, forget about the last one.
4236 if (this_sack >= TCP_NUM_SACKS) {
4237 this_sack--;
4238 tp->rx_opt.num_sacks--;
4239 sp--;
4241 for (; this_sack > 0; this_sack--, sp--)
4242 *sp = *(sp - 1);
4244 new_sack:
4245 /* Build the new head SACK, and we're done. */
4246 sp->start_seq = seq;
4247 sp->end_seq = end_seq;
4248 tp->rx_opt.num_sacks++;
4251 /* RCV.NXT advances, some SACKs should be eaten. */
4253 static void tcp_sack_remove(struct tcp_sock *tp)
4255 struct tcp_sack_block *sp = &tp->selective_acks[0];
4256 int num_sacks = tp->rx_opt.num_sacks;
4257 int this_sack;
4259 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4260 if (skb_queue_empty(&tp->out_of_order_queue)) {
4261 tp->rx_opt.num_sacks = 0;
4262 return;
4265 for (this_sack = 0; this_sack < num_sacks;) {
4266 /* Check if the start of the sack is covered by RCV.NXT. */
4267 if (!before(tp->rcv_nxt, sp->start_seq)) {
4268 int i;
4270 /* RCV.NXT must cover all the block! */
4271 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4273 /* Zap this SACK, by moving forward any other SACKS. */
4274 for (i = this_sack+1; i < num_sacks; i++)
4275 tp->selective_acks[i-1] = tp->selective_acks[i];
4276 num_sacks--;
4277 continue;
4279 this_sack++;
4280 sp++;
4282 tp->rx_opt.num_sacks = num_sacks;
4286 * tcp_try_coalesce - try to merge skb to prior one
4287 * @sk: socket
4288 * @to: prior buffer
4289 * @from: buffer to add in queue
4290 * @fragstolen: pointer to boolean
4292 * Before queueing skb @from after @to, try to merge them
4293 * to reduce overall memory use and queue lengths, if cost is small.
4294 * Packets in ofo or receive queues can stay a long time.
4295 * Better try to coalesce them right now to avoid future collapses.
4296 * Returns true if caller should free @from instead of queueing it
4298 static bool tcp_try_coalesce(struct sock *sk,
4299 struct sk_buff *to,
4300 struct sk_buff *from,
4301 bool *fragstolen)
4303 int delta;
4305 *fragstolen = false;
4307 /* Its possible this segment overlaps with prior segment in queue */
4308 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4309 return false;
4311 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4312 return false;
4314 atomic_add(delta, &sk->sk_rmem_alloc);
4315 sk_mem_charge(sk, delta);
4316 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4317 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4318 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4319 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4320 return true;
4323 /* This one checks to see if we can put data from the
4324 * out_of_order queue into the receive_queue.
4326 static void tcp_ofo_queue(struct sock *sk)
4328 struct tcp_sock *tp = tcp_sk(sk);
4329 __u32 dsack_high = tp->rcv_nxt;
4330 struct sk_buff *skb, *tail;
4331 bool fragstolen, eaten;
4333 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4334 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4335 break;
4337 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4338 __u32 dsack = dsack_high;
4339 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4340 dsack_high = TCP_SKB_CB(skb)->end_seq;
4341 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4344 __skb_unlink(skb, &tp->out_of_order_queue);
4345 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4346 SOCK_DEBUG(sk, "ofo packet was already received\n");
4347 __kfree_skb(skb);
4348 continue;
4350 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4351 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4352 TCP_SKB_CB(skb)->end_seq);
4354 tail = skb_peek_tail(&sk->sk_receive_queue);
4355 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4356 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4357 if (!eaten)
4358 __skb_queue_tail(&sk->sk_receive_queue, skb);
4359 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4360 tcp_fin(sk);
4361 if (eaten)
4362 kfree_skb_partial(skb, fragstolen);
4366 static bool tcp_prune_ofo_queue(struct sock *sk);
4367 static int tcp_prune_queue(struct sock *sk);
4369 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4370 unsigned int size)
4372 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4373 !sk_rmem_schedule(sk, skb, size)) {
4375 if (tcp_prune_queue(sk) < 0)
4376 return -1;
4378 if (!sk_rmem_schedule(sk, skb, size)) {
4379 if (!tcp_prune_ofo_queue(sk))
4380 return -1;
4382 if (!sk_rmem_schedule(sk, skb, size))
4383 return -1;
4386 return 0;
4389 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4391 struct tcp_sock *tp = tcp_sk(sk);
4392 struct sk_buff *skb1;
4393 u32 seq, end_seq;
4395 tcp_ecn_check_ce(tp, skb);
4397 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4398 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4399 __kfree_skb(skb);
4400 return;
4403 /* Disable header prediction. */
4404 tp->pred_flags = 0;
4405 inet_csk_schedule_ack(sk);
4407 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4408 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4409 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4411 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4412 if (!skb1) {
4413 /* Initial out of order segment, build 1 SACK. */
4414 if (tcp_is_sack(tp)) {
4415 tp->rx_opt.num_sacks = 1;
4416 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4417 tp->selective_acks[0].end_seq =
4418 TCP_SKB_CB(skb)->end_seq;
4420 __skb_queue_head(&tp->out_of_order_queue, skb);
4421 goto end;
4424 seq = TCP_SKB_CB(skb)->seq;
4425 end_seq = TCP_SKB_CB(skb)->end_seq;
4427 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4428 bool fragstolen;
4430 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4431 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4432 } else {
4433 tcp_grow_window(sk, skb);
4434 kfree_skb_partial(skb, fragstolen);
4435 skb = NULL;
4438 if (!tp->rx_opt.num_sacks ||
4439 tp->selective_acks[0].end_seq != seq)
4440 goto add_sack;
4442 /* Common case: data arrive in order after hole. */
4443 tp->selective_acks[0].end_seq = end_seq;
4444 goto end;
4447 /* Find place to insert this segment. */
4448 while (1) {
4449 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4450 break;
4451 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4452 skb1 = NULL;
4453 break;
4455 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4458 /* Do skb overlap to previous one? */
4459 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4460 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4461 /* All the bits are present. Drop. */
4462 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4463 __kfree_skb(skb);
4464 skb = NULL;
4465 tcp_dsack_set(sk, seq, end_seq);
4466 goto add_sack;
4468 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4469 /* Partial overlap. */
4470 tcp_dsack_set(sk, seq,
4471 TCP_SKB_CB(skb1)->end_seq);
4472 } else {
4473 if (skb_queue_is_first(&tp->out_of_order_queue,
4474 skb1))
4475 skb1 = NULL;
4476 else
4477 skb1 = skb_queue_prev(
4478 &tp->out_of_order_queue,
4479 skb1);
4482 if (!skb1)
4483 __skb_queue_head(&tp->out_of_order_queue, skb);
4484 else
4485 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4487 /* And clean segments covered by new one as whole. */
4488 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4489 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4491 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4492 break;
4493 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4494 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4495 end_seq);
4496 break;
4498 __skb_unlink(skb1, &tp->out_of_order_queue);
4499 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4500 TCP_SKB_CB(skb1)->end_seq);
4501 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4502 __kfree_skb(skb1);
4505 add_sack:
4506 if (tcp_is_sack(tp))
4507 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4508 end:
4509 if (skb) {
4510 tcp_grow_window(sk, skb);
4511 skb_set_owner_r(skb, sk);
4515 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4516 bool *fragstolen)
4518 int eaten;
4519 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4521 __skb_pull(skb, hdrlen);
4522 eaten = (tail &&
4523 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4524 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4525 if (!eaten) {
4526 __skb_queue_tail(&sk->sk_receive_queue, skb);
4527 skb_set_owner_r(skb, sk);
4529 return eaten;
4532 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4534 struct sk_buff *skb;
4535 int err = -ENOMEM;
4536 int data_len = 0;
4537 bool fragstolen;
4539 if (size == 0)
4540 return 0;
4542 if (size > PAGE_SIZE) {
4543 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4545 data_len = npages << PAGE_SHIFT;
4546 size = data_len + (size & ~PAGE_MASK);
4548 skb = alloc_skb_with_frags(size - data_len, data_len,
4549 PAGE_ALLOC_COSTLY_ORDER,
4550 &err, sk->sk_allocation);
4551 if (!skb)
4552 goto err;
4554 skb_put(skb, size - data_len);
4555 skb->data_len = data_len;
4556 skb->len = size;
4558 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4559 goto err_free;
4561 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4562 if (err)
4563 goto err_free;
4565 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4566 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4567 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4569 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4570 WARN_ON_ONCE(fragstolen); /* should not happen */
4571 __kfree_skb(skb);
4573 return size;
4575 err_free:
4576 kfree_skb(skb);
4577 err:
4578 return err;
4582 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4584 struct tcp_sock *tp = tcp_sk(sk);
4585 int eaten = -1;
4586 bool fragstolen = false;
4588 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4589 goto drop;
4591 skb_dst_drop(skb);
4592 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4594 tcp_ecn_accept_cwr(tp, skb);
4596 tp->rx_opt.dsack = 0;
4598 /* Queue data for delivery to the user.
