2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 #include <linux/sizes.h>
45 /* When transmitting messages in rds_send_xmit, we need to emerge from
46 * time to time and briefly release the CPU. Otherwise the softlock watchdog
48 * Also, it seems fairer to not let one busy connection stall all the
51 * send_batch_count is the number of times we'll loop in send_xmit. Setting
52 * it to 0 will restore the old behavior (where we looped until we had
55 static int send_batch_count
= SZ_1K
;
56 module_param(send_batch_count
, int, 0444);
57 MODULE_PARM_DESC(send_batch_count
, " batch factor when working the send queue");
59 static void rds_send_remove_from_sock(struct list_head
*messages
, int status
);
62 * Reset the send state. Callers must ensure that this doesn't race with
65 void rds_send_reset(struct rds_connection
*conn
)
67 struct rds_message
*rm
, *tmp
;
70 if (conn
->c_xmit_rm
) {
72 conn
->c_xmit_rm
= NULL
;
73 /* Tell the user the RDMA op is no longer mapped by the
74 * transport. This isn't entirely true (it's flushed out
75 * independently) but as the connection is down, there's
76 * no ongoing RDMA to/from that memory */
77 rds_message_unmapped(rm
);
82 conn
->c_xmit_hdr_off
= 0;
83 conn
->c_xmit_data_off
= 0;
84 conn
->c_xmit_atomic_sent
= 0;
85 conn
->c_xmit_rdma_sent
= 0;
86 conn
->c_xmit_data_sent
= 0;
88 conn
->c_map_queued
= 0;
90 conn
->c_unacked_packets
= rds_sysctl_max_unacked_packets
;
91 conn
->c_unacked_bytes
= rds_sysctl_max_unacked_bytes
;
93 /* Mark messages as retransmissions, and move them to the send q */
94 spin_lock_irqsave(&conn
->c_lock
, flags
);
95 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
96 set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
97 set_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
);
99 list_splice_init(&conn
->c_retrans
, &conn
->c_send_queue
);
100 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
103 static int acquire_in_xmit(struct rds_connection
*conn
)
105 return test_and_set_bit(RDS_IN_XMIT
, &conn
->c_flags
) == 0;
108 static void release_in_xmit(struct rds_connection
*conn
)
110 clear_bit(RDS_IN_XMIT
, &conn
->c_flags
);
111 smp_mb__after_atomic();
113 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
114 * hot path and finding waiters is very rare. We don't want to walk
115 * the system-wide hashed waitqueue buckets in the fast path only to
116 * almost never find waiters.
118 if (waitqueue_active(&conn
->c_waitq
))
119 wake_up_all(&conn
->c_waitq
);
123 * We're making the conscious trade-off here to only send one message
124 * down the connection at a time.
126 * - tx queueing is a simple fifo list
127 * - reassembly is optional and easily done by transports per conn
128 * - no per flow rx lookup at all, straight to the socket
129 * - less per-frag memory and wire overhead
131 * - queued acks can be delayed behind large messages
133 * - small message latency is higher behind queued large messages
134 * - large message latency isn't starved by intervening small sends
136 int rds_send_xmit(struct rds_connection
*conn
)
138 struct rds_message
*rm
;
141 struct scatterlist
*sg
;
143 LIST_HEAD(to_be_dropped
);
145 unsigned long send_gen
= 0;
151 * sendmsg calls here after having queued its message on the send
152 * queue. We only have one task feeding the connection at a time. If
153 * another thread is already feeding the queue then we back off. This
154 * avoids blocking the caller and trading per-connection data between
155 * caches per message.
157 if (!acquire_in_xmit(conn
)) {
158 rds_stats_inc(s_send_lock_contention
);
164 * we record the send generation after doing the xmit acquire.
165 * if someone else manages to jump in and do some work, we'll use
166 * this to avoid a goto restart farther down.
168 * The acquire_in_xmit() check above ensures that only one
169 * caller can increment c_send_gen at any time.
172 send_gen
= conn
->c_send_gen
;
175 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
176 * we do the opposite to avoid races.
178 if (!rds_conn_up(conn
)) {
179 release_in_xmit(conn
);
184 if (conn
->c_trans
->xmit_prepare
)
185 conn
->c_trans
->xmit_prepare(conn
);
188 * spin trying to push headers and data down the connection until
189 * the connection doesn't make forward progress.
