Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / sound / soc / atmel / atmel_ssc_dai.c
blob276897033639b0d719d0d4408e1ffb9ec9efe90d
1 /*
2 * atmel_ssc_dai.c -- ALSA SoC ATMEL SSC Audio Layer Platform driver
4 * Copyright (C) 2005 SAN People
5 * Copyright (C) 2008 Atmel
7 * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com>
8 * ATMEL CORP.
10 * Based on at91-ssc.c by
11 * Frank Mandarino <fmandarino@endrelia.com>
12 * Based on pxa2xx Platform drivers by
13 * Liam Girdwood <lrg@slimlogic.co.uk>
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, write to the Free Software
27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/interrupt.h>
33 #include <linux/device.h>
34 #include <linux/delay.h>
35 #include <linux/clk.h>
36 #include <linux/atmel_pdc.h>
38 #include <linux/atmel-ssc.h>
39 #include <sound/core.h>
40 #include <sound/pcm.h>
41 #include <sound/pcm_params.h>
42 #include <sound/initval.h>
43 #include <sound/soc.h>
45 #include "atmel-pcm.h"
46 #include "atmel_ssc_dai.h"
49 #define NUM_SSC_DEVICES 3
52 * SSC PDC registers required by the PCM DMA engine.
54 static struct atmel_pdc_regs pdc_tx_reg = {
55 .xpr = ATMEL_PDC_TPR,
56 .xcr = ATMEL_PDC_TCR,
57 .xnpr = ATMEL_PDC_TNPR,
58 .xncr = ATMEL_PDC_TNCR,
61 static struct atmel_pdc_regs pdc_rx_reg = {
62 .xpr = ATMEL_PDC_RPR,
63 .xcr = ATMEL_PDC_RCR,
64 .xnpr = ATMEL_PDC_RNPR,
65 .xncr = ATMEL_PDC_RNCR,
69 * SSC & PDC status bits for transmit and receive.
71 static struct atmel_ssc_mask ssc_tx_mask = {
72 .ssc_enable = SSC_BIT(CR_TXEN),
73 .ssc_disable = SSC_BIT(CR_TXDIS),
74 .ssc_endx = SSC_BIT(SR_ENDTX),
75 .ssc_endbuf = SSC_BIT(SR_TXBUFE),
76 .ssc_error = SSC_BIT(SR_OVRUN),
77 .pdc_enable = ATMEL_PDC_TXTEN,
78 .pdc_disable = ATMEL_PDC_TXTDIS,
81 static struct atmel_ssc_mask ssc_rx_mask = {
82 .ssc_enable = SSC_BIT(CR_RXEN),
83 .ssc_disable = SSC_BIT(CR_RXDIS),
84 .ssc_endx = SSC_BIT(SR_ENDRX),
85 .ssc_endbuf = SSC_BIT(SR_RXBUFF),
86 .ssc_error = SSC_BIT(SR_OVRUN),
87 .pdc_enable = ATMEL_PDC_RXTEN,
88 .pdc_disable = ATMEL_PDC_RXTDIS,
93 * DMA parameters.
95 static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
97 .name = "SSC0 PCM out",
98 .pdc = &pdc_tx_reg,
99 .mask = &ssc_tx_mask,
102 .name = "SSC0 PCM in",
103 .pdc = &pdc_rx_reg,
104 .mask = &ssc_rx_mask,
105 } },
107 .name = "SSC1 PCM out",
108 .pdc = &pdc_tx_reg,
109 .mask = &ssc_tx_mask,
112 .name = "SSC1 PCM in",
113 .pdc = &pdc_rx_reg,
114 .mask = &ssc_rx_mask,
115 } },
117 .name = "SSC2 PCM out",
118 .pdc = &pdc_tx_reg,
119 .mask = &ssc_tx_mask,
122 .name = "SSC2 PCM in",
123 .pdc = &pdc_rx_reg,
124 .mask = &ssc_rx_mask,
125 } },
129 static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = {
131 .name = "ssc0",
132 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock),
133 .dir_mask = SSC_DIR_MASK_UNUSED,
134 .initialized = 0,
137 .name = "ssc1",
138 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock),
139 .dir_mask = SSC_DIR_MASK_UNUSED,
140 .initialized = 0,
143 .name = "ssc2",
144 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock),
145 .dir_mask = SSC_DIR_MASK_UNUSED,
146 .initialized = 0,
152 * SSC interrupt handler. Passes PDC interrupts to the DMA
153 * interrupt handler in the PCM driver.