4599 * Packets in sequence go to the receive queue.
4600 * Out of sequence packets to the out_of_order_queue.
4602 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4603 if (tcp_receive_window(tp) == 0)
4604 goto out_of_window;
4606 /* Ok. In sequence. In window. */
4607 if (tp->ucopy.task == current &&
4608 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4609 sock_owned_by_user(sk) && !tp->urg_data) {
4610 int chunk = min_t(unsigned int, skb->len,
4611 tp->ucopy.len);
4613 __set_current_state(TASK_RUNNING);
4615 local_bh_enable();
4616 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4617 tp->ucopy.len -= chunk;
4618 tp->copied_seq += chunk;
4619 eaten = (chunk == skb->len);
4620 tcp_rcv_space_adjust(sk);
4622 local_bh_disable();
4625 if (eaten <= 0) {
4626 queue_and_out:
4627 if (eaten < 0) {
4628 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4629 sk_forced_mem_schedule(sk, skb->truesize);
4630 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4631 goto drop;
4633 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4635 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4636 if (skb->len)
4637 tcp_event_data_recv(sk, skb);
4638 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4639 tcp_fin(sk);
4641 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4642 tcp_ofo_queue(sk);
4644 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4645 * gap in queue is filled.
4647 if (skb_queue_empty(&tp->out_of_order_queue))
4648 inet_csk(sk)->icsk_ack.pingpong = 0;
4651 if (tp->rx_opt.num_sacks)
4652 tcp_sack_remove(tp);
4654 tcp_fast_path_check(sk);
4656 if (eaten > 0)
4657 kfree_skb_partial(skb, fragstolen);
4658 if (!sock_flag(sk, SOCK_DEAD))
4659 sk->sk_data_ready(sk);
4660 return;
4663 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4664 /* A retransmit, 2nd most common case. Force an immediate ack. */
4665 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4666 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4668 out_of_window:
4669 tcp_enter_quickack_mode(sk);
4670 inet_csk_schedule_ack(sk);
4671 drop:
4672 __kfree_skb(skb);
4673 return;
4676 /* Out of window. F.e. zero window probe. */
4677 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4678 goto out_of_window;
4680 tcp_enter_quickack_mode(sk);
4682 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4683 /* Partial packet, seq < rcv_next < end_seq */
4684 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4685 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4686 TCP_SKB_CB(skb)->end_seq);
4688 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4690 /* If window is closed, drop tail of packet. But after
4691 * remembering D-SACK for its head made in previous line.
4693 if (!tcp_receive_window(tp))
4694 goto out_of_window;
4695 goto queue_and_out;
4698 tcp_data_queue_ofo(sk, skb);
4701 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4702 struct sk_buff_head *list)
4704 struct sk_buff *next = NULL;
4706 if (!skb_queue_is_last(list, skb))
4707 next = skb_queue_next(list, skb);
4709 __skb_unlink(skb, list);
4710 __kfree_skb(skb);
4711 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4713 return next;
4716 /* Collapse contiguous sequence of skbs head..tail with
4717 * sequence numbers start..end.
4719 * If tail is NULL, this means until the end of the list.
4721 * Segments with FIN/SYN are not collapsed (only because this
4722 * simplifies code)
4724 static void
4725 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4726 struct sk_buff *head, struct sk_buff *tail,
4727 u32 start, u32 end)
4729 struct sk_buff *skb, *n;
4730 bool end_of_skbs;
4732 /* First, check that queue is collapsible and find
4733 * the point where collapsing can be useful. */
4734 skb = head;
4735 restart:
4736 end_of_skbs = true;
4737 skb_queue_walk_from_safe(list, skb, n) {
4738 if (skb == tail)
4739 break;
4740 /* No new bits? It is possible on ofo queue. */
4741 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4742 skb = tcp_collapse_one(sk, skb, list);
4743 if (!skb)
4744 break;
4745 goto restart;
4748 /* The first skb to collapse is:
4749 * - not SYN/FIN and
4750 * - bloated or contains data before "start" or
4751 * overlaps to the next one.
4753 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4754 (tcp_win_from_space(skb->truesize) > skb->len ||
4755 before(TCP_SKB_CB(skb)->seq, start))) {
4756 end_of_skbs = false;
4757 break;
4760 if (!skb_queue_is_last(list, skb)) {
4761 struct sk_buff *next = skb_queue_next(list, skb);
4762 if (next != tail &&
4763 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4764 end_of_skbs = false;
4765 break;
4769 /* Decided to skip this, advance start seq. */
4770 start = TCP_SKB_CB(skb)->end_seq;
4772 if (end_of_skbs ||
4773 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4774 return;
4776 while (before(start, end)) {
4777 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4778 struct sk_buff *nskb;
4780 nskb = alloc_skb(copy, GFP_ATOMIC);
4781 if (!nskb)
4782 return;
4784 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4785 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4786 __skb_queue_before(list, skb, nskb);
4787 skb_set_owner_r(nskb, sk);
4789 /* Copy data, releasing collapsed skbs. */
4790 while (copy > 0) {
4791 int offset = start - TCP_SKB_CB(skb)->seq;
4792 int size = TCP_SKB_CB(skb)->end_seq - start;
4794 BUG_ON(offset < 0);
4795 if (size > 0) {
4796 size = min(copy, size);
4797 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4798 BUG();
4799 TCP_SKB_CB(nskb)->end_seq += size;
4800 copy -= size;
4801 start += size;
4803 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4804 skb = tcp_collapse_one(sk, skb, list);
4805 if (!skb ||
4806 skb == tail ||
4807 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4808 return;
4814 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4815 * and tcp_collapse() them until all the queue is collapsed.
