2 * drivers/cpufreq/cpufreq_governor.c
4 * CPUFREQ governors common code
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
24 #include "cpufreq_governor.h"
26 static DEFINE_PER_CPU(struct cpu_dbs_info
, cpu_dbs
);
28 static DEFINE_MUTEX(gov_dbs_data_mutex
);
30 /* Common sysfs tunables */
32 * store_sampling_rate - update sampling rate effective immediately if needed.
34 * If new rate is smaller than the old, simply updating
35 * dbs.sampling_rate might not be appropriate. For example, if the
36 * original sampling_rate was 1 second and the requested new sampling rate is 10
37 * ms because the user needs immediate reaction from ondemand governor, but not
38 * sure if higher frequency will be required or not, then, the governor may
39 * change the sampling rate too late; up to 1 second later. Thus, if we are
40 * reducing the sampling rate, we need to make the new value effective
43 * This must be called with dbs_data->mutex held, otherwise traversing
44 * policy_dbs_list isn't safe.
46 ssize_t
store_sampling_rate(struct dbs_data
*dbs_data
, const char *buf
,
49 struct policy_dbs_info
*policy_dbs
;
52 ret
= sscanf(buf
, "%u", &rate
);
56 dbs_data
->sampling_rate
= max(rate
, dbs_data
->min_sampling_rate
);
59 * We are operating under dbs_data->mutex and so the list and its
60 * entries can't be freed concurrently.
62 list_for_each_entry(policy_dbs
, &dbs_data
->policy_dbs_list
, list
) {
63 mutex_lock(&policy_dbs
->timer_mutex
);
65 * On 32-bit architectures this may race with the
66 * sample_delay_ns read in dbs_update_util_handler(), but that
67 * really doesn't matter. If the read returns a value that's
68 * too big, the sample will be skipped, but the next invocation
69 * of dbs_update_util_handler() (when the update has been
70 * completed) will take a sample.
72 * If this runs in parallel with dbs_work_handler(), we may end
73 * up overwriting the sample_delay_ns value that it has just
74 * written, but it will be corrected next time a sample is
75 * taken, so it shouldn't be significant.
77 gov_update_sample_delay(policy_dbs
, 0);
78 mutex_unlock(&policy_dbs
->timer_mutex
);
83 EXPORT_SYMBOL_GPL(store_sampling_rate
);
86 * gov_update_cpu_data - Update CPU load data.
87 * @dbs_data: Top-level governor data pointer.
89 * Update CPU load data for all CPUs in the domain governed by @dbs_data
90 * (that may be a single policy or a bunch of them if governor tunables are
93 * Call under the @dbs_data mutex.
95 void gov_update_cpu_data(struct dbs_data
*dbs_data
)
97 struct policy_dbs_info
*policy_dbs
;
99 list_for_each_entry(policy_dbs
, &dbs_data
->policy_dbs_list
, list
) {
102 for_each_cpu(j
, policy_dbs
->policy
->cpus
) {
103 struct cpu_dbs_info
*j_cdbs
= &per_cpu(cpu_dbs
, j
);
105 j_cdbs
->prev_cpu_idle
= get_cpu_idle_time(j
, &j_cdbs
->prev_cpu_wall
,
106 dbs_data
->io_is_busy
);
107 if (dbs_data
->ignore_nice_load
)
108 j_cdbs
->prev_cpu_nice
= kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
112 EXPORT_SYMBOL_GPL(gov_update_cpu_data
);
114 static inline struct dbs_data
*to_dbs_data(struct kobject
*kobj
)
116 return container_of(kobj
, struct dbs_data
, kobj
);
119 static inline struct governor_attr
*to_gov_attr(struct attribute
*attr
)
121 return container_of(attr
, struct governor_attr
, attr
);
124 static ssize_t
governor_show(struct kobject
*kobj
, struct attribute
*attr
,
127 struct dbs_data
*dbs_data
= to_dbs_data(kobj
);
128 struct governor_attr
*gattr
= to_gov_attr(attr
);
130 return gattr
->show(dbs_data
, buf
);
133 static ssize_t
governor_store(struct kobject
*kobj
, struct attribute
*attr
,
134 const char *buf
, size_t count
)
136 struct dbs_data
*dbs_data
= to_dbs_data(kobj
);
137 struct governor_attr
*gattr
= to_gov_attr(attr
);
140 mutex_lock(&dbs_data
->mutex
);
142 if (dbs_data
->usage_count
)
143 ret
= gattr
->store(dbs_data
, buf
, count
);
145 mutex_unlock(&dbs_data
->mutex
);
151 * Sysfs Ops for accessing governor attributes.