155 static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id)
157 struct atmel_ssc_info *ssc_p = dev_id;
158 struct atmel_pcm_dma_params *dma_params;
159 u32 ssc_sr;
160 u32 ssc_substream_mask;
161 int i;
163 ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR)
164 & (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR);
167 * Loop through the substreams attached to this SSC. If
168 * a DMA-related interrupt occurred on that substream, call
169 * the DMA interrupt handler function, if one has been
170 * registered in the dma_params structure by the PCM driver.
172 for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
173 dma_params = ssc_p->dma_params[i];
175 if ((dma_params != NULL) &&
176 (dma_params->dma_intr_handler != NULL)) {
177 ssc_substream_mask = (dma_params->mask->ssc_endx |
178 dma_params->mask->ssc_endbuf);
179 if (ssc_sr & ssc_substream_mask) {
180 dma_params->dma_intr_handler(ssc_sr,
181 dma_params->
182 substream);
187 return IRQ_HANDLED;
191 * When the bit clock is input, limit the maximum rate according to the
192 * Serial Clock Ratio Considerations section from the SSC documentation:
194 * The Transmitter and the Receiver can be programmed to operate
195 * with the clock signals provided on either the TK or RK pins.
196 * This allows the SSC to support many slave-mode data transfers.
197 * In this case, the maximum clock speed allowed on the RK pin is:
198 * - Peripheral clock divided by 2 if Receiver Frame Synchro is input
199 * - Peripheral clock divided by 3 if Receiver Frame Synchro is output
200 * In addition, the maximum clock speed allowed on the TK pin is:
201 * - Peripheral clock divided by 6 if Transmit Frame Synchro is input
202 * - Peripheral clock divided by 2 if Transmit Frame Synchro is output
204 * When the bit clock is output, limit the rate according to the
205 * SSC divider restrictions.
207 static int atmel_ssc_hw_rule_rate(struct snd_pcm_hw_params *params,
208 struct snd_pcm_hw_rule *rule)
210 struct atmel_ssc_info *ssc_p = rule->private;
211 struct ssc_device *ssc = ssc_p->ssc;
212 struct snd_interval *i = hw_param_interval(params, rule->var);
213 struct snd_interval t;
214 struct snd_ratnum r = {
215 .den_min = 1,
216 .den_max = 4095,
217 .den_step = 1,
219 unsigned int num = 0, den = 0;
220 int frame_size;
221 int mck_div = 2;
222 int ret;
224 frame_size = snd_soc_params_to_frame_size(params);
225 if (frame_size < 0)
226 return frame_size;
228 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
229 case SND_SOC_DAIFMT_CBM_CFS:
230 if ((ssc_p->dir_mask & SSC_DIR_MASK_CAPTURE)
231 && ssc->clk_from_rk_pin)
232 /* Receiver Frame Synchro (i.e. capture)
233 * is output (format is _CFS) and the RK pin
234 * is used for input (format is _CBM_).
236 mck_div = 3;
237 break;
239 case SND_SOC_DAIFMT_CBM_CFM:
240 if ((ssc_p->dir_mask & SSC_DIR_MASK_PLAYBACK)
241 && !ssc->clk_from_rk_pin)
242 /* Transmit Frame Synchro (i.e. playback)
243 * is input (format is _CFM) and the TK pin
244 * is used for input (format _CBM_ but not
245 * using the RK pin).