4817 static void tcp_collapse_ofo_queue(struct sock *sk)
4819 struct tcp_sock *tp = tcp_sk(sk);
4820 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4821 struct sk_buff *head;
4822 u32 start, end;
4824 if (!skb)
4825 return;
4827 start = TCP_SKB_CB(skb)->seq;
4828 end = TCP_SKB_CB(skb)->end_seq;
4829 head = skb;
4831 for (;;) {
4832 struct sk_buff *next = NULL;
4834 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4835 next = skb_queue_next(&tp->out_of_order_queue, skb);
4836 skb = next;
4838 /* Segment is terminated when we see gap or when
4839 * we are at the end of all the queue. */
4840 if (!skb ||
4841 after(TCP_SKB_CB(skb)->seq, end) ||
4842 before(TCP_SKB_CB(skb)->end_seq, start)) {
4843 tcp_collapse(sk, &tp->out_of_order_queue,
4844 head, skb, start, end);
4845 head = skb;
4846 if (!skb)
4847 break;
4848 /* Start new segment */
4849 start = TCP_SKB_CB(skb)->seq;
4850 end = TCP_SKB_CB(skb)->end_seq;
4851 } else {
4852 if (before(TCP_SKB_CB(skb)->seq, start))
4853 start = TCP_SKB_CB(skb)->seq;
4854 if (after(TCP_SKB_CB(skb)->end_seq, end))
4855 end = TCP_SKB_CB(skb)->end_seq;
4861 * Purge the out-of-order queue.
4862 * Return true if queue was pruned.
4864 static bool tcp_prune_ofo_queue(struct sock *sk)
4866 struct tcp_sock *tp = tcp_sk(sk);
4867 bool res = false;
4869 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4870 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4871 __skb_queue_purge(&tp->out_of_order_queue);
4873 /* Reset SACK state. A conforming SACK implementation will
4874 * do the same at a timeout based retransmit. When a connection
4875 * is in a sad state like this, we care only about integrity
4876 * of the connection not performance.
4878 if (tp->rx_opt.sack_ok)
4879 tcp_sack_reset(&tp->rx_opt);
4880 sk_mem_reclaim(sk);
4881 res = true;
4883 return res;
4886 /* Reduce allocated memory if we can, trying to get
4887 * the socket within its memory limits again.
4889 * Return less than zero if we should start dropping frames
4890 * until the socket owning process reads some of the data
4891 * to stabilize the situation.
4893 static int tcp_prune_queue(struct sock *sk)
4895 struct tcp_sock *tp = tcp_sk(sk);
4897 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4899 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4901 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4902 tcp_clamp_window(sk);
4903 else if (tcp_under_memory_pressure(sk))
4904 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4906 tcp_collapse_ofo_queue(sk);
4907 if (!skb_queue_empty(&sk->sk_receive_queue))
4908 tcp_collapse(sk, &sk->sk_receive_queue,
4909 skb_peek(&sk->sk_receive_queue),
4910 NULL,
4911 tp->copied_seq, tp->rcv_nxt);
4912 sk_mem_reclaim(sk);
4914 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4915 return 0;
4917 /* Collapsing did not help, destructive actions follow.
4918 * This must not ever occur. */
4920 tcp_prune_ofo_queue(sk);
4922 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4923 return 0;
4925 /* If we are really being abused, tell the caller to silently
4926 * drop receive data on the floor. It will get retransmitted
4927 * and hopefully then we'll have sufficient space.
4929 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4931 /* Massive buffer overcommit. */
4932 tp->pred_flags = 0;
4933 return -1;
4936 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4938 const struct tcp_sock *tp = tcp_sk(sk);
4940 /* If the user specified a specific send buffer setting, do
4941 * not modify it.
4943 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4944 return false;
4946 /* If we are under global TCP memory pressure, do not expand. */
4947 if (tcp_under_memory_pressure(sk))
4948 return false;
4950 /* If we are under soft global TCP memory pressure, do not expand. */
4951 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4952 return false;
4954 /* If we filled the congestion window, do not expand. */
4955 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4956 return false;
4958 return true;
4961 /* When incoming ACK allowed to free some skb from write_queue,
4962 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4963 * on the exit from tcp input handler.
4965 * PROBLEM: sndbuf expansion does not work well with largesend.
4967 static void tcp_new_space(struct sock *sk)
4969 struct tcp_sock *tp = tcp_sk(sk);
4971 if (tcp_should_expand_sndbuf(sk)) {
4972 tcp_sndbuf_expand(sk);
4973 tp->snd_cwnd_stamp = tcp_time_stamp;
4976 sk->sk_write_space(sk);
4979 static void tcp_check_space(struct sock *sk)
4981 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4982 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4983 /* pairs with tcp_poll() */
4984 smp_mb__after_atomic();
4985 if (sk->sk_socket &&
4986 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4987 tcp_new_space(sk);
4991 static inline void tcp_data_snd_check(struct sock *sk)
4993 tcp_push_pending_frames(sk);
4994 tcp_check_space(sk);
4998 * Check if sending an ack is needed.
5000 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5002 struct tcp_sock *tp = tcp_sk(sk);
5004 /* More than one full frame received... */
5005 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5006 /* ... and right edge of window advances far enough.
5007 * (tcp_recvmsg() will send ACK otherwise). Or...
5009 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5010 /* We ACK each frame or... */
5011 tcp_in_quickack_mode(sk) ||
5012 /* We have out of order data. */
5013 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5014 /* Then ack it now */
5015 tcp_send_ack(sk);
5016 } else {
5017 /* Else, send delayed ack. */
5018 tcp_send_delayed_ack(sk);
5022 static inline void tcp_ack_snd_check(struct sock *sk)
5024 if (!inet_csk_ack_scheduled(sk)) {
5025 /* We sent a data segment already. */
5026 return;
5028 __tcp_ack_snd_check(sk, 1);
5032 * This routine is only called when we have urgent data
5033 * signaled. Its the 'slow' part of tcp_urg. It could be
5034 * moved inline now as tcp_urg is only called from one
5035 * place. We handle URGent data wrong. We have to - as
5036 * BSD still doesn't use the correction from RFC961.
5037 * For 1003.1g we should support a new option TCP_STDURG to permit
5038 * either form (or just set the sysctl tcp_stdurg).
5041 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5043 struct tcp_sock *tp = tcp_sk(sk);
5044 u32 ptr = ntohs(th->urg_ptr);
5046 if (ptr && !sysctl_tcp_stdurg)
5047 ptr--;
5048 ptr += ntohl(th->seq);
5050 /* Ignore urgent data that we've already seen and read. */
5051 if (after(tp->copied_seq, ptr))
5052 return;
5054 /* Do not replay urg ptr.
5056 * NOTE: interesting situation not covered by specs.
5057 * Misbehaving sender may send urg ptr, pointing to segment,
5058 * which we already have in ofo queue. We are not able to fetch
5059 * such data and will stay in TCP_URG_NOTYET until will be eaten
5060 * by recvmsg(). Seems, we are not obliged to handle such wicked
5061 * situations. But it is worth to think about possibility of some
5062 * DoSes using some hypothetical application level deadlock.