193 rm
= conn
->c_xmit_rm
;
196 * If between sending messages, we can send a pending congestion
199 if (!rm
&& test_and_clear_bit(0, &conn
->c_map_queued
)) {
200 rm
= rds_cong_update_alloc(conn
);
205 rm
->data
.op_active
= 1;
207 conn
->c_xmit_rm
= rm
;
211 * If not already working on one, grab the next message.
213 * c_xmit_rm holds a ref while we're sending this message down
214 * the connction. We can use this ref while holding the
215 * send_sem.. rds_send_reset() is serialized with it.
222 /* we want to process as big a batch as we can, but
223 * we also want to avoid softlockups. If we've been
224 * through a lot of messages, lets back off and see
225 * if anyone else jumps in
227 if (batch_count
>= send_batch_count
)
230 spin_lock_irqsave(&conn
->c_lock
, flags
);
232 if (!list_empty(&conn
->c_send_queue
)) {
233 rm
= list_entry(conn
->c_send_queue
.next
,
236 rds_message_addref(rm
);
239 * Move the message from the send queue to the retransmit
242 list_move_tail(&rm
->m_conn_item
, &conn
->c_retrans
);
245 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
250 /* Unfortunately, the way Infiniband deals with
251 * RDMA to a bad MR key is by moving the entire
252 * queue pair to error state. We cold possibly
253 * recover from that, but right now we drop the
255 * Therefore, we never retransmit messages with RDMA ops.
257 if (rm
->rdma
.op_active
&&
258 test_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
)) {
259 spin_lock_irqsave(&conn
->c_lock
, flags
);
260 if (test_and_clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
))
261 list_move(&rm
->m_conn_item
, &to_be_dropped
);
262 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
266 /* Require an ACK every once in a while */
267 len
= ntohl(rm
->m_inc
.i_hdr
.h_len
);
268 if (conn
->c_unacked_packets
== 0 ||
269 conn
->c_unacked_bytes
< len
) {
270 __set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
272 conn
->c_unacked_packets
= rds_sysctl_max_unacked_packets
;
273 conn
->c_unacked_bytes
= rds_sysctl_max_unacked_bytes
;
274 rds_stats_inc(s_send_ack_required
);
276 conn
->c_unacked_bytes
-= len
;
277 conn
->c_unacked_packets
--;
280 conn
->c_xmit_rm
= rm
;
283 /* The transport either sends the whole rdma or none of it */
284 if (rm
->rdma
.op_active
&& !conn
->c_xmit_rdma_sent
) {
285 rm
->m_final_op
= &rm
->rdma
;
286 /* The transport owns the mapped memory for now.
287 * You can't unmap it while it's on the send queue
289 set_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
290 ret
= conn
->c_trans
->xmit_rdma(conn
, &rm
->rdma
);
292 clear_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
293 wake_up_interruptible(&rm
->m_flush_wait
);
296 conn
->c_xmit_rdma_sent
= 1;
300 if (rm
->atomic
.op_active
&& !conn
->c_xmit_atomic_sent
) {
301 rm
->m_final_op
= &rm
->atomic
;
302 /* The transport owns the mapped memory for now.
303 * You can't unmap it while it's on the send queue
305 set_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
306 ret
= conn
->c_trans
->xmit_atomic(conn
, &rm
->atomic
);
308 clear_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
309 wake_up_interruptible(&rm
->m_flush_wait
);
312 conn
->c_xmit_atomic_sent
= 1;
317 * A number of cases require an RDS header to be sent
318 * even if there is no data.
319 * We permit 0-byte sends; rds-ping depends on this.
320 * However, if there are exclusively attached silent ops,
321 * we skip the hdr/data send, to enable silent operation.