247 mck_div = 6;
248 break;
251 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
252 case SND_SOC_DAIFMT_CBS_CFS:
253 r.num = ssc_p->mck_rate / mck_div / frame_size;
255 ret = snd_interval_ratnum(i, 1, &r, &num, &den);
256 if (ret >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
257 params->rate_num = num;
258 params->rate_den = den;
260 break;
262 case SND_SOC_DAIFMT_CBM_CFS:
263 case SND_SOC_DAIFMT_CBM_CFM:
264 t.min = 8000;
265 t.max = ssc_p->mck_rate / mck_div / frame_size;
266 t.openmin = t.openmax = 0;
267 t.integer = 0;
268 ret = snd_interval_refine(i, &t);
269 break;
271 default:
272 ret = -EINVAL;
273 break;
276 return ret;
279 /*-------------------------------------------------------------------------*\
280 * DAI functions
281 \*-------------------------------------------------------------------------*/
283 * Startup. Only that one substream allowed in each direction.
285 static int atmel_ssc_startup(struct snd_pcm_substream *substream,
286 struct snd_soc_dai *dai)
288 struct platform_device *pdev = to_platform_device(dai->dev);
289 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
290 struct atmel_pcm_dma_params *dma_params;
291 int dir, dir_mask;
292 int ret;
294 pr_debug("atmel_ssc_startup: SSC_SR=0x%x\n",
295 ssc_readl(ssc_p->ssc->regs, SR));
297 /* Enable PMC peripheral clock for this SSC */
298 pr_debug("atmel_ssc_dai: Starting clock\n");
299 clk_enable(ssc_p->ssc->clk);
300 ssc_p->mck_rate = clk_get_rate(ssc_p->ssc->clk);
302 /* Reset the SSC to keep it at a clean status */
303 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
305 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
306 dir = 0;
307 dir_mask = SSC_DIR_MASK_PLAYBACK;
308 } else {
309 dir = 1;
310 dir_mask = SSC_DIR_MASK_CAPTURE;
313 ret = snd_pcm_hw_rule_add(substream->runtime, 0,
314 SNDRV_PCM_HW_PARAM_RATE,
315 atmel_ssc_hw_rule_rate,
316 ssc_p,
317 SNDRV_PCM_HW_PARAM_FRAME_BITS,
318 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
319 if (ret < 0) {
320 dev_err(dai->dev, "Failed to specify rate rule: %d\n", ret);
321 return ret;
324 dma_params = &ssc_dma_params[dai->id][dir];
325 dma_params->ssc = ssc_p->ssc;
326 dma_params->substream = substream;
328 ssc_p->dma_params[dir] = dma_params;
330 snd_soc_dai_set_dma_data(dai, substream, dma_params);
332 spin_lock_irq(&ssc_p->lock);
333 if (ssc_p->dir_mask & dir_mask) {
334 spin_unlock_irq(&ssc_p->lock);
335 return -EBUSY;
337 ssc_p->dir_mask |= dir_mask;
338 spin_unlock_irq(&ssc_p->lock);
340 return 0;
344 * Shutdown. Clear DMA parameters and shutdown the SSC if there
345 * are no other substreams open.