5064 if (before(ptr, tp->rcv_nxt))
5065 return;
5067 /* Do we already have a newer (or duplicate) urgent pointer? */
5068 if (tp->urg_data && !after(ptr, tp->urg_seq))
5069 return;
5071 /* Tell the world about our new urgent pointer. */
5072 sk_send_sigurg(sk);
5074 /* We may be adding urgent data when the last byte read was
5075 * urgent. To do this requires some care. We cannot just ignore
5076 * tp->copied_seq since we would read the last urgent byte again
5077 * as data, nor can we alter copied_seq until this data arrives
5078 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5080 * NOTE. Double Dutch. Rendering to plain English: author of comment
5081 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5082 * and expect that both A and B disappear from stream. This is _wrong_.
5083 * Though this happens in BSD with high probability, this is occasional.
5084 * Any application relying on this is buggy. Note also, that fix "works"
5085 * only in this artificial test. Insert some normal data between A and B and we will
5086 * decline of BSD again. Verdict: it is better to remove to trap
5087 * buggy users.
5089 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5090 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5091 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5092 tp->copied_seq++;
5093 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5094 __skb_unlink(skb, &sk->sk_receive_queue);
5095 __kfree_skb(skb);
5099 tp->urg_data = TCP_URG_NOTYET;
5100 tp->urg_seq = ptr;
5102 /* Disable header prediction. */
5103 tp->pred_flags = 0;
5106 /* This is the 'fast' part of urgent handling. */
5107 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5109 struct tcp_sock *tp = tcp_sk(sk);
5111 /* Check if we get a new urgent pointer - normally not. */
5112 if (th->urg)
5113 tcp_check_urg(sk, th);
5115 /* Do we wait for any urgent data? - normally not... */
5116 if (tp->urg_data == TCP_URG_NOTYET) {
5117 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5118 th->syn;
5120 /* Is the urgent pointer pointing into this packet? */
5121 if (ptr < skb->len) {
5122 u8 tmp;
5123 if (skb_copy_bits(skb, ptr, &tmp, 1))
5124 BUG();
5125 tp->urg_data = TCP_URG_VALID | tmp;
5126 if (!sock_flag(sk, SOCK_DEAD))
5127 sk->sk_data_ready(sk);
5132 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5134 struct tcp_sock *tp = tcp_sk(sk);
5135 int chunk = skb->len - hlen;
5136 int err;
5138 local_bh_enable();
5139 if (skb_csum_unnecessary(skb))
5140 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5141 else
5142 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5144 if (!err) {
5145 tp->ucopy.len -= chunk;
5146 tp->copied_seq += chunk;
5147 tcp_rcv_space_adjust(sk);
5150 local_bh_disable();
5151 return err;
5154 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5155 struct sk_buff *skb)
5157 __sum16 result;
5159 if (sock_owned_by_user(sk)) {
5160 local_bh_enable();
5161 result = __tcp_checksum_complete(skb);
5162 local_bh_disable();
5163 } else {
5164 result = __tcp_checksum_complete(skb);
5166 return result;
5169 static inline bool tcp_checksum_complete_user(struct sock *sk,
5170 struct sk_buff *skb)
5172 return !skb_csum_unnecessary(skb) &&
5173 __tcp_checksum_complete_user(sk, skb);
5176 /* Does PAWS and seqno based validation of an incoming segment, flags will
5177 * play significant role here.
5179 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5180 const struct tcphdr *th, int syn_inerr)
5182 struct tcp_sock *tp = tcp_sk(sk);
5184 /* RFC1323: H1. Apply PAWS check first. */
5185 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5186 tcp_paws_discard(sk, skb)) {
5187 if (!th->rst) {
5188 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5189 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5190 LINUX_MIB_TCPACKSKIPPEDPAWS,
5191 &tp->last_oow_ack_time))
5192 tcp_send_dupack(sk, skb);
5193 goto discard;
5195 /* Reset is accepted even if it did not pass PAWS. */
5198 /* Step 1: check sequence number */
5199 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5200 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5201 * (RST) segments are validated by checking their SEQ-fields."
5202 * And page 69: "If an incoming segment is not acceptable,
5203 * an acknowledgment should be sent in reply (unless the RST
5204 * bit is set, if so drop the segment and return)".
5206 if (!th->rst) {
5207 if (th->syn)
5208 goto syn_challenge;
5209 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5210 LINUX_MIB_TCPACKSKIPPEDSEQ,
5211 &tp->last_oow_ack_time))
5212 tcp_send_dupack(sk, skb);
5214 goto discard;
5217 /* Step 2: check RST bit */
5218 if (th->rst) {
5219 /* RFC 5961 3.2 :
5220 * If sequence number exactly matches RCV.NXT, then
5221 * RESET the connection
5222 * else
5223 * Send a challenge ACK
5225 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5226 tcp_reset(sk);
5227 else
5228 tcp_send_challenge_ack(sk, skb);
5229 goto discard;
5232 /* step 3: check security and precedence [ignored] */
5234 /* step 4: Check for a SYN
5235 * RFC 5961 4.2 : Send a challenge ack
5237 if (th->syn) {
5238 syn_challenge:
5239 if (syn_inerr)
5240 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5241 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5242 tcp_send_challenge_ack(sk, skb);
5243 goto discard;
5246 return true;
5248 discard:
5249 __kfree_skb(skb);
5250 return false;
5254 * TCP receive function for the ESTABLISHED state.
5256 * It is split into a fast path and a slow path. The fast path is
5257 * disabled when:
5258 * - A zero window was announced from us - zero window probing
5259 * is only handled properly in the slow path.
5260 * - Out of order segments arrived.
5261 * - Urgent data is expected.
5262 * - There is no buffer space left
5263 * - Unexpected TCP flags/window values/header lengths are received
5264 * (detected by checking the TCP header against pred_flags)
5265 * - Data is sent in both directions. Fast path only supports pure senders
5266 * or pure receivers (this means either the sequence number or the ack
5267 * value must stay constant)
5268 * - Unexpected TCP option.
5270 * When these conditions are not satisfied it drops into a standard
5271 * receive procedure patterned after RFC793 to handle all cases.
5272 * The first three cases are guaranteed by proper pred_flags setting,
5273 * the rest is checked inline. Fast processing is turned on in
5274 * tcp_data_queue when everything is OK.
5276 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5277 const struct tcphdr *th, unsigned int len)
5279 struct tcp_sock *tp = tcp_sk(sk);
5281 if (unlikely(!sk->sk_rx_dst))
5282 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5284 * Header prediction.
5285 * The code loosely follows the one in the famous
5286 * "30 instruction TCP receive" Van Jacobson mail.
5288 * Van's trick is to deposit buffers into socket queue
5289 * on a device interrupt, to call tcp_recv function
5290 * on the receive process context and checksum and copy
5291 * the buffer to user space. smart...
5293 * Our current scheme is not silly either but we take the
5294 * extra cost of the net_bh soft interrupt processing...
5295 * We do checksum and copy also but from device to kernel.
5298 tp->rx_opt.saw_tstamp = 0;
5300 /* pred_flags is 0xS?10 << 16 + snd_wnd
5301 * if header_prediction is to be made
5302 * 'S' will always be tp->tcp_header_len >> 2
5303 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5304 * turn it off (when there are holes in the receive
5305 * space for instance)
5306 * PSH flag is ignored.
5309 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5310 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5311 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5312 int tcp_header_len = tp->tcp_header_len;
5314 /* Timestamp header prediction: tcp_header_len
5315 * is automatically equal to th->doff*4 due to pred_flags
5316 * match.