323 if (rm
->data
.op_nents
== 0) {
325 int all_ops_are_silent
= 1;
327 ops_present
= (rm
->atomic
.op_active
|| rm
->rdma
.op_active
);
328 if (rm
->atomic
.op_active
&& !rm
->atomic
.op_silent
)
329 all_ops_are_silent
= 0;
330 if (rm
->rdma
.op_active
&& !rm
->rdma
.op_silent
)
331 all_ops_are_silent
= 0;
333 if (ops_present
&& all_ops_are_silent
334 && !rm
->m_rdma_cookie
)
335 rm
->data
.op_active
= 0;
338 if (rm
->data
.op_active
&& !conn
->c_xmit_data_sent
) {
339 rm
->m_final_op
= &rm
->data
;
340 ret
= conn
->c_trans
->xmit(conn
, rm
,
341 conn
->c_xmit_hdr_off
,
343 conn
->c_xmit_data_off
);
347 if (conn
->c_xmit_hdr_off
< sizeof(struct rds_header
)) {
348 tmp
= min_t(int, ret
,
349 sizeof(struct rds_header
) -
350 conn
->c_xmit_hdr_off
);
351 conn
->c_xmit_hdr_off
+= tmp
;
355 sg
= &rm
->data
.op_sg
[conn
->c_xmit_sg
];
357 tmp
= min_t(int, ret
, sg
->length
-
358 conn
->c_xmit_data_off
);
359 conn
->c_xmit_data_off
+= tmp
;
361 if (conn
->c_xmit_data_off
== sg
->length
) {
362 conn
->c_xmit_data_off
= 0;
366 conn
->c_xmit_sg
== rm
->data
.op_nents
);
370 if (conn
->c_xmit_hdr_off
== sizeof(struct rds_header
) &&
371 (conn
->c_xmit_sg
== rm
->data
.op_nents
))
372 conn
->c_xmit_data_sent
= 1;
376 * A rm will only take multiple times through this loop
377 * if there is a data op. Thus, if the data is sent (or there was
378 * none), then we're done with the rm.
380 if (!rm
->data
.op_active
|| conn
->c_xmit_data_sent
) {
381 conn
->c_xmit_rm
= NULL
;
383 conn
->c_xmit_hdr_off
= 0;
384 conn
->c_xmit_data_off
= 0;
385 conn
->c_xmit_rdma_sent
= 0;
386 conn
->c_xmit_atomic_sent
= 0;
387 conn
->c_xmit_data_sent
= 0;
394 if (conn
->c_trans
->xmit_complete
)
395 conn
->c_trans
->xmit_complete(conn
);
396 release_in_xmit(conn
);
398 /* Nuke any messages we decided not to retransmit. */
399 if (!list_empty(&to_be_dropped
)) {
400 /* irqs on here, so we can put(), unlike above */
401 list_for_each_entry(rm
, &to_be_dropped
, m_conn_item
)
403 rds_send_remove_from_sock(&to_be_dropped
, RDS_RDMA_DROPPED
);
407 * Other senders can queue a message after we last test the send queue
408 * but before we clear RDS_IN_XMIT. In that case they'd back off and
409 * not try and send their newly queued message. We need to check the
410 * send queue after having cleared RDS_IN_XMIT so that their message
411 * doesn't get stuck on the send queue.
413 * If the transport cannot continue (i.e ret != 0), then it must
414 * call us when more room is available, such as from the tx
415 * completion handler.