153 * All show/store invocations for governor specific sysfs attributes, will first
154 * call the below show/store callbacks and the attribute specific callback will
155 * be called from within it.
157 static const struct sysfs_ops governor_sysfs_ops
= {
158 .show
= governor_show
,
159 .store
= governor_store
,
162 unsigned int dbs_update(struct cpufreq_policy
*policy
)
164 struct policy_dbs_info
*policy_dbs
= policy
->governor_data
;
165 struct dbs_data
*dbs_data
= policy_dbs
->dbs_data
;
166 unsigned int ignore_nice
= dbs_data
->ignore_nice_load
;
167 unsigned int max_load
= 0;
168 unsigned int sampling_rate
, io_busy
, j
;
171 * Sometimes governors may use an additional multiplier to increase
172 * sample delays temporarily. Apply that multiplier to sampling_rate
173 * so as to keep the wake-up-from-idle detection logic a bit
176 sampling_rate
= dbs_data
->sampling_rate
* policy_dbs
->rate_mult
;
178 * For the purpose of ondemand, waiting for disk IO is an indication
179 * that you're performance critical, and not that the system is actually
180 * idle, so do not add the iowait time to the CPU idle time then.
182 io_busy
= dbs_data
->io_is_busy
;
184 /* Get Absolute Load */
185 for_each_cpu(j
, policy
->cpus
) {
186 struct cpu_dbs_info
*j_cdbs
= &per_cpu(cpu_dbs
, j
);
187 u64 cur_wall_time
, cur_idle_time
;
188 unsigned int idle_time
, wall_time
;
191 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
, io_busy
);
193 wall_time
= cur_wall_time
- j_cdbs
->prev_cpu_wall
;
194 j_cdbs
->prev_cpu_wall
= cur_wall_time
;
196 if (cur_idle_time
<= j_cdbs
->prev_cpu_idle
) {
199 idle_time
= cur_idle_time
- j_cdbs
->prev_cpu_idle
;
200 j_cdbs
->prev_cpu_idle
= cur_idle_time
;
204 u64 cur_nice
= kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
206 idle_time
+= cputime_to_usecs(cur_nice
- j_cdbs
->prev_cpu_nice
);
207 j_cdbs
->prev_cpu_nice
= cur_nice
;
210 if (unlikely(!wall_time
|| wall_time
< idle_time
))
214 * If the CPU had gone completely idle, and a task just woke up
215 * on this CPU now, it would be unfair to calculate 'load' the
216 * usual way for this elapsed time-window, because it will show
217 * near-zero load, irrespective of how CPU intensive that task
218 * actually is. This is undesirable for latency-sensitive bursty
221 * To avoid this, we reuse the 'load' from the previous
222 * time-window and give this task a chance to start with a
223 * reasonably high CPU frequency. (However, we shouldn't over-do
224 * this copy, lest we get stuck at a high load (high frequency)
225 * for too long, even when the current system load has actually
226 * dropped down. So we perform the copy only once, upon the
227 * first wake-up from idle.)
229 * Detecting this situation is easy: the governor's utilization
230 * update handler would not have run during CPU-idle periods.
231 * Hence, an unusually large 'wall_time' (as compared to the
232 * sampling rate) indicates this scenario.