5319 /* Check timestamp */
5320 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5321 /* No? Slow path! */
5322 if (!tcp_parse_aligned_timestamp(tp, th))
5323 goto slow_path;
5325 /* If PAWS failed, check it more carefully in slow path */
5326 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5327 goto slow_path;
5329 /* DO NOT update ts_recent here, if checksum fails
5330 * and timestamp was corrupted part, it will result
5331 * in a hung connection since we will drop all
5332 * future packets due to the PAWS test.
5336 if (len <= tcp_header_len) {
5337 /* Bulk data transfer: sender */
5338 if (len == tcp_header_len) {
5339 /* Predicted packet is in window by definition.
5340 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5341 * Hence, check seq<=rcv_wup reduces to:
5343 if (tcp_header_len ==
5344 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5345 tp->rcv_nxt == tp->rcv_wup)
5346 tcp_store_ts_recent(tp);
5348 /* We know that such packets are checksummed
5349 * on entry.
5351 tcp_ack(sk, skb, 0);
5352 __kfree_skb(skb);
5353 tcp_data_snd_check(sk);
5354 return;
5355 } else { /* Header too small */
5356 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5357 goto discard;
5359 } else {
5360 int eaten = 0;
5361 bool fragstolen = false;
5363 if (tp->ucopy.task == current &&
5364 tp->copied_seq == tp->rcv_nxt &&
5365 len - tcp_header_len <= tp->ucopy.len &&
5366 sock_owned_by_user(sk)) {
5367 __set_current_state(TASK_RUNNING);
5369 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5370 /* Predicted packet is in window by definition.
5371 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5372 * Hence, check seq<=rcv_wup reduces to:
5374 if (tcp_header_len ==
5375 (sizeof(struct tcphdr) +
5376 TCPOLEN_TSTAMP_ALIGNED) &&
5377 tp->rcv_nxt == tp->rcv_wup)
5378 tcp_store_ts_recent(tp);
5380 tcp_rcv_rtt_measure_ts(sk, skb);
5382 __skb_pull(skb, tcp_header_len);
5383 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5384 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5385 eaten = 1;
5388 if (!eaten) {
5389 if (tcp_checksum_complete_user(sk, skb))
5390 goto csum_error;
5392 if ((int)skb->truesize > sk->sk_forward_alloc)
5393 goto step5;
5395 /* Predicted packet is in window by definition.
5396 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5397 * Hence, check seq<=rcv_wup reduces to:
5399 if (tcp_header_len ==
5400 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5401 tp->rcv_nxt == tp->rcv_wup)
5402 tcp_store_ts_recent(tp);
5404 tcp_rcv_rtt_measure_ts(sk, skb);
5406 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5408 /* Bulk data transfer: receiver */
5409 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5410 &fragstolen);
5413 tcp_event_data_recv(sk, skb);
5415 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5416 /* Well, only one small jumplet in fast path... */
5417 tcp_ack(sk, skb, FLAG_DATA);
5418 tcp_data_snd_check(sk);
5419 if (!inet_csk_ack_scheduled(sk))
5420 goto no_ack;
5423 __tcp_ack_snd_check(sk, 0);
5424 no_ack:
5425 if (eaten)
5426 kfree_skb_partial(skb, fragstolen);
5427 sk->sk_data_ready(sk);
5428 return;
5432 slow_path:
5433 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5434 goto csum_error;
5436 if (!th->ack && !th->rst && !th->syn)
5437 goto discard;
5440 * Standard slow path.
5443 if (!tcp_validate_incoming(sk, skb, th, 1))
5444 return;
5446 step5:
5447 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5448 goto discard;
5450 tcp_rcv_rtt_measure_ts(sk, skb);
5452 /* Process urgent data. */
5453 tcp_urg(sk, skb, th);
5455 /* step 7: process the segment text */
5456 tcp_data_queue(sk, skb);
5458 tcp_data_snd_check(sk);
5459 tcp_ack_snd_check(sk);
5460 return;
5462 csum_error:
5463 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5464 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5466 discard:
5467 __kfree_skb(skb);
5469 EXPORT_SYMBOL(tcp_rcv_established);
5471 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5473 struct tcp_sock *tp = tcp_sk(sk);
5474 struct inet_connection_sock *icsk = inet_csk(sk);
5476 tcp_set_state(sk, TCP_ESTABLISHED);
5478 if (skb) {
5479 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5480 security_inet_conn_established(sk, skb);
5483 /* Make sure socket is routed, for correct metrics. */
5484 icsk->icsk_af_ops->rebuild_header(sk);
5486 tcp_init_metrics(sk);
5488 tcp_init_congestion_control(sk);
5490 /* Prevent spurious tcp_cwnd_restart() on first data
5491 * packet.
5493 tp->lsndtime = tcp_time_stamp;
5495 tcp_init_buffer_space(sk);
5497 if (sock_flag(sk, SOCK_KEEPOPEN))
5498 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5500 if (!tp->rx_opt.snd_wscale)
5501 __tcp_fast_path_on(tp, tp->snd_wnd);
5502 else
5503 tp->pred_flags = 0;
5505 if (!sock_flag(sk, SOCK_DEAD)) {
5506 sk->sk_state_change(sk);
5507 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5511 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5512 struct tcp_fastopen_cookie *cookie)
5514 struct tcp_sock *tp = tcp_sk(sk);
5515 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5516 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5517 bool syn_drop = false;
5519 if (mss == tp->rx_opt.user_mss) {
5520 struct tcp_options_received opt;
5522 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5523 tcp_clear_options(&opt);
5524 opt.user_mss = opt.mss_clamp = 0;
5525 tcp_parse_options(synack, &opt, 0, NULL);
5526 mss = opt.mss_clamp;
5529 if (!tp->syn_fastopen) {
5530 /* Ignore an unsolicited cookie */
5531 cookie->len = -1;
5532 } else if (tp->total_retrans) {
5533 /* SYN timed out and the SYN-ACK neither has a cookie nor
5534 * acknowledges data. Presumably the remote received only
5535 * the retransmitted (regular) SYNs: either the original
5536 * SYN-data or the corresponding SYN-ACK was dropped.
5538 syn_drop = (cookie->len < 0 && data);
5539 } else if (cookie->len < 0 && !tp->syn_data) {
5540 /* We requested a cookie but didn't get it. If we did not use
5541 * the (old) exp opt format then try so next time (try_exp=1).
5542 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5544 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5547 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5549 if (data) { /* Retransmit unacked data in SYN */
5550 tcp_for_write_queue_from(data, sk) {
5551 if (data == tcp_send_head(sk) ||
5552 __tcp_retransmit_skb(sk, data))
5553 break;
5555 tcp_rearm_rto(sk);
5556 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5557 return true;
5559 tp->syn_data_acked = tp->syn_data;
5560 if (tp->syn_data_acked)
5561 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5563 tcp_fastopen_add_skb(sk, synack);
5565 return false;
5568 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5569 const struct tcphdr *th)
5571 struct inet_connection_sock *icsk = inet_csk(sk);
5572 struct tcp_sock *tp = tcp_sk(sk);
5573 struct tcp_fastopen_cookie foc = { .len = -1 };
5574 int saved_clamp = tp->rx_opt.mss_clamp;
5576 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5577 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5578 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5580 if (th->ack) {
5581 /* rfc793:
5582 * "If the state is SYN-SENT then
5583 * first check the ACK bit
5584 * If the ACK bit is set
5585 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5586 * a reset (unless the RST bit is set, if so drop
5587 * the segment and return)"
5589 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5590 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5591 goto reset_and_undo;
5593 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5594 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5595 tcp_time_stamp)) {
5596 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5597 goto reset_and_undo;
5600 /* Now ACK is acceptable.