347 static void atmel_ssc_shutdown(struct snd_pcm_substream *substream,
348 struct snd_soc_dai *dai)
350 struct platform_device *pdev = to_platform_device(dai->dev);
351 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
352 struct atmel_pcm_dma_params *dma_params;
353 int dir, dir_mask;
355 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
356 dir = 0;
357 else
358 dir = 1;
360 dma_params = ssc_p->dma_params[dir];
362 if (dma_params != NULL) {
363 dma_params->ssc = NULL;
364 dma_params->substream = NULL;
365 ssc_p->dma_params[dir] = NULL;
368 dir_mask = 1 << dir;
370 spin_lock_irq(&ssc_p->lock);
371 ssc_p->dir_mask &= ~dir_mask;
372 if (!ssc_p->dir_mask) {
373 if (ssc_p->initialized) {
374 free_irq(ssc_p->ssc->irq, ssc_p);
375 ssc_p->initialized = 0;
378 /* Reset the SSC */
379 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
380 /* Clear the SSC dividers */
381 ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
383 spin_unlock_irq(&ssc_p->lock);
385 /* Shutdown the SSC clock. */
386 pr_debug("atmel_ssc_dai: Stopping clock\n");
387 clk_disable(ssc_p->ssc->clk);
392 * Record the DAI format for use in hw_params().
394 static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai,
395 unsigned int fmt)
397 struct platform_device *pdev = to_platform_device(cpu_dai->dev);
398 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
400 ssc_p->daifmt = fmt;
401 return 0;
405 * Record SSC clock dividers for use in hw_params().
407 static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
408 int div_id, int div)
410 struct platform_device *pdev = to_platform_device(cpu_dai->dev);
411 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
413 switch (div_id) {
414 case ATMEL_SSC_CMR_DIV:
416 * The same master clock divider is used for both
417 * transmit and receive, so if a value has already
418 * been set, it must match this value.
420 if (ssc_p->dir_mask !=
421 (SSC_DIR_MASK_PLAYBACK | SSC_DIR_MASK_CAPTURE))
422 ssc_p->cmr_div = div;
423 else if (ssc_p->cmr_div == 0)
424 ssc_p->cmr_div = div;
425 else
426 if (div != ssc_p->cmr_div)
427 return -EBUSY;
428 break;
430 case ATMEL_SSC_TCMR_PERIOD:
431 ssc_p->tcmr_period = div;
432 break;
434 case ATMEL_SSC_RCMR_PERIOD:
435 ssc_p->rcmr_period = div;
436 break;
438 default:
439 return -EINVAL;
442 return 0;
446 * Configure the SSC.
448 static int atmel_ssc_hw_params(struct snd_pcm_substream *substream,
449 struct snd_pcm_hw_params *params,
450 struct snd_soc_dai *dai)
452 struct platform_device *pdev = to_platform_device(dai->dev);
453 int id = pdev->id;
454 struct atmel_ssc_info *ssc_p = &ssc_info[id];
455 struct ssc_device *ssc = ssc_p->ssc;
456 struct atmel_pcm_dma_params *dma_params;
457 int dir, channels, bits;
458 u32 tfmr, rfmr, tcmr, rcmr;
459 int ret;
460 int fslen, fslen_ext;
463 * Currently, there is only one set of dma params for
464 * each direction. If more are added, this code will
465 * have to be changed to select the proper set.
467 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
468 dir = 0;
469 else
470 dir = 1;
472 dma_params = ssc_p->dma_params[dir];
474 channels = params_channels(params);
477 * Determine sample size in bits and the PDC increment.
479 switch (params_format(params)) {
480 case SNDRV_PCM_FORMAT_S8:
481 bits = 8;
482 dma_params->pdc_xfer_size = 1;
483 break;
484 case SNDRV_PCM_FORMAT_S16_LE:
485 bits = 16;
486 dma_params->pdc_xfer_size = 2;
487 break;
488 case SNDRV_PCM_FORMAT_S24_LE:
489 bits = 24;
490 dma_params->pdc_xfer_size = 4;
491 break;
492 case SNDRV_PCM_FORMAT_S32_LE:
493 bits = 32;
494 dma_params->pdc_xfer_size = 4;
495 break;
496 default:
497 printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format");
498 return -EINVAL;
502 * Compute SSC register settings.
504 switch (ssc_p->daifmt
505 & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) {
507 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS:
509 * I2S format, SSC provides BCLK and LRC clocks.
511 * The SSC transmit and receive clocks are generated
512 * from the MCK divider, and the BCLK signal
513 * is output on the SSC TK line.