234 * prev_load can be zero in two cases and we must recalculate it
236 * - during long idle intervals
237 * - explicitly set to zero
239 if (unlikely(wall_time
> (2 * sampling_rate
) &&
240 j_cdbs
->prev_load
)) {
241 load
= j_cdbs
->prev_load
;
244 * Perform a destructive copy, to ensure that we copy
245 * the previous load only once, upon the first wake-up
248 j_cdbs
->prev_load
= 0;
250 load
= 100 * (wall_time
- idle_time
) / wall_time
;
251 j_cdbs
->prev_load
= load
;
259 EXPORT_SYMBOL_GPL(dbs_update
);
261 static void gov_set_update_util(struct policy_dbs_info
*policy_dbs
,
262 unsigned int delay_us
)
264 struct cpufreq_policy
*policy
= policy_dbs
->policy
;
267 gov_update_sample_delay(policy_dbs
, delay_us
);
268 policy_dbs
->last_sample_time
= 0;
270 for_each_cpu(cpu
, policy
->cpus
) {
271 struct cpu_dbs_info
*cdbs
= &per_cpu(cpu_dbs
, cpu
);
273 cpufreq_set_update_util_data(cpu
, &cdbs
->update_util
);
277 static inline void gov_clear_update_util(struct cpufreq_policy
*policy
)
281 for_each_cpu(i
, policy
->cpus
)
282 cpufreq_set_update_util_data(i
, NULL
);
287 static void gov_cancel_work(struct cpufreq_policy
*policy
)
289 struct policy_dbs_info
*policy_dbs
= policy
->governor_data
;
291 gov_clear_update_util(policy_dbs
->policy
);
292 irq_work_sync(&policy_dbs
->irq_work
);
293 cancel_work_sync(&policy_dbs
->work
);
294 atomic_set(&policy_dbs
->work_count
, 0);
295 policy_dbs
->work_in_progress
= false;
298 static void dbs_work_handler(struct work_struct
*work
)
300 struct policy_dbs_info
*policy_dbs
;
301 struct cpufreq_policy
*policy
;
302 struct dbs_governor
*gov
;
304 policy_dbs
= container_of(work
, struct policy_dbs_info
, work
);
305 policy
= policy_dbs
->policy
;
306 gov
= dbs_governor_of(policy
);
309 * Make sure cpufreq_governor_limits() isn't evaluating load or the
310 * ondemand governor isn't updating the sampling rate in parallel.
312 mutex_lock(&policy_dbs
->timer_mutex
);
313 gov_update_sample_delay(policy_dbs
, gov
->gov_dbs_timer(policy
));
314 mutex_unlock(&policy_dbs
->timer_mutex
);
316 /* Allow the utilization update handler to queue up more work. */
317 atomic_set(&policy_dbs
->work_count
, 0);
319 * If the update below is reordered with respect to the sample delay
320 * modification, the utilization update handler may end up using a stale
321 * sample delay value.
324 policy_dbs
->work_in_progress
= false;
327 static void dbs_irq_work(struct irq_work
*irq_work
)
329 struct policy_dbs_info
*policy_dbs
;
331 policy_dbs
= container_of(irq_work
, struct policy_dbs_info
, irq_work
);
332 schedule_work_on(smp_processor_id(), &policy_dbs
->work
);
335 static void dbs_update_util_handler(struct update_util_data
*data
, u64 time
,
336 unsigned long util
, unsigned long max
)
338 struct cpu_dbs_info
*cdbs
= container_of(data
, struct cpu_dbs_info
, update_util
);
339 struct policy_dbs_info
*policy_dbs
= cdbs
->policy_dbs
;
343 * The work may not be allowed to be queued up right now.
345 * - Work has already been queued up or is in progress.
346 * - It is too early (too little time from the previous sample).
348 if (policy_dbs
->work_in_progress
)
352 * If the reads below are reordered before the check above, the value
353 * of sample_delay_ns used in the computation may be stale.
356 lst
= READ_ONCE(policy_dbs
->last_sample_time
);
357 delta_ns
= time
- lst
;
358 if ((s64
)delta_ns
< policy_dbs
->sample_delay_ns
)
362 * If the policy is not shared, the irq_work may be queued up right away
363 * at this point. Otherwise, we need to ensure that only one of the
364 * CPUs sharing the policy will do that.
366 if (policy_dbs
->is_shared
) {
367 if (!atomic_add_unless(&policy_dbs
->work_count
, 1, 1))
371 * If another CPU updated last_sample_time in the meantime, we
372 * shouldn't be here, so clear the work counter and bail out.