417 * We have an extra generation check here so that if someone manages
418 * to jump in after our release_in_xmit, we'll see that they have done
419 * some work and we will skip our goto
423 if ((test_bit(0, &conn
->c_map_queued
) ||
424 !list_empty(&conn
->c_send_queue
)) &&
425 send_gen
== conn
->c_send_gen
) {
426 rds_stats_inc(s_send_lock_queue_raced
);
427 if (batch_count
< send_batch_count
)
429 queue_delayed_work(rds_wq
, &conn
->c_send_w
, 1);
435 EXPORT_SYMBOL_GPL(rds_send_xmit
);
437 static void rds_send_sndbuf_remove(struct rds_sock
*rs
, struct rds_message
*rm
)
439 u32 len
= be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
);
441 assert_spin_locked(&rs
->rs_lock
);
443 BUG_ON(rs
->rs_snd_bytes
< len
);
444 rs
->rs_snd_bytes
-= len
;
446 if (rs
->rs_snd_bytes
== 0)
447 rds_stats_inc(s_send_queue_empty
);
450 static inline int rds_send_is_acked(struct rds_message
*rm
, u64 ack
,
451 is_acked_func is_acked
)
454 return is_acked(rm
, ack
);
455 return be64_to_cpu(rm
->m_inc
.i_hdr
.h_sequence
) <= ack
;
459 * This is pretty similar to what happens below in the ACK
460 * handling code - except that we call here as soon as we get
461 * the IB send completion on the RDMA op and the accompanying
464 void rds_rdma_send_complete(struct rds_message
*rm
, int status
)
466 struct rds_sock
*rs
= NULL
;
467 struct rm_rdma_op
*ro
;
468 struct rds_notifier
*notifier
;
471 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
474 if (test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
) &&
475 ro
->op_active
&& ro
->op_notify
&& ro
->op_notifier
) {
476 notifier
= ro
->op_notifier
;
478 sock_hold(rds_rs_to_sk(rs
));
480 notifier
->n_status
= status
;
481 spin_lock(&rs
->rs_lock
);
482 list_add_tail(¬ifier
->n_list
, &rs
->rs_notify_queue
);
483 spin_unlock(&rs
->rs_lock
);
485 ro
->op_notifier
= NULL
;
488 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
491 rds_wake_sk_sleep(rs
);
492 sock_put(rds_rs_to_sk(rs
));
495 EXPORT_SYMBOL_GPL(rds_rdma_send_complete
);
498 * Just like above, except looks at atomic op
500 void rds_atomic_send_complete(struct rds_message
*rm
, int status
)
502 struct rds_sock
*rs
= NULL
;
503 struct rm_atomic_op
*ao
;
504 struct rds_notifier
*notifier
;
507 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
510 if (test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
)
511 && ao
->op_active
&& ao
->op_notify
&& ao
->op_notifier
) {
512 notifier
= ao
->op_notifier
;
514 sock_hold(rds_rs_to_sk(rs
));
516 notifier
->n_status
= status
;
517 spin_lock(&rs
->rs_lock
);
518 list_add_tail(¬ifier
->n_list
, &rs
->rs_notify_queue
);
519 spin_unlock(&rs
->rs_lock
);
521 ao
->op_notifier
= NULL
;
524 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
527 rds_wake_sk_sleep(rs
);
528 sock_put(rds_rs_to_sk(rs
));
531 EXPORT_SYMBOL_GPL(rds_atomic_send_complete
);
534 * This is the same as rds_rdma_send_complete except we
535 * don't do any locking - we have all the ingredients (message,
536 * socket, socket lock) and can just move the notifier.
539 __rds_send_complete(struct rds_sock
*rs
, struct rds_message
*rm
, int status
)
541 struct rm_rdma_op
*ro
;
542 struct rm_atomic_op
*ao
;
545 if (ro
->op_active
&& ro
->op_notify
&& ro
->op_notifier
) {
546 ro
->op_notifier
->n_status
= status
;
547 list_add_tail(&ro
->op_notifier
->n_list
, &rs
->rs_notify_queue
);
548 ro
->op_notifier
= NULL
;
552 if (ao
->op_active
&& ao
->op_notify
&& ao
->op_notifier
) {
553 ao
->op_notifier
->n_status
= status
;
554 list_add_tail(&ao
->op_notifier
->n_list
, &rs
->rs_notify_queue
);
555 ao
->op_notifier
= NULL
;
558 /* No need to wake the app - caller does this */
562 * This is called from the IB send completion when we detect
563 * a RDMA operation that failed with remote access error.
564 * So speed is not an issue here.
566 struct rds_message
*rds_send_get_message(struct rds_connection
*conn
,
567 struct rm_rdma_op
*op
)
569 struct rds_message
*rm
, *tmp
, *found
= NULL
;
572 spin_lock_irqsave(&conn
->c_lock
, flags
);
574 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
575 if (&rm
->rdma
== op
) {
576 atomic_inc(&rm
->m_refcount
);
582 list_for_each_entry_safe(rm
, tmp
, &conn
->c_send_queue
, m_conn_item
) {
583 if (&rm
->rdma
== op
) {
584 atomic_inc(&rm
->m_refcount
);
591 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
595 EXPORT_SYMBOL_GPL(rds_send_get_message
);
598 * This removes messages from the socket's list if they're on it. The list
599 * argument must be private to the caller, we must be able to modify it
600 * without locks. The messages must have a reference held for their
601 * position on the list. This function will drop that reference after
602 * removing the messages from the 'messages' list regardless of if it found
603 * the messages on the socket list or not.