516 if (bits > 16 && !ssc->pdata->has_fslen_ext) {
517 dev_err(dai->dev,
518 "sample size %d is too large for SSC device\n",
519 bits);
520 return -EINVAL;
523 fslen_ext = (bits - 1) / 16;
524 fslen = (bits - 1) % 16;
526 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
527 | SSC_BF(RCMR_STTDLY, START_DELAY)
528 | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
529 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
530 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
531 | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
533 rfmr = SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
534 | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
535 | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
536 | SSC_BF(RFMR_FSLEN, fslen)
537 | SSC_BF(RFMR_DATNB, (channels - 1))
538 | SSC_BIT(RFMR_MSBF)
539 | SSC_BF(RFMR_LOOP, 0)
540 | SSC_BF(RFMR_DATLEN, (bits - 1));
542 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
543 | SSC_BF(TCMR_STTDLY, START_DELAY)
544 | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
545 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
546 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
547 | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
549 tfmr = SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
550 | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
551 | SSC_BF(TFMR_FSDEN, 0)
552 | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
553 | SSC_BF(TFMR_FSLEN, fslen)
554 | SSC_BF(TFMR_DATNB, (channels - 1))
555 | SSC_BIT(TFMR_MSBF)
556 | SSC_BF(TFMR_DATDEF, 0)
557 | SSC_BF(TFMR_DATLEN, (bits - 1));
558 break;
560 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM:
561 /* I2S format, CODEC supplies BCLK and LRC clocks. */
562 rcmr = SSC_BF(RCMR_PERIOD, 0)
563 | SSC_BF(RCMR_STTDLY, START_DELAY)
564 | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
565 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
566 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
567 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
568 SSC_CKS_PIN : SSC_CKS_CLOCK);
570 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
571 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
572 | SSC_BF(RFMR_FSLEN, 0)
573 | SSC_BF(RFMR_DATNB, (channels - 1))
574 | SSC_BIT(RFMR_MSBF)
575 | SSC_BF(RFMR_LOOP, 0)
576 | SSC_BF(RFMR_DATLEN, (bits - 1));
578 tcmr = SSC_BF(TCMR_PERIOD, 0)
579 | SSC_BF(TCMR_STTDLY, START_DELAY)
580 | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
581 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
582 | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
583 | SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
584 SSC_CKS_CLOCK : SSC_CKS_PIN);
586 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
587 | SSC_BF(TFMR_FSDEN, 0)
588 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
589 | SSC_BF(TFMR_FSLEN, 0)
590 | SSC_BF(TFMR_DATNB, (channels - 1))
591 | SSC_BIT(TFMR_MSBF)
592 | SSC_BF(TFMR_DATDEF, 0)
593 | SSC_BF(TFMR_DATLEN, (bits - 1));
594 break;
596 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFS:
597 /* I2S format, CODEC supplies BCLK, SSC supplies LRCLK. */
598 if (bits > 16 && !ssc->pdata->has_fslen_ext) {
599 dev_err(dai->dev,
600 "sample size %d is too large for SSC device\n",
601 bits);
602 return -EINVAL;
605 fslen_ext = (bits - 1) / 16;
606 fslen = (bits - 1) % 16;
608 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
609 | SSC_BF(RCMR_STTDLY, START_DELAY)
610 | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
611 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
612 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
613 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
614 SSC_CKS_PIN : SSC_CKS_CLOCK);
616 rfmr = SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
617 | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
618 | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
619 | SSC_BF(RFMR_FSLEN, fslen)
620 | SSC_BF(RFMR_DATNB, (channels - 1))
621 | SSC_BIT(RFMR_MSBF)
622 | SSC_BF(RFMR_LOOP, 0)
623 | SSC_BF(RFMR_DATLEN, (bits - 1));
625 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
626 | SSC_BF(TCMR_STTDLY, START_DELAY)
627 | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
628 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
629 | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
630 | SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
631 SSC_CKS_CLOCK : SSC_CKS_PIN);
633 tfmr = SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
634 | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_NEGATIVE)
635 | SSC_BF(TFMR_FSDEN, 0)
636 | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
637 | SSC_BF(TFMR_FSLEN, fslen)
638 | SSC_BF(TFMR_DATNB, (channels - 1))
639 | SSC_BIT(TFMR_MSBF)
640 | SSC_BF(TFMR_DATDEF, 0)
641 | SSC_BF(TFMR_DATLEN, (bits - 1));
642 break;
644 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS:
646 * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks.