5602 * "If the RST bit is set
5603 * If the ACK was acceptable then signal the user "error:
5604 * connection reset", drop the segment, enter CLOSED state,
5605 * delete TCB, and return."
5608 if (th->rst) {
5609 tcp_reset(sk);
5610 goto discard;
5613 /* rfc793:
5614 * "fifth, if neither of the SYN or RST bits is set then
5615 * drop the segment and return."
5617 * See note below!
5618 * --ANK(990513)
5620 if (!th->syn)
5621 goto discard_and_undo;
5623 /* rfc793:
5624 * "If the SYN bit is on ...
5625 * are acceptable then ...
5626 * (our SYN has been ACKed), change the connection
5627 * state to ESTABLISHED..."
5630 tcp_ecn_rcv_synack(tp, th);
5632 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5633 tcp_ack(sk, skb, FLAG_SLOWPATH);
5635 /* Ok.. it's good. Set up sequence numbers and
5636 * move to established.
5638 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5639 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5641 /* RFC1323: The window in SYN & SYN/ACK segments is
5642 * never scaled.
5644 tp->snd_wnd = ntohs(th->window);
5646 if (!tp->rx_opt.wscale_ok) {
5647 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5648 tp->window_clamp = min(tp->window_clamp, 65535U);
5651 if (tp->rx_opt.saw_tstamp) {
5652 tp->rx_opt.tstamp_ok = 1;
5653 tp->tcp_header_len =
5654 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5655 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5656 tcp_store_ts_recent(tp);
5657 } else {
5658 tp->tcp_header_len = sizeof(struct tcphdr);
5661 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5662 tcp_enable_fack(tp);
5664 tcp_mtup_init(sk);
5665 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5666 tcp_initialize_rcv_mss(sk);
5668 /* Remember, tcp_poll() does not lock socket!
5669 * Change state from SYN-SENT only after copied_seq
5670 * is initialized. */
5671 tp->copied_seq = tp->rcv_nxt;
5673 smp_mb();
5675 tcp_finish_connect(sk, skb);
5677 if ((tp->syn_fastopen || tp->syn_data) &&
5678 tcp_rcv_fastopen_synack(sk, skb, &foc))
5679 return -1;
5681 if (sk->sk_write_pending ||
5682 icsk->icsk_accept_queue.rskq_defer_accept ||
5683 icsk->icsk_ack.pingpong) {
5684 /* Save one ACK. Data will be ready after
5685 * several ticks, if write_pending is set.
5687 * It may be deleted, but with this feature tcpdumps
5688 * look so _wonderfully_ clever, that I was not able
5689 * to stand against the temptation 8) --ANK
5691 inet_csk_schedule_ack(sk);
5692 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5693 tcp_enter_quickack_mode(sk);
5694 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5695 TCP_DELACK_MAX, TCP_RTO_MAX);
5697 discard:
5698 __kfree_skb(skb);
5699 return 0;
5700 } else {
5701 tcp_send_ack(sk);
5703 return -1;
5706 /* No ACK in the segment */
5708 if (th->rst) {
5709 /* rfc793:
5710 * "If the RST bit is set
5712 * Otherwise (no ACK) drop the segment and return."
5715 goto discard_and_undo;
5718 /* PAWS check. */
5719 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5720 tcp_paws_reject(&tp->rx_opt, 0))
5721 goto discard_and_undo;
5723 if (th->syn) {
5724 /* We see SYN without ACK. It is attempt of
5725 * simultaneous connect with crossed SYNs.
5726 * Particularly, it can be connect to self.
5728 tcp_set_state(sk, TCP_SYN_RECV);
5730 if (tp->rx_opt.saw_tstamp) {
5731 tp->rx_opt.tstamp_ok = 1;
5732 tcp_store_ts_recent(tp);
5733 tp->tcp_header_len =
5734 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5735 } else {
5736 tp->tcp_header_len = sizeof(struct tcphdr);
5739 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5740 tp->copied_seq = tp->rcv_nxt;
5741 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5743 /* RFC1323: The window in SYN & SYN/ACK segments is
5744 * never scaled.
5746 tp->snd_wnd = ntohs(th->window);
5747 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5748 tp->max_window = tp->snd_wnd;
5750 tcp_ecn_rcv_syn(tp, th);
5752 tcp_mtup_init(sk);
5753 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5754 tcp_initialize_rcv_mss(sk);
5756 tcp_send_synack(sk);
5757 #if 0
5758 /* Note, we could accept data and URG from this segment.
5759 * There are no obstacles to make this (except that we must
5760 * either change tcp_recvmsg() to prevent it from returning data
5761 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5763 * However, if we ignore data in ACKless segments sometimes,
5764 * we have no reasons to accept it sometimes.
5765 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5766 * is not flawless. So, discard packet for sanity.
5767 * Uncomment this return to process the data.
5769 return -1;
5770 #else
5771 goto discard;
5772 #endif
5774 /* "fifth, if neither of the SYN or RST bits is set then
5775 * drop the segment and return."
5778 discard_and_undo:
5779 tcp_clear_options(&tp->rx_opt);
5780 tp->rx_opt.mss_clamp = saved_clamp;
5781 goto discard;
5783 reset_and_undo:
5784 tcp_clear_options(&tp->rx_opt);
5785 tp->rx_opt.mss_clamp = saved_clamp;
5786 return 1;
5790 * This function implements the receiving procedure of RFC 793 for
5791 * all states except ESTABLISHED and TIME_WAIT.
5792 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5793 * address independent.
5796 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5798 struct tcp_sock *tp = tcp_sk(sk);
5799 struct inet_connection_sock *icsk = inet_csk(sk);
5800 const struct tcphdr *th = tcp_hdr(skb);
5801 struct request_sock *req;
5802 int queued = 0;
5803 bool acceptable;
5805 tp->rx_opt.saw_tstamp = 0;
5807 switch (sk->sk_state) {
5808 case TCP_CLOSE:
5809 goto discard;
5811 case TCP_LISTEN:
5812 if (th->ack)
5813 return 1;
5815 if (th->rst)
5816 goto discard;
5818 if (th->syn) {
5819 if (th->fin)
5820 goto discard;
5821 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5822 return 1;
5824 /* Now we have several options: In theory there is
5825 * nothing else in the frame. KA9Q has an option to
5826 * send data with the syn, BSD accepts data with the
5827 * syn up to the [to be] advertised window and
5828 * Solaris 2.1 gives you a protocol error. For now
5829 * we just ignore it, that fits the spec precisely
5830 * and avoids incompatibilities. It would be nice in
5831 * future to drop through and process the data.
5833 * Now that TTCP is starting to be used we ought to
5834 * queue this data.
5835 * But, this leaves one open to an easy denial of
5836 * service attack, and SYN cookies can't defend
5837 * against this problem. So, we drop the data
5838 * in the interest of security over speed unless
5839 * it's still in use.