605 static void rds_send_remove_from_sock(struct list_head
*messages
, int status
)
608 struct rds_sock
*rs
= NULL
;
609 struct rds_message
*rm
;
611 while (!list_empty(messages
)) {
614 rm
= list_entry(messages
->next
, struct rds_message
,
616 list_del_init(&rm
->m_conn_item
);
619 * If we see this flag cleared then we're *sure* that someone
620 * else beat us to removing it from the sock. If we race
621 * with their flag update we'll get the lock and then really
622 * see that the flag has been cleared.
624 * The message spinlock makes sure nobody clears rm->m_rs
625 * while we're messing with it. It does not prevent the
626 * message from being removed from the socket, though.
628 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
629 if (!test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
))
630 goto unlock_and_drop
;
632 if (rs
!= rm
->m_rs
) {
634 rds_wake_sk_sleep(rs
);
635 sock_put(rds_rs_to_sk(rs
));
639 sock_hold(rds_rs_to_sk(rs
));
642 goto unlock_and_drop
;
643 spin_lock(&rs
->rs_lock
);
645 if (test_and_clear_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
)) {
646 struct rm_rdma_op
*ro
= &rm
->rdma
;
647 struct rds_notifier
*notifier
;
649 list_del_init(&rm
->m_sock_item
);
650 rds_send_sndbuf_remove(rs
, rm
);
652 if (ro
->op_active
&& ro
->op_notifier
&&
653 (ro
->op_notify
|| (ro
->op_recverr
&& status
))) {
654 notifier
= ro
->op_notifier
;
655 list_add_tail(¬ifier
->n_list
,
656 &rs
->rs_notify_queue
);
657 if (!notifier
->n_status
)
658 notifier
->n_status
= status
;
659 rm
->rdma
.op_notifier
= NULL
;
664 spin_unlock(&rs
->rs_lock
);
667 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
674 rds_wake_sk_sleep(rs
);
675 sock_put(rds_rs_to_sk(rs
));
680 * Transports call here when they've determined that the receiver queued
681 * messages up to, and including, the given sequence number. Messages are
682 * moved to the retrans queue when rds_send_xmit picks them off the send
683 * queue. This means that in the TCP case, the message may not have been
684 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
685 * checks the RDS_MSG_HAS_ACK_SEQ bit.
687 void rds_send_drop_acked(struct rds_connection
*conn
, u64 ack
,
688 is_acked_func is_acked
)
690 struct rds_message
*rm
, *tmp
;
694 spin_lock_irqsave(&conn
->c_lock
, flags
);
696 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
697 if (!rds_send_is_acked(rm
, ack
, is_acked
))
700 list_move(&rm
->m_conn_item
, &list
);
701 clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
704 /* order flag updates with spin locks */
705 if (!list_empty(&list
))
706 smp_mb__after_atomic();
708 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
710 /* now remove the messages from the sock list as needed */
711 rds_send_remove_from_sock(&list
, RDS_RDMA_SUCCESS
);
713 EXPORT_SYMBOL_GPL(rds_send_drop_acked
);
715 void rds_send_drop_to(struct rds_sock
*rs
, struct sockaddr_in
*dest
)
717 struct rds_message
*rm
, *tmp
;
718 struct rds_connection
*conn
;
722 /* get all the messages we're dropping under the rs lock */
723 spin_lock_irqsave(&rs
->rs_lock
, flags
);
725 list_for_each_entry_safe(rm
, tmp
, &rs
->rs_send_queue
, m_sock_item
) {
726 if (dest
&& (dest
->sin_addr
.s_addr
!= rm
->m_daddr
||
727 dest
->sin_port
!= rm
->m_inc
.i_hdr
.h_dport
))
730 list_move(&rm
->m_sock_item
, &list
);
731 rds_send_sndbuf_remove(rs
, rm
);
732 clear_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
);
735 /* order flag updates with the rs lock */
736 smp_mb__after_atomic();
738 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
740 if (list_empty(&list
))
743 /* Remove the messages from the conn */
744 list_for_each_entry(rm
, &list
, m_sock_item
) {
746 conn
= rm
->m_inc
.i_conn
;
748 spin_lock_irqsave(&conn
->c_lock
, flags
);
750 * Maybe someone else beat us to removing rm from the conn.