648 * The SSC transmit and receive clocks are generated from the
649 * MCK divider, and the BCLK signal is output
650 * on the SSC TK line.
652 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
653 | SSC_BF(RCMR_STTDLY, 1)
654 | SSC_BF(RCMR_START, SSC_START_RISING_RF)
655 | SSC_BF(RCMR_CKI, SSC_CKI_FALLING)
656 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
657 | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
659 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
660 | SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE)
661 | SSC_BF(RFMR_FSLEN, 0)
662 | SSC_BF(RFMR_DATNB, (channels - 1))
663 | SSC_BIT(RFMR_MSBF)
664 | SSC_BF(RFMR_LOOP, 0)
665 | SSC_BF(RFMR_DATLEN, (bits - 1));
667 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
668 | SSC_BF(TCMR_STTDLY, 1)
669 | SSC_BF(TCMR_START, SSC_START_RISING_RF)
670 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
671 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
672 | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
674 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
675 | SSC_BF(TFMR_FSDEN, 0)
676 | SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE)
677 | SSC_BF(TFMR_FSLEN, 0)
678 | SSC_BF(TFMR_DATNB, (channels - 1))
679 | SSC_BIT(TFMR_MSBF)
680 | SSC_BF(TFMR_DATDEF, 0)
681 | SSC_BF(TFMR_DATLEN, (bits - 1));
682 break;
684 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM:
686 * DSP/PCM Mode A format, CODEC supplies BCLK and LRC clocks.
688 * Data is transferred on first BCLK after LRC pulse rising
689 * edge.If stereo, the right channel data is contiguous with
690 * the left channel data.
692 rcmr = SSC_BF(RCMR_PERIOD, 0)
693 | SSC_BF(RCMR_STTDLY, START_DELAY)
694 | SSC_BF(RCMR_START, SSC_START_RISING_RF)
695 | SSC_BF(RCMR_CKI, SSC_CKI_FALLING)
696 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
697 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
698 SSC_CKS_PIN : SSC_CKS_CLOCK);
700 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
701 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
702 | SSC_BF(RFMR_FSLEN, 0)
703 | SSC_BF(RFMR_DATNB, (channels - 1))
704 | SSC_BIT(RFMR_MSBF)
705 | SSC_BF(RFMR_LOOP, 0)
706 | SSC_BF(RFMR_DATLEN, (bits - 1));
708 tcmr = SSC_BF(TCMR_PERIOD, 0)
709 | SSC_BF(TCMR_STTDLY, START_DELAY)
710 | SSC_BF(TCMR_START, SSC_START_RISING_RF)
711 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
712 | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
713 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
714 SSC_CKS_CLOCK : SSC_CKS_PIN);
716 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
717 | SSC_BF(TFMR_FSDEN, 0)
718 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
719 | SSC_BF(TFMR_FSLEN, 0)
720 | SSC_BF(TFMR_DATNB, (channels - 1))
721 | SSC_BIT(TFMR_MSBF)
722 | SSC_BF(TFMR_DATDEF, 0)
723 | SSC_BF(TFMR_DATLEN, (bits - 1));
724 break;
726 default:
727 printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n",
728 ssc_p->daifmt);
729 return -EINVAL;
731 pr_debug("atmel_ssc_hw_params: "
732 "RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n",
733 rcmr, rfmr, tcmr, tfmr);
735 if (!ssc_p->initialized) {
736 if (!ssc_p->ssc->pdata->use_dma) {
737 ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0);
738 ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0);
739 ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0);
740 ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0);
742 ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0);
743 ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0);
744 ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0);