5841 kfree_skb(skb);
5842 return 0;
5844 goto discard;
5846 case TCP_SYN_SENT:
5847 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5848 if (queued >= 0)
5849 return queued;
5851 /* Do step6 onward by hand. */
5852 tcp_urg(sk, skb, th);
5853 __kfree_skb(skb);
5854 tcp_data_snd_check(sk);
5855 return 0;
5858 req = tp->fastopen_rsk;
5859 if (req) {
5860 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5861 sk->sk_state != TCP_FIN_WAIT1);
5863 if (!tcp_check_req(sk, skb, req, true))
5864 goto discard;
5867 if (!th->ack && !th->rst && !th->syn)
5868 goto discard;
5870 if (!tcp_validate_incoming(sk, skb, th, 0))
5871 return 0;
5873 /* step 5: check the ACK field */
5874 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5875 FLAG_UPDATE_TS_RECENT) > 0;
5877 switch (sk->sk_state) {
5878 case TCP_SYN_RECV:
5879 if (!acceptable)
5880 return 1;
5882 if (!tp->srtt_us)
5883 tcp_synack_rtt_meas(sk, req);
5885 /* Once we leave TCP_SYN_RECV, we no longer need req
5886 * so release it.
5888 if (req) {
5889 tp->total_retrans = req->num_retrans;
5890 reqsk_fastopen_remove(sk, req, false);
5891 } else {
5892 /* Make sure socket is routed, for correct metrics. */
5893 icsk->icsk_af_ops->rebuild_header(sk);
5894 tcp_init_congestion_control(sk);
5896 tcp_mtup_init(sk);
5897 tp->copied_seq = tp->rcv_nxt;
5898 tcp_init_buffer_space(sk);
5900 smp_mb();
5901 tcp_set_state(sk, TCP_ESTABLISHED);
5902 sk->sk_state_change(sk);
5904 /* Note, that this wakeup is only for marginal crossed SYN case.
5905 * Passively open sockets are not waked up, because
5906 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5908 if (sk->sk_socket)
5909 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5911 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5912 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5913 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5915 if (tp->rx_opt.tstamp_ok)
5916 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5918 if (req) {
5919 /* Re-arm the timer because data may have been sent out.
5920 * This is similar to the regular data transmission case
5921 * when new data has just been ack'ed.
5923 * (TFO) - we could try to be more aggressive and
5924 * retransmitting any data sooner based on when they
5925 * are sent out.
5927 tcp_rearm_rto(sk);
5928 } else
5929 tcp_init_metrics(sk);
5931 tcp_update_pacing_rate(sk);
5933 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5934 tp->lsndtime = tcp_time_stamp;
5936 tcp_initialize_rcv_mss(sk);
5937 tcp_fast_path_on(tp);
5938 break;
5940 case TCP_FIN_WAIT1: {
5941 struct dst_entry *dst;
5942 int tmo;
5944 /* If we enter the TCP_FIN_WAIT1 state and we are a
5945 * Fast Open socket and this is the first acceptable
5946 * ACK we have received, this would have acknowledged
5947 * our SYNACK so stop the SYNACK timer.
5949 if (req) {
5950 /* Return RST if ack_seq is invalid.
5951 * Note that RFC793 only says to generate a
5952 * DUPACK for it but for TCP Fast Open it seems
5953 * better to treat this case like TCP_SYN_RECV
5954 * above.
5956 if (!acceptable)
5957 return 1;
5958 /* We no longer need the request sock. */
5959 reqsk_fastopen_remove(sk, req, false);
5960 tcp_rearm_rto(sk);
5962 if (tp->snd_una != tp->write_seq)
5963 break;
5965 tcp_set_state(sk, TCP_FIN_WAIT2);
5966 sk->sk_shutdown |= SEND_SHUTDOWN;
5968 dst = __sk_dst_get(sk);
5969 if (dst)
5970 dst_confirm(dst);
5972 if (!sock_flag(sk, SOCK_DEAD)) {
5973 /* Wake up lingering close() */
5974 sk->sk_state_change(sk);
5975 break;
5978 if (tp->linger2 < 0 ||
5979 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5980 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5981 tcp_done(sk);
5982 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5983 return 1;
5986 tmo = tcp_fin_time(sk);
5987 if (tmo > TCP_TIMEWAIT_LEN) {
5988 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5989 } else if (th->fin || sock_owned_by_user(sk)) {
5990 /* Bad case. We could lose such FIN otherwise.
5991 * It is not a big problem, but it looks confusing
5992 * and not so rare event. We still can lose it now,
5993 * if it spins in bh_lock_sock(), but it is really
5994 * marginal case.
5996 inet_csk_reset_keepalive_timer(sk, tmo);
5997 } else {
5998 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5999 goto discard;
6001 break;
6004 case TCP_CLOSING:
6005 if (tp->snd_una == tp->write_seq) {
6006 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6007 goto discard;
6009 break;
6011 case TCP_LAST_ACK:
6012 if (tp->snd_una == tp->write_seq) {
6013 tcp_update_metrics(sk);
6014 tcp_done(sk);
6015 goto discard;
6017 break;
6020 /* step 6: check the URG bit */
6021 tcp_urg(sk, skb, th);
6023 /* step 7: process the segment text */
6024 switch (sk->sk_state) {
6025 case TCP_CLOSE_WAIT:
6026 case TCP_CLOSING:
6027 case TCP_LAST_ACK:
6028 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6029 break;
6030 case TCP_FIN_WAIT1:
6031 case TCP_FIN_WAIT2:
6032 /* RFC 793 says to queue data in these states,
6033 * RFC 1122 says we MUST send a reset.
6034 * BSD 4.4 also does reset.
6036 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6037 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6038 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6039 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6040 tcp_reset(sk);
6041 return 1;
6044 /* Fall through */
6045 case TCP_ESTABLISHED:
6046 tcp_data_queue(sk, skb);
6047 queued = 1;
6048 break;
6051 /* tcp_data could move socket to TIME-WAIT */
6052 if (sk->sk_state != TCP_CLOSE) {
6053 tcp_data_snd_check(sk);
6054 tcp_ack_snd_check(sk);
6057 if (!queued) {
6058 discard:
6059 __kfree_skb(skb);
6061 return 0;
6063 EXPORT_SYMBOL(tcp_rcv_state_process);
6065 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6067 struct inet_request_sock *ireq = inet_rsk(req);
6069 if (family == AF_INET)
6070 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6071 &ireq->ir_rmt_addr, port);
6072 #if IS_ENABLED(CONFIG_IPV6)
6073 else if (family == AF_INET6)
6074 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6075 &ireq->ir_v6_rmt_addr, port);
6076 #endif
6079 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6081 * If we receive a SYN packet with these bits set, it means a
6082 * network is playing bad games with TOS bits. In order to
6083 * avoid possible false congestion notifications, we disable
6084 * TCP ECN negotiation.
6086 * Exception: tcp_ca wants ECN. This is required for DCTCP
6087 * congestion control: Linux DCTCP asserts ECT on all packets,
6088 * including SYN, which is most optimal solution; however,
6089 * others, such as FreeBSD do not.