751 * If we race with their flag update we'll get the lock and
752 * then really see that the flag has been cleared.
754 if (!test_and_clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
)) {
755 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
756 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
758 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
761 list_del_init(&rm
->m_conn_item
);
762 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
765 * Couldn't grab m_rs_lock in top loop (lock ordering),
768 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
770 spin_lock(&rs
->rs_lock
);
771 __rds_send_complete(rs
, rm
, RDS_RDMA_CANCELED
);
772 spin_unlock(&rs
->rs_lock
);
775 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
780 rds_wake_sk_sleep(rs
);
782 while (!list_empty(&list
)) {
783 rm
= list_entry(list
.next
, struct rds_message
, m_sock_item
);
784 list_del_init(&rm
->m_sock_item
);
785 rds_message_wait(rm
);
787 /* just in case the code above skipped this message
788 * because RDS_MSG_ON_CONN wasn't set, run it again here
789 * taking m_rs_lock is the only thing that keeps us
790 * from racing with ack processing.
792 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
794 spin_lock(&rs
->rs_lock
);
795 __rds_send_complete(rs
, rm
, RDS_RDMA_CANCELED
);
796 spin_unlock(&rs
->rs_lock
);
799 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
806 * we only want this to fire once so we use the callers 'queued'. It's
807 * possible that another thread can race with us and remove the
808 * message from the flow with RDS_CANCEL_SENT_TO.
810 static int rds_send_queue_rm(struct rds_sock
*rs
, struct rds_connection
*conn
,
811 struct rds_message
*rm
, __be16 sport
,
812 __be16 dport
, int *queued
)
820 len
= be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
);
822 /* this is the only place which holds both the socket's rs_lock
823 * and the connection's c_lock */
824 spin_lock_irqsave(&rs
->rs_lock
, flags
);
827 * If there is a little space in sndbuf, we don't queue anything,
828 * and userspace gets -EAGAIN. But poll() indicates there's send
829 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
830 * freed up by incoming acks. So we check the *old* value of
831 * rs_snd_bytes here to allow the last msg to exceed the buffer,
832 * and poll() now knows no more data can be sent.
834 if (rs
->rs_snd_bytes
< rds_sk_sndbuf(rs
)) {
835 rs
->rs_snd_bytes
+= len
;
837 /* let recv side know we are close to send space exhaustion.
838 * This is probably not the optimal way to do it, as this
839 * means we set the flag on *all* messages as soon as our
840 * throughput hits a certain threshold.
842 if (rs
->rs_snd_bytes
>= rds_sk_sndbuf(rs
) / 2)
843 __set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
845 list_add_tail(&rm
->m_sock_item
, &rs
->rs_send_queue
);
846 set_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
);
847 rds_message_addref(rm
);
850 /* The code ordering is a little weird, but we're
851 trying to minimize the time we hold c_lock */
852 rds_message_populate_header(&rm
->m_inc
.i_hdr
, sport
, dport
, 0);
853 rm
->m_inc
.i_conn
= conn
;
854 rds_message_addref(rm
);
856 spin_lock(&conn
->c_lock
);
857 rm
->m_inc
.i_hdr
.h_sequence
= cpu_to_be64(conn
->c_next_tx_seq
++);
858 list_add_tail(&rm
->m_conn_item
, &conn
->c_send_queue
);
859 set_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
860 spin_unlock(&conn
->c_lock
);
862 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
863 rm
, len
, rs
, rs
->rs_snd_bytes
,
864 (unsigned long long)be64_to_cpu(rm
->m_inc
.i_hdr
.h_sequence
));
869 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
875 * rds_message is getting to be quite complicated, and we'd like to allocate
876 * it all in one go. This figures out how big it needs to be up front.