374 if (unlikely(lst
!= READ_ONCE(policy_dbs
->last_sample_time
))) {
375 atomic_set(&policy_dbs
->work_count
, 0);
380 policy_dbs
->last_sample_time
= time
;
381 policy_dbs
->work_in_progress
= true;
382 irq_work_queue(&policy_dbs
->irq_work
);
385 static struct policy_dbs_info
*alloc_policy_dbs_info(struct cpufreq_policy
*policy
,
386 struct dbs_governor
*gov
)
388 struct policy_dbs_info
*policy_dbs
;
391 /* Allocate memory for per-policy governor data. */
392 policy_dbs
= gov
->alloc();
396 policy_dbs
->policy
= policy
;
397 mutex_init(&policy_dbs
->timer_mutex
);
398 atomic_set(&policy_dbs
->work_count
, 0);
399 init_irq_work(&policy_dbs
->irq_work
, dbs_irq_work
);
400 INIT_WORK(&policy_dbs
->work
, dbs_work_handler
);
402 /* Set policy_dbs for all CPUs, online+offline */
403 for_each_cpu(j
, policy
->related_cpus
) {
404 struct cpu_dbs_info
*j_cdbs
= &per_cpu(cpu_dbs
, j
);
406 j_cdbs
->policy_dbs
= policy_dbs
;
407 j_cdbs
->update_util
.func
= dbs_update_util_handler
;
412 static void free_policy_dbs_info(struct policy_dbs_info
*policy_dbs
,
413 struct dbs_governor
*gov
)
417 mutex_destroy(&policy_dbs
->timer_mutex
);
419 for_each_cpu(j
, policy_dbs
->policy
->related_cpus
) {
420 struct cpu_dbs_info
*j_cdbs
= &per_cpu(cpu_dbs
, j
);
422 j_cdbs
->policy_dbs
= NULL
;
423 j_cdbs
->update_util
.func
= NULL
;
425 gov
->free(policy_dbs
);
428 static int cpufreq_governor_init(struct cpufreq_policy
*policy
)
430 struct dbs_governor
*gov
= dbs_governor_of(policy
);
431 struct dbs_data
*dbs_data
;
432 struct policy_dbs_info
*policy_dbs
;
433 unsigned int latency
;
436 /* State should be equivalent to EXIT */
437 if (policy
->governor_data
)
440 policy_dbs
= alloc_policy_dbs_info(policy
, gov
);
444 /* Protect gov->gdbs_data against concurrent updates. */
445 mutex_lock(&gov_dbs_data_mutex
);
447 dbs_data
= gov
->gdbs_data
;
449 if (WARN_ON(have_governor_per_policy())) {
451 goto free_policy_dbs_info
;
453 policy_dbs
->dbs_data
= dbs_data
;
454 policy
->governor_data
= policy_dbs
;
456 mutex_lock(&dbs_data
->mutex
);
457 dbs_data
->usage_count
++;
458 list_add(&policy_dbs
->list
, &dbs_data
->policy_dbs_list
);
459 mutex_unlock(&dbs_data
->mutex
);
463 dbs_data
= kzalloc(sizeof(*dbs_data
), GFP_KERNEL
);
466 goto free_policy_dbs_info
;
469 INIT_LIST_HEAD(&dbs_data
->policy_dbs_list
);
470 mutex_init(&dbs_data
->mutex
);
472 ret
= gov
->init(dbs_data
, !policy
->governor
->initialized
);
474 goto free_policy_dbs_info
;
476 /* policy latency is in ns. Convert it to us first */
477 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
481 /* Bring kernel and HW constraints together */
482 dbs_data
->min_sampling_rate
= max(dbs_data
->min_sampling_rate
,
483 MIN_LATENCY_MULTIPLIER
* latency
);
484 dbs_data
->sampling_rate
= max(dbs_data
->min_sampling_rate
,
485 LATENCY_MULTIPLIER
* latency
);
487 if (!have_governor_per_policy())
488 gov
->gdbs_data
= dbs_data
;
490 policy
->governor_data
= policy_dbs
;
492 policy_dbs
->dbs_data
= dbs_data
;
493 dbs_data
->usage_count
= 1;
494 list_add(&policy_dbs
->list
, &dbs_data
->policy_dbs_list
);
496 gov
->kobj_type
.sysfs_ops
= &governor_sysfs_ops
;
497 ret
= kobject_init_and_add(&dbs_data
->kobj
, &gov
->kobj_type
,
498 get_governor_parent_kobj(policy
),
499 "%s", gov
->gov
.name
);
503 /* Failure, so roll back. */
504 pr_err("cpufreq: Governor initialization failed (dbs_data kobject init error %d)\n", ret