745 ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0);
748 ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0,
749 ssc_p->name, ssc_p);
750 if (ret < 0) {
751 printk(KERN_WARNING
752 "atmel_ssc_dai: request_irq failure\n");
753 pr_debug("Atmel_ssc_dai: Stoping clock\n");
754 clk_disable(ssc_p->ssc->clk);
755 return ret;
758 ssc_p->initialized = 1;
761 /* set SSC clock mode register */
762 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->cmr_div);
764 /* set receive clock mode and format */
765 ssc_writel(ssc_p->ssc->regs, RCMR, rcmr);
766 ssc_writel(ssc_p->ssc->regs, RFMR, rfmr);
768 /* set transmit clock mode and format */
769 ssc_writel(ssc_p->ssc->regs, TCMR, tcmr);
770 ssc_writel(ssc_p->ssc->regs, TFMR, tfmr);
772 pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n");
773 return 0;
777 static int atmel_ssc_prepare(struct snd_pcm_substream *substream,
778 struct snd_soc_dai *dai)
780 struct platform_device *pdev = to_platform_device(dai->dev);
781 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
782 struct atmel_pcm_dma_params *dma_params;
783 int dir;
785 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
786 dir = 0;
787 else
788 dir = 1;
790 dma_params = ssc_p->dma_params[dir];
792 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
793 ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error);
795 pr_debug("%s enabled SSC_SR=0x%08x\n",
796 dir ? "receive" : "transmit",
797 ssc_readl(ssc_p->ssc->regs, SR));
798 return 0;
801 static int atmel_ssc_trigger(struct snd_pcm_substream *substream,
802 int cmd, struct snd_soc_dai *dai)
804 struct platform_device *pdev = to_platform_device(dai->dev);
805 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
806 struct atmel_pcm_dma_params *dma_params;
807 int dir;
809 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
810 dir = 0;
811 else
812 dir = 1;
814 dma_params = ssc_p->dma_params[dir];
816 switch (cmd) {
817 case SNDRV_PCM_TRIGGER_START:
818 case SNDRV_PCM_TRIGGER_RESUME:
819 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
820 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable);
821 break;
822 default:
823 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
824 break;
827 return 0;
830 #ifdef CONFIG_PM
831 static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai)
833 struct atmel_ssc_info *ssc_p;
834 struct platform_device *pdev = to_platform_device(cpu_dai->dev);
836 if (!cpu_dai->active)
837 return 0;
839 ssc_p = &ssc_info[pdev->id];
841 /* Save the status register before disabling transmit and receive */
842 ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR);
843 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS));
845 /* Save the current interrupt mask, then disable unmasked interrupts */
846 ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR);
847 ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr);
849 ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR);
850 ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR);
851 ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR);
852 ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR);
853 ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR);
855 return 0;
860 static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai)
862 struct atmel_ssc_info *ssc_p;
863 struct platform_device *pdev = to_platform_device(cpu_dai->dev);
864 u32 cr;
866 if (!cpu_dai->active)
867 return 0;
869 ssc_p = &ssc_info[pdev->id];
871 /* restore SSC register settings */
872 ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr);
873 ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr);