878 static int rds_rm_size(struct msghdr
*msg
, int data_len
)
880 struct cmsghdr
*cmsg
;
885 for_each_cmsghdr(cmsg
, msg
) {
886 if (!CMSG_OK(msg
, cmsg
))
889 if (cmsg
->cmsg_level
!= SOL_RDS
)
892 switch (cmsg
->cmsg_type
) {
893 case RDS_CMSG_RDMA_ARGS
:
895 retval
= rds_rdma_extra_size(CMSG_DATA(cmsg
));
902 case RDS_CMSG_RDMA_DEST
:
903 case RDS_CMSG_RDMA_MAP
:
905 /* these are valid but do no add any size */
908 case RDS_CMSG_ATOMIC_CSWP
:
909 case RDS_CMSG_ATOMIC_FADD
:
910 case RDS_CMSG_MASKED_ATOMIC_CSWP
:
911 case RDS_CMSG_MASKED_ATOMIC_FADD
:
913 size
+= sizeof(struct scatterlist
);
922 size
+= ceil(data_len
, PAGE_SIZE
) * sizeof(struct scatterlist
);
924 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
925 if (cmsg_groups
== 3)
931 static int rds_cmsg_send(struct rds_sock
*rs
, struct rds_message
*rm
,
932 struct msghdr
*msg
, int *allocated_mr
)
934 struct cmsghdr
*cmsg
;
937 for_each_cmsghdr(cmsg
, msg
) {
938 if (!CMSG_OK(msg
, cmsg
))
941 if (cmsg
->cmsg_level
!= SOL_RDS
)
944 /* As a side effect, RDMA_DEST and RDMA_MAP will set
945 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
947 switch (cmsg
->cmsg_type
) {
948 case RDS_CMSG_RDMA_ARGS
:
949 ret
= rds_cmsg_rdma_args(rs
, rm
, cmsg
);
952 case RDS_CMSG_RDMA_DEST
:
953 ret
= rds_cmsg_rdma_dest(rs
, rm
, cmsg
);
956 case RDS_CMSG_RDMA_MAP
:
957 ret
= rds_cmsg_rdma_map(rs
, rm
, cmsg
);
961 case RDS_CMSG_ATOMIC_CSWP
:
962 case RDS_CMSG_ATOMIC_FADD
:
963 case RDS_CMSG_MASKED_ATOMIC_CSWP
:
964 case RDS_CMSG_MASKED_ATOMIC_FADD
:
965 ret
= rds_cmsg_atomic(rs
, rm
, cmsg
);
979 int rds_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t payload_len
)
981 struct sock
*sk
= sock
->sk
;
982 struct rds_sock
*rs
= rds_sk_to_rs(sk
);
983 DECLARE_SOCKADDR(struct sockaddr_in
*, usin
, msg
->msg_name
);
986 struct rds_message
*rm
= NULL
;
987 struct rds_connection
*conn
;
989 int queued
= 0, allocated_mr
= 0;
990 int nonblock
= msg
->msg_flags
& MSG_DONTWAIT
;
991 long timeo
= sock_sndtimeo(sk
, nonblock
);
993 /* Mirror Linux UDP mirror of BSD error message compatibility */
994 /* XXX: Perhaps MSG_MORE someday */
995 if (msg
->msg_flags
& ~(MSG_DONTWAIT
| MSG_CMSG_COMPAT
)) {
1000 if (msg
->msg_namelen
) {
1001 /* XXX fail non-unicast destination IPs? */
1002 if (msg
->msg_namelen
< sizeof(*usin
) || usin
->sin_family
!= AF_INET
) {
1006 daddr
= usin
->sin_addr
.s_addr
;
1007 dport
= usin
->sin_port
;
1009 /* We only care about consistency with ->connect() */
1011 daddr
= rs
->rs_conn_addr
;
1012 dport
= rs
->rs_conn_port
;
1017 if (daddr
== 0 || rs
->rs_bound_addr
== 0) {
1019 ret
= -ENOTCONN
; /* XXX not a great errno */
1024 if (payload_len
> rds_sk_sndbuf(rs
)) {
1029 /* size of rm including all sgs */
1030 ret
= rds_rm_size(msg
, payload_len
);
1034 rm
= rds_message_alloc(ret
, GFP_KERNEL
);
1040 /* Attach data to the rm */
1042 rm
->data
.op_sg
= rds_message_alloc_sgs(rm
, ceil(payload_len
, PAGE_SIZE
));
1043 if (!rm
->data
.op_sg
) {
1047 ret
= rds_message_copy_from_user(rm
, &msg
->msg_iter
);
1051 rm
->data
.op_active
= 1;
1053 rm
->m_daddr
= daddr
;
1055 /* rds_conn_create has a spinlock that runs with IRQ off.