6091 static void tcp_ecn_create_request(struct request_sock *req,
6092 const struct sk_buff *skb,
6093 const struct sock *listen_sk,
6094 const struct dst_entry *dst)
6096 const struct tcphdr *th = tcp_hdr(skb);
6097 const struct net *net = sock_net(listen_sk);
6098 bool th_ecn = th->ece && th->cwr;
6099 bool ect, ecn_ok;
6100 u32 ecn_ok_dst;
6102 if (!th_ecn)
6103 return;
6105 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6106 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6107 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6109 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6110 (ecn_ok_dst & DST_FEATURE_ECN_CA))
6111 inet_rsk(req)->ecn_ok = 1;
6114 static void tcp_openreq_init(struct request_sock *req,
6115 const struct tcp_options_received *rx_opt,
6116 struct sk_buff *skb, const struct sock *sk)
6118 struct inet_request_sock *ireq = inet_rsk(req);
6120 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6121 req->cookie_ts = 0;
6122 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6123 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6124 skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6125 tcp_rsk(req)->last_oow_ack_time = 0;
6126 req->mss = rx_opt->mss_clamp;
6127 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6128 ireq->tstamp_ok = rx_opt->tstamp_ok;
6129 ireq->sack_ok = rx_opt->sack_ok;
6130 ireq->snd_wscale = rx_opt->snd_wscale;
6131 ireq->wscale_ok = rx_opt->wscale_ok;
6132 ireq->acked = 0;
6133 ireq->ecn_ok = 0;
6134 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6135 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6136 ireq->ir_mark = inet_request_mark(sk, skb);
6139 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6140 struct sock *sk_listener,
6141 bool attach_listener)
6143 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6144 attach_listener);
6146 if (req) {
6147 struct inet_request_sock *ireq = inet_rsk(req);
6149 kmemcheck_annotate_bitfield(ireq, flags);
6150 ireq->opt = NULL;
6151 atomic64_set(&ireq->ir_cookie, 0);
6152 ireq->ireq_state = TCP_NEW_SYN_RECV;
6153 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6154 ireq->ireq_family = sk_listener->sk_family;
6157 return req;
6159 EXPORT_SYMBOL(inet_reqsk_alloc);
6162 * Return true if a syncookie should be sent
6164 static bool tcp_syn_flood_action(const struct sock *sk,
6165 const struct sk_buff *skb,
6166 const char *proto)
6168 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6169 const char *msg = "Dropping request";
6170 bool want_cookie = false;
6171 struct net *net = sock_net(sk);
6173 #ifdef CONFIG_SYN_COOKIES
6174 if (net->ipv4.sysctl_tcp_syncookies) {
6175 msg = "Sending cookies";
6176 want_cookie = true;
6177 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6178 } else
6179 #endif
6180 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6182 if (!queue->synflood_warned &&
6183 net->ipv4.sysctl_tcp_syncookies != 2 &&
6184 xchg(&queue->synflood_warned, 1) == 0)
6185 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6186 proto, ntohs(tcp_hdr(skb)->dest), msg);
6188 return want_cookie;
6191 static void tcp_reqsk_record_syn(const struct sock *sk,
6192 struct request_sock *req,
6193 const struct sk_buff *skb)
6195 if (tcp_sk(sk)->save_syn) {
6196 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6197 u32 *copy;
6199 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6200 if (copy) {
6201 copy[0] = len;
6202 memcpy(&copy[1], skb_network_header(skb), len);
6203 req->saved_syn = copy;
6208 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6209 const struct tcp_request_sock_ops *af_ops,
6210 struct sock *sk, struct sk_buff *skb)
6212 struct tcp_fastopen_cookie foc = { .len = -1 };
6213 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6214 struct tcp_options_received tmp_opt;
6215 struct tcp_sock *tp = tcp_sk(sk);
6216 struct net *net = sock_net(sk);
6217 struct sock *fastopen_sk = NULL;
6218 struct dst_entry *dst = NULL;
6219 struct request_sock *req;
6220 bool want_cookie = false;
6221 struct flowi fl;
6223 /* TW buckets are converted to open requests without
6224 * limitations, they conserve resources and peer is
6225 * evidently real one.
6227 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6228 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6229 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6230 if (!want_cookie)
6231 goto drop;
6235 /* Accept backlog is full. If we have already queued enough
6236 * of warm entries in syn queue, drop request. It is better than
6237 * clogging syn queue with openreqs with exponentially increasing
6238 * timeout.
6240 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6241 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6242 goto drop;
6245 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6246 if (!req)
6247 goto drop;
6249 tcp_rsk(req)->af_specific = af_ops;
6251 tcp_clear_options(&tmp_opt);
6252 tmp_opt.mss_clamp = af_ops->mss_clamp;
6253 tmp_opt.user_mss = tp->rx_opt.user_mss;
6254 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6256 if (want_cookie && !tmp_opt.saw_tstamp)
6257 tcp_clear_options(&tmp_opt);
6259 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6260 tcp_openreq_init(req, &tmp_opt, skb, sk);
6262 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6263 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6265 af_ops->init_req(req, sk, skb);
6267 if (security_inet_conn_request(sk, skb, req))
6268 goto drop_and_free;
6270 if (!want_cookie && !isn) {
6271 /* VJ's idea. We save last timestamp seen
6272 * from the destination in peer table, when entering
6273 * state TIME-WAIT, and check against it before
6274 * accepting new connection request.
6276 * If "isn" is not zero, this request hit alive
6277 * timewait bucket, so that all the necessary checks
6278 * are made in the function processing timewait state.
6280 if (tcp_death_row.sysctl_tw_recycle) {
6281 bool strict;
6283 dst = af_ops->route_req(sk, &fl, req, &strict);
6285 if (dst && strict &&
6286 !tcp_peer_is_proven(req, dst, true,
6287 tmp_opt.saw_tstamp)) {
6288 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6289 goto drop_and_release;
6292 /* Kill the following clause, if you dislike this way. */
6293 else if (!net->ipv4.sysctl_tcp_syncookies &&
6294 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6295 (sysctl_max_syn_backlog >> 2)) &&
6296 !tcp_peer_is_proven(req, dst, false,
6297 tmp_opt.saw_tstamp)) {
6298 /* Without syncookies last quarter of
6299 * backlog is filled with destinations,
6300 * proven to be alive.
6301 * It means that we continue to communicate
6302 * to destinations, already remembered
6303 * to the moment of synflood.
6305 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6306 rsk_ops->family);
6307 goto drop_and_release;
6310 isn = af_ops->init_seq(skb);
6312 if (!dst) {
6313 dst = af_ops->route_req(sk, &fl, req, NULL);
6314 if (!dst)
6315 goto drop_and_free;
6318 tcp_ecn_create_request(req, skb, sk, dst);
6320 if (want_cookie) {
6321 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6322 req->cookie_ts = tmp_opt.tstamp_ok;
6323 if (!tmp_opt.tstamp_ok)
6324 inet_rsk(req)->ecn_ok = 0;
6327 tcp_rsk(req)->snt_isn = isn;
6328 tcp_rsk(req)->txhash = net_tx_rndhash();
6329 tcp_openreq_init_rwin(req, sk, dst);
6330 if (!want_cookie) {
6331 tcp_reqsk_record_syn(sk, req, skb);
6332 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6334 if (fastopen_sk) {
6335 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6336 &foc, false);
6337 /* Add the child socket directly into the accept queue */
6338 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6339 sk->sk_data_ready(sk);
6340 bh_unlock_sock(fastopen_sk);
6341 sock_put(fastopen_sk);
6342 } else {
6343 tcp_rsk(req)->tfo_listener = false;
6344 if (!want_cookie)
6345 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6346 af_ops->send_synack(sk, dst, &fl, req,
6347 &foc, !want_cookie);
6348 if (want_cookie)
6349 goto drop_and_free;
6351 reqsk_put(req);
6352 return 0;
6354 drop_and_release:
6355 dst_release(dst);
6356 drop_and_free:
6357 reqsk_free(req);
6358 drop:
6359 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6360 return 0;
6362 EXPORT_SYMBOL(tcp_conn_request);