874 ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr);
875 ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr);
876 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr);
878 /* re-enable interrupts */
879 ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr);
881 /* Re-enable receive and transmit as appropriate */
882 cr = 0;
883 cr |=
884 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0;
885 cr |=
886 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0;
887 ssc_writel(ssc_p->ssc->regs, CR, cr);
889 return 0;
891 #else /* CONFIG_PM */
892 # define atmel_ssc_suspend NULL
893 # define atmel_ssc_resume NULL
894 #endif /* CONFIG_PM */
896 #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\
897 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
899 static const struct snd_soc_dai_ops atmel_ssc_dai_ops = {
900 .startup = atmel_ssc_startup,
901 .shutdown = atmel_ssc_shutdown,
902 .prepare = atmel_ssc_prepare,
903 .trigger = atmel_ssc_trigger,
904 .hw_params = atmel_ssc_hw_params,
905 .set_fmt = atmel_ssc_set_dai_fmt,
906 .set_clkdiv = atmel_ssc_set_dai_clkdiv,
909 static struct snd_soc_dai_driver atmel_ssc_dai = {
910 .suspend = atmel_ssc_suspend,
911 .resume = atmel_ssc_resume,
912 .playback = {
913 .channels_min = 1,
914 .channels_max = 2,
915 .rates = SNDRV_PCM_RATE_CONTINUOUS,
916 .rate_min = 8000,
917 .rate_max = 384000,
918 .formats = ATMEL_SSC_FORMATS,},
919 .capture = {
920 .channels_min = 1,
921 .channels_max = 2,
922 .rates = SNDRV_PCM_RATE_CONTINUOUS,
923 .rate_min = 8000,
924 .rate_max = 384000,
925 .formats = ATMEL_SSC_FORMATS,},
926 .ops = &atmel_ssc_dai_ops,
929 static const struct snd_soc_component_driver atmel_ssc_component = {
930 .name = "atmel-ssc",
933 static int asoc_ssc_init(struct device *dev)
935 struct platform_device *pdev = to_platform_device(dev);
936 struct ssc_device *ssc = platform_get_drvdata(pdev);
937 int ret;
939 ret = snd_soc_register_component(dev, &atmel_ssc_component,
940 &atmel_ssc_dai, 1);
941 if (ret) {
942 dev_err(dev, "Could not register DAI: %d\n", ret);
943 goto err;
946 if (ssc->pdata->use_dma)
947 ret = atmel_pcm_dma_platform_register(dev);
948 else
949 ret = atmel_pcm_pdc_platform_register(dev);
951 if (ret) {
952 dev_err(dev, "Could not register PCM: %d\n", ret);
953 goto err_unregister_dai;
956 return 0;
958 err_unregister_dai:
959 snd_soc_unregister_component(dev);
960 err:
961 return ret;
964 static void asoc_ssc_exit(struct device *dev)
966 struct platform_device *pdev = to_platform_device(dev);
967 struct ssc_device *ssc = platform_get_drvdata(pdev);
969 if (ssc->pdata->use_dma)
970 atmel_pcm_dma_platform_unregister(dev);
971 else
972 atmel_pcm_pdc_platform_unregister(dev);
974 snd_soc_unregister_component(dev);
978 * atmel_ssc_set_audio - Allocate the specified SSC for audio use.
980 int atmel_ssc_set_audio(int ssc_id)
982 struct ssc_device *ssc;
983 int ret;
985 /* If we can grab the SSC briefly to parent the DAI device off it */
986 ssc = ssc_request(ssc_id);
987 if (IS_ERR(ssc)) {
988 pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n",
989 PTR_ERR(ssc));
990 return PTR_ERR(ssc);
991 } else {
992 ssc_info[ssc_id].ssc = ssc;
995 ret = asoc_ssc_init(&ssc->pdev->dev);
997 return ret;
999 EXPORT_SYMBOL_GPL(atmel_ssc_set_audio);
1001 void atmel_ssc_put_audio(int ssc_id)
1003 struct ssc_device *ssc = ssc_info[ssc_id].ssc;
1005 asoc_ssc_exit(&ssc->pdev->dev);
1006 ssc_free(ssc);
1008 EXPORT_SYMBOL_GPL(atmel_ssc_put_audio);
1010 /* Module information */
1011 MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com");
1012 MODULE_DESCRIPTION("ATMEL SSC ASoC Interface");
1013 MODULE_LICENSE("GPL");