);
506 policy
->governor_data
= NULL
;
508 if (!have_governor_per_policy())
509 gov
->gdbs_data
= NULL
;
510 gov
->exit(dbs_data
, !policy
->governor
->initialized
);
513 free_policy_dbs_info
:
514 free_policy_dbs_info(policy_dbs
, gov
);
517 mutex_unlock(&gov_dbs_data_mutex
);
521 static int cpufreq_governor_exit(struct cpufreq_policy
*policy
)
523 struct dbs_governor
*gov
= dbs_governor_of(policy
);
524 struct policy_dbs_info
*policy_dbs
= policy
->governor_data
;
525 struct dbs_data
*dbs_data
= policy_dbs
->dbs_data
;
528 /* Protect gov->gdbs_data against concurrent updates. */
529 mutex_lock(&gov_dbs_data_mutex
);
531 mutex_lock(&dbs_data
->mutex
);
532 list_del(&policy_dbs
->list
);
533 count
= --dbs_data
->usage_count
;
534 mutex_unlock(&dbs_data
->mutex
);
537 kobject_put(&dbs_data
->kobj
);
539 policy
->governor_data
= NULL
;
541 if (!have_governor_per_policy())
542 gov
->gdbs_data
= NULL
;
544 gov
->exit(dbs_data
, policy
->governor
->initialized
== 1);
545 mutex_destroy(&dbs_data
->mutex
);
548 policy
->governor_data
= NULL
;
551 free_policy_dbs_info(policy_dbs
, gov
);
553 mutex_unlock(&gov_dbs_data_mutex
);
557 static int cpufreq_governor_start(struct cpufreq_policy
*policy
)
559 struct dbs_governor
*gov
= dbs_governor_of(policy
);
560 struct policy_dbs_info
*policy_dbs
= policy
->governor_data
;
561 struct dbs_data
*dbs_data
= policy_dbs
->dbs_data
;
562 unsigned int sampling_rate
, ignore_nice
, j
;
563 unsigned int io_busy
;
568 policy_dbs
->is_shared
= policy_is_shared(policy
);
569 policy_dbs
->rate_mult
= 1;
571 sampling_rate
= dbs_data
->sampling_rate
;
572 ignore_nice
= dbs_data
->ignore_nice_load
;
573 io_busy
= dbs_data
->io_is_busy
;
575 for_each_cpu(j
, policy
->cpus
) {
576 struct cpu_dbs_info
*j_cdbs
= &per_cpu(cpu_dbs
, j
);
577 unsigned int prev_load
;
579 j_cdbs
->prev_cpu_idle
= get_cpu_idle_time(j
, &j_cdbs
->prev_cpu_wall
, io_busy
);
581 prev_load
= j_cdbs
->prev_cpu_wall
- j_cdbs
->prev_cpu_idle
;
582 j_cdbs
->prev_load
= 100 * prev_load
/ (unsigned int)j_cdbs
->prev_cpu_wall
;
585 j_cdbs
->prev_cpu_nice
= kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
590 gov_set_update_util(policy_dbs
, sampling_rate
);
594 static int cpufreq_governor_stop(struct cpufreq_policy
*policy
)
596 gov_cancel_work(policy
);
600 static int cpufreq_governor_limits(struct cpufreq_policy
*policy
)
602 struct policy_dbs_info
*policy_dbs
= policy
->governor_data
;
604 mutex_lock(&policy_dbs
->timer_mutex
);
606 if (policy
->max
< policy
->cur
)
607 __cpufreq_driver_target(policy
, policy
->max
, CPUFREQ_RELATION_H
);
608 else if (policy
->min
> policy
->cur
)
609 __cpufreq_driver_target(policy
, policy
->min
, CPUFREQ_RELATION_L
);
611 gov_update_sample_delay(policy_dbs
, 0);
613 mutex_unlock(&policy_dbs
->timer_mutex
);
618 int cpufreq_governor_dbs(struct cpufreq_policy
*policy
, unsigned int event
)
620 if (event
== CPUFREQ_GOV_POLICY_INIT
) {
621 return cpufreq_governor_init(policy
);
622 } else if (policy
->governor_data
) {
624 case CPUFREQ_GOV_POLICY_EXIT
:
625 return cpufreq_governor_exit(policy
);
626 case CPUFREQ_GOV_START
:
627 return cpufreq_governor_start(policy
);
628 case CPUFREQ_GOV_STOP
:
629 return cpufreq_governor_stop(policy
);
630 case CPUFREQ_GOV_LIMITS
:
631 return cpufreq_governor_limits(policy
);
636 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs
);