1056 * Caching the conn in the socket helps a lot. */
1057 if (rs
->rs_conn
&& rs
->rs_conn
->c_faddr
== daddr
)
1060 conn
= rds_conn_create_outgoing(sock_net(sock
->sk
),
1061 rs
->rs_bound_addr
, daddr
,
1063 sock
->sk
->sk_allocation
);
1065 ret
= PTR_ERR(conn
);
1071 /* Parse any control messages the user may have included. */
1072 ret
= rds_cmsg_send(rs
, rm
, msg
, &allocated_mr
);
1076 if (rm
->rdma
.op_active
&& !conn
->c_trans
->xmit_rdma
) {
1077 printk_ratelimited(KERN_NOTICE
"rdma_op %p conn xmit_rdma %p\n",
1078 &rm
->rdma
, conn
->c_trans
->xmit_rdma
);
1083 if (rm
->atomic
.op_active
&& !conn
->c_trans
->xmit_atomic
) {
1084 printk_ratelimited(KERN_NOTICE
"atomic_op %p conn xmit_atomic %p\n",
1085 &rm
->atomic
, conn
->c_trans
->xmit_atomic
);
1090 rds_conn_connect_if_down(conn
);
1092 ret
= rds_cong_wait(conn
->c_fcong
, dport
, nonblock
, rs
);
1094 rs
->rs_seen_congestion
= 1;
1098 while (!rds_send_queue_rm(rs
, conn
, rm
, rs
->rs_bound_port
,
1100 rds_stats_inc(s_send_queue_full
);
1107 timeo
= wait_event_interruptible_timeout(*sk_sleep(sk
),
1108 rds_send_queue_rm(rs
, conn
, rm
,
1113 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued
, timeo
);
1114 if (timeo
> 0 || timeo
== MAX_SCHEDULE_TIMEOUT
)
1124 * By now we've committed to the send. We reuse rds_send_worker()
1125 * to retry sends in the rds thread if the transport asks us to.
1127 rds_stats_inc(s_send_queued
);
1129 ret
= rds_send_xmit(conn
);
1130 if (ret
== -ENOMEM
|| ret
== -EAGAIN
)
1131 queue_delayed_work(rds_wq
, &conn
->c_send_w
, 1);
1133 rds_message_put(rm
);
1137 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1138 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1139 * or in any other way, we need to destroy the MR again */
1141 rds_rdma_unuse(rs
, rds_rdma_cookie_key(rm
->m_rdma_cookie
), 1);
1144 rds_message_put(rm
);
1149 * Reply to a ping packet.
1152 rds_send_pong(struct rds_connection
*conn
, __be16 dport
)
1154 struct rds_message
*rm
;
1155 unsigned long flags
;
1158 rm
= rds_message_alloc(0, GFP_ATOMIC
);
1164 rm
->m_daddr
= conn
->c_faddr
;
1165 rm
->data
.op_active
= 1;
1167 rds_conn_connect_if_down(conn
);
1169 ret
= rds_cong_wait(conn
->c_fcong
, dport
, 1, NULL
);
1173 spin_lock_irqsave(&conn
->c_lock
, flags
);
1174 list_add_tail(&rm
->m_conn_item
, &conn
->c_send_queue
);
1175 set_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
1176 rds_message_addref(rm
);
1177 rm
->m_inc
.i_conn
= conn
;
1179 rds_message_populate_header(&rm
->m_inc
.i_hdr
, 0, dport
,
1180 conn
->c_next_tx_seq
);
1181 conn
->c_next_tx_seq
++;
1182 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
1184 rds_stats_inc(s_send_queued
);
1185 rds_stats_inc(s_send_pong
);
1187 /* schedule the send work on rds_wq */
1188 queue_delayed_work(rds_wq
, &conn
->c_send_w
, 1);
1190 rds_message_put(rm
);
1195 rds_message_put(rm
);